M. Afonso, J. Bioucas-dias, M. Figueiredoafpa06-]-v, P. Arsigny, X. Fillard et al., An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. Image Processing Logeuclidean metrics for fast and simple calculus on diffusion tensors. Magnetic resonance in medicine, IEEE Transactions on, vol.20, issue.562, pp.681-695411, 2006.

S. [. Andersson and . Skare, A Model-Based Method for Retrospective Correction of Geometric Distortions in Diffusion-Weighted EPI, NeuroImage, vol.16, issue.1, pp.177-199, 2002.
DOI : 10.1006/nimg.2001.1039

J. [. Alexander, D. Tsuruda, and . Parker, Elimination of eddy current artifacts in diffusion-weighted echo-planar images: The use of bipolar gradients, Magnetic Resonance in Medicine, vol.34, issue.8, pp.1016-1021, 1997.
DOI : 10.1002/mrm.1910380623

[. Bihan and E. Breton, Imagerie de diffusion in-vivo par résonance magnétique nucléaire. Comptes-Rendus de l, Académie des Sciences, vol.93, issue.5, pp.27-34, 1985.

. Bbv-+-97-]-e, G. Bocchi, A. Bellotti, F. Vilella, L. Bacal et al., Jatene, and & others. Clinical outcome after left ventricular surgical remodeling in patients with idiopathic dilated cardiomyopathy referred for heart transplantation : shortterm results, Circulation, issue.9, pp.96-165, 1997.

]. J. Bcm-+-08, S. Berman, P. Chung, C. Mukherjee, E. Hess et al., Probabilistic streamline q-ball tractography using the residual bootstrap, Neuroimage, vol.39, issue.1, pp.215-222, 2008.

. Lyon, The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software (TOMS), vol.22, issue.4, pp.469-483, 1996.

]. J. Bes86 and . Besag, On the statistical analysis of dirty pictures, Journal of the Royal Statistical Society. Series B (Methodological), vol.48, issue.3, pp.259-302, 1986.

. Bha-+-94-]-p, J. Bovendeerd, T. Huyghe, D. Arts, R. Van-campen et al., Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics, Journal of biomechanics, vol.27, issue.7, pp.941-951, 1994.

. Bhm-+-08-]-g, J. Buckberg, A. Hoffman, S. Mahajan, C. Saleh et al., Cardiac mechanics revisited the relationship of cardiac architecture to ventricular function, Circulation, vol.118, issue.24, pp.2571-2587, 2008.

B. Maron, Hypertrophic Cardiomyopathy, JAMA, vol.287, issue.10, pp.1308-1320, 2002.
DOI : 10.1001/jama.287.10.1308

]. T. Bjj-+-07, H. Behrens, S. Berg-johansen, M. Jbabdi, M. Rushworth et al., Probabilistic diffusion tractography with multiple fibre orientations : What can we gain ?, Neuroimage, vol.34, issue.1, pp.144-155, 2007.

A. Brun, H. Knutsson, H. Park, M. Shenton, and C. Westin, Clustering Fiber Traces Using Normalized Cuts, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2004, pp.368-3757, 1946.
DOI : 10.1007/978-3-540-30135-6_45

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296487

J. [. Basser, D. L. Mattiello, and . Bihan, Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo, Journal of Magnetic Resonance, Series B, vol.103, issue.3, pp.247-254, 1994.
DOI : 10.1006/jmrb.1994.1037

URL : https://hal.archives-ouvertes.fr/hal-00349722

J. [. Basser, D. Mattiello, and . Lebihan, MR diffusion tensor spectroscopy and imaging, Biophysical Journal, vol.66, issue.1, p.259, 1994.
DOI : 10.1016/S0006-3495(94)80775-1

URL : https://hal.archives-ouvertes.fr/hal-00349721

]. P. Bpp-+-00, S. Basser, C. Pajevic, J. Pierpaoli, A. Duda et al., In vivo fiber tractography using DT-MRI data, Magnetic Resonance in Medicine, vol.44, issue.4, pp.625-632, 2000.

M. [. Bentley and . Shamos, Divide and conquer for linear expected time, Information Processing Letters, vol.7, issue.2, pp.87-91, 1978.
DOI : 10.1016/0020-0190(78)90051-0

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA039302

R. [. Le-bihan, C. Turner, J. Moonen, and . Pekar, Imaging of diffusion and microcirculation with gradient sensitiza, p.169

M. Insa-lyon, H. Jenkinson, R. Johansen-berg, S. Nunes, P. Clare et al., Characterization and propagation of uncertainty in diffusionweighted mr imaging Magnetic resonance in medicine Principles of nuclear magnetic resonance microscopy [Cat92] O. Catoni. Rough large deviation estimates for simulated annealing : application to exponential schedules. The Annals of Probability [Cat99] O. Catoni. Simulated annealing algorithms and Markov chains with rare transitions Tractometer : Online evaluation system for tractography Mapping the human connectome at multiple scales with diffusion spectrum MRI Correction for directiondependent distortions in diffusion tensor imaging using matched magnetic field maps Optimal output-sensitive convex hull algorithms in two and three dimensions Does diffusion kurtosis imaging lead to better neural tissue characterization ? a rodent brain maturation study, tous droits réservés Bibliographie tion : design, strategy, and significance Séminaire de probabilités XXXIIICLC + 99] T. Conturo, N. Lori, T. Cull, E. Akbudak, A. Snyder, J. Shimony, R. McKinstry, H. Burton, and M. Raichle. Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences, pp.7-281077, 1970.

B. Chazelle and J. Matou?ek, Derandomizing an output-sensitive convex hull algorithm in three dimensions, Computational Geometry, vol.5, issue.1, pp.27-32, 1995.
DOI : 10.1016/0925-7721(94)00018-Q

URL : http://doi.org/10.1016/0925-7721(94)00018-q

. Cmg-+-10-]-p, J. Coupé, E. Manjón, D. Gedamu, M. Arnold et al., Robust rician noise estimation for mr images, Medical Image Analysis, vol.14, issue.4, pp.483-493, 2010.

T. [. Chambolle and . Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.120-145, 2011.
DOI : 10.1007/s10851-010-0251-1

URL : https://hal.archives-ouvertes.fr/hal-00490826

C. [. Cointepas, D. L. Poupon, J. Bihan, and . Mangin, A Spin Glass Based Framework to Untangle Fiber Crossing in MR Diffusion Based Tracking, Medical Image Computing and Computer-Assisted Intervention?MICCAI, pp.475-482, 2002.
DOI : 10.1007/3-540-45786-0_59

J. W. Colucci, M. Ribeiro, R. Rocco, M. Quigg, J. Creager et al., Impaired chronotropic response to exercise in patients with congestive heart failure. Role of postsynaptic beta-adrenergic desensitization, Circulation, vol.80, issue.2, pp.314-323, 1989.
DOI : 10.1161/01.CIR.80.2.314

P. [. Clarkson and . Shor, Applications of random sampling in computational geometry, II, Discrete & Computational Geometry, vol.1, issue.5, pp.387-421, 1989.
DOI : 10.1007/BF02187740

A. [. Chen and . Song, Diffusion tensor imaging fiber tracking with local tissue property sensitivity: phantom and in vivo validation, Magnetic Resonance Imaging, vol.26, issue.1, pp.103-108, 2008.
DOI : 10.1016/j.mri.2007.05.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830069

]. J. Csr-+-05, K. Campbell, V. Siddiqi, A. Rymar, G. Sadikot et al., Flow-based fiber tracking with diffusion tensor and q-ball data : validation and comparison to principal diffusion direction techniques, NeuroImage, vol.27, issue.4, pp.725-736, 2005.

D. [. Chefd-'hotel, R. Tschumperlé, O. Deriche, and . Faugeras, Regularizing Flows for Constrained Matrix-Valued Images, Journal of Mathematical Imaging and Vision, vol.20, issue.1/2, pp.147-162, 2004.
DOI : 10.1023/B:JMIV.0000011324.14508.fb

]. P. Cur94 and . Curi, Sur la symétrie dans les phénomènes physiques, symétrie d'un champélectriquechampélectrique et d'un champ magnétique

M. Cerqueira, N. Weissman, V. Dilsizian, A. Jacobs, S. Kaul et al., Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart, Journal of Cardiovascular Magnetic Resonance, vol.4, issue.2, pp.539-542, 2002.
DOI : 10.1081/JCMR-120003946

[. Chang, L. Walker, and C. Pierpaoli, RESTORE: A method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts, Magnetic Resonance in Medicine, vol.17, issue.5, pp.1654-1663, 2012.
DOI : 10.1002/mrm.24173

Y. H. Cheng, J. Wang, O. Sheng, W. Sporns, V. Kronenberger et al., Optimization of seed density in DTI tractography for structural networks, Journal of Neuroscience Methods, vol.203, issue.1, pp.264-272, 2012.
DOI : 10.1016/j.jneumeth.2011.09.021

R. [. Descoteaux, T. R. Deriche, A. Knosche, and . Anwander, Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions, IEEE Transactions on Medical Imaging, vol.28, issue.2, pp.269-286, 2009.
DOI : 10.1109/TMI.2008.2004424

]. E. Dij59 and . Dijkstra, A note on two problems in connexion with graphs, Numerische mathematik, vol.1, issue.1, pp.269-271, 1959.

N. [. Dempster, D. Laird, and . Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the royal statistical society. Series B (methodological), pp.1-38, 1977.

]. B. Efr65 and . Efron, The convex hull of a random set of points, Biometrika, vol.52, issue.3-4, pp.331-343, 1965.

W. [. Ewing and . Rosenhain, The crystalline structure of metals. second paper, Proceedings of the Royal Society of London, vol.67, pp.435-441112, 1900.

. Fdg-+-11-]-p, M. Fillard, A. Descoteaux, S. Goh, B. Gouttard et al., Quantitative evaluation of 10 tractography algorithms on a realistic diffusion mr phantom, Neuroimage, vol.56, issue.1, pp.220-234, 2011.

G. [. Friman, C. Farnebäck, and . Westin, A Bayesian approach for stochastic white matter tractography, IEEE Transactions on Medical Imaging, vol.25, issue.8, pp.25965-978, 2006.
DOI : 10.1109/TMI.2006.877093

C. [. Fillard, J. Poupon, and . Mangin, A Novel Global Tractography Algorithm Based on an Adaptive Spin Glass Model, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2009, pp.927-934, 2009.
DOI : 10.1007/978-3-642-04268-3_114

URL : https://hal.archives-ouvertes.fr/inria-00502716

]. L. Fra01 and . Frank, Anisotropy in high angular resolution diffusionweighted mri, Magnetic Resonance in Medicine, vol.45, issue.6, pp.935-939, 2001.

M. [. Frindel, P. Robini, Y. Croisille, and . Zhu, Cardiac fibre trace clustering for the interpretation of the human heart architecture. Functional Imaging and Modeling of the Heart, pp.39-48, 2009.

M. [. Frindel, P. Robini, Y. Croisille, and . Zhu, A graph-based approach for automatic cardiac tractography, Magnetic Resonance in Medicine, vol.8, issue.4, pp.1215-1229, 2010.
DOI : 10.1002/mrm.22443

. Fsr-+-11-]-y, P. Feng, Y. Savadjiev, M. Rathi, Z. Quan et al., A swarm tracking approach for stochastic white matter tractography, IEEE International Symposium on Biomedical Imaging, pp.803-807, 2011.

H. [. Gossuin, P. Aline, L. Gillis, and . Quoc, Physics of magnetic resonance imaging : from spin to pixel, Journal of Physics D : Applied Physics, issue.21, p.43213001, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569611

D. [. Goergen and . Sosnovik, From Molecules to Myofibers: Multiscale Imaging of the Myocardium, Journal of Cardiovascular Translational Research, vol.13, issue.Pt 1, pp.493-503, 2011.
DOI : 10.1007/s12265-011-9284-0

W. [. Gao, L. Ye, and . Li, Three-dimension structure of ventricular myocardial fibers after myocardial infarction, Journal of Cardiothoracic Surgery, vol.24, issue.3, p.116, 2010.
DOI : 10.1016/S0167-5273(99)00182-5

]. E. Hah50 and . Hahn, Spin echoes, Physical Review, vol.80, issue.4, p.580, 1950.

]. B. Haj88, ]. Hajekhan99, and . Hanson, Cooling schedules for optimal annealing Analyse exploratoire de la déformation spatio-temporelle du myocardè a partir de l'imagerie par résonance magnétique de marquage tissulaire Is quantum mechanics necessary for understanding magnetic resonance ? Concepts in Magnetic Resonance Part A, Mathematics of Operations Research, vol.13, issue.325, pp.311-329329, 1988.

M. [. Helm, M. I. Beg, R. L. Miller, and . Winslow, Measuring and Mapping Cardiac Fiber and Laminar Architecture Using Diffusion Tensor MR Imaging, Annals of the New York Academy of Sciences, vol.60, issue.1, pp.296-307, 2005.
DOI : 10.1196/annals.1341.026

]. X. Hgz-+-10, L. Hu, T. Guo, G. Zhang, J. Li et al., Joint analysis of fiber shape and cortical folding patterns, Biomedical Imaging : From Nano to Macro IEEE International Symposium on, pp.1165-1168, 2010.

]. E. Hmm-+-98, A. Hsu, S. Muzikant, R. Matulevicius, C. Penland et al., Magnetic resonance myocardial fiberorientation mapping with direct histological correlation

N. [. Hart, B. Nilsson, and . Raphael, A Formal Basis for the Heuristic Determination of Minimum Cost Paths, IEEE Transactions on Systems Science and Cybernetics, vol.4, issue.2, pp.1627-1634100, 1968.
DOI : 10.1109/TSSC.1968.300136

F. [. Han and . Park, DTI Segmentation and Fiber Tracking Using Metrics on Multivariate Normal Distributions, Journal of Mathematical Imaging and Vision, vol.19, issue.10, pp.317-334, 2014.
DOI : 10.1007/s10851-013-0466-z

[. Hageman, . Urthaler, T. Isobe, and . James, Chronotropic and Dromotropic Effects of Histamine on the Canine Heart, Chest, vol.75, issue.5, pp.597-604, 1979.
DOI : 10.1378/chest.75.5.597

]. H. Ho, F. Wang, X. Papademetris, H. Blumberg, and L. Staib, Fasciculography : robust prior-free real-time normalized volumetric neural tract parcellation, Medical Imaging IEEE Transactions on, issue.2, pp.31217-230, 2012.

H. Huang, J. Zhang, P. Van-zijl, and S. Mori, Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach, Magnetic Resonance in Medicine, vol.36, issue.3, pp.559-565, 2004.
DOI : 10.1002/mrm.20147

E. Medina, L. Canales-rodriguez, P. Melie-garcia, E. Valdes-hernandez, Y. Martinez-montes et al., Characterizing brain anatomical connections using diffusion weighted MRI and graph theory, Neuroimage, issue.3, pp.36645-660, 2007.

]. R. Jar73 and . Jarvis, On the identification of the convex hull of a finite set of points in the plane, Information Processing Letters, vol.2, issue.1, pp.18-21, 1973.

J. [. Jensen and . Helpern, Quantifying non-gaussian water diffusion by means of pulsed-field-gradient mri, Proceedings of the 11th Annual Meeting of ISMRM, 2003.

J. J. Jensen, A. Helpern, H. Ramani, K. Lu, and . Kaczynski, Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging, Magnetic Resonance in Medicine, vol.126, issue.6, pp.1432-1440, 2005.
DOI : 10.1002/mrm.20508

A. B. Jeurissen, D. Leemans, J. Jones, J. Tournier, and . Sijbers, Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution, Human Brain Mapping, vol.29, issue.3, pp.461-479, 2011.
DOI : 10.1002/hbm.21032

[. Jouk, A. Mourad, V. Milisic, G. Michalowicz, A. Raoult et al., Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life???, European Journal of Cardio-Thoracic Surgery, vol.31, issue.5, pp.31915-921, 2007.
DOI : 10.1016/j.ejcts.2006.12.040

URL : https://hal.archives-ouvertes.fr/hal-00188892

]. D. Jon03 and . Jones, Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor mri, Magnetic Resonance in Medicine, vol.49, issue.1, pp.7-12, 2003.

]. D. Jon10 and . Jones, Diffusion MRI : theory, methods, and applications, 2010.

M. [. Jbabdi, J. Woolrich, T. Andersson, and . Behrens, A Bayesian framework for global tractography, NeuroImage, vol.37, issue.1, pp.116-129, 2007.
DOI : 10.1016/j.neuroimage.2007.04.039

]. D. Kbe-+-13, M. Kuhnt, J. Bauer, M. Egger, T. Richter et al., Fiber tractography based on diffusion tensor imaging compared with high-angularresolution diffusion imaging with compressed sensing : initial experience, Neurosurgery, issue.0 1, p.72165, 2013.

]. P. Kin06a and . Kingsley, Introduction to diffusion tensor imaging mathematics : Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes, Concepts in Magnetic Resonance Part A, pp.123-154, 2006.

]. P. Kin06b and . Kingsley, Introduction to diffusion tensor imaging mathematics : Part III. Tensor calculation, noise, simulations, and optimization, Concepts in Magnetic Resonance Part A, pp.155-179, 2006.

I. [. Kreher, V. Mader, . Kiselev, . A. Gibbs, M. Kak et al., Principles of Computerized Tomographic Imaging Multimodality imaging of myocardial injury and remodeling An error analysis of white matter tractography methods : synthetic diffusion tensor field simulations Bootstrap white matter tractography (boot-trac) Threedimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse Economic burden of cardiovascular diseases in the enlarged european union Constructing strongly convex hulls using exact or rounded arithmetic Diffusion tensor tractography of the arcuate fasciculus in patients with brain tumors : Comparison between deterministic and probabilistic models, Magnetic Resonance in Medicine. Delingette, and N. Ayache. Human atlas of the cardiac fiber architecture : Study on a healthy population. IEEE Transactions on Medical ImagingLRP + 12] L. Li, J. Rilling, T. Preuss, M. Glasser, F. Damen, and X. Hu. Quantitative assessment of a framework for creating anatomical brain networks via global tractography, pp.953-9631140, 1989.

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication

H. Li, M. Robini, F. Yang, I. Magnin, Y. Zhu et al., Cardiac fiber unfolding by semidefinite programming White matter tractography using diffusion tensor deflection Cardiac c-arm computed tomography using a 3d+ time roi reconstruction method with spatial and temporal regularization Medical physics Executive summary : Heart disease and stroke statistics?2015 update a report from the american heart association MRI denoising using non-local means Threedimensional tracking of axonal projections in the brain by magnetic resonance imaging Toward global tractography Right ventricular dysplasia : a report of 24 adult cases Parallel recombinative simulated annealing : a genetic algorithm, ) :021903, 2014. [MBG + 15]MGS11] I. Maximov, F. Grinberg, and N. Shah. Robust tensor estimation in diffusion tensor imaging, pp.582-592306, 1982.

. Mjt-+-14-]-c, M. Mekkaoui, A. Jackowski, W. Thiagalingam, S. Kostis et al., Correlation of dti tractography with electroanatomic mapping in normal and infarcted myocardium, Journal of Cardiovascular Magnetic Resonance, pp.16-68, 2014.

[. Mangin, C. Poupon, C. Clark, D. L. Bihan, and I. Bloch, Distortion correction and robust tensor estimation for MR diffusion imaging, Medical Image Analysis, vol.6, issue.3, pp.191-198, 2002.
DOI : 10.1016/S1361-8415(02)00079-8

URL : https://hal.archives-ouvertes.fr/hal-00349706

M. [. Malcolm, Y. Shenton, and . Rathi, Two-Tensor Tractography Using a Constrained Filter, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2009, pp.894-902, 2009.
DOI : 10.1007/978-3-642-04268-3_110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893231

. Mvz-+-15-]-i, F. Mirea, Y. Varray, L. Zhu, M. Fanton et al., Very highresolution imaging of post-mortem human cardiac tissue using x-ray phase contrast tomography, Functional Imaging and Modeling of the Heart, pp.172-179, 2015.

. Mwp-+-97-]-n, A. Makris, G. Worth, J. Papadimitriou, V. Stakes et al., Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging, Annals of neurology, issue.6, pp.42951-962, 1997.

]. F. Net14 and . Netter, Atlas of human anatomy, 2014.

M. D. Otsuji, E. Handschumacher, L. Schwammenthal, J. Jiang, J. L. Song et al., Insights from threedimensional echocardiography into the mechanism of functional mitral regurgitation : Direct in vivo demonstration of altered leaflet tethering geometry, Circulation, issue.6, pp.961999-2008, 1997.

[. Donnell, S. Haker, and C. Westin, New approaches to estimation of white matter connectivity in diffusion tensor MRI : Elliptic PDEs and geodesics in a tensor-warped 178

. Orc-+-13-]-m, M. Ozon, P. Robini, C. Croisille, Y. Frindel et al., Toward temporal fiber, Computing in Cardiology Conference (CinC), 2013, pp.567-570, 2013.

[. Donnell, W. Wells, A. Golby, and C. Westin, Unbiased Groupwise Registration of White Matter Tractography, Proc. 15th Int. Conf. Medical Image Computing and Computer-Assisted Intervention, pp.123-130
DOI : 10.1007/978-3-642-33454-2_16

D. [. Parker and . Alexander, Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information, Information Processing in Medical Imaging, pp.684-695, 2003.
DOI : 10.1007/978-3-540-45087-0_57

D. [. Parker and . Alexander, Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.40, issue.4, pp.893-902, 1457.
DOI : 10.1002/mrm.10268

]. C. Pbo96, P. Pierpaoli, and . Basser, Toward a quantitative assessment of diffusion anisotropy, Magnetic resonance in Medicine, vol.36, issue.6, pp.893-906, 1996.

. Pcf-+-00-]-c, C. Poupon, V. Clark, J. Frouin, I. Regisj et al., Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles, Neuroimage, vol.12, issue.2, pp.184-195, 2000.

D. [. Poveda, A. Gil, E. Andaluz, and . Marti, Multiscale tractography for representing heart muscular architecture, Proc. MICCAI 2011 Workshop on Computational Diffusion MRI, pp.136-144, 2011.

D. [. Poveda, T. Gil, E. Gurgui, and . Marti, Multi-resolution myocardial architecture study, Spanish Computer Graphics Conference, 2012.

. Pgm-+-13-]-f, D. Poveda, E. Gil, A. Martí, M. Andaluz et al., Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography, Revista Española de Cardiología, issue.10, pp.66782-790, 2013.

S. [. Preparata and . Hong, Convex hulls of finite sets of points in two and three dimensions, Communications of the ACM, vol.20, issue.2, pp.87-93, 1977.
DOI : 10.1145/359423.359430

]. T. Pie13 and . Pieciak, 3D bilateral filtering of cardiac DT-MRI data, Computing in Cardiology (CinC), pp.579-582, 2013.

. Pmc-+-01-]-c, J. Poupon, C. Mangin, V. Clark, J. Frouin et al., Towards inference of human brain connectivity from mr diffusion tensor data, Medical Image Analysis, vol.5, issue.1, pp.1-15, 2001.

M. Perrin, C. Poupon, Y. Cointepas, B. Rieul, N. Golestani et al., Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories, Information Processing in Medical Imaging, pp.52-63, 2005.
DOI : 10.1007/11505730_5

URL : https://hal.archives-ouvertes.fr/hal-00349651

. Ppp-+-15-]-c, S. Presseau, C. Pajevic, J. Pierpaoli, A. Duda et al., A new compression format for fiber tracking datasets, NeuroImage, vol.109, pp.73-83, 2015.

]. I. Rab37 and . Rabi, Space quantization in a gyrating magnetic field, Physical Review, vol.51, issue.8, p.652, 1937.

O. [. Reese, R. Heid, J. Weisskoff, and . Wedeen, Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo, Magnetic Resonance in Medicine, vol.111, issue.1, pp.177-182, 2003.
DOI : 10.1002/mrm.10308

I. [. Robini and . Magnin, Piecewise Constant Reconstruction Using a Stochastic Continuation Approach, 2006 IEEE International Symposium on Signal Processing and Information Technology, pp.874-878, 2006.
DOI : 10.1109/ISSPIT.2006.270921

I. [. Robini and . Magnin, Optimization by Stochastic Continuation, SIAM Journal on Imaging Sciences, vol.3, issue.4, pp.1096-1121, 2010.
DOI : 10.1137/090756181

I. M. Reisert, C. Mader, M. Anastasopoulos, S. Weigel, V. Schnell et al., Global fiber reconstruction becomes practical, NeuroImage, vol.54, issue.2, pp.955-962, 2011.
DOI : 10.1016/j.neuroimage.2010.09.016

I. M. Reisert, C. Mader, M. Anastopoulos, S. Weigel, V. Scnell et al., Global fiber reconstruction becomes practical, NeuroImage, vol.54, issue.2, pp.955-962, 2011.
DOI : 10.1016/j.neuroimage.2010.09.016

I. [. Reisert, V. Mader, and . Kiselev, Global reconstruction of neuronal fibres, Proc. MICCAI Diffusion Modelling Workshop, 2009.

]. M. Rob12 and . Robini, Theoretically grounded acceleration techniques for simulated annealing Handbook of Optimization, From Classical to Modern Approach, Intelligent Systems Reference Library, vol.38, pp.311-336, 2012.

]. R. Roc76 and . Rockafellar, Monotone operators and the proximal point algorithm, SIAM journal on control and optimization, vol.14, issue.5, pp.877-898, 1976.

]. N. Rol13 and . Rollins, Diffusion imaging of the congenitally thickened corpus callosum, American Journal of Neuroradiology, vol.34, issue.3, pp.660-665, 2013.

P. [. Robini and . Reissman, From simulated annealing to stochastic continuation: a new trend in combinatorial optimization, Journal of Global Optimization, vol.104, issue.3, pp.185-215, 2013.
DOI : 10.1007/s10898-012-9860-0

URL : https://hal.archives-ouvertes.fr/hal-00850581

T. [. Robini, I. Rastello, and . Magnin, Simulated annealing, acceleration techniques, and image restoration, IEEE Transactions on Image Processing, vol.8, issue.10, pp.1374-1387, 1999.
DOI : 10.1109/83.791963

[. Ram, T. Sreenivas, K. Ganapathy, and . Subramaniam, Parallel Simulated Annealing Algorithms, Journal of Parallel and Distributed Computing, vol.37, issue.2, pp.207-212, 1996.
DOI : 10.1006/jpdc.1996.0121

G. Strijkers, A. Bouts, W. Blankesteijn, T. Peeters, A. Vilanova et al., Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse, NMR in Biomedicine, vol.23, issue.1, pp.182-190, 2009.
DOI : 10.1002/nbm.1299

]. S. Sbm-+-10, L. Sotiropoulos, P. Bai, C. Morgan, C. Constantinescu et al., Brain tractography using q-ball imaging and graph theory : Improved connectivities through fibre crossings via a model-based approach, NeuroImage, issue.3, pp.492444-2456, 2010.

A. [. Sijbers and . Dekker, Maximum likelihood estimation of signal amplitude and noise variance from MR data, Magnetic Resonance in Medicine, vol.22, issue.3, pp.586-594, 2004.
DOI : 10.1002/mrm.10728

]. R. Sei90 and . Seidel, Linear programming and convex hulls made easy, Proceedings of the sixth annual symposium on Computational geometry, pp.211-215, 1990.

]. R. Sha88 and . Shabetai, Pathophysiology and differential diagnosis of restrictive cardiomyopathy, Cardiovascular clinics, vol.19, issue.1, p.123, 1988.

A. [. Scollan, R. Holmes, J. Winslow, and . Forder, Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging, American Journal of Physiology ? Heart and Circulatory Physiology, vol.275, issue.6, pp.2308-2318, 1998.

]. B. Sil71 and . Silliman, Principles of Physics, Or Natural Philosophy, 1871.

]. N. Sll-+-11, Y. Shu, K. Liu, Y. Li, J. Duan et al., Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis, Cerebral Cortex, vol.21, issue.11, pp.2565-2577, 2011.

J. [. Salesin, L. Stolfi, and . Guibas, Epsilon geometry: building robust algorithms from imprecise computations, Proceedings of the fifth annual symposium on Computational geometry , SCG '89, pp.208-217, 1989.
DOI : 10.1145/73833.73857

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. D. Ssp-+-69, H. Streeter, D. Spotnitz, J. Patel, E. Ross et al., Fiber orientation in the canine left ventricle during diastole and systole, Circulation research, vol.24, issue.3, pp.339-347, 1969.

J. [. Stejskal and . Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time???Dependent Field Gradient, The Journal of Chemical Physics, vol.42, issue.1, p.288, 1965.
DOI : 10.1063/1.1730651

]. D. Str79 and . Streeter, Gross morphology and fiber geometry of the heart. Handbook of physiology, pp.61-112, 1979.

]. K. Sug94 and . Sugihara, Robust gift wrapping for the three-dimensional convex hull, Journal of Computer and System Sciences, vol.49, issue.2, pp.391-407, 1994.

]. D. Swd-+-09a, R. Sosnovik, G. Wang, T. Dai, J. Reese et al., Diffusion mr tractography of the heart, Journal of Cardiovascular Magnetic Resonance, vol.11, issue.1, pp.1-15, 2009.

]. D. Swd-+-09b, R. Sosnovik, G. Wang, T. Dai, E. Wang et al., Diffusion spectrum mri tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium, Circulation : Cardiovascular Imaging, vol.2, issue.3, pp.206-212, 2009.

J. [. Tuch, J. Belliveau, and . Wedeen, A path integral approach to white matter tractography, Proceedings of the 8th Annual Meeting of ISMRM, p.791, 2000.

J. Tournier, F. Calamante, and A. Connelly, Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution, NeuroImage, vol.35, issue.4, pp.1459-1472, 2007.
DOI : 10.1016/j.neuroimage.2007.02.016

[. Tournier, F. Calamante, and A. Connelly, MRtrix: Diffusion tractography in crossing fiber regions, International Journal of Imaging Systems and Technology, vol.56, issue.1, pp.53-66, 2012.
DOI : 10.1002/ima.22005

[. Tournier, F. Calamante, D. Gadian, and A. Connelly, Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution, NeuroImage, vol.23, issue.3, pp.1176-1185, 2004.
DOI : 10.1016/j.neuroimage.2004.07.037

]. E. Tdr-+-11, G. Takahashi, G. Dai, R. Rosen, K. Wang et al., Developing neocortex organization and connectivity in cats revealed by direct correlation of diffusion tractography and histology, Cerebral Cortex, vol.21, issue.1, pp.200-211, 2011.

]. H. Tor56 and . Torrey, Bloch equations with diffusion terms, Physical Review, vol.104, issue.3, p.563, 1956.

]. A. Tro96 and . Trouvé, Cycle decompositions and simulated annealing, SIAM Journal on Control and Optimization, vol.34, issue.3, pp.966-986, 1996.

]. D. Trw-+-02, T. Tuch, M. Reese, N. Wiegell, J. Makris et al., High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity, Magnetic Resonance in Medicine, vol.48, issue.4, pp.577-582, 2002.

T. [. Tuch, M. R. Reese, J. Wiegell, and . Wedeen, Diffusion MRI of Complex Neural Architecture, Neuron, vol.40, issue.5, pp.885-895, 2003.
DOI : 10.1016/S0896-6273(03)00758-X

]. E. Tsf-+-13, J. Takahashi, R. Song, P. Folkerth, J. Grant et al., Detection of postmortem human cerebellar cortex and white matter pathways using high angular resolution diffusion tractography : a feasibility study, Neuroimage, vol.68, pp.105-111, 2013.

. Tss-+-10-]-n, M. Toussaint, C. Sermesant, S. Stoeck, P. Kozerke et al., In vivo human 3D cardiac fibre architecture : reconstruction using curvilinear interpolation of diffusion 183

. Tss-+-13-]-n, C. Toussaint, M. Stoeck, T. Sermesant, S. Schaeffter et al., In Vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing, Medical Image Analysis, issue.8, pp.171243-1255, 2013.

]. D. Tuc02 and . Tuch, Diffusion MRI of complex tissue structure, 2002.

]. D. Tuc04 and . Tuch, Q-ball imaging, Magnetic Resonance in Medicine, vol.52, issue.6, pp.1358-1372, 2004.

. Vwf-+-13-]-f, L. Varray, L. Wang, Y. Fanton, I. Zhu et al., High resolution extraction of local human cardiac fibre orientations, Proc. 7th Int. Conf. Functional Imaging and Modeling of the Heart, pp.150-157, 2013.

S. Wakana, A. Caprihan, M. Panzenboeck, J. Fallon, M. Perry et al., Reproducibility of quantitative tractography methods applied to cerebral white matter, NeuroImage, vol.36, issue.3, pp.36630-644, 2007.
DOI : 10.1016/j.neuroimage.2007.02.049

]. H. Wei13 and . Wei, In vivo diffusion tensor imaging (DTI) for the human heart under free-breathing conditions, 2013.

]. J. Wht-+-05, P. Wedeen, W. Hagmann, T. Tseng, R. Reese et al., Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, Magnetic Resonance in Medicine, vol.54, issue.6, pp.1377-1386, 2005.

F. Frank-weidemann, . Jamal, R. George, P. Sutherland, M. Claus et al., Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.2, p.184
DOI : 10.1152/ajpheart.00025.2002

G. [. Weinstein, E. Kindlmann, and . Lundberg, Tensorlines: advection-diffusion based propagation through diffusion tensor fields, Proceedings Visualization '99 (Cat. No.99CB37067), pp.249-253, 1999.
DOI : 10.1109/VISUAL.1999.809894

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Wang, H. Lam, D. Ennis, A. Young, and M. Nash, Passive ventricular mechanics modelling using mri of structure and function. Medical Image Computing and Computer-Assisted Intervention?MICCAI, pp.814-821, 2008.

H. [. Wiegell, J. Larsson, and . Wedeen, Fiber Crossing in Human Brain Depicted with Diffusion Tensor MR Imaging, Radiology, vol.217, issue.3, pp.897-903, 2000.
DOI : 10.1148/radiology.217.3.r00nv43897

S. Westin, H. Peled, R. Gudbjartsson, and F. Kikinis, Jolesz , and & others. Geometrical diffusion measures for mri from tensor basis analysis, Proceedings of ISMRM, p.1742, 1997.

]. J. Wrt-+-00, T. Wedeen, D. Reese, M. Tuch, J. Weigel et al., Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri, Proceedings of the 8th Annual Meeting of ISMRM, p.82, 2000.

M. Tseng, C. Su, K. Liu, J. Chiou, T. Wedeen et al., Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction correlation with viability and wall motion, Circulation, issue.10, pp.1141036-1045, 2006.

]. J. Wws-+-08, R. Wedeen, J. Wang, T. Schmahmann, W. Benner et al., Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers, Neuroimage, issue.4, pp.411267-1277, 2008.

]. Y. Wzl-+-13, C. Wu, W. Zou, W. Liu, W. Liao et al., Effect of b-value in revealing postinfarct myocardial microstructural remodeling using mr diffusion tensor imaging, Magnetic resonance imaging, issue.6, pp.31847-856, 2013.

L. Yuan, P. Guo, X. Lv, D. Hu, J. Zhang et al., Assessing graph models for description of brain networks, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.827-831, 2011.
DOI : 10.1109/ISBI.2011.5872532

]. Yao, D. Jaroslaw, . Kasprzak, F. Youssef, R. Nosir et al., Appropriate 3-Dimensional Echocardiography Data Acquisition Interval for Left Ventricular Volume Quantification: Implications for Clinical Application, Journal of the American Society of Echocardiography, vol.12, issue.12, pp.121053-1057, 1999.
DOI : 10.1016/S0894-7317(99)70101-X

]. F. Yang, Y. Zhu, J. Luo, M. Robini, J. Liu et al., A Comparative Study of Different Level Interpolations for Improving Spatial Resolution in Diffusion Tensor Imaging, IEEE Journal of Biomedical and Health Informatics, vol.18, issue.4, pp.1317-1327, 2014.
DOI : 10.1109/JBHI.2014.2306937

URL : https://hal.archives-ouvertes.fr/hal-00976936

]. A. Zal08 and . Zalesky, Dt-mri fiber tracking : a shortest paths approach, Medical Imaging IEEE Transactions on, vol.27, issue.10, pp.1458-1471, 2008.

]. T. Zhang, H. Chen, L. Guo, K. Li, L. Li et al., Characterization of U-shape streamline fibers: Methods and applications, Medical Image Analysis, vol.18, issue.5, pp.795-807, 2014.
DOI : 10.1016/j.media.2014.04.005

A. Zhang, S. Olivi, P. Hertig, S. Van-zijl, and . Mori, Automated fiber tracking of human brain white matter using diffusion tensor imaging, NeuroImage, vol.42, issue.2, pp.771-777, 2008.
DOI : 10.1016/j.neuroimage.2008.04.241

. Prénoms and T. Matthew, Tractographie cardiaque Optimale par IRM du Tenseur de Diffusion NATURE : Doctorat Numéro d'ordre, pp.2016-2036

. Dans-ce-contexte, le sujet se focalise sur la proposition et la caractérisation d'une méthode de tractographie cardiaque basée sur une représentation des mesures de diffusion : le tenseur de diffusion. Les raisons ayant motivé une nouvelle formulation sont multiples. Les méthodes existantes dédiées aux données cardiaques sont pour la plupart locales comme les algorithmes de « streamline » (ligne de champ) et sujettes à de nombreuses imperfections, en particulier, elles ne sont pas robustes par rapport au bruit. Un autre problème de ce type d'approches basé sur la résolution d'équations différentielles est leur dépendance quant à l'initialisation, ce dont notre méthode s'affranchit

P. Directeur-de-thèse-rousseau, Y. Jouk, I. Usson, and . Lyon, Marc Robini Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, Isabelle Magnin, Yuemin Zhu, 2016020.