C. W. Bunn, The lattice-dimensions of zinc oxide, Proceedings of the Physical Society, p.835, 1935.
DOI : 10.1088/0959-5309/47/5/307

D. C. Look, Recent advances in ZnO materials and devices, Materials Science and Engineering: B, vol.80, issue.1-3, pp.383-387, 2001.
DOI : 10.1016/S0921-5107(00)00604-8

A. Janotti and C. G. Van-de-walle, Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, vol.72, issue.12, pp.72-126501, 2009.
DOI : 10.1088/0034-4885/72/12/126501

C. Jagadish and S. J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications, 2011.

S. Xu and Z. L. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Research, vol.1, issue.68, pp.1013-1098, 2011.
DOI : 10.1007/s12274-011-0160-7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.654.3359

R. Könenkamp, R. C. Word, and C. Schlegel, Vertical nanowire light-emitting diode, Applied Physics Letters, vol.83, issue.24, pp.6004-6006, 2004.
DOI : 10.1063/1.1598283

J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, ZnO Nanowire Transistors, The Journal of Physical Chemistry B, vol.109, issue.1, pp.9-14, 2005.
DOI : 10.1021/jp0452599

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nature materials, vol.4, issue.6, pp.455-459, 2005.
DOI : 10.1142/9789814317665_0011

Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol.312, issue.5771, pp.312-242, 2006.
DOI : 10.1126/science.1124005

Z. Fan and J. G. Lu, Chemical sensing with ZnO nanowire field-effect transistor, 2006.

T. J. Kuo, C. N. Lin, C. L. Kuo, and M. H. Huang, Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts, Chemistry of Materials, vol.19, issue.21, pp.5143-5147, 2007.
DOI : 10.1021/cm071568a

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien et al., p-Type ZnO Nanowire Arrays, Nano Letters, vol.8, issue.8, pp.2591-2597, 2008.
DOI : 10.1021/nl073022t

Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Applied Physics Letters, vol.85, issue.24, p.85, 2004.
DOI : 10.1016/S0925-4005(00)00319-1

B. Gault, F. Vurpillot, A. Vella, M. Gilbert, A. Menand et al., Design of a femtosecond laser assisted tomographic atom probe, Review of Scientific Instruments, vol.50, issue.4, p.43705, 2006.
DOI : 10.1088/0957-4484/10/1/010

N. Amirifar, R. Lardé, E. Talbot, P. Pareige, L. Rigutti et al., Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters, Journal of Applied Physics, vol.118, issue.21, pp.118-215703, 2015.
DOI : 10.1063/1.4926489

URL : https://hal.archives-ouvertes.fr/hal-01241229

D. W. Saxey, Correlated ion analysis and the interpretation of atom probe mass spectra, Ultramicroscopy, vol.111, issue.6, pp.473-479, 2011.
DOI : 10.1016/j.ultramic.2010.11.021

C. Daghlian, Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy, Journal of applied physics, vol.77, issue.5, pp.1888-1896, 1995.

D. R. Turner, On the Mechanism of Chemically Etching Germanium and Silicon, Journal of The Electrochemical Society, vol.107, issue.10, 1960.
DOI : 10.1149/1.2427519

I. Humer, H. P. Huber, F. Kienberger, J. Danzberger, and J. Smoliner, Phase and amplitude sensitive scanning microwave microscopy/spectroscopy on metal???oxide???semiconductor systems, Journal of Applied Physics, vol.111, issue.7, pp.111-074313, 2012.
DOI : 10.1109/TGRS.2004.831888

H. P. Huber, I. Humer, M. Hochleitner, M. Fenner, M. Moertelmaier et al., Calibrated nanoscale dopant profiling using a scanning microwave microscope, Journal of Applied Physics, vol.111, issue.1, p.14301, 2012.
DOI : 10.1002/pssa.201026251

K. Torigoe, M. Arita, and T. Motooka, Sensitivity analysis of scanning microwave microscopy for nano-scale dopant measurements in Si, Journal of Applied Physics, vol.112, issue.10, pp.112-104325, 2012.
DOI : 10.1063/1.1149923

C. C. Williams, TWO-DIMENSIONAL DOPANT PROFILING BY SCANNING CAPACITANCE MICROSCOPY, Annual Review of Materials Science, vol.29, issue.1, 1999.
DOI : 10.1146/annurev.matsci.29.1.471

H. Morkoç and Ü. Özgür, Zinc oxide: fundamentals, materials and device technology, 2008.

J. E. Jaffe and A. C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure, Physical Review B, vol.48, issue.11, pp.48-7903, 1993.
DOI : 10.1103/PhysRevB.48.7903

M. Catti, Y. Noel, and R. Dovesi, Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations, Journal of Physics and Chemistry of Solids, vol.64, issue.11, pp.2183-2190, 2003.
DOI : 10.1016/S0022-3697(03)00219-1

E. H. Kisi and M. M. Elcombe, u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Crystallographica Section C Crystal Structure Communications, vol.45, issue.12, pp.45-1867, 1989.
DOI : 10.1107/S0108270189004269

H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner et al., Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Physical Review B, vol.53, issue.17, pp.53-11425, 1996.
DOI : 10.1103/PhysRevB.53.11425

A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, many-body calculations, Physical Review B, vol.80, issue.3, p.35112, 2009.
DOI : 10.1103/PhysRevB.80.035112

F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse, Quasiparticle band structure based on a generalized Kohn-Sham scheme, Physical Review B, vol.76, issue.11, pp.76-115109, 2007.
DOI : 10.1103/PhysRevB.76.115109

J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, The Journal of Chemical Physics, vol.118, issue.18, pp.8207-8215, 2003.
DOI : 10.1063/1.477422

L. Hedin, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Physical Review, vol.139, issue.3A, pp.139-796, 1965.
DOI : 10.1103/PhysRev.139.A796

S. M. Durbin, Band structure of ZnO from resonant x-ray emission spectroscopy, Physical Review B, vol.78, issue.15, p.155114, 2008.

A. Mang and K. Reimann, Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure, Solid state communications, pp.251-254, 1995.
DOI : 10.1016/0038-1098(95)00054-2

O. Madelung, Semiconductors: data handbook, 2012.
DOI : 10.1007/978-3-642-18865-7

D. C. Look, Recent advances in ZnO materials and devices, Materials Science and Engineering: B, vol.80, issue.1-3, pp.383-387, 2001.
DOI : 10.1016/S0921-5107(00)00604-8

N. H. Nickel and E. Terukov, Zinc Oxide-A Material for Micro-and, 2006.

C. Jagadish and S. J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications, 2011.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nature Materials, vol.72, issue.1, pp.42-46, 2005.
DOI : 10.1038/nmat1284

J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, p-Type ZnO materials: Theory, growth, properties and devices, Progress in Materials Science, vol.58, issue.6, pp.58-874, 2013.
DOI : 10.1016/j.pmatsci.2013.03.002

D. C. Reynolds, D. C. Look, and B. Jogai, Optically pumped ultraviolet lasing from ZnO, Solid State Communications, vol.99, issue.12, pp.99-873, 1996.
DOI : 10.1016/0038-1098(96)00340-7

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties, 2005.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van-de-walle, First-principles study of native point defects in ZnO, Physical Review B, vol.61, issue.22, pp.61-15019, 2000.
DOI : 10.1103/PhysRevB.61.15019

S. B. Zhang, S. H. Wei, and A. Zunger, -type doping asymmetry and the defect physics of ZnO, Physical Review B, vol.63, issue.7, p.75205, 2001.
DOI : 10.1103/PhysRevB.63.075205

URL : https://hal.archives-ouvertes.fr/hal-01258459

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang et al., -Type ZnO, Physical Review Letters, vol.95, issue.22, pp.95-225502, 2005.
DOI : 10.1103/PhysRevLett.95.225502

URL : https://hal.archives-ouvertes.fr/hal-00292362

C. G. Van-de-walle, Hydrogen as a Cause of Doping in Zinc Oxide, Physical Review Letters, vol.85, issue.5, p.1012, 2000.
DOI : 10.1103/PhysRevLett.85.1012

D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker et al., Hydrogen: A Relevant Shallow Donor in Zinc Oxide, Physical Review Letters, vol.88, issue.4, p.45504, 2002.
DOI : 10.1103/PhysRevLett.88.045504

C. H. Park, S. B. Zhang, and S. H. Wei, -type doping difficulty in ZnO:???The impurity perspective, Physical Review B, vol.66, issue.7, pp.66-073202, 2002.
DOI : 10.1103/PhysRevB.66.073202

URL : https://hal.archives-ouvertes.fr/hal-00458708

H. Kato, M. Sano, K. Miyamoto, and T. Yao, Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy, Journal of Crystal Growth, vol.237, issue.239, 2002.
DOI : 10.1016/S0022-0248(01)01972-8

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Extremely transparent and conductive ZnO: Al thin films prepared by photo-assisted metalorganic chemical vapor deposition, MOCVD) using AlCl3 (6H2O) as new doping material, 1997.

C. H. Park, S. B. Zhang, and S. H. Wei, -type doping difficulty in ZnO:???The impurity perspective, Physical Review B, vol.66, issue.7, pp.66-073202, 2002.
DOI : 10.1103/PhysRevB.66.073202

URL : https://hal.archives-ouvertes.fr/hal-00458708

W. J. Lee, J. Kang, and K. J. Chang, -type doping efficiency in phosphorus-doped ZnO, Physical Review B, vol.73, issue.2, p.24117, 2006.
DOI : 10.1103/PhysRevB.73.024117

URL : https://hal.archives-ouvertes.fr/hal-00857436

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, -Type Zinc Oxide, Physical Review Letters, vol.92, issue.15, pp.92-155504, 2004.
DOI : 10.1103/PhysRevLett.92.155504

M. P. Lu, M. Y. Lu, and L. J. Chen, p-Type ZnO nanowires: From synthesis to nanoenergy, Nano Energy, vol.1, issue.2, pp.247-258, 2012.
DOI : 10.1016/j.nanoen.2011.12.004

T. Yamamoto and H. Katayama-yoshida, Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO, Japanese Journal of Applied Physics, vol.38, issue.Part 2, No. 2B, pp.38-166, 1999.
DOI : 10.1143/JJAP.38.L166

J. Cui, Zinc oxide nanowires, Materials Characterization, vol.64, pp.43-52, 2012.
DOI : 10.1016/j.matchar.2011.11.017

D. Vanmaekelbergh and L. K. Van-vugt, ZnO nanowire lasers, Nanoscale, vol.90, issue.89, pp.2783-2800, 2011.
DOI : 10.1039/c1nr00013f

R. Könenkamp, R. C. Word, and C. Schlegel, Vertical nanowire light-emitting diode, Applied Physics Letters, vol.83, issue.24, pp.6004-6006, 2004.
DOI : 10.1063/1.1598283

J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, ZnO Nanowire Transistors, The Journal of Physical Chemistry B, vol.109, issue.1, pp.9-14, 2005.
DOI : 10.1021/jp0452599

Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Applied Physics Letters, vol.85, issue.24, pp.85-5923, 2004.
DOI : 10.1016/S0925-4005(00)00319-1

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, 2016.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nature materials, vol.4, issue.6, pp.455-459, 2005.
DOI : 10.1142/9789814317665_0011

J. B. Baxter and E. S. Aydil, Nanowire-based dye-sensitized solar cells, Applied Physics Letters, vol.86, issue.5, p.53114, 2005.
DOI : 10.1002/adma.200390108

Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol.312, issue.5771, pp.312-242, 2006.
DOI : 10.1126/science.1124005

Z. Fan and J. G. Lu, Chemical sensing with ZnO nanowire field-effect transistor, 2006.

T. J. Kuo, C. N. Lin, C. L. Kuo, and M. H. Huang, Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts, Chemistry of Materials, vol.19, issue.21, pp.5143-5147, 2007.
DOI : 10.1021/cm071568a

Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Applied Physics Letters, vol.85, issue.24, pp.85-5923, 2004.
DOI : 10.1016/S0925-4005(00)00319-1

Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Applied Physics Letters, vol.85, issue.24, pp.85-5923, 2004.
DOI : 10.1016/S0925-4005(00)00319-1

G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, p.930, 1986.

T. Y. Edward, Nanoscale characterization of semiconductor materials and devices using scanning probe techniques, Materials Science and Engineering Reports, vol.17, issue.4, pp.147-206, 1996.

C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe, Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy, Applied Physics Letters, vol.55, issue.16, pp.55-1662, 1989.
DOI : 10.1063/1.99224

C. C. Williams, TWO-DIMENSIONAL DOPANT PROFILING BY SCANNING CAPACITANCE MICROSCOPY, Annual Review of Materials Science, vol.29, issue.1, pp.471-504, 1999.
DOI : 10.1146/annurev.matsci.29.1.471

J. Sumner, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Assessment of the performance of scanning capacitance microscopy for n-type gallium nitride, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.2, 2008.
DOI : 10.1116/1.2890705

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, Vacuum Science & Technology B, vol.26, issue.2, pp.611-617

O. Bowallius, S. Anand, N. Nordell, G. Landgren, and S. Karlsson, Scanning capacitance microscopy investigations of SiC structures, Materials Science in Semiconductor Processing, vol.4, issue.1-3, pp.209-211, 2001.
DOI : 10.1016/S1369-8001(00)00132-3

N. Duhayon, T. Clarysse, P. Eyben, W. Vandervorst, and L. Hellemans, Detailed study of scanning capacitance microscopy on cross-sectional and beveled junctions, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.2, pp.741-746, 2002.
DOI : 10.1116/1.1464834

O. Douheret, K. Maknys, and S. Anand, Scanning capacitance microscopy investigations of InGaAs/InP quantum wells, Thin Solid Films, vol.459, issue.1-2, pp.67-70, 2004.
DOI : 10.1016/j.tsf.2003.12.097

F. Giannazzo, P. Musumeci, L. Calcagno, A. Makhtari, and V. Raineri, Carrier concentration profiles in 6H-SiC by scanning capacitance microscopy, Materials Science in Semiconductor Processing, vol.4, issue.1-3, pp.195-199, 2001.
DOI : 10.1016/S1369-8001(00)00129-3

G. H. Buh, C. Tran, and J. J. Kopanski, PSPICE analysis of a scanning capacitance microscope sensor, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.1, pp.417-421, 2004.
DOI : 10.1116/1.1631290

H. Edwards, R. Mcglothlin, R. San-martin, U. Elisa, M. Gribelyuk et al., Scanning capacitance spectroscopy: An analytical technique for pn-junction delineation in Si devices, Applied Physics Letters, vol.72, issue.6, pp.72-698, 1998.
DOI : 10.1063/1.119961

D. M. Schaadt, E. J. Miller, T. Y. Edward, and J. M. Redwing, Lateral variations in threshold voltage of an AlxGa1???xN/GaN heterostructure field-effect transistor measured by scanning capacitance spectroscopy, Applied Physics Letters, vol.82, issue.1, pp.88-90, 2001.
DOI : 10.1116/1.590818

D. Wolf, P. Clarysse, T. Vandervorst, W. Snauwaert, J. Hellemans et al., One- and two-dimensional carrier profiling in semiconductors by nanospreading resistance profiling, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.1, pp.380-385, 1996.
DOI : 10.1116/1.588478

R. P. Lu, K. L. Kavanagh, J. St, D. W. Kuhl, A. Springthorpe et al., Calibrated scanning spreading resistance microscopy profiling of carriers in III???V structures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.19, issue.4, pp.1662-1670, 2001.
DOI : 10.1116/1.1387458

T. Hantschel, P. Niedermann, T. Trenkler, and W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy, Applied Physics Letters, vol.33, issue.12, pp.76-1603, 2000.
DOI : 10.1116/1.589820

P. Eyben, J. Mody, S. C. Vemula, and W. Vandervorst, Impact of the environmental conditions on the electrical characteristics of scanning spreading resistance microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.1, pp.338-341, 2008.
DOI : 10.1116/1.2805250

D. Wolf, P. Clarysse, T. Vandervorst, and W. , Quantification of nanospreading resistance profiling data, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.1, pp.320-326, 1998.
DOI : 10.1116/1.589804

D. Wolf, P. Brazel, E. Erickson, and A. , Electrical characterization of semiconductor materials and devices using scanning probe microscopy, Materials Science in Semiconductor Processing, vol.4, issue.1-3, pp.71-76, 2001.
DOI : 10.1016/S1369-8001(00)00174-8

M. P. Murrell, M. E. Welland, S. J. O-'shea, T. M. Wong, J. R. Barnes et al., gate oxides using atomic force microscopy, Applied Physics Letters, vol.62, issue.7, pp.62-786, 1993.
DOI : 10.1063/1.325096

M. Fouchier, P. Eyben, D. Alvarez, N. Duhayon, M. Xu et al., Fabrication of conductive atomic force microscope probes and their evaluation for carrier mapping, Smart Sensors, Actuators, and MEMS, pp.607-616, 2003.
DOI : 10.1117/12.498164

H. S. Huang, H. M. Cheng, and L. J. Lin, Coating tips used in electrical scanning probe microscopy with W and AuPd, Applied Surface Science, vol.252, issue.5, pp.2085-2091, 2005.
DOI : 10.1016/j.apsusc.2005.03.208

K. P. Wiederhold, Y. Yamaguchi, A. Ayala, M. Matheaus, C. J. Gutierrez et al., Ti/TiN coatings for microfabricated cantilevers used in atomic force microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.3, pp.1182-1186, 2000.
DOI : 10.1116/1.591356

P. Niedermann, W. Hänni, N. Blanc, R. Christoph, and J. Burger, Chemical vapor deposition diamond for tips in nanoprobe experiments, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.3, pp.1233-1236, 1996.
DOI : 10.1116/1.580273

T. Hantschel, P. Niedermann, T. Trenkler, and W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy, Applied Physics Letters, vol.33, issue.12, pp.76-1603, 2000.
DOI : 10.1116/1.589820

D. Álvarez, M. Fouchier, J. Kretz, J. Hartwich, S. Schoemann et al., Fabrication and characterization of full diamond tips for scanning spreading-resistance microscopy, Microelectronic engineering, pp.910-915, 2004.

W. Mtangi, MSc Dissertation, University of Pretoria 2009 Electrical characterization of ZnO and metal ZnO contacts

H. K. Kim, S. H. Han, T. Y. Seong, and W. K. Choi, Electrical and Structural Properties of Ti/Au Ohmic Contacts to n-ZnO, Journal of The Electrochemical Society, vol.148, issue.3, pp.114-117, 2001.
DOI : 10.1149/1.1346617

. Microstructural-investigation and . Ti, Au ohmic contacts on Ga doped single crystalline n-ZnO films, Materials Science and Engineering: B, vol.167, issue.1, pp.51-54

Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol.312, issue.5771, pp.312-242, 2006.
DOI : 10.1126/science.1124005

H. Morkoç and Ü. Özgür, Zinc oxide: fundamentals, materials and device technology, pp.388-390, 2008.

L. J. Brillson and Y. Lu, ZnO Schottky barriers and Ohmic contacts, Journal of Applied Physics, vol.156, issue.12, p.121301, 2011.
DOI : 10.1063/1.2012518

M. S. Oh, D. K. Hwang, J. H. Lim, Y. S. Choi, and S. J. Park, Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation, Applied Physics Letters, vol.48, issue.4, p.42109, 2007.
DOI : 10.1016/j.jcrysgro.2004.03.069

P. Blood and J. W. Orton, The electrical characterization of semiconductors: majority carriers and electron states, pp.234-235, 1992.

J. Kang, S. Myung, B. Kim, D. Oh, G. T. Kim et al., Massive assembly of ZnO nanowire-based integrated devices, Nanotechnology, vol.19, issue.9, p.95303, 2008.
DOI : 10.1088/0957-4484/19/9/095303

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Science, vol.291, issue.5504, pp.291-630, 2001.
DOI : 10.1126/science.291.5504.630

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems, Nano Letters, vol.3, issue.9, pp.1255-1259, 2003.
DOI : 10.1021/nl0345062

X. Zhou, S. A. Dayeh, D. Aplin, D. Wang, and E. T. Yu, Direct observation of Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, INSA Lyon, tous droits réservés ballistic and drift carrier transport regimes in InAs nanowires. Applied physics letters, p.53113, 2006.

Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Oxygen sensing characteristics of individual ZnO nanowire transistors, Applied Physics Letters, vol.85, issue.26, pp.85-6389, 2004.
DOI : 10.1063/1.122477

Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Applied Physics Letters, vol.85, issue.24, pp.85-5923, 2004.
DOI : 10.1016/S0925-4005(00)00319-1

J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, ZnO Nanowire Transistors, The Journal of Physical Chemistry B, vol.109, issue.1, 2005.
DOI : 10.1021/jp0452599

L. Luo, Y. Zhang, S. S. Mao, and L. Lin, Fabrication and characterization of ZnO nanowires based UV photodiodes, Sensors and Actuators A: Physical, vol.127, issue.2, pp.201-206, 2006.
DOI : 10.1016/j.sna.2005.06.023

E. Latu-romain, P. Gilet, P. Noel, J. Garcia, P. Ferret et al., A generic approach for vertical integration of nanowires, Nanotechnology, vol.19, issue.34, pp.19-345304, 2008.
DOI : 10.1088/0957-4484/19/34/345304

C. C. Williams, TWO-DIMENSIONAL DOPANT PROFILING BY SCANNING CAPACITANCE MICROSCOPY, Annual Review of Materials Science, vol.29, issue.1, pp.471-504, 1999.
DOI : 10.1146/annurev.matsci.29.1.471

N. Duhayon, T. Clarysse, P. Eyben, W. Vandervorst, and L. Hellemans, Detailed study of scanning capacitance microscopy on cross-sectional and beveled junctions, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.2, pp.741-746, 2002.
DOI : 10.1116/1.1464834

R. Mucciato, Scanning capacitance microscopy: Quantitative carrier profiling down to nanostructures, Journal of Vacuum Science & Technology B, vol.24, issue.1, pp.370-374, 2006.

R. A. Oliver, Advances in AFM for the electrical characterization of semiconductors, Reports on Progress in Physics, vol.71, issue.7, p.76501, 2008.
DOI : 10.1088/0034-4885/71/7/076501

J. S. Mcmurray, J. Kim, and C. C. Williams, Quantitative measurement of two-dimensional dopant profile by cross-sectional scanning capacitance microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.4, pp.1011-1014, 1997.
DOI : 10.1116/1.589385

F. Giannazzo, D. Goghero, V. Raineri, S. Mirabella, and F. Priolo, Scanning capacitance microscopy on ultranarrow doping profiles in Si, Applied Physics Letters, vol.83, issue.13, pp.83-2659, 2003.
DOI : 10.1063/1.1394956

J. Sumner, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Assessment of the performance of scanning capacitance microscopy for n-type gallium nitride, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.2, pp.611-617, 2008.
DOI : 10.1116/1.2890705

H. Yin, T. Li, W. Wang, W. Hu, L. Lin et al., Scanning capacitance microscopy investigation on InGaAs/InP avalanche photodiode structures: Light-induced polarity reversal, Applied Physics Letters, vol.95, issue.9, pp.95-093506, 2009.
DOI : 10.1116/1.1326947

O. Douheret, K. Maknys, and S. Anand, Scanning capacitance microscopy investigations of InGaAs/InP quantum wells, Thin Solid Films, vol.459, issue.1-2, pp.67-70, 2004.
DOI : 10.1016/j.tsf.2003.12.097

F. Giannazzo, P. Musumeci, L. Calcagno, A. Makhtari, and V. Raineri, Carrier concentration profiles in 6H-SiC by scanning capacitance microscopy, Materials Science in Semiconductor Processing, vol.4, issue.1-3, pp.195-199, 2001.
DOI : 10.1016/S1369-8001(00)00129-3

F. Giannazzo, V. Raineri, S. Mirabella, G. Impellizzeri, and F. Priolo, Drift mobility in quantum nanostructures by scanning probe microscopy Applied physics, 2006.

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, p.43117

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, vol.20, issue.4, p.41301, 2005.
DOI : 10.1088/0268-1242/20/4/001

E. Latu-romain, P. Gilet, N. Chevalier, D. Mariolle, F. Bertin et al., Surface-induced p-type conductivity in ZnO nanopillars investigated by scanning probe microscopy, Journal of Applied Physics, vol.107, issue.12, p.124307, 2010.
DOI : 10.1016/j.ssc.2008.11.016

URL : https://hal.archives-ouvertes.fr/hal-00740790

A. Krtschil, A. Dadgar, N. Oleynik, J. Bläsing, A. Diez et al., Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic, Applied Physics Letters, vol.87, issue.26, p.2105, 2005.
DOI : 10.1016/j.spmi.2004.09.039

B. Wang, J. Min, Y. Zhao, W. Sang, and C. Wang, The grain boundary related p-type conductivity in ZnO films prepared by ultrasonic spray pyrolysis, Applied Physics Letters, vol.140, issue.19, pp.94-2101, 2009.
DOI : 10.1103/PhysRevB.63.075205

Y. Huang, C. C. Williams, and H. Smith, Direct comparison of cross-sectional scanning capacitance microscope dopant profile and vertical secondary ion-mass spectroscopy profile, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.1, pp.433-436, 1996.
DOI : 10.1116/1.588489

J. J. Kopanski, J. F. Marchiando, and J. R. Lowney, Scanning capacitance microscopy measurements and modeling: Progress towards dopant profiling of silicon, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.1, pp.242-247, 1996.
DOI : 10.1116/1.588455

Y. Huang, C. C. Williams, and M. A. Wendman, Quantitative two???dimensional dopant profiling of abrupt dopant profiles by cross???sectional scanning capacitance microscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.3, 1996.
DOI : 10.1116/1.580260

H. Kato, M. Sano, K. Miyamoto, and T. Yao, Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy, Journal of Crystal Growth, vol.237, issue.239, pp.538-543, 2002.
DOI : 10.1016/S0022-0248(01)01972-8

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths, Applied Physics Letters, vol.17, issue.18, pp.102-181905, 2013.
DOI : 10.1063/1.3310043

J. M. Chauveau, Residual and nitrogen doping of homoepitaxial nonpolar m-plane ZnO films grown by molecular beam epitaxy, Applied Physics Letters, issue.13, pp.98-131915, 2011.

J. Sumner, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Assessment of the performance of scanning capacitance microscopy for n-type gallium nitride, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.2, pp.611-617, 2008.
DOI : 10.1116/1.2890705

J. Smoliner, B. Basnar, S. Golka, E. Gornik, B. Löffler et al., Mechanism of bias-dependent contrast in scanning-capacitance-microscopy images, Applied Physics Letters, vol.449, issue.19, pp.79-3182, 2001.
DOI : 10.1116/1.591204

M. N. Chang, C. W. Hu, T. H. Chou, and Y. J. Lee, Contrast distortion induced by modulation voltage in scanning capacitance microscopy, Applied Physics Letters, vol.101, issue.8, p.83503, 2012.
DOI : 10.1149/1.1667018

V. V. Zavyalov, J. S. Mcmurray, and C. C. Williams, Advances in experimental technique for quantitative two-dimensional dopant profiling by scanning capacitance microscopy, Review of Scientific Instruments, vol.70, issue.1, pp.158-164, 1999.
DOI : 10.1063/1.341489

M. C. Chang, pn-junction delineation in Si devices using scanning capacitance spectroscopy, Journal of Applied Physics, vol.87, issue.3, pp.1485-1495, 2000.

O. Bowallius, S. Anand, N. Nordell, G. Landgren, and S. Karlsson, Scanning capacitance microscopy investigations of SiC structures, Materials Science in Semiconductor Processing, vol.4, issue.1-3, pp.209-211, 2001.
DOI : 10.1016/S1369-8001(00)00132-3

&. Ukraintsev and V. A. , Scanning capacitance spectroscopy: An analytical technique for pn-junction delineation in Si devices, Applied physics letters, vol.72, issue.6, pp.698-700, 1998.

S. Rinaudo, Simulation of scanning capacitance microscopy measurements on ultranarrow doping profiles in silicon, Journal of Vacuum Science & Technology B, vol.22, issue.1, pp.394-398, 2004.

A. Degen and M. Kosec, Effect of pH and impurities on the surface charge of, 2000.

J. C. Moore, S. M. Kenny, C. S. Baird, H. Morkoç, and A. A. Baski, Electronic behavior of the Zn- and O-polar ZnO surfaces studied using conductive atomic force microscopy, Journal of Applied Physics, vol.105, issue.11, pp.105-6102, 2009.
DOI : 10.1063/1.1499764

J. D. Mcnamara, J. D. Ferguson, M. Foussekis, I. Ruchala, M. A. Reshchikov et al., Surface Characterization of Ga-doped ZnO layers, MRS Proceedings, pp.10-1315, 2011.
DOI : 10.1088/0268-1242/20/4/004

J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, p-Type ZnO materials: Theory, growth, properties and devices, Progress in Materials Science, vol.58, issue.6, pp.58-874, 2013.
DOI : 10.1016/j.pmatsci.2013.03.002

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van-de-walle, First-principles study of native point defects in ZnO, Physical Review B, vol.61, issue.22, pp.61-15019, 2000.
DOI : 10.1103/PhysRevB.61.15019

C. G. Van-de-walle, Hydrogen as a Cause of Doping in Zinc Oxide, Physical Review Letters, vol.85, issue.5, p.1012, 2000.
DOI : 10.1103/PhysRevLett.85.1012

S. Brochen, M. Lafossas, I. C. Robin, P. Ferret, F. Gemain et al., Residual and intentional n-type doping of ZnO thin films grown by metal-organic vapor phase epitaxy on sapphire and ZnO substrates, Journal of Applied Physics, vol.115, issue.11, pp.115-113508, 2014.
DOI : 10.1063/1.2907562

URL : https://hal.archives-ouvertes.fr/hal-00984425

O. Ligor, Reliability of the scanning capacitance microscopy and spectroscopy for the nanoscale characterization of semiconductors and dielectrics (Doctoral dissertation, 2010.

D. Wolf, P. Clarysse, T. Vandervorst, W. Snauwaert, J. Hellemans et al., One- and two-dimensional carrier profiling in semiconductors by nanospreading resistance profiling, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.1, pp.380-385, 1996.
DOI : 10.1116/1.588478

&. Neubauer and G. , Epitaxial staircase structure for the calibration of electrical characterization techniques, Journal of Vacuum Science & Technology B, vol.16, issue.1, pp.394-400, 1998.

D. Wolf, P. Clarysse, T. Vandervorst, and W. , Quantification of nanospreading resistance profiling data, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.1, pp.320-326, 1998.
DOI : 10.1116/1.589804

P. Eyben, S. Denis, T. Clarysse, and W. Vandervorst, Progress towards a physical contact model for scanning spreading resistance microscopy, Materials Science and Engineering: B, vol.102, issue.1-3, pp.132-137, 2003.
DOI : 10.1016/S0921-5107(03)00019-9

R. Holm, Electric Contacts: Theory and Application, pp.11-16, 1979.
DOI : 10.1007/978-3-662-06688-1

Y. V. Sharvin, A Possible Method for Studying Fermi Surfaces, Soviet Journal of Experimental and Theoretical Physics, vol.21, p.655, 1965.

L. Zhang, H. Tanimoto, K. Adachi, and A. Nishiyama, 1-nm Spatial Resolution in Carrier Profiling of Ultrashallow Junctions by Scanning Spreading Resistance Microscopy, IEEE Electron Device Letters, vol.29, issue.7, 2008.
DOI : 10.1109/LED.2008.2000644

T. Hantschel, C. Demeulemeester, P. Eyben, V. Schulz, O. Richard et al., Conductive diamond tips with sub-nanometer electrical resolution for characterization of nanoelectronics device structures, physica status solidi (a), vol.29, issue.58, pp.206-2077, 2009.
DOI : 10.1002/pssa.200982212

F. Giannazzo, V. Raineri, S. Mirabella, G. Impellizzeri, F. Priolo et al., Drift mobility in quantum nanostructures by scanning probe microscopy, Applied Physics Letters, vol.88, issue.4, p.43117, 2006.
DOI : 10.1063/1.1695102

J. Osterman, A. Hallén, and S. Anand, Carrier profiling of Al-doped 4H-SiC by scanning spreading resistance microscopy, Applied Physics Letters, vol.81, issue.16, p.3004, 2002.
DOI : 10.1016/S0169-4332(01)00510-4

F. Giannazzo, F. Roccaforte, and V. Raineri, Acceptor, compensation, and mobility profiles in multiple Al implanted 4H???SiC, Applied Physics Letters, vol.91, issue.20, pp.91-2104, 2007.
DOI : 10.1063/1.1775298

R. Streater, Calibrated scanning spreading resistance microscopy profiling of carriers in III?V structures, Journal of Vacuum Science & Technology B, vol.19, issue.4, pp.1662-1670, 2001.

I. S. Fraser, R. A. Oliver, J. Sumner, C. Mcaleese, M. J. Kappers et al., Compositional contrast in AlxGa1???xN/GaN heterostructures using scanning spreading resistance microscopy, Applied Surface Science, vol.253, issue.8, pp.253-3937, 2007.
DOI : 10.1016/j.apsusc.2006.08.028

T. M. Børseth, J. S. Christensen, K. Maknys, A. Hallén, B. G. Svensson et al., Annealing study of Sb+ and Al+ ion-implanted ZnO, Superlattices and Microstructures, vol.38, issue.4-6, pp.464-471, 2005.
DOI : 10.1016/j.spmi.2005.08.017

E. Latu-romain, P. Gilet, N. Chevalier, D. Mariolle, F. Bertin et al., Surface-induced p-type conductivity in ZnO nanopillars investigated by scanning probe microscopy, Journal of Applied Physics, vol.107, issue.12, p.124307, 2010.
DOI : 10.1016/j.ssc.2008.11.016

URL : https://hal.archives-ouvertes.fr/hal-00740790

&. Vandervorst and W. , Observation of diameter dependent carrier distribution in nanowire-based transistors, Nanotechnology, issue.18, pp.22-185701, 2011.

P. Eyben, J. Mody, S. C. Vemula, and W. Vandervorst, Impact of the environmental conditions on the electrical characteristics of scanning spreading resistance microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.1, pp.338-341, 2008.
DOI : 10.1116/1.2805250

J. L. Hutter and J. Bechhoefer, Calibration of atomic???force microscope tips, Review of Scientific Instruments, vol.2, issue.7, 1993.
DOI : 10.1063/1.107024

G. M. Pharr, W. C. Oliver, and D. R. Clarke, The mechanical behavior of silicon during small-scale indentation, Journal of Electronic Materials, vol.12, issue.9, pp.881-887, 1990.
DOI : 10.1007/BF02652912

S. Ruffell, J. E. Bradby, and J. S. Williams, High pressure crystalline phase formation during nanoindentation: Amorphous versus crystalline silicon, Applied Physics Letters, vol.89, issue.9, p.91919, 2006.
DOI : 10.1016/j.actamat.2005.06.030

URL : http://hdl.handle.net/1885/16211

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain et al., Contact-induced defect propagation in ZnO, Applied Physics Letters, vol.80, issue.24, pp.80-4537, 2002.
DOI : 10.1063/1.1328047

S. Basu and M. W. Barsoum, Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress???strain curves, Journal of Materials Research, vol.51, issue.09, pp.2470-2477, 2007.
DOI : 10.1038/nmat814

S. R. Jian, Mechanical responses of single-crystal ZnO, Journal of Alloys and Compounds, vol.494, issue.1-2, pp.214-218, 2010.
DOI : 10.1016/j.jallcom.2009.11.142

S. Desgreniers, High-density phases of ZnO:???Structural and compressive parameters, Physical Review B, vol.58, issue.21, p.14102, 1998.
DOI : 10.1103/PhysRevB.58.14102

M. P. Molepo and D. P. Joubert, Computational study of the structural phases of ZnO, Physical Review B, vol.84, issue.9, p.94110, 2011.
DOI : 10.1103/PhysRevB.84.094110

Y. Saeed, A. Shaukat, N. Ikram, and M. Tanveer, Structural and electronic properties of rock salt phase of ZnO under compression, Journal of Physics and Chemistry of Solids, vol.69, issue.7, pp.69-1676, 2008.
DOI : 10.1016/j.jpcs.2007.12.009

H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner et al., Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Physical Review B, vol.53, issue.17, pp.53-11425, 1996.
DOI : 10.1103/PhysRevB.53.11425

F. G. Kuang, X. Y. Kuang, S. Y. Kang, M. M. Zhong, A. J. Mao et al., A first principle study of pressure-induced effects on phase transitions, band structures and elasticity Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, 2014.

Z. L. Wang, ZnO nanowire and nanobelt platform for nanotechnology, Materials Science and Engineering: R: Reports, vol.64, issue.3-4, pp.33-71, 2009.
DOI : 10.1016/j.mser.2009.02.001

Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol.312, issue.5771, pp.312-242, 2006.
DOI : 10.1126/science.1124005

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths, Applied Physics Letters, vol.17, issue.18, pp.102-181905, 2013.
DOI : 10.1063/1.3310043

T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Electron transport in ZnO thin films, Applied Physics Letters, vol.87, issue.2, p.22101, 2005.
DOI : 10.1103/PhysRevB.65.121201

A. D. Bugallo, F. Donatini, C. Sartel, V. Sallet, and J. Pernot, Metallic core conduction in unintentionally doped ZnO nanowire, Applied Physics Express, vol.8, issue.2, p.25001, 2015.
DOI : 10.7567/APEX.8.025001

URL : https://hal.archives-ouvertes.fr/hal-01319871

P. Eyben, S. Denis, T. Clarysse, and W. Vandervorst, Progress towards a physical contact model for scanning spreading resistance microscopy, Materials Science and Engineering: B, vol.102, issue.1-3, pp.132-137, 2003.
DOI : 10.1016/S0921-5107(03)00019-9

R. Streater, Calibrated scanning spreading resistance microscopy profiling of carriers in III-V structures, Journal of Vacuum Science & Technology B, vol.19, issue.4, pp.1662-1670, 2001.

L. J. Brillson and Y. Lu, ZnO Schottky barriers and Ohmic contacts, Journal of Applied Physics, vol.156, issue.12, p.121301, 2011.
DOI : 10.1063/1.2012518

W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, New and unified model for Schottky barrier and III???V insulator interface states formation, Journal of Vacuum Science and Technology, vol.16, issue.5, pp.1422-1433, 1979.
DOI : 10.1116/1.570215

C. A. Mead, Ohmic Contacts to Semiconductors, pp.1-16, 1969.

L. J. Brillson and Y. Lu, ZnO Schottky barriers and Ohmic contacts, Journal of Applied Physics, vol.156, issue.12, p.121301, 2011.
DOI : 10.1063/1.2012518

Z. L. Wang, ZnO nanowire and nanobelt platform for nanotechnology, Materials Science and Engineering: R: Reports, vol.64, issue.3-4, pp.33-71, 2009.
DOI : 10.1016/j.mser.2009.02.001

Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol.312, issue.5771, pp.312-242, 2006.
DOI : 10.1126/science.1124005

M. S. Oh, D. K. Hwang, J. H. Lim, Y. S. Choi, and S. J. Park, Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation, Applied Physics Letters, vol.48, issue.4, pp.42109-42109, 2007.
DOI : 10.1016/j.jcrysgro.2004.03.069

H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura et al., Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate, Applied Physics Letters, vol.90, issue.12, pp.90-121906, 2007.
DOI : 10.1063/1.2346137

I. Hussain, M. Y. Soomro, N. Bano, O. Nur, and M. Willander, Interface trap characterization and electrical properties of Au-ZnO nanorod Schottky diodes by conductance and capacitance methods, Journal of Applied Physics, vol.112, issue.6, p.64506, 2012.
DOI : 10.1016/0038-1101(72)90056-1

P. Klason, O. Nur, and M. Willander, Electrical characteristics and stability of gold and palladium Schottky contacts on ZnO nanorods, Nanotechnology, vol.19, issue.47, pp.19-475202, 2008.
DOI : 10.1088/0957-4484/19/47/475202

E. Latu-romain, P. Gilet, N. Chevalier, D. Mariolle, F. Bertin et al., Surface-induced p-type conductivity in ZnO nanopillars investigated by scanning probe microscopy, Journal of Applied Physics, vol.107, issue.12, p.124307, 2010.
DOI : 10.1016/j.ssc.2008.11.016

URL : https://hal.archives-ouvertes.fr/hal-00740790

A. Krtschil, D. C. Look, Z. Q. Fang, A. Dadgar, A. Diez et al., Local p-type conductivity in n-GaN and n-ZnO layers due to inhomogeneous dopant incorporation, Physica B: Condensed Matter, vol.376, issue.377, 2006.
DOI : 10.1016/j.physb.2005.12.176

P. Blood and J. W. Orton, The electrical characterization of semiconductors: majority carriers and electron states Academic Pr, pp.315-322, 1992.

P. Blood and J. W. Orton, The electrical characterization of semiconductors: majority carriers and electron states Academic Pr, pp.295-308, 1992.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Nanowire ultraviolet, 2002.

A. Waag, On the difficulties in characterizing ZnO nanowires, Nanotechnology, vol.19, issue.36, p.365707, 2008.

H. E. Rudaa and A. Shik, Contact phenomena in nanowire arrays, Applied Physics Letters, vol.30, issue.6, p.1030, 2004.
DOI : 10.1103/PhysRevB.59.3250

A. Achoyan, S. Petrosyan, W. Craig, H. E. Ruda, and A. Shik, Electron screening in nanostructures, Journal of Applied Physics, vol.69, issue.10, p.104308, 2007.
DOI : 10.1017/CBO9780511526121

R. A. Oliver, Advances in AFM for the electrical characterization of semiconductors, Reports on Progress in Physics, vol.71, issue.7, p.76501, 2008.
DOI : 10.1088/0034-4885/71/7/076501

J. S. Mcmurray, J. Kim, C. C. Williams, and J. Slinkman, Direct comparison of two-dimensional dopant profiles by scanning capacitance microscopy with TSUPREM4 process simulation, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.1, pp.344-348, 1998.
DOI : 10.1116/1.589808

I. Visoly-fisher, S. R. Cohen, and D. Cahen, Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements, Applied Physics Letters, vol.82, issue.4, pp.556-558, 2003.
DOI : 10.1116/1.582472

S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li et al., Sb-doped p-ZnO???Ga-doped n-ZnO homojunction ultraviolet light emitting diodes, Applied Physics Letters, vol.92, issue.15, pp.92-152103, 2008.
DOI : 10.1063/1.2437122

L. J. Mandalapu, F. X. Xiu, Z. Yang, D. T. Zhao, and J. L. Liu, p-type behavior from Sb-doped ZnO heterojunction photodiodes, Applied Physics Letters, vol.88, issue.11, pp.88-112108, 2006.
DOI : 10.1063/1.328243

S. Chu, J. Zhao, Z. Zuo, J. Kong, L. Li et al., Enhanced output power using MgZnO, MgZnO double heterostructure in ZnO homojunction light emitting diode, 2011.
DOI : 10.1063/1.3598136

L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J. L. Liu, Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection, Applied Physics Letters, vol.88, issue.9, p.92103, 2006.
DOI : 10.1063/1.2146208

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, -Type Zinc Oxide, Physical Review Letters, vol.92, issue.15, pp.92-155504, 2004.
DOI : 10.1103/PhysRevLett.92.155504

A. Janotti and C. G. Van-de-walle, Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, vol.72, issue.12, pp.72-126501, 2009.
DOI : 10.1088/0034-4885/72/12/126501

H. Morkoç, Donor behavior of Sb in ZnO, Journal of Applied Physics, vol.112, issue.3, p.33706, 2012.

S. Y. Li, C. Y. Lee, T. Y. Tseng, and . Insa-lyon, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor???liquid???solid process, Journal of Crystal Growth, vol.247, issue.3-4, pp.357-362, 2003.
DOI : 10.1016/S0022-0248(02)01918-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.455.3073

H. Yuan and Y. Zhang, Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD, Journal of Crystal Growth, vol.263, issue.1-4, pp.119-124, 2004.
DOI : 10.1016/j.jcrysgro.2003.11.084

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core???shell and core???multishell nanowire heterostructures, Nature, vol.285, issue.6911, pp.420-57, 2002.
DOI : 10.1063/1.102280

W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures, Advanced Materials, vol.15, issue.6, pp.15-526, 2003.
DOI : 10.1002/adma.200390122

J. Y. Bae, J. Yoo, and G. C. Yi, Fabrication and photoluminescent characteristics of ZnO/Mg0, 2006.

C. Kim, W. I. Park, G. C. Yi, and M. Kim, Formation and photoluminescent properties of embedded ZnO quantum dots in ZnO???ZnMgO multiple-quantum-well-structured nanorods, Applied Physics Letters, vol.89, issue.11, pp.89-113106, 2006.
DOI : 10.1103/PhysRevB.73.165317

&. Liotta and S. F. , Carrier distribution in quantum nanostructures by scanning capacitance microscopy, Journal of applied physics, vol.97, issue.1, pp.14302-14302, 2005.

R. Mucciato, Scanning capacitance microscopy: Quantitative carrier profiling down to nanostructures, Journal of Vacuum Science & Technology B, vol.24, issue.1, pp.370-374, 2006.

O. Douheret, K. Maknys, and S. Anand, Scanning capacitance microscopy investigations of InGaAs/InP quantum wells, Thin Solid Films, vol.459, issue.1-2, pp.67-70, 2004.
DOI : 10.1016/j.tsf.2003.12.097

L. Wang, J. Laurent, J. M. Chauveau, V. Sallet, F. Jomard et al., Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy, Applied Physics Letters, vol.107, issue.19, 2015.
DOI : 10.1016/j.pmatsci.2013.03.002

URL : https://hal.archives-ouvertes.fr/hal-01489418

L. Wang, J. M. Chauveau, R. Brenier, V. Sallet, F. Jomard et al., Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy, Applied Physics Letters, vol.21, issue.13, p.132103, 2016.
DOI : 10.1063/1.2912827

. Brémond, Characterization of carrier concentration in ZnO nanowires by scanning capacitance microscopy, Phys. Status Solidi C, pp.1-5, 2016.

L. Wang, B. Gautier, A. Sabac, and G. Brémond, Investigation of tip-depletion-induced fail in scanning capacitance microscopy for the determination of carrier type, Ultramicroscopy, vol.174, 2016.
DOI : 10.1016/j.ultramic.2016.12.016

L. Wang, V. Sallet, C. Sartel, and G. Brémond, Cross-section imaging and p-type doping assessment of ZnO/ZnO:Sb core-shell nanowires by scanning capacitance microscopy and scanning spreading resistance microscopy, Applied Physics Letters, vol.109, issue.9, 2016.
DOI : 10.1103/PhysRevLett.92.155504

L. Wang, V. Sallet, and G. Brémond, SCM and SSRM investigation on ZnO/ZnMgO core-multishell coaxial heterostructure, Applied Physics Letters

L. Wang and G. Brémond, Caractérisation du dopage dans les nanofils de ZnO par microscopie à sonde locale Oral presentation, pp.29-31, 2014.

L. Wang, J. Laurent, A. Sabac, J. M. Chauveau, V. Sallet et al., Characterization of doping by Scanning Capacitance Microscopy and C(V) technique in ZnO nanowires for optoelectronic application Oral presentation, 17th International Conference on II-VI Compounds and Related Materials, 2015.

L. Wang, S. Blanc, M. Pouzet, A. Descamps, ?. Mandine et al., Electrical Assessment of doping in ZnO nanowires by Scanning Probe Microscopy, 2013.

I. Brémond, . Lyon, L. Tous-droits-réservés, J. Wang, D. Laurent et al., 17th forum of scanning probe microscopy, Montauban, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, Characterization of Doping in ZnO Nanowires for Optoelectronics Applications by Scanning Probe MicroscopyCaractérisation du dopage de nanofils de ZnO par SCM et par la méthode de capacité-tension (C-V) pour des applications optoélectroniques 17th forum of scanning probe microscopy, 2015.

L. Wang, J. Laurent, A. Descamps, J. M. Chauveau, V. Sallet et al., Characterization of Doping in ZnO Nanowires for Optoelectronics Applications by Scanning Probe Microscopy, Annual meeting of atomic force microscope (AFM) users, 2013.

G. Brémond, S. Guillemin, and L. Wang, ZnO nanowires for optoelectronics". ELyT lab Workshop, Zao To-o-gatta, Japan, 2013.

G. Brémond, L. Wang, and J. Laurent, Assessment of doping profiles in semiconductor nanowires by scanning probe microscopy, 5th International Conference on Nano Structures SElf-Assembly, 2014.

I. Lyon, INSA Lyon, tous droits réservés Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, 2016031.