.. Ratio-du-temps-passé-en-mode-utilisateur-et-noyau, 90 6.10 Utilisation des processeurs en moyenne sur 32 exécutions 91 6.11 Utilisation des processeurs pour une itération 92 6.12 Profile mémoire construit à partir des allocations, 96 6.16 Utilisation des différents processeurs pour une itération . . . . . . . . 97 6.17 Ratio des instructions de calcul et de mémoire . . . . . . . . . . . . . 98 6.18 Comparaison des profils mémoire Juno et poste de travail . . . . . . . 99 6.19 Variation du score des benchmarks selon les configurations, p.102

. Framesoc, https://github.com/soctrace-inria/framesoc

. Phoronix-test-suite, http://www.phoronix-test-suite.com

L. Alawneh and A. Hamou-lhadj, MTF: A Scalable Exchange Format for Traces of High Performance Computing Systems, 2011 IEEE 19th International Conference on Program Comprehension, pp.181-184, 2011.
DOI : 10.1109/ICPC.2011.15

J. Almeida, M. Frade, J. Pinto, S. Melo, and . Sousa, An Overview of Formal Methods Tools and??Techniques, Rigorous Software Development, pp.15-44, 2011.
DOI : 10.1007/978-0-85729-018-2_2

S. Dieter-an-mey, C. Biersdorff, K. Bischof, D. Diethelm, M. Eschweiler et al., Score-P ? A Unified Performance Measurement System for Petascale Applications, Proc. of the CiHPC : Competence in High Performance Computing, HPC Status Konferenz der Gauß-Allianz e.V, pp.85-97, 2010.

A. Barker and J. Van-hemert, Scientific Workflow: A Survey and Research Directions, Proceedings of the 7th International Conference on Parallel Processing and Applied Mathematics, pp.746-753, 2008.
DOI : 10.1007/978-3-540-68111-3_78

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Friedrich and . Bauer, From specifications to machine code : Program construction through formal reasoning, Proceedings of the 6th International Conference on Software Engineering, ICSE '82, pp.84-91, 1982.

C. Bienia, S. Kumar, and . Parsec, PARSEC vs. SPLASH-2: A quantitative comparison of two multithreaded benchmark suites on Chip-Multiprocessors, 2008 IEEE International Symposium on Workload Characterization, pp.47-56, 2008.
DOI : 10.1109/IISWC.2008.4636090

P. Steven, J. Callahan, E. Freire, C. Santos, C. T. Scheidegger et al., VisTrails : Visualization meets Data Management, Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp.745-747, 2006.

F. Chirigati, D. Shasha, and J. Freire, ReproZip, Proceedings of the 2016 International Conference on Management of Data, SIGMOD '16, 2013.
DOI : 10.1145/2882903.2899401

L. Dagum and R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Computational Science and Engineering, vol.5, issue.1, pp.46-55, 1998.
DOI : 10.1109/99.660313

A. Davison, Automated Capture of Experiment Context for Easier Reproducibility in Computational Research, Computing in Science & Engineering, vol.14, issue.4, pp.48-56, 2012.
DOI : 10.1109/MCSE.2012.41

URL : https://hal.archives-ouvertes.fr/hal-01055702

E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil et al., Pegasus : a Framework for Mapping Complex Scientific Workflows onto Distributed Systems Decisions that need to take place in Workflow Mapping, Scientific Programming, 2005.

M. Desnoyers, Low-Impact Operating System Tracing, 2009.

M. Desnoyers, R. Michel, and . Dagenais, The LTTng tracer : A Low Impact Performance and Behavior Monitor for GNU/Linux, Ottawa Linux Symposium, 2006.

A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach-temam, Aftermath : A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and run-time systems, 7th workshop on Programmability Issues for Heterogeneous Multicores (MULTIPROG-2014), number 1, pp.1-13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01136508

U. Drepper and R. Hat, What Every Programmer Should Know About Memory, 2007.

A. Fastener, VISMASHUP : Streamlining the Creation of Custom Visualization Applications, Online, 2009.

J. Fekete, Software and Hardware Infrastructures for Visual Analytics, IEEE Computer, vol.43, issue.8, pp.1-7, 2013.

I. Foster, J. Vockler, M. Wilde, and Y. Zhao, Chimera: a virtual data system for representing, querying, and automating data derivation, Proceedings 14th International Conference on Scientific and Statistical Database Management, 2002.
DOI : 10.1109/SSDM.2002.1029704

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Gabriel, E. Graham, G. Fagg, T. Bosilca, . Angskun et al., Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation, 11th European PVM/MPI Users' Group Meeting, pp.97-104, 2004.
DOI : 10.1007/978-3-540-30218-6_19

M. Geimer, F. Wolf, J. Brian, E. Wylie, D. Abraham et al., The Scalasca performance toolset architecture, International Workshop on Scalable Tools for High-End Computing (STHEC, number 01, pp.702-719, 2008.
DOI : 10.1002/cpe.1556

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Georgakopoulos, M. Hornick, and A. Sheth, An Overview of Workfow Management : From Process Modeling to Work ow Automation Infrastructure, Work, vol.153, pp.119-152, 1995.

Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox et al., Examining the Challenges of Scientific Workflows, Computer, vol.40, issue.12, pp.4024-4056, 2007.
DOI : 10.1109/MC.2007.421

F. Giraldeau, J. Desfossez, D. Goulet, M. Dagenais, and M. Desnoyers, Recovering system metrics from kernel trace. OLS (Ottawa Linux symposium), pp.109-116, 2011.

A. Hamou-lhadj, W. Syed-shariyar-murtaza, A. Fadel, M. Mehrabian, R. Couture et al., Software behaviour correlation in a redundant and diverse environment using the concept of trace abstraction, Proceedings of the 2013 Research in Adaptive and Convergent Systems on, RACS '13, pp.328-335, 2013.
DOI : 10.1145/2513228.2513305

R. Jain, The Art Of Computer Systems Performance Analysis, 1991.

A. Joshi and S. Member, Measuring benchmark similarity using inherent program characteristics, IEEE Transactions on Computers, vol.55, issue.6, pp.769-782, 2006.
DOI : 10.1109/TC.2006.85

J. Chassin, D. Kergommeaux, and B. Stein, Pajé : An Extensible Environment for Visualizing Multi-threaded Programs Executions

J. Kim, Y. Gil, and M. Spraragen, A Knowledge-Based Approach to Interactive Workflow Composition. Icaps -04, 2004.

A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, Introducing the Open Trace Format (OTF), International Conference on Computational Science, pp.526-533, 2006.
DOI : 10.1007/11758525_71

A. Knüpfer, H. Brunst, and R. Brendel, Open Trace Format Specification, 2009.

A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, H. Mickler et al., The Vampir Performance Analysis Tool-Set, Parallel Tools Workshop, pp.139-155, 2008.
DOI : 10.1007/978-3-540-68564-7_9

J. Kraft, A. Wall, and H. Kienle, Trace Recording for Embedded Systems: Lessons??Learned from Five Industrial Projects, Proceedings of the First International Conference on Runtime Verification, 2010.
DOI : 10.1007/978-3-642-16612-9_24

V. Marangozova-martin, Duplication et cohérence configurables dans les applications réparties à base de composants, 2003.

V. Marangozova-martin, SoC-TRACE, Proceedings of the Posters and Demo Track on, Middleware '12, 2012.
DOI : 10.1145/2405153.2405163

URL : https://hal.archives-ouvertes.fr/hal-00719745

A. Martin and V. Marangozova-martin, Analyse de traces d'exécutions pour les systèmes embarqués : détection d'anomalies par corrélation temporelle, 2014.

A. Martin and V. Marangozova-martin, Automatic Benchmark Profiling Through Advanced Trace Analysis, Euro-Par, pp.659-671, 2016.
DOI : 10.1007/978-3-319-43659-3_5

URL : https://hal.archives-ouvertes.fr/hal-01292618

A. Martin, G. Pagano, J. Correnoz, and V. Marangozova-martin, Analyse de systèmes embarqués par structuration de traces d'exécution, ComPAS'2014, 2014.

E. Wolfgang, . Nagel, M. Arnold, and . Weber, VAMPIR : Visualization and Analysis of MPI Resources, pp.69-80, 1996.

G. Pagano, D. Dosimont, G. Huard, V. Marangozova-martin, and J. Vincent, Trace Management and Analysis for Embedded Systems, 2013 IEEE 7th International Symposium on Embedded Multicore Socs, pp.119-122, 2013.
DOI : 10.1109/MCSoC.2013.28

URL : https://hal.archives-ouvertes.fr/hal-01065877

G. Pagano and V. Marangozova-martin, SoC-Trace Infrastructure, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00719745

C. Pautasso and G. Alonso, Parallel computing patterns for Grid workflows, 2006 Workshop on Workflows in Support of Large-Scale Science, 2006.
DOI : 10.1109/WORKS.2006.5282349

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Pearson, Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material, 1896.

C. Prada-rojas, F. Riss, X. Raynaud, S. D. Paoli, and M. Santana, Observation Tools for Debugging and Performance Analysis of Embedded Linux Applications, Conference on System Software, SoC and Silicon Debug, 2009.

S. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 2009.

N. Russell, H. Arthur, D. Hofstede, . Edmond, M. Wil et al., Workflow Data Patterns: Identification, Representation and Tool Support, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, pp.3716-353, 2005.
DOI : 10.1007/11568322_23

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Salimifard and M. Wright, Petri net-based modelling of workflow systems: An overview, European Journal of Operational Research, vol.134, issue.3, pp.664-676, 2001.
DOI : 10.1016/S0377-2217(00)00292-7

I. Santana-perez, R. Ferreira, M. Rynge, E. Deelman, and S. P. , Leveraging Semantics to Improve Reproducibility in Scientific Workflows. The reproducibility at XSEDE workshop, 2014.

S. Sameer, A. D. Shende, and . Malony, The Tau Parallel Performance System, International Journal of High Performance Computing Applications, vol.20, issue.2, pp.287-311, 2006.

F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore, An algebra for cross-experiment performance analysis, International Conference on Parallel Processing, 2004. ICPP 2004., pp.63-72, 2004.
DOI : 10.1109/ICPP.2004.1327905

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Spear, M. Levy, and M. Desnoyers, Using Tracing to Solve the Multicore Problem, Computer, pp.60-64, 2012.
DOI : 10.1109/mc.2012.191

P. Spector, Data Manipulation with R, 2008.

L. Stanisic, A. Legrand, and V. Danjean, An Effective Git And Org-Mode Based Workflow For Reproducible Research, ACM SIGOPS Operating Systems Review, vol.49, issue.1, pp.61-70, 2015.
DOI : 10.1145/2723872.2723881

URL : https://hal.archives-ouvertes.fr/hal-01112795

B. De and O. Stein, Pajé trace file format, 2003.

E. A. Stohr, J. , and L. Zhao, Workflow Automation : Overview and Research Issues, Information Systems Frontiers, vol.3, issue.3, pp.281-296, 2001.
DOI : 10.1023/A:1011457324641

B. Stroustrup, The C++ Programming Language, 2000.

V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer, Benchmarking file system benchmarking : It* is* rocket science, HotOS XIIIHotOS XIII, pp.1-5, 2011.

A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, A nine year study of file system and storage benchmarking, ACM Transactions on Storage, vol.4, issue.2, pp.1-56, 2008.
DOI : 10.1145/1367829.1367831

W. M. Van-der-aalst, K. M. Van-hee, .. H. Ter-hofstede, N. Sidorova, H. M. Verbeek et al., Soundness of workflow nets: classification, decidability, and analysis, Formal Aspects of Computing, vol.179, issue.6, pp.333-363, 2010.
DOI : 10.1007/s00165-010-0161-4

T. Huy, D. K. Vo, B. Osmari, . Summa, L. João et al., Streaming-enabled parallel dataflow architecture for multicore systems, Computer Graphics Forum, vol.29, issue.3, pp.1073-1082, 2010.

R. Paul, . Wilson, S. Mark, M. Johnstone, D. Neely et al., Dynamic Storage Allocation : A Survey and Critical Review, Memory Management, 1995.

K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers et al., The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud, Nucleic Acids Research, vol.41, issue.W1, pp.41-557, 2013.
DOI : 10.1093/nar/gkt328

D. Yuan, S. Park, and Y. Zhou, Characterizing logging practices in open-source software, 2012 34th International Conference on Software Engineering (ICSE), pp.102-112, 2012.
DOI : 10.1109/ICSE.2012.6227202

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, Improving Software Diagnosability via Log Enhancement, ACM Transactions on Computer Systems, vol.30, issue.1, pp.1-28, 2012.
DOI : 10.1145/2110356.2110360

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=