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Propriétés magnétiques et résonances magnétiques de 

monocristaux à base de borate de fer:  

Études expérimentales et modélisation 

 

La thèse porte sur la synthèse et l'étude des propriétés magnétiques de borates de fer-gallium, 

FexGa1-xBO3 avec 0x1. Ces matériaux sont prometteurs pour les applications; en plus, grâce à 

la présence, en fonction de x, de différents types d’ordre magnétique, ils sont bien adaptés au 

traitement de nombreux problèmes du magnétisme des solides. 

Le borate de fer, FeBO3 est un antiferromagnétique possédant un plan de facile aimantation 

et un faible ferromagnétisme. Les caractéristiques du borate de fer sont radicalement modifiées 

par substitution isomorphe fer – gallium diamagnétique. 

Nous avons mis au point une route de synthèse de monocristaux FexGa1-xBO3 de haute 

qualité. Comme principales techniques expérimentales, nous avons choisi les résonances 

magnétiques électronique (RME) et nucléaire (RMN). Selon le contenu du fer, nous avons 

observé:(i) la résonance antiferromagnétique, (ii) la résonance de clusters magnétiques et (iii) la 

résonance paramagnétique électronique (RPE). 

Les différents états magnétiques ont été identifiés et leurs caractéristiques – la température 

de Néel, le champ de Dzyaloshinskii-Moriya; les paramètres de l’hamiltonien de spin de Fe3+, etc. 

– ont été déterminées. La coordinence et la symétrie de sites de 11B et 71Ga ont été précisées par 

RMN à rotation sous l’angle « magique » (MAS). Moyennant la simulation des spectres de RPE et 

de MAS RMN, à l’aide de codes mis au point ad hoc, les distributions de paramètres dues au 

désordre local ont été déterminées. L’analyse théorique, tenant compte de contributions du 

champ cristallin et de l’interaction dipôle-dipôle, permet d’expliquer l’anisotropie 

magnétocristalline de volume et de surface. 

 

Mots clés : borate de fer-gallium, synthèse de cristaux, résonance magnétique électronique, 

résonance magnétique nucléaire, anisotropie magnétocristalline, magnétisme de surface. 



Abstract in English 

5 

Magnetic properties and magnetic resonances of single 

crystals based on iron borate:  

Experimental studies and modelling 

The thesis is concerned with synthesis and studying magnetic properties of iron-gallium 

borates, FexGa1-xBO3 with 0x1. These materials are promising candidates for applications; 

besides, occurrence of different types of magnetic ordering, depending on x, makes them suitable 

for treating a number of fundamental problems in solid state magnetism. 

Iron borate, FeBO3 is a two-sublattice easy-plane antiferromagnet with weak 

ferromagnetism. Physical characteristics of iron borate are radically modified by isomorphous 

substitution of a part of iron by diamagnetic gallium. 

We have started with developing a synthesis route for growing high-quality FexGa1-xBO3 

single crystals. As main experimental techniques, we have chosen Electron and Nuclear Magnetic 

Resonances (EMR, NMR). Depending on iron contents and temperature, we have observed: 

(i) Antiferromagnetic, (ii) Cluster Magnetic and (iii) Electron Paramagnetic Resonance (EPR). 

Different magnetic states have been identified and their characteristics: Néel temperature, 

Dzyaloshinskii-Moriya field; spin Hamiltonian parameters of isolated Fe3+ ion, etc., have been 

determined. Coordination and site symmetry of 11B and 71Ga nuclei have been specified by means 

of Magic Angle Spininng (MAS) NMR. Carrying out computer simulations of EPR and MAS 

NMR spectra with laboratory-developed codes, the parameter distributions caused by local 

disorder have been determined. Theoretical analysis taking into account crystal field and dipole-

dipole contributions allow interpreting volume and surface magnetocrystalline anisotropy of the 

crystals. 

 

Keywords : iron-gallium borate, crystal synthesis, electron magnetic resonance, nuclear 

magnetic resonance, magnetocrystalline anisotropy, surface magnetism. 
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Sommaire 

L’intérêt de la recherche du borate de fer, FeBO3 est principalement lié à ses remarquables 

caractéristiques magnétiques, magnéto-acoustiques, optiques, magnéto-optiques, etc. Ce matériau 

est prometteur pour les applications dans des diverses branches des sciences expérimentales et de 

l’ingénierie. En particulier, éléments de mémoire magnétique à haute densité d’enregistrement, 

transducteurs magnéto-acoustiques et magnéto-optiques, instruments de mesure des champs 

magnétiques ultra-faibles, de la température et de la pression peuvent être fabriqués sur la base du 

borate de fer. FeBO3 peut être appliqué dans les batteries lithium-ion afin d’augmenter leur 

capacité. Par ailleurs, le borate de fer peut être utilisé comme un monochromateur du 

rayonnement synchrotron pour la spectroscopie Mössbauer. 

Le premier chapitre « Crystal and magnetic structure of iron borate » présente la structure 

cristalline et magnétique de FeBO3. Ce cristal a une structure de calcite rhomboédrique de groupe 

d’espace 6
3dD , possédant un axe C3 orthogonal au plan de base. Du point de vue de la structure 

magnétique, en dessous de la température de Néel TN =348 K, FeBO3 est antiferromagnétique à 

deux sous-réseaux, possédant un plan de facile aimantation qui est le plan de base ; cependant, les 

aimantations des sous-réseaux ne sont pas tout à fait antiparallèles, ce qui engendre un faible 

ferromagnétisme dû à l’interaction Dzyaloshinskii-Moriya. 

Par ailleurs, les caractéristiques physiques du borate de fer sont radicalement modifiées par 

substitution isomorphe d’une partie du fer paramagnétique par le gallium diamagnétique. Nous 

avons mis au point la route de synthèse de monocristaux de borates de fer-gallium FexGa1-xBO3, 

par solution en fonte, décrite dans le deuxième chapitre « Synthesis of iron-gallium borate single 

crystals ». Des monocristaux de haute qualité ont été synthétisés dans toute la gamme des 

compositions 0 1x  . À l’aide de l’analyse thermodifférentielle et de la technique de sonde, nous 

avons déterminé les rapports de composants dans la charge et les modes de température 

correspondants, optimaux pour la synthèse de monocristaux avec différents x. Après la synthèse, 

la composition des cristaux et les paramètres du réseau cristallin ont été déterminés par la 

spectrométrie de fluorescence et diffraction des rayons X (SFX et DRX, respectivement). La SFX 

a révélé une certaine distribution de concentrations d’ions Fe3+ et Ga3+ dans les cristaux extraits 

du même creuset. L’analyse par DRX a montré que dans les borates mixtes de fer-gallium la 

modification des paramètres du réseau cristallin suit de près la loi de Vegard. 

Les cristaux FexGa1-xBO3 présentent d’un grand intérêt, tant pour la physique du solide que 

pour la science des matériaux, dans la mesure où ils permettent : 

 de suivre la transformation des propriétés magnétiques sous la transition entre l’état 

magnétiquement ordonné et l’état paramagnétique ; 

 d’interpréter les propriétés magnétiques des cristaux dilués, en particulier, l’anisotropie 

magnétocristalline, pour mieux comprendre la nature de ces propriétés dans le borate de 

fer pur. En effet, les différents mécanismes responsables des propriétés magnétiques de 

FeBO3 possèdent différentes dépendances en température et en concentration en fer ; 
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 la solution en fonte permet de synthétiser les cristaux de haute qualité avec les propriétés 

magnétiques prédéterminées, adaptées aux applications pratiques. 

Les chapitres suivants traitent les études expérimentales et théoriques de borates de fer-

gallium. Pour autant que nous soyons intéressés par les propriétés magnétiques des cristaux, nous 

avons choisi comme principales techniques expérimentales les résonances magnétiques 

électronique (RME) et nucléaire (RMN).  

Le troisième chapitre « Electron magnetic resonance of iron-gallium borate single crystals 

with 0.2≤x≤1 » présente les études de FexGa1-xBO3 avec 0 1x   par RME. Cette technique 

permet d’identifier les états magnétiques des cristaux à différentes teneurs en fer et à différentes 

températures. En fonction de x, les spectres de RME montrent un passage graduel de la 

résonance antiferromagnétique (RAFM) à x = 1 vers la résonance paramagnétique électronique 

(RPE) d’ions de fer dilués à 1x , en passant pour 0.34 0.85x   par une coexistence de 

RAFM et de la résonance de clusters magnétiques (RCM), provenant, respectivement, des régions 

du cristal magnétiquement ordonnées et partiellement désordonnées ; pour 0.34x   seule la 

RCM est présente. 

Les températures de Néel pour les cristaux avec 0.34 0.85x   ont été déterminées par des 

RME et SQUID (Superconducting Quantum Interference Device) techniques. Avec la 

diminution de x, NT  sensiblement diminue. Les dépendances en température du champ de 

RAFM suggèrent une présence de transitions magnétiques aux environs de 80 et 20 K pour 

x = 0.65 and 0.34, respectivement, les températures de Néel correspondantes proches de 244 et 

77 K. Nous supposons qu’à basses températures ces cristaux subissent la transition de Morin à la 

température MT . Au-dessus de MT , la structure magnétique de ces cristaux est la même que celle 

de borate de fer pur, c’à-d. antiferromagnétique avec un plan de facile aimantation. En dessous de 

MT , les cristaux sont antiferromagnétiques avec C3 pour l’axe de facile aimantation ; par 

conséquent, le faible ferromagnétisme disparaît. Avec la diminution de x, à la fois le champ de 

Dzyaloshinskii-Moriya, DH  et l’écart d’énergie isotrope, 2H  diminuent. Pour les cristaux avec 

1x  , en abaissant la température en dessous de NT , DH  d’abord augmente, puis passe par un 

maximum et enfin décroît. Pour les  cristaux avec x = 0.65 et 0.34, ce maximum se produit aux 

alentours de. 80 et 20 K, respectivement, ce qui corrobore l’hypothèse de la transition du Morin 

dans ces cristaux. 

L’intensité de la raie de RMC, observée dans tous les cristaux avec 1x   sauf à des valeurs 

de x très faibles, ne suit pas la loi de Curie en 1T  , ce qui suggère que cette raie est due aux 

clusters magnétiques. L’écart d’énergie anisotrope, déterminé pour le cristal avec x = 1 à 77 K, a 

permis de calculer la constante effective de l’anisotropie hexagonale; ce dernier a été utilisé dans 

l’analyse de l’anisotropie magnétocristalline de base. 

La RPE d’ions Fe3+ isolés dans les cristaux avec 1x   a été utilisée pour déterminer la 

symétrie des sites de fer et les paramètres de l’hamiltonien de spin dans les borates de fer-gallium. 

Ces données sont nécessaires pour obtenir une description complète de l’anisotropie 

magnétocristalline dans ces cristaux. Une facette essentielle des études de RPE est l’analyse 
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numérique – modélisation par ordinateur – des spectres expérimentaux. Le quatrième chapitre 

« EPR of iron-gallium borate single crystals with low x » décrit la paramétrisation des spectres de 

RPE d’ions Fe3+ à l’aide de codes informatique mis au point ad hoc. Dans un premier temps, nous 

avons développé un code basé sur l’hamiltonien de spin conventionnel, ce qui a permis de 

bonnes simulations des spectres expérimentaux, au moins, en ce qui concerne les champs de 

résonance. Cependant, nous avons constaté que dans cette approche deux jeux de paramètres 

différents sont possibles, dans la mesure où ils aboutissent à la même matrice de l’hamiltonien de 

spin. Cette dichotomie a pu être résolue en testant la compatibilité de ces deux jeux de 

paramètres avec les prédictions du modèle de superposition de Newman. A cet effet, nous avons 

utilisé l’hamiltonien de spin général pour les sites de symétrie trigonale. Les tests ont montré sans 

ambiguïté que seul l’un de ces jeux de paramètres est compatible avec le modèle de Newman. 

À l’aide des simulations utilisant les deux hamiltoniens de spin – conventionnel et général –

on obtient un bon ajustement des positions des raies de résonance ; en revanche, d’importantes 

divergences subsistent entre les amplitudes et largeurs des raies correspondantes dans les spectres 

expérimentaux et théoriques. Nous avons attribué ces divergences, à l’existence d’un certain 

degré de désordre local dans les cristaux. Dans le but de prendre en compte ce désordre dans 

l’hamiltonien de spin, nous avons exprimé celui-ci au moyen des opérateurs équivalents tesséraux 

à deux vecteurs, le spin effectif et le champ magnétisant. Cette approche nous a permis d’établir 

des relations entre d’une part, les distributions dues au désordre, des coordonnées d’oxygènes 

dans l’entourage de fer, et d’autre par les distributions des paramètres de l’hamiltonien de spin. 

Les simulations par ordinateur effectuées en utilisant un code basé sur ce modèle ont permis 

d’obtenir un très bon accord entre les spectres théoriques et expérimentaux en ce qui concerne à 

la fois les positions des raies et leurs amplitudes et largeurs. Ainsi, l’hypothèse de la présence du 

désordre local dans les cristaux fut confirmée. 

Les études par RMN à rotation sous l’angle « magique » (MAS) des cristaux FexGa1-xBO3 

avec 0 0.02x  , sont présentées dans le cinquième chapitre « NMR studies of iron-gallium 

borates ». Le double objectif de ces études a été de préciser la coordination et la symétrie de sites 

de bore et de gallium ainsi que corroborer, de façon indépendante, la présence d’un certain degré 

de désordre local dans ces cristaux. Les simulations par ordinateur des spectres de MAS RMN de 

noyaux 11B et 71Ga confirment la triple coordinence et la symétrie intrinsèque 3C  pour le bore, et 

la sextuple coordinance et une symétrie plus faible que la symétrie cubique pour le gallium. Pour 

les deux noyaux, l’élargissement des spectres de MAS RMN avec l’augmentation de teneur en fer 

a été attribué aux distributions des paramètres quadripolaires et du déplacement chimique, dans le 

cas de 71Ga, causés par le désordre local, comme attendu. Comme dans le cas de RPE, les 

spectres ont été simulés par ordinateur ; dans le cas de RMN nous avons utilisé deux différents 

modèles de la fonction de distribution des paramètres, celles de Czjzek et de Maurer. Une analyse 

comparative des ces modèles a été réalisée en vue de leur application pour tenir compte de 

l’élargissement des spectres de MAS RMN induite par le désordre local dans les cristaux. Le 

modèle de Czjzek est bien adapté au cas des solides fortement désordonnés ; cependant, il ne 

tient pas compte d’ordre local partiellement conservé dans les cristaux présentant un certain 

désordre. En effet, il ne prend pas en considération les valeurs moyennes non nulles des 
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paramètres quadripolaires et il ne contient qu’un seul paramètre de largeur de distribution. Au 

contraire, le modèle de Maurer n’a pas ces limitations, il est donc mieux adapté aux simulations 

des spectres de RMN expérimentaux dans les cristaux à faible désordre local. 

Les résultats des études de résonance magnétique ont permis de donner une nouvelle 

description théorique de l’anisotropie magnétocristalline dans le borate de fer et les borates 

mixtes de fer-gallium. Cette anisotropie comprend deux contributions : (i) du champ cristallin et 

(ii) de l’interaction dipôle-dipôle. 

Dans la mesure où les ions Fe3+ dans FeBO3 se trouvent dans un fort champ d’échange, la 

première contribution peut être calculée dans la théorie des perturbations, en exprimant les 

constantes d’anisotropie par l’intermédiaire des paramètres de l’hamiltonien de spin déterminés 

par RPE. 

D’autre part, auparavant la contribution dipôle-dipôle a été considérée en négligeant la taille 

les dipôles (dipôles « ponctuels ») auquel cas elle contribuerait uniquement à l’anisotropie uniaxe 

(suivant l’axe C3), mais pour des raisons de symétrie ne donnerait pas de contribution dans 

l’anisotropie de base. En effet, dans le borate de fer cette dernière est hexagonale, alors que 

l’énergie d’interaction de dipôles ponctuels dans le plan de base du borate de fer reste isotrope. 

Nous avons réexaminé ce problème en tenant compte des dimensions des dipôles (dipôles 

« étendus »). En supposant un rapport non négligeable entre la taille du dipôle et la distance 

dipôle-dipôle et en développant l’énergie d’interaction dipôle-dipôle en série de Taylor, les 

différents termes de ce développement permettent de rendre compte d’interactions de différentes 

symétries. Toutefois, pour explicitement calculer ces termes, on a besoin d’un modèle du dipôle 

étendu. 

À cet effet, nous avons présenté une description théorique de trois modèles : (i) une sphère 

uniformément aimantée, (ii) une boucle de courant circulaire (un courant ampérien) et (iii) une 

paire de deux « charges magnétiques » fictifs. Nous avons démontré que les trois modèles 

donnent des résultats identiques à grandes distances. En effet, le premier terme du 

développement de Taylor de l’énergie dipôle-dipôle dans les modèles d’une boucle de courant 

circulaire et d’une paire de charges magnétiques coïncident avec l’expression de cette énergie 

pour les dipôles ponctuels (ou pour deux sphères uniformément aimantées non pénétrantes 

mutuellement). 

Pour le calcul de la contribution dipôle-dipôle à l’anisotropie magnétocristalline du FeBO3, 

nous avons utilisé la sommation sur le réseau cristallin pour deux modèles de dipôles étendus, à 

savoir une paire de charges magnétiques et une boucle de courant circulaire. La comparaison avec 

les données expérimentales élimine le modèle d’une paire de charges magnétiques ; en revanche, 

le modèle d’une boucle de courant circulaire paraît tout à fait adapté dans la mesure où il permet 

de rendre compte de la symétrie hexagonale de base et, accessoirement, fournit deux estimations 

plus ou moins réalistes de la taille des dipôles associés à ion Fe3+. 

L’énergie d’interaction dipôle-dipôle pour les borates mixtes FexGa1-xBO3 a été calculée par 

la même technique que pour FeBO3. Afin de modéliser le un réseau cristallin diamagnétiquement 

dilué, nous avons utilisé la technique de Monte Carlo. Ainsi nous avons obtenu les contributions 

dipôle-dipôle aux constantes d’anisotropie magnétocristalline uniaxe et de base pour des cristaux 
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avec différents x. Les résultats de cette analyse sont décrites dans le sixième сhapitre 

« Magnetocrystalline anisotropy of iron borate and iron-gallium borates ». 

Les propriétés surfaciques constituent un véritable défi compte tenu de leur importance 

primordiale pour la miniaturisation des éléments de micro-électronique. Auparavant, l’anisotropie 

magnétocristalline de surface dans le borate de fer volumique avait été décrite en ne tenant 

compte que de la contribution dipôle-dipôle. Dans le septième сhapitre « Surface 

magnetocrystalline anisotropy of iron borate single crystals » nous avons étendu la théorie du 

magnétisme de surface de borate de fer, en tenant compte de la contribution du champ cristallin. 

Nous avons développé un modèle de distorsions structurales dans la couche surfacique pour 

la face  1014  de borate de fer, dans l’hypothèse que les positions de tous les ions dans cette 

couche soient décalées proportionnellement à leur distance d’un plan de référence, supposé rester 

immobile, parallèle à la face du cristal. Afin de calculer les paramètres de l’hamiltonien de spin 

pour les ions Fe3+ dans la couche surfacique en tenant compte de la baisse de symétrie, nous 

avons utilisé l’hamiltonien de spin généralisé exprimé au moyen des opérateurs équivalents 

tesséraux à deux vecteurs (voir chapitre 4) et le modèle de superposition. Pour les ions fer dans la 

couche surfacique, nous avons utilisé les mêmes paramètres du modèle de superposition que dans 

le volume, v. chapitre 4, dans la mesure où ces paramètres devraient rester inchangés tant que les 

distorsions structurales restent faibles. La contribution du champ cristallin à l’énergie 

d’anisotropie surfacique a été calculée dans la théorie des perturbations. Les résultats de ce calcul 

montrent que la prise en compte des modifications du champ cristallin dues aux distorsions 

structurales produit une contribution significative à l’anisotropie surfacique. La comparaison avec 

la détermination expérimentale de l’anisotropie magnétocristalline surfacique du borate de fer 

permet de conclure que les distorsions (contractions) relatives dans la couche surfacique sont 

proches de 1% . 

Les résultats de ma thèse ont été présentés dans un certain nombre de conférences 

internationales et donné lieu à plusieurs publications, voir la liste à la fin de la thèse. 
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Introduction 

The research interest in iron borate FeBO3 is mainly due to its remarkable magnetic, 

magneto-acoustical, optical, magneto-optical, resonance, etc. characteristics [1-16]. This material is 

a first-rate candidate for practical applications in various branches of experimental science and 

engineering. In particular, magnetic memory elements possessing high density of recording, 

magneto-acoustic and magneto-optical transducers, instruments for measuring ultra-weak 

magnetic fields, temperature and pressure can be created on the basis of iron borate. FeBO3 can 

be applied in modern lithium-ion batteries in order to substantially increase their capacity [17-19]. 

Besides, iron borate can be used as an excellent monochromator for synchrotron Mössbauer 

spectroscopy [20, 21]. 

Chapter 1, “Crystal and magnetic structure of iron borate” describes in detail crystal and 

magnetic structure of FeBO3. This crystal has a rhombohedral calcite structure of 6
3dD  space 

group [22]. From the viewpoint of magnetic structure, iron borate is a two-sublattice easy-plane 

antiferromagnet with the Néel temperature TN = 348 K, showing a weak ferromagnetism caused 

by the Dzyaloshinskii-Moriya interaction [22]. 

A route for obtaining FeBO3 single crystals of high structural perfection has been developed 

in the Crystal Growth Laboratory at the Simferopol University [23, 24], one of world-known 

leaders in the field of synthesis of iron borate-based single crystals. The crystals grown in this 

laboratory have been studied in a number of institutes of the Russian Academy of Sciences, viz., 

the Kurchatov Institute, the Kapitsa Institute for Physical Problems, the Prokhorov General 

Physics Institute, the Kirensky Institute of Physics, the Institute of Crystallography and the Chair 

of Magnetism at the Lomonosov Moscow State University, as well as in many European 

institutions, viz., in the Institut d’électronique, de microélectronique et de nanotechnologie (Lille), 

at the Radboud Universiteit (Nijmegen, Netherlands), the Uniwersytet Szczeciński (Poland), etc. 

Magnetic characteristics of iron borate can be fine-tuned by isomorphous substitution of 

paramagnetic iron by diamagnetic gallium. I have actively collaborated with the Crystal Growth 

Laboratory in working out the solution-in-the-melt synthesis route for mixed iron-gallium borates 

FexGa1-xBO3, as described in Chapter 2, “Synthesis of iron-gallium borate single crystals” 

concerned with preparing high-quality single crystals in the whole range of compositions. After 

successful synthesis, exact crystal composition and parameters of the crystal lattice have been 

determined by X-ray fluorescence analysis (XRF) and X-ray diffraction (XRD), respectively. 

FexGa1-xBO3 crystals are of a great interest because of the following reasons: 

(i) They allow monitoring transformation of magnetic properties under the transition from 

magnetically ordered to paramagnetic state. 

(ii) Understanding magnetic properties of diluted crystals, in particular, the 

magnetocrystalline anisotropy, allows specifying the nature of such properties in pure 

iron borate. Indeed, various mechanisms responsible for magnetic properties of FeBO3 
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have different concentration and temperature dependences; consequently, the series of 

FexGa1-xBO3 crystals offers a possibility to get a better insight in their nature. 

(iii) The solution in the melt technique allows synthesizing high quality crystals with 

predetermined magnetic properties, suitable for practical applications. 

Thus, mixed iron-gallium borates are of a major importance both in solid state physics and 

in materials science. 

The following chapters deal with experimental and theoretical studies of iron-gallium 

borates. As far as we are mainly interested in magnetic properties of the crystals, as key 

experimental techniques we have chosen magnetic resonances, namely Electron Magnetic 

Resonance (EMR) and Nuclear Magnetic Resonance (NMR). 

Chapter 3, “Electron magnetic resonance of iron-gallium borate single crystals with 

0.2≤x≤1” describes EMR studies of FexGa1-xBO3 crystals with 0 1x  . This technique allows 

identifying magnetic states occurring for different iron contents and at different temperatures. In 

particular, the Antiferromagnetic Resonance (AFMR) in crystals possessing magnetic ordering 

allows specifying the Néel temperature, the Dzyaloshinskii-Moriya field; studying the 

magnetocrystalline anisotropy of the samples. The Electron Paramagnetic Resonance of isolated 

Fe3+ ions in crystals with 1x   serves as a powerful technique for specifying the symmetry of 

iron sites and determining spin Hamiltonian parameters of isolated Fe3+ ions. These data are 

necessary for a consistent description of the magnetocrystalline anisotropy in the crystals. An 

essential facet of the EPR spectroscopic studies is the numerical analysis – computer modelling – 

of the experimental spectra. Chapter 4, “EPR of iron-gallium borate single crystals with low x” 

describes the full parametrization of the EPR spectra of diluted Fe3+ ions by means of detailed 

computer simulations with the help of laboratory-developed codes, explicitly taking into account 

parameter distributions and thus allowing to estimate the degree of local disorder in the crystals. 

We have used different spin Hamiltonians in order to resolve the ambiguity in the choice of 

different sets of parameters. 

The Magic Angle Spinning (MAS) NMR studies of FexGa1-xBO3 crystals with 0 0.02x  , 

described in Chapter 5, “NMR studies of iron-gallium borates”, have been made in order to 

specify coordination and site symmetry of 11B and 71Ga nuclei. As in the case of EPR, we have 

followed the approach of computer simulations, applying different distribution functions of 

quadrupole parameters and chemical shift. A comparative analysis of the Czjzek’s and Maurer’s 

models of the joint distribution density of NMR quadrupole parameters has been carried out in 

view of their application to account for MAS NMR spectra broadening induced by local disorder 

in the crystals. 

The results of the magnetic resonance studies have allowed to give a new theoretical 

description of magnetocrystalline anisotropy in iron borate and mixed iron-gallium borates. This 

anisotropy includes (i) crystal field and (ii) dipole-dipole contributions. The first contribution has 

been calculated in perturbation theory, expressing the anisotropy constants through the spin 

Hamiltonian parameters determined by EPR. The second contribution is usually considered for 

“point dipoles” having a negligible size. In this case only uniaxial anisotropy is accounted for, 
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basal anisotropy being ruled out on the grounds of symmetry. Indeed, the basal anisotropy in 

iron borate has hexagonal symmetry, whereas the interaction energy of point dipoles in the basal 

plane is isotropic. We have reexamined the dipole-dipole contribution using the concept of 

“extended dipoles” having non-negligible size. Taking into account higher-order terms in the 

expansion of the dipole-dipole interaction energy in a Taylor series in the small parameter dipole 

size/interdipole distance opens the possibility of describing more sophisticated issues, in 

particular, the hexagonal magnetocrystalline anisotropy. However, in order to explicitly calculate 

these terms we need a physical model of the extended dipole. For this purpose we have put 

forward a theoretical description of three models of the extended dipoles: (i) a uniformly 

magnetized sphere, (ii) an Ampérian current and (iii) an assembly of two fictitious “magnetic 

charges”. For calculating the dipole-dipole contribution to the magnetocrystalline anisotropy we 

have used the lattice-sum method; for the mixed borates, a diamagnetically diluted crystal lattice 

has been generated by Monte Carlo technique [25]. A comparison between the calculation and 

the experimental data provides a consistent description of the basal magnetocrystalline 

anisotropy; moreover, it allows estimating the size of the extended dipoles. The results of this 

analysis are described in Chapter 6, “Magnetocrystalline anisotropy of iron borate and iron-

gallium borates”. 

Surface properties represent a true challenge, as far as these properties are important for 

miniaturization of elements of microelectronics. Previously, the surface magnetocrystalline 

anisotropy in bulk iron borate had been described taking into account only the dipole-dipole 

contribution [6]. In Chapter 7, “Surface magnetocrystalline anisotropy of iron borate single 

crystals”, we extend the theory of surface magnetism, taking into account the crystal field 

contribution. With this aim in view, we have put forward a model of structural distortions in the 

near-surface layer, allowing a complete description of the surface magnetocrystalline anisotropy 

of iron borate. 

The results of my thesis have been presented in a number of international conferences and 

given rise to several publications, see the list at the end of the thesis. 
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1. Crystal and magnetic 

structure of iron borate  

1.1 Crystal structure 

 

Synthesis of FeBO3 single crystals and determination of their crystal structure were first 

reported by Bernal et al. [1.1]. Iron borate has rhombohedral calcite-type structure with point 

group symmetry 3dD  and the space group 6
3dD  in Schönflies notation. The stereographic 

projection of its structure is shown in Figure 1.1. Two-fold axes, perpendicular to three-fold 

axis 3С , and planes of symmetry are denoted as 2С  and m , respectively. Structural parameters 

have been later refined by Diehl et al. [1.2, 1.3]. This space group has the R-type Bravais lattice; 

thus, lattice parameters can be specified in both hexagonal and rhombohedral settings, see 

Table 1.1. The relations between hexagonal and rhombohedral lattice parameters are: 

 
 

1
2

h r r

h r r

1
22 sin

3 1 2cos .

a a

c a







 
  (1.1) 

The rhombohedral, see Figure 1.2, and hexagonal unit cells of FeBO3 contain two and six 

formula units, respectively. 

 

 

 

Figure 1.1 Stereographic projection of iron borate structure. The Cartesian 
coordinate axes are directed as follows: 2С , mx y   and 3Сz  . The z -axis is 

perpendicular to the plane of the figure and points towards the reader. 
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Table 1.1 Lattice parameters of FeBO3 [1.3]. 

Hexagonal set Rhombohedral set 

 h 4.626 1a  Å   

 h 14.493 6c   Å   

3
h 268.596V   Å * 

r 5.52a   Å   

r 49.54    

3
r 89.532V   Å * 

* rh andV V  are unit cell volumes. 

 

 

Figure 1.2 Rhombohedral unit cell of FeBO3. The Cartesian coordinate axes are 
directed as in Figure 1.1: 2С , mx y   and 3Сz  . 
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In order to specify the atomic arrangement in iron borate, the so-called oxygen parameter hx  

should be determined. Bernal et al. [1.1] and Diehl et al. [1.3] quote h 0.2900x   while Diehl [1.2] 

gives h 0.2981x  . Atomic coordinations and allocations of different atoms to different sites in 

the unit cell of FeBO3 have been obtained by X-ray analysis [1.2] taking into account 

transformations of 6
3dD  symmetry group [1.3], see Table 1.2. Interatomic distances and bond 

angles are given in Table 1.3. Each iron is surrounded by six oxygens forming a nearly perfect 

octahedron. In turn, borons are located at the centres of equilateral oxygen triangles, so that Fe3+ 

cations can alternatively be considered as sixfold-coordinated by flat 3
3BO   groups playing the 

role of anions, see Figure 1.3. 

 

Table 1.2 Fractional coordinates of atoms in the unit cell of FeBO3 [1.3]. 

Atoms Hexagonal setting Rhombohedral setting 

Fe 1
20,0,0; 0,0,

 
1 1 1
2 2 20,0,0; , ,

 

B 31
4 40,0, ; 0,0,

 
3 3 31 1 1

4 4 4 4 4 4, , ; , ,
 

O   1 1 1
h h h h4 4 4,0, ;0, , ; , ,x x x x

  
*1 1 1 1 1 1

r r r r r r2 4 2 4 4 2, , ; , , ; , ,x x x x x x     

* 1
r h 4x x 

 

 

Table 1.3 Interatomic distances and bond angles in FeBO3 [1.3]. 

Fe―O 2.028(1) Ǻ 

B―O 1.379(2) Ǻ 

Fe―Fe 3.601(0) Ǻ 

O―Fe―O 91.82(5) and 88.18(5)° 
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Figure 1.3 Two non-equivalent sites of Fe3+. The Cartesian coordinate axes are 
directed as in Figure 1.1. The z -axis is perpendicular to the plane of the figure and 

points towards the reader. Full and empty circles represent ions located above and below 
this plane, respectively. 

1.2 Magnetic structure 

Neutron diffraction studies have shown that iron borate is an antiferromagnet with weak 

ferromagnetism [1.4]. Indeed, FeBO3 crystals possess two magnetic sublattices. The magnetic 

moments 1m  and 2m  of 3
1Fe  and 3

2Fe  ions have equal norms, 1 2m m . Within the accuracy of 

measurements [1.4], these vectors lie in the basal plane and are almost antiparallel. However, 

because of a slight tilt of 
1 2andm m , apart from a strong antiferromagnetic moment 1 2 a m m , 

a weak ferromagnetic moment 1 2 f m m  occurs, as shown in Figure 1.4. Obviously, f a  

and f a . 

 

 

Figure 1.4 Scheme of orientation of magnetic moments of two non-equivalent iron 
ions, illustrating the emergence of antiferromagnetism and weak ferromagnetism. 

 

Since the neutron diffraction measurements by Pernet et al. [1.4] have been carried out on a 

polycrystalline iron borate, they could not determine the orientation of a  in the basal plane. 

Various vectors used in describing the magnetic structure of FeBO3 are defined in Table 1.4. 

 



Crystal and magnetic structure of iron borate 

22 

Table 1.4 Definition of various magnetic vectors. 

Vector Definition 

Sublattice magnetizations 
*

1,2 1,2
1
2 N mM  

Ferromagnetic vector  

or spontaneous magnetization 
1 2

1
2 N  M fM M   

Antiferromagnetic vector 1 2
1
2 N  L aM M   

Reduced ferromagnetic vector 1
2
Mm M  **  

Reduced antiferromagnetic vector 1
2 Ll M  

* N  is the iron concentration 

**M  is the norm of the sublattice magnetization. For FeBO3 at 0 K 

0 520GM  [1.3]. 

 

Note that 

 2 2 1l m    (1.2) 

Taking into account the value of the tilt angle, 55   [1.5], cf. Figure 1.4, allows estimating 

the norms of andl m : 

 0.999 ; 0.016.l m   (1.3) 

The magnetic energy of FeBO3 includes exchange energy EE  and magnetocrystalline 

anisotropy energy AE : 

 E A E E E . (1.4) 

As far as for Fe3+ ( 53d  electron configuration) the orbital moment equals zero, EE  in a good 

approximation is isotropic. Thus, AE  includes only contributions of dipole-dipole and crystal 

field terms [1.6]. 

EE  is related to 1 2andM M  as follows: 

  2 2
E 1 1 2 2 12 1 2

1
2 E E E   E M M M M  (1.5) 

where 1 2andE E  are intra-sublattice exchange constants, and 12E  is an inter-sublattice exchange 

constant. Using the definition of andl m , see Table 1.4, we can rewrite this equation in the 

following manner: 
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    2 2 2 2 2
E 1 12E l m E m l       

E M , (1.6) 

and taking into account eq. (1.2), we get: 

 
2

E 0
1
2  E Em E  (1.7) 

where  2
0 1 12=  E E E M  and 2

124E E M . 

We expand E  in a series of products of tesseral harmonics of the components of unit 

vectors andl m l m  : 

 ( ) ( ).l ml m

m m l ml l
l l m m

j ji i
i j i j i i

i j i j

K l m Z ZE    (1.8) 

Here , , ,l l m mi i i j  are integers numbering the harmonics, 0li , 0mi  , 2l mi i p    0, 1, 2,p   

is the rank of the corresponding expansion term; , , , ,, 1, ,l m l m l m l mj i i i    , and 
m ml l

i j i jK  are 

the corresponding constants. 

As far as experiments have attested the existence of hexagonal anisotropy in the basal plane 

of FeBO3 [1.7], the expansion of E  should be extended up to the sixth rank in tesseral 

harmonics. Obviously, its expression can include only terms invariant under all transformations 

of the relevant point group. Besides, as in the case of FeBO3 m l , cf. eq. (1.3), for 1p  we 

can neglect terms with 1mi  . 

Taking into account all above considerations, eq. (1.8) reduces to 

    

       

       

       

       

0 0
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1 1 1 1
1 1 1 11111 1111
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3 3 0 4 3 0
3310 3 1 4 04300

5 3 0 6 6 0
5310 5 1 6600 6 0 .

K Z Z

lm K Z Z K Z Z

K l Z Z K m Z Z

K l mZ Z K l Z Z

K l mZ Z K l Z Z

 





    

 

 

 

E  

   

   

   

   

��   (1.9) 

Note that in order to possess the required symmetry, the relation 1111 1111K K  should hold. 

Explicit expressions of the tesseral harmonics featuring in this expression are [1.8]: 

 

   

    

  
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6

3 3 31 1 1 1
2 2 22

5 351
4 32

3 70 3851
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14
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z x x y

x y y z x x y z

x x y y x y

Z Z Z Z

Z Z

Z Z

Z

  

 

 



  

   

       

     





   

   

    

   

 (1.10) 

where ,   . Substituting these expressions in eq. (1.9), we get: 
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3 9 1
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

 





   

 

       

    

     

  

      

   

  

   

E

 (1.11) 

This expression can also be written in terms of components of andl m : 
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K l l l m K l l l l
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 
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
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   

  

   

E

 (1.12) 

Simplifying the notation of the constants, up to a constant term we get: 

 

     

   

     

2 2 2 2 2

2 2 2 2
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1 1 1
2 6 63 3

3 3

3 9 1 14 .

x y y x z z

x y x z x y y z

x y z x z x x y y x y

Em D l m l m a l l b m m

c l l l m d l l l l

f l l l l m e l l l l l l

      

   

      

E

 (1.13) 

Here the first term on the right-hand side describes isotropic exchange, cf. eq. (1.7); the 

second term accounts for antisymmetric exchange – the Dzyaloshinskii-Moriya interaction, 

responsible for weak ferromagnetism; the third and fourth terms represent uniaxial 

magnetocrystalline anisotropy; the remaining terms describe higher-order magnetocrystalline 

anisotropy. Relations between the constants featuring in eqs. (1.12) and (1.13) are 

straightforward. 

Data available for certain constants in FeBO3 are summarized in Table 1.5. 

 

Table 1.5 Values of some constants for FeBO3 at 0 K, taken 

or calculated from the corresponding references. 

Constant Value, -3Jm  

E  
86.26 10  [1.9, 1.10] 

D  
71.05 10  [1.11] 

a  
53.29 10  [1.11, 1.12] 
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The parameters andd e  have not been experimentally determined. In Chapter 6, 

“Magnetocrystalline anisotropy of iron borate and iron-gallium borates”, we provide a theoretical 

analysis of these quantities, resulting in the following order-of-magnitude estimates 
3 410 10d   and 0 1 -310 10 Jme  . We can reasonably assume that constants describing 

the same-order magnetocrystalline anisotropy are of the same order, , ,b a c d f e   . It should 

be noted that Curély et al. have shown that negative sign of D  would produce a helical-type 

magnetic structure [1.13-1.15]. 

In equilibrium E  is at a minimum. Minimizing E  with respect to the components of m  at 

fixed l , we get the equilibrium orientation of m  with respect to l : 

 
 

 
2

2 2

1 1 2
3 3 3

9 1
, , 3

z

y x x y x

c f lD D
l l l l l

E b E b E b

              
m . (1.14) 

Obviously, zm  is negligible in comparison with andx ym m , so that we can put 0zm  . 

Substituting the components of m  in eq. (1.13), after simple transformations we get: 

 
   

    

2
2 2 2 2

2 2 4 2 2 4 2 2

1 1
2 61

3

3

3 14

z z

x y y z x x y y x y

D
l l a l l

E b

d l l l l e l l l l l l

   


     

E
 (1.15) 

The first and second terms on the right-hand side of this equation can be written as a sum of 

an isotropic term,
2

2
iso

1
3 1

3

D
l

E b



E  and a uniaxial anisotropy term. Then eq. (1.15) becomes: 

       2 2 2 2 4 2 2 4 2 2
iso eff

1
6 3 3 14 .z x y y z x x y y x ya l l d l l l l e l l l l l l        E E  (1.16) 

where we have introduced an effective constant of uniaxial anisotropy: 

 
2

eff 1
3

D
a a

E b
 


. (1.17) 

Expressing 

  sin cos , sin sin , cosl     l , (1.18) 

eq. (1.16) becomes: 

  2 2 4 3 6 6
iso eff

1
6 3 cos 1 sin cos sin 3 sin cos6 .a l d l el         E E  (1.19) 

We are interested in the orientation of l  in a stable equilibrium, i.e. in a minimum of  , E  

function. The relevant condition of occurrence of critical points of this function is vanishing of 

the gradient E . The components of the latter are as follows: 

  2 2 4 4 2
eff cos 4 cos 1 sin sin 3 6 sin cos cos6 sina dl el l       



        

E
 (1.20) 

and 
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  2 3 4 21
3 cos 4 sin sin 3 sin cos3

sin
d el l    

 


 



E
. (1.21) 

The nature of a critical point, in accordance with the “second partial derivative test” [1.16], 

depends on the signs in this point of 
2

2



E  and  det H , the determinant of the Hessian 

matrix 

 

2

2

2

2 2

1

sin

1 1
ctg

sin sin

   


     

   
 

   
    

 
    

E E

E E E
H . (1.22) 

Namely, a critical point is a minimum or a maximum point of E , if in this point  det 0H  and 

2 2

2 20 or 0
 

  
 

E E , respectively. 

With eq. (1.19) only three different cases can occur where  ,  E 0 : 

(i) 0 : in this point, l  would be parallel to 3С , and m  vanishes, cf. eqs. (1.18) and (1.14), i.e., 

we would deal with an easy-axis antiferromagnet. However, iron borate is an easy-plane 

antiferromagnet [1.3]; therefore, this case does not occur. Note that in this point, 

  2 4
effdet a lH  while 

2 2
2 effa l


 


E . Obviously, E  would be at a minimum at this 

point, if effa  were negative, which is not the case in iron borate, cf. Table 1.5. 

(ii) 1
2  : l  is contained in the basal plane, so that eqs. (1.20) and (1.21) reduce to 

 4 61
sin 3 ; 6 sin6

sin
d l el 

  

 
 

 

E E
. (1.23) 

Obviously,  2
 E  vanishes for sin3 0 , i.e. 1

3 , 0, 1, ,5n n    . At these points, 

      
22 8 4 2

2eff effdet 9 4 ; 6a e d l a el l


    


EH . (1.24) 

In the latter equations as well as in the subsequent ones we have neglected higher than the 

first power in e terms, as far as such terms are small, cf. Table 1.5. E  will be at a minimum at 

this point if 2
eff4 0a e d  . Obviously, this is possible only if 0e  . In this case l  would be 

parallel to one of the 2С  axes and m  would lie in the symmetry plane perpendicular to this 

axis, making a negligibly small angle 4 310 10c
D

    with the basal plane, cf. eqs. (1.18) 

and (1.14) and Figure 1.1. 

(iii) The last possible case is that of cos3 0  , i.e.  1
6 2 1 , 0, 1, , 5n n     . 

In this case, the  -component of E  vanishes identically, cf. eq. (1.21), and   should be 

chosen such that 





E  vanishes as well. Since in iron borate, within the experimental 
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errors, l  lies in the basal plane [1.3], we assume 1 1
2 2where       , and expanding 





E  in Taylor series about 1
2   to the second order in  , we get the following 

critical points: 

 

1

2

1

2

5 31 1
2 6 6 2

71 1 11
2 2 6 6

; , ,

; , ,


     




     



 

 

  


  


  (1.25) 

where 

 

2

1

eff

2 2
eff

2 2
eff

6

5 5

d l

a

el d la

d l d a







  

  (1.26) 

In the latter equations as well as in the subsequent ones, we have neglected terms higher 

than the second power in d and higher than the first power in e as well as terms in the 

product d e . Note that for the parameter values quoted in Table 1.5, 2  is well outside the 

domain of definition of  , therefore only the nature of the critical points 

 1
1
2 ;       and  1

1
2 ;       should be determined. For both of them 

we get: 

    
2

22 8 2 6
2eff eff

eff

det 9 4 ; 2 4 3
d

a e d l a l e l
a

        

EH . (1.27) 

E  will be at a minimum at this point if 2
eff4 0a e d   and  ,    and  ,    are 

minima points of  , E . In this case l  is contained in the plane of symmetry m , making a 

small angle 
2

eff

d l

a
  with the basal plane; m  is parallel to the symmetry axis perpendicular 

to this plane and lies in the basal plane, cf. eqs. (1.18) and (1.14) and Figure 1.1. 

We have seen that the magnetic state of iron borate depends on the sign of the quantity 

 
2

eff

eff

1
4

d
e e

a
  , (1.28) 

viz. the cases (ii) and (iii) occur if eff 0e   and eff 0e  , respectively. We refer to this quantity as 

the effective constant of hexagonal anisotropy. effe  will be experimentally determined by AFMR, 

see Chapter 3, “Electron magnetic resonance of iron-gallium borate single crystals with 

0.2≤x≤1”. 
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1.3 Conclusions  

The crystal and magnetic structures of iron borate have been discussed in details. The 

magnetic energy of FeBO3, E  has been expanded in a series of products of tesseral harmonics of 

the components of unit vectors in the direction of andl m  up to the sixth order and the 

equilibrium orientations of andl m  have been determined for two possible magnetic states. In 

the first case, l  is directed along one of 2C  and m  lies in the symmetry plane perpendicular to 

this axis, making a negligibly small angle with the basal plane. In the second case, l  lies in one of 

the symmetry planes making a small angle with the basal plane, and m  is directed along the 

symmetry axis perpendicular to l  and lies in the basal plane. 



Crystal and magnetic structure of iron borate 

29 

1.4 References 

1.1 L. Bernal, C.W. Struck and T.G. White, New transition metal borates with the calcite structure, 

Acta Cryst. 16 (1963) 849-850 

1.2 R. Diehl, Crystal structure refinement of ferric borate FeBO3, Sol. St. Commun. 17 (1975) 743-745 

1.3 R. Diehl, W. Jantz, B.I. Nolang and W. Wettling, Growth and properties of iron borate, FeBO3, 

in: Current Topics in Materials Science, E. Kaldis ed., Elsevier, New-York, V. 11 (1984) 241-387 

1.4 M. Pernet, D. Elmalch and T.G. Toubert, Structure magnétique du métaborate de fer FeBO3, 

Sol. Stat. Com. 8 (1970) 1583-1587 

1.5 М.П. Петров, Г.А. Смоленский, А.Г. Паугурт, С.А. Кижаев и М.К. Чижов, Ядерный 

магнитный резонанс и слабый ферромагнетизм в FeBO3, Физика твердого тела 14 

(1972) 109-113 

1.6 J. Kanamori, Anisotropy and magnetostriction of ferromagnetic and antiferromagnetic materials, in: 

Magnetism, a treatise on modern theory and material, G.T. Rado, H. Suhl, ed., Acad. Press, v. 1 

(1963) 127-203 

1.7 V.D. Doroshev, I.M. Krygin, S.N. Lukin, A.N. Molchanov, A.D. Prokhorov, 

V.V. Rudenko and V.N. Seleznev, Basal magnetic anisotropy of a weak ferromagnetic FeBO3 

crystal, JETP Lett. 29 (1979) 257-260 

1.8 URL: http://www2.cpfs.mpg.de/~rotter/homepage_mcphase/manual/node131.html 

1.9 M. Eibshütz and M.E. Lines, Sublattice magnetization of single crystals by Mössbauer effect, 

Phys. Rev. B 7 (1973) 4907-4915 

1.10 В.Д. Дорошев, Клочан В.А., Ковтун Н.М. и др., Экспериментальное и теоретическое 

изучение температурной зависимости подрешеточной намагниченности слабого ферромагнетика 

FеВO3, Препринт Дон. ФТИАН УССР 7(102), Донецк (1985) 60 с. 

1.11 L.V. Velikov, A.S. Prokhorov, E.G. Rudashevskii and V.N. Seleznev, Antiferromagnetic 

resonance in FeBO3, Soviet Physics JETP 39 (1974) 909-915 

1.12 В.Н. Селезнев, Магнитоупорядоченные бораты железа (физическиесвойства, применение, 

синтез), Диссертация, Симферопольский гос. университет (1988) 371 с. 

1.13 J. Curély, Theory of the magnetic properties of an infinite classical spin chain showing axial anisotropic 

couplings: Crossover phenomena, Physica B 205 (1995) 31-40 

1.14 J. Curély and R. Georges, Exact solution for an infinite classical spin chain showing axial anisotropic 

couplings, Phys. Lett. A 184 (1994) 310-314 

1.15 J. Curély and R. Georges, Theory of the magnetic properties of an infinite classical spin-chain showing 

axial anisotropic couplings: Low-temperature behaviour, Phys. Rev. B 49 (1994) 12839-12847 

1.16 URL: http://mathworld.wolfram.com/SecondDerivativeTest.html 

 



Synthesis of iron-gallium borate single crystals 

30 

2. Synthesis of iron-gallium 

borate single crystals 

2.1 Introduction 

 

In this chapter we describe the procedure of synthesizing FexGa1-xBO3 single crystals with a 

part (1 – x) of Fe3+ ions isomorphously substituted by Ga3+ ions. 

As mentioned above in Introduction, the series of FexGa1-xBO3 single crystals, synthesized in 

a wide range of compositions, allows detailed studies of transformation of various physical 

characteristics under the transition from magnetically ordered to paramagnetic state. 

Iron borate crystals can be synthesized by two routes: (i) from gas phase and (ii) from 

solution in the melt [2.1, 2.2]. Using the gas phase technique, bulk single crystals of iron borate 

with large non-basal faces of optical quality are obtained. The occurrence of natural non-basal 

faces has allowed identifying and describing surface magnetism present on such faces and caused 

by specific surface anisotropy [2.3, 2.4]. Another effect observed only in bulk crystals is magnetic 

birefringence of sound [2.5]. 

The solution in the melt technique allows obtaining thin single crystals, 0.05 – 0.1 mm 

along the 3C  axis and up to 10 mm in the basal plane, (0001) in hexagonal coordinate system. 

Such crystals are of high structural perfection and are much less costly in manufacturing in 

comparison with those obtained from gas phase. For the purposes of the present work this 

technique has proved to be most appropriate. 

To the best of our knowledge, the first synthesis of FeBO3 single crystals was reported by 

Bernal et al. [2.6]. Later, FeBO3 single crystals were obtained by cooling from 860 to 670 °C a 

solution melt with molar component ratio suggested by Bernal et al. It was concluded that the 

crystal growth should be carried out in the temperature range 860670 °C, as a further decrease 

of temperature leads to decreasing crystal quality [2.7]. Boron-lead solvent B2O3-PbO-PbF2 for 

synthesizing FeBO3 was first used by Le Craw et al. [2.8]. Mixing of the solution melt and crystal 

synthesis on the seed holder were used by Bezmaternykh et al. [2.9]. 

Using the solution in the melt technique simplifies the crystal synthesis, allows obtaining 

materials with complex compositions and reduces the crystallization temperature of refractory 

compounds. Usually, crystallization regimes suitable for obtaining desired crystal phases are 

determined by trial and error, requiring significant time and financial resources. Hence, express 

methods of determining the ranges of stability of crystalline phases and temperature ranges of 

phase formation are desirable. In the present work for this purpose we have used differential 

thermal analysis (DTA) and probe methods. 
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After FexGa1-xBO3 synthesis, a detailed characterization is required for further studies and 

applications of the samples. The exact crystal composition and parameters of the crystal lattice 

have been determined by XRF and XRD, respectively. Besides, EPR has been used to estimate 

local disorder in the FexGa1-xBO3 crystals at low x values. 

2.2 Crystal synthesis  

The synthesis of FexGa1-xBO3 crystals by solution in the melt technique is schematically 

represented in Figure 2.1. 

 

+

Determining charge 
compositions

Weighting the charge

Extracting the crystals from the 
crucible

Obtaining a homogeneous 
solution melt in a crucible

Synthesis methodology

Dehydrating the reagents

Qualitatively 
characterizing the 

samples 

Determining temperature modes

Installing the crucible in a 
crystallization furnace

Crystal synthesis according to  the 
predetermined temperature mode

─

Dissolving the remnants of 
solution melt

 

Figure 2.1 General scheme for the synthesis of FexGa1-xBO3 single crystals by 
solution in the melt technique. 
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It includes the following steps: 

 determining suitable charge compositions and temperature modes (by DTA and probe 

methods); 

 dehydrating the reagents; 

 weighting the charge; 

 obtaining a homogeneous solution melt in a crucible; 

 installing the crucible in a crystallization furnace; 

 slow cooling of the solution according to a predetermined temperature mode; 

 extracting the crucible from the furnace; 

 dissolving the remnants of solution melt in 20 % solution of HNO3 and extracting the 

crystals from the crucible. 

2.2.1 Differential thermal analysis 

Differential thermal analysis (DTA) can be applied to a wide range of substances; meanwhile, 

there have been only few DTA studies of the solution-melt systems. This can be explained by the 

fact that for diluted solutions, sensitivity of this technique is greatly reduced because of the 

smallness of the exothermic peak on the thermograms [2.10]. 

Therefore, we have developed a highly sensitive setting for rapid analysis of small amounts 

of the solution melts in the temperature range from 300 to 1150ºС. This setting allows detecting 

weak temperature change T  caused by crystal formation and determining temperature ranges 

of crystallization with sufficient accuracy [2.11, 2.12]. 

As a differential thermocouple for measuring T , we have used two metallic crucibles of 

1.5 cm3 volume, allowing to detect T  values as small as ca. 0.01 °C. 

We have carried out DTA studies of different charge compositions for synthesis of mixed 

iron gallium borate crystals. As an example, the DTA curve for the composition used to 

synthesize FeBO3 is shown in Figure 2.2. As one can see, in the range of 835737ºC a flat 

exothermic peak is observed. A detailed analysis of this temperature range, see Figure 2.3, has 

revealed the existence of two separate exothermic peaks, above and below ca. 817ºC. The high-

temperature, 835–817ºC, and the low-temperature, 817–737ºC, peaks correspond to the 

emergence of Fe3BO6 and FeBO3 phases, respectively. 

The obtained DTA thermograms have proved highly efficient for studying phase transitions 

occurring in the course of crystal synthesis by solution in the melt route. In particular, they have 

allowed determining temperature ranges of forming FexGa1-xBO3 crystals in the whole contents 

range, 0 1x  . 
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Figure 2.2 DTA curve for the composition used for the synthesis of FeBO3 in wide 
temperature range. 

 

 

Figure 2.3 DTA curve for the composition used for the synthesis of FeBO3 in the 
range of formation of FeBO3 and Fe3BO6 crystal phases. 
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2.2.2 Probe method  

Certain shortcomings of the DTA, namely, high crystallization rates required and 

impossibility of in situ control of emerging phases, require a complementary analysis technique. 

With this aim, the probe method has been applied for the same compositions as DTA. As a 

probe, a platinum wire of 0.5 mm in diameter, fixed on the lifting device, has been used. The 

probe was immersed into the melt, then the temperature was modified following a distinct regime 

in accordance with a predetermined program, and finally, the probe was removed. The 

microcrystals formed on the probe have been studied by scanning electron microscopies, see 

Figure 2.4. In this way, the emergence of the same crystalline phases in the same temperature 

ranges as those found with DTA has been confirmed. 

 

 

 

Figure 2.4 Electron microscope pictures showing FeBO3 single crystals on the 
probes for two different magnifications. 
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2.2.3 Charge compositions 

Crystallizations were carried out in the Ga2O3-Fe2O3-B2O3-PbO-PbF2 system. Here the 

crystal-forming reagents are Ga2O3, and Fe2O3, PbO and PbF2 serve as solvents and B2O3 is both 

crystal-forming reagent and solvent. 

Examples of charge compositions used in the synthesis are shown in Table 2.1. 

 

Table 2.1 Charge compositions used for synthesizing FexGa1-xBO3crystals with 

different x values. 

x 
Ga2O3 Fe2O3 B2O3 PbO PbF2 

mass % 

0.00 18.60 0.00 

42.40 27.30 11.70 
0.02 18.52 0.08 

0.20 16.99 1.61 

0.30 14.49 4.11 

1.00 0.00 5.73 51.23 29.31 13.73 

 

2.2.4 Preparing a solution  

After determining a charge composition, all reagents have been dehydrated in a drying 

chamber at 150 oC during 24 hours. Next, the reagents have been weighted with a high-precision 

balance and mixed with a laboratory-developed device. An example of charge prepared for 

synthesis is shown in Figure 2.5. 

For obtaining a homogeneous solution melt, small portions, about 5 g, of the charge have 

been successively adjoined to a metallic crucible and each time kept for 20 min in a muffle 

furnace at 900 oC. As an example, Figure 2.6 shows a crucible with the solution melt extracted 

from the furnace. As one can see, the solution used for GaBO3 crystal synthesis is almost 

transparent. 
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Figure 2.5 Prepared charge used in synthesizing FexGa1-xBO3 crystals of a definite 
composition. 

 

 

 

Figure 2.6 Crucible with the solution melt used for synthesizing GaBO3 crystals after 
extracting from the muffle furnace. 
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2.2.5 Crystallization  

The crucible with the solution melt has been installed in the crystallization furnace with 

uniform temperature distribution. The crucible in the furnace before starting the crystallization 

process is shown in Figure 2.7. The crystallization setting consists of the following elements, see 

Figure 2.8: 

(i) crystallization furnace; 

(ii) lowering-rotating-lifting device; 

(iii) seed holder; 

(iv) temperature controller; 

(v) managing thermocouple; 

(vi) controlling thermocouple; 

(vii) power unit; 

(viii) computer. 

 

 

Figure 2.7 Crucible with a solution melt in the furnace. 
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Figure 2.8 Scheme of the crystallization setting. 

 

Figure 2.9 shows a typical temperature regime used in synthesizing crystals of a definite 

composition. It includes the following steps: 

(i) heating of the furnace; 

(ii) homogenization of the solution melt (at the beginning of this step, the seed holder is 

immersed in the solution melt and serves as a mixer); 

(iii) sharp temperature dropping; 

(iv) nucleation and crystal growth (using the seed holder during this step allows 

monitoring the emergence of FeBO3 crystal phase; at the end of this step, the seed 

holder with the synthesized crystals is extracted from the solution melt); 

(v) and (vi) cooling the furnace. 

After the last step, a crucible has been removed from the furnace and boiled in 20 % 

solution of HNO3 in order to dissolve the remnants of the solution melt, so that the crystals can 

be extracted. 
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Figure 2.9 Temperature mode of crystallization used in synthesizing FexGa1-xBO3 
crystals of a definite composition. 

2.2.6 Synthesized crystals 

The synthesized FexGa1-xBO3 crystals are shown in Figures 2.10 to 2.12. All crystals have the 

shape of hexagonal plates with the dimensions of a few millimeters in the basal plane and ca. 0.1 

mm in the perpendicular direction. Gallium borate is colourless while iron borate is green. The 

aspect of FexGa1-xBO3 crystals is gradually modified with the iron contents. 

 

Figure 2.10  GaBO3 (a) and FeBO3 (b) single crystals. 
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Figure 2.11 FexGa1-xBO3 single crystals with different x. 

 

 

 

Figure 2.12 GaBO3 crystals on the seed holder. 
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2.3 Characterization of synthesized crystals  

2.3.1 Crystal composition: X-ray fluorescence analysis 

In order to determine exact contents of iron in the synthesized crystals, хcrystal, we have 

carried out XRF analysis, a simple and accurate analytical method of determining the elemental 

composition of materials. The X-ray beam interacts with the atoms in the crystal in such a way 

that electrons are ejected from inner shells, leaving behind holes. Then the electrons from outer 

shells recombine with the holes, and the energy difference between the two states involved is 

released in the form of a photon. Since this energy difference is specific to each element, it is 

used to identify the latter. The concentration of a certain element is proportional to the intensity 

of the corresponding peak in the energy or wavelength spectrum. 

Figure 2.13 shows the results of XRF analysis; as one can see, хcrystal, substantially differ from 

those in the charge, хcharge; besides, a considerable difference in iron contents occurs for different 

crystals extracted from the same crucible. For instance, for хcharge = 0.01, хcrystal is in the range 

from 0.002 to 0.04. 
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Figure 2.13  Iron contents in FexGa1-xBO3 crystals vs. initial iron contents in the 
charge. The vertical bars show the spread of iron contents for the samples extracted 
from the same crucible. The dashed line is a guide for the eyes. 
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2.3.2 Crystal structure: X-ray diffraction studies 

The parameters of crystal lattice in the series of FexGa1-xBO3 crystals have been determined 

by XRD with a RigakuSmartLab diffractometer using copper radiation CuKα in the angle range 

of 5 2 100    with the step of 0.02° [2.12] *. 

Figure 2.14 shows XRD powder patterns for FeBO3 and Fe0.05Ga0.95BO3 crystals. Diffraction 

angles for the observed lines in the XRD pattern of FeBO3 and the corresponding planes are 

listed in Table 2.2 [2.12]. 

 

Table 2.2 Diffraction angles of the lines in XRD pattern of 

FeBO3 and corresponding planes in the hexagonal 

system [2.13]. 

2 , deg  hkl  2 , deg  hkl  

25.43 (012) 62.73 (122) 

33.38 (104) 67.04 (214) 

37.23 (006) 70.12 (208) 

38.95 (110) 70.54 (300) 

43.39 (113) 70.72 (119) 

47.11 (202) 79.31 (0.0.12) 

52.21 (024) 82.51 (306) 

55.09 (116) 83.12 (128) 

55.78 (018) 83.65 (223) 

61.58 (211) 89.19 (312) 

 

Isomorphous substitution of iron with gallium produces change of the lattice parameters 

manifesting itself in a shift of the XRD peaks from their positions in pure iron borate, see 

Figure 2.14. The hexagonal lattice parameters a and c can be calculated using the following 

expression [2.14]: 

2 2 2

2 2 2
4
3

1 h hk k l

d a c

 
   (2.1) 

where d are interplanar spacings calculated using the Bragg’s formula 2 sind   , and h, k and l 

represent the lattice planes. 

                                                 

* These results have been obtained in collaboration with E. Maksimova and I. Nauhatsky of the Physics and 

Technology Institute, Simferopol. 
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The lattice parameters in FexGa1-xBO3 crystals have been calculated using the positions of the 

most “convenient” peaks, e.g., (300) for a, and (006) and (0.0.12) for c. Next, these parameters 

have been refined by graphical extrapolation for all diffraction peaks in the angle range of 

40 2 100   . The dependences of a and c on the crystal composition are shown in 

Figure 2.15. 

 

 

Figure 2.14 XRD patterns of FeBO3 (bottom curve) and Fe0.05Ga0.95O3 (top 
curve) [2.12]. 

 

According to Vegard’s law [2.15], suggesting a linear relationship between the lattice 

parameters of a solid solution and concentrations of its constituent components, the following 

relation should hold for FexGa1-xBO3 crystals: 

Fe Ga B O FeBO GaBO1 3 3 3

Fe Ga B O FeBO GaBO1 3 3 3

crystal crystal

crystal crystal

(1 ) ,

(1 ) .

x x

x x

a x a x a

c x c x c





  

  
 (2.2) 

The dashed lines on Figure 2.15 are obtained by least square fitting to the experimental 

data to this relation. One can see that in the limits of errors, this relation quite adequately 

describes the experimental tendencies. 
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Figure 2.15 Concentration dependences of lattice parameters a (left) and c (right). Dashed 
lines : least square fittings [2.12]. 

2.3.3 Crystal quality: EPR studies  

For estimating the quality of the synthesized crystals, we have chosen the EPR 

characterization, particularly sensitive to imperfections of local structure. At low x values, only 

the EPR of diluted Fe3+ in GaBO3 lattice is observed; therefore, this ion can serve as a high-

sensitive probe for evaluating the degree of structural disorder in crystals. A single crystal with    

x = 0.003 has been studied by EPR with an X-band Bruker spectrometer at 4 K and magnetizing 

fields up to 1 T. A detailed account of this study will be given below, cf. Chapter 4, “EPR of iron-

gallium borate single crystals with low x”. 

The experimental EPR spectrum, curve a in Figure 2.16, is typical of isolated Fe3+ in oxygen 

environment. The spin Hamiltonian parameters have been determined by computer simulating 

the EPR spectra with a laboratory-made code. Besides, no characteristic line splitting has been 

detected, evidencing the absence of twinning in the crystals. 

In order to numerically estimate the degree of local disorder, we have attributed different 

normal random site-to-site distributions to the Cartesian coordinates of the Fe3+ ligands, and 

calculated the spin Hamiltonian parameter distributions by means of the superposition model, see 

details in Chapter 4, “EPR of iron-gallium borate single crystals with low x”. Figure 2.17 shows 

computer simulations of a chosen EPR line, for different degrees of local disorder estimated 

from the width,   of the ligand coordinate distributions. Obviously, with increased disorder, the 

width of this line drastically increases and its amplitude decreases, so that the absorption intensity 

remains roughly the same. The best agreement between this experimental and computer-

generated line profile is attained at 0.0003 0.0005   Å. Besides, Figure 2.16 shows that with 

such parameter distributions, a good fitting, curve b, is achieved for the whole experimental 

spectrum. 
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Figure 2.16 Experimental EPR spectrum of Fe3+ in FexGa1-xBO3 crystal with 
0.003x   at 4 K (a) and corresponding computer-generated spectrum (b). 

 

 

Figure 2.17 Experimental EPR line at ca. 0.486 T and the corresponding part of 
computer-generated spectrum for different distribution widths of the ligand coordinates. 
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2.4 Conclusions  

We have succeeded in obtaining high-quality FexGa1-xBO3 single crystals in the whole 

range of concentrations, using the solution in the melt technique for isomorphous substitution in 

iron-gallium borate system. By means of DTA and the probe method we have determined the 

component ratios in the charge and the corresponding temperature modes optimal for the crystal 

synthesis for different x. 

The XRF analysis has revealed certain difference in Fe3+ ion contents in different crystals 

extracted from the same crucible. The XRD analysis has shown that in mixed iron gallium 

borates the modification of the crystal lattice parameters closely follows the Vegard’s law. 

The EPR studies have allowed evaluating the degree of local disorder. Its quantitative 

characteristic – distribution width of the ligand coordinates, 0.0003 0.0005   Å, – confirms 

the high quality of the synthesised crystals. 
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3. Electron magnetic resonance 

of iron-gallium borate single 

crystals with 0.2≤x≤1  

3.1 Basic formalism 

 

A classical description of AFMR has first been given by Kittel in 1951 [3.1]. 

In a two-sublattice antiferromagnet the equilibrium orientation of the sublattice 

magnetizations 1 2andM M  minimises the magnetic energy E  of this system, i.e., at equilibrium 

1 2andM M  are parallel to effective magnetic fields eff 1 eff 2andH H  acting on the first and second 

sublattices, respectively, and defined as: 

    
1 2eff 1 eff 2andM MH HE E . (3.1) 

The equations of precession of 1 2andM M  about eff 1 eff 2andH H  in the absence of 

damping are [3.1, 3.2]: 

 
  

  




1 1 eff 1

2 2 eff 2





H

H

M M

M M
 (3.2) 

where   is the gyromagnetic ratio defined as 1
2

ge
m   , e  is the electron charge, m  is the 

electron mass and g  is the electronic g-factor. 

In a magnetic resonance experiment, one applies perpendicularly to H  an oscillating 

magnetic field h  (the magnetic component of an electromagnetic wave, typically in the 

microwave range), of a frequency   and amplitude h H . In most EMR spectrometers,   is 

kept constant and H  is linearly swept, so that the resonance occurs when   is equal to the 

frequency of precession of magnetizations. 

Considering weak precessions of 1 2andM M  about their equilibrium orientations and 

solving eqs. (3.2), magnetic modes of the antiferromagnetic substance in the vicinity of the 

ground state can be found. 

The subsequent analysis has been made for rhombohedral antiferromagnets with weak 

ferromagnetism [3.3]; thus, it is applicable to FeBO3 as well as to (isomorphous) mixed crystals of 

the FexGa1-xBO3 series. For H  contained in the basal plane of the crystals, the expressions of the 

low-frequency (LF) and high-frequency (HF) AFMR modes are, respectively [3.3-3.5]:
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
     

    

  (3.3) 

(In what follows, we will consider only the LF AFMR mode.) Different parameters appearing in 

these equations are specified in Table 3.1, and   is the angle between H  and the x-axis. The 

definitions of the constants given in Table 3.1 are given in Chapter 1, “Crystal and magnetic 

structure of iron borate”. 

Clearly, using the AFMR, one can determine these parameters and get information on 

magnetic properties of the crystals. 

 

Table 3.1 Parameters in eqs. (3.3) and their experimental values for FeBO3, taken or 

calculated from the corresponding references. 

Parameter Definition 
Value 

at 77 K 

Dzyaloshinskii-

Moriya field D
1
2

T

D
H




M

 
99.3±0.2 kOe [3.4, 3.6] 

98.7±0.5 kOe [this work] 

Exchange field 
E

1
4

T

E
H




M

 

32.969 10  kOe 

33.01 10  kOe


 [3.7] 

Isotropic energy gap 2H
 

4.25±0.25 kOe2 [3.4, 3.6] 

Hexagonal anisotropy 

field 
eff

hex
T

e
H




M

 51.826 10  kOe [this work] 

Uniaxial anisotropy field 
T

a
Ha

1
2




M  

3.1 kOe [3.4] 



TM  is the sublattice magnetization at a temperature T : 0 520GM  for FeBO3 at 0 K 

and 77 512.876GM  for FeBO3 at 77 K [3.7] 



value at 0 K 

 

In this chapter we describe the results of EMR studies of FexGa1-xBO3 crystals for 0 1x   

and report in more detail those for x = 0.85; 0.75; 0.65; 0.34 and 0.2. 
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3.2 Experimental results 

EMR studies of FexGa1-xBO3 single crystals have been carried out with two different 

spectrometers: 

(i) a laboratory-developed spectrometer operating in the frequency range from 7 to 

37.35 GHz and recording absorption spectra†, and 

(ii)  a commercial high-sensitivity X-band (9.464 GHz) Bruker spectrometer recording 

derivative of absorption  spectra. 

In both cases, the crystals were studied in the temperature range from 4 to 310 K and 

magnetizing fields up to 10 kOe applied in the basal plane. 

3.2.1 EMR at different iron contents and temperatures 

Depending on the iron contents and the temperature, several types of EMR have been 

observed in FexGa1-xBO3 crystals. Figure 3.1 shows the transformation of spectra shapes with x at 

room temperature. At x = 1 (pure iron borate) only a low-field resonance is observed. In the 

microwave frequency and temperature ranges used in this work, only this resonance line is 

observed for x = 1. The EMR in pure iron borate has been earlier identified as AFMR [3.4]. At 

somewhat lower iron contents, x = 0.75, besides the low-field line, a new broad resonance at 

higher magnetic fields emerges with an effective g-factor eff 2.0g  . As far as iron substitution 

for gallium occurs more or less randomly, such crystals are expected to contain regions with 

different local iron concentrations, implying different magnetic ordering. The low-field line 

observed in the mixed crystals, by analogy with iron borate [3.4], can be identified as AFMR line 

arising from magnetically ordered regions. The high-field line can be ascribed to Cluster Magnetic 

Resonance (CMR), i.e., EMR arising from only partially magnetically ordered regions, or to 

superposition of CMR and EPR subsisting in the vicinity of the Néel temperature. At still lower 

iron contents, x = 0.2, the AFMR line disappears and the high-field line becomes more 

pronounced. For x = 0.04, the latter line disappears as well, and the EPR spectrum of diluted 

Fe3+ ions, broadened by dipole-dipole interactions, comes into view. At still lower iron contents, 

x = 0.003 this spectrum is spectacularly narrowed. A detailed account of the EPR studies of this 

crystal will be given below, cf. Chapter 4, “EPR of iron-gallium borate single crystals with low x”. 

 

                                                 

† These results have been obtained in collaboration with A. Drovosekov and N. Kreines in the Kapitsa Institute 

for Physical Problems, Moscow. 
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Figure 3.1 Normalized X-band room-temperature EMR spectra of FexGa1-xBO3 
crystals with different x: 1 (a), 0.75 (b), 0.2 (c), 0.04 (d) and 0.003 (e). 

 

Figure 3.2 shows EMR spectra for x = 0.85 crystal at different temperatures. As one can see, 

at T 304 K only the high-field line is present; this temperature can be tentatively identified as 

an effective Néel temperature for this crystal (this assignment will further be corroborated by 

SQUID results). Obviously, the nature of this line can be only paramagnetic. At lower T , the 

AFMR line splits off the high-field one and gradually shifts towards lower fields; simultaneously, 

the relative intensity of the high-field line decreases. (Above room temperature, a second weak 

low-field line is also visible for this crystal; the nature of this line is not yet obvious.) 

In order to prove or disprove the existence of a high-field line below NT , we have carried 

out experiments with the high-sensitive Bruker spectrometer. Figure 3.3 shows the EMR spectra 

for x = 0.85 crystal at different temperatures in the magnetic field range corresponding to this 

line. Obviously, such a line is present in the whole temperature range; and below NT  it can be 

identified as CMR. 

Similar transformations of the EMR spectra in the vicinity of NT  occur in x = 0.75, 0.65 and 

0.34 crystals. 
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Figure 3.2 Normalized EMR absorption spectra series for x = 0.85 crystal at 
 17GHz  and different temperatures shown alongside the curves. The high-field line 

is superposed with a narrow signal from a probe with 2.006g  . 
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Figure 3.3 X-band EMR derivative of absorption spectra for x = 0.85 crystal at 
different temperatures shown alongside the curves. 
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For all crystals with 0.34x   a splitting of the AFMR line in several more or less resolved 

components is observed. These components have different frequency dependences of their 

resonance fields (FDF). Figure 3.4 shows this line for x = 0.75 crystal at different frequencies; 

obviously, at higher frequencies this splitting becomes more pronounced. It can be caused either 

by a certain mesoscopic inhomogeneity of the crystals (the occurrence of regions with different 

local iron concentrations resulting in different magnetic properties) or by magneto-elastic effects 

due to random stresses [3.4]. In the case where such splitting was significant, we have defined the 

resonance field as the maximum of the most intense component. 
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Figure 3.4 Normalized AFMR line for x = 0.75 crystal at different frequencies 
and T = 77 K. 

 

Figures 3.5 and 3.6 show the temperature dependences of the resonance field of the AFMR 

line for two crystals with x = 0.65 and 0.34. Cooling the crystals down from NT , the resonance 

field, first, sharply decreases, showing a transition from paramagnetic to magnetically ordered 

state. Next, this decrease is slowed down, and below a certain temperature ― ca. 80 K for x = 

0.65 crystal and ca. 20 K for x = 0.34 crystal ― the tendency is reversed, viz., the resonance shifts 

upfield. Figure 3.7 shows EMR spectra for x = 0.34 crystal at different temperatures. With 

lowering T from the Néel temperature (77 K in this crystal) to ca. 20 K, the AFMR line slightly 

shifts downfield. Meanwhile, a further cooling to 4 K results in a pronounced upfield shift and 

broadening of this line. In contrast, the high-field line decreases in intensity with lowering T; 

however, it again becomes obvious at 4 K. All these transformations suggest the occurrence of 

one more magnetic transition at low temperatures. 
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Figure 3.5 Temperature dependence of the resonance field of the AFMR line for 
x = 0.65 crystal measured at different microwave frequencies. The inset shows a vertical 
zoom in the low temperature region, with different curves arbitrarily shifted along the 
vertical axis. 
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Figure 3.6 Temperature dependence of the resonance field of the AFMR line for 
x = 0.34 crystal measured at different microwave frequencies. 
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Figure 3.7 EMR absorption spectra at  7.7GHz   for x = 0.34 crystal at different 
temperatures shown alongside the curves. 

 

Such a transition does not occur in pure iron borate; however, an apparently similar 

transition has been observed in hematite 2 3- Fe O  by Morin [3.8] and Morrison et al. [3.9]. As in 

iron-gallium borates, in hematite the LF and HF AFMR modes occur in the temperature range 

between the Néel temperature and the Morin’s temperature MT . For the LF mode in hematite, 

Morrison et al. have found that with decreasing temperature in the vicinity of MT  the resonance 

field rapidly increases (see Figure 9 in their paper), similarly to what we observe in mixed iron-

gallium borates, see Figures 3.5 and 3.6. Besides, in hematite doped with Ga, Ti and Al the 

Morin’s temperature is lowered in comparison with pure 2 3- Fe O  [3.10, 3.11], similarly as in 

our case with decreasing iron content the supposed transition temperature decreases. 

Thus, we assume that FexGa1-xBO3 crystals with x = 0.34 and 0.65 undergo the Morin’s 

transition at temperatures MT  below 20 K and 80 K, respectively. Above MT  crystals are easy-

plane antiferromagnets with a weak in-plane ferromagnetism; the sublattice magnetizations lie in 

the basal plane and are slightly tilted (as occurs in FeBO3 in the whole temperature range 

below NT , cf. Chapter 1, “Crystal and magnetic structure of iron borate”). Below MT  the weak 

ferromagnetism vanishes and the crystals become pure easy-axis antiferromagnets, the sublattice 

magnetizations lying along the trigonal axis. 

Obviously, in order to confirm this assumption, additional measurements, e.g. that of the 

dependence of the magnetization on the temperature, are required. 
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The EMR spectra for x = 0.2 crystal, see Figure 3.8, consist of a single line at 2g  , quite 

similar to the high-field line observed for higher x; consequently, the antiferromagnetic regions in 

this case are absent in the whole temperature range. At lower T this line considerably broadens, 

and Figure 3.9 (left) shows that its intensity does not follow the 1T   Curie law; therefore it 

cannot be a usual EPR line. We assume that this line is due to magnetic clusters. 

As far as, except at very low x values, the EMR line at 2g   is present in all crystals with 

1x  , cf. Figures 3.1, 3.3 and 3.7, we can conclude that in such crystals long-range and short-

range (cluster-type) magnetic ordering coexist. Figure 3.9 (right) shows the temperature 

dependence of the CMR line intensity for x = 0.65, confirming that the Curie law for this 

resonance is not respected. 

Figure 3.10 shows the decrease of NT , determined by AFMR, with the decrease in x. The 

AFMR data have been corroborated by SQUID. For comparison, data on NT  in similar crystals 

obtained by magnetometry and Mössbauer spectroscopy [3.12] are included‡. Obviously, the 

results of different determinations are in good agreement with each other. 
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Figure 3.8 Integrated X-band derivative of absorption spectra for the x = 0.2 crystal 
at different temperatures shown alongside the curves. 

 

 

                                                 

‡In the original paper Kamzin et al. [3.12] erroneously refer to their crystals as Fe1-xGaxBO6. 
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Figure 3.9 Temperature dependence of the intensity of the resonance line (circles, blue) 
and of the product intensity times temperature (triangles, red) for x = 0.2 (left) and x = 0.65 
(right) crystals at 9.5GHz  . The dashed lines are guides for the eye. 
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Figure 3.10 Néel temperature vs. x determined from AFMR and SQUID 
measurements. For comparison, magnetometry and Mössbauer spectroscopy data [3.12] 
are included.  
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3.2.2 Relationship between antiferromagnetic resonance 
frequency and magnetizing field 

Field-sweep EMR spectra recordings at different microwave frequencies allow obtaining the 

FDF. Figure 3.11 shows these dependences at different temperatures for x = 1 crystal. With 

decreasing T , the FDF for FeBO3 shifts downfield. 

 

 

Figure 3.11 FDFs for x = 1 crystal at different temperatures. The solid curves are fittings 
according to eq (3.3). 

 

FDFs for crystals with 1x   show somewhat different behaviour. Figure 3.12 and 3.13 

illustrate these dependences at different temperatures for x = 0.85 and 0.34 crystals, respectively. 

With decreasing T , the FDF, first, shifts downfield and next, shows an opposite tendency. In a 

greater or lesser extent, this behaviour is characteristic of all crystals with 1x  ; the most 

pronounced shift is observed for x = 0.34 crystal, see Figure 3.13. 

Fitting the FDF with eq. (3.3) using the least-squares method, allows one to determine the 

DH , as well as the isotropic and anisotropic, E hexH H , energy gaps. 
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Figure 3.12 FDFs for x = 0.85 crystal at different temperatures. The solid curves are fittings 
according to eq. (3.3). 

 

 

Figure 3.13 FDFs for x = 0.34 crystal at different temperatures. The solid curves are fittings 
according to eq. (3.3). 
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3.2.3 Dzyaloshinskii-Moriya field 

Data on DH  for different crystals at different temperatures are summarized in Table 3.2. 

 

Table 3.2 DH  (in kOe) for different x at different temperatures. 

T, K 
x 

0.34 0.65 0.75 0.85 1.0 

4 6.50±0.15 55.55±0.60 72.85±0.45 78.4±0.5 
101.2±0.1 [3.4, 3.6] 

99.3±0.5 

45 12.25±0.25     

65 10.85±0.15     

77  59.2±0.4 74.10±0.25 88.2±3.0 
99.3±0.2 [3.4, 3.6] 

98.7±0.5 

130  56.50±0.25    

170  51.6±0.2  74.55±1.50  

190  47.1±0.1 64.0±0.2   

200  44.20±0.15   89.7±0.1 [3.4, 3.6] 

230  29.9±0.2    

250    54.0±0.5  

260   42.5±0.5   

273     72.0±0.1 [3.4, 3.6] 

290   28.5±0.5   

293    24.9±0.2  

300    15.1±0.3 62.0±0.5 [3.4, 3.6] 
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A detailed study of the temperature dependence of DH  has been carried out for x = 0.65 

crystal, see Figure 3.14. In cooling from the Néel temperature, DH  increases, passes through a 

maximum at ca. 80K  and then decreases. A similar behaviour is observed for all crystals with 

0.34 0.85x  , see Table 3.2. These findings corroborate the idea of the existence of the 

magnetic transition described above. 

 

Figure 3.14 Temperature dependence of the effective Dzyaloshinskii-Moriya field for 
x = 0.65 crystal. 

 

3.2.4 Isotropic energy gap 

2H  for different crystals at different temperatures, determined from fitting to eq. (3.3) of 

the corresponding FDFs, are shown in Table 3.3. 

With increasing T from 4 K up to the Néel temperature, 2H  decreases, see Figure 3.15. In 

the temperature range from 4 to ca. 80 K a slow decrease is observed, while at higher 

temperatures this decrease is drastically accelerated. 

The fact that 2H  becomes negative in the vicinity of the Neel temperature may be an 

artefact caused by non-validity of eq. (3.3) in this temperature range [3.13]. 
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Table 3.3 2H  (in kOe2) for different x at different temperatures. 

T, K 
x 

0.34 0.65 0.75 0.85 1.0 

4 0.75±0.45 5.20±0.45 6.02±0.45 4.3±0.5 4.9±0.2 [3.4, 3.6] 

45 -0.55±0.65     

65 -0.25±0.50     

77  4.90±0.30 5.00±0.15 3.9±1.2 
4.25±0.25 [3.4, 3.6] 

6.543 ±0.032 

130  4.2±0.1    

170    1.65±1  

190   0.7±0.2   

200  1.65±0.10   1.6±0.2 [3.4, 3.6] 

230  -0.3±0.5    

250    0.70±0.55  

260   -1.7±1   

273     0.6±0.2 [3.4, 3.6] 

290   -1.65±0.45   

293    0.70±0.35  

300    -0.2±0.5 0.6±0.5 [3.4, 3.6] 

 

 

Figure 3.15 Isotropic energy gap vs. temperature for x = 0.65 crystal. 
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3.2.5 Anisotropic energy gap for iron borate 

Using the values of DH  from Table 3.2, we have determined hexEH H , see eq. (3.3), from 

the measurements at a fixed   carried out by rotating H  in the basal plane of the crystal. 

Figure 3.16 shows the angular dependence of the quantity    
2

DH H H
    for x = 1 

crystal at 77 K. One can see that this dependence can be accounted for by a superposition of 

hexagonal and uniaxial anisotropies in basal plane. The occurrence of uniaxial anisotropy in this 

case can be due to a slight deviation of H  from the basal plane or caused by mechanical 

stresses [3.14]. Therefore, the angular dependence of the resonance field has been fitted by the 

following expression, cf.eq. (3.3): 

  
2

2
D E hex36 cos6 cos 2H H H H H H p


 



 
     

 
  (3.4) 

where 2
E hex, andH H H p  are fitting parameters, the term in p  describing the uniaxial 

component. The best-fit parameters in this equation are listed in Table 3.4. 

 

 

Figure 3.16 Dependence of     
2

DH H H


 on the azimuthal angle  at 77 K. The 

curve is a fitting according to eq. (3.4). 
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Table 3.4 Best-fit parameters in eq. (3.4) 

Parameter Value, in kOe2 

2H  6.55±0.05 

E hexH H  0.0542   0.0013
 

p  1.13 ±0.05 

 

From E hexH H and EH , cf. Tables 3.1 and 3.4, we get 5
hex 1.826 10H   kOe; then, using 

the definition of hexH  given in Table 3.1, we get the effective constant of hexagonal anisotropy 
exp 3
eff 0.936 Jme  . The 5

hex 0.9 10H    kOe value at 77 K, reported earlier by Doroshev et al. 

[3.5], is negative and about twice as small in absolute value as our result. Such a discrepancy is 

mainly due to different definitions of hexH  and  used by these authors. 
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3.3 Conclusions 

With decreasing x, the EMR spectra show a gradual passage from the low-frequency AFMR 

mode at x = 1 towards the EPR of diluted iron ions at 1x , going through a coexistence of 

AFMR and CMR arising, respectively, from magnetically ordered and partially disordered crystal 

regions for 0.34 0.85x  , and CMR only for 0.34x  . 

The Néel temperatures for crystals with 0.34 0.85x   have been determined by EMR and 

SQUID techniques. With decreasing x, NT  substantially decreases. 

With decreasing x, both DH  and 2H  decrease. For 1x   crystals, in cooling from NT , 

DH  first increases, passes through a maximum and then decreases. The temperature 

dependences of DH  and the resonance field for the AFMR line suggest an occurence of another 

magnetic transition at ca. 80 and 20 K for x = 0.65 and 0.34 crystals, respectively. We assume 

that this transition is of Morin’s type. Basing on the data on the temperature dependence of DH  

it is reasonable to suppose that such transition occur for all crystals with 0.34 0.85x  . 

The intensity of the high-field line observed in all crystals with 1x   except at very low x-

values, does not follow the 1T   Curie law, suggesting that this line is due to magnetic clusters. 

The anisotropic energy gap, determined for x = 1 crystal at 77 K, has allowed to calculate 

the effective constant of hexagonal anisotropy; the latter will be further used in the analysis of 

basal magnetocrystalline anisotropy in Chapter 6, “Magnetocrystalline anisotropy of iron borate 

and iron-gallium borates”. 
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4. EPR of iron-gallium borate 

single crystals with low x  

4.1 Principles of computer-assisted EPR 
spectroscopy 

4.1.1 Basic formalism 

 

Electron Paramagnetic Resonance (EPR), first observed in 1944 by Zavoisky, has become a 

powerful tool for studying intimate physical characteristics of solids. 

In condensed state, free atoms or ions form bonds (typically, ionic or covalent) and thus lose 

their magnetic moments; as a result, the substance becomes diamagnetic. Paramagnetism in 

condensed state exists due to some exceptions to this rule, where one or several unpaired 

electrons are maintained. These exceptions are: structure defects, impurity ions as well as ions 

with partially filled electron shells, i.e. transition elements and rare-earths; a generic term for all 

these entities is “paramagnetic species”. Each representative of such species has an electronic 

spin S , either integer or half-integer, its projection along a quantification axis taking 2 1S  

values: , 1, ,SM S S S   . Besides, it can possess an orbital moment L  quantified by a 

quantum number , 1, ,LM L L L   . Finally, in the case of the Russell–Saunders 

coupling, the resulting angular moment  J L S  occurs, taking the values 

, 1, ,J L S L S L S     , and each of these states is quantified by a corresponding 

quantum number , 1, ,JM J J J   . 

The magnetic moment associated with a given J  is: 

 Jg  J   (4.1) 

where   is the Bohr magneton and 
Jg  is the Landé factor: 

 
     

 

1 1 1
1

12
J

JJ L L S S
g

JJ

    
 


  (4.2) 

Note that in the case of a pure orbital moment and a pure spin, 
Jg  becomes: 1Lg   and 

2Sg  , respectively. (The exact value of Sg  in the latter case, 2.002319Sg  , is explained by 

quantum electrodynamics.) 

In a magnetizing field B ,   is quantified along the direction of B , so that the state with a 

given J splits into 2 1J   substates called Zeeman sublevels: 

 



EPR of iron-gallium borate single crystals with low x 

68 

 J J Jg g BM     JB BE  . (4.3) 

This splitting in the case 5
2J   is shown in Figure 4.1. 

In EPR, magnetic dipole transitions between the Zeeman sublevels are aroused under the 

action of an electromagnetic wave. The resonance occurs when the electromagnetic energy 

quantum h  matches the energy difference between the Zeeman sublevels: 

 J Jgh B M   E  (4.4) 

In accordance with the selection rules, in the first approximation only transitions between 

adjacent sublevels are allowed, 1JM   . Thus the condition of EPR becomes: 

 Jh g B    (4.5) 

 

Figure 4.1 Zeeman sublevels for 5
2J   in a magnetic field 

4.1.2 Calculating the EPR spectra 

Many paramagnetic species, in particular, the transition elements, possess only the spin S . 

This occurs for the 5d  configuration where 0L  as well as for other configurations, if L  is 

“frozen”. In these cases the g -factor is almost isotropic and its value is close to Sg . If L  is not 

completely frozen, in order to describe the spin state an effective spin S  taking into account the 

orbital contribution is introduced. 

The spin Hamiltonian including the Zeeman coupling zH  and coupling between S  and the 

electrostatic field of surrounding atoms CH  (so-called fine structure) can be expressed as 

follows: 

 z C H H H   (4.6) 

where 
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, , 1,3,5,7

n
m m

z i ni n

i x y z n m n

B l B O
  

   H , (4.7) 

and 

 
2,4

n
m m

C n n

n m n

B O
 

  H   (4.8) 

In eqs. (4.7), (4.8) m
nO  are extended Stevens operators [4.1] and il  are direction cosines of B : 

 sin cos ; sin sin ; cosx y zl l l       , (4.9) 

  and   being the polar and azimuthal angles, respectively. 

CH  gives non-trivial contributions to the Zeeman sublevel energies only for 1S . 

The spin Hamiltonian parameters m
niB  and m

nB  are assumed to only depend on local structure 

and not on the field B. This means that B should be low enough for the splitting between the 

Zeeman sublevels to be much smaller than that between the spin multiplets of the ground and 

the first excited state of S . 

H  should comprise all terms consistent with symmetry, including time reversal symmetry. 

Linear in S terms in eq. (4.7) can be expressed as   B Sg  where g  is the g-matrix [4.2]: 

 

1 1 0
1 1 1

1 1 0
1 1 1

1 1 0
1 1 1

1
xx xy xz x x x

yx yy yz y y y

zx zy zz z z z

g g g B B B

g g g B B B

g g g B B B








                        

g . (4.10) 

Similarly, second-order fine structure terms in eq. (4.7) can be expressed as  S SD  where the 

D-tensor 

 

2 0 2 1
2 2 2 2

2 2 0 1
2 2 2 2

1 1 0
2 2 2

1
2

1
2

1 1
2 2 2

xx xy xz

yx yy yz

zx zy zz

D D D B B B B

D D D B B B B

D D D B B B



 



                          

D   (4.11) 

is symmetric and traceless, consequently it can be diagonalized by appropriately turning the 

, ,x y z  frame: 

 

0 0

0 0

0 0

x

y

z

D

D

D

         

D   (4.12) 

Thus, only two parameters are necessary to completely define D : 

  3 1
2 2andz x yD D E D D    (4.13) 

andD E  are, respectively, axial and rhombic second-order fine structure constants, and the 

“rhombicity” parameter is defined as 
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3

x y

z

D DE

D D



    (4.14) 

Usually, the , ,x y z  axes are chosen within the convention that x y zD D D   [4.3], in which 

case 

 1
30     (4.15) 

The lower and upper limits of  correspond to axial  0E  and orthorhombic  1
3

E
D   

symmetry, respectively. 

For the fourth-order fine structure parameters, the following notation is sometimes used: a  

(cubic), F  (axial), H  and G  (rhombic). 

If the local symmetry is not lower the rhombic, in the , ,x y z  frame where D  is diagonal, the g -

matrix is also diagonal [4.2]: 

 

0 0

0 0

0 0

x

y

z

g

g

g

         

g   (4.16) 

so that the , ,x y z  axes can be considered as local magnetic axes. 

By diagonalizing the spin Hamiltonian matrix, the Zeeman sublevel energies iE  (eigenvalues) 

and the corresponding wave functions i  (eigenvectors) are obtained. 

The transitions between the Zeeman sublevels are of magnetic dipolar nature; therefore they 

are induced by coupling between the magnetic field 1B  of the electromagnetic wave of a 

frequency   and the magnetic dipole moment with components 

   , , ,i ii
i

gS g S i x y z     (4.17) 

In most commercial EPR spectrometers the two magnetic fields are orthogonal, 1 B B ; 

besides, in the experiment the condition that 1B B  usually holds. Hereinafter, both these 

conditions are assumed to be satisfied. 

The matrix element of the perturbation operator is [4.2] 

 1p qpq
    B Sg   (4.18) 

where 
p  and 

q  are wave functions of the Zeeman sublevels with energies 
pE  and 

qE , 

respectively. The transition intensity, proportional to the number of transitions per unit time 

between the p  and q  states, can be expressed as [4.2] 

 
22

pq pqW    (4.19) 

pqW  depends on the orientations of both B  (through 
p  and 

q ) and 1B  (explicitly). These 

orientations can be described as follows. (We assume for simplicity that the , ,x y z  frame 
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coincides with the crystallographic frame c c c, ,x y z .) In the laboratory frame l l l, ,x y z , defined 

by the configuration of the microwave cavity and its disposition with respect to the poles of the 

electromagnet of the EPR spectrometer, we choose lzB   and 1 lyB  . 

The relative orientations of the laboratory and crystallographic frames can be described by 

the following matrix [4.4]: 

 c

cos cos cos sin sin sin cos cos cos sin sin cos

cos cos sin sin cos sin cos sin cos cos sin sin

cos sin sin sin cos
l

           

           

    

                

A  (4.20) 

where , ,    are the Euler angles shown in Figure 4.2. Obviously, with such a definition, in 

the c c c, ,x y z  frame and   are spherical angles of B  and   describes the orientation of 1B  

in the plane perpendicular to B . 

 

 

Figure 4.2 Euler angles between the crystallographic frame c c c, ,x y z  and the 

laboratory frame l l l, ,x y z . 

 

Thus, the unit vectors of B  and 1B  are, respectively, in the laboratory frame: 

 l 1l

0 0

0 and 1

1 0

                      

l l   (4.21) 

and in the crystallographic frame: 
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 cl l 1 cl 1l

sin cos sin cos cos cos sin

sin sin and sin cos sin cos cos

cos sin sin

      

      

  

                           

l A l l A l    (4.22) 

With this definition, the matrix element of the perturbation operator becomes: 

      1 1
, ,, ,p qpq B            l Sg   (4.23) 

In the usual field-sweep EPR spectroscopy, the resonance condition can be expressed as 

follows: 

 effq p pqg B h   E E   (4.24) 

where effg  is the effective g -factor, pqB  is the corresponding resonance field. 

In reality, the resonance occurs within a certain field range about pqB , and its intensity is 

described by a lineshape function  ,pq pq pqF B B B   with a linewidth pqB , normalized by the 

condition 

  , d 1pq pq pqF B B B B




     (4.25) 

Most often, pqF  is assumed to have either Lorentzian, LF  or Gaussian, GF  shape: 
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














            

   

. (4.26) 

LF  is applicable in the case of broadening caused by relaxation processes, whereas GF  describes 

broadening due to static disorder. 

4.1.3 Computer treatment of the EPR spectra 

An important facet of the EPR studies is numerical analysis (computer simulation) of 

experimental spectra. Indeed, extracting meaningful physical information from the experimental 

results requires accurate spectra fitting. The fitting procedure, called spectra parameterization, 

consists in determining numerical values of the spin Hamiltonian parameters providing a 

complete description of the paramagnetic species. Such a description will only be satisfactory if 

the spin Hamiltonian includes all essential interactions contributing to the genesis of the EPR 

spectrum. 

The computer-assisted treatment of the EPR spectra includes the following steps shown in 

Figure 4.3: 
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 Recording an experimental derivative-of-absorption spectrum. 

 Developing a physical model of the paramagnetic species. 

 Choosing an adequate form of the spin Hamiltonian and assuming tentative values of its 

parameters. 

 Diagonalizing the spin Hamiltonian; calculating resonance fields and transition 

intensities; and generating a theoretical EPR spectrum. 

 Comparing iteratively the experimental and computer-generated spectra; determining the 

best-fit parameter set or improving the initial model. 

 

+

Experimental spectrum

Tentative spin Hamiltonian 
parameters

Numerical diagonalization

Eigenvalues Eigenvectors

Resonance fields
Transition 

probabilities

Convolution with a line shape

Spin Hamiltonian matrix

Best fit parameters

Physical model

Fitting quality



 

Figure 4.3 General scheme of numerical analysis of experimental EPR spectra. 
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4.2 Experimental results 

FexGa1-xBO3 single crystals with 0.01x   were studied by EPR with an X-band (9.464 GHz) 

spectrometer (Bruker) in the temperature range from 4 to 290 K and magnetizing field up to 1 T. 

Figure 4.4 shows the EPR spectra for Fe0.003Ga0.997BO3 at 4 K for different orientations 

of B , described by the polar angle   with respect to the 3C  axis and the azimuthal angle   

with respect to 2C . Because of small crystal sizes, exact orientations could be determined only 

through careful trial and error computer fittings to the experimental spectra. Figure 4.5 shows the 

actual relation between   and   in rotating the crystal. 

For all crystal orientations with the exception of the basal plane, strong anisotropy of the 

resonance fields and pronounced angular dependence of the corresponding linewidths have been 

observed. 

No temperature dependence of the resonance magnetic fields has been found, and the 

integral spectra intensities at different temperatures closely followed the 1T   Curie law. 
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Figure 4.4 Experimental EPR spectra of FexGa1-xBO3 crystal with 0.003x   at 4 K 
for different orientations of B : 11 , 270   (a); 37 , 300   (b); 66 , 

307   (c); 96 , 311   (d); 135 , 318   (e); 164 , 339   (f) 

and 169 , 30   (g). 
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Figure 4.5 Relationship between the spherical angles in the course of rotation of the 
crystal when recording the spectra shown in Figure 4.4. Circles: results of spectra 
simulations; full line: the best-fit curve described by the equation 

 tan 0.12 / 0.57 sin 0.68 cos    . 

 

With increasing iron contents in the crystals, the EPR spectra experience dipole-dipole 

broadening, see Figure 4.6. 
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Figure 4.6 Normalized experimental room-temperature EPR spectra of 
Fe0.003Ga0.997BO3 (a, blue) and Fe0.042Ga0.958BO3 (b, red). In both cases 87 , 285 °. 
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4.3 Discussion 

4.3.1 Conventional spin Hamiltonian: spectra 
parametrization 

In order to determine the EPR parameters, detailed computer simulations of the EPR 

spectra recorded at different orientations of B  have been carried out using a laboratory-

developed code based on the conventional spin Hamiltonian of trigonal symmetry, containing 

Zeeman as well as second- and fourth-order fine structure terms [4.5, 4.6]:  

    0 0 3 321 1
2 4 4 43 180 9

sin 3 cos3g DO a F O a O O        B SH  (4.27) 

where the various symbols have been defined previously. In the actual case, 5
2S   and the 

extended Stevens operators 0 0 3 3
2 4 4 4, , andO O O O  are defined as in the textbook by Al’tshuler and 

Kozyrev [4.1]. Note that instead of 3
4O  the notations 3

4O  [4.6], 3*
4O  [4.5] and 3

4  [4.1] have also 

been used. The   signs in eq. (4.27) refer to two non-equivalent Fe3+ sites with local magnetic 

axes rotated through the angle   about the 3C  axis [4.5, 4.6], see Figure 1.3 in Chapter 1, 

“Crystal and magnetic structure of iron borate”. Note that in the spin Hamiltonian in the paper 

by Lukin et al. [4.6] the coordinate system is turned in such a way that x -axis lies in the symmetry 

plane m . 

First, we have focused on determining the sign of D , the leading parameter in eq.(4.27). 

This could be achieved by following the temperature dependences of relative intensities of 

different resonance lines identified with transitions between distinct Zeeman sublevels. Figure 4.7 

shows computer-generated spectra corresponding to different temperatures, with a  and F  

parameters set to zero in order to simplify the analysis. 

The various resonance lines in Figure 4.7 are identified by the numbers of Zeeman sublevels 

involved in the corresponding transitions. This identification is straight forward with our 

simulation code, separating contributions of transitions between each pair of levels. Figure 4.8 

shows the energy levels and possible EPR transitions for positive and negative signs of D ; 

expectedly, with changing the sign the order of levels in low and intermediate magnetizing field is 

inversed. As one can see, for positive D the transitions occur between lower, occupied, Zeeman 

sublevels, whereas for negative D the transitions can take place only between higher Zeeman 

sublevels, which are empty at low temperatures. 
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Figure 4.7 Computer-generated EPR spectra at 4 K with 0D  (a, red) and 0D  
(b, blue) and at 300 K (c, green). The parameters a  and F  are set to zero and the 
spectra intensities are multiplied by the absolute temperature. The numbering from 1 
to 6 of the Zeeman sublevels involved is in ascending order for 0D  and in 
descending order for 0D . 

 

In Figure 4.7 it is apparent that the most pronounced temperature dependence of the relative 

intensity occurs for the line at 0.5717 T. As the temperature decreases, the intensity of this line 

increases for 0D  and decreases for 0D . Figure 4.9 (top) shows a zoom of computer-

generated spectra for positive D  at two different temperatures. The comparison with the 

corresponding experimental spectra, see Figure 4.9 (bottom), allows concluding that the sign of 

D  is, indeed, positive. (The splitting in Figure 4.9 (bottom), instead of the single line in 

Figure 4.9 (top), is observed because of the presence of two non-equivalent iron sites.) 
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Figure 4.8 Energy diagrams for 0D  (top) and 0D  (bottom) for 10  and 
o278 , showing various resonance transitions for energy quanta of 10.316 cm . The 

different Zeeman sublevels are identified by their quantum numbers SM  in the high 

magnetizing field approximation. 
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Figure 4.9 Zooms of computer-generated (top) and experimental (bottom) EPR 
spectra for 10  and 278 °  at 4 (continuous, red) and 30 K (dashed, green). The 

spectra intensities have been multiplied by the absolute temperature. 
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After specifying the sign of D , its absolute value as well as exact values of a  and F  could 

be determined by accurate computer simulations of the experimental EPR spectra at different 

orientations of B , e.g., see Figures 4.10 and 4.11. As the result, two different best-fit parameter 

sets have been obtained, as given in Table 4.1. The set I parameters are in a reasonably good 

agreement with those obtained by Lukin et al. [4.6] and Seleznev [4.7] for a crystal of nominal 

composition Fe0.005Ga0.995BO3 studied by EPR at Q- and V-bands (ca. 36 and 75 GHz, 

respectively). 
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Figure 4.10 Normalized experimental EPR spectrum of Fe0.003Ga0.997BO3 at 4 K (a, 
red), the best-fit computer generated spectra for 80  and 309 ° without (b, blue) 

and with parameter distributions (c, green). 

 

As one can see from Figures 4.10 (a and b) and 4.11 (left), the positions of different 

resonance lines are perfectly fitted to. Meanwhile, the relative amplitudes of certain lines are not 

satisfactorily reproduced in the simulations, in spite of the fact that both the positions and 

intensities of all resonance lines have been calculated from eigenvalues and eigenvectors 

determined within the same diagonalization procedure of the spin Hamiltonian matrix. This 

discrepancy will be discussed below. 
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Figure 4.11 Normalized experimental room temperature EPR spectra, see curves a, b in 
Figure 4.6 (full lines) and corresponding computer-generated spectra (dashed lines). The 
linewidth B , as deduced from the simulations, is 0.001 T for 0.003x   (left) and 
0.0097 T for 0.042x   (right).. 

 

 

Table 4.1 Spin Hamiltonian parameters for Fe3+ ions in GaBO3
*. 

Parameter 
This work Lukin et al. [4.6], 

Seleznev [4.7] Set I Set II 

**D  0.10320.0005 0.09890.0049 

**a  0.01580.002 0.01580.002 0.01460.002 

**F  0.00520.002 0.03680.002 0.00520.003 

 , deg 24 36 24 

* 2.0023g   

** -1in cm .  
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4.3.2 General spin Hamiltonian: superposition model 
analysis 

As far as both spin Hamiltonian parameter sets, see Table 4.1, result in one and the same 

spin Hamiltonian matrix, they can be considered as equivalent at least, from the mathematical 

viewpoint. Meanwhile, they may not necessarily be so from the physical viewpoint. 

In order to elucidate this issue, we have tested the compatibility of both sets of parameters 

with the predictions of the Newman superposition model [4.8]. For this purpose, we have put 

forward a simulation code based on the general spin Hamiltonian for Fe3+ [4.1]: 

 
2 4

2 4
2 4

2 4
i i

i i

i ig B O OB
 

    B SH   (4.28) 

where 2 4andi iO O
 
are the extended Stevens operators of appropriate superscripts. The second- 

and fourth-order fine structure parameters of the spin Hamiltonians (4.28) and (4.27) are related 

to each other, respectively, as: 

 0 21
2 23 ;B D B E    (4.29) 

and 

  0 3 32 21
4 4 4180 9 9; sin 3 ; cos 3B F a B a B a      (4.30) 

In the framework of the Newman model, the i
lB  parameters are evaluated on the basis of a 

structural model of the paramagnetic site, as follows [4.8, 4.9]: 

    
1

,
n

m m
l l j l j j

j

B b r K  


   (4.31) 

In eq. (4.31) j  enumerates the nearest neighbours of the paramagnetic ion (ligands) with 

spherical coordinates , andj j jr   ,  l jb r  are radial functions and  ,m
l j jK    are coordination 

factors proportional to tesseral harmonics with the corresponding l  and m  indices. The radial 

functions are expressed as power functions of the metal-to-ligand distances: 

    0 /
lt

l j l jb r b r r    (4.32) 

where the intrinsic parameters lb  and the power exponents lt  are considered as fitting 

parameters.  

In applying eqs. (4.31) and (4.32), the iron ligand coordinates have been calculated with 

structural parameters for both FeBO3 and GaBO3, reported by Diehl [4.10] and Seleznev [4.7], 

respectively. Meanwhile, as far as results of determination of lb  and lt  obtained in both cases 

have been very close to each other, we have chosen to give all these results for ligand coordinates 

averaged between the FeBO3 and GaBO3 structures. 

For Fe3+ in sixfold coordination, several second-rank intrinsic parameter values are quoted in 

the literature. For the reference distance 0 2.101r   Å (corresponding to the average Fe-O 
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distance in MgO [4.11]), most often 2 0.412b   cm-1 is taken [4.11, 4.12]. Meanwhile, a positive 

2 0.412b   cm-1 value has been assumed by Acıkgöz et al. [4.13, 4.14]. The latter value has been 

adopted in the present case, as far as taking 2 0b   would result in a negative D  value, in 

disagreement with the experimental results. Figure 4.12 shows that for this choice the agreement 

between the experimental and theoretical D  values is attained with the second-rank power 

exponent 2 8.7t  , in reasonably good accord with the value 2 8t   usually quoted for Fe3+ in 

oxygen environment [4.11, 4.12]. The calculated E values are close to zero, in accordance with 

the experimental results. 
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Figure 4.12 D values vs. the power exponent 2t . The dashed line is the D value 

determined from the experimental data, see Table 4.1. 

 

As only few references to the fourth-rank intrinsic parameter values could be found in the 

literature [4.12, 4.15, 4.16], a large range of values has been tested for both 4b  and 4t  parameters. 

No consistent results could be obtained with negative 4b  values. Figure 4.13 shows the 

dependence of a  and F  on 4t  calculated for 5
4 3.1 10b    cm-1. (This value of 4b  is in a 

reasonable agreement with the value 5
4 2.45 10b    cm-1 for Fe3+ in calcite [4.12].) Obviously, 

within the framework of the Newman model the set I parameters cannot be fitted to in the whole 

range of 4t  values tested (Figure 4.13, top). In contrast, for the set II parameters, consistent 

results can be obtained with 4 5t   for a and 4 8t   for F  (Figure 4.13, bottom). 
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Figure 4.13 Dependences of a  (continuous, blue) and F  (continuous, red) on the 
power exponent 4t  for set I (top) and set II parameters (bottom). The experimental a  

and F  values, see Table 4.1, are shown by the dash-dotted (light blue) and the dashed 
lines (orange), respectively. 
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Figure 4.14 Dependences of a  (top) and F  (bottom) on the intrinsic parameter 4b  

for different 4t  values (4, 8, 12 and 16 from right to left, respectively) calculated with 

set II spin Hamiltonian parameters. The horizontal lines show the set II values of a  
(dash-dotted, light blue) and F  (dashed, orange). 
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Figure 4.14 shows the dependences of a  and F  on the intrinsic parameter 4b  for 

different 4t . Once again, the set II a  and F  parameters can be satisfactorily accounted for with 

close Newman model parameters; on the other hand, no agreement can be found for the set I 

parameters. One can conclude that the set I fourth-order fine structure parameters are totally 

incompatible with the predictions of the superposition model. In contrast, the set II parameters 

can be quite consistently accounted for by this model. Thus, the spin Hamiltonian of eq. (4.27) is 

seen to be ambiguous; therefore, its use should be avoided. On the other hand, the spin 

Hamiltonian of eq. (4.28) has no such drawback. 

4.3.3 Tesseral spin Hamiltonian: local disorder 

We return to the discrepancy in relative line intensities in experimental and computer-

generated spectra, see Figure 4.10. This effect can be due to local disorder present in the crystals 

and resulting in statistical site-to-site distributions of the spin Hamiltonian parameters. As a 

consequence, a more or less pronounced broadening and concomitant amplitude decrease are 

observed for the lines with a stronger or weaker dependence of their resonance fields on these 

parameters. From the viewpoint of the magnetic resonance spectroscopist (both electronic and 

nuclear, vide infra) different degree of local disorder gives rise to more or less broad distributions 

of relevant spectroscopic parameters. Therefore, in most cases, the degree of disorder can be 

defined with respect to the ratio distribution width/mean value for the most representative 

parameters. Typically, low local disorder occurs in high quality crystals possessing low 

concentrations of structure defects while high local disorder is observed in non-crystalline, in 

particular glassy solids [4.17] as well as in crystals with highly flawed structure [4.18, 4.19]. In 

what follows, we shall refer to low and high degree of disorder in accordance with the above-

mentioned criterion. 

In order to provide a more quantitative estimate of line broadening in the experimental EPR 

spectra, we have assumed that all the ligand coordinates undergo random site-to-site 

distributions. As a result, the spin Hamiltonian parameters will also be distributed. However, the 

latter distribution cannot be analyzed in the framework of eq. (4.27) because of the fact that in 

this case the local symmetry is lower than trigonal one. Moreover, strictly speaking, neither can it 

be analyzed in the framework of eq. (4.28) because the spin Hamiltonian expressed by means of 

the extended Stevens operators do not possess sufficient symmetry [4.20]. In order to overcome 

this difficulty, we have used the general spin Hamiltonian expressed by means of two-vector 

tesseral spherical tensor operators  ,B Sl l
lm n ST  [4.20]. Here n  is the unit vector of the direction 

of B , Bl  and Sl  are powers of B  and of the spin operators, respectively. 

The spin Hamiltonian form needed can be adapted from eq. (4) in the paper by Tennant et 

al. [4.21], see the review article by Kliava and Berger [4.9]: 
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 

     S n SB T BH T   (4.33) 

Here the first and second terms in the right-hand side are, respectively, zero-field ( 0Bl  ) and 

linear Zeeman 1Bl   spin Hamiltonians, and l must be even to preserve time-inversion 

invariance. The 0 l
lmB  parameters in this equation are proportional to the corresponding Stevens 

parameters m
lB  [4.20], and the procedure of calculating the 1 Sl

lmB  parameters is described in detail 

in the same work. 

As far as B Sl l
lmB  are components of rank l  irreducible tensors [4.20, 4.21], they can be 

consistently expressed within the superposition model, as follows [4.9]: 

    
1

,B S B S

n
l l l l m

lm lm j l j j

j

b r C  


B   (4.34) 

For simplicity, we assume that the radial functions in the latter equation depend only on Bl  

and Sl  and have the radial dependence described in eq. (4.32). The tesseral coordination factors 

 ,m
l j jC    are given in Table 4.2. 
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Figure 4.15 Normalized EPR spectra computed with 0   (a), 0.0005  (b), 
0.001  (c), 0.003  (d) and 0.01  (e) Å. 
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Table 4.2 Tesseral coordination factors used in eq. (4.34); , andx y z  are the 

corresponding components of n  (the unit vector of the direction of B ). 
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The approach described above has the advantage of automatically taking into account the 

symmetry lowering brought by fluctuations of the ligand coordinates. We have carried out 

simulations of the EPR spectra using a laboratory-developed computer code taking into account 

distributions of the ligand coordinates supposed to be Gaussian with standard deviation  . The 

distributions have been generated using the Monte Carlo technique [4.22]; 105 computer-

generated curves have been accumulated for each resulting spectrum. As one can see in 

Figure 4.15, this number is quite sufficient for producing smooth theoretical spectra; a 

considerable noise occurs only at the highest distribution width. 

Figure 4.15 clearly shows the effect of the site-to-site distributions of ligand coordinates: 

with increasing local disorder (the   value) the spectral features are broadened. Note that this 

broadening cannot be reproduced by a simple convolution with a certain linewidth, in which 

case, all features would broaden to more or less one and the same extent. In contrast, explicitly 

taking into account the parameter distribution, the broadening of the spectral features is 

determined by the dependence of the corresponding resonance field on the distributed spin 

Hamiltonian parameters. The latter approach yields a more realistic picture of the real physical 

situation; therefore, it much better accounts for amplitudes and widths of different resonance 

lines. In particular, curve b in Figure 4.15 showing the spectrum generated with  0.0005  Å, 

represents the best fit to the experimental EPR spectrum of Fe0.003Ga0.997BO3 at 4 K, vide supra, 

Figure 4.10 (curves a and c). We have used the following superposition model parameters, 

see eq. (4.32): 
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  (4.35) 

The 3b  parameters are very small and have not been taken into account. 

More sophisticated models of local disorder are expected to further improve the quality of 

fitting to the experimental EPR spectra. In any case, detailed computer simulations of the 

experimental EPR spectra unambiguously demonstrate the presence of a certain degree of 

disorder in the environment of Fe3+ in gallium borate crystals. 
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4.4 Conclusions 

The experimental EPR spectra of FexGa1-xBO3 single crystals are typical of Fe3+ in the case 

where the Zeeman interaction is comparable with the second-order fine structure. The iron ions 

are located in trigonal symmetry sites and are surrounded by six oxygen atoms. 

Detailed computer simulations of the EPR spectra have been carried out in order to 

determine the spin Hamiltonian parameters. First, we have put forward a simulation code based 

on the conventional spin Hamiltonian. It has allowed to obtain good fittings to the experimental 

spectra and to determine the sign of the fine structure parameter D . 

Meanwhile, we have found that two different best-fit parameter sets are possible, 

respectively with positive and negative values of the fourth-order fine structure parameter a , 

both yielding one and the same spin Hamiltonian matrix. This dichotomy has been resolved 

through testing the consistency of both sets with the predictions of the Newman superposition 

model. For this purpose we have used the general spin Hamiltonian for trigonal symmetry. The 

tests have unambiguously shown that only one best-fit parameter set was compatible with the 

Newman model. Therefore, we highly recommend using the general spin Hamiltonian instead of 

the conventional spin Hamiltonian. 

Applying the best-fit parameter set II, see Table 4.1, we have obtained good fits of the 

resonance lines positions. Nevertheless, a certain discrepancy in the amplitudes of different lines 

between the experimental and computer-generated spectra was obvious. To elucidate this issue, 

we have assumed the existence of local disorder in the crystals. Using the general spin 

Hamiltonian expressed through the tesseral spherical tensor operators allowed us to establish 

relations between the distributions of coordinates of the oxygen ligands, on the one hand, and of 

the spin Hamiltonian parameters, on the other hand. Computer simulations carried out with a 

code based on this model have yielded high-quality fittings to the experimental spectra, thus 

confirming our assumption of presence of local disorder in the crystals. 

The superposition model parameters for Fe3+ ion determined by EPR will be further used in 

the analysis of the crystal field contribution to surface magnetocrystalline anisotropy, see 

Chapter 7, “Surface magnetocrystalline anisotropy of iron borate single crystals”. 
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5. NMR studies of iron-gallium 

borates 

5.1 Basic formalism 

 

Nuclear magnetic resonance (NMR) was first observed in molecular beams by Isidor Rabi 

in 1938. In 1946, Felix Bloch and Edward Mills Purcell extended NMR to liquids and solids. 

Individual neutrons and protons possess a nuclear spin 1
2I  ; certain atomic nuclei isotopes 

also have an overall spin of integer or semi-integer quantum number I. The angular momentum 

associated with nuclear spin is quantified by a quantum number having 2 1I   values 

, 1, ,Im I I I    . 

A non-zero I is associated with a magnetic moment  

 n n nђ g  I Im  (5.1) 

where 

 n
n n

p

1
2

eg gђ m


   (5.2) 

is the gyromagnetic ratio, ng  is the nuclear g-factor and n
p

1
2

eђ
m   is the nuclear magneton, e , 

pm  and ђ  being, respectively, the elementary charge, proton mass and reduced Planck constant. 

In an applied magnetizing field B , nm  has the energy 

 nn nI IђBm mg B   BE m . (5.3) 

The splitting of the nuclear spin state into nuclear Zeeman sublevels, described by eq. (5.3), 

is shown in Figure 5.1. It allows observing NMR spectra due to transitions between different 

sublevels induced by the magnetic component of the electromagnetic radiation. The resonance 

occurs when electromagnetic energy quantum h  matches the energy difference between the 

Zeeman sublevels:  

 n nI IђB m g B mh    E . (5.4) 

In usual NMR conditions, only transitions between adjacent sublevels are allowed, resulting 

in the selection rule 1Im  ; hence, the NMR condition on the energy quanta is: 

 n nђ g Bh B   E . (5.5) 
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An assembly of non-interacting identical nuclei will resonate at the same frequency. 

Meanwhile, in the solid state, various a priori anisotropic interactions perturb the spin state 

energies and shift the resonance lines. Static disorder will therefore manifest itself in NMR 

spectra broadening. This makes the NMR spectroscopy a powerful research tool allowing to 

obtain detailed information on structure and physical properties of crystalline and non-crystalline, 

e.g., glassy materials. In particular, solid-state NMR of quadrupolar nuclei (with 1
2I  ) has 

become a helpful accurate technique of structural analysis [5.1]. 

In applying the solid state NMR spectroscopy, 

the major difficulty is spectra broadening mainly 

caused by static disorder, anisotropic chemical 

shielding, vide infra, but also by dipole-dipole 

interactions between different magnetic moments. A 

number of methods have been put forward in order 

to minimize the latter. In particular, the dipole-dipole 

broadening can be effectively removed by magic angle 

spinning (MAS), first described by Andrew, Bradbury, 

and Eades [5.2] in 1958 and independently by 

Lowe [5.3] in 1959. This technique consists in rotating 

the sample through the “magic” angle o
m

1
3arccos 54.74    with respect to the field B , see 

Figure 5.2. As far as the dipole-dipole interactions vary as 23cos 1 , and the chemical shielding 

has anisotropic contributions with the same angular dependence, the former are averaged to zero, 

and the latter is averaged to its isotropic value. 

Besides, in the solid-state NMR spectroscopy, it is essential to remove or, at least, minimize 

relaxation-induced line broadening. Two relaxation processes are effective: the spin-lattice (or 

 

Figure 5.1 Zeeman sublevels for the nuclear spin 3
2I   in a magnetic field. 

 

Figure 5.2 Magic-angle sample 
spinning. 
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longitudinal) relaxation and the spin-spin (or transverse relaxation) with characteristic time 

constants T1 and T2, respectively. T1 is a mean return time of an excited spin system to 

equilibrium with the thermal reservoir (solid lattice), and T2 is a mean return time to equilibrium 

within the spin system itself. As a result of the difference in relaxation mechanisms involved, T1 is 

usually longer than T2; therefore, the spin-spin relaxation is the most important cause of 

broadening of the resonance.  

In modern NMR spectroscopy, multiple pulse techniques are employed in order to reduce 

this broadening. In the experiment series described in this chapter, the Hahn two-pulse echo 

sequence has been used [5.4, 5.5]. The corresponding pulse sequence 

90 180 acquisition     , schematically illustrated in Figure 5.3, includes the following 

steps: 

(i) All magnetic moments are in thermal equilibrium, aligned on the magnetizing field. 

(ii) A 90 radiofrequency pulse turns the magnetization through the corresponding angle. 

The magnetic moments now are out of equilibrium. Because of inhomogeneity of the 

local magnetic field, dephasing of moments occurs, leading to a decay of 

magnetization. 

(iii) Next, a 180 pulse is applied; the magnetization is inversed, so that the magnetic 

moments are refocused (the inhomogeneous dephasing is removed). 

(iv) A return to equilibrium of the magnetic moments produces a free induction decay 

(FID), or “echo”, containing useful information on the system. A subsequent Fourier 

transformation of this signal yields a narrowed frequency-swept NMR spectrum. 

 

 

Figure 5.3 Scheme of the Hahn two-pulse echo sequence. 

 

The MAS NMR of 11B and 71Ga has been used to study iron-doped gallium borates,    

FexGa1-xBO3 (x = 0; 0.01; 0.02). 

 



NMR studies of iron-gallium borates 

96 

5.2 Spin Hamiltonian 

The conditions of MAS NMR are determined by interactions between the nuclear spin and 

the magnetizing field (Zeeman coupling) as well as between the nuclear electric quadrupole 

moment and the electric field gradient (EFG) produced by the surrounding of the nucleus 

(quadrupole coupling) [5.6, 5.7]. The nuclear spin Hamiltonian can be expressed as follows [5.6]: 

 

cs

iso

or

z Q

ђ ђ  

 

    



 I B I B I IV

H H H H

H

 (5.6) 

where the first two terms account for the Zeeman coupling, the second term describing the 

chemical shift, isotropic in the MAS conditions, and the third term corresponds to the 

quadrupole coupling. 

The EFG is proportional to a second rank tensor V  with principal components 

, andx y zV V V  subjected to the restriction [5.6] 

 0x y zV V V   . (5.7) 

Therefore, similarly to the case of the D -tensor in EPR, cf. Chapter 4, “EPR of iron-gallium 

borate single crystals with low x”, to fully describe this tensor we need only two parameters: in 

the actual case, zV  and 

 x y

z

V V

V



 . (5.8) 

Here  , called asymmetry parameter, is confined in the range 0 1   with the convention 

z y xV V V   cf. infra. The parameter 
zV  is proportional to the coupling constant QC  

between the nuclear electric quadrupole moment and the EFG [5.7, 5.8]. 

The quadrupole coupling is usually small with respect to the Zeeman coupling; therefore, its 

contribution to the nuclear Zeeman sublevel energies can be deduced through a perturbation 

calculation. In the first order, it has an effect only on non-central NMR transitions 
31

2 2  and 3 5
2 2   [5.7]. Consequently, the central transition 1 1

2 2   yields much 

narrower and therefore much more conspicuous NMR spectra. The MAS has no “magic” 

properties on the second-order quadrupole coupling, therefore the latter is not averaged. Thus, in 

the MAS experiments on powdered samples only the central transition is usually observed [5.7]. 
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5.3 Computer treatment of the MAS NMR spectra 

Extracting meaningful physical information from the experimental MAS NMR spectra 

requires detailed computer fitting. 

In order to simulate the experimental spectra, first of all, we need an expression of the 

resonance frequency r . For the central transition, the expression of r  as a function of the spin 

Hamiltonian parameters and the polar angle   with respect to the C3 axis and the azimuthal 

angle   with respect to the C2 axis, is [5.9, 5.10]: 

      2

2

r L iso

L

4 231 1 1
6 4 351 1 cos1 cos

Q
I I A B C


    


              

 (5.9) 

where L  is the Larmor frequency, 

 
 

3
2 2 1

Q

Q

C

I I
 


 (5.10) 

is the quadrupole frequency, and A, B and C are functions of the parameter   and the 

angle  [5.9, 5.10]: 
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  

   

   

  (5.11) 

It should be noted that erroneous expressions of A, B and C are quoted in a number of 

bibliographical sources, e.g., in the review paper by Freude [5.7]. 

Tentative simulations of the experimental spectra have allowed estimating chemical shifts 

and quadrupole parameters; however, relative amplitudes and widths of the spectra features could 

not be satisfactorily reproduced. Besides, our challenge was to account for the observed 

broadening of the experimental spectra with increasing iron concentration. Therefore, we have 

been bound to assume the existence of a certain local disorder in the environment of the 

paramagnetic nuclei. 

5.3.1 Local disorder 

In disordered solids, the spin Hamiltonian parameters are expected to be statistically 

distributed, cf. Chapter 4, “EPR of iron-gallium borate single crystals with low x”. The existence 

of disorder in the environment of paramagnetic nuclei manifests itself in broadening of the NMR 

spectra. As a consequence, relative amplitudes and widths of spectra features can be satisfactorily 

reproduced in the simulations only if local disorder is explicitly taken into account in the 

simulation code, allowing for statistical distributions of the NMR parameters, in particular of the 

quadrupole parameters. 
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This issue was first raised by Czjzek in the framework of a random-packing model of 

amorphous materials [5.11, 5.12]. As far as the quadrupole parameters are related to components 

of the EFG tensor, Czjzek et al. suggested a joint distribution density (JDD) of these parameters. 

Later, Le Caër et al. [5.13] have provided a more general justification of the Czjzek’s JDD; indeed, 

they have shown that it holds if all components of the EFG tensor (in NMR) or of the 

quadrupole fine structure tensor (in EPR) tensor are subjected to normal (Gaussian) random 

distributions. The Czjzek’s JDD has been extensively used in both NMR and EPR studies of 

amorphous materials [5.14-5.16] and also applied to simulate the NMR spectra of some 

disordered crystals [5.17]. Yet, the major drawback of this JDD is to completely disregard 

symmetry and local structure persisting to a certain extent in only partially disordered crystals. 

With the aim of describing a randomly distorted structure preserving, to a certain extent, 

local ordering, a more elaborated JDD of the quadrupole parameters has been suggested by 

Maurer [5.18] and Le Caër and Brand [5.13]. For brevity, we refer to this JDD as the Maurer’s 

one, although Le Caër and Brand have provided a more detailed theoretical analysis of this 

model. Interestingly, a similar model has been put forward to describe the JDD of nanoparticle 

size and shape distribution [5.19]. 

Below we evaluate the applicability of the Czjzek’s and Maurer’s JDDs to NMR studies of 

only slightly disordered crystals. 

5.3.2 Czjzek’s distribution 

In a disordered solid, all components of V  are expected to be statistically distributed. In 

order to satisfy the requirements of diagonal symmetry and tracelessness, as well as of rotational 

invariance, these components are calculated as linear combinations of five normally distributed 

random quantities , 1, , 5iU i   , with zero mean values and equal standard deviations 

1
2  [5.11, 5.13, 5.20]. (Here the 1

2  factor has been introduced in order that the subsequent 

formulae could be expressed in their habitual form [5.11-5.13, 5.18, 5.20].) Thus, we get: 
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1
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2
3

3

U U U U

U U U U

U U U

V . (5.12) 

Note that with this definition   represents the standard deviation of zV , the principle z-

component of V . 

With these assumptions, the Czjzek’s JDD takes the form [5.11, 5.13]: 

    
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with marginal distributions for zV   and 0 1  , respectively: 
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 (5.14) 

Alternatively, instead of andzV   the following parameters can be introduced:  

 1
31 ²zV    (5.15) 

and 
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. (5.16) 

For the corresponding form of the Czjzek’s JDD one gets [5.12]: 
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with the marginal distributions, for 0   and 6 6
    , respectively: 

    

2

2

m m5

4 1
2 31

3 2

2
3; coe sP P








  





  . (5.18) 

The major drawback of the Czjzek’s distribution is that it completely disregards symmetry 

and local structure existing in the perfect crystal. Not surprisingly, this distribution yields good 

simulation results when describing magnetic resonance spectra of amorphous and heavily 

disordered materials. 

5.3.3  Numerical Maurer’s distribution 

In the Maurer’s and Le Caër’s et al. approach [5.13, 5.18, 5.20], the EFG tensor is 

represented as a sum of two tensors, 0 +V V  where V  is the random tensor defined above, and 

0V  is a fixed traceless tensor describing a “perfect crystal” and characterized by parameters 

0 0andzV  . In the coordinate frame where 0V  is diagonal, 

 

 
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where 
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The parameters 0  and 0  are introduced by means of eqs. (5.15) and (5.16), respectively, 

replacing in the latter 0 0by and byz zV V   . 

(Note that in the Maurer’s approach all components of the V -tensor are assumed to be 

normally distributed with zero mean values and equal standard deviations [5.18]. However, such 

an assumption does not satisfy the above-mentioned requirements for this tensor.) 

We have put forward a simulation code implementing the above model. This code 

(i) generates the normal random quantities , 1, , 5iU i   , vide supra; 

(ii) using eqs. (5.12) and (5.19) computes and diagonalizes the 0 +V V -tensor; 

(iii) for each set of main values of the latter, respecting the above-mentioned convention 

z y xV V V   and using eqs.(5.8), (5.15) and (5.16) calculates   and  ; 

(iv) builds marginal distribution densities of   and   as well as the JDD  ,P    for the 

0 +V V -tensor; 

(v) computes the mean values ,  , the standard deviations ,    and the 

correlation coefficient   of and  . 

Figures 5.4 to 5.6 illustrate variations of the latter parameters with   for different 0  

and 0 .  

 

Figure 5.4 Dependences on   of   (left) and   (right) for different 0  and 0 . The 

dashed line in the left part of the figure corresponds to eq. (5.21). 0 ,   and   are in 

arbitrary units (a.u.). 

 

The graph of   vs.   is shown in Figure 5.4 (left). For 0 0   (this corresponds to the 

Czjzek’s JDD; obviously, in this case 0 0   as well) the increase of   with an increase of   

is strictly linear, corresponding to the relationship obtained using the marginal distribution 

 
mP  , see eq. (5.18): 
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16 2
3 4.2554   

. (5.21) 

For 0 0   and different values of 0 ,   tends to 0  when   tends to 0, and for 0   

asymptotically reaches the trend given by eq. (5.21). 

From Figure 5.4 (right) one can see that   tends to 0  when   tends to 0 and tends to 

zero for 0  . If 0 0  ,   is always zero, including the case 0 0  , corresponding to 

the Czjzek’s JDD. 

With an increase of  , both   and   increase, see Figure 5.5. For 0 0   (the Czjzek’s 

JDD) one can readily show that 

 
1282

3 45 1.3754     
. (5.22) 

For 0 0   the relationship between   and   becomes non-linear, and the trend given by 

eq. (5.22) is reached asymptotically for 0  . In the latter case, as shown in Figure 5.5 (right), 

  tends to its limiting value, corresponding to that of the Czjzek’s JDD. Using the marginal 

distribution  mP  , see eq. (5.18), one gets: 

 21
6lim 8 0.2279


 


   . (5.23) 

 

 

Figure 5.5 Dependences on   of   (left) and   (right) for different 0  and 0 . The 

dashed lines in the left and right parts correspond to eqs. (5.22) and (5.23), respectively. 0 , 

and   are in arbitrary units (a.u.). 

 

Figure 5 in the Maurer’s paper suggests that the correlation between   and   tends to 

decrease with increasing departure from axial symmetry (i.e., increasing 0 ) and with lowering the 

degree of disorder (viz., increasing the 0   ratio) [5.18]. However, Figure 5.6 below shows that 

this is only a part of a more general trend: indeed,   vanishes for any degree of disorder if 

0 0   (i.e., at maximal rhombic distortion) as well as in the limits of both low and high disorder. 
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The absolute value of   attains a maximal value of ca. 0.21 for 0 6
   (i.e., for axial 

symmetry) at intermediate disorder. The corresponding value of  , max  is proportional to 0 ; 

numerical calculations result in the following relationship between these parameters: 

 max 00.16  . (5.24) 

 

 

Figure 5.6 Relationships between   and   for different 0  (in a.u.) and 0 . 

5.3.4 Analytical Maurer’s distribution 

Besides, Maurer [5.18] has introduced an empirical analytical JDD by associating the 

marginal distribution of    , derived from a non-central 
2  distribution with five degrees 

of freedom, with a semi-heuristic marginal distribution of   and allowing for a certain 

correlation between both random variables. Here we prefer using   instead of  ; indeed, such 

a choice seems more appropriate for a bivariate JDD  ,P  . After amending for a clerical error, 

this JDD becomes: 
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where 

     2 0
2

1 1 andxg x x x e x





     . (5.26) 

Of course, the use of an analytical JDD considerably simplifies the analysis of the 

experimental results; yet, the limits of its applicability should be carefully evaluated. With this aim 

in view we have examined relations between the “input” parameters 0 0, and    occurring in 

eq. (5.25) and the corresponding “output” parameters cal cal cal
0 0, and   , i.e., the characteristics of 
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 ,P  , calculated for different 0 
   ratios. As far as  and   are interrelated, the values of 

the latter parameter have been taken in accordance with the relationships shown in Figure 5.5. 

The values of   have been chosen from the data displayed in Figure 5.6. 

Figures 5.7 and 5.8 show the results of this analysis. 

 

Figure 5.7 Relationships between 0  and cal
0  for 0 0.5  ; 0.102   a.u., 

0.024  , 0.033  (squares, blue) and 0.303   a.u., 0.066  , 0.097  

(circles, green). The dashed line corresponds to cal
0 0  . 

 

Figure 5.8 Relationships between 0  and cal
0  for 0 3.0   a.u.; 0.102   a.u., 

0.024  , 0.033 (squares, blue) and 0.303   a.u., 0.066  , 0.097  

(circles, green). The dashed line corresponds to cal
0 0   . 
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As one can see, for relatively low disorder, 0 30


   , the “input” and “output” 

parameters are in good agreement; however, at higher disorder, i.e., already at 0 10


    these 

parameters considerably differ from each other. In Figures 5.7 and 5.8 we show the results for 

0 0.5   as far as in the low disorder case those for 0 0   and 0 0.5   are almost the same. 

For higher disorder, the results for 0 0.5   are still very close to each other and for 0 0   the 

discrepancy between the “input” and “output” parameters becomes even more pronounced, but 

in any case we are outside the limits of applicability of the analytical Maurer’s JDD. 

One can conclude that the analytical Maurer’s JDD satisfactorily accounts for local disorder 

only at low local disorder. 

The Maurer’s JDD, eq. (5.25) has relatively simple form; meanwhile, its disadvantage is not 

to include “physical” parameters featuring in the spin Hamiltonian, eq. (5.6). Therefore, we have 

developed an alternative form of the Maurer’s JDD in the variables zV  and  which is much 

more complicate: 
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  (5.27) 

where  
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 (5.28) 

Unfortunately, the marginal distributions of the Maurer’s JDD cannot be analytically 

evaluated; they can be computed only numerically. Nevertheless, one can see from eq. (5.28) that 
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the quantities 21
0 031zV   and 0arctan

3


 can be interpreted as mean values of 

21
31zV  and arctan

3


, respectively. 

The relation between the distribution widths and correlation coefficients featuring in the two 

forms of the Maurer’s JDD can be found from the general formula relating the characteristics of 

different interrelated JDDs [5.21, pp. 64 ff]. We get: 
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 (5.29) 

In the actual case, the EPR studies described in Chapter 4, “EPR of iron-gallium borate 

single crystals with low x” show that FexGa1-xBO3 crystals are sufficiently well-ordered. Let us 

compare the appropriateness of using the Czjzek’s and Maurer’s JDD for our crystals. 

5.3.5 Comparison with experimental data 

The spectra are computed by integrating the resonance absorption over distributed values of 

the spin Hamiltonian parameters and random orientations of crystallites: 
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Here  r ,F     is an intrinsic lineshape with a linewidth  . In the case of line broadening 

due to distributions of the spin Hamiltonian parameters, one gets [5.22]: 
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5 3 sin 2 sin 7cos 1 cos 2
1

20 cos 2 cos 35cos sin cos 2

25cos 9





 



  

    

      



                   
                   

 (5.32) 

and 
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 
      
 
   

. (5.33) 

 

To illustrate the contribution of different crystallite orientations in the “powder” NMR 

spectra, we have computed and displayed in Figure 5.9 the spectra for o0 , o90  and 
o54.74  as well as the best-fit simulation of a whole experimental spectrum (vide infra for a 

detailed account of experimental results). One can see two sharp features corresponding to the 

“magic” and equatorial orientations; the contribution of the polar orientation o0  is weak 

because of small relative number of such crystallites. 
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Figure 5.9 Experimental MAS NMR spectrum of 11B in FexGa1-xBO3 with x = 0.01 
(continuous, blue) and computer-generated spectra for randomly oriented crystallites 
(dashed, red) and for chosen orientations indicated (dotted, green). 

 

Figure 5.10 shows the marginal distributions of   for the Maurer’s and Czjzek’s models. 

For the former, the set of parameters corresponds to the best fit to the experimental spectrum, 

see Table 5.1 below, and for the latter two different   values have been used. As one can see 

from Figure 5.10 (left), in order to obtain   values close to 0 2.8 Hz6M  , in the Czjzek’s 

model one should choose an unrealistically broad distribution of  . On the other hand, taking 

the same distribution widths of   as those determined with the Maurer’s JDD, 0.0 MHz4  , 
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in the case of the Czjzek’s JDD would result in very low mean   value, 0.08  MHz, see 

Figure 5.10 (right). 

The Czjzek’s JDD, as expected from eq. (5.18), regardless of the   value, always gives one 

and the same, extremely broad marginal distribution of  . Figure 5.11 illustrates this behaviour 

for two   values used to calculate the distributions shown in Figure 5.10. Obviously, such a 

distribution is incompatible with only slightly perturbed axial site symmetry in the crystal. On the 

other hand, as one can also see in Figure 5.11, the Maurer’s JDD can produce quite narrow 

marginal distributions of  , describing weak random distortions from the perfect structure. 

Figure 5.12 shows three-dimensional JDD for the Czjzek’s model, and Figure 5.13 shows 

computer simulated NMR spectra for both Czjzek’s and Maurer’s models. Clearly, the spectra 

calculated within the former model are unable to describe the experimental spectrum. In contrast, 

the Maurer’s model provides quite satisfactory fits to the experiment using reasonable parameter 

values. One can conclude that the Czjzek’s model should not be used to fit NMR spectra of 

materials with weak local disorder.  

 

 
 

Figure 5.10 Marginal distributions of   obtained from the Maurer’s (points, green) and 
Czjzek’s (squares, red) models. The simulation parameters 

are: iso 024.5ppm, 2.86MHz   , 0.04 MHz  , 0 6 , 0.015
    and 0.2  for the 

Maurer’s model and iso 24.5ppm   and 1.42  (left) and 0.04 MHz  (right) for the 

Czjzek’s model. 
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Figure 5.11 Marginal distributions of   obtained from the Maurer’s (points, green) and 

Czjzek’s (squares, red) models. The simulation parameters 

are: iso 024.5ppm, 2.86MHz   , 0.04 MHz  , 0 6 , 0.015
    and 0.2 for the 

Maurer’s model and iso 24.5ppm   and 1.42  (left) and 0.04 MHz  (right) for the 

Czjzek’s model. 

 

 

  

Figure 5.12 Normalized JDD for the Czjzek’s model computed with iso 24.5ppm   and 

1.42  (left) and 0.04 MHz  (right). 
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Figure 5.13 Experimental (solid, blue) and computer simulated NMR spectra for the 
Maurer’s model (dashed, green) and the Czjzek`s model (dotted, red, and dashed-dotted, 
black). The simulation parameters are: iso 24.5 ppm,   0 2.86 MHz,    

0.04 MHz  , 0 6 , 0.015
  

 
and 0.2  for the Maurer’s model, and 

iso 24.5ppm   and 1.42  (dotted, red) and 0.04 MHz  (dashed-dotted, black) 

for the Czjzek’s model. 

 

The JDD surfaces for the Maurer’s model calculated for different parameters  ,   and 

 , are displayed in Figures 5.14 to 5.16, respectively. As one can see, increasing   results 

simply in broadening the JDD with no shift of the mean   value. The behavior of the JDD with 

increasing   is more complicated. At low   values the JDD is concentrated near the limiting 

value 6
  corresponding to axial local symmetry. At higher  , the JDD not only broadenes 

but also shifts to lower  , manifesting a certain rhombic distortion. The 0  case 

corresponds to “orthorhombic” distortion when the EFG tensor has two eigenvalues equal in 

absolute value and opposite in sign. The transformation of the JDD with   can be accounted for 

as a rotation about its vertical axis. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 5.14  Normalized JDD for the Maurer’s model computed with simulation parameters: 

iso 24.5ppm  , ,0 0 62.86MHz,     0.0001  , 0   and 0.02, 0.03, 0.04   

and 0.05 MHz  for (a), (b), (c) and (d), respectively. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 5.15 Normalized JDD for the Maurer’s model computed with simulation parameters: 

iso 0 0 624.5ppm, 2.86 MHz, MH0.02 ,z , 0
         and 0.01, 0.1,   

0.2 and 0.3  for (a), (b), (c) and (d), respectively. 



NMR studies of iron-gallium borates 

112 

 

 

 

(a) 

 

 

 

(b) 

 

 

(c) 

 

 

 

(d) 

 

Figure 5.16 Normalized JDD for the Maurer’s model computed with simulation parameters: 

iso 0 0 624.5ppm, 2.86 0.04MHz, MHz, , 0.015 
       and 0.9,  

0.3, 0.3 and 0.9  for (a), (b), (c) and (d), respectively. 
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5.4 Experimental details 

The 11B MAS NMR spectra of FexGa1-xBO3 ground to powders were measured at 

 128.384 MHz  frequency in 9.4 T magnetic field using a Bruker Avance-400 NMR spectrometer. 

A 4 mm in diameter zirconia (ZrO2) rotor cell equipped with boron nitride, BN stator filled with 

powdered sample was spinning under magic angle with 10 kHz frequency. 

In the actual case, the FID signal from the BN stator was much more intense than the signal 

produced by the sample [5.23]. Therefore, a “90 180 Acquisition     ” Hahn two pulse 

echo sequence with echo delay  , as shown in Figure 5.3, has been used to record NMR signals 

from 11B nuclei [5.4, 5.6, 5.7]. This sequence for   = 1 ms significantly reduced the signal from 

the stator and allowed clear detection of the sample signals. 

For 11B with 3
2I   nuclear spin, the optimal pulse duration for selective excitation of the 

central transition equals to the duration of a non-selective 90  pulse divided by            

1
2 2I    [5.4, 5.24]. In our experiments, the duration of this pulse was 1.75it   µs. The 

recycle delay between acquisitions was 0.5 s, and a total of 1024 acquisitions was sufficient to 

resolve characteristic spectral features of 11B. 

Because of a large second-order quadrupole coupling, the 71Ga ( 3
2I  ) NMR lines were 

very broad, so that special acquisition conditions were required in order to obtain 

comprehensible spectra. The 71Ga MAS NMR spectra were measured at 122.0564 MHz with 

4 mm rotors at the spinning rate of 14 kHz. These spectra were recorded by classical direct 

acquisitions under single pulse FID excitations with an acquisition of 1000 pulse signals repeated 

with 2.4 μs RF pulse length. The NMR spectra were obtained by Fourier transformation of the 

FID signals. 

The spin-lattice relaxation time T1 for 71Ga nuclei in FexGa1-xBO3 was measured by 

saturation-recovery method. For samples with x = 0.01 and 0.02, T1 was 23 and 2 ms, 

respectively. One can see that T1 drastically decreased with an increase in iron concentration. 

Because of a spurious 11B NMR signal from the BN stator, similar measurements for 11B could 

not be carried out. 

 

5.5 Experimental results and discussion 

5.5.1 MAS NMR spectra of 11B 

Figure 5.17 shows 11B MAS NMR spectra for FexGa1-xBO3 powders with x = 0, 0.01 and 

0.02 together with the best-fit computer simulations. The spectra display a characteristic two-

peak MAS quadrupole powder pattern for a single boron site [5.8, 5.24]. Clearly, an increase of 

iron concentration results in broadening of the spectra. 
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Figure 5.17 Experimental (continuous, blue) and computer-generated (dashed, red) 
MAS NMR spectra of 11B in FexGa1-xBO3 with x = 0.00 (a), 0.01 (b) and 0.02 (c). 

 

The best-fit simulation parameters and corresponding “conventional” parameters QC ,  , 

their distribution widths and
QC    and the correlation coefficient 

QC   are given in Table 5.1 

CQ and   are related to  and  as:  6cosQ zC V     and  63 tan    . 

The values of QC  and iso  extracted from the simulations allow to determine the 

coordination of boron [5.7, 5.24]. Indeed, the fourfold-coordinated boron possesses QC  values 

lower than 1 MHz, whereas the threefold-coordinated boron has much larger QC , 2.4 to 

2.9 MHz [5.7, 5.24]. Besides, iso for the three-coordinated boron is in the range from ca. 10 to 
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27 ppm [5.7, 5.24, 5.25] while for the fourfold-coordinated boron iso pm4 p   [5.23]. Our 

simulation results clearly indicate that boron is threefold coordinated. 

 

Table 5.1 Best-fit NMR Parameters for 11B isotope in FexGa1-xBO3. 

x 0.00 0.01 0.02 

iso , ppm
 

24.70.1 24.50.1 27.60.1 

0 z,MH

 
2.840.0 2.860.02 3.160.02 

Hz, M  0.040.0 0.040.01 0.080.01 

0

 

0.510 to 0.523 



 
0.0110. 0.0150.0 0.0270.005 

  0.10.1 0.20.1 0.30.1 

Hz, MQC
 

2.840.0 2.860.02 3.160.02 

MHz,
QC

 
0.040.0 0.040.01 0.080.01 

  0.0 to 0.023 


 

0.0190. 0.0260. 0.0470.009 

QC   0.10.1 0.20.1 0.30.1 

 

5.5.2 MAS NMR spectra of 71Ga 

Figure 5.18 shows the MAS NMR spectrum of the central transition of 71Ga nuclei for 

FexGa1-xBO3 powders with different iron contents. The behaviour of the spectra is qualitatively 

similar to that described above for 11B isotope. In particular, the two-peak quadrupole powder 

pattern characteristic of axially symmetric EFG tensor is clearly seen. 
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Figure 5.18 Experimental (continuous blue line) and computer-generated (dashed red 
line) MAS NMR spectra of 71Ga in FexGa1-xBO3 with x = 0.00 (a), 0.01 (b) and 0.02(c). 

 

The simulation procedure for 71Ga NMR spectra has been similar to that for 11B; meanwhile, 

in order to obtain closer fittings, we had to take into account a Gaussian distribution of iso  with 

a standard deviation  . Nevertheless, the best-fit computer-generated spectra displayed in 

Figure 5.18 show a certain discrepancy with the experimental ones. This discrepancy can be 

ascribed to an underlying signal arising from 71Ga in heavily disordered environment or to a 

superposed contribution from the non-central NMR transitions. 

The best-fit simulation parameters for 71Ga NMR spectra given in Table 5.2 are consistent 

with sixfold-coordinated gallium [5.8]. 
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Table 5.2 NMR Parameters for 71Ga isotope in FexGa1-xBO3. 

x 0.00 0.01 0.02 

iso , ppm
 

6.900.1 6.100.1 2.800.1 


 

0.0 to 0.4 0.0 to 0.8 6.51.0 

0 z,MH

 

4.770.02 4.780.02 4.820.02 

Hz, M
 

0.020.005 0.060.005 0.060.005 

0

 

0.510 to 0.523 



 
0.0130.005 0.0180.005 0.0500.005 

  00.1 0.10.1 0.20.1 

Hz, MQC
 

4.770.02 4.780.02 4.820.02 

MHz,
QC  0.020.005 0.060.005 0.060.005 

  0.0 to 0.023 


 

0.0220.005 0.0310.005 0.0870.005 

QC   00.1 0.10.1 0.20.1 
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5.6 Conclusions 

The MAS NMR spectroscopy of the 11B and 71Ga allows to determine the local symmetry 

and to identify surrounding structural units for these atoms in FexGa1-xBO3 crystals. The best-fit 

parameters obtained for 11B and 71Ga confirm the threefold coordination and C3 intrinsic 

symmetry for the former and the sixfold coordination with lower-than-cubic symmetry for the 

latter. For both nuclei, broadening of the MAS NMR spectra with the increase in iron contents 

has been related to variations of quadrupole parameters and chemical shift (in the case of 71Ga) 

caused by disorder in the local environment. This assumption is corroborated with accurate 

computer simulations of Fe3+ EPR spectra, showing the existence of local disorder in iron-doped 

gallium borate crystals. 

A comparative analysis of the characteristics of the Czjzek’s and Maurer’s JDD has been 

carried out in order to elucidate the suitability of using them in the case of low or moderate local 

disorder. Moreover, for the Maurer’s model we have considered in detail both the numerical and 

the analytical JDD. For the former case we have put forward a simulation code in order to obtain 

dependences of the mean values ,  , standard deviations ,    of   and  , 

respectively, and a correlation coefficient   on the input value of   for different 0  and 0.  

The obtained relationships have allowed to determine the limits of applicability of the Maurer’s 

analytical JDD. 

The Czjzek’s JDD is well adapted to the case of heavily disordered solids; meanwhile it does 

not provide for local ordering in crystals, partially preserved in the presence of a certain degree of 

disorder. Indeed, it does not include mean values of the quadrupole parameters; besides, it 

contains only one parameter describing the distribution widths. As a result, the marginal 

distribution of the parameter   related to the asymmetry parameter   becomes too broad to be 

incompatible with the existence of short range ordering. In contrast, the Maurer’s JDD has no 

these drawbacks, therefore it is expected to provide satisfactory fits to experimental NMR spectra 

in crystals with low degree of local disorder.  

The above considerations are fully corroborated by applying the Czjzek’s and Maurer’s 

models to computer simulations of NMR spectra of 11B isotope in gallium borate. With the 

former distribution no adequate description can be obtained while the latter one provides quite 

satisfactory fits. The present study shows that the Czjzek’s model should not be used in 

computer-assisted analysis of NMR spectra of materials with low or even moderate local 

disorder. On the other hand, the Maurer’s model is conceptually well adapted to this situation; 

therefore it is not surprising that it provides quite adequate fits to the experimental NMR spectra. 
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6. Magnetocrystalline anisotropy 

of iron borate and iron-gallium 

borates  

6.1 Introduction 

 

The anisotropic part of the density of the magnetic energy for FeBO3, can be expressed as 

follows, cf. eq. (1.19) in Chapter 1, “Crystal and magnetic structure of iron borate”: 

  eff FeBO FeBO3 3

2 3 6
A

1
6 3cos 1 sin cos sin3 sin cos6a d e        E  (6.1) 

where effa  is the effective uniaxial anisotropy constant, 

 
FeBO3

FeBO3

FeBO3

2

eff

D
a a

E
  , (6.2) 

FeBO3
a  is the uniaxial anisotropy constant, FeBO FeBO3 3

andD E  being the
 
Dzyaloshinskii-Moriya and 

exchange constants, and FeBO FeBO3 3
andd e  are the basal anisotropy constants for FeBO3. 

As far as for Fe3+ (
53d  electronic configuration) the orbital moment equals zero, the 

exchange energy in a good approximation is isotropic [6.1], (cf. Chapter 1, “Crystal and magnetic 

structure of iron borate”) so that for FeBO3 the constants FeBO FeBO FeBO3 3 3
, anda d e  include only 

crystal field (cf) and dipole-dipole (dip) contributions: 

 

FeBO3

FeBO3

FeBO3

cf dip

cf dip

cf dip

a a a

d d d

e e e

 

 

 

 (6.3) 

The crystal field contributions to these constants have been reported by Seleznev [6.2]; here, 

for clarity, we give a more comprehensive analysis. These contributions can be calculated in 

perturbation theory using the spin Hamiltonian for isolated Fe3+ ions in a diamagnetic crystal 

isomorphous to iron borate, e.g. gallium borate [6.3]. Thus, cf cf cf, anda d e  can be expressed 

through the spin Hamiltonian parameters. 

The dipole-dipole contributions to these constants are usually calculated using the 

lattice‐sum method. The value of 5 3
dip 3.82 10 Jma    at 0 K for FeBO3 has been obtained 
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previously [6.4]. FeBO3
a  has been determined by means of AFMR in a wide temperature range, 

see [6.2, 6.5]; its value, extrapolated to 0 K, is 
FeBO3

exp 5 33.29 10 Jma   .  

Earlier, the occurrence of the dipole-dipole contribution to hexagonal basal anisotropy in 

iron borate had been ruled out on the grounds of symmetry. Indeed, the dipole-dipole interaction 

energy is usually considered for “point dipoles” having a negligible size, in which case only 

uniaxial anisotropy is accounted for. Meanwhile, taking into account higher-order terms in the 

expansion of the dipole-dipole interaction energy in the Taylor series in the small parameter 

dipole size/interdipole distance would provide the possibility of describing more sophisticated 

symmetries, in particular, the hexagonal magnetocrystalline anisotropy. Clearly, such terms can be 

significant only in the case of “extended dipoles” having non-negligible dipole size. Thus, taking 

into consideration extended dipoles opens the possibility to reasonably account for the dipole-

dipole contribution to the basal anisotropy constants and, subsequently, to estimate effective 

dipole dimensions in iron borate. 

With this aim in mind, we have developed a theoretical description of the following models 

of an extended magnetic dipole: (i) a uniformly magnetized sphere, (ii) an Ampérian current, i.e. a 

circular current loop of a radius R  delimiting an area 
2S R  and (iii) an assembly of two 

fictitious “magnetic charges” q  a distance d  apart. 

In the present chapter, in the framework of these models we describe the evaluation of the 

dipole sizes in FeBO3 as well as of dipole-dipole contributions to the magnetocrystalline 

anisotropy constants of FexGa1-xBO3. 

6.2 Crystal field contribution to magnetocrystalline 
anisotropy 

In order to calculate the crystal field contribution to the magnetic energy, we consider a Fe3+ 

ion in a diamagnetic GaBO3 crystal. The conventional spin Hamiltonian in this case is [6.6, 6.7], 

cf. eq. (4.27) in Chapter 4, “EPR of iron-gallium borate single crystals with low x”: 

    0 0 3 321 1
2 4 4 43 180 9

sin 3 cos 3g DO a F O a O O        B SH   (6.4) 

where g  is close to the free electron g -factor e 2g  ,  is the Bohr magneton, B  is the 

magnetizing field, S  is the electron spin of Fe3+, 5
2S  , D  is the second-order axial fine-

structure constant, anda F  are, respectively, the fourth-order cubic and axial fine-structure 

constants and 0 0 3 3
2 4 4 4, , andO O O O  are extended Stevens operators defined, e.g., in the textbook by 

Al’tshuler and B. M. Kozyrev [6.8]. The   signs refer to two non-equivalent iron sites with local 

magnetic axes rotated through the angle   about the C3 axis, see Figure 1.3 in Chapter 1, 

“Crystal and magnetic structure of iron borate”. 
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As far as Fe3+ ions in FeBO3 are in a strong exchange field, in order to obtain the spin 

Hamiltonian for a j th Fe3+ ion in FeBO3, 1, 2j   numbering two non-equivalent iron sites, we 

substitute an effective exchange field E jB  for the magnetizing field B . We get: 

    0 0 3 3
2 4

21 1
E 3 1 0 9 48 4 sin 3 cos 3j j jj jjg DO F O O Oa a        B SH . (6.5) 

As far as in this equation the “Zeeman” term, 0 E j jg B SH , is much larger than the 

remaining terms    21 1
3 180 9

0 0 3 3
2 4 4 4sin 3 cos3j j j jO O OD a F a O     H , we have 

calculated the energies of the spin levels using the perturbation theory. With this aim in view, we 

have followed the approach of “correct” zero-order wave functions, described by Landau and 

Lifshitz [6.9]. The zero-order energies and wave functions have been calculated by solving the 

secular equation 

 
 0

0 0 H 1E  (6.6) 

where 0H  is the matrix of 0H  and 1 is a unit 6 6  matrix. The eigenvalues of eq. (6.6) are: 

 
     0 0 0

5 3 1
22 2

5 3 1
2 2 2; ;g B g B g B  

 
     E E E . (6.7) 

The “correct” zero-order wave functions of the spin levels,  0
M , are expressed as linear 

combinations of the electron spin eigenfunctions M  where 5 3 5
2 2 2, , ,M    . The latter 

relationships can be written in the form of scalar products 

 
   0 0
M M M  C   (6.8) 

where 
              5 3 1 1 3 5

2 22 2 2 2

0 0 0 0 0 0 0
M C C C C C C

 
C  and  5 3 1 1 3 5

2 22 2 2 2
M      

 
 . The 

vectors 
 0
MC  can be found from the equation: 

 
    0 0

0M M  C H 1E 0  (6.9) 

where 0 is a column 6-vector. Solving the latter equation, we get 
 

M
0C  for each spin level:  
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. (6.10) 

The first- and second-order corrections to the energies of the spin levels are, 

respectively [6.9]: 

 
       

   

   

2
0 0

1 0 0 2

0 0
and

p q

p pp p p p
q p p q

 
 




   




H

E E
HE EH  (6.11) 

where in our case andp q  take the values 5 3 5
2 2 2, , ,M   . Substituting in these equations 

   0 0
p M   with 

 

M
0C  given in eqs. (6.10), we get the energies of the spin levels up to the second 

order in D and up to the first order in anda F : 
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 (6.12) 

where 

 

 

    

1 2
2

21 2 2 2
2

22 2 2
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4
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3cos 1

sin cos

sin
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D
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h F
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(6.13) 
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In the strong exchange case, the spins of the two non-equivalent iron ions are antiparallel: 

1 1 2 2, , , and .                

In our case, the third and fourth terms on the right-hand side of eq. (6.12), i.e. the second-

order corrections in D  can be neglected; indeed, for E 300jB   T [6.10], 
2 510

j

D
g B

  while 

a  and F  have the order of 10-2 cm-1. 

At 0 KT  , the only occupied spin level is that with 5
2M . Comparing matching 

symmetry terms in eqs. (6.12) for this level and in eq. (6.1) (the Dzyaloshinskii-Moriya term 

should not be considered in this comparison) we get the crystal field contributions cf cf cf, anda d e  

to the corresponding magnetocrystalline anisotropy constants of FeBO3 FeBO FeBO FeBO3 3 3
, anda d e  

at 0 K: 
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  (6.14) 

where N  is the number of Fe3+ ions per unit volume (for FeBO3 
28 -32.236 10 mN  ). 

In order to calculate these contributions at elevated temperatures, we express the partition 

function of a magnetic sublattice of FeBO3 using eq. (6.12): 

 e
M jE

kT
j

M

Z


  (6.15) 

where k  is the Boltzmann constant and T  is the absolute temperature, and calculate the crystal 

field contribution to the density of the magnetocrystalline anisotropy energy for FeBO3 as 

follows [6.9]: 

 cf
1
2 ln j

j

NkT Z E   (6.16) 

Taking into account that the first term on the right-hand side of eq. (6.12) is much larger 

than the remaining ones, we expand cfE  in a Taylor series to first order in the small parameters 

E

1
2 j

j

h
g M B  and 

E

1
4 j

j

h
g M B : 

 

 

 

   

E

2

2

1
2

cf

22

4 2

1
4

1
2

1 3 1

ln e 1 23 3 55

6 3 1

0

1

jg jB M

k

M j

T

j

S S h

NkT S S

S S S

M

M M M

S
h




   
 
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          

 E . (6.17) 

Summing over M we get  
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where Eg B

kT


 . Expanding the latter expression in a bivariate Taylor series in 1

2 jh and 1
4 jh  and 

retaining only anisotropic terms results in 

    1 1
2f 4c

1
2 2 24j

j
jN h t h r      E  (6.19) 
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  (6.20) 

Summing eq. (6.19) over two non-equivalent Fe3+ sites  1, 2j  , we get the anisotropic part of 

the crystal field contribution to the density of the magnetocrystalline anisotropy energy 

for FeBO3: 
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  (6.21) 

Comparing matching symmetry terms in eqs. (6.21) and (6.1) (the Dzyaloshinskii-Moriya 

term should not be considered in this comparison), we obtain the crystal field contributions to 

the magnetocrystalline anisotropy constants of FeBO3 as a function of  : 
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  (6.22) 

At 0 KT   this equation reduces to eq. (6.14). Thus, with the spin Hamiltonian parameters 

-10.1032, 0.0158, 0.0368cmD a F    and o36 , cf. Chapter 4, “EPR of iron-gallium 

borate single crystals with low x” [6.7], we obtain the following crystal field contributions to the 

magnetocrystalline anisotropy constants for FeBO3 at 0 K: 
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   (6.23) 

Figure 6.1 shows the temperature dependences of cf cfanda d  for FeBO3, and Figure 6.2 

shows cf cfanda d  at 0 K for FexGa1-xBO3 crystals with different x. 
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Figure 6.1 Temperature dependences of cfa  (continuous, green) and cfd  

(dashed, blue) for FeBO3. 
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Figure 6.2 Concentration dependence of cfa  (continuous, green) and cfd  

(dashed, blue) at 0 K. 
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6.3 Dipole-dipole contribution to magnetocrystalline 
anisotropy 

6.3.1 Models of extended dipoles 

In electrostatics, the primary source of the electric field is an electric charge. In contrast, in 

magnetostatics, insofar as “magnetic charges” – magnetic monopoles – have not been found in 

nature, the same fundamental role of primary source of the magnetic field is played by the 

magnetic dipole. Therefore, adequate modelling of the magnetic dipole is of paramount 

importance in scientific research. 

As far as a point dipole is only an abstract idea, it is useful to consider dipole models – more 

realistic physical systems yielding the same magnetic field as the point dipole, at least, at distances 

much larger than their own size. Most often, as such a model in magnetostatics one considers a 

circular current loop or, by analogy with electrostatics, a pair of fictitious magnetic charges of 

opposite sign. Meanwhile, here we also consider the magnetic dipole as a uniformly magnetized 

three-dimensional body of a simple, e.g., spherical shape. Usually, the uniformly magnetized 

sphere is considered in a different context, viz., as an illustration of a boundary-value problem in 

magnetostatics [6.11, p. 198 ff], or an example of application of the vector potential [6.12, p. 236], 

thus overlooking the opportunity of using it as one more model of the magnetic dipole. Below 

we shall compare in detail all three models of the magnetic dipole: 

a) a uniformly magnetized sphere,  

b) a circular current loop,  

c) a pair of fictitious magnetic charges. 

Of course, the magnetic field produced by a dipole model, as well as the dipole-dipole 

interaction energy at intermediate and shorter distances will differ from that of the point dipole; 

moreover, the predictions of different models can be quite different. This issue is of 

importance, e.g., in studying magnetic dipole-dipole interactions between paramagnetic ions in 

solid state, in which case a comparison with experimental observations allows choosing the most 

adequate description of a given magnetic source. 

In one form or another, the models considered below have been described in a number of 

textbooks and/or research papers. Meanwhile, we have systematically considered them within the 

same formalism and have compared exact analytical expressions with Taylor expansions to 

higher-than-first order, providing simple expressions of potentials, fields and dipole-dipole 

interaction energy valid not only at large but also at intermediate distances. A computer code has 

been put forward, allowing to visualize magnetic field lines computed using both exact 

expressions and Taylor expansions. 
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6.3.1.1 Point dipole: an overview 

According to the Biot-Savart law of magnetostatics, the magnetic field  B r  produced in a 

point of space  , ,x y zr  by an arbitrary distribution of steady currents in a volume V   is 

(e.g., see ref. [6.11, pp. 175 ff; 6.12, pp. 215 ff]): 

  
   

0
3

d
4 V

V


 

  




j r r r

B r
r r

. (6.24) 

The same expression is obtained with the help of the relation    B r A r ,  A r  being 

the corresponding vector potential: 

  
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0 d
4 V

V
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 


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

j r

A r
r r

. (6.25) 

In eqs. (6.24) and (6.25) 0  is the permeability of vacuum,  j r  is the current density in a point 

 , ,x y z   r  of the magnetic source, and the integration is performed over the whole 

distribution of currents. The corresponding analysis, outlined below, can be found, e.g., in 

Jacksons’ and Landau and Lifshitz’s textbooks [6.11, pp. 184 ff, 6.13, pp. 103 ff]. 

Equation (6.25) can be expanded in powers of 1r   (the multipole expansion): 
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nn
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


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   A r j r  (6.26) 

where nP  are the Legendre polynomials and   is the angle between r  and r . The first term of 

this development ( 0n  ), 

  0
m d

4 V

V
r



 

   j rA , (6.27) 

is the vector potential of the magnetic monopole, mA , and it is shown to vanish. The second 

term in eq. (6.26), 1n , the magnetic dipole term, 

    0
d 3

d
4 V

V
r



 

    rA r r j , (6.28) 

can be put in the following form: 

 0
d

4

1

r




 A m  (6.29) 

where m  is the magnetic dipole moment:  

  1
2 d

V

V


    r j rm . (6.30) 

Taking the curl of dA , applying the product rule and keeping in mind that m  is a fixed 

vector, for the magnetic field produced by a point dipole one gets: 
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d 54

3 ²r
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

 


r r
B

m m
. (6.31) 

According to the Curie symmetry principle [6.14], the effects generated by a cause can have 

only higher and not lower symmetry than the cause itself. We put the dipole at the origin O (in 

subsequent sections, O  will be chosen in the centre of the dipole model). As far as the dipole 

field is invariant with respect to rotation about its axis denoted as Oz, the use of cylindrical 

coordinates , , z   and the corresponding unit vectors , , z e e e  is the most appropriate, 

and all calculations can be restricted to a plane containing Oz. Meanwhile the results of 

calculations often are simpler in spherical coordinates , ,r  e e e . Therefore, we use both 

coordinate systems; however, for the sake of uniformity, vector components in the cylindrical 

system are expressed in the spherical variables by substituting sinr   and cosz r  , the 

polar angle of the position vector r  of the point of observation is denoted as . 

Thus, eq. (6.29) in both cylindrical and spherical coordinates becomes: 

 d 2
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4 r
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A e
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.
 (6.32) 

The magnetic field becomes in cylindrical coordinates: 
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and in spherical coordinates: 
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  (6.34) 

The dipole-dipole interaction energy can be obtained as the energy of a dipole n°2 placed in 

the magnetic field produced by a dipole n°1 (placed in the space origin): 
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In the case of interaction between identical parallel or antiparallel dipoles, this expression reduces 

to  
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 (6.36) 

where the – and + signs correspond to parallel and antiparallel dipoles, respectively, and  is the 

angle between r  and the common dipole axis. 
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6.3.1.2 Uniformly magnetized sphere 

The magnetic field produced by a (uniformly) magnetized sphere, see Figure 6.3, has been 

considered in detail in the literature, e.g., see [6.11, p. 198 ff]. A related model, that of a spinning 

spherical shell carrying a uniform surface charge, has been treated in the Griffith’s textbook 

see [6.12, p. 236 ff]. 

 

 

Figure 6.3 Magnetic dipole as a uniformly magnetized sphere. 

 

The magnetic moment of a uniformly magnetized sphere of radius R  and volume V  can be 

calculated as 

 34
3V R M Mm  (6.37) 

where M  is the magnetization vector. 

For a distribution of dipoles, A  is obtained from eq. (6.25) as the second term of the 

multipole expansion in Legendre polynomials [6.12, p. 242 ff]. (The first term in this expansion 

vanishes.) One gets: 
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 (6.38) 

where   operates over the coordinates of r . Applying the identity 
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 (6.39) 

and taking into account that   0   M r  for a uniform M , we rewrite eq. (6.38) as follows: 

 



Magnetocrystalline anisotropy of iron borate and iron-gallium borates 

132 

  
 

0 d
4 V

V


 


   




M r
A r

r r
. (6.40) 

According to a well-known theorem of vector analysis, the volume integral in this expression can 

be transformed to an integral over the closed surface S   delimiting the volume V  : 

   0 d
4

S

S


 


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

M n

A r
r r
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where 
r
 
rn  is the unit vector normal to S, 2d sin d dS R        and the integration is 

performed over the whole surface of the sphere. A comparison between eqs. (6.41) and (6.25) 

shows that the latter expression represents the vector potential of a surface current of density  

  
S  j r M n . (6.42) 

We choose the space origin in the centre of the sphere and the z axis parallel to r , zrr e  

(such a choice allows simplifying the calculation, see ref. [6.12, p. 236 ff]. One can see from 

Figure 6.3 that  sin cos sin sin cosx y zR            r e e e  and 

 
1

2 2 22 cosr R rR     r r . Because of the rotational symmetry about M , without 

loss of generality M  can be confined in the xz-plane, forming an angle  with r , 

 sin cosx zM   M e e , so that 

  sin cos ,sin sin cos cos sin sicos sin , sinn .M                M n  (6.43) 

Making all these substitutions in eq. (6.41), we notice that integrating over the range 0 2    

will eliminate contributions of all  -dependent terms in eq. (6.43). The remaining integral 

over   is: 
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where the Cartesian y-axis is identified as a radial cylindrical  -axis, and the magnetic dipole 

moment is introduced through eq. (6.37). Equation (6.44) is equivalent to eq. (5.111) in Jackson’s 

textbook [6.11]. Taking the curl of A  inside and outside the magnetized sphere, we get the 

corresponding magnetic fields intB  and extB  in cylindrical coordinates: 

 

 

3

3

int 0

ext 20 3
2

,
4

sin 2

2

cos3
4

1

z

z

R

r












    

e

e e

B

B

m

m
 (6.45) 

and in spherical coordinates: 
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One can see that inside the uniformly magnetized sphere the magnetic field is uniform, as 

known from magnetostatics. Most interestingly, outside this sphere, the magnetic field at any 

distance coincides with that of the point dipole, cf. eqs. (6.45) and (6.46) with eqs. (6.33) 

and (6.34), respectively.  

Obviously, in this model the interaction energy between two identical mutually non-

penetrating dipoles is the same as that between two point dipoles, cf. eq. (6.36). 

6.3.1.3 Circular current loop 

Most often, in magnetostatics one takes a circular loop of electric current (Ampérian current) 

as a basic model of the magnetic dipole. Let us consider a loop of radius R  and area 
2S R , 

carrying a current I  supposed to flow counterclockwise direction as seen from above the xy 

plane, see Figure 6.4. By definition, its magnetic moment is 2IS IR m . An element of 

current dI l , where dl  is an elementary vector tangent to the loop in a point M, produces an 

elementary vector potential in an arbitrary point in space P: 
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d d
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l l
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. (6.47) 

 

 

Figure 6.4 Magnetic dipole as an Ampérian current. 
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For definiteness, let the loop be placed in the xy-plane. Because of the rotational symmetry 

about the z-axis, without loss of generality P can be placed in the yz-plane. In spherical 

coordinates we get d dR


 
l e . From Figure 6.4 one can see that 

  
MP MO OP   and 

2 2 2 sin sinMP r R Rr      . 

In performing the integration of dA  given in eq. (6.47) over the current loop, dl  should be 

converted to Cartesian coordinates by substituting c si os n x y
 
   e e e . Thus, 
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It turns out that 0yA  . Identifying xA  in both cylindrical and spherical coordinates as A  

and denoting 2 2 2 2 sinr r R Rr      and si2 n rRrk   , we get: 
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where 

    1
2

1 ² K( ) E( )k k k k    , (6.50) 

and K( ) and E( )k k  are, respectively, complete elliptic integrals of the first and the second kind. 

Equation (6.49) coincides with eq. (5.37) in Jackson’s textbook [6.11]. From this equation we 

derive the magnetic field in cylindrical coordinates: 
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and in spherical coordinates: 
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Next, we calculate the interaction energy between two identical and parallel Ampérian 

currents of the same radii R , see Figure 6.5. 
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Figure 6.5 System of two interacting Ampérian currents. 

 

In order to obtain the correct sign of the dipole-dipole interaction energy E , we express its 

relation to the mutual inductance M  of two equal currents flowing in the same direction in two 

parallel coaxial loops, as follows: 

 ²IE M . (6.53) 

Indeed, the potential energy of attracting currents should be negative, and it is more convenient 

to define M  as positive. 

Using the expression of M  given by Grover [6.15] and Akyel et al. [6.16], in the actual case 

we get: 
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where the – and + signs correspond to parallel and antiparallel dipoles, respectively,   has been 

defined in eq. (6.50) and 
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with 
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In eqs. (6.54) to (6.56)   is the angle between the x axis and OM . K( )  and E( )  can be 

developed in infinite series, see ref. [6.17, p. 927 ff]: 
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According to these expressions,  
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In the model of a circular current loop, the vector potential, the dipole magnetic field and 

the dipole-dipole interaction energy can be analytically expressed only through the elliptical 

integrals, see eqs. (6.49), (6.51), (6.52) and (6.54). In order to obtain more simple expressions 

valid at intermediate distances, we have used expansions in Taylor series to the sixth order in the 

small parameter R
r . Expanding eq. (6.49), we get: 
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The same development applied to eqs. (6.51) and (6.52) yields approximate expressions for the 

magnetic field, respectively, in cylindrical, 
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and in spherical coordinates, 
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Here for brevity we are using the Legendre polynomials  cosnP   and associated Legendre 

polynomials  cosm
nP   shortened to nP  and m

nP , respectively [6.17, pp. 716 ff and 741 ff]. 

 cosnP   and  1 cosnP   used in this paper are: 
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  (6.64) 

Alternatively, eqs. (6.61) and (6.62) can be obtained directly from the relation B A  

with A  given by eq. (6.60). Finally, expanding eq. (6.54) in a Taylor series, we get the expression 

of the interaction energy:
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m
 (6.65) 

where the – and + signs correspond to parallel and antiparallel dipoles, respectively. 

6.3.1.4 Pair of fictitious magnetic charges 

The third model represents the magnetic dipole as an assembly of two fictitious magnetic 

monopoles, or “magnetic charges” q , a distance d  apart, see Figure 6.6. By analogy with 

electrostatics, the magnetic dipole moment is defined as q dm , so that in order to calculate the 

magnetic field produced by such a dipole, one is tempted to introduce a scalar magnetic potential, 

e.g., see [6.11, p. 196 ff]. However, for the sake of consistency, we prefer using here a vector 

potential, and, in accordance with the superposition principle, it can be taken as a sum of the 

vector potentials of two magnetic monopoles of opposite signs. 
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.  

Figure 6.6 Magnetic dipole as an assembly of two “magnetic charges”.  

 

The vector potential of a magnetic monopole introduced by Dirac [6.18]: 

 0 1 co

4

s

sind r









A e

m
. (6.66) 

yields a correct expression of the magnetic field expected to be produced by a magnetic 

monopole. However, it is not quite satisfactory from both mathematical and physical standpoints, 

as far as it exhibits a singularity along the half-line    (the so-called Dirac string); while for a 

magnetic monopole the direction of this half-line is completely arbitrary. Meanwhile, it can be 

readily shown that the vector potential of a pair of magnetic monopoles of opposite signs: 
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sin si4 nd r r






 

 

         
A e

m
 (6.67) 

has no more such singularities. The latter equation can be rewritten as: 

 0

m p

1 1
2 2cos cos

s4 in

r d r d
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A e

m
  (6.68) 

where the connotation of different symbols is shown in Figure 6.6. Obviously, the following 

relations hold: 2 2
p

1
4cosr r d r d   , 2 2

m
1
4cosr r d r d   , p

p

1
2cos

cos
r d

r





 , 

m
m

1
2cos

cos
r d

r





  and p p m msin sin sinr r r      .  

For the magnetic field we get: in cylindrical coordinates, 
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and in spherical coordinates, 
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 (6.70) 

For the interaction energy between two parallel/antiparallel dipoles, we get: 
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where 2 2
m p 2 cosr r d d r     and 2 2

pm 2 cosr r d d r    , see Figure 6.7 for the 

notation. The choice of   signs refers to parallel and antiparallel dipoles, respectively. 

Note that eqs. (6.69) to (6.71) can be immediately obtained from the corresponding 

expressions for electric dipoles by substituting the electric dipole moment and the permittivity of 

vacuum 0  by the magnetic dipole moment and 
0

1
 , respectively. 

 

 

Figure 6.7 System of two interacting magnetic-charge dipoles. 
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The expressions for the field and the energy in the model of a pair of magnetic charges are 

simpler in comparison with those obtained with the model of a circular current loop. 

Nevertheless, we still have provided the corresponding expansions in the Taylor series, useful for 

a direct comparison between these two models. In the same approximation as in the previous 

section, redefining the small parameter as d
r , eqs. (6.67) to (6.70) become: 
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and 
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An analogous expansion for E  yields: 
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where the – and + signs correspond to parallel and antiparallel dipoles, respectively. 

6.3.1.5 Comparison between the dipole models 

Figure 6.8 compares radial dependences of zB  in the equatorial plane 2
  for different 

dipole models. The calculations have been made using the exact expressions for zB . The model 

sizes and the distances are scaled in relative distance units (rdu). As one can see, for the uniformly 

magnetized sphere of radius R , zB  remains uniform at R  , has a discontinuity at R   and 

follows the corresponding dependence for the point dipole at R  . The analogous dependence 

for the current loop of radius R  has a singularity at R  , and for the pair of magnetic charges 

zB  it has a minimum at 0  . Thus, at small and intermediate distances in comparison with the 

model size, the behaviour of all three models is very different. At large distances, see inset in 

Figure 6.8, the magnetic fields produced by different magnetic dipole models match that of the 

point dipole, as expected. 
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Figure 6.8  2,zB    dependences for a uniformly magnetized sphere of radius 

 0.3R  rdu (circles, grey), a circular current loop of radius 0.3R   rdu, (diamonds, blue) 
and a pair of fictitious magnetic charges, 0.3d   rdu apart, (dashed, red) compared do 
that of the point dipole (continuous, green). The inset: shows a zoom in the behaviour of 

zB  at larger distances. 

 

A still better insight in the behaviour of different models at small and intermediate distances 

can be achieved by visualizing magnetic field lines. By definition, the elementary vector of the 

tangent to the field line, dL , in each point of this line is parallel to the field vector. The vector 

product for parallel vectors vanishes, so, for the magnetic field lines we get d  L B 0 . In 

cylindrical coordinates this reduces to 
d

d
zBz

B , and we get the following equation for the 

magnetic field lines: 
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

   (6.76) 

where inf  and sup are, respectively, the smallest and the largest value of   for a given field line, 

and inf sup,z       is a dummy variable. 

We have put forward a FORTRAN 77 computer code for calculating the magnetic field lines 

for different dipole models according to both the exact expressions and their Taylor expansions, 

see [6.19]. Visualization of the field lines calculated using the Taylor expansions allows to 

estimate contributions of various expansion terms and the general convergence of the Taylor 

series for different models. 
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In the model of a circular current loop the exact expressions of the magnetic field 

components, eqs. (6.51), are very complicated, so, we have chosen to compute them by numerical 

integration over the angle   of the elementary field components expressed through the Biot-

Savart law, see eq. (6.24) and Figure 6.4: 
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 (6.77) 

The corresponding exact expressions for the model of a pair of magnetic charges have been 

given in the previous section, see eqs. (6.69). 

The Taylor expansions of the field line equation in the computer code have been obtained 

by expanding in the Taylor series the ratio zB  over B . For the model of a current loop this 

results in 
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and for that of a pair of magnetic charges we get: 
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We remind the reader that in eqs. (6.78) and (6.79)   has different meaning. In all cases, the 

numerical integration over   in eq. (6.76) has been performed using the Runge–Kutta 

method [6.20, pp. 420 ff]. 

With the aid of this program we have visualized the field lines for all models, see Figure 6.9. 

The calculations have been made using the exact expressions, vide supra, and the modelling 

parameters have been chosen in such a way that all the field lines ostensibly merge at the maximal 

distance maxr  from the source. As one can see, at distances comparable with the model size, the 

appearance of the field lines predicted by each model is totally different. The lines produced by a 

uniformly magnetized sphere are parallel to the dipole axis inside the sphere and coincide with 

those of the point dipole outside the sphere. The lines due to a current loop close on themselves 

inside the loop while those of a pair of magnetic charges diverge from the positive charge and 

converge towards the negative one. In all cases, at small distances the behaviour of the field lines 

has nothing in common with that expected for the point dipole, in which case the field lines close 

on themselves in the space origin. 
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Figure 6.9 Magnetic field lines for different dipole models scaled in rdu. The 
external line (red) corresponds to a pair of magnetic charges 0.75d  apart. The 
intermediate dashed (green) and continuous (grey) lines refer to a point dipole and 
uniformly magnetized sphere of radius 0.20R  , respectively. The internal line (blue) is 
due to a current loop of radius 0.40R  . All the lines merge at the maximal distance 

max 2.0r  . 

In certain applications, e.g. in calculating the interaction energy between magnetic moments 

embedded in a condensed matrix, one needs a good approximation for the magnetic field 

produced at intermediate distances from the magnetic source. Figure 6.10 compares the magnetic 

field lines calculated using the exact expressions and Taylor expansions to different orders in the 

corresponding small parameter for the models of a circular current loop and a pair of fictitious 

magnetic charges. One can see that in the model of a current loop the expansion up to the 6th 

order in R
r  provides a good approximation for 

max

3
4

R
r  , and in the model of a pair of 

magnetic charges the same expansion in d
r   already for 

max

3
4

d
r   yields a result 

practically indistinguishable from that of the exact calculation. 

(a) 

 

(b) 

 

Figure 6.10 Magnetic field lines in the models of a current loop (a) and of a pair of magnetic 
charges (b) calculated using the exact expressions of the magnetic fields (continuous lines) and 
the Taylor expansions to the 0th, 2nd, 4th and 6th order in the corresponding small parameters. All 
the lines merge at the maximal distance max 2.0r  rdu. With increasing the expansion order, 

in (a) each subsequent field line remains confined inside the previous one, while in (b) it passes 
alternately from inside to outside of the exact field line profile. 
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6.3.2 Applying the models of extended dipoles to 
calculate dipole-dipole contribution to magnetocrystalline 
anisotropy 

In the model of uniformly magnetized sphere, vide supra, the dipole-dipole interaction energy 

is the same as for the point dipoles; therefore it is entirely described by the  
2 cosP   Legendre 

polynomial, see eq. (6.36). Hence, this model can describe only uniaxial magnetocrystalline 

anisotropy and not the hexagonal basal magnetocrystalline anisotropy in iron borate. Thus, in 

what follows we consider only the two remaining models. We have seen that, starting from the 

second term in the Taylor series, the expressions of the dipole-dipole interaction energy in these 

models totally diverge. Interestingly, this divergence goes in opposite directions, so that the 

characteristics of the magnetic dipole at small and intermediate distances become quite sensible 

to the choice between these two models. 

In order to calculate the dipole-dipole contribution to the magnetocrystalline anisotropy 

constants of FeBO3 we shall consider a more general case where the dipole axis does not 

necessarily coincide with 3С -axis, cf. Chapter 1, “Crystal and magnetic structure of iron borate”. 

6.3.2.1 Two circular current loops 

Here we consider the interaction energy E  between two identical and parallel circular current 

loops (Ampérian currents) of the same radii R and areæ 2S R , carrying a current I , see 

Figure 6.11. By definition, the magnetic moment of a loop is 2SI R I e em m m , 

 sin cos sin sin cos    em  being
 

the unit vector in the direction of m . For 

definiteness, we choose the loops centred at the space origin Op and at an arbitrary point Os as 

the primary and secondary loops, respectively. 

The dipole-dipole interaction energy in this model is straight related to the mutual 

inductance M  as in eq. (6.53). By definition, 

 
I


M  (6.80) 

where  , the magnetic flux induced by the current in the primary loop and passing through the 

secondary loop, can be calculated as follows: 

 
s

s p

d d
l l

   A l  . (6.81) 

Here p sandl l  are perimeters of the primary and secondary loops, dA is a differential element of 

the vector potential at a point sM  on the secondary loop, produced by the primary loop: 
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p sM M  is the distance between two points on the primary and secondary loops, and pdl and sdl  

are differential elements of the corresponding loops. 

 

 

Figure 6.11 System of two interacting Ampérian currents. 

 

In order to evaluate the closed curve integrals in eq. (6.81) we express p sM M , pdl  and sdl  as 

follows: 
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and 
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In eqs. (6.83) to (6.85) and   are polar angles of arbitrary points of the primary and 

secondary loops, respectively. Putting these expressions in eq. (6.81), for the interaction energy, cf. 

eq. (6.53), we get: 
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where the integrations are over and  . 

Since we need only an approximate expression of E  for 1 , we can first expand the 

integrand in eq. (6.86) in a Taylor series up to the fourth order in the small parameter R
r  

and then integrate the result. We get:
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where nP  are Legendre polynomials [6.21] of the scalar product re em , re  being the unit vector in 

the direction of r, and the – and + signs correspond to parallel and antiparallel dipoles, 

respectively. Obviously, eq. (6.87) can be directly obtained by substituting the scalar product re em  

for cos in the Legendre polynomials given above in eq. (6.63). 

6.3.2.2 Two pairs of fictitious magnetic charges  

Figure 6.12 shows a system of two interacting dipoles implemented as a pair of “magnetic 

charges” q  spaced a distance d  apart. For the dipole-dipole interaction energy we get: 

 
2

0
2

m p p m

2 1 1

4 r r rd





         
E

m
 (6.88) 

where 0  is the permeability of vacuum, q qd d em m  is the magnetic moment, defined by 

analogy with electrostatics;  
1

2² ² ²x y zr r r r    is the distance between the centres of the 

dipoles, 2 2
m p 2 rr r d rd   e em  and 2 2

pm 2 rr r d rd   e em ,
 
 see Figure 6.12 for the 

notation. The choice of the   signs refers to parallel and antiparallel dipoles, respectively. 
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Figure 6.12 System of two interacting dipoles in the model of a pair of 
magnetic charges. 

 

Introducing d
r  in eq. (6.88) one gets: 

 
2

0
2 2 2

2 1 1

4 1 2 1 2r r
rd r r



    

              e e e e
E

m m

m
. (6.89) 

As in the previous case, the approximate expression of E  can be expressed in terms of the 

Legendre polynomials of the scalar product re em  up to the fourth order: 

  2 40
2 63 4

²
2

4
P P P

r
 




  E

m
 (6.90) 

where the – and + signs correspond to parallel and antiparallel dipoles, respectively. 

6.3.2.3 Dipole-dipole contribution to magnetocrystalline 
anisotropy constants of iron borate 

In order to calculate the dipole-dipole contribution to the magnetocrystalline anisotropy 

constants for FeBO3, we have put forward a computer code implementing the lattice‐sum 

method. We have chosen to do the summation in the volume of a rhombohedron congruent to 

the primitive rhombohedron shown in Figure 6.13. 
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Figure 6.13 A primitive rhombohedron with the edge length 3.6 Ål  and the apex 

angle 79.9   used to calculate the dipole-dipole interaction energy. 

 

The axes of the rhombohedral coordinate system , ,x y z    coincide with the edges of the 

rhombohedron, see Figure 6.13. In transforming the radius vector from the Cartesian to the 

rhombohedral system, we express the coordinates of iron sites through the edge length l  of the 

rhombohedron: x m  l , y n l  and z k  l , where , ,m n k  are integers numbering the sites 

along the corresponding axes. The radius vector in a new coordinate system is  

 

  

  

  

cos

2 cos

cos

z x k i

x y z i j

x y z k k

                         

r l  (6.91) 

where  1 cos
cos

2
k i





 ,  1 cos

cos
6

i j





  and  1 2 cos
cos

3
k k


  are the cosines of 

angles between corresponding axes of two coordinate systems. Substituting eq. (6.91) in the 

expressions for the dipole-dipole interaction energy, eqs. (6.87) and (6.90) for the models of a 

circular current loop and a pair of magnetic charges, respectively, we express this energy in terms 

of integers numbering the iron sites along the edges of the rhombohedron. 

The calculation of the density of dipole-dipole interaction energy now is reduced to 

computing the following sum: 

 
dip

, ,

1
2 ( 1) ( , , )m n k

m n k

N m n k  E E  (6.92) 
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where the factor( 1)m n k   takes into account antiferromagnetic ordering and ( , , )m n kE  is the 

dipole-dipole interaction energy between ions at the origin (numbered 0, 0, 0 ) and at a site 

numbered , ,m n k . 

Henceforth, the magnetic dipole moment at 0KT  will be expressed as 

 g Sm  (6.93) 

where , andg S  have the same meanings as in eq. (6.4). 

The dipole-dipole contributions at 0 K, together with those of the crystal field, vide supra, are 

listed in Table 6.1. One can see that the models of a circular current loop and a pair of magnetic 

charges result in substantially different expressions for the dipole-dipole interaction energies. 

 

 

Table 6.1 Crystal field and dipole-dipole contributions to the magnetocrystalline 

anisotropy constants of iron borate at 0 K. 

Constants, 3Jm  
Crystal field 

contribution 

Dipole-dipole contribution 

Circular current loop 
Pair of fictitious 

magnetic charges  

FeBO3
a  54.82 10  

53.82 10  

FeBO3
d  32.55 10

 

2
6

2
2.11 10

R
 

l
 

2
5

2
7.02 10

d

l

 

FeBO3
e  0 

4
5

4
9.19 10

R
 

l
 

4
4

4
9.80 10

d
 

l
 

 

 

In order to get the dipole-dipole contributions to the magnetocrystalline anisotropy at 

different temperatures, these contribution at 0 K should be multiplied by  
0

2
TM
M , where TM  is 

the sublattice magnetization at a temperature T , cf. Chapter 1, “Crystal and magnetic structure of 

iron borate”. 
0

TM
M  for FeBO3 have been tabulated [6.2]. The temperature dependences of the 

crystal field contributions are given in eqs. (6.22) and in Figure 6.1. 
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6.3.2.4 Estimation of the dipole size for FeBO3 

The effective hexagonal anisotropy constant for FeBO3 is cf. eq. (1.28) in Chapter 1, “Crystal 

and magnetic structure of iron borate”: 

 FeBO3

FeBO3

2

eff
eff

1
4

d
e e

a
    (6.94) 

The experimental value exp 3
eff 0.936 Jme   has been determined from the AFMR experiments 

at 77 K cf. Chapter 3, “Electron magnetic resonance of iron-gallium borate single crystals with 

0.2≤x≤1”. In the following, we assume that exp
eff effe e . Substituting exp

effe  in (6.94) and taking 

into account eqs. (6.2) and (6.3), we get: 

 
 

FeBO3
FeBO3

FeBO3

2

cf dipexp
eff cf dip 2

1
4

d d
e e e

D
a

E


  



. (6.95) 

For FeBO3
a  we have also used the experimental value FeBO3

exp 5 33.2 10 Jma    determined by 

AFMR at 77 K [6.2, 6.5]. FeBO FeBO3 3
andD E  at 77 K have been calculated from experimental values 

of corresponding effective fields and sublattice magnetization, see Table 3.1 in Chapter 3, 

“Electron magnetic resonance of iron-gallium borate single crystals with 0.2≤x≤1”. Substituting 

to eq. (6.95) these values as well as those given in Table 6.1, for the model of a circular current 

loop we get: 

 
43 27.47 10 405.4 3.2 0.936RR    , (6.96) 

yielding two positive solutions: 21 0.2189 and 0.0797Å.R R   

For a pair of fictitious magnetic charges we get: 

 24853 135 3.2 0.936d d  
. (6.97) 

Obviously, the latter equation can have only complex solutions; therefore, this model is not 

applicable in the actual case. 

In order to assess the plausibility of 1 2andR R  values, they should be compared with the 

ionic radius iR of Fe3+; indeed, we can reasonably infer that the effective dipole size should be of 

the same order of magnitude as the size of the physical object producing the corresponding 

dipole moment. For high-spin Fe3+ in sixfold coordination i 0.645R   Å [6.22]; therefore the 1R  

value seems to be a more realistic estimate than 2R , the latter value being an order of magnitude 

smaller than iR . Nevertheless, we have chosen to calculate the dipole-dipole contributions to the 

magnetocrystalline anisotropy constants of FeBO3 at 77 K with both values. 
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With the 1R  value we get: 

 
-3 3 -3

dip dip12.2 Jm ; 7.57 10 Jme d   , (6.98) 

and with 2R  value we get: 

 
-3 3 -3

dip dip0.215 Jm ; 1 10 Jme d  
.
 (6.99) 

6.3.2.5 Dipole-dipole contribution to magnetocrystalline 
anisotropy constants of iron-gallium borates 

In order to calculate the dipole-dipole contribution to the magnetocrystalline anisotropy 

constants dip dipande d  for mixed borates FexGa1-xBO3, we have put forward a computer code 

implementing the lattice-sum method as for FeBO3. With this aim in mind, we have modelled a 

diamagnetically diluted crystal lattice using the Monte Carlo technique [6.23]. 

Figure 6.14 shows the spatial distribution of dia- and paramagnetic ions in mixed borates in a 

layer parallel to the basal plane. The probabilities of iron or gallium occupying a given site, are x 

or 1-x, respectively. One can see that nanoscopic iron domains ― nanoclusters ― occur at 

intermediate x. Such nanoclusters are expected to possess magnetic properties similar to those of 

magnetic nanoparticles [6.24]. 

 

   

x=1 x=0.8 x=0.6 

  

x=0.4 x=0.2 

Figure 6.14 Spatial distribution of dia- and paramagnetic ions in FexGa1-xBO3 in a layer 
parallel to the basal plane 
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The calculation of the dipole-dipole interaction energy has been done using a model of a 

circular current loop in the same way as for FeBO3, i.e. computing the sum in eq. (6.92) taking 

into account only the sites occupied by iron. 

The dependence of dipa  on x is shown in Figure 6.15. Using the effective dipole sizes 

determined for FeBO3, vide supra, we get the dependences of dip dipandd e  on the iron 

concentration at 0 K, see Figures 6.16 and 6.17, respectively.  

The experiments for the determination of exp
effe  for diamagnetically diluted FexGa1-xBO3 

crystals are in progress and could provide the possibility of making an unambiguous choice 

between two possible dipole sizes. 
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Figure 6.15 Concentration dependence of dipa  at 0 K. 
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Figure 6.16 Concentration dependence of dipd  calculated with 1R  (dashed, blue) and 

2R  values (dashed-dotted, red) at 0 K. 
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Figure 6.17 Concentration dependence of dipe  calculated with 1R  (dashed, blue) and 

2R  values (dashed-dotted, red) at 0 K. 
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6.4 Conclusions 

Possible contributions to the magnetocrystalline anisotropy of mixed iron-gallium borates 

FexGa1-xBO3, namely, crystal field and dipole-dipole, have been considered in detail. The former 

contribution has been calculated in perturbation theory using the spin Hamiltonian parameters 

for isolated Fe3+ ions in (diamagnetic) gallium borate. The latter contribution has been evaluated 

under the assumption that the ratio dipole size/ interdipole distance is non-negligible, i.e. that we 

are dealing with the extended dipoles. 

We have developed a theoretical description of three models of an extended magnetic 

dipole: (i) a uniformly magnetized sphere, (ii) an Ampérian current and (iii) an assembly of two 

fictitious “magnetic charges”. We have shown that all three models yield identical results at large 

distances with respect to the dipole size. Indeed, the first terms of Taylor expansions of the 

magnetic fields produced by the models of a circular current loop and of a pair of magnetic 

charges coincide with the exact expression of the magnetic field outside the uniformly magnetized 

sphere, the latter being the same as for the point dipole. Therefore, the uniformly magnetized 

sphere can describe only the uniaxial magnetocrystalline anisotropy and not the hexagonal basal 

magnetocrystalline anisotropy in iron borate. 

The dipole-dipole interaction energy has been calculated for two extended dipole models, 

viz., a pair of magnetic charges and a circular current loop. The dipole-dipole contribution to the 

magnetocrystalline anisotropy constants for FeBO3 has been calculated by the lattice‐sum 

method. A comparison between the experimental and calculated values of the effective basal 

anisotropy constant has shown that the model of a pair of magnetic charges fails to explain the 

experimental results. In contrast, the model of a circular current loop provides consistent 

evidence in support of the dipole-dipole contribution to the basal magnetocrystalline anisotropy 

of iron borate and, incidentally, yields two more or less realistic estimates of the dipole sizes 

associated with Fe3+ ion. In spite of the fact that the approach based on the models of extended 

dipoles, put forward in this work, provides new insight in the nature of the basal 

magnetocrystalline anisotropy of iron borate, it is certainly oversimplified. More sophisticated (ab 

initio) calculations are necessary in order to obtain a more detailed picture of spatial distribution 

of the magnetic field produced by paramagnetic ions at short and intermediate distances. 

The dipole-dipole interaction energy for mixed borates FexGa1-xBO3 has been calculated by 

the same technique as for FeBO3. In order to simulate a diamagnetically diluted crystal lattice we 

have used the Monte Carlo technique. The dipole-dipole contributions to the magnetocrystalline 

anisotropy constants for crystals with different x have been obtained; dip dipande d  have been 

calculated for the dipole sizes determined for FeBO3. 
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7. Surface magnetocrystalline 

anisotropy of iron borate single 

crystals 

7.1 Theoretical background 

 

The surface magnetism – a specific magnetic state of a thin near-surface layer of magnets – is 

caused by lowering of symmetry in the environment of near-surface magnetic ions in comparison 

with those in the volume. Néel was the first to specify the existence of surface magnetocrystalline 

anisotropy energy, due to this effect [7.1]. However, the manifestation of this anisotropy in 

conventional ferromagnets is usually obscured by the demagnetizing field and large volume 

magnetocrystalline anisotropy. In contrast, in iron borate the surface magnetocrystalline 

anisotropy can be observed due to the fact that the demagnetizing field, proportional to the 

(weak) magnetization of the antiferromagnetic crystal with weak ferromagnetism, is small and the 

basal anisotropy is weak [7.2]. Therefore, magnetic characteristics of a thin (0.01-0.1 µm) near-

surface layer of iron borate drastically differ from those of the volume. 

The gas-phase deposition technique allows growing bulk single crystals of iron borate with 

large non-basal faces of optical quality [7.3]. Such crystals have made possible finding out the 

surface magnetism in iron borate by the magneto-optical Kerr effect [7.4]. 

The surface magnetocrystalline anisotropy energy can be calculated as the difference of the 

magnetic energies of ions in the near-surface layer and in the crystal volume. This difference is 

due to two causes: (i) the occurrence of the crystal surface per se (without modification of the 

oxygen environment of near-surface iron ions) and (ii) structural distortions in the near-surface 

layer. 

As we have already indicated, cf. Chapters 1 and 6, “Crystal and magnetic structure of iron 

borate” and “Magnetocrystalline anisotropy of iron borate and iron-gallium borates”, 

respectively, in iron borate the exchange energy in a good approximation is isotropic; therefore, 

the density of the surface magnetocrystalline anisotropy energy,   is expected to include only 

dipole-dipole, dip  and crystal field, cf  contributions. Obviously, the cause (i) intervenes only in 

the calculation of the dipole-dipole contribution whereas the cause (ii) is expected to modify both 

the dipole-dipole contribution – as a result of alteration of mutual disposition of iron ions in the 

near-surface layer – and the crystal field contribution – in as much as the oxygen environment of 

iron ions in the near-surface layer undergoes additional distortions in comparison with the 

volume. 
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In the paper by Zubov et al. [7.4] and later in the Strugatsky’s thesis [7.5] a theoretical 

description of   has been put forward taking into account only the cause (i), i.e. neglecting 

structural distortions in the near-surface layer. In this approximation,   will include only dipole-

dipole contribution, dip  vide supra, and the maximal value is obtained for the  1014  face: 

 
1 2 3 4

2 2 2 2 2
dip dip dip dip dipsin cos sin sin cos sin cos sin                  (7.1) 

where 
1 2 3 4

5 5 5 5
dip dip dip dip2.2 10 , 0.8 10 , 1.6 10 and 3.9 10               in -2Jm  (at 0 K), 

  and  are, respectively, the polar angle with respect to C3 and the azimuthal angle with 

respect to 2C  of the antiferromagnetic vector l , see Chapter 1, “Crystal and magnetic structure 

of iron borate”, in the near-surface layer. 

Minimizing dip  with respect to and  , the equilibrium orientation of l  in the near-

surface layer is [7.5]: 

  0 02.64 and in rad
2
   . (7.2) 

As one can see, l  in the near-surface layer has an orientation different from its equilibrium 

orientation in the volume, see Chapter 1, “Crystal and magnetic structure of iron borate”. As a 

consequence, a transition layer between the volume and the near-surface layer will form, similar 

to a domain wall, where l  will gradually turn from the equilibrium orientation in the volume to 

that in the near-surface layer. The density of the magnetocrystalline anisotropy energy in this layer 

can be expressed as [7.4, 7.5]: 

  eff 1 sina A    (7.3) 

where effa  is the effective uniaxial anisotropy constant, cf. Chapter 1, “Crystal and magnetic 

structure of iron borate”, A  is a constant in the expression describing exchange interaction in 

the non-uniform transition layer [7.5]. For FeBO3 at 0 K 110.7 10 JmA    and 

5 -3
eff 4.85 10 Jma    [7.5]. Thus, 3 -2

eff 1.8 10 Jma A   . Minimizing the sum of dip and    

with respect to and  , we get the equilibrium orientation of l  in the near-surface 

layer [7.4, 7.5]: 

 0 0and 0,
2

   . (7.4) 

Indeed, a considerable deviation of l  from the basal plane would result in a significant increase of 

 , of the order of magnitude of effa A , cf. eq. (7.3). This situation is energetically unfavorable. 

Thus, l  in the near-surface layer will lie in the basal plane or make a small angle with it. Its 

azimuthal angle will be determined by surface magnetocrystalline anisotropy. Putting 
2
  in 

eq. (7.1), we get [7.4, 7.5]: 

 2
dip dip sinSa   (7.5) 
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where dipSa  is the dipole-dipole contribution to the surface magnetocrystalline anisotropy 

constant. At room temperature 5 -2
dip 1.4 10 JmSa    [7.5]. In equilibrium l  is parallel to one of 

2C  axes, see eq. (7.4); therefore, the reduced ferromagnetic vector m l , see Chapter 1, 

“Crystal and magnetic structure of iron borate”, is perpendicular to this axis, so that 2C  is the 

hard magnetization axis in the basal plane. This result has been confirmed by experimental 

observations for  1014  face of the crystal [7.4]. 

The saturation field along the hard magnetization axis in the near-surface layer, called the 

critical field cH , is considered as the measure of the surface anisotropy. In fact, an application of 

such a field would totally erase the transition layer. Applying a magnetizing field H  in the basal 

plane, the direction of l  in the transition layer will gradually change from that in the volume, 

determined by H , to that in the near-surface layer, determined by both H  and the surface 

magnetocrystalline anisotropy. The density of the magnetocrystalline anisotropy energy in this 

layer will be [7.4-7.6] 

  4 2 24 1 cosAMH

       
 (7.6) 

where  2 T

D
M

E
M  is the saturation magnetization of the crystal, TM  being the sublattice 

magnetization at a temterature T , andD E  being the
 
Dzyaloshinskii-Moriya and exchange 

constants, cf. Table 1.4 and eq. (1.14) in Chapter 1, “Crystal and magnetic structure of iron 

borate”; and   is the angle between H  and 2C . Taking into account that 0

300
1.47M

M  [7.7] and 

the values of andD E  quoted in Table 1.5, we get 12GM   at room temperature. The 

equilibrium orientation of l  in the near-surface layer will be determined by the minimum of the 

sum dip  , and as far as this quantity is independent of , see eqs. (7.5) and (7.6), we just 

have to solve the equation:  

    dip dip4 2 22 sin sin 2 0SAMH a
  




     


. (7.7) 

Applying H  along the hard axis C2  0 , in the limit of cH H , m  will align on C2, and 

l m  will make with C2 an angle 2
 , so that eq. (7.7) will give: 

 
2

dip
c

4 Sa
H

AM
 . (7.8) 

Zubov et al. have found that on the  1014  face of iron borate c 1kOeH   [7.4]; 

meanwhile, the cH  value calculated with eq. (7.8) is much lower, c 0.2 kOeH   [7.5]. From the 

preceding analysis we can suppose that this discrepancy could be removed if we allow for 

structural distortions in the near-surface layer, (“surface reconstruction”). Earlier, an attempt in 

this direction has been made; however, only changes in the positions of iron ions have been 
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considered, but concomitant distortions in their oxygen environment has been neglected [7.6]. 

(In such an approximation, only the dipole-dipole contribution to the surface anisotropy is 

accounted for.) In this case, the experimental cH  value could be obtained only for relative 

extensions as large as 7 12 %  [7.6]. 

Meanwhile, it is evident that in the near-surface layer, the oxygen environment of iron ions 

undergoes additional distortions in comparison with the crystal volume, giving rise to the crystal 

field contribution to the surface magnetocrystalline anisotropy energy. In the present chapter, we 

provide a model of these distortions and give a complete description of the surface anisotropy of 

iron borate, including both the dipole-dipole and crystal field contributions. 

7.2 Surface reconstruction 

Previously, in order to calculate the dipole-dipole contribution to the magnetocrystalline 

anisotropy constants for FeBO3, we have used a rhombohedron congruent to the primitive 

rhombohedron, with faces of  0112  type, cf. Figure 6.13 in Chapter 6, “Magnetocrystalline 

anisotropy of iron borate and iron-gallium borates”. Here we are interested in the smallest 

rhombohedron with faces of  1014  type. 

 

Figure 7.1 A rhombohedron with edge length r 5.862 Åa  and apex angle 104.2  

used to calculate the density of surface anisotropy energy. The Cartesian coordinate axes 

are directed as follows: 2С ,x   y  lies in the symmetry plane m  and 3Сz   [7.2]. 

 

This rhombohedron is face-centred, i.e. it contains iron ions in all vertices and face centres, 

see Figure 7.1; the faces parallel to the crystal surface (and perpendicular to yz  planes) are 

coloured. On the basis of symmetry, we can assume that the distortions of interatomic distances 

in the near-surface layer occur in yz  planes. 
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contraction

extension

 

Figure 7.2 Two non-equivalent Fe3+ sites and their oxygen environments in the 
absence of distortions (full red and empty blue circles for Fe1 and Fe2, respectively). The 
Cartesian coordinate axes are directed as in Figure 7.1. The x -axis is perpendicular to the 
plane of the figure and points towards the reader. The nearest-neighbouring “top” and 
“bottom” oxygen triangles for both iron sites have the same z-coordinate and different 
x-coordinates. 

 

In the crystal volume each iron is surrounded by six oxygens forming a nearly perfect 

octahedron, see Figure 1.3 in Chapter 1, “Crystal and magnetic structure of iron borate”. In the 

near-surface layer the oxygen octahedra are distorted. Consider the positions of two non-

equivalent iron sites and their oxygen ligands with respect to the crystal surface. Figure 7.2 shows 

a projection of the rhombohedron of Figure 7.1 on yOz plane, the crystal surface and the basal 

planes being orthogonal to this plane. For simplicity, we show only two non-equivalent sites, Fe1 

and Fe2 and their oxygen environments in the absence of distortions. 

We assume that the distortions occur only in the near-surface layer of the oxygen octahedra. 

The crystal surface (denoted by F in Figure 7.2) passes through 6 6
1 2O and O  oxygens. We can 

divide the near-surface layer into four parallel sub-layers separated by planes passing through 

oxygen and iron ions, see Figure 7.2. The B plane is supposed to remain immobile, the 

distortions occur along the AD edge of the rhombohedron, and the displacements of ions lying 

at different distances from B are supposed to vary in proportion to these distances. 
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7.3 Crystal field contribution to the surface 
anisotropy energy 

Previously, we have carried out EPR studies of Fe3+ in GaBO3 single crystals and determined 

the spin Hamiltonian parameters using crystallographic data and the Newman’s superposition 

model. In order to calculate the crystal field contribution to the surface magnetocrystalline 

anisotropy energy, we have followed the procedure described in detail in Chapter 4, “EPR of 

iron-gallium borate single crystals with low x”. 

For near-surface iron ions, the superposition model parameters are expected to remain the 

same as for those in the volume, at least as far as distortions in their environment remain weak. 

We have used the following values of andl lb t , cf. Chapter 4, “EPR of iron-gallium borate single 

crystals with low x”: 

 



 

 

  

1
2 2

5 1
4 4

  0.408cm , 8

and

  3.1 10 cm , 5.

b t

b t

 (7.9) 

The 3b  and 5b  parameters are very small, see Chapter 4, “EPR of iron-gallium borate single 

crystals with low x”, so, here they are neglected. On the other hand, the spin Hamiltonian for 

iron ions in the near-surface layer should include terms describing the concomitant lowering of 

symmetry. Besides, as far as Fe3+ ions in FeBO3 are subject to a strong exchange field, we can use 

the mean field approximation and substitute an effective exchange field kH  for the magnetizing 

field H  ( 1, 2k  numbering the non-equivalent iron sites). For the type of distortions described 

above, the spin Hamiltonian takes the form 

2 1 0 1 2 0 3 3
2 2 2 2 2 4 4

2 1 0 1 2 0 3 3
2 2 2 2 442 4 4k k k k k k k kk kO O O Og B B B B B BO O OB OB            H SH    (7.10) 

where g  is close to the free electron g -factor, 2.0023eg  ,   is the Bohr magneton, kS  is the 

electron spin for the kth Fe3+ ion ( 5
2kS  ); 0 1 2 0 3

2 2 2 4 4, , , andk k k k kO O O O O    are the extended 

Stevens operators [7.8]; 0 1 2
2 2 2, ,k k kB B B   and 0 3

4 4,k kB B  are, respectively, the second and fourth-

order fine structure parameters. In eq. (7.10) as well as in the subsequent equations the   signs 

before certain terms correspond to 1, 2k , respectively. 

Assuming the “Zeeman” term k kg0  H SH  in eq. (7.10) to be much larger than the 

remaining terms, we have calculated the energies of the spin levels mkE  using the perturbation 

theory in the same way as in Chapter 6, “Magnetocrystalline anisotropy of iron borate and iron-

gallium borates”. In the first order of perturbations, we get: 

 
 

     

1
2

4 2 1
4

2

22 235 30

3 1

1 25 6 1 3 1

k km k

k

g H S S hm m

S S Sm m S hS Sm

       

     
   

E
 (7.11) 
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where 5
2kS S  , 5 3 5

2 2 2, , ,m     and 

 

 

 

1 2 2 1 0 2
2 2 2 2

1 2 2
2 2

1 3 3 0 4 2
4 4 4

3 3
4

1 1 1
2 4 2

1 1
4 2

1 1
8 8

1
8

2 2 3

2 2

3 35 30 3

3

sin sin sin sin cos 1

sin cos sin cos

cos sin sin cos cos

cos sin .cos

;

k k k k k

k k k k

k k k k k

k

k

k k

k

B B B

B B

B

h

h B

B

    

   

    

  

 



    

 

   



 (7.12) 

In the strong exchange case, the spins of two non-equivalent iron ions are antiparallel: 

1 1 2 2, , , and .                

At 0KT , the only occupied spin level is the lowest one (with 5
2m ), so that the 

anisotropic part of the right-hand side of eq. (6.12) for this level provides the crystal-field 

contribution to the density of the magnetocrystalline anisotropy energy of the near-surface layer: 

 1 0 0 2 2 0 4
2 2 4 2 4

cf
2 2 2 3 3
2 4

1
2

10 sin cos sin 30 450 10 cos 525 cos

20 sin cos 15 cos sin sin 3

S S S S S

S

S S

B B B B B
N

B B

    


    





    
 
   

(7.13) 

where N  is the number of Fe3+ ions per unit surface ( 18 -26.0036 10 mN    for  1014  face) 

and the S subscript refers to the parameters for the near surface layer in the presence of 

distortions. The parameters in eq. (7.13) depend on relative distortions, r

r

a
a   where ra  is the 

edge length of the rhombohedron shown in Figures 7.1 and 7.2 and ra  is an absolute distortion 

of ar. The positive and negative   values correspond to contractions and extensions, respectively. 

In the absence of structural distortions, i.e. at 0  , the crystal-field contribution to the 

density of the magnetocrystalline anisotropy energy of the near-surface layer would be the same 

as for an analogous layer in the crystal volume: 

 
 0 0 2

2 4

cf
0 4 3 3
4 4

1
2

30 450 cos

525 cos 15 cos sin sin 3

V V

V

V V

B B
N

B B




   

 
 
   

 (7.14) 

where the V subscript refers to the parameter in the volume, and N  is the same as in eq. (7.13). 

Thus, cf , defined as cf cfS V  , can be expressed as: 

 
 

  

1 2

3 4 5

2
cf cf cf

4 2 2 3
cf cf cf

sin cos sin cos

cos sin cos cos sin sin 3

      

        
  (7.15) 

where 
1 2 3 4 5cf cf cf cf cf, , , and      are defined as the difference between the parameters of 

matching symmetry terms in eqs. (7.13) and (7.14). 
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7.4 Comparison with experimental data 

The parameters featuring in eq. (7.15), calculated for 3%  , are given in Table 7.1. 

Obviously, the 
3 5cf cfand   parameters are much smaller than 

1 2 4cf cf cf, and   , thus they can 

be neglected. 

 

Table 7.1 Crystal field contribution to the surface anisotropy constants, in 
-3Jm . 

, %  
1cf  

2cf  
3cf  

4cf  
5cf  

-3 42.26 10  53.4 10   73.3 10  57.95 10  89.5 10   

-2 41.7 10  52.4 10  72.3 10  55.95 10  86.1 10   

-1 59.37 10  51.3 10  71.2 10  53.33 10  82.8 10   

0 0 0 0 0 0 

1 41.2 10   51.45 10   71.46 10   54.17 10   82.4 10  

2 42.73 10   53 10   73.13 10   59.307 10   83.9 10  

3 44.68 10   54.5 10   75.1 10   41.55 10   84.2 10  

 

Now we can determine the equilibrium orientation of l  in the near-surface layer in the 

absence of H  taking into account the crystal field contribution. For this purpose, we minimize 

the sum dip cf      with respect to and  , cf. eqs. (7.1), (7.3), (7.15) and Table 7.1. As far 

as for 3%   dip  only slightly changes with   [7.6], for this quantity we can take its value in 

the absence of structural distortions, cf. eq. (7.1). These results are given in Table 7.2. As one can 

see, in the case of an extension, in the near-surface layer in equilibrium l  becomes perpendicular 

to 2C , 0
31

2 2,   , which contradicts the experimental data [7.4]; therefore, the eventuality of 

an extension can be ruled out. In contrast, in the case of a contraction, in equilibrium l  remains 

parallel to 2C . Indeed, for ionic crystals, contractions rather than extensions are expected in the 

near-surface layer [7.9]. 
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Table 7.2 Equilibrium orientation of l  in the near-surface layer in the absence of H . 

, %  
0  0  , %  

0  0  
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2

2

0.14

0.14









 

 
 

0

0

2

3
2



 




 1 

0 2
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0

0

 




 -2 

0
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2

2
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







 

 
 

0

0

2

3
2



 




 2 

-1 
0

0

2

2

0.07

0.07









 
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0

0

2

3
2



 




 3 

 

Taking into account the data in Table 7.2, eqs. (7.13) and (7.14), for cf , defined as 

cf cfS V  , we get: 

 2 2
cf 210 sinSNB  

. (7.16) 

Comparing eqs. (7.16) and (7.5), we get the crystal field contribution to the surface anisotropy 

constant: 

 2
cf 210S Sa NB  , (7.17) 

and the total surface anisotropy constant can be expressed as 

 dip cfS S Sa a a  . (7.18) 

The  dipSa   dependence for the layer containing Fe3+ ions (D in Figure 7.2) has been 

previously calculated at 300 K [7.6]. As the dipole-dipole interaction energy is proportional to the 

square of magnetization, e.g. see eq. (6.36) in Chapter 6, “Magnetocrystalline anisotropy of iron 

borate and iron-gallium borates”, dipSa  is expected to depend on the temperature as 2
TM . 

Taking into account that 0

300
1.47M

M  [7.7], we have calculated  dipSa   at 0 K. Figure 7.3 

shows the dependences on   of dipSa  [7.6], cfSa  and Sa  at 0 K. Obviously, the distortions 

much more affect cfSa  than dipSa . 
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Figure 7.3 Values of cfSa , dipSa  [7.6] and Sa  vs.   at 0 K. 

Next, using the  Sa   dependence shown in Figure 7.3, we have calculated  cH  , 

cf. eq. (7.8). Figure 7.4 shows the latter dependence. The experimental value of cH  at 300 K, 

(1 kOe, vide supra) and the temperature dependence of cH , see Figure 10 in the paper by Zubov 

et al. [7.4], suggest that at 0 K c 1.47H   kOe. As one can see from Figure 7.4, such cH  value is 

attained at a contraction of ca. 1% . 

 

Figure 7.4 Calculated  cH   dependence at 0 K. 
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Note that the crystal surface in itself constitutes a structure defect; nevertheless, other types 

of structure defects can occur in the near-surface layer, for instance, vacancies of magnetic ions 

or their substitutions by diamagnetic ions (diamagnetic dilution), and such defects are also 

expected to contribute to cfSa . In particular, in mixed iron-gallium borates FexGa1-xBO3, cfSa  

should depend on x. Studies on the surface magnetism in diamagnetically diluted crystals are in 

progress; here in Figure 7.5 we show the calculated  cfSa x  dependence. 
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Figure 7.5 Calculated dependence of cfSa  on x for 1%  in FexGa1-xBO3 

crystals at 0 K. 
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7.5 Conclusions 

The theory of the surface magnetism of iron borate has been extended to include, besides 

the dipole-dipole contribution, the crystal field contribution to the surface magnetocrystalline 

anisotropy energy. 

A model of structural distortions in the near-surface layer for  1014  face of iron borate has 

been developed, allowing all ions located in this layer to be displaced proportionally to their 

distance from a reference plane assumed to remain immobile. In order to account for the 

lowering of symmetry in the near-surface layer, the generalized spin Hamiltonian expressed 

through the tesseral spherical tensor operators has been applied, and the spin Hamiltonian 

parameters have been calculated within the superposition model. The crystal field contribution to 

the surface anisotropy energy at 0 K has been calculated in perturbation theory. Taking into 

account the distortions of the iron environment produces a significant crystal field contribution 

to the surface anisotropy constant; indeed, the experimental results can be satisfactorily described 

assuming relative contractions in the near-surface layer ca. 1% . 
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Summary of results 

The most significant results of this thesis are: 

1. Working out a solution in the melt synthesis route for iron-gallium borates FexGa1-xBO3, and 

preparing and characterizing high-quality single crystals in the whole range of compositions. 

2. Electron magnetic resonance monitoring of iron-gallium borates in the transformation from 

magnetically ordered to paramagnetic state: antiferromagnetic resonance (AFMR) – 

coexistence of AFMR and cluster magnetic resonance (CMR) – CMR – electron 

paramagnetic resonance (EPR). Plausible observation of the Morin’s transition in iron-

gallium borates. 

3. Determining temperature and concentration dependences of magnetic characteristics of 

iron-gallium borates, namely, the Néel temperature and Dzyaloshinskii-Moriya field. 

4. Full parametrization of EPR spectra of Fe3+ ions in crystals with low iron contents by means 

of detailed computer simulations using laboratory-developed codes for the conventional, 

general and “tesseral” spin Hamiltonians, taking into account parameter distributions caused 

by local disorder. 

5. Computer modelling of Magic Angle Spinning NMR spectra of 11B and 71Ga in FexGa1-xBO3 

with low iron contents, applying different distribution functions of quadrupole parameters 

and chemical shift in order to describe local disorder in the crystals. 

6. Calculating magnetocrystalline anisotropy, uniaxial and basal, of iron-gallium borates as a 

sum of crystal field and dipole-dipole – in the model of extended dipoles – contributions; 
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