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Chapter 1

Introduction

The only thing that will redeem
mankind is cooperation.

Bertrand Russell

1.1 Background and Motivation

In recent times, our computing and sensing capabilities have grown manyfold
thanks to accelerated innovation rhythm worldwide. This has led to a prolif-
eration of digital devices. In addition, most devices are increasingly getting
connected and are capable of receiving, and in some cases sending informa-
tion. While this connectivity is currently exploited mostly for providing added
functions to devices, various new opportunities exist to exploit this new-found
ubiquity of information generated for helping devices coordinate better amongst
themselves for certain common objectives or goals. A few examples of such
common objectives, include, but are not limited to: coordination amongst self
driving cars, coordination of drones to perform a common task, coordination
between shops for logistics etc. These payoffs thus depend on the decision of
every individual coordinating agent.

Usually, the decisions need to be coordinated taking into account certain
externalities which are random. If this were not the case, there would be no
information available w.r.t. which the agents would need to coordinate. Also
their strategies would be stationary based solely on the estimated statistics of
the externalities. Due to this randomness in the nature state and its effect on
the payoff, it is more interesting to evaluate schemes which maximize expected
payoff w.r.t. the nature state. Thus the objective of the optimization problem
is that of finding coordination schemes for maximizing expected payoffs. While,
in general, the realizations of this nature state might be correlated, we shall con-
sider the case where they are independent and identically distributed (iid). The
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CHAPTER 1. INTRODUCTION

performance achieved for the i.i.d. case can only be bettered if there actually
were correlations which were taken into account.

While centralized solutions to optimization problems are attractive due to
better promised performances, they are highly impractical since functional opti-
mization often suffers with prohibitive complexity. Its impracticality also stems
from the extensive backhaul required to relay the relevant information upto the
central decision-making entity and then relaying back the decision chosen to
the agents. Again, this only delays the time required to make the decision. In
rapidly changing environments, this time delay could render the whole exercise
futile. Moreover, such solutions are not robust to noise and vulnerable to total
network failures due to propagation of errors.

A more practical approach is to consider decentralized decision-making, with
the understanding that the agents co-operate amongst themselves (with or with-
out explicitly communicating) and making informed decisions. The co-operation
is necessary as otherwise the solutions might suffer from the problem of operat-
ing at Nash equilibria which are generally not socially optimal [4]. Eventhough
nash equilibria result from certain desirable assumptions about decisions taken
in a non-cooperative scheme; one does not need a Karl Marx to realize that
better performance could be achieved through co-operation at the expense of
certain agents.

Nature has provided a good example of what decentralized cooperation
schemes can achieve in the form of ants. Despite very limited computation and
sensing capabilities, their resourcefulness in sourcing food and creating complex
structures is well documented. Indeed, many mathematically similar problems
in traffic control, routing protocols have been explored using algorithms inspired
by ants.

For illustrative purposes, consider the mechanism ants use in sourcing food.
Ants manage to find the shortest paths from food source to colony without
the ability to either sense the food at a distance or explicitly communicate its
location to other ants. Ants lay a pheromone trail behind when they walk,
which helps them retrace their path back to the colony once food is found. The
pheromones however serve another purpose, that of communication with other
ants. When an ant, after having found food, returns to the colony, it reinforces
the path taken with more pheromones. Ants simply follow trails with stronger
pheromone scent and over time this algorithm converges to solutions close to
optimal. Notice however that the communication in this case is not explicit. The
communication happens implicitly between ants by an ant stumbling across the
pheromone trail of other ants. Also, each ant acts only on locally available
information: the strength of the pheromone scent. Shorter paths are chosen in
a natural manner as the frequency of an ant doing to-and-fro passing through
a point in a shorter path is higher.

The decentralization of decision-making leads to the information available
to different decision makers being different. This difference could manifest itself
due to a plethora of reasons:

• Availability of only local information - In general, devices are only con-
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CHAPTER 1. INTRODUCTION

nected to other devices and sensors in a local neighbourhood. Even if they
are connected further, rapidly changing nature state could force agents to
adapt faster, and thus with more localized information.

• Hierarchy of information - Some connected devices might act as nodes
or aggregators for a small group, having more information. Some nodes
might even have information about future realizations or forecasts of the
nature state with respect to which the devices are coordinating.

• Noisy channels - Even when the information transmitted to different de-
vices is the same, each device will observe a noisy version of the signal
which will be different for each device.

In general, these three parameters define the information structure of a given
coordination problem. Indeed, the performance that can be achieved by coor-
dination is constrained by what information each agent can use to make his
decisions and coordinate. Thus, the payoffs that are achievable are charac-
terized by the information structure. Such optimization problems are known
as team-decision problems and have been studied extensively since Marschak
published his seminal work [5]. Together with [6], it formed the basis for team-
decision theory. Since then, team-decision problems have been considered with
various information structures, and is still an active field of research.

While the ants have devised a decentralized scheme, it might or might not
make optimal use of the information available to each ant. The optimality of the
scheme depends on information theoretical limits of implicit communication i.e.
communication achieved while acting towards an objective. We use certain infor-
mation theoretical results proved recently [7] [8], [9] which provide precisely the
performance limits of coordination problems for certain information structures.
Eventhough these results are fairly new and make some assumptions about the
information structure, they provide good frameworks for tackling certain inter-
esting applications in various domains such as Telecommunications, Automatic
Control, and Smart Grids to name a few.

We divide this thesis into two parts based on two different information struc-
tures considered for applications. In the first part, we consider a non-causal
information structure with a hierarchy of information where one agent knows
the future realizations of the nature state in a non causal manner. Other agents
only observe the actions chosen by the informed agent and make their decisions
accordingly. Second part explores a causal information structure, i.e. all agents
can only observe past or present, but not the future. Two scenarios are consid-
ered for the causal case; where agents observe an image of the nature state, or
where agents also observe the actions of other agents in a causal manner. The
former is a special case of the latter.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Truck and car co-ordinating to stay on course

1.2 Coordination problems with a non-causal in-

formation structure

Inspired from [7], we considered 2-Agent coordination problems with non causal
information structure. We assume that one agent has complete and noncausal
knowledge of the sequence of i.i.d. realizations of the nature state X0 for the
entire time period of optimization. The informed agent can exchange his knowl-
edge with the other agent only through his actions. While the non causal as-
sumption might seem unrealistic, one can find many scenarios where it holds
true.

Consider the following example of a truck and a car coordinating with the
goal of safe navigation over a non-straight road. In this example, the truck,
having superior visual information, needs to communicate information about
the path to the car. This can be achieved through many ways. A simple
solution is to have a communication channel between the two for this purpose.
However, imagine that no such channel exists, and the car is reliant solely on
the movements of the truck to predict the path ahead. The dual role of the
movements of truck, to stay on course as well as signal the path ahead to the car,
is the defining characteristic of implicit communication. For further discussion
and interesting examples of implicit communication, the author refers to the
introduction of [10] .

We consider this example for many instructive reasons. Firstly, it is a prac-
tical scenario being tested by Volvo for creating road trains as a solution for
self-driving traffic [11] . Secondly, it naturally has the non-causal information
structure considered in [12] [7] as the truck can see the path ahead whereas the
car behind has no direct visuals of the path ahead and relies solely on signalling
by the truck for path prediction. Thirdly, this example is closely related to the
famous Witsenhausen counterexample in control theory. We shall explore the
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last point in detail later.
Indeed, similar information structure has been treated before. Notably,The

case of perfect observation by agents is treated in [12] while the generalization to
noisy observations by agents is conducted in [7]. To be precise, both references
assume that agent 2 has a strictly causal knowledge of the state but it can be
shown that not having any knowledge about the states realizations at all induces
no limiting performance loss [13]. Reference [7] also states an optimization
problem which essentially amounts to maximizing the long term payoff function
under some constraints but this optimization problem is not analyzed. One of
the contributions of our work is precisely to study this general problem in detail
by applying it to solve a real optimization problem in resource allocation.

We distinguish two cases for the non-causal information structures: 1) Dis-
crete Case - where all the intervening variables, system state X0, and the actions
chosen by the users Xi, i ∈ {1, 2} are from a discrete alphabet, and 2) Contin-
uous case - where those alphabets are continuous.

1.2.1 Discrete Case: Solving the optimization problem

In [7] , they characterize the performance limit of coordination problems with
the aforementioned non causal information structure. In particular, they gen-
eralize the result found in [12] which only treated the case where the second
agent has a perfect observation of the first agent’s actions. However, both the
references do not solve the optimization problem found with information theo-
retic constraints. We consider the optimization problem for the case of perfect
observations by agent 2, and show certain properties of the solutions to this
optimization problem under some reasonable assumptions about the payoffs.

The results thus obtained are applied to the problem of distributed power
allocation in a two-transmitter M-band interference channel, M ≥ 1, in which
the transmitters (who are the agents) want to maximize the sum-rate under
the single-user decoding assumption at the two receivers. In such a setting, the
nature state is given by the global channel state. The informed transmitter
uses a sequence of power vectors as a code which conveys information about the
channel to the other transmitter.

We consider the discrete case, i.e. discrete power levels, and channel coeffi-
cients. While majority of the literature on power allocation optimization over
multi-band channels (starting with the pioneering work[14]) consider In contrast
with the vast majority of related works on distributed power allocation over ,
the set of power allocation vectors at a transmitter is assumed to be discrete and
finite (namely, |Xi| <∞) instead of being continuous. This choice is motivated
by many applications (see e.g., [15][16][17][18]).

1.2.2 Continuous Case: Generalizing the Information Con-

straint

However, the variables could in general take values in a continuous alphabet.
To this effect, we generalized the information theoretic bounds in [7] to the case
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when the alphabets are continuous. This generalization is not so straightforward
as one needs to take care in redefining the information theoretical notions of
mutual information. We consider 2 scenarios for the continuous case: the second
agent causally observing the actions of the informed agent, or it observes the
realization of nature state too in a causal manner, in addition to the actions
of the informed agent. We provide the Information Constraints for both the
scenarios for the continuous case. We also treat the special case of all the
variables being distributed normally for both the scenarios considered. Also, we
treat the case of perfect observation and explicit the information constraint if
the variables follow log-normal distribution and burr’s distribution.

Another contribution for the continuous case is to consider the Witsenhausen
cost function [19] as a common cost function to be minimized by the 2−agent
team under the two mentioned scenarios in terms of information structures;
this establishes for the first time a link between [12][20][21] and [19]. Indeed,
although the Witsenhausen problem can be seen as a one-shot coordination
problem, whereas we consider a long-term coordination problem here, the idea of
joint control-communication strategies is present in both formulations. As it will
be seen, characterizing the feasible performance of the long-term coordination
problems amounts to determining a certain information constraint. Although
information constraints normally appear when (large) sequences intervene, it
has been noted that one-shot problems closely related to the Witsenhausen
problem have been solved by introducing an information constraint; this is the
case, for instance, for the Gaussian Test Channel (GTC) [22].

We treat the original Witsenhausen counterexample using the theory devel-
oped in part II as the information structure therein is more adapted to it.

1.3 Coordination problems with a causal infor-

mation structure

The non-causal information structure however is not applicable to scenarios
where only causal observations might be available. In general however, its rea-
sonable to assume that future realizations of the nature state are not known
to any agent, even if their statistics are known. In [8], they characterize the
achievable payoffs for coordination with such causal information structure. In
particular, they show that the achievable payoffs are characterized by condi-
tional probability distributions for all agents (representing the decisions made).
Each conditional probability distribution is shown to be independent of each
other. This independence comes directly due to the information structure as
all agents are supposed to have an image of the nature state through indepen-
dent channels. In other words, they do not observe each others’ actions. Note
that it is this difference in information structure which makes the information
constraints found in the non-causal case irrelevant.

We use the independence of decisions to construct a distributed algorithm
based on sequential global best response dynamics (BRD) which aims at op-
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timizing the payoff for the given structure. While we provide no proof for
optimality, we show via numerous applications that it indeed provides a good
framework for tackling practical coordination problems in various settings.

The benefits of our framework, when compared to existing literature on
decentralized decision making for the aforementioned applications, essentially
boils down to a simple reason; cooperation. Most of the current decentralized
solutions evaluate non-co-operative games, and provide strategies to attain Nash
Equilibria. While this approach is robust, by virtue of its assumed selfishness
of the agents while making their decisions, it clearly does not aim to provide
optimal performances assuming cooperation.

The strategies found using our decentralized algorithm has the following
salient features which make it more efficient, as well as robust and imple-
mentable.

• Cooperative strategies - Since we solve the optimization problem with the
goal of optimizing common objective, typically sum-utilities of the indi-
vidual agents, we easily beat non-cooperative schemes. Moreover, since we
use information bound optimal payoffs, we achieve strategies which achieve
close to optimal performance for the considered information structure.

• Decentralized decision making - Each agent makes its decision based on
local information available to him taking into account the global network
statistics. Thus the decentralization of decision is based on decentralized
information structure. In particular, we can evaluate the payoff corre-
sponding to different partial information of the nature state available to
the coordinating agents.

• Robustness to noise - Indeed, in practical cases the feedback has a noise
associated with it. In the algorithms proposed, we take into account the
noise statistics for generating the best responses, creating robust functions
w.r.t. feedback noise.

• Offline optimization - Agents can find their decision functions individually
provided they have the global network statistics, which are easily received
through network backhauls. They use an iterative method to find func-
tions maximising expected utility given the probability distributions of
network parameters. Thus they can infer the best response of each agent
sequentially and converge to its optimal best response.

We identified and modelled coordination problems in two major technological
challenges: 1) Power optimization schemes proposed could help improve tech-
nological standards for 5G technologies by making them more power efficient
and reducing interference caused by independent terminals. 2) Communication
within the electricity distribution network can be used, along with neighbour-
hood consumption forecasts, to even out the consumption over time, thus reduc-
ing neighbourhood transformer ageing and joules losses related to transmission
costs. In addition to these applications, we treat the famous Witsenhausen

7
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Counterexample [19] which has a slightly different information structure, where
an agent can also observe the actions of another agent in a causal manner.

1.3.1 Power optimization for Wireless Communications

with partial CSI

Most power optimization schemes for Wireless communications consider non-
cooperative strategies and employ game theory to provide guarantees on per-
formance and convergence. While these schemes are robust, the performance
achieved by them are not socially optimal as they converge to Nash Equilibria.
We use the characterization explicited in [8] to create co-ordination schemes
which are sub-optimal, but still perform better than the solutions proposed
till now. Due to the generality of the theory developed, we provide a frame-
work which can be used to tackle different utilities sum-rate, sum-energy, sum-
throughput under different settings like parallel interference channel and multi-
ple access channel.

We pay greater attention to sum-energy as it is the major focus of wireless
communications in recent times. We show that a combination of thresholding
and channel inversion strategies provide good performances by mitigating the
interference in case the communication channels are bad.

1.3.2 Power consumption scheduling in Smart Grids with

uncertainty

The main aim was to make a step further towards knowing how an electrical
appliance should exploit the available information to schedule its power con-
sumption. This information corresponds here to an imperfect forecast of the
non-controllable (exogenous) load or electricity price. Reaching this goal led us
to three key results which can be used for other settings which involve multiple
agents with partial information

• In terms of modeling, we exploit the principal component analysis to ap-
proximate the exogenous load and show its full relevance

• Under some reasonable but improvable assumptions, this work provides a
full characterization of the set of feasible payoffs which can be reached by
a set of appliances having partial information

• A distributed algorithm is provided to compute good power consumption
scheduling functions. These results are exploited in the numerical analysis,
which provides several new insights into the power consumption scheduling
problem.

We provide first results for the standard cost functions, transformer aging in
particular, where we compare our method with iterative water filling algorithm
(IWFA). We test our proposed algorithm on real data and show that it is more
robust with respect to noise in the signals received. We also observe that our

8
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proposed method becomes even more relevant when the proportion of appliances
with smart counters increase.

1.3.3 Witsenhausen Counterexample

The famous Witsenhausen counterexample has been a key toy problem for dual
objectives of control and communication. Its difficulty can be gauged by the
fact that the search for optimal control functions for the problem has been
unresolved since 1968 . We generalize the theorem provided by [8] to the case
where agents can observe the action of others in a causal manner to get some
insights into this problem.

We propose an iterative approach to solve the optimization problem since
finding global optimum has prohibitive complexity. This simplification leads us
to an algorithm similar to [23], albeit with certain small differences in the mod-
elization of observation and action spaces. The differences in quantization can
be justified due to [24], which shows that finite and uniform quantized alpha-
bets for observations give strategies with are epsilon-optimal. We thus obtain
functions which are very close to the best solutions known to date (difference
of 0.3%), and have a smaller complexity than [23].

1.4 Thesis Outline

This thesis consists of 2 parts. The first part comprises of chapter 2 and chapter
3 and deals extensively with the proposed non-causal information structure. The
second part includes chapter 4 and chapter 5 and treats the causal information
structure.

In Chapter 2, we introduce the non-causal information structure as well as
recall the information theoretical results which we attempt to further develop.
These results were shown for the discrete case, i.e. all action alphabets as well
as alphabets representing the nature state being discrete. We go further and
solve an optimization problem stated by the articles providing the theoretical
background, and provide first insights into the structure of the possible solutions.

Chapter 3 generalizes the aforementioned results for the continuous case.
While traditionally, the generalization from discrete information theoretical re-
sults to continuous ones is assumed, the generalization is not so straightforward
as certain concepts need to be redefined carefully. As an application, we consider
the Witsenhausen cost function, inspired from the Witsenhausen counterexam-
ple whose original version we treat in chapter 5.

In the second part of the thesis, we treat the causal information structure.
A general framework is developed in Chapter 4 which recalls the information
theoretical characterization. We then propose a decentralized algorithm which
exploits the characterization to provide good and practical coordination schemes
in general.

We apply the schemes developed to various applications in different domains
in Chapter 5; namely team-power optimization in wireless networks in 5.1,

9
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power consumption scheduling in smart grids in 5.2, and finding decision func-
tions for Witsenhausen Counterexample in ??. The proposed decision functions
outperform the current state of the art simply because of the built-in coopera-
tion while determining them. For Witsenhausen Counterexample, the algorithm
proposed coincides with an algorithm already proposed in the literature heuris-
tically.

Concluding remarks are provided in Chapter 6.

1.5 Publications
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• A. Agrawal, C. Zhang, S. Lasaulce and R. Visoz, ”Team Power Opti-
mization using CSI Statistics with Partial Information. Application to
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Conference articles

• A. Agrawal, S. Lasaulce, O. Beaude and R. Visoz, ”A Framework for
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ternational Conference on Communications and Networking, Hammamet,
Tunisia, Nov. 2015.

• O. Beaude, A. Agrawal, S. Lasaulce, ”A Framework for Computing Power
Consumption Scheduling Functions Under Uncertainty”, IEEE Interna-
tional Conference on Smart Grid Communications, Miami ,USA Nov.
2015.

• A. Agrawal, F. Danard, B. Larrousse, and S. Lasaulce, ”Implicit Coordi-
nation in Two-Agent Team Problems with Continuous Action Sets. Ap-
plication to the Witsenhausen Cost Function”, European Conference on
Control (ECC), Linz, Austria, June 2015.

• B. Larrousse, A. Agrawal, and S. Lasaulce,, ”Implicit coordination in 2-
agent team problems. Application to distributed power allocation”, IEEE
12th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt), Hammamet, Tunisia, May 2014.
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Chapter 2

Coding through Actions -

Discrete Alphabets

The only reality we truly comprehend is that of our own experience ...
The laws of the infinite are extrapolations of our experiences with the
finite.

Paul Cohen

2.1 Introduction

In this part, we shall only concentrate on the non-causal information structure
briefly introduced in the previous chapter. This information structure has an
information hierarchy, with an agent knowing, in a non-causal manner, the real-
izations of the nature state for the entire time period of coordination. The other
agent merely has causal observations of the actions of the ’informed’ agent. We
only consider the 2−Agent case in this part as the more general case of many
agents is, for now, untreatable. Nonetheless, the 2-Agent case does provide
valuable insights into the limits achievable by co-ordination under such an in-
formation structure.

We distinguish two different cases: discrete or continuous alphabets for the
nature state as well as agents’ actions. The information theoretical results of
[7] for the discrete case do not generalize to the continuous case in a facile
manner. This stems from the difference in interpretation of entropy and mutual
information while passing from discrete to continuous alphabets. We prove the
corresponding information theoretical bounds for the continuous case in Chapter
3

In this chapter, we discuss the information theoretical bounds for 2-Agent
team coordination problems with non-causal information structure due to [7],
[9].The central contribution of this chapter is the analysis of an optimization
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problem which allows one to assess the limiting performance of a team of two
agents who coordinate their actions. As a first step, we restrict our analysis
to the case of perfect observation by the agents. We use the insights gained to
solve a toy power allocation problem in the cognitive radio setting.

The information structure considered in this chapter was first treated by [12].
In that, two agents coordinate over a long period of time, composed of many
stages, wherein at each stage they coordinate with the nature state x0 ∈ X0,
|X0| < +∞ which is assumed i.i.d.. At each stage t ∈ T, agent i ∈ {1, 2}
chooses an action xi ∈ Xi, |Xi| < +∞, which results in the common team
payoff w(x0, x1, x2). Additionally, it is assumed that one agent, agent 1, knows
beforehand and perfectly all the realizations of the nature state. On the other
hand, agent 2 does not know the state at all and can only be informed about
it by observing the actions of agent 1. While in [12] the second agent has a
perfect observation of the actions of agent 1, [20] generalizes the results to noisy
observations. To be precise, both references assume that agent 2 has a strictly
causal knowledge of the state but it can be shown that not having any knowledge
about the nature state’s realizations at all induces no limiting performance loss
[13].

The performance analysis of this problem leads to deriving an information-
theoretic constraint. Reference [20] also states an optimization problem which
essentially amounts to maximizing the long term payoff function under some
constraints, with the information-theoretic constraint being one of them. How-
ever, the optimization problem is not analyzed, and this is precisely the main
aim of this chapter. As an example of the application

The application of interest in this chapter corresponds to a scenario which in-
volves two transmitter-receiver pairs whose communications interfere each other.
The communication system under consideration is modeled by an M−band in-
terference channel, M ≥ 1, as depicted in Fig. 2.1. We assume the set of power
allocation vectors at a transmitter to be discrete and finite (namely, |Xi| < +∞)
instead of being continuous. This choice is motivated by well-known results in in-
formation theory [25] which show that the continuous case generally follows from
the discrete case by calling quantization arguments. We also assume that chan-
nel gains, as defined by Fig. 2.1, lie in discrete sets; this is also well motivated
by practical applications such as cellular systems in which quantities such as the
channel quality indicator are used. Therefore, for the considered case study, x0
is given by the vector of all channel gains gmij , (i, j) ∈ {1, 2}2,m ∈ {1, 2, ...,M},
and lies in a finite discrete set (denoted by X0).

The chapter is organized as follows. We recall the information theoretical
results of [7] in 2.2. In Sec. 2.3, we introduce and solve the general optimization
problem of interest. In Sec. 2.4, we apply the general result of Sec. 2.3 to a
special case of payoff function and action sets for the agents. This special case
corresponds to the problem of power allocation in a cognitive radio scenario.
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2.2 Information Theoretical Bounds

Before we state the general optimization problem with the information theoret-
ical constraints due to the information structure, we would like to recall some
results from [7]. Firstly, we restrict the strategies possible for both agents at
each time stage t by restricting the variables they can depend on. This also
fixes the information structure under consideration. Also, as stated before, we
only treat the case of perfect observation by the second agent.

{
σt : X T

0 → X1

τt : X t−1
1 → X2

(2.1)

where σt is the strategy for Agent 1, which depends on the knowledge of X T
0

which denotes the realizations of Nature state X0 ∈ X0 for all the stages T .
Similarly, τt is the strategy of Agent 2 and depends on the actions of agent 1
X1 ∈ X1 upto, but not including the stage t. The realization of the nature state
at stage t, denoted by x0,t, as well as the actions chosen by the agents at that
stage x1,t, x2,t, together result in the payoff at stage t being wt(x0,t, x1,t, x2,t).
The aim of the agents is to maximize the payoff on an average over many
stages. The average payoff can be calculated as w = 1

T

∑T
t=1 wt(x0,t, x1,t, x2,t).

Henceforth, we shall analyze the asymptotic case of T → ∞, which is the
limiting case corresponding to the maximum achievable payoff under the given
information structure. Since we consider the asymptotic case, the empirical
distribution of the random variables q(X0X1X2, t) converges in probability to
a time averaged distribution q(X0, X1, X2) which characterizes the expected
payoff. This is encapsulated in the following definition:

Definition 1 (Implementability). Let 2.1 be the assumed information struc-
ture. The probability density function q(x0, x1, x2) is implementable if there
exists a pair of control strategies (σt, τt) such that as T → +∞, we have for all
(x0, x1, x2) ∈ X0 ×X1 ×X2,

1

T

T∑

t=1

qX0X1X2,t(x0, x1, x2, t) → q(x0, x1, x2) (2.2)

where qX0X1X2,t = qX1,X2|X0,t × qX0
is the joint distribution induced by (σt, τt)

at stage t.

Note that since the expectation value of the payoff is a linear operator with
respect to the distribution q, the time averaged expected payoff w is reachable
if and only if the corresponding distribution q is implementable. Also, the
factorization of the empirical distribution q can be easily understood, as the
random variable X0 is not controlled by agents and is an extraneous variable.
Therefore this factorization is natural. Dropping the index for stage t, we get
the expected payoff at a particular stage to be :
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E[w] =
∑

(x0,x1,x2)∈X0×X1×X2

q(x0, x1, x2)w(x0, x1, x2)

=
∑

(x0,x1,x2)∈X0×X1×X2

qX0
(x0)q(x1, x2|x0)w(x0, x1, x2)

where q ∈ ∆(X0 × X1 × X2), ∆(·) standing for the unit simplex over the set
under consideration. qX0

is the marginal law of the random state and thus is
fixed (referred to as αi later in this chapter).

However, given the information structure 2.1, which distibutions are imple-
mentable, or equivaently, which payoffs are achievable? This is precisely the
result of a theorem from [20]

Theorem 1. [12][20] Let q be a ditribution in ∆(X0×X1×X2) such that ∀x0 ∈
X0,

∑

x1,x2

q(x0, x1, x2) = qX0
(x0). This distribution q is implementable under

the information structure 2.1 if and only if it satisfies the following information
constraint:

Iq(X0;X2)−Hq(X1|X0, X2) ≤ 0 (2.3)

where, for any two random variables (X,Y ) ∈ (X × Y ) with joint law Q(, ):

• Hq(X|Y ) is the conditional entropy of X given Y defined by:

Hq(X|Y ) = −
∑

x∈X

∑

y∈Y

q(x, y) log2
q(x, y)

qY (y)
(2.4)

where qY (·) is obtained by marginalization of the joint distribution q(·, ·);
One can note that the entropy of X is simply:

Hq(X) = −
∑

x∈X

qX(x) log2 qX(x) (2.5)

• Iq(X;Y ) denotes the mutual information between X and Y , defined by:

Iq(X;Y ) = −
∑

x∈X

∑

y∈Y

q(x, y) log2
q(x, y)

qX(x)qY (y)
(2.6)

Reference [20] provides a clear interpretation of this constraint. Essentially,
the first term can be seen as a rate-distortion term while the second term can
be seen as a limitation in terms of communication medium capacity.

The Information Constraint (2.3) can be re-written as:

ic(q) ≜Iq(X0;X2)−Hq(X1|X0, X2) (2.7)

=Hq(X0) +Hq(X2)−Hq(X0, X1, X2) (2.8)
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2.3 Optimization problem analysis

To state the optimization problem which characterizes the limiting performance
in terms of expected payoff, a few notations are in order. We denote the cardi-
nality of the set Xi, i ∈ {0, 1, 2} as: |Xi| = ni < ∞. For the sake of simplicity
and without loss of generality, we consider Xi as a set of indices Xi = {1, ..., ni}.
Additionally, we introduce the vector of payoffs w = (w1, w2, ..., wn) ∈ Rn with
n = n0n1n2 and assume, without loss of generality, that Pr[X0 = j] = αj > 0
for all j ∈ X0 = {1, . . . , n0}, with

∑n0

j=1 αj = 1. The indexation of w and there-
fore the vector q = (q1, q2, ..., qn) is chosen according to a lexicographic order.
This is illustrated through Tab. 2.1. This choice simplifies the analysis of the
optimization problem which is stated next.

Index (i) X0 X1 X2

1 1 1 1
2 1 1 2
...

...
...

...
n2 1 1 n2

n2 + 1 1 2 1
...

...
...

...
2n2 1 2 n2

...
...

...
...

n2(n1 − 1) + 1 1 n1 1
...

...
...

...
n1n2 1 n1 n2

...
...

...
...

...
...

...
...

n1n2(n0 − 1) + 1 n0 1 1
...

...
...

...
n0n1n2 n0 n1 n2

Table 2.1: Chosen indexation for the payoff vector w and distribution vector q.
Bold lines delineate blocks of size n1n2 and each block corresponds to a given
value of the random state X0.

Rewriting the information constraint (2.8) using the chosen indexation, we
have:

Hq(X0) = −
n0∑

i=1


(

in1n2∑

j=1+(i1)n1n2

qj) log2(

in1n2∑

j=1+(i1)n1n2

qj)


 (2.9)
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Hq(X2) = −
n2∑

i=1


(

n0n1−1∑

j=0

qi+jn2
) log2(

n0n1−1∑

j=0

qi+jn2
)


 (2.10)

and

Hq(X0, X1, X2) = −
n0n1n2∑

i=1

qi log2 qi (2.11)

The optimization problem of interest consists in finding the best joint dis-
tribution(s) q (i.e., the best correlation between the agent’s actions and the
random state) and is as follows:

minimize −Eq[w] = −
n0n1n2∑

i=1

qiwi

s.t. −1 +

n0n1n2∑

i=1

qi = 0

−αi +

in1n2∑

j=1+(i−1)n1n2

qj = 0, ∀i ∈ {1, . . . , n0}

−qi ≤ 0, ∀i ∈ {1, 2, . . . , n0n1n2}

−

n0∑

i=1


(

in1n2∑

j=1+(i−1)n1n2

qj) log2(

in1n2∑

j=1+(i−1)n1n2

qj)




−
n2∑

i=1


(

n0n1−1∑

j=0

qi+jn2
) log2(

n0n1−1∑

j=0

qi+jn2
)




+

n0n1n2∑

i=1

qi log2 qi

}
≤ 0

(2.12)

The first and third constraints imposes that q has to be a probability distri-
bution. The second constraint imposes that the marginal of q with respect to x1
and x2 has to coincide with the distribution of the random state which is fixed.
The fourth constraint is the information-theoretic constraint which corresponds
to (2.3) and has been re-written here as Hq(X0)+Hq(X2)−Hq(X0, X1, X2) ≤ 0,
to simplify the analysis.

To solve the optimization problem (2.12) we will apply the Karush Kuhn
Tucker (KKT) necessary conditions for optimality [26]. For this purpose, we first
verify that strong duality holds. This can be done e.g., by proving that Slater’s
constraint qualification conditions are met namely, there exists a strictly feasible
point for (2.12) and that (2.12) is a convex problem. First, by specializing
Lemma 1 in [20] in the case of perfect observation, we know that (2.3) defines
a convex set. Since the cost function and the other constraints of the problem
are affine, the problem is then convex; as a consequence. KKT conditions are
also sufficient for optimality. The existence of a feasible point follows from the
next proposition.
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Proposition 1. There exists a strictly feasible distribution q+ ∈ ∆(X0×X1×X2)
for the optimization problem (2.12).

Proof. First, choose a triplet of random variables (X0, X1, X2) which are inde-
pendent. That is, we consider a joint distribution q+ which is of the form
q+(x0, x1, x2) = q+X0

(x0)q
+
X1

(x1)q
+
X2

(x2). Second, one can always impose a

full support condition to the marginals q+X1
and q+X2

(i.e., ∀xi, qXi
(xi) > 0);

q+X0
≡ qX0

has a full support by assumption. Therefore, for the distribu-
tion q+(x0, x1, x2) to be strictly feasible, it remains to be checked that the
information-theoretic constraint is active. And this is indeed the case since:

Iq(X0;X2)−Hq(X1|X0, X2)
(a)
= 0−Hq(X1|X0, X2)

(b)
= −Hq(X1)

(c)
< 0

where: (a) and (b) comes from the independence hypothesis between X0, X1,
and X2; (c) comes from the positiveness of the entropy and the fact that every
q+(x0, x1, x2) (and thus every q+X1

(x1)) is strictly positive.

Following the previous considerations, KKT conditions can be applied. The
Lagrangian function can be written as:

L(q, µ, µ0, λ, λIC) = −
n0n1n2∑

i=1

(wiqi + λiqi)

+ µ0

[
n0n1n2∑

i=1

qi − 1

]
+

n0∑

i=1

µi




in1n2∑

j=1+(i−1)n1n2

qj − αi




+ λIC

{
−

n0∑

i=1


(

in1n2∑

j=1+(i−1)n1n2

qj) log2(

in1n2∑

j=1+(i−1)n1n2

qj)




−
n2∑

i=1


(

n0n1−1∑

j=0

qi+jn2
) log2(

n0n1−1∑

j=0

qi+jn2
)




+

n0n1n2∑

i=1

qi log2 qi

}

where λ = (λ1, ..., λn0n1n2
), µ = (µ1, ..., µn0n1n2

), and IC stands for information-
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theoretic constraint. KKT conditions follow:

∂L
∂qi

= −wi − λi + µ0 +




n0∑

j=1

µj1{1+n1n2(j−1)≤i≤jn1n2}




+ λIC

[
−

n0∑

k=1

1{1+(k−1)n1n2≤i≤(k)n1n2} log2(

kn1n2∑

j=1+(k−1)n1n2

qj)

−
n2∑

k=1

1{i∈{k,k+n2,...,k+(n0n1−1)n2}} log2(

n0n1−1∑

j=0

qk+jn2
)

+ log2 qi − 1

]
= 0 ∀ i ∈ {1, 2, . . . , n0n1n2} (2.13)

λi ≥ 0 ∀ i ∈ {1, 2, . . . , n0n1n2} (2.14)

λIC ≥ 0 (2.15)

λiqi = 0 ∀ i ∈ {1, 2, . . . , n0n1n2} (2.16)

λICi(q) = 0 (2.17)

where 1. is the indicator function and i(q) = is the inequality constraint function
associated with the information-theoretic constraint (2.3). By inspecting the
KKT conditions the following proposition can be proved.

Proposition 2. If there exists a permutation such that the payoff vector w
can be strictly ordered, then any optimal solution of (2.12) is such that the
information-theoretic constraint is active i.e., λIC > 0.

Proof. We proceed by contradiction. Assume that the payoff vector can be
strictly ordered and that the constraint is not active for solutions under consid-
eration, that is, λIC = 0.

First, consider possible solution candidates q which have two or more non-
zero components per block of size n1n2 which is associated with a given realiza-
tion x0 of the random state (see Tab. 2.1) . Since there exists a pair of distinct
indices (j, k) such that qj > 0, qk > 0, we have that λj = 0, λk = 0. This
implies that, through the gradient conditions of the KKT conditions, wj = wk

which contradicts the fact that payoffs are strictly ordered.
Second, consider possible solution candidates q which have only one non-

zero component per block associated with x0 (see Tab. 2.1). This implies that
Hq(X0, X1, X2) = Hq(X0) = H(X0), which means that Hq(X0) + Hq(X2) >
Hq(X0, X1, X2), whenever Hq(X2) > 0. This means that the constraint is
violated and therefore the considered candidates are not feasible. Now if,
Hq(X2) = 0, we see that the constraint is active and contradicts again the
starting assumption.

Proposition 2 is especially useful for wireless communications when the state
is given by the overall channel. Due to channel randomness, the most common
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scenario is that the payoffs associated with the channel realizations are distinct.
For this reason, we will assume such a setting in this chapter and thus that
λIC > 0. If λIC > 0, we have the following:

• We can not have λi > 0 for one or more i ∈ {1, 2, . . . , n0n1n2}. Indeed, if
for example λi > 0, then qi = 0, which implies log2(qi) = −∞ and (2.13)
can not be satisfied.

• However, if one of the qi’s equals 0, and qk = 0 for all k such that
k[n2] = i[n2] , then the λIC component equals limx→0

x
n0n1x

and does
not go to −∞. This case cannot be discarded, but it can be said that X2

is deterministic in such a case.

Summarizing our analysis, the only possible cases are:

• λIC > 0, and exactly one λi for each block (corresponding to a particular
state of nature) are non-zeros, and they have to be associated with the
same action of X2 (X2 has to be deterministic). In this case there is no
communication, and the optimal strategies are trivial. Therefore we shall
not be discussing this case henceforth.

• The only interesting case that is relevant is:

λi = 0 ∀ i ∈ {1, 2, . . . , n0n1n2}
λIC > 0

For the latter case, KKT conditions become:

∂L
∂qi

= −wi + µ0 +




n0∑

j=1

µj1{1+n1n2(j−1)≤i≤jn1n2}




+ λIC

[
−

n0∑

k=1

1{1+(k−1)n1n2≤i≤(k)n1n2}.

log2(

(k)n1n2∑

j=1+(k−1)n1n2

qj)

−
n2∑

k=1

1{i∈{k,k+n2,...,k+(n0n1−1)n2}} log2(

n0n1−1∑

j=0

qk+jn2
)

+ log2 qi − 1

]
= 0 ∀ i ∈ {1, 2, . . . , n0n1n2} (2.18)

λi ≥ 0 ∀ i ∈ {1, 2, . . . , n0n1n2} (2.19)

λIC ≥ 0 (2.20)

i(q) = 0. (2.21)
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Now that we have proved some useful results about structure of the optimal
solutions of (2.12), a natural question is whether the optimal solution is unique,
which is the purpose of the next proposition.

Proposition 3. If there exists a permutation such that the payoff vector w can
be strictly ordered, the optimization problem (2.12) has a unique solution.

Proof. We know, by Proposition 2, that λIC > 0 for any optimal solution. It
turns out that, if λIC > 0, the Lagrangian of (2.12) is a strictly convex function
w.r.t. the vector q. Indeed, as the Lagrangian is the sum of linear functions and
a strictly convex function and that the optimization spaces are compact and
convex.
It remains to show that Φ : Q 7→ IQ(X0;X2) −HQ(X1|X0, X2) is strictly con-
vex over the set of distributions Q ∈ ∆(X0 × X1 × X2) that verify QX0

:=∑
(x1,x2)

Q(x0, x1, x2) = ρ(x0) with ρ fixed.

The first term IQ(X0;X2) is a convex function of QX2|X0
for fixed QX0

. For
the second term, let λ1 ∈ [0, 1], λ2 = 1− λ1, (Q

1, Q2) ∈ ∆2(X0 ×X1 ×X2) and
Q = λ1Q

1 + λ2Q
2. We have that:

HQ(X1|X0X2) = −
∑

x0,x1,x2

( 2∑

i=1

λiQ
i(x0, x1, x2)

)
.

log

[∑2
i=1 λiQ

i(x0, x1, x2)∑2
i=1 λiQ

i
X2

(x2)

]

> −
∑

x0,x1,x2

2∑

i=1

λiQ
i(x0, x1, x2) log

[
λiQ

i(x0, x1, x2)

λiQi
X2

(x2)

]

= −
2∑

i=1

λi
∑

x0,x1,x2

Qi(x0, x1, x2) log

[
Qi(x0, x1, x2)

Qi
X2

(x2)

]

= λ1HQ1(X1|X0X2) + λ2HQ2(X1|X0X2)

where the inequality comes from the log sum inequality [25], with:

ai = λiQ
i(x0, x1, x2)

and

bi = λiQ
i
X2

(x2)

for i = 1, 2 and for all x0, x1, x2 such that Qi
X2

(x2) > 0.
The inequality is strict because a1

b1
̸= a2

b2
, since we have assumed that Q1 and

Q2 distinct.

The uniqueness property for the optimization problem is particularly useful
in practice since it means that any converging numerical procedure to find an
optimal solution will lead to the unique global minimum.
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2.4 Distributed power allocation case study

2.4.1 Case study description
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Figure 2.1: Case study considered in Sec. 2.4: an interference channel with 2
transmitters (Txs), 2 receivers (Rxs), and M ≥ 1 non-overlapping frequency
bands. One feature of the retained model is that both power allocation policies
and channel gains gmij are assumed to lie in finite discrete sets.

We now consider the specific problem of power allocation over M−band in-
terference channels with two transmitter-receiver pairs. Transmission are time-
slotted and on each time-slot, transmitter i ∈ {1, 2} has to choose a power
allocation vector in the following set of actions:

Pi =

{
Pmax

ℓ
eℓ : ℓ ∈ {1, . . . ,M}, eℓ ∈ {0, 1}M ,

M∑

i=1

eℓ(i) = ℓ

}
(2.22)

where Pmax is the the power budget available at a transmitter. Each channel
channel is assumed to lie a discrete set Γ = {g1, ..., gS}, S ≥ 1, gs ≥ 0 for
s ∈ {1, ..., S}. Therefore, if one denotes by gm the vector of four channel gains
corresponding to the band m ∈ {1, ...,M}, then gm ∈ Γ4 and the global channel
state g = [g1, ..., gM ] lies in G = Γ4M whose cardinality is S4M . As it is always
possible to find a one-to-one mapping between Pi, i ∈ {1, 2}, (resp. G) and
Xi (resp. X0) as defined in Sec. 2.3, the results derived therein can be applied
here. At last, for a given time-slot, the instantaneous or the stage payoff function
which is common to the transmitters is chosen to be:

w :

∣∣∣∣∣∣∣

G × P1 × P2 → R+

(g, p1, p2) 7→
2∑

i=1

M∑

m=1

Bm log2

(
1 +

gmii p
m
i

σ2 + gm−iip
m
−i

)
(2.23)
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where pi is the power allocation chosen by transmitter i on the current time-slot
whose channel state is g, σ2 is the noise variance, Bm is the bandwidth of band
m, pmi the power transmitter i allocates to band i,−i stands for the transmitter
other than i.

2.4.2 Simulation setup

In this section, specific values for the parameters which are defined in the pre-
ceding section are chosen, in particular to make the interpretations relatively
easy. We assume M = 2 bands and therefore that the transmitters have three
actions: Pi = Pmax

{
(0, 1), (1, 0), ( 12 ,

1
2 )
}
for i ∈ {1, 2}. As [27] we assume the

first band to be protected (g112 = g121 = 0) whereas the second band corre-
sponds to a general single-band interference channel. The other channel gains
are chosen as follows:

g1ii ∈ {0.1, 1.9}, i ∈ {1, 2}
g2ij ∈ {0.15, 1.85}, (i, j) ∈ {1, 2}.

We suppose that each gkij , k = 1, 2 is i.i.d. and Bernouilli distributed gkij ∼
B(πk

ij) with P (g1ii = 0.1) = π1
ii and P (g

2
ij = 0.15) = π2

ij . We define SNR[dB]=

10 log10
(
Pmax

σ2

)
, and we consider two regimes for the second band: a high inter-

ference regime (HIR), defined by (π2
11, π

2
12, π

2
21, π

2
22) = (0.5, 0.1, 0.1, 0.5) and a

low interference regime (LIR) defined by (π2
11, π

2
12, π

2
21, π

2
22) = (0.5, 0.9, 0.9, 0.5).

For the first band, we take π1
11 = π1

22 = 0.2. One can see that the high in-
terference regime corresponds to the P ((g2ij |i ̸= j) = 1.85) = 1 − 0.1 = 0.9,
thus creating high interference due to higher probability for a greater value of
(g2ij |i ̸= j) which is precisely the interference in the band 2. The similar intu-
ition holds for low interference regime as well. Three power allocation policies
will be considered:

• The costless communication case, where both transmitters knows the state
beforehand and can reach the maximum payoff at every stage;

• The (information-constrained) optimal policy (OP) corresponding to the
optimal solution of the optimization problem 2.12;

• The blind policy (BP), where transmitters don’t know anything about
channel gains and always choose to put half of their power in each band:
p1 = p2 = Pmax(

1
2 ,

1
2 ) at every stage.

Fig. 2.2 represents the gain allowed by asymmetric coordination w.r.t. the
case where the transmitters always use the uniform power allocation policy
(Blind Policy). This gain can be as high as 40% for the considered range of SNR.
It is seen that the gain are particularly significant when the interference is high
(red curves) and in the low and high SNR regimes (red and blue curves on the left
and right sides). The first observation translates the intuition that the higher
the interference level the stronger is the gain brought by coordination. The
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Costless communication case: HIR

Information−constrained expected payoff: HIR

Costless communication case: LIR

Information−constrained expected payoff: LIR

Figure 2.2: Relative gain in terms of expected payoff (“OP/BP - 1” in [%])
vs SNR[dB] obtained with the Optimal policy (OP) (with and without com-
munication cost) when the reference policy is to put half of the power on each
band (BP). Red curves correspond to the HIR, and blue curve to the LIR.
B1 = B2 = 10MHz.
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Figure 2.3: Marginal probability distributions qX1
(·) qX2

(·) of Transmitter 1
and Transmitter 2 for the optimal policy vs SNR[dB] for the High Interference
Regime. B1 = B2 = 10MHz.

second can be understood as follows. In the high SNR regime, the transmission
rate over the non-protected band is interference limited and bounded and it is
better to allocate the power to the protected band which allows an arbitrarily
large rate as the SNR grows large. This explains why allocating uniformly
the power becomes more and more suboptimal as the SNR increases. In the
low SNR regime, essentially the interference becomes negligible and the best
power allocation policies roughly correspond to water-filling over the available
channels. At low SNR, the best water-filling policy is to use the best band and
not to allocate power uniformly, which explains the gap between the coordinated
policies and uniform power allocation.

Our explanations are sustained by Fig. 2.3, which shows the probability that
a transmitter uses a given power allocation vector. For instance, at low SNR,
the dominant actions for both transmitters is to use the protected band. It can
be noticed that transmitter 1 has also to convey information to transmitter 2
(i.e., ensuring that the entropy of X1 is not too small), which is why he cannot
use the protected band as often as transmitter 2. One also notices in Fig. 2.3
that the probability of the action (0, 1) (using the shared band) is zero from
lower SNR values for DM2 than for DM1. This can be explained by the fact
that the higher the power available for both DM, the higher the interference in
the non-protected band. However, DM1 still chooses to play this action as it
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(·) of Transmitter 1 and
Transmitter 2 for the optimal policy vs β for the optimal policy for the High
Interference Regime, where β = B1

B2
. For this simulation, we chose SNR=10[dB].

has knowledge of channel gains and can use the interference band to improve
his utility. The same argument stands for Fig. 2.4.

Lastly, Fig. 2.4 shows the influence of the bandwidths on the power alloca-
tion policies. Not surprisingly, the higher the bandwidth of the protected band
is, the more often it is used, and conversely for the non-protected band. Con-
cerning the uniform policy, it is seen that transmitter uses it more frequently,
although channel conditions are similar, which translates again the need for
transmitter 1 to convey information.

2.5 Conclusions

The analysis clearly illustrates the potential benefit of the proposed approach,
by embedding coordination information into the power allocation levels, relative
gains as high as 40% can be obtained w.r.t. the uniform power allocation poli-
cies. In this work, the embedded information is a distorted version of the channel
state but the proposed approach is much more general: information about the
state of queue, a battery, etc, could be considered; other types of policies might
be considered to encode information e.g., channel selection policies, transmit
power levels.
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Chapter 3

Continuous Alphabets -

Witsenhausen Cost

Function

All means (even continuous) sanctify the discrete end.

Doron Zeilberger

In this chapter, we consider a team with two agents who are trying to max-
imize their common payoff over a long time period, i.e., composed of many
time-slots. At every time-slot or stage t ∈ {1, · · · , T}, Agent i, i ∈ {1, 2}
chooses its action xk ∈ Xk, where Xk is a continuous set. The instantaneous
payoff function w(x0, x1, x2) depends on the realization of the random variable
X0 with realizations x0 ∈ X0. The set X0 is also continuous and realizations of
X0 are assumed to be i.i.d.. The information structure is thus similar to the one
considered in 2, albeit with alphabets for nature state X0 and agents’ actions
Xi being continuous.

A problem with the same information structure was addressed for the first
time in [12]. Therein, the assumptions made are as follows: it is assumed that
at any time Agent 1 knows the past, current, and future realizations of X0

perfectly, whereas Agent 2 only observes the actions of Agent 1 in a strictly
causal manner. Such a scenario has been extended in a couple of papers cited
further.However, all of them treated the case where the action sets as well as
the system state set were discrete and finite, i.e., ∀ k ∈ {0, 1, 2}, |Xk| < ∞.
Reference [12] treated the case of an information structure in which Agent 2 has
perfect observation and showed that the average performance characterization is
equivalent to finding the appropriate information constraint. In [20] this result
was generalized to the case where Agent 2 has imperfect observations. While
all these contributions assume a strictly causal knowledge of the system state
x0 at Agent 2, the case where this assumption is relaxed was first presented in
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[28] and treated rigorously in [21].
The main contribution of the work presented in this chapter is to generalize

this approach of finding the limiting performance to the case of continuous action
sets, which is an important case for control problems as many designs involve
continuous controlers. A second contribution is to consider the Witsenhausen
cost function [19] as a common cost function to be minimized by the 2−agent
team under the two mentioned scenarios in terms of information structures; this
establishes for the first time a link between [12][20][21] and [19].

Indeed, although the Witsenhausen problem can be seen as a one-shot coor-
dination problem, whereas we consider a long-term coordination problem here,
the idea of joint control-communication strategies is present in both formula-
tions. As it will be seen, characterizing the feasible performance of the long-term
coordination problems amounts to determining a certain information constraint.
Although information constraints normally appear when (large) sequences in-
tervene, it has to been noted that one-shot problems closely related to the Wit-
senhausen problem have been solved by introducing an information constraint;
this is the case, for instance, for the Gaussian Test Channel (GTC) [22]. The
approach we adopt has connections with that of [29] where probability distri-
butions which minimize the cost function are used. However, in the latter the
authors restrict their attention to what modifications render the (one-shot) Wit-
senhausen problem simpler to solve, and do not tackle the general framework
of long-term implicit communication.

The chapter is structured as follows. Section 3.1 provides the proposed
problem formulation. It explains that characterizing the feasible set of expected
common payoffs amounts to characterizing implementable joint probability dis-
tributions. Section 3.2 provides, for the two information structures considered,
the two information constraints which allows one to characterize the imple-
mentable distributions. The Gaussian case is provided as a special instance,
which establishes a connection with the dirty-paper coding problem [30]. We
also provide the information constraints for other continuous distribution in the
case of where the second agent has perfect observation of first agent’s actions.
In Section 5.3.2, we discuss the Witsenhausen cost function in context to our
problem. Section 3.3.1 describes the numerical analysis for the special instance
of payoff function (which equals minus the Witsenhausen cost function) and
provide numerical results. Section 3.4 concludes the chapter.

3.1 Problem statement

Consider two agents, Agent 1 and Agent 2, who want to coordinate through
their actions x1 ∈ X1 and x2 ∈ X2. The problem is said to be distributed in
the sense that each agent can only control one variable of their common payoff
function w(x0, x1, x2). The action set for both agents X1, X2 as well as the set
of system states X0 are continuous sets. The realizations of the system state are
assumed to be i.i.d. and generated from a random variableX0 whose probability
density function is denoted by f0(x0). We shall use the notation fV (v) or f(v)
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to refer to the probability density function of the generic continuous random
variable V . The control strategies of Agents 1 and 2 are sequences of functions
which are respectively defined by:





σt : X T
0 → X1

τat : X t−1
0 × Yt−1 → X2

τ bt : Yt−1 → X2

(3.1)

where T ≥ 1 is the total number of stages over which the agents are assumed
to interact, Y is the observation set of Agent 2 and the superscripts a or b
correspond to the two considered scenarios in terms of observation structure.

The control strategy for Agent 1 σt basically means that it knows the real-
izations of the system state for all T beforehand, and uses that information to
choose its actions; note that the methodology used in this chapter can also be
exploited under less restrictive knowledge assumptions at Agent 1. The merit
of the assumptions made for Agent 1 is that it allows one to make progress in
the direction of quantifying the relationship between agents’ observation capa-
bilities and reachable performance, which is not well understood. Additionally,
there already exist applications for which it is relevant: coordination between
robots when a leader knows the trajectory in advance; distributed power con-
trol in wireless networks; robust image watermarking. For Agent 2, we con-
sider two different control strategies τat and τ bt . The control strategy of sce-
nario a assumes that Agent 2 observes the past realizations of the system state
x0(1), ..., x0(i− 1) as well as y(1), ..., y(i− 1). The control strategy of scenario
b is only based on the latter sequence and seems to be more in line with a
possible information structure of a long-term version of the Witsenhausen prob-
lem. In any case, it is less demanding in terms of information assumptions.
The observations y(1), ..., y(T ) are assumed to be generated by a memoryless
channel whose transition probability is denoted by γ and verifies a Markov con-
dition fY |X0,X1,X2

(y|x0, x1, x2) = γ(y|x1). The additive white Gaussian noise
(AWGN) channel Y = X1 + Z is an intensively used model which verifies this
condition.

The instantaneous team payoff function is denoted by w(x0, x1, x2). Since
X0 is not deterministic we shall be considering the expected payoff

Ef [w(X)] =

ˆ

x∈X

w(x0, x1, x2)f(x0, x1, x2)dx0dx1dx2 (3.2)

where X = (X0, X1, X2), x = (x0, x1, x2), and X = X0×X1×X2. In the sequel,
we will also denote by W (f) the above expected payoff i.e., W (f) = Ef [w(X)].

What matters for the expected payoff is function f which characterizes the
possible correlations among the three random variables X0, X1, and X2. This
correlation precisely measures the degree to which the agents can coordinate
with each other and the system state. To understand the relationship between
the agents strategies (5.8) and the expected payoff (3.2), let us define the notion
of implementable distributions.
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Definition 2 (Implementability). Let s ∈ {a, b} be the assumed information
structure. The probability density function f(x0, x1, x2) is implementable if there
exists a pair of control strategies (σt, τ

s
t ) such that as T → +∞, we have for all

(x0, x1, x2) ∈ X0 ×X1 ×X2,

1

T

T∑

i=1

ˆ

y∈Y

fX0X1X2Y,i(x0, x1, x2, y) → f(x0, x1, x2) (3.3)

where fX0X1X2Y,i = γ × fX1,X2|X0,i × f0 is the joint distribution induced by
(σt, τ

s
t ) at stage i.

Note that since the expectation value of the payoff is a linear operator with
respect to the distribution f , the time averaged expected payoff W is reachable
if and only if the corresponding distribution f is implementable. In Section 3.2,
we shall characterize the set of reachable or feasible average payoffs under the
information structure given by (5.8), which is equivalent to characterizing the
set of implementable distributions.

3.2 Performance analysis: limiting performance

characterization

3.2.1 General case

In the case of finite alphabets |Xi| < ∞, i ∈ {0, 1, 2}, it has been shown in the
cases which have been treated so far [12], [20], [28], [21] that characterizing the
set of implementable (mass) probability distributions amounts to determining a
certain information constraint. For instance in the previous chapter, i.e. case of
discrete sets and perfect observation (Y = X1), the necessary and sufficient con-
dition for a joint probability mass distribution Q(x0, x1, x2) to be implementable
is that

HQ(X0) +HQ(X2)−HQ(X0, X1, X2) ≤ 0 (3.4)

where HQ is the discrete entropy function under a fixed joint distribution (see
Section [31] for the different expressions of the entropy used in this section).

A well-known reasoning in information theory [31], and intensively used in
control when communication problems are involved, is to use the information
constraint derived in the discrete case and just replace the discrete entropy
function with the differential entropy. It can be proved that this reasoning is
perfectly valid if considered continuous variables are Gaussian (see e.g., [32] for
a recent reference). For coordination problems such as the one under inves-
tigation, imposing the agents’ actions to be Gaussian is generally suboptimal.
Elaborating further, if we replace the discrete entropy function with the differ-
ential entropy we obtain

hf (X0) + hf (X2)− hf (X0, X1, X2) ≤ 0 (3.5)

where hf is the differential entropy under the fixed joint distribution f .
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It turns out that this condition can be shown to be non-necessary in general,
indicating that the transition from the discrete case to the continuous case needs
some special care in the problem under investigation. To convince the reader,
let us recall one of the Cantor’s theorems (see e.g., [33]). There exists a bijective
map from RT to R. Therefore, a possible control strategy for Agent 1 might be
as follows. On the first stage, Agent 1 maps or encodes the whole sequence of
states (x0(1), · · · , x0(T )) ∈ RT into a single action x1(1) ∈ R. Since Agent 2
observes this action perfectly, it can decode it perfectly and is thus informed of
the sequence of states as well. This would mean that from stage i = 2, the two
agents can correlate their actions in a arbitrary manner with the system state; in
particular they can choose the pair (or one of the pairs) which maximizes w at a
given stage i ≥ 2. This means that any probability density function fX0X1X2

can
be implemented (asymptotically), contradicting the fact that any implementable
distribution has necessarily to verify the continuous counterpart of (3.4) which is
(3.5). This apparent contradiction comes from the fact that expressing (3.4) in
the continuous case with differential entropies relies on assumptions which need
to be specified rigorously for the problem. Indeed, the information constraint
can be shown to be necessary and sufficient for implementability within some
classes of random variables. One of the broadest classes which is known is
provided in [34]. It turns out that if one wants to define a probability measure
on the Cantor set, one does not fall into this broad class which is specified below.
Let’s first give the definition of a field in probability theory.

Definition 3 (field). Let (Ω,B) be a measurable space. We call field F a
collection of subset of Ω such that :

Ω ∈ F

if F ∈ F then F c ∈ F

F is stable under finite union

A set A of a field F is called an atom if and only if the only subsets which
are also member of the field are the set itself and the empty set.

Definition 4 (base). A sequence of finite field Fn ; n = 0, 1, ... is called a basis
of a field F if Fn ↑ F and if Gn is a sequence of atoms of Fn such that Gn ∈ Fn

and Gn+1 ⊂ Gn, n = 0, 1, 2, ... then ∩∞
n=1Gn ̸= ∅.

A sequence Fn ; n = 0, 1, ... is called a basis of a measurable space (Ω,B) if
Fn are a basis of a field F which generates B : B = σ(F). A field F is called
standard if it has a basis. A measurable space (Ω,B) is called standard if it
can be generated by a standard field i.e. B has a basis. We can now define the
mutual information in a standard space provided by [35].

Definition 5 (Mutual Information). Let (Ω,F , P ) be a standard probability
space and X ∈ R, Y ∈ R two generic random variables: X : Ω → AX , Y : Ω →

33



CHAPTER 3. CONTINUOUS ALPHABETS - WITSENHAUSEN COST
FUNCTION

AY with (AX ,BX), (AY ,BY ) two measurable spaces. Let FX = X−1(AX) and
FY = Y −1(AY ) the sub-σ-algebra of F induced by X and Y . Let

PX = {Aj}NX

j=1 ⊂ FX and PY = {Bj}NY

j=1 ⊂ FY (3.6)

be finite partitions of Ω. With these partitions we associate the following random
variables:

X̃(ω) = j for ω ∈ Aj with 1 ≤ j ≤ NX

Ỹ (ω) = j for ω ∈ Bj with 1 ≤ j ≤ NY
. (3.7)

The mutual information between X ∈ R and Y ∈ R is then defined by:

i(X;Y ) = sup
PX ,PY

I(X̃; Ỹ ) (3.8)

where I is the classical mutual information between two discrete random vari-
ables [25]. Similarly, the conditional mutual information is defined by

i(X;Y |Z) = i(X;Y, Z)− i(X;Z). (3.9)

The above framework is exploited to prove the following two theorems.

Theorem 2 (Scenario a). Assume that all random variables under use are
defined on a standard probability space. Consider a joint probability density dis-
tribution f(x0, x1, x2) such that ∀x0 ∈ X0,

´

x1,x2

f(x0, x1, x2)dx1dx2 = f0(x0).

Then, the distribution f is implementable if and only if f(x0, x1, x2, y) verifies
the following information constraint:

if (X0;X2) ≤ if (X1;Y |X0, X2) (3.10)

where the arguments of the mutual information if (.) are defined from f and
f(x0, x1, x2, y) = f(x0, x1, x2)γ(y|x1).

Theorem 3 (Scenario b). Assume that all random variables under use are
defined on a standard probability space. Consider a joint probability density dis-
tribution f(x0, x1, x2) such that ∀x0 ∈ X0,

´

x1,x2

f(x0, x1, x2)dx1dx2 = f0(x0).

Then, the distribution f is implementable if and only if f(x0, x1, x2, y, x
′
1) ver-

ifies the following information constraint:

if (X0;X2) ≤ if (X
′
1;Y,X2)− if (X

′
1;X0, X2) (3.11)

with f(x0,x1,x2,y,x
′
1
)=fX′

1
|X0X1X2

(x′
1
|x0,x1,x2)γ(y|x1)f(x0,x1,x2). X ′

1 is an auxilary vari-

able which helps us exploit the joint typicality between X ′
1 and X1 as well as X ′

1

and X2 to create coding and decoding schemes.
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We see that the first theorem provides a full characterization of imple-
mentable densities in scenario a. The second theorem, which relies in part
on Gel’fand and Pinsker coding [36], provides a sufficient condition for imple-
mentability in scenario b; note that, as originally done in [36], we introduce an
auxiliary random variable X ′

1 to describe the information constraint. These the-
orems therefore allow one to know to what extent a team can coordinate under
the assumed information structure. In general, to determine the ultimate per-
formance in terms of average payoff, an optimization problem for the functional
W (f) has to be solved. The constraints are that: f has to be a density function;
its marginal over (x1, x2) has to be f0; the density f as defined through the con-
sidered theorem has to meet the information constraint. In the next subsection,
we apply the derived general result to a special case of probability distributions
namely, Gaussian probability density functions. This allows one to exhibit a
case where the information constraints can be quite easily expressed and to
establish an interesting link with the work by Costa on dirty-paper coding [30].

3.2.2 Gaussian case

Here, we assume that all variables which intervene in the information constraints
are Gaussian. Agent 2 is assumed to observe the actions of Agent 1 through an
additive white Gaussian noise channel: Y = X1 + Z with Z ∼ N (0, 1). Let σ2

0 ,
σ2
1 , and σ

2
2 respectively denote the variances of X0, X1, and X2. The correlation

coefficient between Xi and Xj , i ̸= j is denoted by ρij . Using these notations
and specializing (3.10) and (3.11) in the Gaussian case the following results can
be proved; proofs are omitted here for obvious space limitations.

Proposition 4 (Information constraint in scenario a). Fix σ2
0. A necessary

and sufficient condition for a joint probability density function fX0X1X2
to be

implementable is that the variances and correlation coefficients verify the fol-
lowing inequality: −(σ2

2ρ
2
01 − 2ρ01ρ02ρ12 + σ2

1ρ
2
02 + σ2

0ρ
2
12 − σ2

0σ
2
1σ

2
2)× (σ2

2ρ
2
01 −

2ρ01ρ02ρ12 + σ2
1ρ

2
02 + σ2

0ρ
2
12 − σ2

0σ
2
1σ

2
2 + ρ202) ≤ 0.

Proposition 5 (Information constraint in scenario b). Fix σ2
0. Let α2 ∈ R. A

sufficient condition for a joint probability density function fX0X1X2
to be imple-

mentable is that the variances and correlation coefficients verify the following
inequality: (−ρ201 + σ2

0 + σ2
0σ

2
1) × (σ2

2ρ
2
01 − 2ρ01 + 2α2ρ12 + σ2

1ρ
2
02 + σ2

0ρ
2
12 −

σ2
0σ

2
1σ

2
2)− σ2

0σ
2
2(ρ

2
01 −σ2

0σ
2
1 +α2

2ρ
2
02 −α2

2σ
2
0σ

2
2 +α2

2σ
2
1ρ

2
02 +α2

2σ
2
2ρ

2
01 +α2

2σ
2
0ρ

2
12 −

2α2σ
2
0ρ12 + 2α2ρ01ρ02 − α2

2σ
2
0σ

2
1σ

2
2 − 2α2

2ρ01ρ02ρ12) ≤ 0.

For finding the information constraint for scenario b, we have assumed that
X

′

1 = X1 + α0X0 + α2X2. This choice is inspired by the Costa’s dirty paper
coding scheme [30]. The parameter α2 is related to the choice we made for the
auxiliary variable in Theorem 3 .

As seen through Proposition 5, the value of the parameter α0 does not play
any role in the constraint, showing that only the correlation level between the
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agents’ actions X1 and X2 has to be tuned properly. The inequality constraint
function of Proposition 5 can be shown to be strictly convex w.r.t. α2 and the
optimum point α⋆

2 is given by:

α⋆
2 =

σ2
0ρ12 − ρ01ρ02

ρ202 − σ2
0(σ

2
2 − ρ212 + σ2

1σ
2
2) + σ2

1ρ
2
02 + σ2

2ρ
2
01 − 2ρ01ρ02ρ12

. (3.12)

When the communication signal-to-noise ratio SNR =
E(X2

1
)

E(Z2) = σ2
1 → ∞, it

is seen that α⋆
2 → 0 and the choice X

′

1 = X1 is optimal. When SNR → 0, we

see that α⋆
2 → σ2

0
ρ12−ρ01ρ02

(ρ2

02
−σ2

0
σ2

2
)+σ2

0
ρ2

12
+σ2

2
ρ2

01
−2ρ01ρ02ρ12

.

As an aside, using the Cauchy-Shwarz Inequality one can show that for any 3

correlated random variables, the bounds for ρ12 are
ρ01ρ02

σ2

0

−
√

(σ2

0
σ2

2
−ρ2

02
)(σ2

0
σ2

1
−ρ2

01
)

σ2

0

≤

ρ12 ≤ ρ01ρ02

σ2

0

+

√
(σ2

0
σ2

2
−ρ2

02
)(σ2

0
σ2

1
−ρ2

01
)

σ2

0

. Thus, one sees that when ρ01 = σ0σ1 and

ρ02 = σ0σ2, we obtain ρ12 = ρ01ρ02

σ2

0

. This is true for all SNR. Incidentally this is

also the condition for both the numerator and the denominator of α∗
2 in (3.12)

to be zero.
In the case of perfect monitoring, i.e. Y = X1, we can show that the

information constraint suitably simplified is in fact convex atleast for the special
case of X0 = X1. (Proof in 3.5.1).

3.2.3 Other Distributions

Since Theorems 2, 3 can be applied to the random variables following any distri-
bution, it is worthwhile to explicit the information constraints for distributions
other than normal. However, both scenarios involve imperfect observations by
the second agent. Since the noise model is AWGN, it is difficult to find closed
form expressions of the information constraint for the variables not jointly dis-
tributed normally. Therefore, in this section, we consider the noiseless case, i.e.
Y = X1. We consider some other standard distributions which might be useful
in modelling other co-ordination problems.

Another difficulty arises due to the inexistence of closed form expressions for
entropy for most joint continuous distributions. Amongst the few distributions
which do, we also need the property that marginalization w.r.t. any variable
gives back the same joint distribution, failing which we might again have the
problem of no closed form expression for entropy. Two common distributions
which satisfy these constraints (Sec. 3.5) are Multivariate Burr and Multivariate
Exponential.

Proposition 6 (Multivariate Burr). When the distribution f(x0, x1, x2) is a
Multivariate Burr with the following pdf (Sec. 3.5):

f(x0, x1, x2) =
Γ(α+ 3)

Γ(α)
c0d0c1d1c2d2

xc0−1
0 xc1−1

1 xc2−1
2

(1 + d0x
c0
0 + d1x

c1
1 + d2x

c2
2 )α+3

(3.13)
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where α, ci, di, xi > 0, i ∈ {0, 1, 2}
then the Information constraint in the case of perfect monitoring can be

written as:

log
(α+ 1)(α+ 2)

α
− α3 + 7α2 + 10α+ 2

α(α+ 1)(α+ 2)
+ logc1d

1/c1
1 − c1 − 1

c1
{ψ(α)−ψ(1)} ≤ 0

(3.14)
where ψ(·) is the standard psi function as defined in mathematics literature.

It is interesting to note that the distribution parameters c0, d0, c2, d2 do not
intervene in the information constraint.

Proposition 7 (Multivariate Exponential). When the distribution f(x0, x1, x2)
is a Multivariate Burr with the following pdf (Sec. 3.5):

f(x0, x1, x2) =
α
θ0
e

x0−λ0

θ0
α+1
θ1
e

x1−λ1

θ1
α+2
θ2
e

x2−λ2

θ2

(e
x0−λ0

θ0 + e
x1−λ1

θ1 + e
x2−λ2

θ2 − 1)α+3
(3.15)

where xi > λi, α, θi > 0, i ∈ {0, 1, 2}

then the information constraint in the case of perfect monitoring can be
written as:

log
(α+ 1)(α+ 2)

αθ1
− (α2 + 7α+ 7)

(α+ 1)(α+ 2)
≤ 0 (3.16)

Again, interestingly, like in the case of multivariate Burr, the parameters θ0
and θ2 disappear from the information constraint.

3.3 Application to the Witsenhausen cost func-

tion

An important 2-Agent co-ordination problem with continuous action alphabets
is the Witsenhausen counterexample (See ?? for a detailed description). The
information structure of the problem is similar to the one considered by us. One
agent has perfect observation of the nature state, whereas the second agent has
noisy observations of the actions of the first agent. For this reason, we consider
the Witsenhausen cost (times minus one) as the payoff function to be minimized
over a large number of stages and reducing it to a convex optimization problem.
We find the limiting performance in terms of coordination for the two-agent
team.

However, note that this is significantly different from the original Witsen-
hausen’s counterexample [19] as we optimize over many stages with one agent
’knowing’ the future realizations of the nature state X0. In the original coun-
terexample, the ’informed’ agent only knows the current realization ofX0. Thus,
the problem has only one stage and the aim is to minimze the expected cost
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for that stage. The problem has been of great interest since it was proposed in
1968, especially because it was one of the first examples where actions played
a dual role of communicating as well as optimizing, rendering the solution of
the optimization problem non trivial. The specific payoff function function we
consider in this section equals minus the Witsenhausen cost function that is,

w(x0, x1, x2) = −
[
k(x0 − x1)

2 + (x1 − x2)
2
]
, k ≥ 0. (3.17)

Note that the notations used here differ from those used in [19].
Although this cost function is inspired by Witsenhausen’s Counterexample,

there are a few very important differences between the application of our theory
to the Witsenhausen’s Cost function and the Witsenhausen’s counterexample.
First, we optimise the average cost over a large time period, unlike in Witsen-
hausen’s Counterexample where the one shot expectation value for the cost is
minimised. Second, we assume strictly causal knowledge at Agent 2, whereas
this is not the case in the original counterexample. To apply our approach to
the original problem, albeit in the repeated case, one will need to consider a
new scenario with the causality condition relaxed. We tackle the orginial coun-
terexample in the second part of this thesis after developing the theory for the
information structure corresponding to Witsenhausen Counterexample.

3.3.1 Numerical analysis

While the optimization problem is well defined, finding the joint distribution
fX0X1X2Y = γ(y|x1)∗fX1X2|X0

∗f0 is not a trivial task. Eventhough f0 is defined
by the problem and γ(y|x1) can be generated given the noise model, we still need
to find fX1X2|X0

, and since the search space is over all possible distributions,
the computational complexity of such a search is very high. Therefore, in this
section we restrict ourselves to two cases which are simpler to handle, complexity
wise, but might be sub-optimal.

Both the cases use the results proven in previous sections for the contin-
uous variables. However for the first case, we use a quantizer to discretise
(X0,X1,X2,Y) and optimise over them. This approach is inspired by the success
of quantizers in finding better solutions for the original Witsenhausen Coun-
terexample. To compare with a strategy most resembling a ’linear control’
strategy, we choose the case where all variables are supposed to be gaussian, for
which we had simplified the information constraint in terms of variances and
covariances in section 3.2.2. Clearly, it would be interesting to compare the two
strategies, to see whether like for Witsenhausen Counterexample, non linear
(discretisation) strategies outperform ’linear’ (and thus continuous) strategies.
This argument is used to motivate our choices of simulations, but the similarities
are not so straightforward.

The following parameters are taken to be given for the problem: k = 1, σ2
0 =

25, and Ez2 = 1 and are common for both simulations (unless specified other-
wise). Also, the information constraint considered is for scenario a.
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Discrete case : we quantize all random variables to take nine values: X0 =
X1 = X2 = Y = {− 24

7 σ0,− 16
7 σ0,− 8

7σ0,− 3
7σ0, 0,

3
7σ0,

8
7σ0,

16
7 σ0,

24
7 σ0}, with

σ0 = 5. Indeed, as we consider the continuous random variable X̃0 ∼ N (0, σ2),
we partition uniformly the continuous space that X̃0 is defined over, so that
99.99 % of the probability mass function lies in the chosen interval. It is well
known that considering the interval [−4σ, 4σ] achieves this. We then calculate
the transition probabilities P (Y |X1) where Ỹ = X1 +Z, Z is supposed to be a
Gaussian random variable: Z ∼ N (0, 1), and Y is the discrete random variable
that corresponds to Ỹ . This problem is computationally simpler as it is easy
to calculate entropies for discrete random variables. The optimization problem
can be solved using convex optimization algorithms. We search for the joint
distribution over X0 ×X1 ×X2 which minimizes the expectation of the Witsen-
hausen cost function. This approach is similar to the one used in [37], except for
the cost function and the information constraint which takes into account the
observation noise for Agent 2. It gives us an approximation to the continuous
case and valuable ideas as we will explain now.
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P
X1
 when SNR = −10 dB

P
X1
 when SNR = 10 dB

P
X1
 when SNR = 40 dB

Figure 3.1: Optimal probability distribution of X1 at different maximum SNRs.
SNR=40 dB is the optimal distribution globally

Results : In Fig 3.1, for low SNR (-10dB), the probability is almost 1 for
X1 = 0. This is logical as σ2

1 = 0.1 and thus Agent 1 does not have too much of
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a choice. For medium SNR (10 dB), we see the probabilities diverging slightly
and resembling a Gaussian distribution. The same distribution is observed from
SNR = 14 dB onwards as this leads to minimum cost. This can be seen from
the graph of expected payoff vs SNR, Fig 3.2. At 40 dB, one sees a distribution
with higher variance but whether it can be a gaussian is tough to speculate
given the lack of points.

The salient feature of this approach is that it does not suppose any distribu-
tion for the variables a priori, and thus finds the optimal distribution, which is
not necessarily Gaussian. However, it only searches for finite action alphabets,
thus not attaining optimality in the general continuous case.

Gaussian Case : Guessing the optimal distributions to be Gaussian, we
find a feasible set of variances and covariances which satisfy the information
constraint calculated in Section 3. The feasible set is found by quantizing the

search space for all the parameters. The search space are as follows:
σ2

1

σ2
z

∈
(−10, 40)dB ,

σ2

2

σ2
z
∈ (−20, 13)dB , and ρ01, ρ12, ρ02 ∈ (0, (σ0σ1, σ1σ2, σ2σ0)). The

other constraints of the optimization problem are trivially satisfied since we are
taking all distributions to be probability distributions from the beginning.

For a given set of variance and covariance values which satisfy the in-
formation constraint, we find the expected payoff by evaluating the integral
´

x∈{X0×X1×X2}
f(x)w(x)dx. We do so using Monte Carlo simulations by ran-

domly generating x0, x1 and x2 (100000 draws) which follow the joint distribu-
tion f(x) and averaging over the cost for the randomly generated triplets. We
search over all the elements of the feasible set exhaustively to find the optimal
joint Gaussian distribution which optimizes the Witsenhausen cost function.

Results : In Fig 3.2, we see that as E
σ2

1

σ2
z
(which could be looked at as Signal

to Noise Ratio (SNR)) increases, the expected cost reduces initially and then
becomes constant. This is because on the x-axis, we are considering the maxi-
mum SNR available, and in both the cases, one sees that after a certain SNR*,
the payoff remains constant as the agents choose strategies with SNR*.

We notice that the discrete strategy does better than the continuous gaus-
sian strategy and while this is not conclusive proof, it leads us to suspect that
discretisation does better than continuous alphabets, which would be similar to
the original Witsenhausen problem where discrete Non-Linear strategies were
shown to outperform the best affine strategies. Although this might just be an
artefact of gaussian variables being sub-optimal distributions for our problem.

For the Gaussian case, the optimal (σ∗, ρ∗) = (σ∗
1 , σ

∗
2 , ρ

∗
01, ρ

∗
02, ρ

∗
12) was found

to be (4.6, 5.3, 4.8, 5.1, 4.9) and the optimal expected cost E(w)∗ associated with
it to be 18.64. The information constraint is numerically found to be saturated
for the optimal point. Note that the optimal correlations ρ∗ are not at their
maximum values, given by σiσj ≥ ρij . This is precisely the information con-
straint which prevents the correlations to be at their maximum values, thus
penalising future communication by Agent 1 and preventing the agents to co-
ordinate better.
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Figure 3.2: Scenario a; Plot of Expected payoff vs SNR for both the cases.
One sees that the discrete strategy quickly beats the all-gaussian strategy, and
achieves a much lower optimal cost

Ideally one should be able to do more extensive simulations for the discrete
case, so as to get a better idea of the optimal distribution which could then be
tackled using an approach similar to the gaussian case. However, the computa-
tional complexity prevents us from doing so currently.

3.4 Conclusions

We generalized the information constraint for the scenarios discussed in the
chapter from a discrete case to a continuous case, showing equivalence between
implementable distributions and reachable payoffs. This result is independent
of the cost function, but it depends on the strategies and information struc-
tures. Thus we created a general framework for tackling problems with similar
information structures, as well as showed a method of generalizing information
constraint found for discrete cases to continuous ones. We also found an inter-
esting link between scenario b and [30] which needs to be further explored. Since
Witsenhausen cost function is an important area for research, we applied our
framework to optimize this cost function in our scenario. While we could not
provide simulations which solved the general optimization problem described in
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the chapter, we did gain some insights by simplifying the problem and reducing
the computational complexity.

Further possibilities of exploration include better simulations with other
types of distributions to see if they do better than Gaussian distributions, quan-
tizing the alphabets with more points so as to approach continuity, as well as
proving our results for other type of strategies and information structures. To
compare a repeated version of Witsenhausen counterexample, one would need
performance limit characterization with a different Information structure, sim-
ilar to ones discussed in [9].

3.5 Appendix

3.5.1 Proof of Convexity of Information constraint for the

Gaussian Case

The information constraint in the case of perfect monitoring can be given by
substituting Y = X1 in the theorem 2:

Hf (X0) +Hf (X2)−Hf (X0, X1, X2) ≤ 0 (3.18)

where f is the joint distribution f(x0, x1, x2). Assume f to be a multivariate
Normal distribution whose pdf is given by:

f(x) =
1

(2π|Σ|) 1

2

e
1

2
x
T
Σx (3.19)

Σ is the covariance matrix Σij = EXiXj Without loss of generality, we can
assume the mean vector to be zero as the entropy does not depend on the mean.
The entropy for the distribution f is:

Hf (X0, X1, X2) =
1

2
log(2πe|Σ|) (3.20)

Using (3.18) and (3.20) and simplifying, we get the following conditions for
the parameters of the distribution f :

P0P2 + 2πe(P0ρ
2
12 + P1ρ

2
02 + P2ρ

2
01)− P0P1P2 − 2ρ01ρ02ρ12 ≤ 0 (3.21)

where ρij is the correlation between variables Xi, Xj , i ̸= j, {i, j} ∈ {0, 1, 2}.
and Pi is the variance of the variable Xi.

To check the convexity of the Information Constraint, we calculate the Hes-
sian of the function w.r.t. the control variables {P1, P2, ρ01, ρ02, ρ12} in that
order. The symmetric Hessian matrix can be expressed as follows:
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H(IC) =




0 −2πeP0 0 4πeρ02 0
−2πeP0 0 4πeρ01 0 0

0 4πeρ01 4πeP2 −4πeρ12 −4πeρ02
4πeρ02 0 −4πeρ12 4πeP1 −4πeρ01

0 0 −4πeρ02 −4πeρ01 4πeP0




(3.22)

To prove the convexity of the IC function, it suffises to show that the hessian
matrix is positive semi-definite. One of the tests to show this is to find the
eigenvalues of the above matrix and see their signs.

To analyse the above matrix, let us consider a simpler case:

Case 1 - X0 = X1 : In that case, P1 = P0 and ρ01 = (P0P1)
(1/2) = P0. Thus

the IC becomes a function of only 4 parameters, one of which is specified by the
problem. The hessian matrix thus reduces to 3×3 matrix and can be expressed
as follows:

HR(IC) =




0 0 0
0 4πeP0 −4πeP0

0 −4πeP0 4πeP0


 (3.23)

If the above matrix has nonnegative eigenvalues then the matrix is positive
semi-definite. For HR(IC), the eigenvalues are {8πeP0, 0} which are both non-
negative. Thus the hessian of the function is positive semi-definite and thus the
Information constraint is convex in this case.

3.5.2 Marginal of a Multvariate Burr distribution

Consider a bi-variate Burr distribution with the following pdf:

f(x1, x2) =
Γ(α+ 2)

Γ(α)
c1d1c2d2

xc1−1
1 xc2−1

2

(1 + d1x
c1
1 + d2x

c2
2 )α+2

(3.24)

where α, ci, di, xi > 0, i ∈ {1, 2}

Let us now consider marginalising w.r.t. x2 and see what we obtain:

ˆ

x2

f(x1, x2)dx2 =

ˆ

x2

Γ(α+ 2)

Γ(α)
c1d1c2d2

xc1−1
1 xc2−1

2

(1 + d1x
c1
1 + d2x

c2
2 )α+2

dx2 (3.25)

=
Γ(α+ 2)

Γ(α)
c1d1c2d2x

c1−1
1

ˆ

x2

xc2−1
2

(1 + d1x
c1
1 + d2x

c2
2 )α+2

dx2

(3.26)
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To solve the integral, consider the substitution y2 = xc22 . Thus dy2 =
c2x

c2−1
2 dx2. The expression thus simplifies to:

Γ(α+ 2)

Γ(α)
c1d1c2d2x

c1−1
1

ˆ ∞

y2=0

xc2−1
2

(1 + d1x
c1
1 + d2y2)α+2

1

c2x
c2−1
2

dy2 (3.27)

=
Γ(α+ 2)

Γ(α)
c1d1d2x

c1−1
1

ˆ ∞

y2=0

1

(1 + d1x
c1
1 + d2y2)α+2

dy2 (3.28)

=
Γ(α+ 2)

Γ(α)

c1d1x
c1−1
1

dα+1
2

ˆ ∞

y2=0

1

(
1+d1x

c1
1

d2
+ y2)α+2

dy2 (3.29)

=
Γ(α+ 2)

Γ(α)

c1d1x
c1−1
1

dα+1
2


− 1

α+ 1

1

(
1+d1x

c1
1

d2
+ y2)α+1



∣∣∣∣∣∣

∞

0

(3.30)

=
Γ(α+ 2)

Γ(α)

c1d1x
c1−1
1

dα+1
2

(
1

(α+ 1)

dα+1
2

1 + d1x
c1
1

)
(3.31)

=
Γ(α+ 1)

Γ(α)

c1d1x
c1−1
1

1 + d1x
c1
1

= f(x1) (3.32)

Thus we can see that marginalisation of bivariate Burr distribution w.r.t.
to one random variable gives back the reduced Burr distribution for 1 variable,
with the same parameters as the definition of the bivariate Burr distribution.
This can easily be generalised for multivariable Burr distributions.

3.5.3 Proof of Proposition 6

Using the expression for entropy of a multivariate Burr distribution [38], we can
write the information constraint for the case when f(X0, X1, X2) follow a joint
multivariate burr distribution.
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H(X0) +H(X2)−H(X0, X1, X2)

=− log(α) + (α+ 1){ψ(α+ 1)− ψ(α)} − logc0d
1/c0
0 +

c0 − 1

c0
{ψ(α)− ψ(1)}

− log(α) + (α+ 1){ψ(α+ 1)− ψ(α)} − logc2d
1/c2
2 +

c2 − 1

c2
{ψ(α)− ψ(1)}

−
(
−

2∑

i=0

(log(α+ i)) + (α+ 3){ψ(α+ 3)− ψ(α)} −
2∑

i=0

logcid
1/ci
i

+
2∑

i=0

ci − 1

ci
{ψ(α)− ψ(1)}

)

=log
(α+ 1)(α+ 2)

α
+ 2(α+ 1){ψ(α+ 1)− ψ(α)} − (α+ 3){ψ(α+ 3)− ψ(α)}

+ logc1d
1/c1
1 − c1 − 1

c1
{ψ(α)− ψ(1)}

=log
(α+ 1)(α+ 2)

α
+ 2(α+ 1)

1

α
− (α+ 3)(

1

α
+

1

α+ 1
+

1

α+ 2
) + logc1d

1/c1
1

− c1 − 1

c1
{ψ(α)− ψ(1)}

=log
(α+ 1)(α+ 2)

α
− α3 + 7α2 + 10α+ 2

α(α+ 1)(α+ 2)
+ logc1d

1/c1
1 − c1 − 1

c1
{ψ(α)− ψ(1)}

3.5.4 Marginal of a Multvariate Exponential distribution

Consider a bi-variate Exponential distribution with the following pdf:

f(x1, x2) =
α
θ1
e

x1−λ1

θ1
α+1
θ2
e

x2−λ2

θ2

(e
x1−λ1

θ1 + e
x2−λ2

θ2 − 1)α+2
(3.33)

where xi > λi, α, θi > 0, i ∈ {1, 2}
Let us now consider marginalising w.r.t. x2 and see what we obtain:

ˆ

x2

f(x1, x2)dx2 =
α

θ1
e

x1−λ1

θ1
α+ 1

θ2

ˆ ∞

λ2

e
x2−λ2

θ2

(e
x1−λ1

θ1 + e
x2−λ2

θ2 − 1)α+2
dx2 (3.34)

To solve the integral, consider the substitution y = e
x2−λ2

θ2 . Thus dx2 =
θ2
y dy. The integral thus simplifies to:
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α

θ1
e

x1−λ1

θ1
α+ 1

θ2

ˆ ∞

1

y

(e
x1−λ1

θ1 + y − 1)α+2

θ2
y
dy (3.35)

=
(α)(α+ 1)

θ1
e

x1−λ1

θ1

ˆ ∞

1

1

(e
x1−λ1

θ1 + y − 1)α+2
dy (3.36)

=
(α)(α+ 1)

θ1
e

x1−λ1

θ1

ˆ ∞

1

1

(e
x1−λ1

θ1 + y − 1)α+2
dy (3.37)

=
(α)(α+ 1)

θ1
e

x1−λ1

θ1
−1

α+ 1

(
(e

x1−λ1

θ1 + y − 1)−(α+1)
)∣∣∣

∞

1
(3.38)

=− (α)

θ1
e

x1−λ1

θ1

(
(e

x1−λ1

θ1 + y − 1)−(α+1)
)∣∣∣

∞

1
(3.39)

Note that limy→∞(e
x1−λ1

θ1 + y − 1)−(α+1) = 0 since α > 0. Thus, we get :

− (α)

θ1
e

x1−λ1

θ1 (−((e
x1−λ1

θ1 + 1− 1)−(α+1))) (3.40)

=
(α)

θ1
e

x1−λ1

θ1 (e
x1−λ1

θ1 )−(α+1) = f(x1) (3.41)

3.5.5 Proof of Proposition 7

Using the expression for entropy of a multivariate exponential distribution [38],
we can write the information constraint for the case when f(X0, X1, X2) follow
a joint multivariate burr distribution.

H(X0) +H(X2)−H(X0, X1, X2)

=− log(
α

θ0
) + 1− log(

α

θ2
) + 1−

(
−(log(

α

θ0
) + log(

α+ 1

θ1
) + log(

α+ 2

θ2
)

+(α+ 3)(
1

α
+

1

α+ 1
+

1

α+ 2
− 3

α

)

=log
(α+ 1)(α+ 2)

αθ1
− (α2 + 7α+ 7)

(α+ 1)(α+ 2)
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Chapter 4

Information theoretical

bounds

To know that
we know what we know,
and to know that
we do not know what we do not know,
that is true knowledge.

Nicolaus Copernicus

4.1 Introduction

In this part we turn our attention to causal information structure. Compared
to the previous part, the essential difference is that in this part, no agent is
assumed to have a non-causal knowledge of the nature state. In other words, no
agent knows what the future holds in store. This assumption is more applicable
to real world scenarios as one would be hard-pressed to find applications where
the future realizations of the nature state is known with reasonable accuracy to
some agent.

Not knowing the future realizations removes the information assymetry in-
herent in the previous part. This has the following ramnifications :

1. While the previous part dealed entirely with coding through actions, also
known as implicit communication in the literature, communication be-
tween agents does not figure in this part (apart from the application to
Witsenhausen Counterexample). This is simply because no agent has any
information about the future realizations of the nature state to commu-
nicate. In the case where an agent cannot even observe the present real-
ization of the nature state, communication through actions indeed plays
a significant role. We briefly discuss this scenario in the application to
Witsenhausen Counterexample.
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2. Also, throughtout the previous part, we showed that the performance lim-
its of coordination schemes with non-causal information structures are
characterized by information constraints on the implementable distrbu-
tions. In this section, since there is no information transfer between the
agents, information constraints do not appear in our analysis.

3. In this part, due to the symmetry in the information structure, we consider
co-ordination scenarios involving more than 2-Agent teams. This greatly
enhances the applicability of the framework developed in this part.

While in the previous part, we contended ourselves with the performance
limits of coordination schemes, without ever expliciting them, in this part, we
shall attempt to provide practical coordinaton schemes for certain important
technological challenges. To this effect, we exploit a recent theorem derived
in [8] to find power control functions which may exploit the available knowl-
edge optimally (in the long run). We devise a decentralized offline algorithm
which requires knowledge of the statistics of the nature state X0 as well as the
noisy channels ℸ(Si|X0) of the feedback for each agent. Based on the feedback
available to each agent about the nature state, we are capable of devising co-
ordination schemes for any application following the given information structure.
We specifically apply our framework to the case of power control schemes in wire-
less communications for various objectives, as well as co-ordination schemes in
Smart Grids to even out the consumption of electrcity during a day.

The key insight in the proposal is that most decentralized decision schemes
proposed in literature hinge on game theoretic frameworks, which does not
necessarily attemmt to achieve social optimality. This is because co-operation
is not assumed while considering Nash Equilibria, and the schemes proposed,
though robust and fair, do not use the information avialable to agents to co-
ordinate optimally. Our attempt is to get as close as possible to using the
knowledge available at each agent in determining optimal decision functions
maximizing co-ordination and thus sum-performance.

In this chapter, we develop this general framework, together with the pro-
posed algorithm to devise practical schemes. Indeed, one of the salient features
of the proposed framework is to provide robust decision functions by account-
ing for noise by incorporating noise statistics while determining the decision
functions. In Sec. 4.2, we recall the theorem from [8] which characterizes the
implementable distributions under the information structure considered. We
exploit this theorem to devise a sub-optimal algorithm for finding decision func-
tions in Sec. 4.3.

4.2 Performance limits of an N-Agent Coordi-

nation problem

Consider a coordination problem where N Agents are trying to coordinate their
decision Xi ∈ Xi, i ∈ N = {1, ..., N}. The coordination is done with respect to
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a nature state represented by X0 ∈ X0 with the goal of optimizing a common
payoff function w(x0, x1, x2, ...xn) over a long time period T . The nature state
X0 for applications to wireless communications, for example, could be channel
gain coefficients gij = |hij |2, with gij being the channel gain of the link between
transmitter i and receiver j. X0 denotes a random nature state which affects the
common payoff function for the system and is not controlled by the coordinating
agents. The realizations of the nature state X0,t at each time instant t are i.i.d.
and follow a probability distribution ρ. In wireless communications ρ is typically
an exponential distribution for each channel gain gij . Our aim is to characterize
all the achievable expected payoffs under this certain information structure over
a long time period T , T → ∞.

Firstly, we need to formally define the information structure under consid-
eration. At every instant t, agent i is assumed to have an image or a partial
observation Si,t of the nature state X0,t with respect to which all agents are
coordinating. Again, for wireless communications, this could be the knowledge
of local Channel State Information at Transmitter (CSIT), i.e. transmitter i
observes a noisy version (in general) of only the direct link channel gain gii.
One could imagine other kinds of information available at the transmitters: for
example, transmitter i observes all the links gji, ∀j. The observations Si,t are
assumed to be generated by a memoryless channel whose transition probability
is denoted by ℸi(Si,t|X0,t). All agents have to make their decision Xi,t based
on this information received. Formally, the sequence of decision functions for
agent i, fi,t, is defined as:

fi,t : St
i × U −→ Xi (4.1)

(si(1), si(2)...si(t), u(t)) 7−→ xi(t) (4.2)

where St
i = Si(1) × Si(2)... × Si(t) is the discrete observation alphabet till the

instant t and Xi is the action chosen by agent i with |Si|, |Xi| < ∞. U is the
alphabet of the auxiliary variable U which is discussed in more detail later. si(t),
u(t) and xi(t) are the realizations of the corresponding variables at instant t.

The problem is said to be decentralized as each agent chooses its action
independently based on the information received by it. Since the nature state
is an external random variable, and thus not controled by agents, the quantity
to be optimized is the expected objective function:

EQ[w(X)] =
∑

x∈X

w(x0, x1, ..., xN )Q(x0, x1, ..., xN ) (4.3)

where X = (X0, X1, ..., XN ), x = (x0, x1, ..., xN ), and X = X0 ×∏N
i=1 Xi.

Q(x0, x1, ..., xN ) is the joint probability distribution of the variables affecting
the payoff. An important point to note is that since expectation is a linear op-
erator, optimizing the expected payoff is equivalent to finding the optimal dis-
tribution Q(x0, x1, ..., xN ). However, the optimization problem is not so trivial
as indeed there are certain restrictions on the distributions Q that are imple-
mentable given the imposed information structure. We now define the notion
of an implementable distribution.
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Definition 6 (Implementability). Let the information structure be as defined
in (4.1). The probability distribution Q(x0, x1, ..., xN ) is implementable if there
exist decision functions σi,t such that as T → +∞, we have for all x ∈ X ,

1

T

T∑

t=1

QX0...XN ,t(x0, ..., xN ) −→ Q(x0, ..., xN ) (4.4)

where QX0X1...XN ,t = QX1,...XN |X0,i × ρ is the joint distribution induced by σi,t
at stage t.

As seen before, the expected payoff is characterized by the probability dis-
tribution Q over all the variables that intervene in the payoff function. Thus,
the time averaged expected payoff w is said to be achievable, if and only if the
corresponding distribution Q is implementable. The following theorem char-
acterizes the achievable payoffs that are implementable under the information
structure (4.1).

Theorem 4. [8] Assume the random process X0,t to be i.i.d. following a prob-
ability distribution ρ and the available information to the transmitters Si,t to
be the output of a discrete memoryless channel obtained by marginalizing the
conditional probability ℸ(s1, ..., sN |x0) . An expected payoff w is achievable in
the limit T → ∞ if and only if it can be written as:

w =
∑

x0,x1,...xN ,
u,s1,...sN

ρ(x0)Pu(u)ℸ(s1, ...sN |x0)×
(∏N

i=1 PXi|Si,U (xi|si, u)
)
w(x0, x1, ...xN )

(4.5)

where U is an auxiliary variable which can be optimized and PXi|Si,U (xi|si, u)
is the probability that Transmitter i, chooses action xi after observing si, u.

The auxiliary variable U is an external lottery known to the transmitters
beforehand, which can in general, be used to achieve better coordination. How-
ever, we do not exploit this auxiliary variable in our analysis, and thus we shall
omit it in the following analysis for greater clarity.

While theorem 4 provides us with all the achievable payoffs given the in-
formation structure defined in equation (4.1), it does not provide optimal se-
quences of decision functions fi,t that might help achieve this payoff. One of
the main aims of this chapter is precisely to provide a procedure to obtain those
decision functions with reasonable complexity. To achieve this, certain simpli-
fications and observations need to be made. Firstly, instead of looking for a
sequence of functions fi,t, we shall only search for optimal stationary strategies,
i.e. fi = fi,t∀t. This induces no performance loss as the nature state is con-
sidered to be i.i.d. for every timeslot, and thus the optimal strategies are also
time-independent.

Another important observation is that theorem 4 characterizes all achievable
payoffs in terms of conditional probabilities (PX1|S1

, ..., PXN |SN
). However, if

one considers the optimal achievable payoff, the conditional probabilities (PXi|Si

simplify to mere functions fi(si) due to proposition 8.
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Proposition 8. Restricting non deterministic conditional probability PXi|Si
in

theorem 4 to deterministic functions fi(si) induces no loss in optimality

Proof. Assume that at the optimal point, there exists one agent (agent i) with
actions, labelled X1

i , X
2
i , with non zero probabilities. If it were the case, the

agent could always increase the common team payoff by choosing the action
which gives better performance with probability 1; thus leading to the condi-
tional probability PXi|Si

being a deterministic function fi(si). This is a clas-
sical argument to show that the solution of a multilinear program lies at the
vertices.[39]

where the decision functions of interest, fi, are formally defined as follows:

fi : Si −→ Xi

si(t) 7−→ xi(t)

With these simplifications, we can now restate the theorem 4 for optimal
achievable payoff w⋆ in terms of the optimal decision functions f⋆i .

w⋆ =
∑

x0,s1,...sN

ρ(x0)ℸ(s1, ...sN |x0)w(x0, f⋆1 (s1), ..., f⋆N (sN )) (4.6)

Note that in terms of optimality, all the simplifications made till now induce
no performance loss. However, jointly finding the optimal functions f⋆i (si) still
entails high complexity. Indeed the complexity of joint optimization could be
prohibitive if the number of agents N or alphabet size |Xi|, i ∈ 0, ..., N is too
high. In the following section, we endeavour to devise a distributed algorithm,
which although sub-optimal, is tractable complexity-wise.

4.3 Algorithm for finding sub-optimal decision

functions

To reduce the complexity of the optimization problem further, we use the sub-
optimal approach of sequential best response dynamics [40], with each user
sequentially updating their decision function to maximize the common payoff.
This approach consists of each transmitter choosing the best decision function,
keeping the other decision functions constant, and each transmitter doing so
sequentially within an iteration. This procedure is is repeated till convergence
is achieved, typically in a few iterations. The number of iterations required
for convergence of course depends on the number of agents coordinating, but it
scales up very slowly as algorithms based on best-response dynamics normally
converges very fast [40]. Furthermore, since we are considering a common ’team’
payoff w(x0, x1, ..., xN ), the convergence of best-response dynamics is guaran-
teed (See 9). Note however that BRD procedures do not necessarily converge
to globally optimum solutions. Nonetheless, the decision functions obtained
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by the simplification are typically good and easily outperform solutions which
guarantee convergence to Nash Equilibria.

To apply best response dynamics, we rewrite the expected utility isolating
the sum w.r.t. si, the observation of agent i.

w =
∑

x0,s1,...sN

ρ(x0)ℸ(s1, ...sN |x0)w(x0, f1(s1), ..., fN (sN ))

=
∑

x0,si

ρ(x0)ℸ(si|x0)
∑

s−i

ℸ(s−i|x0)w(x0, f1(s1), ..., fN (sN ))

where s−i represents the vector comprising of observations of the agents other
than agent i.

To update the function fi(si) for agent i, all we need is an action correspond-
ing to each possible observation si. Thus, for every fixed si, we need to find the
action xi which maximizes the expected payoff. More formally, we define the
following quantity

θ(si, xi) =
∑

x0

ρ(x0)ℸ(si|x0)
∑

s−i

ℸ(s−i|x0)w(x0, xi, f−i(s−i)) (4.7)

In essence, this is the expected common utility w.r.t. the nature state xO,
if agent i choses the action xi assuming that it knows the decision functions
of all other agents f−i(s−i). The update of the function fi for the observation
si is then simply argmaxxi

θ(si, xi). Updating the function for each possible
observation completes the update for an agent, and this procedure is repeated
sequentially for other agents. The algorithm is said to have converged if after
an iteration, i.e. one round of function updates for all agents, the difference in
the functions from the previous iteration and the updated functions is below
the tolerance level.

An important point to note is that the transmitters can run this algorithm
offline as all they need to know are the channel statistics ρ, and the channel
ℸ. This helps in exploiting the decision functions for the entire timeslot during
which the nature state remain constant. Thus we exploit the channels from
the very start of a timeslot as opposed to taking some time initially to find the
optimal functions online. The latter case is considered in some decentralized
solutions such as the algorithms based on water-filling techniques proposed in
[41], [42]. It is easy to see that this algorithm necessarily converges for a common
payoff, as stated in 9

Proposition 9. Algorithm 1 converges for a common performance criteria
w(x0, x1, ..., xN ).

Proof. The result can be proved by calling for an exact potential game property
[43] (the argument may hold in the more general case in which the transmitter
have different performance criteria).
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Algorithm 1: Proposed decentralized Algorithm for finding decision func-
tions for all agents

inputs : Xi, ∀i ∈ {0, ..., N}, w(x0, x1, ...xN ), ∀x,
ρ(x0),ℸ(s|x0), ∀x0, f initi , ∀i ∈ {1...N}

output: f∗i (si, ui), ∀i ∈ {1...N}

Initialization: f0i = f initi , iter = 0, itermax = 100

while ∃i : f iter−1
i − f iteri ≥ ϵ AND iter ≤ itermax OR iter = 0

do

iter = iter + 1;

foreach i ∈ {1, . . . , N} do

foreach si ∈ Si do

f iteri (si) = argmaxxi
θ(si, xi) using (4.7);

end

end

end

With these tools in hand, we are ready to tackle some practical co-ordination
problems from various domains. While the simplifications made to reduce the
complexity might induce some performance laws, we shall see in the next chapter
that it still performs better than the decentralized solutions currently proposed
by the literature.
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Chapter 5

Application to N-Agent

team coordination problems

The hallmark of a good theory is that
with hindsight, it is evident.

Anonymous

In this chapter, we shall consider few specific applications of the theory de-
veloped in Chap. 4. In particular, we shall consider 3 applications: 1) Power
Control in parallel interference channel for wireless communications 2) Power
consumption scheduling for applications in Smart Grids 3) Finding decision
functions for the famous Witsenhausen Counterexample. The applications are
mutually independent, even though they all rely on the same underlying frame-
work developed in the previous chapter.

5.1 Power Control in Wireless Communications

As an application, we treat the well studied problem of optimal power control
in interference channels ([44], [45], [46]) and show that not only does our frame-
work attain various payoffs better or identical to the state-of-the-art, it also
provides the optimal power control functions in diverse scenarios. The scenar-
ios considered resemble those of [41], [42]. These works propose ad-hoc solutions
for specific utilities but not a generic framework which directly provides a power
control function that aims at exploiting the available and arbitrary information
as optimally as possible. Indeed our approach is very general and can be used
to treat more complex and interesting scenarios, e.g. by considering different
common objectives, robust power control taking the noisy communications into
account, vectorial optimization for power allocation schemes etc.

Eventhough the framework developed previously is very general and con-
ducive to optimizing different utilities such as sum-rate, sum-throughput, sum-
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energy [47], we develop the utility sum-energy utility in detail. This choice is
motivated by the increasing importance of energy efficiency for wireless com-
munications, as well as the difficulty for finding appropriate solutions for it.
For example, [48] showed that binary power control is almost optimal for max-
imizing sum-rate. [49] later showed that thresholding strategy is optimal for
sum-rate utilities if only binary power control policies are considered. We gen-
eralize those results for the case of energy-efficiency by proposing a combination
of thresholding strategy and channel inverson policy, and show its full relevance
in the problem of optimal power control for energy efficient communications.

Indeed, for the case of power control in wireless interference channels, these
assumptions have been paid some attention. The necessity of minimizing the
information required at the transmitters for coordination led to approaches pro-
posed in [49], [48], [50]. They consider only local channel state information at
the transmitters (CSIT). This is also important for reducing the complexity of
the optimizations to be performed. For sum-rate maximization, the scenario
considered here is comparable to a single-carrier version of the iterative water
filling algorithm (IWFA) [51]. In the case of sum-energy utility, channel in-
version strategy was proposed by [1], whereas the multi-carrier version of the
problem was considered by [52]. Decentralization of the power control, or for
that matter for any wireless network design, is the reason why game theory has
been extensively applied to such problems [40]. We thus compare our results
to game theoretic equilibria analysis as most of the decentralized optimization
literature only guarantees convergence to Nash equilibria.

We structure this section as follows: In 5.1.1, we describe the system model
of the power control problem in a parallel interference channel. We then proceed
to provide simulation results in 5.1.2 with detailed analysis about various aspects
of the algorithm proposed in the case of sum-energy utility.

5.1.1 System Model

Consider N single-antenna Transmitter-Reciever pairs Txi, Rxi, i ∈ {1, 2..., N}
communicating over a single-carrier parallel interference channel with the chan-
nel coefficients being gij ∈ Gij , i, j ∈ {1, 2..., N} being the index for Transmitter
i and Receiver j respectively. The channel coefficients could take values in the
discrete alphabet Gij . The transmitter i transmits at powers Pi ∈ Pi. Due to
the power constraint at every transmitter, the total power consumed by trans-
mitter i should not exceed Pmax, i.e. Pi ∈ [0, Pmax]. The utility ui for the pair

Txi, Rxi, is typically a function of SINR γi =
Pigii

σ2 +
∑

i ̸=j

Pjgji
. Without loss of

generality, we shall consider σ2 = 1 henceforth. The SNR Pmax/σ
2 will be thus

regulated by varying Pmax

A well accepted model of statistics for the channel gains gij = |hij |2 is
Rayleigh fading. In this model, due to central limit theorem, the real and the
imaginary components of hij follow a normal distribution, and thus the channel
gain gij follows exponential distribution (|hij | follows a Rayleigh distribution).
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We also assume that all channel gain distributions are independent of each other
and that their realizations are i.i.d.

We shall consider the following common utilities for our analysis.

• Sum-rate: wR(P , g) =
∑

i∈N

log(1 + γi) ;

• Sum-goodput: wG(P , g) =
∑

i∈N

Ω(γi) ;

• Sum-energy: wE(P , g) =
∑

i∈N

Ω(γi)

Pi
.

Typical functions for Ω are Ω(γ) = e−
c
γ [53], where c > 0 or Ω(γ) = (1 −

e−γ)M where M ≥ 1 is the packet length [1]. In simulations, we chose the
former function and further supposed c = 1 as it only changes the optimal
solutions by a multiplicative constant. Note that Proposition ?? holds for the
above payoffs as we are considering sums of individual payoffs which trivially
satisfy the required condition for convergence.

The following table explicits the relation between the input variables for
Algo. 1 and the corresponding quantities for the application to power control
defined above.

General model Power Control Application

Nature State - X0 Channel state - (g11, ..., gNN )
Decision of Transmitter i - Xi Power emitted Pi ∈ Pi

w(x0, x1...xN ) wR(P , g), wG(P , g), wE(P , g)

ρ(x0)
∏N

i=1

∏N
j=1 e

−gij , gij = E(gij)

ℸ(si|x0) si = gii or si = ĝii
f initi fi(s) = Pmax, ∀s ∈ S

Table 5.1: Correspondence between the general framework and its application
to power control

5.1.2 Numerical Results

Simulation Setup

For Gij , since the channel coefficients gij follow exponential distribution, a uni-
form discrete set is typically not a good representative due to varying proba-
bilities for every representative. In our simulations, for |Gij | = n, we find the
representative points such that the interval corresponding to each point has an
equal probability 1/n. However, the size of alphabets |Gij | = n, ∀i, j ∈ {1, ...,K}
is kept same for all channel gains. The average value for the direct channel
gains µii = 1, and the interfering channel gains µij = 0.3, i ̸= j, unless other-
wise stated. The power levels Pi are quantized uniformly in dB in the interval
[−30dB, 10dB].
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Figure 5.1: The figure represents the power control functions fi provided by
Algo. 1 for the three performance metrics under consideration for power control
problem. In particular, it is seen that for maximizing sum-energy, the obtained
power control function exhibits a threshold under which transmission should
not occur for a given transmitter.

While considering no noise in the feedback received at transmitter i, the
observation alphabet is considered to be the same a

Features of the Algorithm for applications in Wireless communica-

tions

Here, we shall illustrate the salient features of the proposed algorithm for power
control applications. To illustrate the features, we will concentrate on the util-
ity sum-energy as it is the most novel and important result found using the
algorithm.

• Power Control for different utilities : In Fig. 5.1, we plot the power control
functions fi obtained using Algo. 1 for the case N = 2 against gii the
direct channel gain between the ith Transmitter-Receiver pair. We do
not consider noise in the channel estimation for the moment, and thus
in this case si = gii. Three different utilities are considered, sum-rate,
sum-energy, and sum-goodput.

For the case of sum-rate, it is known that binary power control Pi ∈
{Pmin, Pmax} is optimal for 2 Transmitter-Receiver pairs [48]. Moreover,
as shown in [49], optimal power control functions with only local CSIT

60



CHAPTER 5. APPLICATION TO N-AGENT TEAM COORDINATION

PROBLEMS

(gii) amounts to Pi(gii) = Pmin if gii ≤ g∗ and Pi(gii) = Pmax otherwise.
It is reassuring to find that our results verify this. Thus, in the case of
sum-rate with local CSIT, we find exactly the same results as state-of-the-
art.

In the case of sum-energy, we see that all the available power Pmax is
not used. Indeed, even in the case of only one Transmitter-Receiver pair,
the optimal power control function is c/g11. We see that there is also
a threshold value of gii below which, Pi = Pmin. Above the threshold
value, the function is similar to the optimal solution obtained in the case
of only one Transmitter-Receiver pair. The threshold function is also seen
as solution in the case of sum-packet rate. This is because the utility
function is not monotonous w.r.t. SINR. To the best of our knowledge,
the power control functions found for sum-energy are new. Solutions in
literature do not propose thresholding of power control functions to help
reduce interference in case of bad direct channel gains.

• Performance gain w.r.t. Nash Equilibria: As stated before, since our
framework is co-operative, it easily outperforms game theoretical solutions
which guarantee convergence to Nash equlibria under certain conditions.
In Fig. 5.2, we compare the performance of the power control function
with that of Nash equilibrium for different SNRs in the case of sum-energy
and sum-rate. Thus, on the y− axis we see the relative performance gain
(wf − wNash/wNash in % ) of our algorithm when compared to average
payoffs obtained by Nash equilibrium. Current state-of-the-art proposes
solutions which converge to the Nash equilibrium. Thus, the solutions are
generally not optimal while maximizing common utilities that are sum of
the individual utilities. The evaluations for obtaining average expected
payoffs was done for 106 channel realizations.

• Different feedback : Another salient feature of our framework is its ability
to incorporate different kinds of feedbacks available at transmitters. This
helps in analyzing various possible feedbacks which could help improve the
performance. However, the possible additional information at transmitter
does come at a cost, and we do not analyze the tradeoff involving this com-
munication cost and the performance gain. Also, we see that additional
feedback does not bring significant performance gain.

The more informed choice evidently brings some gain in payoff, as seen
from Fig. 5.3. However, suprisingly we see that there is very little dif-
ference between the feedback being the vector gji∀j ∈ {1, ..., N} and just
the direct channel gain gii. This could be explained by the fact that the
decision function fj(g1j , ...gNj) for user j, j ̸= i does not depend on gji.
Thus the additional information does not help in better coordination and
we obtain similar payoffs.

We also see that distributed decision making knowing the global CSI
gij∀i, j ∈ {1, ..., N} performs almost at centralized social optimum. Cen-
tralized social optimum is found through joint exhaustive search for the
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Figure 5.2: Relative performance gain (wf − wNash/wNash in % ) of our al-
gorithm when compared to average payoffs obtained by Nash equilibrium for
sum-rate and sum-energy. The curve for sum-energy saturates as at high SNR,
Pmax is not utilized as power emitted is much lower.
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Figure 5.3: Evaluation of different information available at transmitters for
different levels of interference. Most importantly, one notices that transmitter
knowing the interference channel gains gij ,i ̸= j does not bring any performance
gain.

optimal power levels for every realization of channel coefficients. This is
again an indication of the ’goodness’ of our proposed distributed algo-
rithm.

For a loose lower bound, we consider the case of no feedback to the users.
In the absence of channel feedback but knowing the channel statistics,
each user naively chooses the power level which maximises their utility
on an average assuming no interference. This power level , in the case
of energy efficiency uEE , corresponds to 1/µii which is the mean of the
direct channel coefficient gii.

• Robustness to Noisy Feedback : One of the advantages of our framework
is that it provides optimal power control functions even for noisy channel
estimates. We illustrate this in Fig. 5.4 where power control functions for
different levels of noise in channel estimation are plotted. This noise sim-
ulates the error in estimation due to noise during feedback transmission,
or just simply estimation error of the channel state at the receiver. The
noise for the simulations is gaussian, i.e. ĝii = gii+z where Z ∼ N (0, σ2

z),
with σz ∈ {0, 1, 3}. Notice that since the alphabet Gii is discrete, whereas
the noise is continuous, we requantize the noisy feedback with the same
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Figure 5.4: Influence of channel estimation noise on the power control func-
tions. We see that as noise increases, the optimal power emitted becomes more
uniform. This is intuitive as higher the noise, higher the uncertainty in the
observation leading to same power emitted for all channel gains observed in the
asymptotic case.

alphabet i.e. Si = Gii.

As expected, the power control functions become more uniform at higher
noise levels, as the information received is less reliable, and thus transmit-
ters emit at a power level which maximizes the utility after averaging over
the uncertainty in observation due to the noise.

• Robustness to noisy estimation of channel statistics : So far, we have as-
sumed that the channel statistics µij∀i, j ∈ {1, ...,K} are known perfectly
to everyone. In reality, this might not be the case due to many reasons:
error in estimation of the channel, added noise during the communication
of statistics being a few. To see the influence of this error, we run our
algorithm intentionally using erroneous statistics µ̂ij = µij(1 + Z). Here
Z is akin to percentage error in the estimation of channel statistics, with
z = n corresponding to 100n% error in estimation.

We see form the Fig. 5.5, the average payoff drops off only slightly for
positive Z, i.e. if one overestimates the channels. However, interestingly,
if one underestimates the channels, the average payoffs are considerably
less. This might seem strange at first glance, but closer inspection of the
power control functions for the different cases clarifies the reason for this
phenomenon.

From Fig. 5.6, we see that the threshold value for gii, above which the

64



CHAPTER 5. APPLICATION TO N-AGENT TEAM COORDINATION

PROBLEMS

−1 −0.5 0 0.5 1 1.5 2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Z

A
v
e

ra
g

e
 p

a
y
o

ff
 (

1
05

 M
o

n
te

 c
a

rl
o

 r
e

a
liz

a
ti
o

n
s
)

µ
ii

est
=µ

ii
(1+z),

µ
ij

est
=µ

ij
(1+z)

µ
ii
=1, µ

ij
=0.3

Figure 5.5: Influence of error in estimation of channel statistics on average
payoff. We see that negative error in statistics (underestimation of channels)
leads to worse payoffs than positive error.

transmitter emits, is lesser in the case of negative Z (underestimation).
Moreover, since the chosen power levels are roughly equal to 1/gii, trans-
mitter emits at a very high power level creating high interference. On
the other hand, in the case of positive Z, while the threshold is higher,
the chosen power levels are not much different, and thus there is less loss
in performance.This indicates that its better to overestimate the channel
statistics than to underestimate it.

Analysis of the algorithm

• Discrete alphabets Gij, Pi : Now we shall analyze the influence of dis-
cretization of feedback Si, as well as Power levels Pi on the average payoff
obtained for our algorithm. Indeed, the complexity of the algorithm is
sensitive to the size of these alphabets. Here, we show that the restric-
tions on the alphabets being discrete and small induce virtually no loss
in optimality when compared to much finer discretizations. Furthermore,
the small alphabet provides greater robustness against uncertainty in the
observations and estimations; i.e. noise in feedback, and higher error in
estimation of channel statistics.

For the simple case where number of Tx-Rx pairs , N = 2, we did Monte-
Carlo simulations for the functions found using the Algo. 1 while changing
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Figure 5.6: Power control functions for different positive and negative error in
estimation of channel statistics. It provides an explanation for the greater payoff
loss due to underestimation of channel statistics (negative z). We see that the
threshold λi due to negative error is smaller. This results in higher power emited
Pi which causes interference with other users.
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the cardinality of P and Gij . The cardinality was changed so as to conserve
the equal probability quantization, but also have a nested structure. This
was done to see the true effects of finer discretization. Without doing
so, the difference in the elements of alphabets Gii could blur the general
trends.

There are mainly 3 arguments in favour of discrete alphabets chosen by
us:

1. Due to the payoff function - As shown in [50], for certain utilities,
notably sum-rate, only Binary power control is optimal or quasi-
optimal depending on the number of pairs. For sum-rate, the number
of required power levels is just 2, {Pmin, Pmax}.

2. Feedback noise - In practical scenarios, the feedback received is noisy.
One way to mitigate the noise is to quantize the feedback alphabet
set. We see from Fig. 5.4 that the power levels chosen for different
feedbacks gii is more uniform at higher noise levels. This points at
both, less quantization points for the feedback, as well as less number
of power levels to choose from.

3. Statistical estimation noise - In addition to the feedback noise, the
channel statistics might not be perfectly known either. We again see
that having a small alphabet set (Gii,Pi) indeed helps in ensuring
against the possible error in estimation.

We illustrate this in Fig. 5.7, which is interesting for many reasons.
Firstly, it illustrates the robustness of our algorithm. Even in the
case of z = 1 which corresponds to 100% error in estimation, the
achieved payoffs are comparable to the case with no noise in estima-
tion. Secondly, with more error in estimation, one requires a smaller
feedback alphabet set to reach optimal performance.

From Fig. 5.8, we see that the required card(Pi for achieving ’good’
payoffs is very less too ≈ 20. This, along with Fig. 5.7, shows that the
alphabets Gii,Pi can be discrete and small without inducing much
performance loss.

While in slightly more complex cases (multi-carrier, multi-user scenarios),
the required alphabet sizes may be higher, we argue that due to the mul-
titude of reasons discussed and illustrated, one expects a small enough
alphabet suffices for achieving ’good’ payoffs.

• Complexity : The distributed nature of the algorithm helps in reducing
the complexity of the search for optimal functions. For the noiseless case,
the complexity of the algorithm is O(K.card(Pi)card(Gii)

K2

). We see that
it is exponential w.r.t. number of users K. While this is considerably less
than the case of centralized optimization, it is still prohibitive when there
are many users. To get around this issue, we firstly observe from Fig.
5.9 that the solution found using our algorithm is a combination of two
strategies; thresholding and channel inversion from [1]. We see that unlike
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to many more power levels can be seen. It can be seen that around 20 power
levels are enough for providing reasonable payoffs.
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Figure 5.9: Our algorithm reveals the shape of good power control functions in
the presence of interference. In contrast with related works on energy-efficiency
[1], our work shows that thresholding is required to manage interference effi-
ciently.

[1], we find a threshold below which emitting no power is more optimal,
and over which the function closely follows the channel inversion suggested
by [1].

Therefore, we use the intuition given by the power control policy found us-
ing the algorithm to propose the following simple continuous power control
policy.

Pλi

i =

{
0 if gii ≤ λi
αi

gii
if gii ≥ λi

(5.1)

Using the thresholding policy, we can reduce the complexity for the search
much further. In Fig. 5.10 we compare the scalability of thresholding
strategy (5.1) and Nash equilibrium. Unsurprisingly, we see that our policy
scales much better than Nash Equilibrium as we increase the number
of TX-RX pairs. Indeed, one can show that for Nash Equilibirum, as
K → ∞, Ew → 0. This proves the merit of thresholding strategy for sum-
energy payoff. However, we cheated slightly here by assuming symmetric
channel statistics for all TX-RX pairs which makes finding the optimal
threshold very simple. In the assymetric case, exhaustive search can have
prohibitve complexity beyond 3 TX-RX pairs.
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with Nash Equilibrium. We see that as number of Tx-Rx pairs increase, thresh-
olding strategy does increasingly better, whereas Nash equilibrium payoff falls
to 0

5.1.3 Concluding Remarks

The proposed framework was shown to be relevant in diverse scenarios of single
band interference channel for finding optimal power control functions. Moreover,
the power control functions depend only on local CSIT, thus having the merit of
being implementable in a completely decentralized manner. Also, the solutions
obtained take noise in the estimation of the channel gain into account. All the
above features illustrate the generality of our approach in tackling problems of
power control for maximizing sum-utility functions.

However, the framework can be exploited further for tackling other problems
in wireless communications as well. For example, one could consider the problem
of power allocation in a multi-band interference channel. Also, the auxiliary
variable U was not exploited, which in general will only make the solution more
optimal. Also, the thresholdng strategy could be analyzed better so as to be
robust w.r.t. noisy feedback.

5.1.4 Appendix

Calculation of optimal power control function for 1 user for Energy

Efficiency

Consider a general energy efficiency utility function ui =
Ω(γi)
Pi

.
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At the optimal point:

∂ui
∂Pi

= 0

=⇒ ∂

∂Pi

Ω(γi)

Pi
= 0

=⇒ 1

P1

−Ω(γi)

P 2
i

+
∂Ω(γi)

∂γi

∂γi
∂Pi

= 0

Thus, with just one Tx-Rx pair, there exists a γ⋆1 , the solution to the equation
γ⋆i Ω

′(γ⋆i )− Ω(γ⋆i ) = 0, which maximises its utility.

Now, consider a specific throughput function - Ω(γi) = e
−c
γi . For this case, we

find that γ⋆i = c. Thus, the optimal power control function is simply Pi =
cσ2

gii
.

Nash Equilibrium Calculation - k=2

At the equilibrium point, by definition of Nash Equilibrium, Transmitter i does
not gain anything by changing his transmitted power Pi, assuming the other
player plays P2. Thus

∂ui
∂Pi

= 0

=⇒ ∂

∂Pi

f(γi)

Pi
= 0

=⇒ 1

P1

−f(γi)
P 2
i

+
∂f(γi)

∂γi

∂γi
∂Pi

= 0

To proceed further, we assume the utility function to be of the form f(γi) =

e
− c

γi . The ’best response’ P1 for a given P2 can thus be derived as follows:

cf(γi)− γif(γi)

P 2
i γi

= 0

=⇒ γi(P
eq
1 , P2) = c

P eq
1 =

c(σ2 + P2g21)

g11
(5.2)

Now, by symmetry, we know that P eq
2 = c(σ2+P1g12)

g22
. Substituting P eq

1 in the

place of P1 (because at equilibrium, both would play their equilibrium values),
we get:
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P eq
1 =

cσ2(g22 + cg21)

g11g22 − c2g12g21
, P eq

2 =
cσ2(g11 + cg12)

g11g22 − c2g12g21
(5.3)

Clearly, depending on the realisations of gij and the constant c, one of the
players might exceed the maximum powerPmax], in which case the other player
will play its best response power to attain its γ∗. Same logic applies if P eq

i < 0.

5.2 Power Consumption Scheduling functions for

Smart-Grids

5.2.1 Introduction

In this section, we shall divert our attention to the problem of power consump-
tion scheduling functions for Smart-grids, which is also essentially a problem
of co-ordination among the consumers to achieve certain common goals for the
loads on the electricity distribution networks. With the advent of Smart Grids,
it has become possible to send information via the network to the appliances and
consumers and vice versa. The information thus generated and relayed could be
used to schedule the consumption of electrcity (for charging or using appliances)
in order to mitigate the effects of uneven consumption on the network.

An important problem for modern electrical networks is to design intelli-
gent strategies for use of electrical appliances (Electric Vehicles (EV) being an
example) which are able to exploit the knowledge they have about the non lo-
cal demand or the electricity price to reach a certain objective. The objective
can be to reduce the impact of electricity consumption on the distribution net-
work or to minimize the monetary charging cost paid by the consumer. The
most standard approach is to design a charging scheme which assumes a perfect
knowledge of the non local demand (or price) and evaluate the performance of
the corresponding algorithm by feeding the latter with a forecast or noisy ver-
sion of the non local demand. Illustrative and recent examples of this approach
are given e.g., by [54] [55], [56], [57]. In the quoted references, the energy need
of a given user is computed by assuming perfect knowledge of the electricity
price or the exogenous demand namely, the part of the demand which is not
controlled by the smart consuming devices. The obtained power scheduling
schemes have essentially or exactly the water-filling structure i.e., that holes in
terms of price or demand are exploited in the first place. One of the drawbacks
of this approach is the potential lack of robustness of the designed algorithm to
imperfect forecast.

Among existing works which take uncertainty into account in the design
of power scheduling scheme we find in particular [58]. Therein the authors
propose a threshold-based scheduling policy which accounts for past and current
prices and the statistics of future prices; each appliance consumes according to a
rectangular profile and starts consuming when the price is below a time-varying
threshold (”threshold policy”). In [58] the price values are assumed independent
from the load level in each time slot while this assumption is relaxed in [59].
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Additionally, in the latter reference the authors also consider uncertainty in
the algorithm design part but the uncertainty concerns load and user energy
consumption needs, and not prices as in [58]. Another example of relevant work
where price uncertainty is considered in real-time demand response model is
[60]; therein robust optimization is exploited. In [61], the problem is addressed
by stochastic gradient based on the statistical knowledge of future prices.

To our knowledge, there is no contribution in the literature related to the
present work which treats the problem of optimality of a power consumption
scheduling scheme under given arbitrary imperfect observation or forecast. We
use the results developed in Chap. 4 to apply to the model proposed in Sec.
5.2.2. This provides us with suboptimal but typically good power consumption
scheduling schemes to be determined numerically. A thorough analysis on very
practical scenarios is done in Sec. 5.2.3. In Sec. 5.2.4, the main assets of
the proposed approach are summarized and several extensions to address its
limitations are provided.

5.2.2 Proposed system model

We consider a set of K ≥ 1 smart electrical appliances. Each appliance aims at
scheduling its power consumption to maximize a certain payoff function, which is
provided further. To this end, it exploits the available knowledge about a state
which affects its payoff. In this application, this state is the exogenous load
namely, the part of the load which is not controlled by the smart consuming
devices but the proposed model and derived results can be directly used for
other types of states such as the electricity price. To define the exogenous load
and other key quantities such as the power consumption vectors, we need to
specify the timing aspect. Time is assumed to be slotted in stages t ∈ {1, ..., T}.
Typically, a stage may represent a day and T may represent the number of days
over which the payoff is averaged. At the beginning of stage t, appliance k
has to choose a power consumption vector xk = (xk,1, ..., xk,N ). For example,
N = 24 if a stage is a day and comprises 24 time-slots whose duration is one
hour. The choice of consumption vector should exploit perfect observations of
the past exogenous load vectors x0(1), ..., x0(t − 1) (note that x0(t) is a vector
of size N) and a signal which is an image or forecast of the system state and
appliances actions at stage t; this signal is denoted by sk ∈ Sk. For example,
such a signal may be a forecast of the exogenous load or the total load, the total
load being equal to the sum x0(t) +

∑K
k=1 xk(t). For k ∈ {0, 1, ...,K}, the set

in which xk lies is assumed to be discrete and is denoted by Xk. This choice
is not only motivated by the fact that both power and time can be discrete in
real systems, but also to obtain a solution robust against forecasting noise; the
latter issue has been addressed recently in [2] where rectangular consumption
profiles typically perform better than continuous profiles.

The computational complexity of the algorithm proposed in Sec. 4.3 depends
on the cardinality of the set X0 (the set in which the exogenous load lies). In
general, assuming X0 to be discrete amounts to approximating the exogenous
load vectors. To obtain a good approximation, we propose to apply the principal
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General model Power consumption scheduling

Nature State - X0 PCA analysis of R̂L

Decision of Agent k - Xk Starting time to charge
w(x0, x1...xK) Joule Losses or Transformer Ageing
ρ(x0) Based on empirical data and PCA analysis
ℸ(sk|x0) DMC with transition probability to nearest

neighbour under L2 norm

Table 5.2: Correspondence between the general framework and its application
to power consumption scheduling

component analysis (PCA) [62] on exogenous load vectors. The exogenous load
vector for stage t is approximated as follows:

x̂0(t) = µ̂
L
+

M∑

i=1

ai(t)vi (5.4)

where µ̂
L
is defined by

µ̂
L
=

1

L

∑

t∈L

x0(t) , (5.5)

L being a set of L samples which is available to estimate µ̂
L
; typically, it may

correspond to data measured during the preceding year. The vectors vi are the
eigenvectors of the following matrix

R̂L =
1

L

∑

t∈L

[
x0(t)− µ̂

L

] [
x0(t)− µ̂

L

]′
(5.6)

where the notation [ . ]′ stands for transpose. One of the advantages of using

such a decomposition is that for a given number of basis vectors M (the basis
is then (v1, · · · , vM )), the quality of approximation is maximized; more specif-

ically, the expected distortion E

∥∥∥X̂0 −X0

∥∥∥
2

is minimized. To minimize the

latter quantity we will exploit the Lloyd-Max algorithm [63] in the numerical
analysis; it will be applied to the vector a = (a1, ..., aM ).

We trace the average normalised distortion 1
L

∑
t∈L ∥x0(t)− x̂0(t)∥2/∥x0(t)∥2

against the number of basis vectors M that we use in our modeling of X0 to
find a ’good’ value for M . x̂0(t) = µ̂

L
+
∑M

i=1 aivi where a is argmina ∥x0(t)−
µ̂
L
−∑M

i=1 aivi∥2 using convex optimisation algorithms. As we see from Fig.
5.11, the average distortion is more sensible to a few basis vectors vi. Thus, by
accepting a distortion of 5%, we can reduce the basis space from 15 to 4 which
enables us to model X0 with fewer coefficients a and reasonable accuracy.
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Figure 5.11: Average normalised distortion against number of basis vectors
chosen. We see that 4 vectors are enough to approximate X0 for an error
tolerance level of 5%.

The stage or instantaneous payoff function of appliance k is denoted by
uk(x0, x1, ..., xK). In the simulations we will assume that uk can be written as

uk(x0, x1, ..., xK) =
∑N

n=1 uk,n

(
x0,1 +

∑K
k=1 xk,1,

· · · , x0,n +
∑K

k=1 xk,n

)
(5.7)

where n is the index for the hours of the day and uk,n is the consumption
. Note that the cost function is not instantaneous inside a stage, but for a
given day as seen from the equation 5.7. The function uk,n can e.g., represent
the price charged to the consumer, Joule losses, battery aging, or distribution
transformer aging at time-slot n. To define the average payoff of appliance k
which is the function to be maximized by appliance k, the key notion of power
consumption scheduling strategies needs to be defined. A strategy for appliance
k is a sequence of mappings which is defined by:

σk,t : X t−1
0 × Sk → Xk

(x0(1), ..., x0(t− 1), sk(t)) 7→ xk(t)
(5.8)
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The average payoff of appliance k is then defined by

Uk(σ1, ..., σK) = E

[
1

T

T∑

t=1

uk (X0(t), X1(t), ..., XK(t))

]
. (5.9)

The expectation operator is used since the load is typically considered as a
random process. Thus in full mathematical generality, the appliances decisions
have also to be considered as random processes. The two main technical prob-
lems we address in this paper are the characterization of achievable average
payoffs when T grows large and the determination of a practical scheme which
provides good performance. Note that we assume a general structure for the
knowledge sk. Indeed, we assume that (s1, ..., sK) are the outputs of a general
discrete memoryless channel (see e.g., [25] for more details) whose conditional
probability is Γ(s1, ..., sK |x0, x1, ..., xK).

Create X0 - For good modeling of the given data to create accurate X̂0,
we do PCA analysis of R̂L as explained in section 5.2.2. We thus obtain M
’significant’ vectors. We then find the continuous vectors aC(t) which lie in the

set RM and minimise the distortion ∥X̂0(t) − X0(t)∥2, for every day t. We
discretize the continuous alphabet using vectorial Lloyd max algorithm, with
the aC(1), ..., aC(t) and specifying the number of points for quantization. The
representatives thus generated is our alphabet X0.

Create noise model - Since we evaluate the average payoffs for white Gaussian
noise x̂0 + z, where Z ∼ N (0, σ2I), whereas our algorithm uses a DMC channel
Γ, the probability of error due to the noise should be taken into account in the
algorithm. To reduce the complexity, it is assumed as a first approximation that
only the closest neighbour of X̂0 in terms of the Euclidean norm ∥.∥2 can be
gotten by error as the approximation of exogenous profiles which should have
been approximated by X̂0. To estimate the probability of error, 100 draws of
a white gaussian noise are added to the realizations of a training set of the
exogenous load over {1, · · · , T} and the number of times when a realization
leads to the closest neighbour instead of the right approximation are counted.
Then, the probability of error is estimated as the ratio of this number of errors
over the number of times when a given element of X0 should have been chosen.

5.2.3 Numerical Analysis

Simulation setup

The simulation setup assumed here by default corresponds to a Texan district
in 2013 in which the smart electrical appliances are electric vehicles. A stage
is a period from 8 am a given day to 8 am the day after: there are N =
24 time-slots of 1 hour each. The power consumption of the smart electrical
devices will be scheduled only during the ”nighttime” corresponding here to
the period 5 pm - 8 am the next day, i.e. n ∈ {10, · · · , 24}. The whole time
period is then {1, · · · , T = 365}. Data corresponding to the exogenous profiles
(x0(1), · · · , x0(365)) are obtained from the Pecan Street database [64]. To get
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a realistic profile at the scale of a district, we sum the hourly consumption
data available for Texan households and normalize the aggregated profile as
explained a little further. We verified using clustering algorithms of Matlab
(function kmeans) that on an average over 3 years, the real consumption of the
aggregated profile in summer and winter were considerably different. Winter
corresponds to [1, 120] ∪ [301, 365] and summer to [121, 300] Thus we chose to
only run the simulations for summer, with some tests for winter to see if the
results of summer conform with those of winter.

In the case of EV charging, the strategy sets Xk are constrained by the mo-
bility parameters and the charging need. Based on a recent French survey [65],
the arrival µa

k, departure time µd
k and number of time-slots needed to charge Ck

are taken to be the closest integers of realizations of Gaussian random variables
µ̃a
k ∼ N (2, 0.75), µ̃d

k ∼ N (14.5, 0.375) and C̃k ∼ N (2.99, 0.57). Motivated by
battery aging consideration [66], it is furthermore assumed that charging pro-
files are rectangular: charging is done at a constant rate, here 3kW, and cannot
be stopped. Note also that profiles without interruption are even required in
some important scenarios encountered with home energy management [67][68].
A strategy is then define only by the time to start charging and the strategy set
is reduced to Xk = {µa

k, · · · , µd
k −Ck + 1}, the potential time to start charging.

One important assumption in our analysis is the memorylessness of the payoff
function. Regarding the instantaneous payoff function, two cases will be dis-
tinguished. The first considers a ”memoryless” payoff with uk(x0, x1, ..., xK) =

−∑N
n=1(x0,n +

∑K
k=1 xk,n)

2. This is convenient to express Joule losses or a
price charged to the consumer depending on the total load at the scale of
the district as in [54]. The second corresponds to payoffs ”with memory”,
which means that uk,n depends on the whole past of the total load (x0,1 +∑K

k=1 xk,1, · · · , x0,n +
∑K

k=1 xk,n) as opposed to only on the current load x0,n+∑K
k=1 xk,n. In the context of a distribution network, such a cost can be trans-

former aging. To be very brief, the most influential parameter for the trans-
former aging is known to be the hot-spot (HS) temperature [69]. Indeed, the
transformer isolation damage is directly related to the HS temperature: aging
is exponentially accelerated (decelerated) when the HS temperature is above
(resp. below) its nominal value [69]. This is mathematically translated as

uk,n(x0,1 +

K∑

k=1

xk,1, · · · , x0,n +

K∑

k=1

xk,n)

= e0.12×FHS

t (x0,1+
∑K

k=1
xk,1,··· ,x0,n+

∑K
k=1

xk,n))−11 , (5.10)

which provides the instantaneous aging relatively to the nominal case. The
transformer HS temperature evolution law FHS

t , which has a memory, is as-
sumed to follow the ANSI/IEEE linearized Clause 7 top-oil-rise model, which is
described in [70]. To make the simulations reproducible we provide the values
of the different parameters of FHS

t : ∆t = 0.5 h; T 0 = 2.5h (thermal inertia)
for all simulations concerning the transformer, γ = 0.83; R = 5.5; ∆θOFL = 55
C; ∆θHS

FL = 23 C. The initial parameters for this dynamics with memory are
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assumed to be the same from one stage to an other given that the transformer
temperature has enough time to converge to the same value at 5 pm for dif-
ferent values of this temperature at the beginning of the day at 8 am. in a
given season. These are set to θHS

0 = 37 C and x0,9 = 30W (resp. θHS
0 = 75

C and x0,9 = 87W) in winter (resp. summer). Defining a larger number of
periods than the two (winter and summer) seasons with initial parameters for
each period could improve the accuracy of the estimation of the transformer
lifetime but would need more data to approximate the exogenous load. With
these parameters, the exogenous load is normalized such that without EV the
transformer lifetime (inversely proportional to the average aging) is 40 years
(standard value for nominal conditions).

The functions found using our algorithm and iterative Water Filling al-
gorithm are applied to a noisy version of data for exogenous load (Summer
2013) and real costs are calculated assuming that the vehicles use the deci-
sion functions given by the respective algorithms. Note however, that we sup-
pose that the vehicles already know the statistics for the future. The knowl-
edge of future statistics was also assumed in [58]. We use some typical val-
ues for Forecasting Signal to Noise Ratio FSNR, namely FSNR = 7dB as
used in [58] to be coherent with the literature. FSNR is defined as FSNR =

10 log10

(
1

σ2

day

1
NT

T∑

t=1

N∑

n=1

X0,n(t)
2

)

Simulation Results

In our results, we distinguish 2 kinds of vehicles, informed vehicles and unin-
formed vehicles. By informed vehicles, we mean vehicles who receive a signal
corresponding to the exogenous demand X0(t) and take their decisions accord-
ingly, whereas the uninformed vehicles recieve no signal, and thus follow a ’plug
and charge’ policy, since they have no information. The total number of vehicles
for the simulations was kept constant at 10. We chose to plot relative payoff
loss (utotal/unoEV ) − 1, which measures the payoff loss when compared to the
case of no EV.

In Fig. 5.12, there are 2 key messages: 1) Algo 1 is much more robust to
noise, infact in Fig. 5.12, the curves for 2 different noise levels merge. IWFA
however is sensible to noise, which is not surprising. Since we impose rectangular
charging profiles on the vehicles, they will not react to noise since it might just be
a transient optimal period to charge. 2)We see that as the number of informed
players increase the difference between our algorithm and iterative Water filling
algorithm (IWFA) increases.

In Fig. 5.13 we see that the general trend discussed for Fig. 5.12 is true
irrespective of the year. Moreover all the 3 years show similar patterns, thus
showing that the good performance at higher penetration is not by chance. We
could not test for more years as that information is not available in a similar
format.

We see in Table 5.3 that the ratio between the average costs of Algo 1
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Figure 5.12: Relative payoff loss (utotal/unoEV ) − 1 in percent) against pene-
tration percentage. For more discussion on the choice of this metric refer to
[2]. This figure illustrates the robustness of our approach as well as increased
importance at higher penetration rates.
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Figure 5.13: Relative payoff loss ((utotal/unoEV )− 1 for different years for both
algorithms in comparison. We see that Algorithm 1 does considerably better
every year.
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Number of Vehicles 1 2 3 4 5 6 7 8
Transformer Aging 0.99 0.98 0.96 0.96 0.94 0.93 0.91 0.89
Energy Loss 0.99 0.98 0.96 0.96 0.94 0.94 0.92 0.90

Table 5.3: Ratio of uAlgo1/uIWFA for different number of vehicles, supposing
that all the vehicles are informed (in posession of a signal)

and IWFA decreases as the number of vehicles increases. This implies that as
the number of vehicles increases, Algo 1 does increasingly better than IWFA.
Moreover, the same pattern is observed for the cost function taken to be Energy
losses. This vindicates our claim that the algorithm proposed by us is generic
and could be applied to any cost function to provide ’good’ strategies.

Since the cost also depends on the need d which represents the needs of
the electric vehicles, we generated d using the general statistics for demand
observed. We generated 3 d vectors independently with the same distribution,
and found that all the results discussed above hold. Same is true for the winter
periods as defined in the simulation setup. All the following tests of robustness
show the general nature of our approach.

5.2.4 Concluding remarks

Numerical results show the full relevance of the proposed PCA-based model.
Remarkably, an accurate approximation can be obtained by using only a few
eigenvectors and applying the Lloyd-Max algorithm on the weights to be ap-
plied to these eigenvectors. The proposed framework to characterize the best
performance of power consumption scheduling exploits a very recent result in
information theory and also allows to derive robust scheduling functions. Simu-
lations show that in the presence of uncertainty on the exogenous load forecast,
the obtained functions outperform iterative Water-Filling based schemes. Most
importantly, we provide a general framework which can be applied to various
scenarios, and guarantees electric vehicle using functions achieving good perfor-
mance for every scenario.

The proposed framework can be extended. While the discrete alphabet as-
sumption seems like a good assumption to obtain robust scheduling schemes,
the i.i.d assumption on the exogenous load would need to be relaxed e.g., into
a milder assumption such as a Markovian process, the i.i.d. assumption being
made for the performance characterization theorem. Another direction to fur-
ther improve performance is to maximize the expected payoff jointly and not by
using a distributed algorithm. A more accurate study with mobility data from
Texas could constitute an interesting extension of this work but as a first step,
we assumed that the French ones could be applied also in the context described
here.
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5.3 Witsenhausen Counterexample

The story will not be complete without applying theorem 4 to the Witsenhausen
Counterexample (WC) which is of great interest due to the complex interplay
between communication and control. Before exploring the WC, we would like
to restate theorem 4 in a form more adapted to its information structure which
involves agents observing each others’ actions. This particularity leads to a
combination of the two parts of this thesis since witsenhausen counterexample
is a fundamental signalling problem involving implicit communication amongst
the agents, while at the same time the information structure of the problem
is causal, in the sense that no agent is aware of the future realizations of the
nature state with respect to which they co-ordinate.

5.3.1 Performance limits with agents observing each other

While it may seem counterintuitive that the agents can observe each others’
actions while trying to co-ordinate with only causal information at every instant
t, this could happen if every t itself is composed of many stages j, j ∈ {1, ..., J}.
For all stages j, the nature state remains constant and the payoff is decided at
last stage J once all agents have made their decision. In such a scenario, an
agent who needs to take a decision at stage j can, in general, observe the actions
chosen by some agents during the previous stages j ∈ {1, ..., (j − 1)} without
violating causality. By Yi, we denote the set of images of actions taken by all
the agents that agent i can observe without violating causality before taking its
decision. More formally, a more general information structure for the sequence
of decision functions fi,t of player i for instant t could be stated as follows:

fi,t : St
i × U × Yi −→ Xi (5.11)

(si(1), si(2)...si(t), u(t), yi(t)) 7−→ xi(t)

where St
i = Si(1)×Si(2)...×Si(t) is the discrete observation alphabet of system

state x0 upto and including the instant t, Xi is the decision alphabet for agent
i for all instants t , with both |Si|, |Xi| < ∞. The main difference between 4.1
and 5.11 is that agent i can also observe an image of the actions of other agents
Yi if permitted by the information structure. As before, U is the alphabet of the
auxiliary variable U which could in general serve as a co-ordination key for the
agents. si(t), u(t) and yi(t) are the realizations of the corresponding variables
at instant t.

This leads to the generalization of Theorem 4, where we now simply add the
fact that agent i can observe the actions chosen by other agents Yi as long as
the actions were chosen at a stage before agent i chooses it’s decision.

Theorem 5. Assume the random process X0,t to be i.i.d. following a probability
distribution ρ. X0,t is known to agent i via its image Si,t which is the output of
a discrete memoryless channel (DMC) obtained by marginalizing the conditional
probability ℸx0

(s1, ..., sN |x0). Agent i also observes the actions of other agents
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within the instant t denoted by Yi. Assume the observation Yi to also be an
output of a DMC denoted by Γi(Yi|XI) =

∏
i′∈I Γ(yi′ |xi′), where I denotes the

set of all agents whose actions are observable by agent i, and XI denotes the
set of actions chosen by the agents belonging to the set I. An expected payoff w
is achievable in the limit T → ∞ if and only if it can be written as:

w =
∑

x0,x1,...xN ,
u,s1,...sN

ρ(x0)Pu(u)ℸ(s1, ...sN |x0)×
(

N∏

i=1

PXi|Si,U,Yi
(xi|si, u, yi)

∏

i′∈I

Γi(Yi|XI)

)
×

w(x0, x1, ...xN )

(5.12)

where U is an auxiliary variable which can be optimized and PXi|Si,U,Yi
(xi|si, u, yi)

is the probability that Transmitter i, chooses action xi after observing si, u, yi.

Now, we can develop an algorithm on similar lines as Algo 1, but with the
added structure of the agents observing each others’ actions in a perfectly causal
and ordinated manner. This induces the function updates to be carried out
stage wise within the instant t. Note that this does not affect the complexity of
the algorithm much as all players still sequentially update their functions. After
stating the algorithm for the general case of N agents and J stages per timeslot,
we shall treat the special case of Witsenhausen counterexample (N, J = 2).

From Theorem 5, we see that the average common payoff for the agents is
characterized by the conditional probabilities of an action being chosen for each
agent PXi|Si,U,Yi

(xi|si, u, yi). However, an important point to note, as has been
previously explained in proposition 8, is that at optimal payoff the strategies
cannot be non-deterministic. If it were the case for any agent, it could always
choose to give probability 1 to the action optimising the objective to reduce
the payoff. This is due to the multilinear nature of the optmization. Thus
without loss in optimality, we shall restrict the search to deterministic decision
functions fi defined in 5.11. In [71] they start the optimization assuming non
deterministic controllers and slowly impose determinism to obtain the optimal
transport functions. While this approach is different from what we propose, the
arguments used therein for imposing determinism is the same.

Writing a general algorithm for the discussed information structure in this
section is pretty complex in general. Therefore, we first turn our attention to
Witsenhausen counterexample which is a special case of the scenario described
in Theorem 5. For this special case, an algorithm is much less convoluted and
understandable. The agents are 2-controlers (N = 2) co-ordinating with each
realization of nature state x0(t) being i.i.d. and each instant t composed of 2
stages (J = 2). In the following section, we describe the problem as well as the
progress made until now in understanding the open problem.

5.3.2 Background - Witsenhausen Counterexample

The Witsenhausen Counterexample [19] provides a well studied and important
coordination problem which has a hierarchy of information amongst coordinat-
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ing agents. Witsenhausen showed that affine controls, even for control problems
even with linear system, quadratic costs and gaussian noise - the LQG problem,
may not be optimal in some cases as was previously believed. This is an artifact
of the hierarchy of the information structure as explained by [72] [73].

The counterexample is a deceptively simple 2-Agent coordination problem
which captures the essence of tradeoff between optimising control costs and
communication costs at the same time. Reference [74] provides a very lucid
description of the problem along with its importance due to the established links
with computer science. However, the illustrative scenario constructed therein, of
stabilizing an inverted pendulum, is too contrived in my experience of presenting
the problem. For a more natural illustration, reconsider the scenario of a truck
and a car coordinating to follow a path introduced in Sec. 1.2. Also, imagine
that the visibility is very low, i.e. the truck can only see the immediate path
ahead. The truck has two main objectives, follow the path, as well as signal
the path to the car behind given that the car too has a blurry observation of
the movement of truck. The communication-control trade-off comes in because
manipulating a big and heavy truck is costly.

The trade-off can be better understood by considering extreme cases. Imag-
ine the truck is really heavy. In that case, the truck will simply follow the path
and let the car behind guess the path ahead based on its blurry observation of
the truck’s movements. On the other hand, if the truck is ultra-light and easily
manipulable, it will not be too costly for it to move more than required taking
into account how blurry the vision of the car behind is. Thus, based on how
heavy the truck is, and how blurry the vision of the car is, they have to choose
the right strategy for coordination. It turns out that finding optimal strategies
for coordination problems with such information structure is fiendishly difficult,
if not impossible.

The problem can be formally stated in the following manner (See Fig. 5.14).

• Uncontrolled signals - x0, z where x0 represents the initial system state
and z represents the noise in the observation for the second agent. System
state x0 ∼ N (0, σ2

0) whereas the noise is normalized z ∼ N (0, 1).

• Decision functions - First agent observes the system state perfectly and
chooses its action x1 = u(x0). The second agent has a noisy observation
y = x1 + z of the first agent’s action and chooses its action x2 = v(y).

• Common Objective - Choose control functions u, v to minimize the ex-
pected cost : min

u,v
w = E[k(x1 − x0)

2 + (x2 − x1)
2], k ≥ 0

In the case of classical information structure, i.e. Agent 2 is privy to the
information available at Agent 1, the optimal strategy is trivial. Agent 1 would,
in that case, choose to take no action, resulting in x1 = x0 and zero first stage
cost. Since Agent 2 knows x0, and by extension x1, it would simply choose
x2 = x0, which would result in the second stage cost to be zero too. Thus these
solutions are trivially linear. This is sometimes also referred to as centralized
optimization in the literature. A natural conjecture was that linear controllers
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Figure 5.14: Schematic diagram of Witsenhausen counterexample

are optimal even when Agent 2 does not know the observation at Agent 1.
Witsenhausen debunked this conjecture by firstly finding the optimal linear
controllers and their corresponding costs in this scenario, and then showing
that for certain values of parameterk, a simple non-linear controller can achieve
lower costs for certain values of the parameters k, σ2

0 . The non linear control
strategy proposed by Witsenhausen was a 1-bit quantizer of the state x0 into
either σ0 or −σ0. Eventhough Witsenhausen in [19] proved the existence of an
optimal solution, it has, until now, not been found.

Instead, the difficulty in finding optimal control functions was further high-
lighted by [75] which showed that the discrete version of the problem is NP-
complete. NP-complete problems is a class of problems for which no efficient
solutions have yet been found. Due to their proven equivalence, if an efficient
solution is found for any NP-complete problem, it would immediately resolve
the other NP-complete problems.

Nonetheless various heuristic based approaches have been suggested over the
years . The convergence of the costs of these sub-optimal approaches for the
benchmark case k = 0.2, σ0 = 5 (Fig. 5.15) leads us to believe that they are
very close to optimal controllers. However, most approaches give no guarantee
of their optimality. Most works use the following observations made in the
original Witsenhausen’s article [19] to simplify the problem.

• For an optimal strategy u, E[u(x0)] = 0 and E[u(x0)
2] ≤ 4σ2

0 .

• Given a decision function u respecting the above criterion, the optimal
decision for second agent v(·) is simply the MMSE:

v⋆u = E[u(x0)|y] =
Ex0

[u(x0)ϕ(y − u(x0)]

Ex0
[ϕ(y − u(x0)]

(5.13)

where ϕ(·) is the normalized gaussian density function.

The optimal expected cost, taking into account these observations thus re-
duces to a function of just the decision of Agent 1.

w⋆(u) := w⋆(u, v⋆u) = kE[(x0 − u(x0))
2] + 1− I(Du) (5.14)

where I(Du) is the Fischer Information of the variable y
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Figure 5.15: Evolution of minimum payoffs achieved by different approaches
over the last 20 years. We see that the minimum has not reduced much since
2001, leading us to suspect that, atleast for the benchmark case, we might be
close to optimal.

I(Du) =

ˆ

(
d

dy
Du(y))

2 dy

Du(y)
(5.15)

Du(y) =

ˆ

ϕ(y − u(x0))ϕ(x0; 0, σ
2
0)dx (5.16)

where ϕ(x; 0, σ2
0) is the gaussian density function with mean 0 and variance

σ2
0 . Most heuristics thus search only for the optimal function u(·), as the optimal
v⋆u(·) is fixed given optimal u(·).

Some of the important early works analyze the reasons for the difficulty of the
optimization problem given the non-classical information structure. In [22], the
authors consider a slightly modified version of the Gaussian test channel (GTC),
which has the same information structure as Witsenhausen counterexample, but
admits optimal linear solutions. More precisely, if we consider the following
payoff with the same information structure, the optimal controlers are linear:

w = E[k(x1 − x0)
2 + (x2 − x0)

2] (5.17)

The authors then consider a more general decentralized control problem
with the GTC and WC being special cases. They show that linear strategies
are optimal in the case when there is no product-term of the decision variables
in the cost function. They argue that the presence of such a product term is
the reason for non-linear strategies outperforming linear strategies. To prove
their result, they consider the problem as a communication problem where first
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agent is the encoder trying to transmit a gaussian source over a gaussian chan-
nel. An important step in their approach is the use of information-theoretic
data-processing inequality to convexify the problem, making it tractable. [29]
argue that one could use a more general optimization approach for solving prob-
lems with non-classical information structure. They suggest transforming the
problem into another equivalent optimization problem with linear objective but
necessarily non-convex constraints. Thereafter, one could use the technique of
convex relaxation to ’convexify’ the constraints and find a solution for the new
optimization problem. If then, one can find a solution which is also feasible
for the original non-convex constraints, then one has found the solution. They
show that the data processing inequality used in [22] does precisely this.

Various studies have shed more light on the properties of the optimal control
functions. In particular, from the vantage of optimal transport theory, [80]
shows that the optimal function u(·) is monotonically increasing and has a real
analytic left-inverse. This disproved the conjecture in [81] that optimal solution
is a multi-step piecewise constant function.

Notwithstanding the intractability of the problem, attempts have been to
find best possible solutions from various viewpoints. [76] supposes the decision
function u(·) to be a multi-step function, and uses ordinal optimization to nar-
row down the search for optimal number of steps and break-points. Ordinal
optimization is a numerical method which uses quick and rough estimates using
monte-carlo simulations over the parameter space to narrow down regions of in-
terest. They assume that u(·) is an odd function and consider only the positive
domain of the problem. They find that 2-step functions (4 steps over the whole
domain) have a higher probability of ’good’ payoffs and go on to finetune the
search assuming 2-step functions. [3] takes this approach a step further using 2
new ideas. Firstly, they use integration with the appropriate step size to eval-
uate the cost of a given function, thus speeding up the search allowing them to
analyze more cases of step-functions. Also, they analyze each constant section
of the step function to find more ’sub-steps’ thus reducing the cost further. The
best solution proposed by them is a 3.5 step solution. [77] use approximating
networks to find similar performances as [3] , albeit their method is much more
general. They also apply their method to [22] as a verification test of their
method.

More recently, [79] modeled the problem in terms of potential games consid-
ering the intervals where the step function remains constant as players trying to
optimize a common utility. They then applied the procedure of joint fictitious
state play (JFSP) to converge to best known solutions then. However, due to
the large size of ’players’, it required many more iterations to converge, although
the cost dropped considerably after the first 100 iterations. A similar approach,
albeit not directly inspired, was taken in [23] where they consider each controller
as a player co-ordinating with the other trying to maximize a common utility.
Their approach bears a close resemblance to ours, although we arrive at similar
conclusions from different roots. We shall elaborate the connections in greater
detail after having developed our approach in the next section. We develop a
general framework of finding good coordination between N-agents, given a par-
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ticular order of decision making and information available to the agents. We
apply this framework to the special case of Witsenhausen counterexample.

5.3.3 Algorithm for searching optimal Witsenhausen con-

trol functions

We can now use theorem 5 to devise an algorithm for the Witsenhausen coun-
terexample on similar lines as Chapter 4. As it would probably be clear by
now, witsenhausen counterexample consists of 2 stages, i.e. J = 2. Also, the
first controller perfectly observes the nature state S1 = X0, whereas the second
controller only observes a noisy image of the action chosen by the first con-
troller, i.e. Y2 = X1 + Z, where Z ∼ N(0, σ2

Z). While it was difficult to write a
general algorithm like we did in Chapter 4, in the specific case of witsenhausen
counterexample, this task is considerably simpler.

Algorithm 2: Proposed decentralized Algorithm for finding decision func-
tions for Witsenhausen Counterexample

inputs : X0, f
init
i , ∀i ∈ {1, 2},

output: f∗1 , f
∗
2

Initialization: f01 (s1) = s1, f
0
2 (y2) = (y2), iter = 0, itermax = 100

while ∃i : f iter−1
i − f iteri ≥ ϵ AND iter ≤ itermax OR iter = 0

do

iter = iter + 1;

foreach x0 ∈ X0 do

f iter1 (x0) = arg min
x1∈X0

∑

y2

P (y2|x1)w(x0, x1, f iter2 (y2)) ;

end

foreach y2 ∈ X0 do

f iter2 (y2) = EX0
(x1|y2) ;

end

end

The algorithm proposed is essentially the same as [23]. However, we imple-
ment the same idea in a slightly different way. The major differences are

• Expectation over X0 - In [23], they take the expectation by generating
106 monte carlo samples of X0. We argue that, as shown in [24], one could
just create a finite model ofX0 by uniform quantization over a finite range.
We argue that doing this, we can achieve good enough performances for
a much smaller complexity.
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• Range of X0 - In [23], the range of X0 is taken to be [−25, 25], without
any justification. We ran our algorithm for different ranges and found that
the range has a role to play in the performance of the algorithm. [3] also
performs ordinal optimization to ascertain the range as well as stepsize of
X0 although they use a different procedure for finding the functions.

• Parameter Relaxation - In [23], due to potentially bad initialization
points, they adopt the technique of parameter relaxation. Essentially,
the parameter k, i.e. the weight of the cost associated at first stage, is
initially taken to be high and slowly decreased to the desired value 0.04,
in approximately 10 steps. We argue that such an arbitrary step is not
required, and one can simply initialize with identity linear controllers i.e.
u(x0) = x0. We see that this converges to equally good solutions as [23].

• Assumption of symmetry - In [23], they assume that u is an odd
function, i.e. u(x0) = −u(−x0). Since the solutions obtained are not nec-
essarily optimal, this restriction could, in general, lead to worse solutions.
We impose no such restriction, and indeed our solutions do not verify this
assumption close to x0 = 0.

5.3.4 Numerical analysis

As mentioned in the preceding discussion, the implementation of Algo 4.3 differs
in our case. To make a just comparison, we define certain quantities pertaining
to the range and stepsize of the alphabets Xi. The range for the nature alphabet
X0 is taken between [−M,M ], with the stepsize δX0

. The range for X1,X2

is taken to be the same. However, their stepsize is decreased after Algo 4.3
converges and the algo is ran again. This is done by preserving the decision
functions found beforehand and merely extending their domains to include the
mid-points between the earlier domain points.

Firstly, we would like to point out the variability of average payoff on the
range M as well as the stepsize δX0

. As seen in Fig. 5.16, the average payoff
obtained are highly variable based on the chosen range and stepsize. At first
glance, the result might seem paradoxical, but considering a bigger range for X0

is not necessarily helpful as it might increase the chances of extra cost due to
noise in observation of the second agent. Thus, there is a sort of Braess Paradox
in choosing the range.

While we did not carry out a thorough analysis to find good range and
stepsize, by preliminary simulations, we identified a case (M = 16.47,δX0

=
0.27) which gives a good payoff 0.1745 when X0 = X1 = X2. Then, we increase
the alphabets X1,X2 by reducing the corresponding stepsize by half. Let us
denote the number of total points of |Xi| = 2M

δXi

= L.

With the notations in order, we can compare our results with that of [23]
for different alphabet sizes L. As we see from 5.17, for lower L, we provide
better results, simply by searching for ’good’ range and stepsize to begin with.
While it is not clear if this trend holds true at higher L, we assert that it is still
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Figure 5.16: Vagaries of average payoff w.r.t. range as well stepsize of the
alphabet X0. As we see, there is no fixed pattern. If one considers a bigger
range for X0, conventional wisdom says that we must do better, but it is not
necessarily the case. We note also that for all stepsizes, above a certain range,
the payoff remains constant . We conclude that one needs to employ techniques
akin to ordinal optimization [3] to find optimal range and stepsize.
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Figure 5.17: We see that if one chooses the right range and stepsize to begin
with, one could obtain much better performances for low number of quantization
points L. Unfortunately, we have not been able to go further in the simulations
to be able to compare the two implementations at higher L. Nonetheless, search-
ing for a ’good’ initial range and stepsize can help reach better performances
for lower complexity

worthwhile to perform an initial search for range and stepsize, especially if one
is looking for solutions which have low complexity.

5.3.5 Concluding Remarks

While the algorithm developed in this section had already been found inde-
pendently before, we provide a rationale behind why it is a good algorithm.
However, due to the sub-optimality of the approach, we could not attack the
more important and open problem of finding the optimal decision functions
as well as lowest achievable costs. Nonetheless, the approach outlined in this
section is in all probability ϵ−optimal due to the result in [24]. Also, slight dif-
ferences in the application of the algorithm provides hope of beating the lowest
known solution till date if one manages to find the right range to search over,
and given enough time to run extensive simulations. Given the really marginal
improvements in the cost for the benchmark case however, it is not clear if such
an effort is worthwhile, even though it would easily merit a publication in a
reputed conference.
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Chapter 6

Conclusions

This thesis has merely scratched the surface of the possibilities opened up by
the Information theoretical tools for evaluating performances of coordination
schemes. One hopes that it has nonetheless demonstrated the potential of those
tools by exploring applications in various, otherwise unrelated, domains. Even-
though we tried being clever in modeling the problems to exploit the tools
developed herein, in all applications further advancements were restricted due
to complexity issues.

Even otherwise, there is a need to develop the theory further than the cur-
rent status as coordination problems do not always assume the information
structures discussed in this thesis. For example, the non-causal information
structure considered in the first part currently only applies to 2−Agent team
problems, which is evidently too restrictive. There is a need to consider a more
general information structure. One possibility could be to consider one agent
having non-causal information about the future realizations of the nature state,
while others observe its action to coordinate with it. This problem is much
more complicated than the 2−agent case, as the ’informed’ agent, in addition
to performing implicit communication, also has to choose the importance it at-
taches to communication with each follower. Also, the follower needs to guess
if the action chosen by the informed agent was meant for him. All this to say
that while the extension to this case is non trivial, if one wants to apply the
developed theory to realistic coordination problems with non-causal information
structure, it is necessary to go beyond 2-Agents.

Another possibility, probably a simpler case to analyze, would be to consider
a chain of agents observing each other, with the leading agent having non-casual
information. Even then, the performance limit of such a system is not easily
obtainable from the current theory, as one cannot simply write the information
constraints for each implicit communication in the chain. Moreover, even though
this might be a simpler case to consider, for application purposes, the assumed
information structure is too restrictive. In this thesis, we willingly did not
develop the applications for the non-causal information structure in great detail
as theoretically, there is still work to be done.
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For the second part pertaining to causal information structure, the challenges
lie more on the application side. The developed theory is pretty general and
easily adaptable to various applications as evidenced from chapter 5. However,
there seems to be a trade-off between optimality and complexity which is difficult
to know a priori and is highly dependent on the application in question. This
requires careful analysis and modelling of the problems, and good knowledge
of the state of the art to be able to choose the right mix of optimality and
complexity to provide solutions better than the existing ones.

Theoretically too, there is some progress to be made, especially concern-
ing the information structure discussed for the Witsenhausen Counterexam-
ple, where each timeslot could be divided into various stages, and agents could
observe each others’, causality permitting. This should be a slightly easier en-
deavour, although any practical application based on this theory will necessarily
suffer from complexity issues, as evidenced from the treatment of the relatively
simple (complexity wise) 2−agent Witsenhausen counterexample.

Most importantly, there are many new domains to be explored which could
use the framework developed to provide practical coordination schemes. An
application, which I find interesting, and which undoubtedly is going to be
useful in the future is that of coordination for controlling the flow of traffic. A
simple toy problem could be to consider traffic signals co-operating with each
other with the common objective of maximizing traffic flow. One can imagine
with the development in sensor technology that it would be possible for signals to
locally measure the traffic in each direction, and with very little back-haul, relay
the information to neighbouring signals. The signals could then make informed
and smart decisions about how many vehicles to let go in which direction. This
is but one such example of hopefully many more to come.
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Résumé : Avec la montée de la connectivité 

entre les appareils (internet des objets), 

nouvelles possibilités de coordination entre les 

différentes entités ont ouvert. En même temps, 

des résultats récents, issus de la théorie de 

l'information, ont fourni des limites pour la 

performance que tout système de coordination 

pourrait atteindre sous certaines structures 

d'information. Dans cette thèse, nous 

développons ces résultats théoriques dans le but 

de les rendre plus facilement applicable aux 

problèmes pratiques. À cet égard, la 

contribution de cette thèse est double: 1) En 

outre développer les résultats théoriques pour 

fournir un aperçu de la structure des solutions 

au problème d'optimisation posés dans les 

travaux anterieurs , ainsi que la généralisation 

des résultats . 2) Développer des algorithmes 

 

qui exploitent le cadre théorique fourni par les 

travaux antérieurs pour concevoir des 

mécanismes de coordination pratiques, 

décentralisées et robustes. La généralité de 

l'approche se prête à diverses applications, dont 

les éléments suivants ont été traités : 

optimisation de puissance dans les réseaux sans 

fil, planification de la consommation d'énergie 

dans les applications de réseau intelligent, ainsi 

que Witsenhausen contre-exemple, un problème 

important issu de la théorie du contrôle. 

Diverses possibilités sont encore à venir pour 

exploiter le cadre et les outils développés ici. En 

effet, ils pourraient être utiles même dans des 

domaines qui ne sont pas abordés dans cette 

thèse, mais qui nécessitent une coordination 

entre les agents avec des informations 

différentes à la disposition de chacun. 
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Abstract : With the rise in connectivity 

between appliances (Internet of Things), new 

avenues for coordination between various 

entities have opened up. At the same time, 

recent information theoretical results have 

provided bounds for the performance that any 

coordination scheme could achieve under 

certain information structures. In this thesis, we 

further develop those information theoretical 

results with the aim of making them applicable 

more easily to practical problems. In this 

regard, the contribution of this thesis is 

twofold: 1) Further developing the 

aforementioned information theoretical results 

to provide insights into the structure of the 

solutions to optimization problem posed  in 

them, as well as generalizing some results. 

2) Developing algorithms which exploit the 

theoretical framework provided by Information 

theory to devise practical, decentralized and 

robust coordination schemes. The generality of 

the approach lends itself to various 

applications, of which the following were 

treated: power optimization in wireless 

networks, power consumption scheduling in 

smart grid applications, as well as 

Witsenhausen counterexample, an important 

toy problem in control theory. Various 

opportunities still lie ahead to exploit the 

framework and tools developed herein. Indeed, 

they could be useful even in domains which 

have not been explored in this thesis but which 

require coordination between agents with 

different information available to each. 
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