Inexact graph matching : application to 2D and 3D Pattern Recognition

Résumé : Les Graphes sont des structures mathématiques puissantes constituant un outil de modélisation universel utilisé dans différents domaines de l'informatique, notamment dans le domaine de la reconnaissance de formes. L'appariement de graphes est l'opération principale dans le processus de la reconnaissance de formes à base de graphes. Dans ce contexte, trouver des solutions d'appariement de graphes, garantissant l'optimalité en termes de précision et de temps de calcul est un problème de recherche difficile et d'actualité. Dans cette thèse, nous nous intéressons à la résolution de ce problème dans deux domaines : la reconnaissance de formes 2D et 3D. Premièrement, nous considérons le problème d'appariement de graphes géométriques et ses applications sur la reconnaissance de formes 2D. Dance cette première partie, la reconnaissance des Kites (structures archéologiques) est l'application principale considérée. Nous proposons un "framework" complet basé sur les graphes pour la reconnaissance des Kites dans des images satellites. Dans ce contexte, nous proposons deux contributions. La première est la proposition d'un processus automatique d'extraction et de transformation de Kites a partir d'images réelles en graphes et un processus de génération aléatoire de graphes de Kites synthétiques. En utilisant ces deux processus, nous avons généré un benchmark de graphes de Kites (réels et synthétiques) structuré en 3 niveaux de bruit. La deuxième contribution de cette première partie, est la proposition d'un nouvel algorithme d'appariement pour les graphes géométriques et par conséquent pour les Kites. L'approche proposée combine les invariants de graphes au calcul de l'édition de distance géométrique. Deuxièmement, nous considérons le problème de reconnaissance des formes 3D ou nous nous intéressons à la reconnaissance d'objets déformables représentés par des graphes c.à.d. des tessellations de triangles. Nous proposons une décomposition des tessellations de triangles en un ensemble de sous structures que nous appelons triangle-étoiles. En se basant sur cette décomposition, nous proposons un nouvel algorithme d'appariement de graphes pour mesurer la distance entre les tessellations de triangles. L'algorithme proposé assure un nombre minimum de structures disjointes, offre une meilleure mesure de similarité en couvrant un voisinage plus large et utilise un ensemble de descripteurs qui sont invariants ou au moins tolérants aux déformations les plus courantes. Finalement, nous proposons une approche plus générale de l'appariement de graphes. Cette approche est fondée sur une nouvelle formalisation basée sur le problème de mariage stable. L'approche proposée est optimale en terme de temps d'exécution, c.à.d. la complexité est quadratique O(n2), et flexible en terme d'applicabilité (2D et 3D). Cette approche se base sur une décomposition en sous structures suivie par un appariement de ces structures en utilisant l'algorithme de mariage stable. L'analyse de la complexité des algorithmes proposés et l'ensemble des expérimentations menées sur les bases de graphes des Kites (réelle et synthétique) et d'autres bases de données standards (2D et 3D) attestent l'efficacité, la haute performance et la précision des approches proposées et montrent qu'elles sont extensibles et générales
Type de document :
Thèse
Computer Vision and Pattern Recognition [cs.CV]. Université de Lyon, 2016. English. < NNT : 2016LYSE1315 >
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-01493118
Contributeur : Abes Star <>
Soumis le : mardi 21 mars 2017 - 03:56:06
Dernière modification le : lundi 10 juillet 2017 - 11:06:53
Document(s) archivé(s) le : jeudi 22 juin 2017 - 12:20:21

Fichier

TH2016MADIKAMEL.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01493118, version 1

Collections

Citation

Kamel Madi. Inexact graph matching : application to 2D and 3D Pattern Recognition. Computer Vision and Pattern Recognition [cs.CV]. Université de Lyon, 2016. English. < NNT : 2016LYSE1315 >. <tel-01493118>

Partager

Métriques

Consultations de
la notice

337

Téléchargements du document

181