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Theoretical and numerical study of nonlinear phononic crystals

Abstract

This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities
are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the
crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an
elastic wave through the crystals.

A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a
structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a
strong link between bones hydration and their ability to dissipate the energy.
The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a
switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when
the amplitude of the incident wave reaches a threshold. A full analytical model is provided.
The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic
nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is
performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some
concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.

For this thesis, an innovative tool based on the Discontinuous Galerkin (DG) finite element method is devel-
oped for the simulation of elastic wave propagation, in linear and nonlinear systems and in finite and semi-infinite
media. The implementation of this DG code for 2D and 3D simulations benefits from the efficient exploitation of modern
computer infrastructure (GPU units, clusters) using the property of massive parallelization of DG algorithms.
This thesis is part of a joint agreement for an international PhD degree between École Centrale de Lille and the Materials
Science and Engineering department of the University of Arizona at Tucson.

Keywords: phononic crystals, nonlinear elastodynamics, numerical simulations

Étude théorique et numérique des cristaux phononiques non-linéaires

Résumé

Ce travail porte sur l’étude théorique et numérique des cristaux phononiques non-linéaires. Les non-linéarités étudiées
sont celles dues aux constantes élastiques d’ordre deux (quadratiques) et trois (cubiques) des matériaux constituant les
cristaux. Les effets non-linéaires sont étudiés grâce à des méthodes d’éléments finis en simulant la propagation d’une
onde élastique à travers les cristaux.

Un premier projet de recherche a porté sur l’étude d’une structure osseuse, et plus spécifiquement sur la dis-
persion des ondes élastiques dans une structure constituée d’une alternance de couches de collagène et d’hydroxy apatite.
Les simulations montrent qu’il existe un lien étroit entre l’hydratation des os et leur capacité à dissiper l’énergie.
La seconde étude réalisée concerne un résonateur élastique. Une structure constituée d’inclusions d’acier dans de la silice
présente un comportement de commutateur (switch) lorsque les non-linéarités cubiques de l’acier sont prises en compte.
Cet effet fortement non-linéaire apparaît lorsque l’amplitude de l’onde incidente dépasse un certain seuil. Un modèle
analytique complet est fourni.
La dernière étude réalisée montre la conception de matériaux composites possédant de fortes non-linéarités cubiques
mais de faibles non-linéarités quadratiques. La dérivation des lois de mélange des paramètres élastiques d’un matériau
non-linéaire dans un matériau linéaire est effectuée à l’ordre trois. Les équations montrent une forte amplification des
paramètres non-linéaires du matériau résultant pour certaines concentrations. Les simulations permettent de conclure
que le résonateur mentionné ci-dessus peut effectivement être réalisé.

Pour cette thèse, un outil numérique innovant basé sur la méthode des éléments finis de type Galerkin Dis-
continu (DG) est développé pour la simulation de la propagation d’ondes élastiques, dans des systèmes linéaires et
non-linéaires et dans des milieux finis et semi-infinis. L’implémentation de ce code DG pour des simulations 2D et 3D
tire parti des infrastructures de calcul actuelles (processeurs graphiques, clusters) grâce à la propriété de parallélisation
massive des algorithmes DG.
Cette thèse s’est déroulée dans le cadre d’une cotutelle entre l’École Centrale de Lille et le département de Science et
ingénierie des matériaux de l’Université d’Arizona, à Tucson.

Mots clés : cristaux phononiques, élastodynamique non-linéaire, simulations numériques
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Résumé en français

Cette thèse est consacrée à l’étude théorique et numérique des cristaux phononiques non-linéaires. Ce résumé
en français présente l’essentiel du travail effectué pendant la thèse.

Introduction

On appelle cristaux phononiques les structures constituées par l’ajout d’inclusions périodiques – suivant une
maille cristalline – dans un matériau hôte – appelé matrice. Ces structures ont la propriété de posséder des
bandes interdites, c’est-à-dire des plages de fréquences pour lesquelles l’onde acoustique est totalement réflé-
chie et donc interdite dans le cristal, indépendamment de la direction de propagation. Pour ces fréquences,
le cristal se comporte comme un miroir acoustique parfait [1].
La fréquence centrale de la bande interdite est déterminée par la taille, la périodicité et le taux de remplissage
des inclusions. Physiquement, la bande interdite est due à la diffraction des phonons aux interfaces entre la
matrice et les inclusions [2]. La plupart des cristaux suivent les conditions de résonance de Bragg et Mie. La
figure 1 donne un exemple de cristal phononique 2D à maille carrée et de structure de bande pouvant être
associée à un tel cristal. Sur la figure, r est le rayon des inclusions, a la distance entre les centres de deux
inclusions voisines. La zone de Brillouin irréductible possède trois direction ΓX, XM et MΓ. Les fréquences
de résonance fondamentales de Bragg sont V /(2a) pour la direction ΓX et V /(2

√
2a) pour la direction ΓM , où

V est la vitesse acoustique moyenne dans le cristal. Cette vitesse dépend du taux de remplissage, r/a [2].
La création de défauts, par l’ajout ou le remplacement de certaines inclusions du cristal, rendant celui-ci
irrégulier, autorise au contraire certaines fréquences à exister dans la bande interdite. Ces défauts agissent
comme les impuretés dans les semi-conducteurs dopés. Ils permettent en partie d’accorder les cristaux [1].

L’histoire de l’étude des cristaux phononiques a commencé en 1979 avec les premières observations
expérimentales par Narayanamurti et al. dans un super-réseau en GaAs/AlGaAs [3]. Les premiers travaux
théoriques sont les calculs de structures de bandes pour des structures élastiques composites par Sigalas et
Economou en 1992 [5].
La première bande interdite complète fut observée en 1998 par Montero de Espinosa et al. dans une plaque
d’aluminium avec des arrangements périodiques de trous cylindriques remplis de mercure. Les fréquences
concernées étaient de l’ordre de 1 MHz [6].
Plus récemment, grâce à la diversité des matériaux utilisés, les bandes interdites ont atteint les « très hautes
fréquences » (VHF : 30–300 MHz) et même les « ultra hautes fréquences » (UHF : 300–3000 MHz) [2].
Gorishnyy a ainsi proposé un cristal phononique hypersonique (au-dessus d’un GHz) en utilisant des trous
d’air dans de l’epoxy en 2007 [7].

Les domaines dans lesquels les cristaux phononiques ont des applications potentielles sont les communi-
cations radio-fréquences ainsi que l’imagerie ultrasons pour la médecine et le contrôle non destructif. Ces
cristaux pourraient également être utilisés pour miniaturiser les lentilles acoustiques, réaliser de l’adaptation
d’impédance et découpler la taille des transducteurs de leur ouverture [2].
De plus, l’imagerie avec une résolution plus fine que la limite de diffraction est envisagée, en utilisant les
composantes évanescentes de l’onde. L’invisibilité acoustique pourrait être atteinte en employant les cristaux
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comme guides d’ondes [8]. L’interaction phonon-photon permettrait la modulation et le refroidissement
optique [2]. Les cristaux phononiques laissent également espérer une amélioration du taux de conversion
directe d’énergie pour les effets thermoélectrique et thermophotovoltaïque [9].
Enfin, aux échelles micrométriques, leur utilisation comme filtre pour isoler des structures résonantes des
vibrations extérieures et du bruit ambiant a été démontrée [2]. En effet, ceux-ci permettent de fixer ces
structures au substrat de manière rigide tout en leur fournissant un environnement sans vibration, ce qui
ouvre la voie à de nouveaux système mécaniques de haute précision [1].

Un des enjeux majeurs dans l’étude de tels cristaux est l’accordabilité, c’est-à-dire la possibilité de créer
un cristal ayant la structure de bande voulue, statiquement – une fois pour toutes, par l’ajout de défauts – ou
dynamiquement – pouvoir changer la structure de bande grâce à un paramètre physique (pression/contrainte
[10], température [11], champ électrique [10]...). Ces techniques ont l’inconvénient de nécessiter un contact
physique avec le cristal et requièrent également un stimulus très important pour un petit résultat [10].
En 2009, Robillard et al. a montré la possibilité de contrôler la structure de bandes en utilisant un champ
magnétique extérieur au cristal. Cette technique utilise l’effet de magnétostriction géante et modifie les
constantes élastiques non-linéaires de certains matériaux comme le Terfenol-D, de plus de 50 %, ce qui
permet une accordabilité importante et sans contact [10]. Bou Matar et al. a étendu ce travail en expliquant
comment adapter les structures de bandes en utilisant en plus les effets de transition de réorientation de
spin. L’étude modélise ainsi un cristal phononique piézomagnétique [11].

Dans cette thèse, nous allons nous concentrer sur l’étude de différents effets non-linéaires pouvant
apparaître dans ces cristaux. Nous introduirons aussi plusieurs méthodes numériques permettant de simuler
efficacement la propagation d’ondes dans ces structures en 1D. Nous présenterons également une méthode
innovante et hautement parallélisable, nommée méthode de Galerkin Discontinue et l’exploiterons pour
l’étude de cristaux en 2D.

Figure 1 – Exemple de cristal phononique 2D. Cet exemple montre le cristal et ses paramètres de maille
sur la gauche et une structure de bande sur la droite, ainsi que les directions de la zone de Brillouin.



Étude analytique et numérique des super-réseaux 1D

Cette section donne tout d’abord une descriptionmathématique des super-réseaux 1D puis introduit plusieurs
résultats analytiques préliminaires avec les exemples associés.

Les cristaux phononiques que nous étudions ici sont des super-réseaux constitués d’une succession de
couches, comme sur la figure 2. Les deux types de couches, 1 et 2, ont des épaisseurs respectives d1 et d2, et
des impédances respectives Z1 et Z2.

... Z1 Z2 Z1 Z2 ...
← d1→ ← d2→ ← d1→ ← d2→

Figure 2 – Un super-réseau 1D avec des couches d’impédances Z1 et Z2.

Nous écrivons les équations fondamentales de l’acoustique :

∂p

∂x
= −ρ(x)∂v

∂t
et

∂p

∂t
= −Y (x)∂v

∂x
(1)

où x est la position, t le temps, p est la pression, v la vitesse particulaire, ρ la masse volumique Y le module
d’Young.

Pour une onde harmonique, la solution générique de ce système d’équations pour une couche d’impédance
Zi est une onde plane, composée d’une onde incidente d’amplitude A et d’une onde réfléchie d’amplitude B.
Dans ce cas, en considérant p = Pejωt et v = V ejωt , nous pouvons écrire la solution ainsi :















P = ZiA(ω)e−jkx − Zi B(ω)ejkx

V = A(ω)e−jkx + B(ω)ejkx
. (2)

La méthode des matrices de transfert consiste à écrire la solution de l’équation (2) sous forme d’un produit
de matrices. Ce formalisme nous permettra de résoudre les équations de propagation des ondes dans des
structures plus complexes, comme des bicouches avec ou sans défauts. Nous écrivons ainsi :

[

P
V

]

x

= Fi Hi

[

A
B

]

0
, avec Fi =

[

Zi −Zi
1 1

]

et Hi =

[

e−jkix 0
0 ejkix

]

. (3)

Nous en déduisons la loi de dispersion pour un bicouche infini :

cos(kd) =
1
2
Tr((F2H2F

−1
2 )(F1H1F

−1
1 )) = cos(k1d1)cos(k2d2)−

1
2

(

Z1

Z2
+
Z2

Z1

)

sin(k1d1)sin(k2d2). (4)

Grâce à cette équation (4), nous pouvons calculer les courbes de dispersion des structures utilisées dans
les chapitres 2 et 3. Ces courbes sont représentées sur la figure 3.

Nous obtenons aussi l’équation de propagation d’une onde à travers N bicouches :
[

t
0

]

=MT
1

[

1
r

]

, avec MT
1 = (F−1L F1)C

N
1 (F−11 F0) (5)

où t est le coefficient de transmission, r le coefficient de réflexion et :

C1 =

[

α β
β∗ α∗

]

, with



































α = (cos(k2d2)− jS sin(k2d2))e−jk2d2
β = jD12 sin(k2d2)ejk1d1

S = 1
2

(

Z1
Z2

+ Z2
Z1

)

D12 =
1
2

(

Z1
Z2
− Z2

Z1

)

. (6)



Figure 3 – Courbes de dispersion calculées avec la loi de dispersion. (a) Courbe de dispersion pour
des inclusions d’hydroxy apatite dans du collagène d1 = d2 = 33.5nm, Z1 ≈ 13.8× 106kgm−2 s−1 et Z2 ≈
0.353× 106kgm−2 s−1. (b) Courbe de dispersion d’inclusions d’acier dans de la silice d1 = d2 = 3.0665µm,
Z1 ≈ 46.8× 106kgm−2 s−1 et Z2 ≈ 13.1× 106kgm−2 s−1.

Pour N bicouches avec un défaut central :
[

t
0

]

=MT
2

[

1
r

]

, avec MT
2 =MTLHCM

TR (7)

avec :
MTL = (F−1C F1)C

NL
1 (F−11 F0), M

TR = (F−1L F2)C
NR
2 (F−12 FC ) et C2 = (F−12 F1H1)(F

−1
1 F2H2) (8)

Ces équations nous permettent de tracer et comparer les spectres en transmission du cristal phononique
qui sera étudié au chapitre 3. Ces spectres apparaissent sur la figure 4.

Figure 4 – Spectre en transmission pour une structure avec et sans défaut. Spectre en transmission
pour cinq inclusions d’acier dans de la silice d1 = d2 = 3.0665µm, Z1 ≈ 46.8× 106kgm−2 s−1 et Z2 ≈
13.1× 106kgm−2 s−1. Les milieux d’entrée et de sortie sont tous deux de la silice. (a) Structure parfaite.
(b) Structure avec un défaut central en acier de largeur double : dC = 2× d1.



Enfin, dans le cas d’une structure composée de N bicouches quart-d’onde, nous retrouvons l’expression
du coefficient de transmission en énergie (ou en puissance) donnée par Beaky et al. dans [12] :

T = t2 =
4n2N

(1 +n2N )2
où n = −Z1

Z2
. (9)

Ce chapitre se termine par le rappel des équations implémentées dans les méthodes numériques utilisées
dans cette thèse, à savoir la méthode des éléments spectraux (SEM), la méthode des différences finies (FDTD)
et la méthode de densité d’énergie spectrale (DES).

Dispersion des ondes élastiques dans une structure osseuse

Cette section présente l’étude de la dispersion des ondes dans une structure osseuse composée de couches
alternées de collagène et d’hydroxy apatite. Nous relions la dissipation de l’énergie à l’hydratation des os,
grâce à un modèle chimique et à des simulations numériques.

Nous commençons par établir un modèle chimique du collagène en considérant sa capacité à absorber et
désorber l’eau en fonction de la contrainte (donc de la déformation) qui lui est appliquée. Les équations de la
thermodynamique nous permettent d’écrire la loi de Hooke comme suit :

ε =
σ

Y
+ η(X1 −X0

1 ). (10)

où ε est la déformation, σ la contrainte, Y le module d’Young, η le coefficient d’expansion chimique et X1−X0
1

le changement de composition (X1 = X1(ε) et X
0
1 = 0.5). Ainsi, nous pouvons écrire σ = Y (ε)ε où Y est une

fonction non-linéaire de ε.
La structure étudiée est modélisée par un système de masses et de ressorts représenté sur la figure 5.

Dans ce modèle, les 32 masses (A) représentent les couches d’hydroxy apatite et les 32 masses (B) les couches
de collagène. Les ressorts ont un comportement linéaire ou non-linéaire selon que le matériau à leur gauche
est (A) ou (B). La structure complète est constituée d’une chaîne de 40 cellules élémentaires (CE) à laquelle
est imposée une condition de périodicité.

Figure 5 – Représentation schématique du modèle de la structure osseuse simulée.

Couche Matériau Densité ρ (kg/m3) Module d’Young Y (GPa) c =
√

Y (0)/ρ (m/s)

A Hydroxy apatite 3160 60 4357,45
B Collagène 1300 Y (ε);Y (0) = 0,0956 271,24

Tableau 1 – Densité, module d’Young et vitesse des ondes élastiques pour l’hydroxy apatite et le collagène.



Les constantes des matériaux sont données par le tableau 1. Comme indiqué dans ce tableau, le module
d’Young Y du collagène est une fonction non-linéaire de la déformation ε. Le développement en série de
Taylor de cette fonction est donnée ci-dessous. De cette expression, nous obtenons la contrainte σ = Y (ε)ε et
l’énergie élastique E(ε) =

∫ ε

0
σ(ε)dε. Ainsi :

Y (ε) = a0 + a2ε
2 + a4ε

4 + a6ε
6 + a8ε

8.

E(ε) =
a0
2
ε2 +

a2
4
ε4 +

a4
6
ε6 +

a6
8
ε6.

(11)

Les coefficients de ces développements figurent dans le tableau 2. Ces formules sont valides pour |ε| 6 0.09
et les coefficients sont obtenus par mise en concordance (fit) et extrapolation de données expérimentales
figurant dans [13].

i 0 2 4 6 8

ai (Pa) 9,565× 107 1,543× 1011 −1,571× 1013 6,958× 1014 −1,650× 1016

Tableau 2 – Coefficients du développement en série de Taylor de Y (ε) et E(ε) pour le collagène.

Le diagramme de dispersion de la structure considérée est donné sur la figure 3a.
La structure présentée est analysée par des simulations numériques utilisant la méthode FDTD-DES.

Celle-ci permet d’obtenir un diagramme de dispersion constitué des spectres en transmission des différents
vecteurs d’onde.

Pour de faibles amplitudes de déplacement, ce diagramme de dispersion est quasi-superposable avec
celui obtenu par la méthode des matrices de transfert. Le comportement du système est donc quasi-linéaire.
En revanche, pour de plus grandes amplitudes de déplacement, les pics correspondant aux modes transmis
s’élargissent considérablement, leur fréquence augmente et un remplissage des bandes interdites est observé.
Le comportement du système devient fortement non-linéaire.

La figure 6 montre que si nous limitons le développement en série de Taylor de l’énergie élastique à l’ordre
6 ou 8, le comportement du système ne change pas significativement, ce qui prouve que c’est le terme d’ordre
quatre de l’énergie qui joue le plus dans ce comportement. Nous pouvons en déduire que le comportement
non-linéaire de la structure osseuse est associée à une fonction d’ordre quatre de l’énergie élastique et donc
aux interactions quatre-ondes (quatre-phonons). En effet, si nous considérons que la déformation est une
superposition d’ondes planes avec différents vecteurs d’ondes et fréquences, alors l’expression de ε4 conduit
à des interactions quatre-phonons. Ces interactions de diffusion conservent le moment et la fréquence et
incluent différents processus comme la séparation d’un phonon en trois autres, la diffusion de deux phonons
en en formant deux autres, etc. [14, 15]. Ces nouvelles interactions de phonons offrent davantage de canaux
pour la dispersion de l’énergie mécanique.

Nous pouvons comparer le comportement de cet super-réseau non-linéaire au comportement d’un système
masse-ressorts à puits d’énergie multiples. Un système à puits d’énergie multiples est un système pour
lequel la représentation de l’énergie élastique en fonction de la déformation n’est pas parabolique mais
est une superposition d’une infinité de paraboles. À chaque parabole correspond une seule valeur de la
constante de ressorts. La représentation d’une fonction d’énergie non quadratique par une multiplicité de
puits paraboliques est équivalente à l’introduction d’un continuum de valeurs de constantes de ressorts. Aux
hautes amplitudes, les ondes vont explorer des zones plus grandes de valeurs de déformation, visitant ainsi
une multiplicité de puits d’énergie. Le diagramme de bandes montrera une continuité de modes au-dessus
des fréquences primaires du système linéaire. Ces bandes passantes s’élargissent et remplissent finalement
les bandes interdites. Les bandes passantes de ce système seront donc augmentées.

Dans le cas présent, la raison pour laquelle les constantes de ressorts augmentent en fonction de l’ampli-
tude de la déformation est que le modèle choisi pour le module d’Young est symétrique et son développement
en série de Taylor ne contient que des puissances paires de ε.



En conclusion, nous avons montré que la non-linéarité des couches de collagène dans les os, dues à
l’absorption et à la désorption d’eau, donne naissance à des processus de diffusion quatre-phonons qui
conduit au remplissage des bandes interdites. Ces processus constituant des manières pour le système de
dissiper l’énergie, cette dissipation est la conséquence directe de l’hydratation du collagène.

Figure 6 –Graphique de densité d’énergie spectrale (DES) pour le vecteur d’ondes π/a. Ligne noire : avec
le module d’Young tronqué à l’ordre zéro (Y constant, cas linéaire) ; tirets rouges : avec Y tronqué à l’ordre 2 ;
points verts : avec Y tronqué à l’ordre 4. Les courbes avec Y tronqué à l’ordre 6 ou 8 ne sont pas représentées
car elles se superposent presque parfaitement avec celle à l’ordre 4. Insert : agrandissement de la zone
hachurée montrant le remplissage des bandes interdites entre 0 et 8 GHz.

Étude d’un résonateur élastique non-linéaire

Nous démontrons dans cette section le comportement d’interrupteur d’un résonateur élastique non-linéaire
constitué d’inclusions d’acier dans une matrice de silice. Ce cristal phononique est modélisé et étudiée par
une méthode spectrale et son comportement expliqué par un modèle théorique complet.

Nous considérons la structure décrite par la figure 7. Il s’agit d’un cristal phononique 1D constitué
d’inclusions d’acier dans une matrice de silice. Les dimensions des constituants sont données par la figure.
La figure 7a représente une structure « parfaite » c’est-à-dire sans défaut : les cinq inclusions ont la même
largeur, égale au quart de la longueur d’onde du signal sinusoïdal avec lequel la structure sera excitée.
La figure 7b représente la même structure avec un défaut : l’inclusion centrale a une largeur double. Le
diagramme de dispersion de cette structure est donné sur la figure 3b.

La méthode des matrices de transfert fournit les spectres en transmission pour la structure parfaite et la
structure avec un défaut. Ces spectres sont présentés sur la figure 4. Le pic central visible sur la figure 4b
correspond à la fréquence de résonance du défaut, notée fres et possède un facteur de qualité Q.

La propagation d’une onde élastique dans la structure est ensuite simulée au moyen de la méthode des
éléments spectraux (SEM). Pour ce faire, une onde sinusoïdale d’amplitude variable est appliquée du côté
gauche du cristal (position « source » sur la figure 7) et l’onde transmise est enregistrée sur la droite (position
« récepteur »). La fréquence fc de ce signal source est choisie légèrement inférieure à fres et se situe donc dans
une bande interdite.



Figure 7 – Représentation du cristal phononique 1D considéré. (a) Structure « parfaite » (sans défaut).
(b) Structure avec un défaut central. Zones rouges : inclusions d’acier ; zones bleues : matrice de SiO2.

Le défaut central a un comportement non-linéaire. La relation entre la contrainte et la vitesse est donc :

∂τ

∂t
= k(t)

∂v

∂z
où k(t) =

∂τ

∂ε
= C11

(

1− 2Γε − 3δε2
)

. (12)

Dans l’équation (12), k(t) est défini comme dans [16], v est la vitesse particulaire, τ la contrainte, C11
est le module d’Young linéaire, ε = ∂u/∂z est la déformation et Γ et δ sont les paramètres non-linéaires
quadratique et cubique, respectivement. Ces quantités sans dimension valent Γ = 0 et δ = 27.37 pour notre
système.

Le défaut central constitue aussi une cavité élastique résonante qui piège et accumule l’onde incidente.
Lorsque la déformation dans la cavité atteint une valeur seuil, les non-linéarités présentes provoquent un
adoucissement du matériau et la fréquence de résonance du défaut, initialement fres diminue et atteint la
fréquence d’excitation fc. La cavité entre alors en résonance et l’onde est parfaitement transmise à travers le
cristal.
Lorsque l’amplitude de l’onde incidente diminue, l’inverse se produit : la fréquence de résonance de la cavité
retrouve sa valeur initiale et le signal source n’est plus transmis à travers le cristal.

Nous obtenons ainsi un système possédant un comportement d’interrupteur contrôlé par l’amplitude de
la source : il est non passant pour les amplitudes de source faibles et passant pour les amplitudes de source
fortes. Ce comportement hystérétique est montré sur la figure 8. Sur cette figure, les points noirs (croix et
cercles) décrivent les deux états stables du système (passant en haut à droite et non passant en bas à gauche).
La courbe bleue, dite en « S », correspond au modèle théorique de notre système.

En effet, si nous définissons la puissance acoustique par Pi = Ziv
2
i /2, nous pouvons démontrer que les

puissances d’entrée et de sortie de notre système sont liées par l’équation :

Pout
Pin

=
1

1+
(

Pout
P0
−∆

)2 où P0 =
Z1ωresω

2

4|χ|Q2 . (13)

Dans cette équation, χ est le paramètre non-linéaire, fonction de Γ et δ, ∆ = 2Q (fres − fc) / (πfres) est l’écart
entre la fréquence d’excitation et la fréquence de résonance. P0 est la puissance de seuil au-dessus de laquelle
les effets non-linéaires rendent le cristal passant.

Notre modèle théorique nous permet de prédire le comportement du système en fonction des valeurs
de chaque paramètre, à savoir Q, χ et ∆. Cependant, nous avons observé que la présence de non-linéarités
quadratiques (lorsque Γ > 0.01δ) avait pour conséquence de briser le processus hystérétique, sans que nous
puissions, à l’heure actuelle, expliquer pourquoi.

C’est pour cette raison que les chapitres 4 et 5 portent sur l’étude des lois de mélange des paramètres
élastiques quadratique et cubique. Nous allons montrer que, dans le cas d’un système constitué d’inclusions
non-linéaires dans une matrice linéaires, pour certaines concentrations, les paramètres cubiques peuvent
être augmentés d’un facteur important et les non-linéarités quadratiques diminuées ou peu augmentées.



Figure 8 – « Fit » de la puissance de sortie par la courbe théorique. Croix noires : résultats numériques avec
une source de vitesse croissante ; cercles noirs : résultats numériques avec une source de vitesse décroissante ;
ligne bleue : courbe en « S » calculée à partir des paramètres de simulation ; ligne rouge : transmission
complète (Pout = Pin).

Lois de mélange pour les paramètres élastiques quadratique et cubique

Nous dérivons ici jusqu’à l’ordre trois les équations des lois de mélange des constantes élastiques pour tout
système composé d’inclusions non-linéaires dans une matrice isotrope, aux faibles concentrations, grâce à
une procédure d’homogénéisation. L’amplification des paramètres non-linéaires est étudiée.

Nous commençons par étudier un système masse-ressort, représenté sur la figure 9 comportant N ressorts
parmi lesquels N1 ont une constante de raideur K1 et N2 une constante K2. Nous définissons le rapport
Q = K1/K2 et la concentration c =N2/N1.

Nous écrivons la relation contrainte-déformation comme suit :

σ =MAε
(

1+ Γ2εB+ δ2ε
2C

)

, (14)

avec A le paramètre linéaire et B et C les paramètre non-linéaires quadratique et cubique, respectivement :

A =
1

1+ c(Q − 1) and B =
1− c + c Γ2

Γ1
Q2

(1 + c(Q − 1))2
and C =

1− c + c δ2δ1Q
3

(1 + c(Q − 1))3
. (15)

Par dérivation de ces expressions, nous obtenons les concentrations optimales copt qui permettent de



Figure 9 – Un système masse-ressort comportant des ressorts de constantes K1 et K2.

maximiser les paramètres quadratique (n = 2) et cubique (n = 3) :

copt(n = 2) =
1

Q − 1 −
2

(

Γ1
Γ2
Q2 − 1

) et copt(n = 3) =
1

2(Q − 1) −
3

2
(

Γ1
Γ2
Q3 − 1

) soit copt(n) ≈
1

(n− 1)Q. (16)

Nous remarquons que ces concentrations optimales sont différentes pour les cas quadratique et cubique.
Nous pourrons donc amplifier les paramètres cubiques sans trop changer les quadratiques.

À la concentration optimale, le paramètre linéaire A vaut 1/2 (cas quadratique) ou 2/3 (cas cubique).
À la concentration optimale pour les non-linéarités quadratiques, B et C valent respectivement :

B(copt(n = 2)) ≈ Γ2

Γ1
× Q

4
et C(copt(n = 2)) ≈ δ2

δ1
× Q2

8
. (17)

À la concentration optimale pour les non-linéarités cubiques, B et C valent respectivement :

B(copt(n = 3)) ≈ Γ2

Γ1
× 2Q

9
et C(copt(n = 3)) ≈ δ2

δ1
× 4Q2

27
. (18)

Nous remarquons que le facteur d’amplification des non-linéarités cubiques est bien plus important que
celui des non-linéarités quadratiques. Nous pouvons donc accroitre considérablement le rapport C/B et ainsi
favoriser les non-linéarités cubiques.

Nous avons également calculé les lois de mélange des paramètres non-linéaires quadratique et cubique
pour des fluides et nous obtenons les mêmes facteurs d’amplification et les mêmes concentrations optimales.

Nous allons à présent calculer les expressions des lois de mélanges des paramètres non-linéaires qua-
dratiques et cubiques pour des inclusions d’un matériau non-linéaire 2 dans une matrice linéaire 1, comme
présenté sur la figure 10 qui définit également les notations utilisées pour les constantes.

En 3D, la relation entre le tenseur des contraintes T̂ et celui des déformations ε̂ s’écrit ainsi :

T̂ = 2µε̂ +λTr(ε̂)Î

+Aε̂2 +BTr(ε̂2)Î +2Bε̂Tr(ε̂) +CTr2(ε̂)Î

+ETr(ε̂3)Î +3Eε̂2Tr(ε̂) + 2FTr(ε̂)Tr(ε̂2)Î +2Fε̂Tr2(ε̂) + 4Gε̂Tr(ε̂2) + 4H Tr3(ε̂)Î .
(19)



Figure 10 – Inclusions non-linéaires dans une matrice linéaire. (a) En 3D, nous définissons les consantes
non-linéaires quadratiques A,B,C et cubiques E,F,G,H . (b) En 2D, celles-ci se simplifient en e et f pour les
quadratiques et g,h et l pour les cubiques.

et en 2D :

T̂ = 2µε̂ +λTr(ε̂)Î

+ eTr(ε̂2)Î +2eε̂Tr(ε̂) + 3f Tr2(ε̂)Î

+4gε̂Tr(ε̂2) + hTr3(ε̂)Î + lε̂Tr2(ε̂) + lTr(ε̂)Tr(ε̂2)Î .

(20)

Grâce à une méthode d’homogénéisation, nous définissons un matériau équivalent à l’ensemble du
système. Celui-ci possède des constantes linéaires et non-linéaires effectives dépendant des paramètres des
inclusions et de la matrice ainsi que de la concentration. Nous nous intéressons seulement au cas 2D et
aux constantes linéaires Keff et µeff, à la constante quadratique feff et à la constante cubique heff. Ces deux
constantes non-linéaires sont en effet celles qui agissent principalement sur les ondes longitudinales de
compression. Nous écrivons donc la relation contrainte-déformation ainsi :

T̂ = 2µeffε̂ + (Keff −µeff)Tr ε̂I +3feffTr
2 ε̂I + heffTr

3 ε̂I . (21)

Dans ce cas, nous pouvons définir deux formules donnant respectivement la concentration optimale
et l’amplification des paramètres (feff/Keff)/(f /K2) et (heff/Keff)/(h/K2). Dans ces formules, d désigne la
dimension (2 ou 3) et g l’ordre (2 ou 3) tandis que x et y désignent les rapports : x = µ1/K1 et y = K1/K2.

Ainsi, si x→ 0, x > 0 et y→∞, le facteur d’amplification non-linéaire est :

Amp(x∗) ≈ 4g9−3gyg−1

(18− 5g)g−1(6− g)g+1
, (22)

et la concentration optimale :

copt(x
∗) ≈ g

2y
× 18− 5g

6− g . (23)

Nous exploitons maintenant ces résultats dans un exemple réel. Considérons un système composé
d’inclusions d’un polymère poreux non-linéaire dans une matrice de PDMS linéaire. Le polymère poreux est
constitué de 99,13 % de polymère et de 0,87 % d’air.



Matériau ρ0(kg.m−3) vl (m/s) vt (m/s) K2D (GPa)

PDMS 970 1100 110 1,1737
Polymère plein 1000 2000 1000 3,0
Polymère poreux 991,3 131,2 65,6 0,128

Tableau 3 – Vitesses longitudinale et transverse et coefficient de compressibilité du polymère et du PDMS.

Les vitesses longitudinales et transverses et le coefficient de compressibilité pour ces matériaux sont
données par le tableau 3.

Les paramètres non-linéaires du polymère poreux sont : f = 10 × K2D = 1.28GPa et h = 100 × K2D =
12.8GPa. Les constantes effectives linéaires (µeff et Keff) et non-linéaires (feff et heff) du matériau effectif
obtenu par la procédure d’homogénéisation sont calculées pour un ensemble de porosités du polymère.
La valeur de porosité 0.0087 est choisie car elle optimise les amplifications du paramètre cubique. Pour
cette porosité, la concentration optimale en polymère dans le PDMS est 0.0067. Pour cette concentration,
l’amplification cubique atteint 1042,6 et l’amplification quadratique 4,69, comme le montre la figure 11.

Figure 11 – Variation des amplifications quadratique et cubique avec la concentration.

Étude numérique des cristaux phononiques non-linéaires 2D

Cette section exploite les résultats de la section précédente pour montrer que l’amplification des non-
linéarités cubiques et la réduction des non-linéarités quadratiques peuvent être observées dans un système
propagatif.



Nous présentons d’abord la méthode de Galerkin Discontinue et son implémentation dans le framework
Hedge. La méthode de Galerkin Discontinue est une méthode d’éléments finis permettant la résolution
d’équations différentielles en utilisant des polynômes d’ordre arbitraire (comme dans la méthode des
éléments finis) et en utilisant des flux aux frontières entre les éléments (comme dans la méthode des volumes
finis).

La particularité de cette méthode est d’autoriser des solutions discontinues aux interfaces entre les
éléments, ce qui la rend hautement parallélisable, puisque la solution sur un des éléments ne dépend pas
des solutions sur ses voisins. Elle est donc particulièrement adaptée à l’exécution sur les grilles de calculs
(clusters) et les processeurs graphiques (GPU).

Nous avons implémenté cette méthode dans un opérateur d’élastodynamique pour le framework Hedge,
en utilisant l’équation (21) qui tient compte des non-linéarités quadratiques et cubiques.

Nous avons validé le fonctionnement de cet opérateur, tant pour sa partie linéaire que pour la gestion des
non-linéarités. Pour la partie linéaire, nous avons comparé le résultat fourni par cet opérateur au résultat
fourni par le programme de référence EX2DDIR qui calcule analytiquement la propagation d’une onde
élastique dans un demi-espace possédant une surface libre, depuis une source ponctuelle directionnelle [17].
Pour les non-linéarités quadratiques et cubiques, nous avons vérifié que les valeurs des harmoniques deux et
trois augmentait avec la distance parcourue conformément aux formules présentes dans la littérature [18,
19]. Comme le montrent les figures 12 (a) et (b), l’accord entre les résultats obtenus et théoriques est très bon.

Figure 12 – Validation linéaire et non-linéaire de l’opérateur élastodynamique. (a) Propagation d’une
onde élastique dans un demi-espace linéaire, avec une perturbation produite par une source directionnelle
ponctuelle dans Hedge comparée avec le résultat analytique. (b) Évolution de la valeur de la troisième
harmonique avec la distance x parcourue depuis la source dans Hedge comparée avec le résultat analytique.

Enfin, nous avons simulé la propagation d’une onde élastique à travers une structure hétérogène composée
d’un matrice linéaire de PDMS et d’inclusions non-linéaire en polymère poreux, dont les constantes sont
données dans la section précédente.

Dans cette structure, représentée sur la figure 13, la concentration de polymère poreux dans le PDMS est
de 0,67 %, concentration censée encourager l’amplification des non-linéarités cubiques au détriment des
non-linéarités quadratiques.

En enregistrant l’évolution des deuxième et troisième harmoniques en fonction de la distance parcourue
par l’onde depuis le point source, nous avons pu estimer la valeur des constantes non-linéaires d’ordre deux
et trois grâce aux formules de la littérature précédemment utilisées pour la validation du code.

Nous avons ainsi obtenu une amplification du paramètre quadratique par un facteur 4,7 alors que



Figure 13 – La structure comporte 200 inclusions, avec un diamètre r = 0.04618 m et un espacement a = 1 m
entre chaque centre. Une NPML est présente à chaque extrémité de la structure. Les positions des source et
récepteur sont indiquées.

l’amplification du paramètre cubique atteint 1070. Ces valeurs sont très proches des amplifications prédites
par les lois de mélanges non-linéaires de la section précédente (4,69 et 1042, respectivement).

Nous pouvons donc conclure que les lois de mélange non-linéaires que nous avons établies dans la section
précédente pour un système statique sont également applicables à un système propagatif. Il est donc possible,
pour le résonateur élastique que nous avons étudié, d’optimiser ses performances en utilisant un matériau
composite à l’intérieur de la cavité. Nous pouvons concevoir ce matériau pour qu’il possède une constante
non-linéaire cubique forte et une quadratique faible.

D’autre part, nous disposons d’un outil efficace de simulation numérique de la propagation d’ondes
élastiques dans un milieu non-linéaire. Cet outil nous permettra d’étendre notre étude du résonateur (et
d’autres structures) en utilisant des systèmes 2D et 3D, tout en conservant des temps de calculs raisonnables,
grâce aux grilles de calcul et aux processeurs graphiques.

Conclusion et perspectives

Dans cette thèse, nous avons fourni des résultats analytiques pour l’étude des cristaux phononiques linéaires
(chapitre 1) puis exploré le domaine des cristaux phononiques non-linéaires et observé de nouveaux phéno-
mènes comme la dispersion des ondes élastiques par l’interaction quatre-phonons (chapitre 2) ainsi que la
commutation (switching) d’une onde élastique par un résonateur non-linéaire (chapitre 3). Ces phénomènes
sont dus aux non-linéarités des matériaux constituant les cristaux.

Nous avons étudié comment ces non-linéarités évoluaient lorsque des inclusions non-linéaires sont
présentes dans une matrice linéaire et avons fourni des équations permettant d’optimiser la non-linéarité
quadratique ou cubique d’un tel matériau composite (chapitre 4). Nous avons enfin montré la possibilité
d’utiliser ces résultats dans un système propagatif en les appliquant à une structure 2D (chapitre 5).

Pour la suite de l’étude, nous proposons d’exploiter les résultats des lois de mélange dans le résonateur
1D pour disposer d’un défaut central possédant de fortes non-linéarités cubiques et de faibles non-linéarités
quadratiques. Un modèle 2D puis 3D (plaque contenant des inclusions cylindriques) de ce résonateur
pourrait ensuite être proposé puis cette structure pourrait être réalisée physiquement par micro-usinage,
testée et caractérisée.

L’utilisation de l’effet magnéto-élastique est ensuite envisagée pour permettre l’adaptation dynamique du
système : cet effet permet de changer les constantes élastiques non-linéaires des matériaux et pourrait donc
conduire à la réalisation d’un commutateur élastique contrôlé à distance par une onde magnétique. Enfin,
l’instabilité de la transition de réorientation de spin pourrait encore améliorer les performances du système
en permettant une variation importante des paramètres à partir d’une faible variation du champ magnétique.



Introduction

Phononic Crystals and Their Applications

Abstract

Phononic crystals (PnCs) are the analogue of photonic crystals for the acoustic waves. By adding scattering

periodic inclusions, following a crystalline lattice, inside an homogeneous host material, some ranges of

acoustic frequencies are totally reflected and thus forbidden in the resulting material. This creates acoustic

band-gaps.

Initially, the constructed crystals were limited to frequencies below 1 MHz, but the micro-crystals made

by micro-fabrication can reach very high and even ultra high frequencies, with an example above 1 GHz [2].

The key issue in the field of PnCs is tuning the acoustic band-gaps in order to tailor the behavior of

acoustic waves and create new functions, such as selective frequency filtering and wave guiding, and new

devices, such as wavelength demultiplexers. This can be done by using the nonlinear properties of the

materials that constitute the crystals as well as using the geometrical nonlinearities of the structures [1].

The initial purpose of this thesis was to demonstrate, numerically, that one can dynamically tune the

band gaps and localized modes in PnCs by using magnetoelastic materials. It then evolved in studying the

nonlinear effects in various phononic structures. This thesis does not only concern the analytical study of

nonlinearities in PnCs but also the methods used to simulate numerically and efficiently the acoustic wave

behavior in such structures. So, some facts and recent breakthroughs about the resolution of the acoustic

wave equation will be explained: a state-of-the-art highly parallelizable finite element method called the

Discontinuous Galerkin method will be presented.

This introduction will first provide a general overview about PnCs. Then, it will explain the different

methods that can be used for tuning PnCs and detail what has already been done in some specific areas of

this field, namely granular PnCs and nanoscale PnCs, and what is still to be done. It will present both the

history and state of the art and provide a review of the literature on this subject.
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2 Introduction

Figure 14 – Example of a phononic crystal. This example shows the lattice parameters for the Bragg
resonance on the left and the resulting band diagram on the right, as well as the directions of propagation in
the Brillouin zone.

General Overview

Principle

PnCs are periodic arrangements of inclusions inside an elastic or viscoelastic material or a fluid, for example

metal in air, polymer in water, air in epoxy, etc. With such a structure, band-gaps may appear and are

independent of the direction of propagation of the incident elastic wave. In this case, the PnC behaves like a

perfect non absorbing acoustic mirror for the rejected frequencies [1].

The central frequency of the band-gap is determined by the size, periodicity, filling and arrangement of

the inclusions. Physically, the phononic band-gap is due to the diffraction of the elastic wave at the interface

between the matrix and the inclusions [2].

Creating defects by replacing or removing some of the inclusions in a PnC, by making the arrangement

irregular, allows certain frequencies to exist within the band-gap. Those defects behave like impurities in

doped semiconductors. Thus, it is possible to tailor the acoustic properties of the crystal [1].

Typical PnCs obey the Bragg and Mie resonance conditions. Figure 14 represents a square lattice

crystal. On this figure, r is the inclusion radius and a is the distance between the centers of the inclusions.

The irreducible Brillouin zone has three directions, ΓX, XM and MΓ. The fundamental Bragg resonance

frequencies are V /(2a) for the ΓX direction and V /(2
√
2a) for the ΓM direction, where V is the average

acoustic velocity in the crystal. This velocity depends on the filling ratio, r/a [2].

PnCs are elastic or acoustic depending on whether the host material can (solid) or cannot (gas or liquid)

support transversely polarized waves [8].
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History

The very first known experimental observation of PnCs was in 1979, when Narayanamurti et al. investigated

the propagation of high-frequency phonons through a GaAs/AlGaAs superlattice. Their superlattice can be

considered as a 1D PnC [3].

As for theoretical work, Sigalas and Economou demonstrated for the first time in 1992 that frequency

gaps appear for elastic waves in periodic arrangements of spheres with high density compared to that of the

host material [4]. Then, Kushwaha et al. calculated full band-structure for periodic, elastic composites in

1993 [5].

However, the first complete phononic band-gap was only observed in 1998 by Montero de Espinosa et al.,

using an aluminum alloy plate with a square periodic arrangement of cylindrical holes filled with mercury.

A band-gap appeared in the frequency range between 1000 and 1120 kHz [6].

Recently, the variety of materials used in the fabrication of phononic devices allowed great improvements

on the reachable frequencies for the band-gap, making it increase from about 1 MHz to very high frequencies

(VHF: 30–300 MHz) and even ultra high frequencies (UHF: 300–3000 MHz) [2].

Gorishnyy demonstrated an hypersonic (above 1 GHz) PnC using air scattering inclusions in epoxy in

2007. The band-gap was measured by Brillouin light scattering [7].

Applications

The domains in which PnCs have potential applications are radio-frequency communications and ultrasound

imaging for medicine and nondestructive testing. Focusing devices made with PnCs could miniaturize

acoustic lenses, adapt impedance and decouple the transducer size from the aperture [2].

Moreover, sub-diffraction-limited resolution by transmitting the evanescent components of the wave and

acoustic shielding could be reached by using them as wave-guides [8]. Using the photon-phonon interaction

would allow modulation and optical cooling [2]. They could also improve direct energy conversion by

thermoelectric and thermophotovoltaic effects [9].

At the micro-scale, PnCs are used to isolate resonating structures, such as Coriolis force gyroscopes,

mechanical resonators, filters and oscillators, from external vibrations and noise [2]. Therefore, they allow

the rigid attachment of these devices to the substrate in a vibration-free environment, which allows to make

high-precision mechanical systems [1].

Tunable Phononic Crystals

As discussed above, adding defects in the crystalline structure is an easy way to tailor the acoustic band-gaps

of the PnC. Tunability of PnCs can also be achieved by changing the geometry of the inclusions through

stress or thermal effects [11].

Another way is to vary the elastic characteristics of the constitutive materials by applying external stimuli

such as electric field, temperature or stress. However those techniques either require physical contact or the

application of very large stimuli for a very small result [10].
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Figure 15 – Basic diagram of a precompressed granular phononic crystal.

In 2009, Robillard et al. demonstrated the possibility of controlling the band-gaps using an external

magnetic field. This field would use the giant magnetostriction effect to modify the nonlinear elastic constants

of Terfenol-D, a giant magnetostrictive material, by more than 50 % which allows contact-less tunability of

the PnC [10]. Bou Matar et al. extended this work by explaining how it would be possible to tailor the band

structure of the PnC by using giant magnetostriction and spin reorientation transition effects. They detail

the modeling equations of a piezomagnetic PnC [11].

In optics, Soljačić et al. published in 2002 a description of a nonlinear photonic crystal capable of

performing optimal bistable switching. Their analytical model accompanied with numerical simulations

describe a resonator consisting of a cavity with a nonlinear optical index. When increasing the wave

amplitude, the nonlinear frequency shift brings the wave frequency to the resonance frequency of the cavity.

This leads to a higher transmission of the wave through the crystal. When decreasing the wave amplitude,

the transmitted power delineates an hysteresic curve and the system reaches full transmission [20].

This kind of behavior has not yet been observed in acoustics even if the approach proposed by Robillard and

Bou Matar seems to prove the feasibility of an acoustic bistable switch using piezomagnetic PnCs.

Granular Phononic Crystals

The discussion above presented general facts and breakthroughs about PnCs. Despite progresses have been

made to discover their properties and try to tailor their band structures, very few attempts have been done to

understand their nonlinear behavior, except in the specific case of granular PnCs which will be presented

now.

Nonlinear granular PnCs are composed of statically compressed chains of particles, confined in a guide,

that interact nonlinearly through Hertzian contacts [21]. Uncompressed granular crystals are called “sonic

vacuum type crystals” and are incapable of transmitting linear elastic waves [22].
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History

How waves propagate in statically and dynamically loaded granular media have lead to an extensive research

work since the 1980s, for example with Nesterenko, who studied the existence and interaction of solitons in

packed spherical granules, using numerical methods and Shukla et al. who modeled the wave propagation in

these media and computed it using experimental data [23, 24].

In 2004, Daraio et al. designed 1D and 3D crystals made of 0.03 to 0.5 g steel spheres in a silicon or PTFE

matrix and observed trains of strongly nonlinear solitary waves with small amplitudes (corresponding to

forces of about 0.3 N) which propagate at 317 m/s which is below the speed of sound in air [25].

Then, in 2006, the same team showed that the nonclassical, strongly nonlinear wave behavior appears in

granular materials if the system is weakly compressed, which means that the precompression force is very

small with respect to the wave amplitude. Oppositely, strongly compressed chain behavior approaches linear

wave behavior [26].

The derivation of the dispersion relation of 3D granular crystals made of hexagonal arrangements of

spheres was performed by Merkel et al. in 2010. They predict the existence of translational, rotational and

coupled translational/rotational modes and show that the longitudinal modes are not changed when the

rotational degree of freedom is taken into account [27].

In 2011, Boechler et al. used granular crystals similar to the one shown on Figure 15 with a defect to

design a rectifier (device that allows the propagation of some frequencies only in one direction) and an

acoustic switch with sharp transitions between states [21]. Nonlinear resonances in diatomic granular chains

have also been observed by Cabaret et al. who use the amplitude-dependent behavior that result from the

geometry of the structures, specially the Hertzian contacts between the particles [28].

Finally, in 2012, Yang and Daraio studied the propagation of stress waves in granular crystals composed

of diatomic unit cells in bent elastic guides. The cells were made of centimeter-long alternating spherical

and cylindrical particles. The waves were generated by striking the particle on the top with a force of 50

to 1000 N. Those structures possess band gaps around 5 and 10 kHz which can be tuned by modifying the

precompression of the chain. They show highly nonlinear behaviors and propagate solitary waves [22].

Tunability

One of the interests of granular crystals is the possibility to tune their behavior from near-linear to highly

nonlinear by varying the precompression which changes the ratio of static to dynamic particle displacement

[21].

A simulation by Göncü et al. proved that the band structure of a 2D granular crystal composed of

silicon rubber and polytetrafluoroethylene (PTFE) cylinders could be tuned more efficiently using pattern

transformation rather than changing the particles’ mechanical properties, creating new gaps around 5 kHz

[29].

A way of tuning the solitary waves speed by a factor of two by applying a precompression of 2.38 N with

a magnetically-induced interaction or only the gravitational preload of 0.017 N was demonstrated by Daraio

et al. [26].
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A numerical model by Spadoni and Daraio shows an acoustic lens capable of generating acoustic pulses

with a pressure amplitude of 675 Pa, corresponding to 57 dB, which is two orders of magnitude larger

than what is reachable with linear lenses. The focal point position is tuned by varying the time and space

distribution of the static precompression of the chains that compose the lens. Experiments using an array

of steel spheres in Teflon sheets produced focused waves in a polycarbonate plate in accordance with the

simulations. The wavelength is determined by the size of the particles [30].

Applications

Nonlinear acoustic lenses created by Spadoni and Daraio with granular PnCs can achieve better focusing and

allow higher focal power than linear ones. So, they are expected to improve the performances of current

devices for biomedical imaging, nondestructive testing and sonars. They could also be used to constitute

nonintrusive scalpels, for cancer treatment, for example [30].

The ability of nonlinear granular PnCs to behave as rectifiers or switches suggest that they could be used

to control the flow of energy in several applications, such as energy-harvesting materials with frequency-

dependent absorption and emission and thermal computers. Their nonlinear response allows them to change

their state when small perturbations are applied, which makes them suited for sensing applications [21].

The control of nonlinear resonances in diatomic granular chains are expected to lead to the creation of

new devices, such as passive amplitude-dependent amplifiers and attenuators [28].

One of the possible future direction in research about those crystal could be the ability to engineer the

dispersion relation and create gaps to create tunable vibration filtering devices and systems that could be

insulated from noise vibrations [31].

Nanoscale Phononic Crystals

The first part provided a general description of PnCs. The second part explained the specific case of granular

PnCs, whose nonlinear properties have been investigated. Another particular domain, for which a brief

review is now provided, consists of nanoscale PnCs. Those crystals deal with very high frequencies (THz) and

thermal effects. In this field, recent efforts have been made to engineer the band gaps. The most considered

materials for those crystals are graphene and nanoporous silicon.

History

In 2009, Gillet et al. demonstrated that 3D arrays of germanium quantum dots in silicon reduce the thermal

conductivity by several orders of magnitude compared to bulk silicon. This effect is produced by THz phonon

confinement and reflection on layer interfaces which decrease the phonon group velocity [32].

A similar effect was observed by Marconnet et al. in silicon nanobridges where the thermal conductivity

can be reduced to 3 % of its value in bulk material, without affecting the electrical conductivity. They

measured a thermal conductivity one order of magnitude lower than predicted by the model [33].

Then, this effect was explained in 2012 by Dechaumphai and Chen who modeled the coherent (wave-like)

and incoherent (particle-like) behavior of the phonons and computed the dispersion relation with a FDTD
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method. They found that the zone folding effect (formation of mini-bands in the superlattice because the

Brillouin zone edge for two materials is smaller than the Brillouin zones of each material) has a major impact

on the thermal conductivity [34].

A simulation by Sgouros et al. models PnCs made of graphene whose defects are constituted by adding

carbon atoms, removing some or replacing some by silicon atoms. This study shows that only the substitution

by silicon atoms creates band gaps [35].

As explained by Maldovan in 2013, the control of thermal conduction can be achieved by transforming

the heat flow to wave phonon transport by applying a 2D holes pattern to nanostructured alloys of silicon.

By blocking high-frequency phonons (above 1 THz), preventing them from existing, the heat transfer can

only be done by low-frequency phonons (below 1 THz) which can be guided by nanoscale crystals [36].

Applications

The possible applications of nanoscale PnCs considered by Gillet et al. concern the design of new energy-

conversion devices, such as Peltier refrigerators for domestic use as well as highly efficient hybrid thermal/-

electric car engines. They also note that the thermoelectric devices should be CMOS-compatible (based

on silicon, for instance) in order to improve the power management of computer microprocessors with

high-density of transistors [32].

The crystals designed by Maldovan open a new field called “thermocrystals” whose expected applications

are heat waveguides, thermal lattices, heat imaging, thermo-optics, thermal diodes and thermal cloaking

[36].

State of the Art Summary

Based on the state of the art provided above, the following observations can be made.

• On one hand, nonlinearities have only been studied in granular chains, which use the geometrical

nonlinearities not the nonlinear elastic constants of the materials.

• On the other hand, there is still no simulation effectively showing nonlinear behavior in a nongranular

(bulk) PnC. The need for a more general understanding of nonlinear effects in PnCs have been stated

by different authors [28]. This is why this thesis will concentrate on exploring the nonlinear effects in

PnCs.

This introduction chapter presented both the history and the state of the art concerning the study of PnCs

and provided a literature review.

Chapter 1 will deal with a mathematical description of one-dimensional superlattices. It will introduce

some preliminary results and equations that are useful for the modeling of 1D PnCs. It will also present the

main numerical methods commonly used for this purpose.

Chapter 2 will present the study of wave dispersion in a bone structure composed of collagen and hydroxy

apatite alternate constituent layers. Energy dissipation in bones will be related to their hydration through a

chemical model and numerical simulations.
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Chapter 3 demonstrates the switching behavior of a nonlinear elastic resonator constituted of steel

inclusions in a silica matrix. A PnC is modeled and studied with the spectral elements method. A theoretical

model is provided to explain its hysteretic behavior.

Chapter 4 provides a full derivation of the mixing laws of second and third order elastic constants for any

system composed of nonlinear inclusions in a linear isotropic matrix, for small concentrations, through a

homogenization procedure. The amplification of the nonlinear parameters is studied.

Chapter 5 exploits the results of chapter 4 and shows that amplification of cubic nonlinearities and

reduction of quadratic nonlinearities can be obtained in a heterogeneous propagative system.



Chapter1

Analytical and Numerical Study of 1D

Superlattices

1.1 Introduction

This chapter provides some essential results for the study of one-dimensional phononic crystals. The first

section will define 1D superlattices and their governing equations.

The second part will detail an analytical method to solve the elastic wave propagation in those structures,

called the matrix transfer method. It will then explain how we can calculate analytically the dispersion

curves – or band diagrams – of structures by resolving the wave equations for the frequency or wave vector.

In 1D, the wave equation has analytical solutions that will be computed using a transfer matrix method.

We will study the wave propagation in and transmission through bilayers as well as the analytical expressions

of the band structure.

In a third section, we will present the numerical methods used for the study of 1D PnCs in this thesis,

namely the Pseudospectral method, the Finite Difference Time Domain method and the Spectral Energy

Density method.

1.2 One-Dimensional Superlattices

The structures studied in this chapter are 1D periodic crystals consisting in a succession of layers, as shown

on Figure 1.1. There are two types of layers, 1 and 2, whose thickness are respectively d1 and d2, and whose

impedances are respectively Z1 and Z2.

... Z1 Z2 Z1 Z2 ...
← d1→ ← d2→ ← d1→ ← d2→

Figure 1.1 – A 1D superlattice with alternate layers with impedances Z1 and Z2.
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10 CHAPTER 1. Analytical and Numerical Study of 1D Superlattices

We first write the fundamental equations of acoustics:























∂p

∂x
= −ρ(x)∂v

∂t
∂p

∂t
= −Y (x)∂v

∂x

, c =

√

Y

ρ
, (1.1)

where p is the pressure, v is the particle velocity, ρ is the mass density and Y is the Young’s modulus.

Those equations are equivalent to:


























∂τ

∂x
= ρ(x)

∂2u

∂t2

τ = Y (x)
∂u

∂x

, (1.2)

where τ = −p is the stress and u is the particle displacement.

For an harmonic wave, the generic solution in a layer with impedance Zi is an harmonic solution, i.e., a

plane wave composed of an incident wave with amplitude A and a reflected wave with amplitude B. In this

case, considering p = Pejωt and v = V ejωt , we can write the solution as follows:















P = ZiA(ω)e−jkx − Zi B(ω)ejkx

V = A(ω)e−jkx + B(ω)ejkx
. (1.3)

1.3 Analytical Method: Transfer Matrix Method

The Transfer Matrix Method will use the solution described by equation (1.3) written as a product of a matrix

and a vector. This formalism will allow us to write the solutions of wave propagation in more complex

structures, such as sets of bilayers with or without defects. We will show that particular cases, such as

quarter-wavelength layers have a more simple and interesting behavior.

1.3.1 Propagation in a Layer

From equation (1.3), the propagation in a layer, from position x = 0 to position x can be written as a product

of matrices:













P

V













x

=













Zie
−jkix −Zie

jkix

e−jkix ejkix

























A

B













0

=













Zi −Zi

1 1

























e−jkix 0

0 ejkix

























A

B













0

, (1.4)

which we can write:













P

V













x

= Fi Hi













A

B













0

, with Fi =













Zi −Zi

1 1













and Hi =













e−jkix 0

0 ejkix













. (1.5)

In equation (1.5), Hi describes the wave propagation in the layer i at a distance x.
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We can also note that:












P

V













0

= Fi













A

B













0

, (1.6)

so:












A

B













0

= F−1i













P

V













0

, with F−1i =
1
2













1
Zi

1

− 1
Zi

1













. (1.7)

This way, we obtain for the propagation through a layer of impedance Zi and a length x:













P

V













x

= Fi Hi F
−1
i













P

V













0

=Mi













P

V













0

, with Mi = Fi Hi F
−1
i =













cos(kix) −jZi sin(kix)

− j
Zi
sin(kix) cos(kix)













. (1.8)

1.3.2 Propagation in a Bilayer

To write the propagation in a bilayer, we use the continuity property of P and V at the interfaces:













P

V













x+

=













P

V













x−
, (1.9)

where x+ belongs to Z2 and x− belongs to Z1.

Thus, we have:












P

V













d1+d2

=M2 M1













P

V













0

=M













P

V













0

, (1.10)

with:

M =













cos(k2d2) −jZ2 sin(k2d2)

− j
Z2

sin(k2d2) cos(k2d2)

























cos(k1d1) −jZ1 sin(k1d1)

− j
Z1

sin(k1d1) cos(k1d1)













=















cos(k1d1)cos(k2d2)− Z2
Z1

sin(k1d1)sin(k2d2) −jZ1 cos(k2d2)sin(k1d1)− jZ2 sin(k2d2)cos(k1d1)

− j
Z2

cos(k1d1)sin(k2d2)− j
Z1

cos(k2d2)sin(k1d1) −Z1
Z2

sin(k1d1)sin(k2d2) + cos(k1d1)cos(k2d2)















,

or in a condensed form:

M = (F2H2F
−1
2 )(F1H1F

−1
1 ). (1.11)

In a periodic medium (d = d1 + d2), the propagating modes are the Bloch modes and the eigen values of

M are given by:

Y1 = ejkd and Y2 = e−jkd . (1.12)

Since the trace of the matrix M is:

Tr(M) = Y1 +Y2 = 2cos(kd), (1.13)
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the dispersion law of the bilayer periodic infinite medium can be written as:

cos(kd) =
1
2
Tr(M) = cos(k1d1)cos(k2d2)−

1
2

(

Z1

Z2
+
Z2

Z1

)

sin(k1d1)sin(k2d2). (1.14)

Using equation (1.14), we can calculate the dispersion curves of layered media such as the bone structure

of chapter 2 and the periodic inclusions of steel in silica of chapter 3. Figure 1.2 shows those dispersion

curves for such infinite media. On Figure 1.2b, the red dots represent the analytical solutions for the band

edges, when a = 1 (see section 1.3.3); as Z1 , Z2, the dots don’t exactly match the edges.

Figure 1.2 –Dispersion curves calculated with the dispersion law. (a) Dispersion curves of hydroxy apatite
inclusions in collagen d1 = d2 = 33.5nm, Z1 ≈ 13.8× 106kgm−2 s−1 and Z2 ≈ 0.353× 106kgm−2 s−1.
(b) Dispersion curves of steel inclusions in silica d1 = d2 = 3.0665µm, Z1 ≈ 46.8× 106kgm−2 s−1 and Z2 ≈
13.1× 106kgm−2 s−1. Red dots: analytical solution for a = 1.

For a 1D superlattice, the first Brillouin zone extends for wave vectors k between −π/d and +π/d.

Considering the term F−12 F1 appearing in equation (1.11), we can now give a physical interpretation of

the matrices Fi :

F−12 F1 =
1
2















1
Z2

1

− 1
Z2

1



























Z1 −Z1

1 1













=
Z1 +Z2

2Z2















1 Z2−Z1
Z1+Z2

Z2−Z1
Z1+Z2

1















=
1
tp













1 rp
rp 1













=M t
12, (1.15)

where

rp =
Z2 −Z1

Z1 +Z2
, (1.16)

is the reflection coefficient between a medium of impedance Z1 and one of impedance Z2 and similarly

tp =
2Z2

Z1 +Z2
, (1.17)

is the transmission coefficient of the same media, so it appears that M t
12 represents the transfer matrix
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through an interface between medium 1 and medium 2.

1.3.3 Band Structure in a 1D Phononic Crystal

We now search for analytical solutions of the dispersion equation (1.14) rewritten as:

cos(kd) = cos(X)cos(aX)− β sin(X)sin(aX) = f (X), (1.18)

with:

X = k1d1, aX = k2d2 and β =
1
2

(

Z1

Z2
+
Z2

Z1

)

> 1. (1.19)

First, we are looking for analytical expressions of the position and width of the band gaps. At the band

edge, kd = nπ so:

cos(kd) = f (X) = ±1. (1.20)

We will consider separately the two edges, where kd = 2nπ, i.e. where f (X) = 1 and where kd = (2n+1)π,

i.e. where f (X) = −1.

First case: f (X) = −1

In this case, the dispersion equation (1.18) becomes:

cos(X)cos(aX)− β sin(X)sin(aX) = −1, (1.21)

which we can write:
1− t2
1+ t2

× 1− τ2
1+ τ2

− β × 2t
1+ t2

× 2τ
1+ τ2

= −1, (1.22)

where we have defined:

t = tan
X

2
and τ = tan

aX

2
. (1.23)

This equation is equivalent to:

1 + t2τ2 − 2βtτ = 0. (1.24)

Defining Y = tτ gives:

Y 2 − 2βY +1 = 0. (1.25)

The two solutions of equation (1.25) are:

Y = β ±
√

β2 − 1, (1.26)

or simply:

α and
1
α

with α = β +
√

β2 − 1. (1.27)
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Replacing in equation (1.27) the definition of β given in equation (1.19) leads to:

α =
1
2

(

Z1

Z2
+
Z2

Z1

)

+

√

1
4

(

Z1

Z2
+
Z2

Z1

)2

− 1, (1.28)

or after a simplification to:

α =
1

2Z1Z2

(

Z2
1 +Z2

2 ±
(

Z2
1 −Z2

2

))

. (1.29)

Finally, the two solutions of equation (1.25) are given by:

Y =
Z1

Z2
and Y =

Z2

Z1
. (1.30)

Second case: f (X) = 1

In this case, the dispersion equation is:

cos(X)cos(aX)− β sin(X)sin(aX) = 1, (1.31)

which we can write as:
1− t2
1+ t2

× 1− τ2
1+ τ2

− β × 2t
1+ t2

× 2τ
1+ τ2

= 1. (1.32)

This equation is equivalent to:

t2 + τ2 +2βtτ = 0, (1.33)

or:
t2

τ2
+2β

t

τ
+1 = 0 if τ , 0. (1.34)

Defining Z = t
τ gives:

Z2 +2βZ +1 = 0. (1.35)

The two solutions of equation (1.35) are:

Z = −β ±
√

β2 − 1, (1.36)

or introducing α as in the previous case:

−α and − 1
α

with α = β +
√

β2 − 1, (1.37)

the two solutions of equation (1.35) are then:

Z = −Z1

Z2
and Z = −Z2

Z1
. (1.38)
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Remark

As we have defined:

X = k1d1 and aX = k2d2, (1.39)

then if d1 = d2, we obtain:

a =
k2d2
k1d1

=
k2
k1

. (1.40)

So, if we impose ρ1 = ρ2 then:

Z2

Z1
=
ρ2c2
ρ1c1

=
c2
c1

=
c2
ω
× ω

c1
=
k1
k2

=
1
a
. (1.41)

Special case: a = 1

In this case, we get from the dispersion equation, for f (X) = 1:

cos2(X)− β sin2(X) = 1, (1.42)

which gives:

− (4 + 4β)t2 = 0. (1.43)

The solution of equation (1.43) is:

t = 0, so X = 2nπ. (1.44)

Now, when f (X) = −1, we have:

cos2(X)− β sin2(X) = −1, (1.45)

which we can write as:
(

1− t2
1+ t2

)2

− β
( 2t
1+ t2

)2
= −1. (1.46)

Equation (1.46) can be simplified, leading to:

t4 − 2βt2 +1 = 0. (1.47)

The four solutions of equation (1.47) are represented on Figure 1.3. They are given by:

tan
X

2
∈
{
√

Z1

Z2
, −

√

Z1

Z2
,

√

Z2

Z1
, −

√

Z2

Z1

}

. (1.48)

We only consider solutions where:

X =
ω

c1
d1 > 0, (1.49)

because ω > 0. The values that we obtain for X/2 between 0 and π/2 are met periodically every X/2 = nπ, or

X = 2nπ.
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Figure 1.3 – Graphical solutions of equation (1.47). The points corresponding to the solutions are shown
in red. The bold blue lines between those points correspond to the gaps.

Defining

θ1 = arctan

√

Z2

Z1
6

π

4
if Z2 < Z1 and θ2 =

π

2
−θ1, (1.50)

we get:

tan(θ1) =
sin(θ1)
cos(θ1)

=

√

Z2

Z1
. (1.51)

Calculating now tan(θ2) we get:

tan(θ2) =
sin

(

π
2 −θ1

)

cos
(

π
2 −θ1

) =
cos(θ1)
sin(θ1)

=

√

Z1

Z2
, (1.52)

which means that the first gap extends from 2θ1 to π − 2θ1 giving, in terms of frequency:

f ∈
[

θ1c1
πd1

,
c1
2d1
− θ1c1

πd1

]

. (1.53)
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It appears that the middle of the first gap is met at:

fc =
c1
4d1

, (1.54)

and the width of the first gap is:

∆f =
c1
2d1
− 2θ1c1

πd1
=

c1
2d1

(

1− 4θ1

π

)

= 2fc
(

1− 4θ1

π

)

. (1.55)

From equation (1.54) and (1.55), the relative width of the first gap can be expressed as:

∆f

fc
= 2

(

1− 4θ1

π

)

. (1.56)

Following similar steps, we calculate the edges of the second gap. We start with:

tan(θ3) = −
√

Z1

Z2
= − tan(θ2) = tan(−θ2), (1.57)

which leads to:

θ3 = π −θ2 = π −
(π

2
−θ1

)

=
π

2
+θ1. (1.58)

The second edge of the second gap is given by θ4 = π −θ1. The second gap extends from 2θ3 to 2θ4, so

for:

f ∈
[

c1
2d1

+
θ1c1
πd1

,
c1
d1
− θ1c1

πd1

]

. (1.59)

The middle of the second gap is met at:

3fc =
3c1
4d1

, (1.60)

and the width of the second gap is given by:

∆f =
c1
2d1
− 2θ1c1

πd1
=

c1
2d1

(

1− 4θ1

π

)

= 2fc
(

1− 4θ1

π

)

, (1.61)

which is the same width as the first gap.

To sum up, we have shown that the central frequency and width of the gap, when a = 1, i.e. k1d1 = k2d2
are:

fcn = (2n− 1) c1
d1

, for n > 1 and ∆f =
c1
2d1

(

1− 4θ1

π

)

with θ1 = arctan

√

Z2

Z1
, Z2 < Z1. (1.62)

In fact, the central frequencies of the gaps correspond to k1d1 = π/2 so d1 = (2n − 1)λ1/4 (and as a = 1,

d2 = (2n − 1)λ2/4). Moreover, the widths of the gap increase as θ1 decreases, so when Z1 is very large

compared to Z2.

Finally, with a = 1, if a frequency f0 is in the first gap, then, the higher odd harmonics 3f0, 5f0... will also

be in band gaps, whereas the even harmonics 2f0, 4f0... will be between gaps, i.e. in passing bands.
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Special case: a = 2

In this case, we have:

k2d2 = 2k1d1 and τ = tan(X) =
2t

1− t2 . (1.63)

Introducing as previously

Y = tτ =
2t2

1− t2 , (1.64)

we obtain from the dispersion equation, in the case where f (X) = 1:

Y = t2(2 +Y ) and t = ±
√

Y

2+Y
. (1.65)

Equation (1.65) has the following four solutions:

t = tan
X

2
∈
{
√

Z1

2Z2 +Z1
, −

√

Z1

2Z2 +Z1
,

√

Z2

2Z1 +Z2
, −

√

Z2

2Z1 +Z2

}

. (1.66)

Now, in the case where f (X) = −1, introducing

Z =
t

τ
=
t(1− t2)

2t
=
1− t2
2

, (1.67)

we derive the following equation:

t2 = 1− 2Z = 1+2Y or simply t = ±
√
1+2Y. (1.68)

Equation (1.68) also has four solutions:

t = tan
X

2
∈
{
√

2Z1 +Z2

Z2
, −

√

2Z1 +Z2

Z2
,

√

2Z2 +Z1

Z1
, −

√

2Z2 +Z1

Z1

}

. (1.69)

We finally have eight solutions, represented on Figure 1.4, given by:

t = tan
X

2
∈
{

δ1,δ2,−δ1,−δ2,
1
δ1

,
1
δ2

,− 1
δ1

,− 1
δ2

,

}

, (1.70)

where

δ1 =
1

tanθ1
and δ2 =

1
tanθ2

. (1.71)

If we define:

θ1 = arctan
1
δ1

and θ2 = arctan
1
δ2

, (1.72)

then:

θ3 =
π

2
−θ2 and θ4 =

π

2
−θ1. (1.73)
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Figure 1.4 – Graphical solutions of equation (1.68). The solutions correspond to the case where a = 2. The
points corresponding to the solutions are shown in red.

In this case, in the frequency band
[

0, c1
2d1

]

, we have two gaps:

Gap1: f ∈
[

θ1c1
πd1

, θ2c1
πd1

] (

k = π
a

)

,

Gap2: f ∈
[

c1
2d1
− θ2c1

πd1
, c1
2d1
− θ1c1

πd1

]

,
(1.74)

where the middle frequencies are given by:

Gap1: fc1 =
θ1+θ2

2 × c1
πd1

,

Gap2: fc2 =
c1
2d1
−
(

θ1+θ2
2 × c1

πd1

)

,
(1.75)

and the gap widths by:
Gap1: ∆f1 =

c1(θ2−θ1)
πd1

,

Gap2: ∆f2 = ∆f1.
(1.76)

This resolution of the dispersion equation (1.18), to obtain analytical expressions of the central frequencies

and widths of gaps, allows us to design crystals with this specific feature: if a frequency f0 is in the first gap,

then all its higher harmonics 2f0, 3f0, 4f0... will also be in gaps. However, as we loose the symmetry that we

had with a = 1, those harmonics will not necessarily be in the middle of the gaps and, consequently, their
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attenuation may not be optimal.

1.3.4 Propagation of Amplitudes

We can also link the amplitudes A and B at position d to amplitudes A and B at position 0 with:
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, (1.77)

leading to:
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After propagation across the Z2 layer, we obtain:
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and finally:
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where we have introduced the following notations:

C1 =
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α β

β∗ α∗
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α = (cos(k2d2)− jS sin(k2d2))e−jk2d2

β = jD12 sin(k2d2)ejk1d1

S = 1
2

(

Z1
Z2

+ Z2
Z1

)

D12 =
1
2

(

Z1
Z2
− Z2

Z1

)

. (1.81)

So, we have expressed the values of the amplitudes A and B at position d as a product between a matrix

and the vector of the initial values of those amplitudes.

We note that:

det(C1) = αα∗ − ββ∗ = 1, (1.82)

and:
1
2
Tr(C1) =

α +α∗

2
= Re(α) = cos(k1d1)cos(k2d2)− S sin(k1d1)sin(k2d2) =

1
2
Tr(M). (1.83)

1.3.5 Transmission Through a Bilayer

We now study the propagation of an elastic wave through the bilayer described on Figure 1.5 with the

formalism of the preceding paragraphs. We want here to calculate the coefficients of transmission and

reflection through such a bilayer structure.
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Z0 Z1 Z2 ZL
1→ → t
r←

← d1→ ← d2→

Figure 1.5 – A 1D bilayer with impedances Z1 and Z2 with external layers with impedances Z0 and ZL.

For arbitrary Z0 and ZL, we derive using equation (1.80) the following set of equations:
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. (1.84)

Now, using the fact that no wave enters the bilayer from the output medium of impedance ZL, i.e. BL = 0, we

obtain the coefficients of transmission t and reflection r which are given by t = AL/A0 and r = B0/A0:













t

0













=













M11 M12

M21 M22

























1

r













0

. (1.85)

Resolving the system of equations, we obtain:

r = −M21

M22
, and t =

det(M)
M22

. (1.86)

1.3.6 Transmission Through N Bilayers

We now study the propagation of a elastic wave through a system composed of N bilayers, as shown on

Figure 1.6.

Z0 Z1 Z2 Z1 Z2 Z1 Z2 ZL
1→ → t
r←

1 2 ... N
← d1→ ← d2→

Figure 1.6 – A 1D system composed of N bilayers.

According to the previous paragraphs, for a system of N bilayers, we can write:













A

B













LN

= C1













A

B













L(N−1)
= CN

1













A

B













0

. (1.87)

So, considering an input layer with impedance Z0 and an output layer with impedance ZL, the transmis-

sion is given by:
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, with MT = (F−1L F1)C
N
1 (F−11 F0). (1.88)
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Figure 1.7 represents the normalized transmission spectrum for 5 and 7 steels inclusions in silica,

respectively. We can observe that the number of oscillations on the left and right sides of the gap is equal

to the number of inclusions. We can also note that the attenuation in the gap increases with the number of

inclusions.

Figure 1.7 – Transmission curves for 5 and 7 bilayers. Transmission curves for (a) five / (b) seven steel
inclusions in silica d1 = d2 = 3.0665µm, Z1 ≈ 46.8× 106kgm−2 s−1 and Z2 ≈ 13.1× 106kgm−2 s−1. The input
and output media are both silica. A band gap appears between ~300 MHz and ~700 MHz.

1.3.7 Transmission Through N Bilayers with a Defect

We now study the propagation of a elastic wave through the following system composed of N bilayers and a

central defect, as represented on Figure 1.8:

Z0 Z1 Z2 Z1 Z2 ZC Z2 Z1 Z2 Z1 ZL
1→ → t
r←

1 ... NL 1 ... NR
← d1→ ← d2→ ← dC →

Figure 1.8 – A 1D system composed of N bilayers and a central defect with width dC and impedance ZC .

In this case, the transmission is given by:
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with:
MTL = (F−1C F1)C

NL
1 (F−11 F0),

MTR = (F−1L F2)C
NR
2 (F−12 FC ),

C2 = (F−12 F1H1)(F
−1
1 F2H2).

(1.90)
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Figure 1.9 represents the normalized transmission spectrum for 5 and 7 steels inclusions in silica,

respectively, with a central defect (dC = 2d1). We can observe a peak in the band gap. Due to the symmetry

of the system, the peak is exactly at the middle of the gap. Also, its width decreases with the number of

inclusions (its quality factor increases). The central position of this peak is optimal as the attenuation is

higher at the center of the band gap.

Figure 1.9 – Transmission curves for 5 and 7 bilayers with a central defect. Transmission curves
for (a) five / (b) seven steel inclusions in silica d1 = d2 = 3.0665µm, Z1 ≈ 46.8× 106kgm−2 s−1 and
Z2 ≈ 13.1× 106kgm−2 s−1. The input and output media are both silica. The central defect is made of
steel. Its width is dC = 2× d1.

1.3.8 Reflected Impedance Through a Multilayer

We will now calculate equivalent impedance of impedance ZL seen through a system composed of N bilayers,

as represented on Figure 1.10.

ZC Z1 Z2 Z1 Z2 Z1 Z2 ZL

1 2 ... N
← L→ ← d1→ ← d2→

Figure 1.10 – A 1D system composed of N bilayers with external layers with impedances ZC and ZL.

The impedance at the relative position x in a layer with impedance ZC is defined by:

Z(x) =
( P

V

)

x
= ZC

Ae−jkcx −Bejkcx
Ae−jkcx +Bejkcx

. (1.91)

In the semi-infinite medium with impedance ZL, there is no reflected wave, so:

∀x > L+Nd, Z(x) = ZL. (1.92)
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Using the transfer matrices described in section 1.3.6, one can write:
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and:
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Introducing equation (1.93) into equation (1.94), we obtain:
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Inverting this equation, we get:
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where N11,N22,N12 and N21 are the elements of the matrix N .

Using the definition of the acoustic impedance in the layer of impedance Z1 at position L:

Z(L) = Z(x = L+) = Z1
A1 −B1

A1 +B1
= Z1

(N−1)11 − (N−1)21
(N−1)11 + (N−1)21

, (1.97)

we finally obtain:

Z(L) = Z1
N22 +N21

N22 −N21
. (1.98)

We note that Z(L) can be complex, thus introducing a phase shift when the wave is reflected on the

interface between the cavity and the supercell.

1.3.9 Transmission Through N Bilayers with Quarter-Wavelength Layers

We want to obtain a simple analytical expression of the transmission coefficient of a wave through N bilayers

with layer thickness equal to the quarter of the wavelength. This will enable us to find the link between

the quality factor Q of the resonator described in section 1.3.7, i.e. a superlattice with a defect, and the

number of bilayers and the impedance mismatch between the layers of the structure. We first present two

preliminary results before performing the calculation.

Preliminary results

It is easy to check the following diagonalization:
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and the following commutation:
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Calculation

Since we use quarter-wavelength layers, we rewrite the matrix C1 of equation (1.81) using:

d1 =
λ1

4
and d2 =

λ2

4
, or equivalently: k1d1 = k2d2 =

π

2
. (1.101)

So, we obtain:
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We note that in this case:

det(C1) = α2 − β2 = 1, (1.103)

and:

α + β =
Z1

Z2
, α − β =

Z2

Z1
. (1.104)

Using a recurrence and the diagonalization given in equation (1.99), we can easily prove that:
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Moreover, we note that:

α2
N − β2N = det

(

CN
1

)

= (det(C1))
N = 1, (1.106)

and:

αN + βN = (α + β)N , αN − βN = (α − β)N . (1.107)

In the general case, with no hypothesis on the values of Z0 and ZL, according to equation (1.88) the

coefficients of reflection and transmission are given by:

r = −
MT

21

MT
22

, and t =
det(MT )
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22

. (1.108)

Using expressions (1.5) and (1.7), we calculate:
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So, given their shapes, according to equation (1.100), CN
1 and (F−11 F0) commute. So:

MT = (F−1L F1)C
N
1 (F−11 F0) = (F−1L F1)(F
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1 F0)C

N
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N
1 , (1.110)

and we obtain:
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leading to the following expression of the transmission matrix MT :
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Introducing theses expressions in equation (1.108), the transmission coefficient becomes:

t =
detMT

MT
22

where detMT = detF−1L detF0detC
N
1 =
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ZL
and MT

22 =
1
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n

)N Z0
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)

, (1.113)

where we have introduced the following notations:

α + β =
Z1

Z2
= n and α − β =

Z2

Z1
=

1
n
. (1.114)

These expressions lead to:

t =
Z0

ZL

2

(n)N +
(

1
n

)N Z0
ZL

=
2Z0

ZLnN + Z0
nN

=
2nN

ZL
Z0

n2N +1
. (1.115)

Then, the coefficient of transmission in energy can be written as:

T =
ZL

Z0
t2 =

ZL

Z0

4n2N
(

ZL
Z0

n2N +1
)2 . (1.116)

We can note that in the special case where Z0 = ZL, when looking at the energy (or power), the coefficient

of transmission is then:

T = t2 =
4n2N

(1 +n2N )2
, (1.117)

which corresponds to expression (1) given by Beaky et al. in [12]. In their article, N is the number of layers.

Here, N is the number of bilayers, so 2N is the number of layers.

Now, if we consider the case where Z0 = Z2 and ZL = Z1 then the coefficient of transmission in energy

becomes:

T =
4n2N+1

(1 +n2N+1)2
. (1.118)
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Exploitation

We now consider the resonator constituted of a finite width defect surrounded by two symmetrical sets

of bilayers. In such structure, the wave going from the input medium to the defect doesn’t see an output

medium with an impedance equal to ZC = Z1. In fact, as shown in section 1.3.8, the equivalent impedance

can be complex, leading to an expression of the transmission coefficient T that becomes:

T =
n2N

4(1+n2N )2
. (1.119)

We know that, at the resonance, full transmission is reached, so the amplification factor in power compensates

exactly the attenuation factors (T1T2Q2 = 1), so T1 = T2 = 1/Q. This leads, for n = Z1/Z2≫ 1, to:

Q = 4

(

Z1

Z2

)N

or lnQ =N ln
Z1

Z2
+ ln4. (1.120)

For the three couples of materials with constants provided in table 1.1, the curve of ln(Q) vs. N given by

equation (1.120) is compared to values of Q obtained in numerical experiments and plotted on Figure 1.11.

The matching between analytical and numerical results is excellent.

Material ρ (kgm−3) C11 (GPa) Z =
√

ρC11 (kgm−2 s−1)

Steel 7630 287 4.68× 107
SiO2 2200 78.5 1.31× 107

Aluminum 2700 111 1.73× 107

Table 1.1 – Density, linear elastic constant and longitudinal elastic wave velocity for steel and silica.

Figure 1.11 – Quality factor versus the number of bilayers for different materials. The solid lines are the
result of equation (1.120). The black asterisks are the results of numerical simulations.
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1.4 Numerical Methods

We have given detailed equations of the transfer matrix method in order to provide several analytical results

for the study of one-dimensional PnCs. Those considerations will be useful in chapters 2 and 3.

We will now provide some details about three numerical methods for the study of 1D superlattices as

well as information about their implementations in our programs.

1.4.1 Pseudospectral Method

The Pseudospectral (PS) method that we will use in chapter 3 to solve numerically the propagation of an

acoustic wave in a heterogeneous medium is described in [37]. The wave propagates in a 1D medium, in the

z direction.

The following equations are implemented in a Fortran code. First is Newton’s second law:

∂v

∂t
=

1
ρ

∂τ

∂z
, (1.121)

where v(z, t) is the particle velocity, t is the time, ρ is the density, τ(z, t) is the stress and z the position.

The stress is given by:

τ = Y (z,ε)ε where ε =
∂u

∂z
, (1.122)

where Y (z,ε) is the Young’s modulus and u(z, t) is the particle displacement, which is linked to the particle

velocity by:
∂u

∂t
= v. (1.123)

In order to solve equation (1.121), the Pseudospectral method calculates the spatial derivatives using

a staggered grid, as described in [38]. The derivative ∂τ/∂z is calculated by multiplying each point of the

Fourier transform of τ(z) over z by jkejk∆z/2 and taking the inverse Fourier transform of the result:

∂τ

∂z
= F
−1 (jkejk∆z/2F (τ(z))

)

, (1.124)

where F and F−1 are the forward and inverse Fourier transform, respectively, k is the wave number and

∆z the step of the grid. This way of calculating the space derivatives by a wavenumber multiplication in

the wavenumber domain gives the PS method a greater accuracy and a better stability than that of the

finite-difference methods [38].

Similarly, the derivative ∂u/∂z is calculated as:

∂u

∂z
= F
−1 (jke−jk∆z/2F (u(z))

)

. (1.125)

In our code, the time stepping is performed using a staggered fourth order Adams-Bashforth method [39]

by which stress and particle velocity are updated at alternating half time steps to integrate forward in time,

as shown on Figure 1.12.
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Figure 1.12 – Staggered grid as used in the Pseudospectral method. The stress and particle velocity are
defined on different grid points and different timesteps.

1.4.2 Finite Difference Time Domain

The Finite Difference Time Domain method is a simple method that consists in discretizing the time and

space and solving the differential equations in an iterative manner.

1D FDTD

Solving the 1D elastic wave propagation is done in the following way. The space is discretized into a grid

with step ∆x and the equations are solved at each time step ∆t. First, the strain ε is calculated from the

displacement u for each grid point i:

εi (t) =
ui+1(t)−ui (t)

∆x
. (1.126)

Then, the stress τ is deduced from the strain:

τi (t) = Yi (t)εi (t). (1.127)

Discretizing Newton’s second law, given in equation (1.121), for each grid point, we get:

vi (t +∆t)− vi (t)
∆t

=
1
ρ

(

τi (t)− τi−1(t)
∆x

)

. (1.128)

So the speed v is updated with:

vi (t +∆t) = vi (t) +Fi (t)
∆t

ρ
, (1.129)
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where we have introduced the force F given by:

Fi (t) =
τi (t)− τi−1(t)

∆x
. (1.130)

Finally, the displacement is updated by:

ui (t +∆t) = ui (t) + vi (t +∆t)∆t. (1.131)

The values of εi , ui and vi are saved for post-calculation analysis and the whole calculation of those values

is performed again for the next time step.

2D FDTD

Solving the 2D elastic wave propagation is done in the following way. The space is discretized into a 2D grid

with steps ∆x and ∆y and the equations are solved at each time step ∆t. First, the stress τ is calculated from

the displacement u for each grid point i, j :

τxx,i,j (t) = C11,i,j (t)
ux,i,j+1(t)−ux,i,j (t)

∆y +C12,i,j (t)
uy,i,j (t)−uy,i−1,j

∆x

τyy,i,j (t) = C11,i,j (t)
uy,i,j (t)−uy,i−1,j (t)

∆x +C12,i,j (t)
ux,i,j+1(t)−ux,i,j

∆y

τxy,i (t) = C44,i,j (t)
(

ux,i+1,j (t)−ux,i,j (t)
∆x +

uy,i,j (t)−uy,i,j−1
∆y

)

. (1.132)

The force F is calculated by:

Fx,i,j (t) =
τxx,i,j (t)−τxx,i,j−1(t)

∆y +
τxy,i,j (t)−τxy,i−1,j (t)

∆x

Fy,i,j (t) =
τxy,i,j+1(t)−τxy,i,j (t)

∆y +
τyy,i+1,j (t)−τyy,i,j (t)

∆x

, (1.133)

and the speed v is updated with:

vx,i,j (t +∆t) = vx,i,j (t) +Fx,i,j (t)
∆t
ρ

vy,i,j (t +∆t) = vy,i,j (t) +Fy,i,j (t)
∆t
ρ

. (1.134)

Finally, the displacement is updated by:

ux,i,j (t +∆t) = ux,i,j (t) + vx,i,j (t +∆t)∆t

uy,i,j (t +∆t) = uy,i,j (t) + vx,i,j (t +∆t)∆t
. (1.135)

1.4.3 Spectral Energy Density

For a specified wave vector ~k, the frequency spectrum of the spectral energy density is obtained by adding the

square of the Fourier transform of the discrete temporal signal for every mass in every unit cell. The value of

the SED is the average kinetic energy per unit cell, for a given wave vector and a given frequency. When a

peak is found in the SED spectrum, it means that a vibrational eigen mode exists for wave vector ~k at that
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frequency. This way, the SED calculation allows one to quantify the phonon modes in the 1D superlattice.

Figure 1.13 – Mass-spring system as it is used by the SED method. The structure is composed of N unit
cells of M masses.

If, as represented on Figure 1.13, we designate the total number of unit cells as N , the number of masses

per unit cell as M and the total amount of time during which the particle velocity is recorded as T , then the

expression for the SED calculation is:

Φ(~k,ω) =
1

4πTN

M
∑

i=0

mi

















∫ T

0

N
∑

j=0

vi (j, t)e
i~k·~r0−iωtdt

















2

, (1.136)

where vi (j, t) is the velocity of mass number i in unit cell j . The shape of the frequency spread for eigen mode
~k is represented by the Lorentzian function:

Φ(~k,ω) =
I

1+ ((ω −ωc) /γ)
2 , (1.137)

where I is the magnitude of the peak, ωc is the frequency of the center of the peak and γ is the half-width of

the peak at half-maximum. The lifetime for phonon mode ~k is defined as τ = 1/(2γ). Non-degenerate wave

vector modes are written ki = 2πni /(aN ) where a is the lattice constant and ni is an integer ranging from

−N +1 to N . The non-degenerate wave vector modes depend on the simulation size.

The Spectral Energy Density method relies on another method, for instance FDTD, to calculate the

particle velocities vi used in equation (1.136).

1.5 Conclusion

In this chapter, we have provided definitions and a formalism for the study of wave propagation in 1D PnCs.

We have introduced equations and analytical results as well as numerical methods that will be useful in the

following chapters, namely the study of wave dissipation in a 1D bone structure (chapter 2) and a nonlinear

elastic resonator (chapter 3).
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Chapter2

Dispersion of Elastic Waves in a Bone

Structure

2.1 Abstract

In this chapter, we study the scattering of elastic waves in a bone structure composed of alternate collagen

and hydroxy-apatite constituent layers. This structure is considered a 1D PnC and we characterize it by

obtaining its dispersion diagram and showing how its band structure evolves with the amplitude of the

displacement. The dissipation mechanism of elastic waves due to the nonlinear behavior of the collagen with

respect to the strain is explained by the mean of a spectral energy density calculation.

It is essential to understand how the composite structure of bone and teeth reacts to dynamics loads

which are often responsible for fracture. This is why we study how the nonlinear behavior of collagen in

equilibrium with water provides a means of filling vibrational bad gaps. This band-gap filling facilitates the

propagation of vibrations in a larger range of frequencies, limiting the risk of failure.

This work has been published in the Journal of the Mechanical Behavior of Biomedical Materials [40].

2.2 Introduction

Mineralized biological tissues, such as bone and tooth, are hierarchical composite structures composed of

a stiff hydroxyapatite (HAP) mineral phase, a compliant proteinaceous collagen phase, and water. At the

nanoscale, bone and teeth are constituted of a periodic assembly of alternating regions of collagen and HAP

in a hydrated environment with a repeat unit cell size of 67 nm [41]. This periodic composite structure,

forming a one dimensional (1D) superlattice, is believed to be responsible for the remarkable strength and

toughness of these biological materials [42–44]. At the micrometer scale, mineralized tissues exhibit a large

network of interconnected porosity, tubules in dentin and canaliculi and lacunae in bone, which allow

for the transfer of nutrients, waste, and water throughout the tissue [45, 46]. This porosity allows bone

33
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and teeth to remain in equilibrium with the water, maintaining hydration of the tissues. Water molecules

exhibit a variety of different interactions with the HAP and collagen including the formation of water-bridges

within the collagen helix, filling channels within the HAP, and surface hydration of the collagen and HAP

phases [47–49]. Three-point bend and notch testing indicate that hydration has a significant impact on

the mechanical properties of mineralized tissues resulting in increased elastic moduli as well as decreased

toughness and loss of plastic behavior [50–52]. Hydration increases the nonlinear behavior of collagen as well

as its elastic modulus while increasing its toughness [53, 54]. It is theorized that these changes in the collagen

mechanical behavior due to water content are the major cause for the changes in overall tissue mechanics.

Although these tests provide important information about how hydration affects material properties, they

provide no information about the dynamic properties of these tissues.

The number one cause of fracture in both bones and teeth is trauma or impact. To avoid fracture, the

energy from sudden impacts must be dissipated in order to limit the formation of stress concentrators that

can lead to tissue failure and fracture. It is therefore essential to understand how the composite structure of

bone and teeth reacts to these dynamics loads which are so often responsible for fracture. In this study, it

is theorized that the nonlinear behavior of collagen in equilibrium with water provides a means of filling

vibrational band gaps that arise from the periodicity of the HAP/collagen structure assembly. Under high

load (high deformation) conditions, the nonlinearity of the mechanical response of the collagen-water system

may open up multiphonon scattering channels leading to a filling of the band gaps in the vibrational band

structure of the HAP/collagen superlattice. We model the collagen/water system within the context of the

thermodynamics of stressed open systems. This model leads to nonlinear stress-strain relationships of the

collagen. The nonlinear model of the open collagen/water systems is incorporated into a dynamic model of

the HAP/collagen superlattice. The propagation of elastic waves through that superlattice is investigated

using the finite difference time domain (FDTD) method in conjunction with the spectral energy density (SED)

method. Vibrational (phonon) wave band structures of the HAP/collagen/water system show that at high

amplitudes, vibrational waves can interact with each other through multiphonon scattering channels that can

fill the band gaps inherent in the band structure of elastic superlattices. This band-gap filling facilitates the

propagation of vibrations in a larger range of frequencies, providing an effective mechanism for dissipation

of mechanical energy, thus limiting the risk of failure.

This chapter is organized as follows. In section 2.3, we introduce the model of the open collagen/water

system. This system is modeled within the context of the thermodynamics of stressed solid solutions. This

model results in the formulation of the nonlinear stress-strain response of the collagen/water solid, i.e. a

strain dependent elastic modulus. Section 2.4 presents the model of the HAP/collagen periodic structure in

the form of a 1D superlattice as well as the methods of FDTD and SED that are employed to investigate the

dynamic response of the superlattice. In particular we focus on the calculation of the vibrational/phonon

band structure of the superlattice as a function of the energy (amplitude) of the propagating elastic waves.

In section 2.5, we report the results of the calculations and provide an analysis of the effect of the nonlinear

elastic modulus. In particular, it is shown that high amplitude (energy) waves can interact with each other

through multiple phonon scattering processes. These interactions lead to the opening of new channels for

the dissipation of the elastic energy over a wider range of frequencies compared to the case of low energy

waves.
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Finally, conclusions are drawn in section 2.6 as to the relationship between the observed behavior and

bone fragility due to decreased hydration.

2.3 Models

2.3.1 Thermodynamics of a Stressed Solid Solution

To address the problem of the mechanical behavior of bone material in the presence of water, we develop the

chemo-mechanical equations of states of materials that can adsorb fluids under stress based on the work of

Larché and Cahn [55, 56]. The total internal energy of the material is obtained as an integral of an internal

Helmholtz energy density f ′ :

E =
∫

V ′
f ′dV ′ , (2.1)

where the energy density is given by:

f ′ = f ′(T ,ε, ..., c′i , ...). (2.2)

The prime indicates that all densities are relative to the reference state for measuring strain. T , ε, and c′i
are the temperature, strain and molar density of chemical constituent i. We consider K variable chemical

species in the chosen materials. The differential form of equation (2.2) takes the form:

df ′(T ,εij , c
′
I , ...) = s′(T ,εij , c

′
I , ...)ds

′ +σij (T ,εij , c
′
I , ...)dσij +

∑

I ,K

MI ,K (T ,εij , c
′
I , ...)dc

′
I . (2.3)

The functions: s′(T ,εij , c
′
I , ...), σij (T ,εij , c

′
I , ...) and MI ,K (T ,εij , c

′
I , ...) are the density of entropy, stress and

diffusion potential equations of state. The diffusion potential is used when considering a substitutional

solid solution that constrains the molar densities according to: c′1 + ...+ c′I + c′K = c′0 where c′0 is the density

of substitutional sites of the different chemical species. Introducing mole fractions XI = c′I /c
′
0 the diffusion

potentials are therefore defined as:

(

∂f ′

∂XI

)

T ,ε,XI,K

= c′0MI ,K with I = 1, ...,K − 1. (2.4)

By choosing K as a dependent chemical specie, one may treat the problem with only K − 1, independent
variables. Let us now simplify the problem to a binary solution i.e. I = 1 and K = 2. Note that the

substitutional solid solution representation is equivalent to an interstitial solid solution if 1 represents the

interstitial specie (e.g. water) and 2 the interstitial sites (i.e. available sites for water in a collagen matrix).

Denoting by X the composition in specie 1 and using 2 as the dependent specie, the diffusion potential

becomes:

M1,2 =
1
c′0

(

∂f ′

∂X1

)

T ,ε

. (2.5)

It is convenient to define the free energy density Φ′ by the Legendre transformation where strain is
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replaced by stress as variable:

Φ
′ = f ′ −σijεij . (2.6)

The differential form of the density Φ′ is:

dΦ′ = −εijdσij − s′dT + c′0M1,2dX1. (2.7)

From this relation we deduce the following Maxwell relation:

− c′0
(

∂M1,2

∂σij

)

T ,X1

=

(

∂εij
∂X1

)

T ,σkl

. (2.8)

In the case of a binary solution which elastic properties depend on the composition, the right hand side

of equation (2.8) has to be written as:

(

∂εij
∂X1

)

T ,σkl

=
∂εcij
∂X1

+
∂Sijkl
∂X1

σkl , (2.9)

where we have dropped the subscript in the differentials for the sake of simplifying the notation. εcij are the

components of the chemical strain and Sijkl are the components of the compliance tensor. The chemical

strain is stress free and is only associated with the expansion or contraction of the material upon a change

in composition. To simplify the notation, we take ηij = ∂εcij /∂X1 where the linear coefficients ηij are the

components of the chemical expansion coefficient tensor. The simplest relationship between the change in

composition (X −X0) and the chemical strain is therefore:

εcij = (X −X0)ηijδij , (2.10)

where δij is the Kroenecker symbol and X0 is the composition of the reference state for measuring strain. To

obtain the second term in equation (2.9), we have used Hooke’s law:

sij = Cijkl (ekl − eckl ), (2.11)

or:

εij − εcij = Sijklσkl . (2.12)

Cijkl are the components of the stiffness tensor. The quantity εmij = εij − εcij is the mechanical strain.

Inserting equation (2.9) into equation (2.8) and after integration, the diffusion potential becomes:

c′0M1,2 = −
∂εcij
∂X

σij −
1
2

∂Sijkl
∂X

σklσij +φ(X), (2.13)

where φ is some unknown function of composition. This unknown function is eliminated by choosing a

hydrostatic state of pressure P as reference state. Inserting equation (2.10) into equation (2.13), the diffusion
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potential equation of state for the binary solution is now given as:

M1,2 = µ1(T ,P,X2)−µ2(T ,P,X1)−V ′0
(

ηijσij − ηkkP −
1
2

∂Sijkl
∂X1

σklσij +
1
2
P2∂Sijkl

∂X1
δklδij

)

, (2.14)

where V ′0 = 1/c′0.

In equation (2.14), we have introduced the chemical potentials of species 1 and 2. Under hydrostatic

pressure, the diffusion potential is nothing but a difference in chemical potential. The chemical potentials

are defined as:

µi (T ,P,Xi ) =
1
c′0

(

∂f ′

∂X1

)

T ,ε,Xi,j

. (2.15)

The condition for chemical equilibrium of the binary solid solution in contact with a binary fluid solution

is determined by the conservation of the diffusion potential,

M1,2(σ,x) = µ1 −µ2 and µF1 = µ1 and µF2 = µ2. (2.16)

We now make the temperature dependency implicit and drop T from the equations. Subtracting the

diffusion potentials of a stressed solid solution, M1,2 and a solid solution under hydrostatic pressure, M1,2

yields:

M1,2 −M1,2 = µF1 −µF1 − (µF2 −µF2 ). (2.17)

µF1 ,µ
F
1 ,µ

F
2 ,µ

F
2 are the chemical potentials of the species 1 and 2 in the fluid when the solid is subjected to a

stress or to a hydrostatic pressure only, respectively. Provided that the fluid behaves like a chemical reservoir,

this is the case if we consider the fluid to be a reservoir of water only, the difference on the right hand side of

equation (2.16) becomes identically equal to 0 and the diffusion potentials of the stressed and unstressed

system are equal. Note that the diffusion potential of the stressed solid is evaluated at the composition X

while the hydrostatic diffusion potential is the difference in chemical potential of the species 1 and 2 at

equilibrium hydrostatic composition X0. The diffusion potential of the stressed system can be calculated

from:

M1,2 = µ1(P,X
0
1 )−µ2(P,X0

2 ). (2.18)

Equation (2.18) is sufficient to solve for the change in composition, X − X0, of the solid to maintain

equilibrium under stress with the fluid reservoir. For this, we use the equation of state 2.14.

µ1(T ,P,X
0
1 )−µ2(T ,P,X0

2 = 1−X0
1 ) = µ1(T ,P,X1)−µ2(T ,P,X2 = 1−X1)

−V ′0
(

ηijσij − ηkkP −
1
2

∂Sijkl
∂X1

σklσij +
1
2
P2∂Sijkl

∂X1
δklδij

)

.
(2.19)

It is clear that equation (2.19) leads to a composition which is a nonlinear function of stress. Then,

inserted into equation of states (2.10) and (2.12), the stress-strain relation becomes nonlinear. To simplify

the problem, we assume that the collagen-water binary obeys the prototypical regular solution model. The
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molar free energy of mixing is:

fm = RT (X1 lnX1 + (1−X1) ln(1−X1)) +Ω(1−X1)X1. (2.20)

Ω represents the interaction energy between the species 1 (water) and 2 (water sites in collagen). In this

case, the difference in chemical potential is given by:

µ1(T ,P,X1)−µ2(T ,P,X2 = 1−X1) = RT ln
X1

1−X1
+Ω(1− 2X1). (2.21)

We now assume that the equilibrium mole fraction of water in collagen in absence of stress is X0
1 = 0.5.

Molecular dynamics simulations of the interaction between collagen and water indicate that the occupancy

of water sites, both internal and external to the collagen helix, is approximately 40-60 % [48, 49]. Under

this condition, in absence of stress, the difference of chemical potential given by equation (2.21) is zero. We

further assume that the elastic coefficients of collagen are independent of water content. This is justified

based on the fact that the speed of sound and the density of polymer-based media and water are very similar.

Finally, reducing the problem to a 1D one, we rewrite equation (2.21) in the form:

RT ln
X1

1−X1
+Ω(1− 2X1) = V ′0ησ. (2.22)

To obtain equation (2.22) we have also neglected the hydrostatic pressure P compared to the stress. The

chemo-mechanical problem of a collagen solid matrix in equilibrium with a water reservoir then can be

solved by eliminating composition between equation (2.22) and equation (2.23):

ε =
σ

Y
+ η(X1 −X0

1 ). (2.23)

Equation (2.23) is the 1D version of equation (2.12) combined with equation (2.10). There, Y is Young’s

modulus of the collagen with the stress free water content, X0
1 = 0.5.

2.3.2 Nonlinear Young’s Modulus of Collagen

Bowman has measured the stress versus strain relationship in demineralized bovine bone under uniaxial

tension and open conditions (i.e. in equilibrium with water), from which we extracted the nonlinear stress-

strain curve for tensile stress [13]. The part of the curve for the negative values of the strain is the symmetrical

of the positive part, as it is in the equations above. Figure 2.1 shows a fit to this data obtained by eliminating

composition between equations (2.22) and (2.23). We found that best fit is achieved for the following

conditions: η = 0.12, Y = 7.75× 108Pa, Ω = 5448.9Jmol−1 and V ′0 = 4.56× 10−4m3mol−1. These values are

in agreement with values of η = 0.09 and Y = 0.5− 1GPa, measured for type 1 collagen [57–59].

Equations (2.22) and (2.23) which describe the open-system stress-strain relationship by elimination of

the compositional variable X, include five parameters. After fitting the model to the available experimental

stress-strain curve, one obtains three of the parameters that are in excellent agreement with published data

for collagen. The other two parameters take on values that are physically meaningful.
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From the fit, the Young’s modulus and the elastic energy are written as Taylor series up to the 8th order.

Y (ε) = a0 + a2ε
2 + a4ε

4 + a6ε
6 + a8ε

8. (2.24)

From expression (2.25), we obtain the stress σ = Y (ε)ε and the elastic energy E(ε) =
∫ ε

0
σ(ε)dε:

E(ε) =
a0
2
ε2 +

a2
4
ε4 +

a4
6
ε6 +

a6
8
ε8. (2.25)

The coefficients used in the Taylor’s expansion series of the Young’s modulus and the elastic energy are

given in table 2.1. They were obtained by fitting experimental data from [13].

i 0 2 4 6 8

ai (Pa) 9.565× 107 1.543× 1011 −1.571× 1013 6.958× 1014 −1.650× 1016

Table 2.1 – Coefficients used in Taylor’s expansion series of Young’s modulus and elastic energy.

This formula is valid for |ε| 6 0.09. In our simulations, we will always ensure that the strain will not

overpass this value. Collagen has a rubber-like behavior, which explains why values of strain as high as 0.12

can be reached [13].

The Young’s modulus, stress and elastic energy versus the strain obtained with this Taylor series are

represented in Figure 2.1.

The experimental data from [13] only contains information for the positive values of strain. We make the

assumption that the relation is symmetrical for the negative values of strain.

2.4 Methods

2.4.1 Matrix Transfer Method

As demonstrated in chapter 1, section 1.3.2, the elastic band structure of an infinite linear AB superlattice

can be calculated analytically by [60]:

cos(2kL) = cos(kAL)× cos(kBL)− 0.5× sin(kAL)× sin(kBL)×
(

ZA

ZB
+
ZB

ZA

)

. (2.26)

Where L = 33.5nm is the length of a layer, Zi is the impedance of material i, ω is the frequency, ki = ω/ci
is the wave vector and ci is the particle velocity in material i.

Equation (2.26) provides an analytical solution for the band structure of the PnC in the linear case.

We use Matlab to implement a this equation in a transfer matrix method. We evaluate the expression for

5000 frequencies between zero and 20 GHz.
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Figure 2.1 – Young’s modulus Y , stress σ and elastic energy E versus strain for collagen in the presence of
water.

2.4.2 SED-FDTDMethod

Description

We now consider the 1D model illustrated in Figure 2.2 as representative of the nanoscale, periodic assembly

of alternating regions of collagen and HAP in bone and teeth. The finite super lattice is composed ofN = 2560

masses of materials A and B connected by nonlinear springs. Material A is chemically inert and represents

HAP. Material B represents the open collagen/water system i.e. collagen that can adsorb water from a

reservoir. The behavior of elastic modes in this model is simulated using a modified Spectral Energy Density

– Finite Difference Time Domain (SED-FDTD) method. The SED-FDTD method has been used recently with

success to simulate the propagation of elastic wave propagation in PnCs [61]. In its original version, this

method solves the springs and masses equation by discretizing time and space (x-axis) and by replacing
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derivatives by finite differences. We extend this approach to include chemo-mechanical effects by using the

nonlinear stress-strain relation described in section 2.3, equation (2.24).

Figure 2.2 – Schematic representation of the system. The unit cells (UC) are heterogeneous media composed
32 masses of a material A mimicking hydroxy apatite that does not change composition when subjected to a
stress and 32 masses of material B. B is a collagen-like material that can interact with a chemical reservoir of
water it is embedded into. Each mass is connected to its two neighbors by two springs. A spring is linear
(respectively nonlinear) if the mass on its left is composed of material A (resp. material B). Periodic boundary
conditions are imposed at the end of the system, which contains 40 UCs.

The nonlinear spring constant depends on the water content in accordance with the nonlinear stress-strain

relation of the collagen/water open system. Owing to the 1D nature of the system, we assume that lateral

diffusion of water into material B (collagen) is much faster than the acoustic wave and that material B is

always at equilibrium with respect to chemical composition. Under this condition, as explained in chapter 1,

section 1.4.2, the 1D mass-spring equation is given by:

mi
∂2ui
∂t2

= fi + fi+1 with mi = ρidx
3, (2.27)

where t is time, ρi is the mass density of mass i and mi its mass, ui (t) its displacement. The displacement is

related to the mechanical strain by ε = ∂u/∂x and σ is the stress. In 1D, we describe the stress-strain relation

by:

σ = Y (ε)ε, (2.28)

or the force-displacement relation by:

fi = kidui = ρic
2
L,i∆xdui , (2.29)

where ki = ρic
2
L,i∆x and cL,i =

√

Yi (ε)/ρi and ∆x is the distance between two adjacent masses.

Equation (2.27) is solved discretely and takes the form:

ρi∆x
3∂

2ui
∂t2

=
[

ρic
2
L,i (ui+1 −ui )− ρi−1c2L,i−1 (ui −ui−1)

]

∆x. (2.30)

In equation (2.30) we assume that the mass density is independent of composition. This is the case in

material A. Since the mass density of water and collagen are similar, the mass density of discrete points in

material B are also taken to be constant.
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Structure

The structure is composed of N = 40 unit cells each of them composed of M = 64 masses (32 of them

composing the material A and the 32 others composing the material B). Hence, the total number of masses is

M ×N = 2560. Each mass is connected to its two neighbors by two springs. A spring is linear (respectively

nonlinear) if the mass on its left is composed of material A (resp. material B). This structure is represented

on Figure 2.2. The nonlinear spring constant is calculated using equation (2.28) where Y (ε) is the Taylor

expansion described in section 2.3.

Simulation parameters

We employ a spatial grid with mesh size ∆x = 1.04nm. The time integration step, ∆t, is given by ∆t =

∆x/(40cA) = 6.0× 10−15 s where cA is the speed of sound in medium A. The total simulation time is 222 ∆t.

Periodic boundary conditions are applied at the free ends of the homogeneous regions to simulate an infinite

superlattice. The thickness of the segments of material A and B are designated by LA and LB. For the sake of

simplicity we take: LA = LB = 33.5nm. Hence the length of a unit cell is a = 67nm.

The density, Young’s modulus and elastic wave velocity constants used in our model for hydroxy apatite

and collagen are given in table 2.2.

Layer Material Density ρ (kgm−3) Young’s modulus Y (GPa) c =
√

Y (0)/ρ (m s−1)

A Hydroxy apatite 3160 60 4357.45
B Collagen 1300 Y (ε);Y (0) = 0.0956 271.24

Table 2.2 – Density, Young’s modulus and elastic wave velocity for hydroxy apatite and collagen.

We use the SED-FDTD method to calculate the presence of acoustic modes in the crystal for different

wave vectors. In particular, the SED method, described in chapter 1, section 1.4.3 enables the projection of

the vibrations of a structure onto a set of plane waves characterized by a wave vector (wave number in 1D)

and a frequency. With this method, an initial random displacement is applied to each of the 2560 masses

which imparts an initial potential energy to the structure. Then, the system is free to evolve during the total

number of time steps (222) and the speed of each mass is recorded during the last 221 time steps. For each

mass, this speed is projected on a considered wave number and a Fourier transform provides the frequency

distribution of the energy in the solid. This energy is averaged over the 64 masses of each unit cell. This

operation is repeated 200 times for which the results are averaged, in order to allow a sufficient variety

of initial energy distribution. The SED-FDTD method is a way of knowing how often a phononic mode is

visited.

The dimension chosen for the system, 40 unit cells, allows the whole operation to be repeated over

21 wave vectors ranging from 0 to π/a by step of 0.05 π/a. The values used for the initial displacement of the

masses are ∆x/45 and ∆x/150. The wave number interval [0, π/a] constitutes the first Brillouin zone of the

phononic periodic structure.
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Time resolution and convergence

We compare the time resolution of our calculation with the diffusion time for water in collagen. If we

approximate the one-dimensional system by a wire with a L = 0.5nm cross section, and if we consider a

diffusion coefficient for water in collagen of D = 2.5× 10−5 cm2 s−1 [62], the time for diffusion through the

wire is on the order of t = L2/(6D) = 1.67× 10−11 s. If we compare this time to the maximum frequency that

we study, namely 20GHz, we obtain a characteristic time of 5× 10−11 s. This time is significantly larger than

the time for diffusion through the model system. So, even at high frequencies, we can assume that water

content of the system is at equilibrium at all time. This assumption is even more valid when considering low

frequency modes.

As for the convergence of the method, the SED-FDTD calculation was performed using 16, 32 and

64 masses per unit cell in the limit of small displacements. We observed that the band diagram obtained

with 16 masses per unit cell almost matched the linear results below 10GHz but not above this frequency.

The band diagram obtained with 64 masses per unit cell matched almost perfectly the linear band diagram

as shown on Figure 2.3. The band diagram obtained with 32 masses per unit cell was an intermediary result,

with a match better than that for 16 but worse than that for 64 masses per unit cell. Hence, the value of

64 masses per unit cell was chosen for all the SED-FDTD calculations.

2.5 Results

2.5.1 Matrix Transfer Method

The band diagram of the structure calculated with the matrix transfer method is plotted on Figure 2.3. As

one can see, five transmission modes are obtained, below 20GHz. They are separated by absolute band gaps.

In the frequency ranges corresponding to these band gaps, no wave can propagate: only evanescent modes

can appear.

2.5.2 SED-FDTDMethod

The spectral energy density of the structure for an initial displacement of ∆x/150 (low amplitude) and that

for an initial displacement of ∆x/45 (large amplitude) are provided on Figure 2.4.

At low amplitude, the spectrum shows very thin peaks at specific frequencies corresponding to the

vibrational modes that are found when the transmission is solved analytically (Figure 2.3). The system

behaves according to linear elasticity: it shows a harmonic behavior. In this regime, the elastic coefficient

(Young’s modulus) of the collagen (B) region retains its value at small strain. For all the frequency range

(0 to 20 GHz), an excellent agreement between this nonlinear result and the linear result obtained with

equation (2.26) is observed.

At large amplitude, the system becomes strongly nonlinear. The peaks broaden significantly. A filling of

the band gaps is observed, as shown on Figure 2.6. This band gap filling is more visible at higher frequencies

(10 to 20 GHz), which allows us to think that as frequency increases, the band gaps will be more and more
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Figure 2.3 – Band structure of the AB superlattice. The wavevector is expressed in reduced units of 1/d.
This is calculated using the matrix transfer method.

filled. At higher frequencies (hundreds of GHz), this would mean that the energy is dissipated as thermal

phonons.

We now study the influence of each term of the Taylor series of the Young’s modulus. Taking each term

into account or not will result in different energy functions. The terms of the Taylor series of the energy

function are represented on Figure 2.5. The peak broadening and frequency shift are interpreted as follows.

If we limit the Young’s modulus function of strain to its constant term, which is exactly the linear case,

then the Taylor series expansion of the elastic energy function is limited to its second order term. In that

case, the spectrum from the SED-FDTD calculation only contains the “primary” frequencies which are that

of a linear system. This result is shown on Figure 2.6.

Now, if we limit the Young’s modulus function of strain to its terms up to order 2, the energy function

contains a term of order 2 and a term of order 4. As shown on Figure 2.6, the system simulated in the

SED-FDTD program behaves as a nonlinear system with the frequency shift and band gap filling described

above.

If we limit the Young’s modulus function to its terms up to order 4 (resp. 6), the energy function contains

terms of order 2, 4 and 6 (resp. 2, 4, 6, 8). Taking those terms into account (see Figure 2.6) does not change

the behavior of the system, which proves that the second order term of the Young’s modulus (fourth order

term of the energy) plays the major role for the nonlinear behavior and the terms of higher order do not play
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Figure 2.4 – SED spectrum of the system at low and high initial displacements. Solid black lines: spectral
energy density of the phononic crystal structure with an initial displacement of (a) ∆x/150 and (b) ∆x/45.
Blue dashes: linear band diagram obtained with a matrix transfer method. The SED modes match almost
perfectly the linear band diagram for low initial displacements. At high initial displacements, a large
frequency shift can be observed between the SED modes and the linear modes.
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Figure 2.5 – Taylor series of the elastic energy versus strain for the collagen/water open system. The solid
line is the same as that in Fig. 1, namely the integral of the Taylor series decomposition of the stress as a
function of strain. The dotted and dashed lines are the terms of orders 2, 4, 6 and 8 of this Taylor series. The
term of order 6 is particularly interesting as it is gives a concave down curve characteristic of an unstable
system (its second derivative is negative).

a significant role. Hence, we can assert that this nonlinear behavior associated with a fourth-order function

in strain elastic energy is mainly due to four-wave (four-phonon) interactions. Indeed, considering that the

dynamic strain is a linear superposition of plane waves with different wave number and frequencies and

raising this superposition to the fourth power to estimate the energy, leads to four-wave interactions. These

scattering interactions would conserve momentum and frequency and may involve a variety of processes

such as the splitting of a single phonon into three others, the scattering of two phonons forming two others,

etc. [14, 15]. Those new phonons interactions offer more channels for the dispersion of mechanical energy.

We can relate the behavior of our nonlinear superlattice to the behavior of a multiple-well mass-spring

system. A multiple-well system is a system for which the representation of the elastic energy as a function of

strain is not parabolic but is a superposition of infinity of parabolas. To each parabola corresponds a single

value of the spring constant. Hence, representing a non-quadratic energy map by a multiplicity of parabolic

wells is equivalent to introducing a continuum of values of spring constants. At high amplitudes, waves will

sample wider ranges of strain values, effectively visiting the multiplicity of energy wells. The band diagram

will show a continuity of modes above the “primary” frequencies of the linear system. Those bands broaden

and finally fill the gaps. The passing bands of this system will also be shifted to higher frequencies.



2.6. Conclusion 47

Figure 2.6 – SED spectrum for a specific wave vector. Spectral energy density of the phononic crystal
structure with an initial displacement of ∆x/45 for wave vector π/a. Black line: with the Young’s modulus
truncated at the order zero (constant value, linear case); red dashes: with the Young’s modulus truncated at
the order 2; green dots: with the Young’s modulus truncated at the order 4. Curves with Young’s modulus
truncated at orders 6 and 8 are not included since they do not carry significant changes compared to order 4.
Inset: magnified highlight of the band gap filling in the frequency range between 0 and 8 GHz.

In our case, the reason why the spring constants increase as a function of the magnitude of the strain is

that the model we chose for the Young’s modulus is symmetrical and has only even orders in its Taylor series

expansion. If an asymmetrical function was used for the Young’s modulus, its Taylor series expansion would

contain odd order terms. In that case, nonlinear modes with frequencies less than the “primary” frequencies

would appear. We would also observe a shift of the passing bands to lower frequencies.

2.6 Conclusion

A 1D PnC composed of a superlattice of alternate collagen and hydroxy-apatite constituent layers is studied.

This serves as a model of mineralized biological tissue. The collagen layers are treated as an open system

that can absorb or desorb water. This collagen/water open system results in a nonlinear Young’s modulus.

This open system model is fitted to experimental data. We study the dynamic response of the nonlinear

superlattice to the propagation of elastic waves. A FDTD method coupled to a SED calculation is performed

to obtain the wave band structure. In the linear limit, the band structure is composed of passing bands

separated by band gaps that forbid the propagation of elastic waves over some ranges of frequency. The

nonlinearity of the collagen layers in the superlattice gives rise to multi-wave (phonon) scattering processes

that lead to partial band gap filling. Multi-phonon scattering processes constitute ways of opening new

channels for the dissipation of mechanical energy. This mechanism for mechanical energy dissipation is the
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direct consequence of the hydration of the collagen.

The risk of dentin and bone fracture has been shown to increase with age. During aging, there is also a

marked decrease in the level of interconnected porosity in both tissues [63, 64]. This filling of the porosity

is associated with decreased fluid flow and therefore decreased hydration of the tissues. It has previously

been theorized that this decrease in hydration may in part be responsible for the increased fragility of bone

and dentin with age; however, the associated mechanism remained unclear [65]. The results presented

here provide a possible explanation for the relationship between bone fragility and decreased hydration.

The presence of interstitial water in the collagen phase increases its plastic behavior, but more importantly

allows it to act nonlinearly. When mineralized tissues undergo a traumatic event, the nonlinearity of the

collagen allows for band gap filling, thus allowing larger range of frequencies to propagate mechanical

waves through the material. This ease of propagation diminishes the formation of stress concentrations by

vibrational modes that would otherwise be banned from propagation, reducing the risk of fracture. In turn,

a decrease in hydration will lead the collagen to act more linearly, which is done here by limiting the Young’s

modulus to its constant term, and as a result limit the number of channels that can dissipate elastic energy

and frequencies which are allowed to propagate, thus increasing the development of stress concentrations

and the possibility of fracture.

This project is an application of the study of PnCs outside its usual fields (acoustics, materials science).

The knowledge and techniques developed for solving the equations of propagation of the elastic waves can

have direct applications to fields such as biomechanics and biology.
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A Nonlinear Elastic Resonator

3.1 Abstract

In 2002, Soljačić et al. described a resonator based on cubic nonlinearities in a photonic crystal with a bistable

behavior [20]. The existence and behavior of this system follow the generic rules described by Landau and

Lifshitz [66]. The purpose of the study presented in this chapter is to design a similar resonator for quadratic

and cubic nonlinearities in a PnC.

We present a nonlinear PnC structure capable of elastic bistable switching. The structure is comprised

of a one-dimensional elastic PnC composed of alternate steel and silica constituent layers and a nonlinear

steel defect located at its middle. Numerical simulations and analytical modeling of the transmission of a

longitudinal elastic wave through the crystal have been performed. These calculations show that the central

nonlinear inclusion constitutes a resonating cavity which is able to commute the elastic wave depending on

the particle velocity. The key parameters for this effect are the nonlinear elastic constants of the material, the

difference between the excitation frequency and the resonance frequency of the cavity as well as its quality

factor. The PnC structure reproduces for elastic waves what has previously been observed for electromagnetic

waves in a nonlinear photonic crystal.

3.2 Introduction

In recent years, thermal and elastic switches, consisting of granular PnCs, which are arrays of packed elastic

spheres that interact through Hertzian contacts, have been studied and proposed for different applications,

such as controlling and sensing the flux of energy. A bifurcation-based switch and rectificator has been

described [21] and nonlinear resonances in diatomic granular chains have been observed [28]. These models

and experiments are expected to lead to the creation of new devices, such as amplifiers and attenuators. These

new functionalities are associated with the amplitude-dependent behavior that results from the geometry of

the structures, especially the Hertzian contacts between the particles, but do not depend from the nonlinear

elastic constants of the constitutive materials. Very few studies have been performed on the use of the

49
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nonlinearities of the materials to control the behavior of PnCs. More work is needed on this aspect of PnCs

to extend the realm of their applications.

Recently, the use of constitutive materials with nonlinear elastic properties as well as the magnetoacoustic

effect have been proposed to tune the band-gaps of two-dimensional PnCs [10, 11, 67]. Modeling and

simulations of systems using these properties and effect have been reported [68]. In optics, a nonlinear

photonic crystal, consisting of a resonating cavity with a nonlinear optical index, capable of performing

optimal bistable switching has been described by an analytical model accompanied with numerical experi-

ments [20]. The purpose of this chapter is to determine whether we can obtain in elastodynamics similar

results with those observed in optics, namely a bistable behavior relatively to the particle velocity, due

to nonlinearities of the elastic constants of the material constituting the resonating cavity. We consider

here a structure composed of a one-dimensional (1D) PnC containing a nonlinear cavity. We observe and

demonstrate without ambiguity the switch behavior in transmission of this structure.

This chapter is organized as follows: first, section 3.3 draws the basis of the study of nonlinear oscillators,

starting from the equations of Landau and Lifshitz [66]. Then, section 3.4 provides the analytical model for

the nonlinear resonator. Section 3.5 describes the structure of the PnC that we propose and the numerical

experiment that was performed. Section 3.6 presents these numerical results. Then, in section 3.7, a complete

analytical interpretation and a theoretical model of the switching phenomenon is provided. In section 3.7.1,

the effects of the different physical and geometrical parameters on the switching capability are analyzed.

Finally, conclusions are drawn concerning the possibilities opened by this study, such as the tunability of

PnCs through the magnetoacoustic effect and the design of two-dimensional elastic resonators.

3.3 Nonlinear Oscillators

This section describes the equations of quadratic and cubic nonlinear oscillators. For more details, an

excellent reference for this subject is Landau’s book [66].

3.3.1 Base Equation

The base equation of nonlinear oscillators is that of a Duffing oscillator:

ẍ +2λẋ +ω2
resx = F cos(ω0t)−αx2 − βx3, (3.1)

where x is the displacement, α and β the quadratic and cubic nonlinear constants respectively, λ is the

damping coefficient, F is homogeneous to an acceleration, ω0 is the pulsation of the forced oscillation and

ωres is the resonance frequency of the oscillator. When we use a source a = F/ω2
res, homogeneous to a

displacement, equation (3.1) is replaced by:

ẍ +2λẋ +ω2
resx = aω2

res cos(ω0t)−αx2 − βx3. (3.2)
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Linear case

In the linear case, i.e. α = 0 and β = 0, the relation between amplitude of the forced oscillation b and the

external excitation (F,ω0) or (a,ω0), near the resonance, is:

b2
(

ξ2 +λ2
)

=
F2

4ω2
res

=
a2ω2

res

4
, (3.3)

where ξ = ω0 −ωres.

Nonlinear case

For such a resonator, it is well known [66, 69] that the nonlinear behavior of the oscillations leads to a

frequency shift of the resonance proportional to the square of the amplitude of vibration b:

ω′res = ωres +χb2, (3.4)

where:

χ =
3β

8ωres
− 5α2

12ω3
res

. (3.5)

It is easy to see on equation (3.5) that the nonlinearity factor χ can be positive or negative in the case

of purely cubic nonlinearities, depending on the sign of β. However, in the case of purely quadratic

nonlinearities, χ will always be negative, independently of the sign of α.

In the nonlinear case, we replace ξ , defined in the linear case, by ξ ′ :

ξ ′ = ω0 −ω′res = ω0 −ωres −χb2 = ξ −χb2. (3.6)

In such way, the relation between amplitude of the forced oscillation b and the external excitation (a,ω),

near the resonance, can be written as:

b2

a2
=

ω2
res

4(ξ ′2 +λ2)
=

ω2
res

4
(

(ξ −χb2)2 +λ2
) . (3.7)

If the damping coefficient λ is low enough, the equation ξ(b) for the nonlinear resonance is then:

ξ = χb2 ±
√

(aωres

2b

)2
−λ2. (3.8)

3.3.2 Study of the Resonance Curves

Figure 3.1 represents the resonance curve plotted for different values of χ and a. We chose ωres = 100Hz.

For χ = 0 (linear case, Figure 3.1a), the resonance curve has the shape of a Lorentzian function centered at

ξ = 0. For χ , 0, for instance χ = 0.2s2m−1, the behavior of the resonance curve depends on the value of the

excitation a.
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For values of the excitation around a = 5m (Figure 3.1b), the shape of the curve is similar to that in the

linear case. When a increases (a = 20m, Figure 3.1c), the curve shows a critical point where the slope is

infinite. For even larger values of a (a = 50m, Figure 3.1d), the resonance curve shows an bistable zone and

folds over itself.

Some of the points in this bistable zone (curve between points C and D) have no physical meaning. When

ξ increases from the left side of the curve, the output amplitude b will “jump” directly from point C to point

E and when it decreases from the right side of the curve, it will jump directly from point D to point G, as the

red arrows show.

Figure 3.1 – Comparison of resonance curves. Resonance curve of a system with (a) χ = 0 and a = 50m
(linear case), (b) χ = 0.2s2m−1 and a = 5m (quasi-linear case), (c) χ = 0.2s2m−1 and a = 20m and (d)
χ = 0.2s2m−1 and a = 50m.

Position of points C and D

To give further insight of the behavior of the considered nonlinear oscillator, analytical expressions of the

characteristic points C and D of the nonlinear resonance curve, shown on Figure 3.1d, will now be derived.
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We define C and D as the two points where db/dξ→∞. The derivation of equation (3.7) gives:

b2
(

2
(

ξ −χb2
)

(

1−χ2b db
dξ

))

+2b
db

dξ

(

(

ξ −χb2
)2

+λ2
)

= 0. (3.9)

Regrouping the terms depending on db/dξ gives:

2b2
(

ξ −χb2
)

+
db

dξ

[

−4
(

ξ −χb2
)

χb3 +2b
(

(

ξ −χb2
)2

+λ2
)]

= 0, (3.10)

or:
db

dξ

(

−4ξχb3 +4χ2b5 +2bξ2 +2χ2b5 − 4ξχb3 +2bλ2
)

= −2b
(

ξb −χb3
)

. (3.11)

Rearranging this equation leads to the following expression of db/dξ :

db

dξ
=

−(ξb −χb3)
3χ2b4 + ξ2 − 4ξχb2 +λ2

. (3.12)

As we are interested in the points where db/dξ→∞, we obtain the following equation:

3χ2b4 + ξ2 − 4ξχb2 +λ2 = 0. (3.13)

Equation (3.13) is the characteristic equation for the position of points C and D. We suppose that the

damping coefficient λ is low enough so that χ2b4 −λ2 > 0. The solution of this equation is then given by:

ξ = 2χb2 ±
√

χ2b4 −λ2. (3.14)

Maximum value

The maximum value of the amplitude is reached for db/dξ = 0.

According to equation (3.12), when db/dξ = 0, this is equivalent to:

− bξ +χb3 = 0 or ξ = χb2. (3.15)

In the other hand, according to equation (3.8), we have:

ξ = χb2 ±
√

(aωres

2b

)2
−λ2. (3.16)

Combining those two equations, we obtain:

b2maxλ
2 =

a2ω2
res

4
, (3.17)

leading finally to:

bmax =
aωres

2λ
=Qa with Q =

ωres

2λ
. (3.18)
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So, independently of the nonlinearities, the maximum amplitude is always the quality factor Q times the

excitation amplitude a.

Critical value

We define ak , the critical value of a which corresponds to the case where points C and D are the same. This

case is shown on Figure 3.1c. This time, we resolve equation (3.13) according to b2. The discriminant of this

equation is:

∆
′ = 4

(

χ2ξ2 − 3χ2λ2
)

. (3.19)

Putting ∆′ = 0, we get:

ξ2 = 3λ2, (3.20)

which leads to the following solution:

b2 =
4χξ ±

√
∆′

6χ2 =
2ξ
3χ

. (3.21)

Injecting this solution in equation (3.7), we obtain:

2
√
3λ

3χ















(√
3λ− 2

√
3λ
3

)2

+λ2















=
a2kω

2
res

4
, (3.22)

giving finally:

a2k =
4ωres

3
√
3Q3χ

. (3.23)

The system is bistable for a > ak . The threshold ak can be decreased by increasing the nonlinearity factor

χ or the quality factor Q.

According to the expression of χ given in equation (3.5), we obtain, for the quadratic-only nonlinear

resonator:

a2k =
48ω4

res

15
√
3Q3α2

, (3.24)

and for the cubic-only nonlinear resonator:

a2k =
32ω2

res

9
√
3Q3β

. (3.25)

The quadratic case always corresponds to a softening of the material (χ < 0). The cubic case corresponds

to a softening or a hardening of the material, depending on the sign of β.

3.4 Analytical Model

After those considerations about nonlinear oscillators, we introduce three preliminary calculations which

will be useful for our study of a nonlinear acoustic resonator.
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3.4.1 Derivation of the Resonator Equation

In this section, we write the Lagrange equation for an elastic resonator, as in [70], and derive it in order to

obtain the expression of the Duffing equation describing the resonance behavior of the system, and link its

parameters with the physical and geometrical parameters of this system.

We expand elastic deformation into normal vibration modes, writing the displacement as:

u(z, t) =
∑

n

An(t)Un(z). (3.26)

The Lagrangian of the elastic resonator is [71]:

L =
1
2

∑

n

mnȦ
2
n −UL −UNL, (3.27)

where

mn =
∫

S
ρU2

ndS. (3.28)

The linear UL
n and nonlinear UNL

n part of the elastic energy are given by:

UL
n =

∑

n

1
2
µnA

2
n, (3.29)

UNL
n =

∑

mnq

1
3!
ΦmnqAnAmAq +

∑

mnqq′

1
4!
Ψmnqq′AnAmAqA

′
q, (3.30)

with

µn = Ĉ2

∫

εn(z)
2dr, (3.31)

Φmnq = Ĉ3

∫

εm(z)εn(z)εq(z)dr, (3.32)

Ψmnqq′ = Ĉ4

∫

εm(z)εn(z)εq(z)ε
′
q(z)dr. (3.33)

In nonlinear elasticity, the strain ε is linked, to second order in 1D, to the displacement by:

ε(z) =
∂u

∂z
+
1
2

(

∂u

∂z

)2

. (3.34)

Considering only the mode n, not interacting with other modes of the resonator, the equation of motion

for An(t) can be derived from Lagrange’s differential equation:

∂

∂t

∂Ln
∂Ȧn

− ∂Ln
∂An

+
∂D

∂Ȧn
= 0, (3.35)
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where the expression of the Rayleigh dissipation is given by:

D = δnmnȦ
2
n. (3.36)

Considering in a first approximation (i.e. neglecting the geometrical nonlinearities term) that the strain is:

ε(z, t) ≈ ∂u

∂z
=

∑

n

An(t)
∂Un

∂z
, (3.37)

we rewrite the Lagrangian of the mode n as:

Ln =
1
2
mnȦ

2
n −UL

n −UNL
n , (3.38)

with

UL
n =

Ĉ2

2
A2
n(t)

∫

z

(

∂Un(z)
∂z

)2

dz, (3.39)

and

UNL
n =

Ĉ3

3!
A3
n(t)

∫

z

(

∂Un(z)
∂z

)3

dz +
Ĉ4

4!
A4
n(t)

∫

z

(

∂Un(z)
∂z

)4

dz. (3.40)

Using equation (3.35), we obtain the following equation of the nonlinear resonator:

Än +2δnȦn +Anω
2
res = −

Ĉ3

2ρ

∫

z

(

∂Un(z)
∂z

)3
dz

∫

z
U2
ndz

A2
n −

Ĉ4

6ρ

∫

z

(

∂Un(z)
∂z

)4
dz

∫

z
U2
ndz

A3
n, (3.41)

with ωres the resonance frequency. We recognize the expression of the Duffing resonator [66, 69] considered

in section 3.3.1:

ẍ +2λẋ +ω2
resx = −αx2 − βx3, (3.42)

where x is the displacement and:

ω2
res =

Ĉ2

ρ

∫

z

(

∂Un(z)
∂z

)2
dz

∫

z
U2
ndz

, (3.43)

α =
Ĉ3

2ρ

∫

z

(

∂Un(z)
∂z

)3
dz

∫

z
U2
ndz

, (3.44)

β =
Ĉ4

6ρ

∫

z

(

∂Un(z)
∂z

)4
dz

∫

z
U2
ndz

. (3.45)

In the specific case considered in this thesis, of a purely longitudinal elastic wave, we have:

ω2
res =

C11

ρ

∫

z

(

∂Un(z)
∂z

)2
dz

∫

z
U2
ndz

. (3.46)
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This expression of the resonance frequency gives:

∫

z
U2
ndz =

C11

ρω2
res

∫

z

(

∂Un(z)
∂z

)2

dz. (3.47)

In this case the expressions of α and β becomes:

α =
C111

2ρ

∫

z

(

∂Un(z)
∂z

)3
dz

C11
ρω2

res

∫

z

(

∂Un(z)
∂z

)2
dz

= −Γω2
res

∫

z
ε3ndz

∫

z
ε2ndz

, (3.48)

and

β =
C1111

6ρ

∫

z

(

∂Un(z)
∂z

)4
dz

C11
ρω2

res

∫

z

(

∂Un(z)
∂z

)2
dz

= −δω2
res

∫

z
ε4ndz

∫

z
ε2ndz

, (3.49)

with Γ and δ given by:

Γ = −C111

2C11
and δ = −C1111

6C11
, (3.50)

which are simplified expressions in which the geometrical nonlinearities have been disregarded. If, instead

of expression (3.37), we use expression (3.34), then we obtain the expressions of Γ and δ given later in (3.69)

and (3.70).

3.4.2 Complete Model of the Transmission

Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2
a→ a′→ b → b′

Pin T1 Q T2 Pout

Figure 3.2 – Phononic crystal composed of N bilayers with a central defect.

We now study the transmission through the PnC composed of N bi-layers and a central defect, similar to

the one shown on Figure 3.2. The incident power Pin is transferred from the material on the left to the defect

by an evanescent wave. Let the elastic power be defined locally as P = Za2ω2/2 = Zv2/2 (in W.m−2), where Z

is the local impedance, a is the local displacement, v is the particle velocity and ω is the angular excitation

frequency. Writing T1 the transmission factor in power through the section of the crystal on the left of the

defect, the elastic power P ′in entering the defect is given by:

P ′in = T1Pin =
Z1

2
a
′2ω2, (3.51)

with a′ the displacement amplitude that enters the defect, ω the angular excitation frequency of the wave,

and Z1 the impedance of the defect.

In the nonlinear case, according to equation (3.7), the wave is amplified in the defect, and its amplitude
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becomes b:
b2

a′2
=

ω2
res

4(ξ −χb2)2 +4λ2
=

1
(

2(ω−ωres)
ωres

− 2χb2
ωres

)2
+ 1

Q2

=
Q2

1+
(

∆+ 2χQb2
ωres

)2 , (3.52)

with

∆ = −ξ
λ
=
2Q (ωres −ω)

ωres
. (3.53)

Here, Q is the quality factor of the resonator, and ωres = 2πfres. As for the incident power, the power inside

the defect is transferred to the material on the right by an evanescent wave. Writing T2 as the transmission

factor in power through the section of the crystal on the right of the defect, the output power Pout is given by:

Pout =
Z2

2
b′2ω2 =

Z1

2
b2T2ω

2, (3.54)

where b′ is the displacement amplitude in the matrix on the right side of the crystal and Z2 is the impedance

of the matrix. Using equation (3.52), we can write:

Pout
Pin

=
Z1T1T2b

2

Z1a
′2 =

T1T2Q
2

1+
(

∆+ 4χQPout
ωresZ1T2ω2

)2 . (3.55)

In our case, the PnCs on each side of the cavity are symmetrical, so, T1 = T2. Also, the resonator has an

amplification factor Q (its quality factor) for the input wave in displacement (or particle velocity), which

is an amplification factor Q2 in energy (or power). At the resonance, full transmission is reached, so the

amplification factor in power compensates exactly the attenuation factors, so T1T2Q
2 = 1 which gives us:

T1 = T2 =
1
Q
. (3.56)

Using this last expression, the transmission coefficient can be written as:

Pout
Pin

=
1

1+
(

Pout
P0
−∆

)2 , (3.57)

with

P0 = −
Z1ωresω

2

4χQ2 . (3.58)

As we will see now, P0 is a reference power, which characterizes the behavior of the system. We have

defined P0 with a minus sign, so that, as χ < 0 (softening of the material), P0 > 0. We would define it with a

plus sign if we had χ > 0 (hardening of the material).

3.4.3 Study of the “S” Curve

Equation (3.57) gives an implicit relation between Pin and Pout, which we study here. An example of such

curve (that we will call the “S” curve due to its fold) is shown on Figure 3.3.
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Figure 3.3 – Two views of the “S” curve. (a) Curve of Pin vs. Pout. (b) Curve of Pout vs. Pin with remarkable
points A (full transmission) and B and C (jumps).

The interesting points of this curve are called A, B and C on Figure 3.3b.

Point A is the point described in equation (3.59), which corresponds to a full transmission (Pin = Pout).

Point A corresponds to a full transmission of energy through the resonator, which, according to equa-

tion (3.57), is reached when:
Pout
Pin

= 1 ⇐⇒ Pout = ∆P0 = Pin, (3.59)

so:

A (∆P0,∆P0) . (3.60)

Points B and C correspond to a critical values where the system will “jump” from an unstable to a stable

state. We find their coordinates by differentiating equation (3.57) written as:

Pin =

(

Pout
P0
−∆

)2

Pout +Pout. (3.61)

The differentiation gives:
dPin
dPout

= 3
P2
out

P2
0

− 4∆Pout
P0

+1+∆
2. (3.62)

Looking at the point where dPin/dPout = 0, we obtain:

dPin
dPout

= 0 ⇐⇒ Pout
P0

=
2∆
3
±
√

∆2

9
− 1
3
. (3.63)



60 CHAPTER 3. A Nonlinear Elastic Resonator

Finally, their coordinates are:

B















P0
27

(

2∆(9 +∆
2)− 2(∆2 − 3)3/2

)

,
2∆P0
3

+P0

√

∆2

9
− 1
3















,

C















P0
27

(

2∆(9 +∆
2) + 2(∆2 − 3)3/2

)

,
2∆P0
3
−P0

√

∆2

9
− 1
3















.

(3.64)

The width of the “S” curve is:

PC
in −PB

in =
4P0
27

(∆2 − 3)3/2. (3.65)

3.5 Models and Methods

The initial structure consists in a 1D PnC constituted of five steel slabs inserted inside a SiO2 (silica) matrix.

We consider here only longitudinal elastic waves. The physical characteristics (density ρ, linear elastic

modulus C11 and longitudinal elastic wave velocity cL) of steel and silica are given in Table 3.1.

Material ρ (kgm−3) C11 (GPa) cL (m/s)

Steel 7630 287 6133.1
SiO2 2200 78.5 5973.4

Table 3.1 – Density, linear elastic constant and longitudinal elastic wave velocity for steel and silica.

In this structure, represented on Figure 3.4, the steel layers have quarter-wavelength thicknesses. With a

basis frequency f0 = 500 MHz, the wavelength in steel is cL/f0 = 12.266µm. Thus, the thicknesses of the steel

layers are d1 = 3.0665µm. For the sake of simplicity, we chose the SiO2 layers’ thicknesses d2 such as d2 = d1.

Figure 3.4 – Representation of the considered 1D PnC without (a) and with (b) a defect. Red: steel; blue:
SiO2.

In the defected structure, represented on Figure 3.4b, the central inclusion thickness dC is chosen twice

of d2 i.e. dC = 6.133µm and constitutes a defect inserted inside the perfect PnC of Figure 3.4a. The space

resolution is dz = 0.30665µm, which means that the thickness of each inclusion is 10 dz (resp. 20 dz for the

defect).

We perform a time resolution of the equations of elastodynamics, using a pseudo-spectral method

described in chapter 1 [37]. The reason for performing a time domain resolution is that the nonlinear effects

cannot be taken into account by a “static” method such as the transfer matrix method as described in [72].
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The pseudo-spectral method is appropriate for nonlinear simulations as it allows a high-order resolution

[73], which is useful in our case where the second and third harmonics will play an important role. With this

method, simulating on a space grid of n points is equivalent to using a FDTD resolution at order n (n = 256

in our case).

The following equations are implemented in the pseudo-spectral method:

∂v

∂t
=

1
ρ

∂τ

∂z
, (3.66)

and
∂τ

∂t
= k(t)

∂v

∂z
, (3.67)

where v is the particle velocity, and τ is the stress. In equation (3.67), k(t) is defined as [16]:

k(t) =
∂τ

∂ε
= C11

(

1− 2Γε − 3δε2
)

, (3.68)

where ε = ∂u/∂z is the strain and Γ and δ are dimensionless quantities involving the nonlinear characteristics

of the PnC components. Γ and δ are related to the longitudinal second C11, third C111, and fourth C1111

elastic constants by:

Γ = −
(

3
2
+
C111

2C11

)

, (3.69)

δ = −
(

1
2
+
C111

C11
+
C1111

6C11

)

. (3.70)

Here, to simplify the calculation, only the defect is made of a nonlinear medium. All the materials of the

other layers are considered as linear materials, i.e. the nonlinear constants Γ and δ of these materials vanish.

Our simulations with all the steel inclusions being nonlinear or only the defect show that this does not change

the observations, as the nonlinear interaction between the wave and the medium is negligible where no

resonance happens. The quadratic and cubic nonlinear elastic constants C111 and C1111 (according to [74]),

and the corresponding dimensionless quantities Γ and δ of the defect are given in table 3.2. For this study,

we consider a purely cubic nonlinear steel, i.e. we take Γ = 0.

Material C111 (GPa) C1111 (GPa) Γ δ

Steel -3000 -30000 (3.73) 27.37

Table 3.2 – Nonlinear elastic constants of steel.

The incident longitudinal wave is generated by a particle velocity, imposed at the position z = 4.6µm and

the output particle velocity is measured at z = 73.9µm. Two Nearly-Perfectly Matched Layers (NPML), with

thickness 3.0665µm, defined as explained in [75] are used, one placed at each end of the structure.
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3.6 Results

In this section, the results obtained using the pseudo-spectral method are detailed. First, a time resolution is

performed using a large bandwidth source and without taking the nonlinearities into account, which allows

to draw the transmission spectrum of the structure. Then, another time resolution at a specific excitation

frequency is performed to observe an hysteretic behavior due to the nonlinear effects.

3.6.1 Linear Resonator

The transmission spectra for longitudinal waves at normal incidence of the two linear PnCs (perfect and

defected) were calculated between 0 and 1 GHz with the transfer matrix method as described in chapter 1

[72]. The spectrum of the perfect crystal is represented on Figure 3.5. For this perfect structure, a wide band

gap is observed between 300 MHz and 700 MHz. The spectrum of the defected structure, calculated for a

mean of validation, confirms the results obtained with the pseudo-spectral method. The transmission spectra

for the defected structure obtained with the transfer matrix method and the pseudo-spectral method are not

distinguishable.

The simulation is first performed using an excitation consisting in a brief (large bandwidth) Ricker

impulsion [75]. The transmission spectrum is calculated and normalized with the transmission of an

homogeneous SiO2 bar. This way, the resonance peak of the exact simulated structure is obtained and

represented on the insert of Figure 3.5. By fitting it with a Lorentzian curve, its characteristics are obtained:

its central frequency is fres = 491.95 MHz and its quality factor, defined as the ratio between fres and its full

width at half maximum (FWHM), is Q = 608.36. The inset of Figure 3.5 presents a zoom of this peak. The

central location of the defect in the structure ensures a maximal amplitude (close to 1) of the defect peak.

3.6.2 Nonlinear Resonator

The source is a sine function with frequency fc = 490.1 MHz, which is below the resonance frequency fres=

491.95 MHz of the nonlinear cavity. This sine function imposes a particle velocity that is varied incrementally

in 60 levels, from 0.76 to 45.7ms−1. Each level is maintained for 4 millions dt, corresponding to 10µs, since

the timestep is dt = 2.5 ps. Calculations run first through the 60 levels in ascending order and then in

descending order.

The particle velocity is recorded at the receiver after a period of 3 millions dt for each level. An hysteretic

curve, represented on Figure 3.6, is observed. For both ascending and descending variations, the values

reached by the output particle velocity are not proportional to the input particle velocity: for both curves,

a positive step is observed, but the positions of these steps are different. The step for the increasing levels

corresponds to a higher input particle velocity than the step corresponding to the decreasing levels.

As a short hand-waving interpretation, we anticipate that due to the nonlinearities in the resonating

cavity, a frequency shift appears as the particle velocity increases. Due to the softening of the nonlinear

material with increasing strain, the resonance frequency of the cavity, initially fres, decreases and reaches the

excitation frequency fc. So, a resonance happens in the cavity and the elastic wave is transmitted through the

crystal. Figure 3.7 shows such a frequency shift, for a structure with 7 inclusions.
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Figure 3.5 – Transmission spectrum of the structure. Blue: transmission spectrum of the perfect structure
obtained with the transfer matrix method. Red: transmission spectrum of the defected structure obtained
with the pseudo-spectral method. Inset: zoom on the defect peak, whose central frequency and quality factor
are fres = 491.95 MHz and Q = 608.36, respectively.

3.7 Discussion

This section provides an interpretation of the results described above. For this purpose, an analytical model

is proposed and a parametric study of its parameters is provided.

The complete model of the transmission obtained in section 3.4 allows us to draw a theoretical curve

of the output elastic power versus the input elastic power and compare it with the results of the numerical

simulations. This theoretical curve has the shape of an “S” and will therefore be referred as the “S” curve in

the following parametric study.

Figure 3.8 shows a reasonably good agreement between the hysteresis curve derived from the numerical

experiment and the “S” curve. On this figure, we can see that the system possesses two stable states. The first

one, corresponding to low particle velocities, is displayed on the bottom left corner of the figure. The second

one, corresponding to high particle velocities, is displayed on the top right corner of the figure. Moreover, in

a range of powers of Pin the system becomes bi-stable. In this range, the state chosen by the system depends

on its previous state: high output powers when high input powers have already been reached and low output

powers in the other case. The portion of the “S” curve with a negative slope corresponds to unstable states
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Figure 3.6 –Output particle velocity versus the input particle velocity. The arrows show the paths followed
by the output particle velocity for increasing and decreasing source levels.

and therefore cannot be reached physically.

3.7.1 Parametric Study

The previous analytical result allows one to predict the characteristics of the hysteretic behavior of the system

for a wide range of variation of the parameters. A parametric study of this “S” curve will now be performed

to show how the shape of the hysteresis depends on the resonance parameters, namely the quality factor Q,

the nonlinear parameter β and the dimensionless quantity, ∆.

Then, the dependence of the quality factor Q on the number of bilayers of the system and the impedance

break of those bilayers will be studied. Finally, the respective effects of the quadratic and cubic nonlinearities

will be compared.

Study of the “S” curve

The theoretical curve, which analytical formula is given in equation (3.57), has been plotted on Figure 3.9

for different varying parameters, all other parameters being maintained constant, with values close to those

used in Figure 3.8. On these figures, the straight line corresponds to the full transmission (Pin = Pout). As one
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Figure 3.7 – Resonance frequency of the defected structure for different input particle velocities. A
frequency shift to lower frequencies is clearly visible when the input particle velocity increases. This study
was made for a structure with 7 inclusions.

can see, the full transmission is only reached for one point of each “S” curve and this point is located just

before the step on the path followed when the input power decreases.

Figure 3.9a shows the variation of the shape of the “S” curve when β is varied from −4× 1031m−2 s−2

to −7.5× 1031m−2 s−2 while ∆ = 4.51 and Q = 600 are kept constant. As one can see, the curve appears

contracted in both x− and y− directions when the absolute value of β is increased . Thus, the shape itself is

not modified, only the magnification factor. Notably, the negative slope in the middle of the curve remains

the same. This behavior indicates that when the nonlinearity of the material increases, the step will be

reached at a lower excitation power and the hysteresis curve will reach a saturation value that is lower than

that for smaller nonlinearities.

On Figure 3.9b, the value of ∆ is varied from 1.34 to 4.76 while β = −4.5× 1031m−2 s−2 and Q = 600

are kept constant. As previously a dilatation of the curve is observed in both x− and y− directions, but an
enlargement of the curve also occurs. One can interpret this as the fact that when ∆ (i.e. the difference

between the resonance frequency and the excitation frequency) is increased, the width of the hysteresis is

increased as well as the required power to reach the step.

On Figure 3.9c, the value of Q is varied from 500 to 800 while ∆ = 4.51 and β = −4.5× 1031m−2 s−2 are
kept constant. This variation leads to a dilatation of the curve in the x− direction and to a shrinkage of the
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Figure 3.8 – Fit of the output power by the theoretical curve. Black crosses: numerical result with increasing
source levels; black circles: numerical result with decreasing source levels; blue line: “S” curve with
simulation parameters; red line: full transmission (Pout = Pin). The parameters of the theoretical curve are
Q = 608, ∆ = 4.57 and β = −4.7× 1031m−2 s−2.

curve along the y− direction. Then, when the quality factor Q of the cavity is increased, a higher input power

is required to reach the step, and the height of the step is decreased.

Two important parameters of the “S” curve, namely the threshold power PC
in and the width of the hysteresis

PC
in −PB

in are now studied. The evolution of PC
in and PC

in −PB
in versus β, ∆ and Q are plotted on Figure 3.10.

Figure 3.10a shows the variations of PC
in and PC

in −PB
in as a function of β when ∆ and Q are kept fixed. The

decreasing behavior of these quantities with increasing β (in absolute value) indicates that a higher nonlinear

constant will result in a lower threshold power and a smaller hysteresis.

In Figure 3.10b the variations of PC
in and PC

in −PB
in versus ∆ when β and Q are kept fixed are reported and

show that both PC
in and PC

in −PB
in increase with ∆. This means that a larger difference between the excitation

frequency and the resonance frequency will result in a higher threshold power and a larger hysteresis.

Finally Figure 3.10c, shows that both PC
in increases proportionally and PC

in −PB
in increases almost propor-

tionally with Q when ∆ and β are fixed. This means that a resonating cavity with a higher quality factor will

require a larger energy to resonate, and that its hysteresis will be wider.

We observed that when the nonlinear parameter δ is increased by a factor X, then, the maximum value

for the strain reached in the default is decreased by a factor
√
X.



3.7. Discussion 67

Figure 3.9 – Variation of the shape of the S curve according to the variation of β, ∆ and Q. (a) Variation
according β with ∆ = 4.51 and Q = 600. (b) Variation according ∆ with β = −4.5× 1031m−2 s−2 and Q =
600. (c) Variation according Q with ∆ = 4.51 and β = −4.5× 1031m−2 s−2. Straight line: full transmission
(Pin = Pout).

We observed that when the quality factor is increased by a factor X, then, the maximum value for the

strain reached in the default is decreased by a factor
√
X.

Another effect of increasing the quality factor is an increase of the number of wave periods needed for

exciting the resonator. The order of magnitude of the time that is necessary to observe a resonance in a

cavity with quality factor Q is 5QT where T is the wave period. In our case, T /dt ≈ 800, so we need about

2.4 million timesteps to reach the resonance.

Finally, we tried to include quadratic nonlinearities in our simulations. In this case, we couldn’t observe

a step in the output particle velocity, unless we increased the cubic nonlinearities. So, we observed that

quadratic nonlinearities seem to break the hysteretic phenomenon, but, at the time of writing this manuscript,

we cannot propose a satisfactory explanation. We can only make the hypothesis that the second harmonic
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Figure 3.10 – Variation of the threshold power and width of the “S” curve. (a) Variation according to β
with ∆ = 4.51 and Q = 600. (b) Variation according to ∆ with β = −4.5× 1031m−2 s−2 and Q = 600. (c)
Variation according to Q with ∆ = 4.51 and β = −4.5× 1031m−2 s−2.

will escape the resonating cavity and, consequently, the quality factor of the defect will decrease and the

behavior of the system will move away from the theoretical model.

3.8 Conclusion

A one-dimensional PnC composed of steel inclusions in a SiO2 matrix, with a nonlinear, half-wavelength

central inclusion has been designed. Numerical simulations of the transmission of an elastic wave through the

crystal have been performed. It has been shown that the central nonlinear inclusion constitutes a resonating

cavity which is able to commute the elastic wave depending on the particle velocity. An analytical model of

this phenomenon has been provided, based on the derivation of the Lagrange equation. A parametric study
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has been performed for the parameters of the system, namely the nonlinear elastic constants, the quality

factor of the cavity and the difference between the excitation frequency and resonance frequency of the

cavity. The relations between those parameters and the behavior of the system have been explored and the

hysteresis phenomena has been explained with a complete model of the transmission through the bilayers.

This realization is considered to be the first step to the simulation of tunable PnCs. Because of the

considerable dependence of the hysteresis phenomena on the nonlinear elastic constants, one being able

to dynamically tailor these constants would create a controllable switch. So, the dynamic variation of the

nonlinear elastic constants induced by the magneto-elastic effect will be analyzed in a future study, aiming

the creation of magnetically controlled PnC commutators, with tailored properties [11].

Also, this result in a one-dimensional structure will lead to the design and modeling of a two-dimensional

elastic resonator. This structure will be simulated numerically using efficient tools that have been developed

for numerical simulation of nonlinear elastic wave propagation.
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Chapter4

Mixing Laws for the Quadratic and Cubic

Elastic Constants

4.1 Introduction

In chapter 3, we have designed a nonlinear elastic resonator. We have performed numerical studies and

explained their results with a complete analytical model taking into account second- and third-order

nonlinearities. We have shown that the switching behavior of this resonator relies on cubic nonlinearities

and can be improved by increasing those cubic nonlinearities and decreasing quadratic nonlinearities.

In this chapter, we will derive the mixing laws for the quadratic and cubic elastic constants. For nonlinear

inclusions of a material inside a linear matrix, we will calculate the values of the linear as well as quadratic

and cubic nonlinear constants of the effective material, through an homogenization procedure. We will

demonstrate that both quadratic and cubic nonlinearities can be amplified in the effective material, for

specific concentrations of the nonlinear inclusions.

Even though the inclusions would have “reasonable” nonlinear parameters, we hope we will obtain an

effective material with very high cubic and low quadratic elastic nonlinearities. This effective material could

then compose the defect of the resonator of chapter 3.

In a first section, we will derive the equations of a one-dimensional mass-spring system to show that

it is actually possible to amplify both quadratic and cubic nonlinearities. Then, we will explain the 3D

fluid model and calculate the 2D and 3D mixing laws for the second- and third-order elastic parameters.

We will finally provide equations for the prediction of the optimal concentrations and the corresponding

amplification of quadratic and cubic parameters, according to the derivation order and the elastic constants

of the constituent materials.

71



72 CHAPTER 4. Mixing Laws for the Quadratic and Cubic Elastic Constants

4.2 1DMass-Spring SystemModel

This section is adapted from [76]. We study the mass-spring system model presented on Figure 4.1. This

system is composed of N = N1 +N2 springs among which N1 have an elastic coefficient K1 and N2 have

an elastic coefficient K2. The initial length of the springs is L and L≪ λ where λ is the wavelength of the

excitation.

Figure 4.1 – Mass-spring system model containing nonlinear springs with constants K1 and K2.

We write the expression of the stress σ , for the material of the rigid (K1) and soft (K2) springs, respectively:

σ =M1ε (1 + f1(ε)) and σ =M2ε (1 + f2(ε)) , (4.1)

where f1(ε) and f2(ε) are nonlinear functions of ε which verify: f1(ε) ≈ f2(ε) ≪ 1, and M1 = K1/L and

M2 = K2/L. M1 and M2 are the springs constants per unit length of the springs.

We consider the case of “soft” inclusions:

K1

K2
=Q =

M1

M2
≫ 1. (4.2)

In the quasi-static case (λ≫ L), we have: σ = K1X1 = K2X2 where X1 and X2 are the elongations of the

springs with nonlinear constants K1 and K2 respectively.

The total elongation of a chain with length N ×L is:

Xt = X1N1 +X2N2. (4.3)

The strain in that chain is given by:

ε =
Xt

NL
=
X1

L

N1

N
+
X2

L

N2

N
=
X1

L
(1− c) + X2

L
c =

X1

L
(1− c +Qc) , (4.4)

since X2 =QX1. From now, c =N2/N is the concentration of soft springs.
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The average energy density W is linked to the elastic energy stored in the soft and hard springs by:

W =
N1

N
W h +

N2

N
W s, (4.5)

where:

W h =
∫ X1

0

M1

L

ξ

L

(

1+ f1

(ξ

L

))

dξ, and W s =
∫ X2

0

M2

L

ξ

L

(

1+ f2

(ξ

L

))

dξ. (4.6)

So, the average energy density can be rewritten as:

W =
N1

NL

∫ X1

0

M1ξ

L

(

1+ f1

(ξ

L

))

dξ +
N2

NL

∫ X2

0

M2ξ

L

(

1+ f2

(ξ

L

))

dξ. (4.7)

And from equation (4.4), we get:

X1 =
Lε

1+ c(Q − 1) and X2 =QX1. (4.8)

The stress is then given by:

σ =
∂W

∂ε
=

∂W

∂X1

∂X1

∂ε
where

∂X1

∂ε
=

L

1+ c(Q − 1) , (4.9)

and
∂W

∂X1
= (1− c)M1

L

X1

L

(

1+ f1

(X1

L

))

+ c
M2

L

QX1

L

(

1+ f2

(QX1

L

)) ∂X2

∂X1
. (4.10)

We define:

α =
X1

L
=

ε

1+ c(Q − 1) , (4.11)

and we use QM2 =M1 and ∂X2/∂X1 =Q in equation (4.10), leading to:

∂W

∂X1
= (1− c)M1

L
α (1 + f1 (α)) + c

M1

L
Qα (1 + f2 (Qα))

=
M1

L
α (1 + c(Q − 1) + (1− c)f1(α) + cQf2(Qα)) .

(4.12)

Finally, we obtain the following stress-strain relation for the inhomogeneous string of springs:

σ =
∂W

∂ε
=

M1

1+ c(Q − 1) ×α (1 + c(Q − 1) + (1− c)f1(α) + cQf2(Qα))

=M1α

(

1+
1− c

1+ c(Q − 1) f1(α) +
cQ

1+ c(Q − 1) f2(Qα)

)

,

(4.13)

which corresponds to equation (5) in [77].
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4.2.1 Low-concentration Case

In the low-concentration case, i.e. when c≪ 1/Q, then:

α =
ε

1+ c(Q − 1) ≈ ε so Qα ≈Qε. (4.14)

In this case, the inclusions undergo a strain that is Q≫ 1 times bigger than the average strain the medium

undergoes. This fact explains why the nonlinear parameters of the heterogeneous medium can become quite

large.

4.2.2 High-concentration Case

We now define the nonlinear functions f1 and f2 with a quadratic term Γi and a cubic term δi : f1(ε) = Γ1ε+δ1ε2

and f2(ε) = Γ2ε + δ2ε
2. We replace f1 and f2 by their expressions in equation (4.13) and we obtain:

σ =M1α

(

1+
1− c

1+ c(Q − 1)
(

Γ1α + δ1α
2
)

+
cQ

1+ c(Q − 1)
(

Γ2Qα + δ2(Qα)2
)

)

=
M1ε

1+ c(Q − 1)

(

1+
(1− c)Γ1ε

(1 + c(Q − 1))2
+

(1− c)δ1ε2

(1 + c(Q − 1))3
+

cΓ2Q
2ε

(1 + c(Q − 1))2
+

cδ2Q
3ε2

(1 + c(Q − 1))3

)

=
M1ε

1+ c(Q − 1)

















1+ Γ1ε
1− c + c Γ2

Γ1
Q2

(1 + c(Q − 1))2
+ δ1ε

2
1− c + c δ2δ1Q

3

(1 + c(Q − 1))3

















.

(4.15)

Finally, we rewrite the stress in the following form:

σ =M1AKε
(

1+ Γ1εBK + δ1ε
2CK

)

, (4.16)

with:

AK =
1

1+ c(Q − 1) and BK =
1− c + c Γ2

Γ1
Q2

(1 + c(Q − 1))2
and CK =

1− c + c δ2δ1Q
3

(1 + c(Q − 1))3
. (4.17)

In the specific case where Γ1 = Γ2, the expressions of AK and BK correspond to equations (7) and (8) in

[77].

We will now solve for the optimal concentration that maximizes the nonlinear parameters of order n.

Here, Xn represents BK (n = 2) or CK (n = 3), xi represents Γi (n = 2) or δi (n = 3). Taking the derivative of the

nonlinear parameter Xn by the concentration c, we obtain:

∂Xn

∂c
=

∂

∂c













1− c + c x2x1Q
n

(1 + c(Q − 1))n













=
x2
x1
Qn − 1

(1+ c(Q − 1))n +

(

1+ c
(

x2
x1
Qn − 1

))

(−n(Q − 1))
(1 + c(Q − 1))n−1

, (4.18)

which is null if and only if:

(

x2
x1

Qn − 1
)

(1 + c(Q − 1))−n(Q − 1)
(

1+ c

(

x2
x1

Qn − 1
))

= 0. (4.19)
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The previous expression gives us the optimal concentration copt(n) as:

copt(n) =
1

(n− 1)(Q − 1) −
n

(n− 1)
(

x2
x1
Qn − 1

) ≈ 1
(n− 1)Q if Q≫ 1. (4.20)

For n = 2 and n = 3, the optimal concentrations are given by:

copt(n = 2) =
1

Q − 1 −
2

(

Γ2
Γ1
Q2 − 1

) ≈ 1
Q

and copt(n = 3) =
1

2(Q − 1) −
3

2
(

δ2
δ1
Q3 − 1

) ≈ 1
2Q

. (4.21)

These expressions correspond to that obtained by the mixing law of the quadratic and cubic nonlinear

coefficients of fluids, as it will be shown in the next section.

We can notice that the optimal concentrations for the quadratic and cubic nonlinearities are different: for

n = 2 and n = 3, copt ≈ 1/((n− 1)Q). This allows us to amplify the cubic nonlinearity without changing too

much the quadratic one. This will be useful for the nonlinear oscillator described in chapter 3.

When c = copt(n), the linear elastic parameter AK becomes:

AK (copt(n)) =
1

1+ Q−1
(n−1)Q

=
(n− 1)Q

(n− 1)Q +Q − 1 =
(n− 1)Q
nQ − 1 ≈

n− 1
n

, (4.22)

so, the linear parameter does not vary much.

On the other hand, the nonlinear parameters BK and CK , at c = copt(n) ≈ 1/((n− 1)Q), are:

BK opt,CK opt ≈
(n− 1)Q − 1+ x2

x1
Qn

((n− 1)Q +Q − 1)n ×
(n− 1)nQn

(n− 1)Q ≈
x2
x1
Qn(n− 1)n−1Qn−1

Qnnn
≈ x2

x1
× (n− 1)n−1Qn−1

nn
(4.23)

At the optimal concentration for quadratic nonlinearities, the values of BK and CK are:

BK opt = BK (copt(n = 2)) ≈ Γ2

Γ1
× Q

4
et CK (copt(n = 2)) ≈ δ2

δ1
× Q2

8
. (4.24)

At the optimal concentration for cubic nonlinearities, the values of BK and CK are:

BK (copt(n = 3)) ≈ Γ2

Γ1
× 2Q

9
et CK opt = CK (copt(n = 3)) ≈ δ2

δ1
× 4Q2

27
. (4.25)

The important points to notice here are the ratios of amplification: K1/(4K2) for n = 2 and 4K2
1 /(27K

2
2 ) for

n = 3, and the optimal concentrations: K2/K1 for n = 2 and K2/(2K1) for n = 3. In the next section, we will see

that they are the same for fluids.

We notice that we can increase the cubic nonlinearity by a factor 100 by choosing:

4
27

Q2 = 100 which is Q =
K1

K2
≈ 26 and copt =

1
2Q

=
1
52

(4.26)
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In this case:

BK

( 1
2Q

)

=
1− 1

2Q + 1
2Q

Γ2
Γ1
Q2

(

1+ 1
2Q (Q − 1)

)2 ≈
Γ2
Γ1

Q
2

(

1+ Q
2Q

)2 =
Γ2

Γ1

2Q
9

=
52
9

Γ2

Γ1
(4.27)

We notice that Γ2/Γ1 is increased by a factor 5.8 when δ2/δ1 is increased by a factor 100, which is 17.3

times bigger. This favors the cubic nonlinearities.

4.3 Mixing Law for a Fluid in 3D

For a fluid, we define the quadratic and cubic nonlinear parameters with the usual notations:

β =
Bl

2Al
+1 and γ =

Cl

6Al
− 1, (4.28)

where Al , Bl , and Cl are the first three coefficients of the Taylor’s expansion of the pressure as a function of

the density.

It has been demonstrated [78] that the mixing law for β and γ are:

1

K2
m
βm =

N
∑

i=1

βi
ci
K2
i

and
1

K3
m

(

γ − β Bl

Al

)

m

=
N
∑

i=1

(

γ − β Bl

Al

)

i

ci
K3
i

, (4.29)

where N is the number of constituents of the mixture, K is the compressibility factor and ci is the volume

fraction of each constituent

(

N
∑

i=1
ci = 1

)

. The mixing law for K is [78]:

1
Km

=
N
∑

i=1

ci
Ki

. (4.30)

For a mixture with two constituents, we use the notations c2 = c and c1 = 1− c. If the second constituent is

more compressible than the first one (K2 < K1), then:

βm = c
K2
m

K2
2

β2 + (1− c) K
2
m

K2
1

β1, (4.31)

and
1
Km

=
c

K2
+
1− c
K1

so Km =
K1K2

cK1 + (1− c)K2
. (4.32)

We solve for the concentration c that will optimize the nonlinear parameter βm of the mixture:

∂βm
∂c

=

(

β2
K2
2

− β1
K2
1

)

K2
m +

(

cβ2
K2
2

+ (1− c) β1
K2
1

)

∂K2
m

∂c
, (4.33)
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which is null if and only if:
cβ2
K2
2

+ (1− c) β1
K2
1

= − K2
m

∂K2
m

∂c

(

β2
K2
2

− β1
K2
1

)

. (4.34)

We know that:

K2
m =

K2
1K

2
2

(cK1 + (1− c)K2)
2 . (4.35)

So, taking the derivative of this expression as a function of c leads to:

∂K2
m

∂c
=
−2K2

1K
2
2 (K1 −K2)

(K1c + (1− c)K2)
3 . (4.36)

Dividing equation (4.35) by equation (4.36) gives:

K2
m

∂K2
m

∂c

=
K2
1K

2
2

(cK1 + (1− c)K2)
2 ×

(K1c + (1− c)K2)
3

−2K2
2K

2
1 (K1 −K2)

=
K1c + (1− c)K1

2(K1 −K2)
. (4.37)

Finally, introducing this latest result in equation (4.34) leads to the equation that we have to solve:

cβ2
K2
2

+ (1− c) β1
K2
1

=
K1c + (1− c)K2

2(K1 −K2)

(

β2
K2
2

− β1
K2
1

)

⇐⇒ c =
2(K2 −K1)

β1
K2
1
+K2

(

β2
K2
2
− β1

K2
1

)

(K1 −K2)
(

β2
K2
2
− β1

K2
1

) . (4.38)

So, the concentration which maximizes the nonlinear quadratic (n = 2) parameter βm is:

copt(n = 2) =
1

K1
K2
− 1
− 2

β2
β1

K2
1

K2
2
− 1

. (4.39)

The same calculation for optimizing the cubic (n = 3) parameter δm = γm − βmBm/Am gives:

copt(n = 3) =
1

2
(

K1
K2
− 1

) − 3

2
(

δ2
δ1

K3
1

K3
2
− 1

) . (4.40)

If the second medium is much more compressible than the first one (K2≪ K1), then:

copt(n = 2) ≈ K2

K1
− 2β1

β2

K2
2

K2
1

and copt(n = 3) ≈ K2

2K1
− 3
2
β1
β2

K3
2

K3
1

. (4.41)

Now, if moreover, β1 is of the same order as β2 and δ1 is of the same order as δ2, then:

copt(n = 2) ≈ K2

K1
and copt(n = 3) ≈ K2

2K1
which we write copt(n) =

K2

(n− 1)K1
. (4.42)
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Medium Compressibility factor (Pa) Quadratic nonlinear parameter Cubic nonlinear parameter

Water K1 = 2.2× 109 β1 = 3.5 γ1 = 5.25, δ1 = −12.25
Air K2 = 1.42× 105 β2 = 1.2 γ2 = −1.04, δ2 = −1.52

Table 4.1 – Compressibility factor and quadratic and cubic nonlinear constants of air and water.

The values of the nonlinear parameters that we obtain are:

βm
(

copt(n = 2)
)

=
K1

K2

β2
4

+
β1
4
≈ K1

K2

β2
4

and δm
(

copt(n = 3)
)

=
K2
1

K2
2

4δ2
27

+
8δ1
27
≈

K2
1

K2
2

4δ2
27

. (4.43)

As K2≪ K1, the optimal concentrations can be very small. In such case, it appears that a small concentra-

tion of compressible inclusions leads to a huge (i.e. 4K2
1 /(27K

2
2 )) increase of the global cubic nonlinearity of

the medium, when the quadratic global nonlinearity is “only” increased by a factor K1/(4K2).

We can observe that we obtain the same optimal concentrations copt(n = 2) ≈ 1/Q = K2/K1 and copt(n =

3) ≈ 1/(2Q) = K2/(2K1) are the same for the fluid and for the spring system of section 4.2. The amplification

factors K1/(4K2) and 4K2
1 /(27K

2
2 ) are also the same.

As an example, we can consider the case of air bubbles in water. The compressibility factors and nonlinear

constants of air and water are given in table 4.1. For this system, the optimal concentration is:

copt(n = 2) ≈ K2

K1
≈ 6× 10−5 and copt(n = 3) ≈ K2

2K1
≈ 3× 10−5, (4.44)

and the corresponding amplifications of the global nonlinearities in the medium are:

βm
(

copt(n = 2)
)

≈ K1

K2

β2
4
≈ 4650 and δm

(

copt(n = 3)
)

≈
K2
1

K2
2

4δ2
27
≈ −5.4× 107. (4.45)

The global nonlinearity of the system for each concentration of air is represented on Figure 4.2. The

values observed in the curve correspond to the expected results.

Figure 4.2 – Global nonlinear parameters βm and δm of a medium composed of air bubbles in water.
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4.4 Relations Between Constants for Isotropic Solids

Before extending the previous mixing laws for the nonlinear elastic constants in isotropic solids, we recall, in

this section, the relations between:

• the Lamé constants: λ, µ,

• the compression modulus: K2D in 2 dimensions or K3D in 3 dimensions,

• the tensors CIJ for the linear and CIJK for the quadratic nonlinear elastic constants.

4.4.1 Compression Modulus

In 2D, we have:

K2D = λ+µ = (λ+2µ)−µ = ρ0
(

c2l − c
2
t

)

, (4.46)

with the following condition on the Poisson coefficient:

− 1 < ν2D =
K2D −µ
2K2D

<
1
2
, (4.47)

which corresponds to:

0 < µ < 3K2D. (4.48)

In 3D, we have:

K3D = λ+
2
3
µ = (λ+2µ)− 4

3
µ = ρ0

(

c2l −
4
3
c2t

)

, (4.49)

with the following condition on the Poisson coefficient:

− 1 < ν3D =
3K3D − 2µ
2(3K3D +µ)

<
1
2
. (4.50)

4.4.2 Tensor for the Linear Constants

The CIJ tensor of an isotropic material is symmetric. Its components are linked to the Lamé constants by:

C11 = C22 = C33 =λ+2µ,

C12 = C13 = C23 =λ,

C44 = C55 = C66 =µ.

(4.51)

Moreover, the components can be obtained from the wave speeds, using:

Longitudinal/plane: cl = cp =
√

λ+2µ
ρ0

=
√

C11
ρ0

,

Transversal/shear: ct = cs =
√

µ
ρ0

=
√

C44
ρ0

,
(4.52)
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Notation by Notation by Notation by Notation by
Murnaghan, Hughes and Kelly Taupin and Bernstein Bland Eringen and Suhubi

l = B+C
m = A

2 +B
n = A

A = n
B = m− n

2
C = l −m+ n

2

ν1 = 2C
ν2 = B
ν3 =

A
4

α = C
3

β = B
γ = A

3

lE = A
3 +B+ C

3
mE = −A− 2B
nE = A

Table 4.2 – Comparison between the different notations for the nonlinear quadratic constants.

CIJK Versus A,B,C Versus l,m,n Versus CIJK

C111,C222,C333 2A+6B+2C 2l +4m
C112,C113,C122,C133,C223,C233 2B+2C 2l

C123 2C 2l − 2m+n
C144,C255,C366 B m− n

2
1
2 (C112 −C123)

C155,C166,C244,C266,C344,C355
A
2 +B m 1

4 (C111 −C112)
C456

A
4

n
4

1
8 (C111 − 3C112 +2C123)

Table 4.3 – Summary of the relations between CIJK tensor, the Landau constants and l,m,n notation.

which gives:
µ = ρ0c

2
s ,

C11 = λ+2µ = ρ0c
2
p ,

C12 = λ = ρ0(c2p − 2c2s ).
(4.53)

4.4.3 Tensor for the Nonlinear Quadratic Constants

The CIJK tensor of an isotropic material is symmetric. There are 20 non-null constants in the tensor. They

can be given using three constants : A,B and C, called the Landau constants.

The quadratic elastic constants can be expressed with the three constants of Murnaghan, Hughes and Kelly

(1951), written l,m and n. Alternatively, Taupin and Bernstein (1961) use the three constants c1, c2 and c3.

Bland (1969) uses another notation with constants α,β and γ . Finally, Eringen and Suhubi (1974) use a

notation with constants lE ,mE and nE .

Tables 4.2 and 4.3 provide the relations between the components of the CIJK tensor, the Landau constants

and the constants used in notations mentioned above.

Finally, the link between the Landau constants and the CIJK tensor is:

A = C111
2 −

3C112
2 +C123,

B = C112
2 −

C123
2 ,

C = C123
2 .

(4.54)

Units

Those constants are usually expressed in GPa or dyn/cm2. 1GPa = 1× 1010 dyn/cm2.
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4.5 Landau Coefficients in a Heterogeneous Medium

In the previous sections, we have observed that the 1D mass-spring system and the inclusion of air bubbles

in water both possess quadratic and cubic nonlinear constants that are amplified compared to that of the

inclusions. For both systems, we obtain the same expressions for the quadratic amplification and the same

expressions for the cubic amplification.

The optimal concentrations are the same for both systems, and they are different for quadratic and for

cubic nonlinearities. This will allow one to favor the cubic constants over the quadratic ones, by choosing a

concentration equal to the optimal concentration for the cubic amplification.

In this section, we will extend the 1D model to 2D and 3D systems of nonlinear inclusions in a linear

matrix. Our starting point is the model developed in [79] that we rederive.

4.5.1 Derivation to the Second Order

We consider nonlinear inclusions of a material noted 2 in a linear matrix noted 1. The inclusions are ellipsoids.

Figure 4.3 defines the linear and nonlinear constants for those materials.

Figure 4.3 –Quadratic nonlinear inclusions in a linear matrix. (a) In 3D, we define the quadratic nonlinear
parameters A,B and C. (b) In 2D, we define the quadratic nonlinear parameters e and f .

In 3D

We write the elastic energy U stored inside a deformed material as a function of the strain tensor ε̂:

U =U(ε̂), (4.55)
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and the stress can therefore be derived as follows:

Tij =
∂U

∂εij
. (4.56)

If the material is isotropic, then the energy is an isotropic tensor and it can be written as [80] :

U = µTr(ε̂2) +
λ

2
Tr2(ε̂) +

A

3
Tr(ε̂3) +BTr(ε̂)Tr(ε̂2) +

C

3
Tr3(ε̂), (4.57)

where, Tr is the trace operator. Tr(ε̂), Tr(ε̂2) and Tr(ε̂3) are called the “invariants” of the stress tensor ε̂.

We rewrite this expression up to the third order using the Einstein notation:

U = µεijεji +
λ

2
(εii )

2 +
A

3
εijεjkεki +Bεiiεkhεhk +

C

3
(εii )

3. (4.58)

We differentiate this expression to obtain Tnm:

Tnm =
∂U

∂εnm
= µδinδjmεji +µεijδjnδim +

2λ
2
(εjj )δnm

+
A

3
δinδjmεjkεki +

A

3
εijδjnδkmεki +

A

3
εijεjkδknδim

+Bδnmεkhεhk +Bεii (δknδhmεhk + εkhδhnδkm)

+
3C
3

(εii )
2δnm.

(4.59)

Or simply:

Tnm = 2µεnm +λεiiδnm +Aεmkεkn +Bδnmεkhεhk +2Bεiiεnm +C(εii )
2δnm. (4.60)

So, finally, the tensor T̂ is written:

T̂ = 2µε̂ +λTr(ε̂)Î +Aε̂2 +BTr(ε̂2)Î +2Bε̂Tr(ε̂) +CTr2(ε̂)Î . (4.61)

Here, λ and µ are the Lamé coefficients of the linear elastic theory. A, B and C are the second-order

nonlinear moduli i.e. the Landau coefficients. We adopt the physical nonlinearity standpoint, with the

geometrical nonlinearity neglected everywhere. The balance equations are based on the small-strain tensor

and on the geometric Cauchy stress.

Restriction to 2D

In the 2D case, the tensor ε̂ only has two invariants. We use the Cayley-Hamilton theorem and the following

trick to express Tr(ε̂3) as a function of Tr(ε̂) and Tr(ε̂2). We define the characteristic polynomial of ε̂ as:

Pε̂(λ) = det(ε̂ −λÎ ). (4.62)

According to the Cayley-Hamilton theorem, ε̂ satisfies its own characteristic equation, so Pε̂(ε̂) = 0̂ (0̂ is
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the null matrix). Also, it is easy to check that for every 2× 2 matrix A:

PA(λ) = det(A)−λTr(A) +λ2, (4.63)

so, with Pε̂ applied to ε̂:

det(ε̂)Î − ε̂Tr(ε̂) + ε̂2 = 0̂. (4.64)

Since Tr(Î ) = 2, the trace of the expression in equation (4.64) is:

2det(ε̂)−Tr2(ε̂) +Tr(ε̂2) = 0. (4.65)

So, by replacing det(ε̂) from equation (4.65) into equation (4.64), we get:

ε̂2 = ε̂Tr(ε̂)− 1
2

[

Tr2(ε̂)−Tr(ε̂2)
]

Î , (4.66)

from which we obtain:

Tr(ε̂3) =
3
2
Tr(ε̂)Tr(ε̂2)− 1

2
Tr3(ε̂). (4.67)

We replace ε̂2 and Tr(ε̂3) in equation (4.61) and we get:

T̂ = 2µε̂ +λTr(ε̂)Î +A
[

ε̂Tr(ε̂)− 1
2

[

Tr2(ε̂)−Tr(ε̂2)
]

Î
]

+BTr(ε2)Î +2Bε̂Tr(ε̂) +CTr2(ε̂)Î . (4.68)

We regroup the terms of the previous expression and we define:

e = B+
A

2
,

3f = C − A

2
.

(4.69)

So, the final expression for T̂ in 2D is:

Tnm = 2µεnm +λεiiδnm + eεhkεkh +2eεiiεnm +3f (εii )
2δnm, (4.70)

or written as a tensor:

T̂ = 2µε̂ +λTr(ε̂)Î + eTr(ε̂2)Î +2eε̂Tr(ε̂) + 3f Tr2(ε̂)Î . (4.71)

Comment

In fact, if a 3D system is studied without energy considerations, four coefficients, A, B, C and D, must be

considered. In that case, the expression for the stress is:

T̂ = 2µε̂ +λTr(ε̂)Î +Aε̂2 +BTr(ε̂2)Î +CTr2(ε̂)Î +Dε̂Tr(ε̂). (4.72)

If the thermodynamics of the system is considered, as in the Green formulation of the elasticity theory [79–
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81], those coefficients reduce to three independent numbers in 3D : A, B and C, as D = 2B and two

independent numbers in 2D : e and f : A = 0, B = e, C = 3f and D = 2B = 2e.

In that case, we obtain the expressions (4.61) and (4.71) for the stress. For the study below, we will use

the Green elasticity theory and its three independent coefficients.

4.5.2 Expressions for the Quadratic Nonlinearities

We write the bulk modulus as:

K3D = λ+
2
3
µ, (4.73)

and the Poisson coefficient as:

ν =
3K3D − 2µ
2(3K3D +µ)

. (4.74)

The stress in a single ellipsoid inclusion is:

T̂ = Ĉ2(ε̂)ε̂. (4.75)

and the stress in the matrix is:

T̂∞ = Ĉ1ε̂
∞, (4.76)

where Ĉ2 is the stiffness tensor of the inclusion and Ĉ1 the stiffness tensor of the matrix. The notation with

∞means that the stress loading is located far from the inclusion.

If we write Ŝ the Eshelby tensor, which depends only on the geometry of the inclusion and on Ĉ1, then

the total stress in the ellipsoid inclusion is uniform and its value is [82, 83]:

ε̂d =
[

Î − Ŝ
(

Î − Ĉ−11 Ĉ2

(

Ŝ
))]−1

ε̂∞. (4.77)

If this equation has a solution for a specific ε̂, called ε̂d , then the nonlinear inclusion can be replaced by a

linear one:

Ĉ2 = Ĉ2 (ε̂d ) . (4.78)

The equation (4.77) is equivalent to:

ε̂d − Ŝ ε̂d + ŜĈ−11 T̂d = ε̂∞ where T̂d = Ĉ2 (ε̂d ) ε̂d , (4.79)

and according to the Green elasticity theory:

T̂d = 2µ2ε̂d +
(

K2 −
2
3
µ2

)

Tr(ε̂d ) Î +Aε̂2d +B
[

Tr
(

ε̂2
)

Î +2ε̂Tr(ε̂)
]

+CTr2 (ε̂) Î . (4.80)

Equation (4.80) applies to a single inclusion. Our study will concern a dispersion of inclusions, limited to

the low-concentration case, where there is no interaction between the particles. So, we consider the average
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stress in the heterogeneous medium:

〈T̂ 〉 = 1
V

∫

V
T̂ dv =

1
V
Ĉ1

∫

Vm

ε̂dv +
∫

Ve

T̂ dv

=
1
V
Ĉ1

∫

Vm

ε̂dv +
∫

Ve

T̂ dv +
1
V
Ĉ1

∫

Vm

ε̂dv − 1
V
Ĉ1

∫

Vm

ε̂dv

= Ĉ1〈ε̂〉+ c
[

T̂d − Ĉ1ε̂d
]

,

(4.81)

where Vm is the volume of the matrix, Ve the volume of the inclusions and the total volume is V = Vm +Ve.

So:

〈T̂ 〉 = 2µ1〈ε̂〉+
(

K1 −
2
3
µ1

)

Tr〈ε̂〉Î

+c

[

(µ2 −µ1)ε̂d +
(

K2 −K1 −
2
3
(µ2 −µ1)

)

Tr(ε̂d )Î +Aε̂2d

+B
[

Tr
(

ε̂2d
)

Î +2ε̂d Tr(ε̂d )
]

+CTr2 (ε̂d ) Î

]

.

(4.82)

Expression (4.82) is an exact one, for which we had to make no approximation. Now, in the case of a

strongly dilute medium (c≪ 1), we make the approximation that the elastic field inside the particles can be

considered uniform, i.e. 〈T̂d〉 ≈ T̂d and 〈ε̂d〉 ≈ ε̂d , so:

〈T̂ 〉 = cT̂d + Ĉ1 (〈ε〉 − cε̂d ) , (4.83)

and we make the approximation:

〈ε̂〉 = cε̂d + (1− c)ε̂∞. (4.84)

Expressions for spherical inclusions

The Eshelby tensor for a spherical inclusion is [83]:

Sijkl =
1

15(1− ν1)
[(

δikδjh + δihδjk
)

(4− 5ν1) + δkhδij (5ν1 − 1)
]

, (4.85)

where ν1 is the Poisson ratio of the matrix, so:

Sijklεd,kh =
2(4− 5ν1)
15(1− ν1)

εd,ij +
5(ν1 − 1)
15(1− ν1)

εd,kkδij , (4.86)

where:

ν1 =
3K1 − 2µ1
2(3K1 +µ1)

, (4.87)

which gives us:

Ŝ ε̂d =
6
5

K1 +2µ1
3K1 +4µ1

ε̂d +
1
5
3K1 − 4µ1
3K1 +4µ1

Tr(ε̂d ) Î . (4.88)
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In this case, we can rewrite equation (4.79) as:

Lε̂d +M Tr(ε̂d )Î +Nε̂2d +Oε̂d Tr(ε̂d ) +PTr
(

ε̂2d
)

Î +QTr2(ε̂d )Î = ε̂∞, (4.89)

with:

L = 1+
6
5

K1 +2µ1
3K1 +4µ1

(

µ2
µ1
− 1

)

, (4.90)

M =
5K2 −K1

(

3+2µ2
µ1

)

− 4(µ2 −µ1)
5(3K1 +4µ1)

, (4.91)

N =
3
5
A

µ1

K1 +2µ1
3K1 +4µ1

, (4.92)

O =
6
5
B

µ1

K1 +2µ1
3K1 +4µ1

, (4.93)

P =
1

15(3K1 +4µ1)

[

15B−A
(

1+3
K1

µ1

)]

, (4.94)

Q =
1

15(3K1 +4µ1)

[

15C − 2B
(

1+3
K1

µ1

)]

. (4.95)

Using equation (4.84) and the expression of ε̂∞ given in equation (4.89), the expression of 〈ε̂〉 becomes:

〈ε̂〉 = (c + (1− c)L)ε̂d + (1− c)
[

M Tr(ε̂d )Î +Nε̂2d +Oε̂d Tr(ε̂d ) +PTr
(

ε̂2d
)

Î +QTr2(ε̂d )Î
]

, (4.96)

which we rewrite as:

〈ε̂〉 = L′ ε̂d +M ′Tr(ε̂d )Î +N ′ ε̂2d +O′ ε̂d Tr(ε̂d ) +P ′Tr
(

ε̂2d
)

Î +Q′Tr2(ε̂d )Î , (4.97)

where:

L′ = c + (1− c)L
M ′ = (1− c)M
N ′ = (1− c)N
O′ = (1− c)O
P ′ = (1− c)P
Q′ = (1− c)Q.

(4.98)
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Now, we can calculate the five following expressions:

Tr〈ε̂〉 = (L′ +3M ′)Tr(ε̂d ) + (N ′ +3P ′)Tr
(

ε̂2d
)

+ (O′ +3Q′)Tr2(ε̂d ),

〈ε̂〉2 = L′2ε̂2d +2L′M ′ ε̂d Tr(ε̂d ) +M ′2ε̂2d Î ,

〈ε̂〉Tr〈ε̂〉 = L′(L′ +3M ′)ε̂d Tr(ε̂d ) +M ′(L′ +3M ′)Tr2(ε̂d )Î ,

Tr
[

〈ε̂〉2
]

= L′2Tr
(

ε̂2d
)

+M ′(2L′ +3M ′)Tr2(ε̂d ),

Tr2〈ε̂〉 = (L′ +3M ′)2Tr2(ε̂d ).

(4.99)

Inverting this system of equations, we obtain:

Tr2(ε̂d ) =
Tr2〈ε̂〉

(L′ +3M ′)2
,

Tr
(

ε̂2d
)

=
Tr

[

〈ε̂〉2
]

L′2
− M ′(2L′ +3M ′)
L′2(L′ +3M ′)2

Tr2〈ε̂〉,

Tr(ε̂d ) =
Tr〈ε̂〉

L′ +3M ′
− N ′ +3P ′

L′ +3M ′

















Tr
[

〈ε̂〉2
]

L′2
− M ′(2L′ +3M ′)
L′2(L′ +3M ′)2

Tr2〈ε̂〉

















− O′ +3Q′

(L′ +3M ′)3
Tr2〈ε̂〉,

ε̂d Tr(ε̂d ) =
〈ε̂〉Tr〈ε̂〉

L′(L′ +3M ′)
− M ′(L′ +3M ′)

L′(L′ +3M ′)

(

Tr2〈ε̂〉
(L′ +3M ′)2

)

Î .

(4.100)

Now, we replace those expressions in that of 〈T̂ 〉, i.e. equation (4.82). We obtain a constitutive equation

for the homogenized material:

〈T̂ 〉 = 2µeff〈ε̂〉+
(

Keff −
2
3
µeff

)

Tr〈ε̂〉Î +Aeff〈ε̂〉2

+Beff

(

Tr
[

〈ε̂〉2
]

Î +2〈ε̂〉Tr〈ε̂d〉
)

+CeffTr
2〈ε̂〉Î ,

(4.101)

where:

µeff = µ1 + c
µ2 −µ1

L′

Keff = K1 + c
K2 −K1

L′ +3M ′

Aeff = c
A

L′2
− 2cN

′(µ2 −µ1)
L′3

Beff = 2c
(N ′M ′ −L′P ′)(µ2 −µ1)

L′3(L′ +3M ′)
− c

(N ′ +3P ′)
[

K2 −K1 − 2
3 (µ2 −µ1)

]

L′2(L′ +3M ′)
+ c

B

L′2

Ceff =
c

9
9C +9B+A

(L′ +3M ′)2
+
c

9
A− 3B
L′2

+
c

9
(4N ′ +6O′)(µ2 −µ1)

L′2(L′ +3M ′)
− 2c

9
3B−A

L′(L′ +3M ′)

+
c

9
(3N ′ +9P ′)(K2 −K1)

L′2(L′ +3M ′)
− 4c

9
N ′(µ2 −µ1)

L′3
− c

3
(9Q′ +3O′ +3P ′ +N ′)(K2 −K1)

(L′ +3M ′)3
.

(4.102)
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Expressions for cylindrical inclusions

For parallel cylindrical inclusions, in a linear matrix, with the strain in a plane perpendicular to the cylinders,

the expression of the Eshelby tensor gives:

Ŝ ε̂d =
1
2
K1 +2µ1
K1 +µ1

ε̂d +
1
4
K1 − 2µ1
K1 +µ1

Tr(ε̂d ) Î . (4.103)

Using the same procedure, for a 2D system, as the one used above for spherical inclusions, we obtain the

following effective linear and quadratic Landau coefficients [80]:

µeff = µ1 + c
µ2 −µ1

L′

Keff = K1 + c
K2 −K1

L′ +2M ′

Aeff = c
A

L′2
− 2cN

′(µ2 −µ1)
L′3

Beff =
c [N ′(µ2 −µ1) +BL′]

L′3
− c(2P ′ +N ′)(K2 −K1)

L′2(L′ +2M ′)

Ceff = c
4C +6B+A

4(L′ +2M ′)2
+ c

A− 2B
4L′2

+ c
2(N ′ +O′)(µ2 −µ1) + (2P ′ +N ′)(K2 −K1)

(2L′2(L′ +2M ′)

− c2P
′ +N ′ +4Q′ +2O′)(K2 −K1)

2(L′ +2M ′)2
− cN

′(µ2 −µ1)
L′3

− c A+2B
2L′(L′ +2M ′)

,

(4.104)

where:

L′ = c + (1− c)
(

1+
1
2
K1 +2µ1
K1 +µ1

(

µ2
µ1
− 1

))

M ′ = (1− c)
2K2 −K1

(

1+ µ2
µ1

)

− 2(µ2 −µ1)
4(K1 +µ1)

N ′ = (1− c) A

4µ1

K1 +2µ1
K1 +µ1

O′ = (1− c) 2B
4µ1

K1 +2µ1
K1 +µ1

P ′ = (1− c)
4B−AK1

µ1

8(K1 +µ1)

Q′ = (1− c)
4C − 2BK1

µ1

8(K1 +µ1)
.

(4.105)

4.5.3 Derivation to the Third Order

Because of the complexity of the equations, the expressions for the quadratic and cubic nonlinearities will be

given for all the terms for 2D systems, but only for the leading terms (corresponding to the longitudinal

compression waves) for 3D systems.
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We consider nonlinear inclusions of a nonlinear material noted 2 in a linear matrix noted 1. Figure 4.4

defines the linear and nonlinear constants for those materials.

Figure 4.4 – Cubic nonlinear inclusions in a linear matrix. (a) In 3D, we define the quadratic A,B,C and
cubic E,F,G,H nonlinear parameters. (b) In 2D, we define the quadratic e, f and cubic g,h, l nonlinear
parameters.

In 3D

If the material is isotropic, then the energy is an isotropic tensor and it can be written as [84]:

U = µTr(ε̂2) +
λ

2
Tr2(ε̂) +

A

3
Tr(ε̂3) +BTr(ε̂)Tr(ε̂2) +

C

3
Tr3(ε̂)

+ETr(ε̂)Tr(ε̂3) +FTr2(ε̂)Tr(ε̂2) +GTr2(ε̂2) +H Tr4(ε̂).
(4.106)

We rewrite this expression using the Einstein notation:

U = µεijεji +
λ

2
(εii )

2 +
A

3
εijεjkεki +Bεiiεkhεhk +

C

3
(εii )

3

+Eεiiεjkεkqεqj +F(εii )
2εjkεkj +G(εijεji )

2 +H(εii )
4.

(4.107)
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We differentiate this expression to obtain Tnm:

Tnm =
∂U

∂εnm
= µδinδjmεji +µεijδjnδim +

2λ
2
(εjj )δnm

+
A

3
δinδjmεjkεki +

A

3
εijδjnδkmεki +

A

3
εijεjkδknδim

+Bδnmεkhεhk +Bεii (δknδhmεhk + εkhδhnδkm) +
3C
3

(εii )
2δnm

+Eδnmεjkεkqεqj +Eεii
(

δjnδkmεkqεqj + εjkδknδqmεqj + εjkεkqδqnδjm
)

+2F(εii )δnmεjkεkj +F(εii )
2
(

δjnδkmεkj + εjkδknδjm
)

+2Gεpkεkp
(

δinδjmεji + εijδjnδim
)

+4H(εii )
3δinδjm,

(4.108)

which we write more simply:

Tnm = 2µεnm +λεiiδnm

+Aεmkεkn +Bδnmεkhεhk +2Bεiiεnm +C(εii )
2δnm

+Eδnmεjkεkqεqj +3Eεiiεnqεqm +2Fεiiδnmεjkεkj +2F(εii )
2εnm +4Gεpkεkpεnm +4H(εii )

3δnm.

(4.109)

So, finally, the tensor T̂ is written as:

T̂ = 2µε̂ +λTr(ε̂)Î

+Aε̂2 +BTr(ε̂2)Î +2Bε̂Tr(ε̂) +CTr2(ε̂)Î

+ETr(ε̂3)Î +3Eε̂2Tr(ε̂) + 2FTr(ε̂)Tr(ε̂2)Î +2Fε̂Tr2(ε̂) + 4Gε̂Tr(ε̂2) + 4H Tr3(ε̂)Î .
(4.110)

Restriction to 2D

We replace expressions (4.66) and (4.67) of ε̂2 and Tr(ε̂3) respectively in equation (4.110) and get:

T̂ = 2µε̂ +λTr(ε̂)Î

+A
[

ε̂Tr(ε̂)− 1
2

[

Tr2(ε̂)−Tr(ε̂2)
]

Î
]

+BTr(ε2)Î +2Bε̂Tr(ε̂) +CTr2(ε̂)Î

+E
[3
2
Tr(ε̂)Tr(ε̂2)− 1

2
Tr3(ε̂)

]

Î +3E
[

ε̂Tr(ε̂)− 1
2

[

Tr2(ε̂)−Tr(ε̂2)
]

Î
]

Tr(ε̂)

+ 2FTr(ε̂)Tr(ε̂2)Î +2Fε̂Tr2(ε̂) + 4Gε̂Tr(ε̂2) + 4H Tr3(ε̂)Î .

(4.111)
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We regroup the terms of the previous expression and we define:

e = B+
A

2

3f = C − A

2

g = G

h = 4H − 2E
l = 2F +3E.

(4.112)

The final expression for T̂ in 2D is:

Tnm = 2µεnm +λεiiδnm

+ eεhkεkh +2eεiiεnm +3f (εii )
2δnm

+4gεpkεkpεnm + h(εii )
3δnm + l(εii )

2εnm + lεiiδnmεjkεkj ,

(4.113)

or written as a tensor:

T̂ = 2µε̂ +λTr(ε̂)Î

+ eTr(ε̂2)Î +2eε̂Tr(ε̂) + 3f Tr2(ε̂)Î

+4gε̂Tr(ε̂2) + hTr3(ε̂)Î + lε̂Tr2(ε̂) + lTr(ε̂)Tr(ε̂2)Î .

(4.114)

4.5.4 Expressions for the Quadratic and Cubic Nonlinearities

To take into account both quadratic and cubic nonlinearities, we perform the same derivation as in sec-

tion 4.5.1, but this time, we write expressions up to order three.

The full expressions with all the terms up to order three are extremely long to write in 3D. So, we perform

the derivation up to the third order in 2D for all the terms and in 3D for the leading terms (corresponding to

the longitudinal compression waves) only. Those derivations are provided in the appendix.

As in section 4.5.1, the homogenization procedure consists in writing the strain in the composite system

ε̂∞ as a function of the strain inside the nonlinear inclusions ε̂d and the Eshelby’s tensor Ŝ :

ε̂∞ = ε̂d + Ŝ
(

Ĉ−11 T̂d − ε̂d
)

(4.115)

Then, ε̂∞ is expressed as a linear combination of the strain inside the nonlinear inclusions ε̂d and its trace:

ε̂∞ = Lε̂d +M Tr(ε̂d )Î +Nε̂d Tr(ε̂d ) +OTr(ε̂2d )Î +PTr2(ε̂d )Î

+Qε̂d Tr(ε̂
2
d ) +RTr(ε̂d )Tr(ε̂

2
d ) + Sε̂d Tr

2(ε̂d ) +T Tr3(ε̂d )Î ,
(4.116)

where L,M,N,O,P,Q,R,S,T depend on the first-, second- and third-order elastic constants of the inclusions

and the linear elastic constants of the matrix. Their expressions are given in the appendix, in equation (A.10).

For a low concentration c≪ 1 of nonlinear inclusions, we make the following approximations: 〈T̂d〉 ≈ T̂d ,
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〈ε̂d〉 ≈ ε̂d , which mean that the elastic fields inside the particles is considered uniform. We also consider that

〈ε̂〉 = cε̂d + (1− c)ε∞. This gives us the following expression for the average strain 〈ε̂〉:

〈ε̂〉 = (c + (1− c)L)ε̂d + (1− c)M Tr(ε̂d )Î + (1− c)Nε̂d Tr(ε̂d ) + (1− c)OTr(ε̂2d )Î + (1− c)PTr2(ε̂d )Î

+ (1− c)Qε̂d Tr(ε̂
2
d ) + (1− c)RTr(ε̂d )Tr(ε̂

2
d ) + (1− c)Sε̂d Tr2(ε̂d ) + (1− c)T Tr3(ε̂d )Î .

(4.117)

Finally, we know all the necessary expressions to write:
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with an explicit expression of the matrix Û . So, the effective parameters are given by the following expression:
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where Û is known. The matrix Û can be inverted analytically in Maple, but the expressions of the effective

parameters are too big to be written here. For simulation purposes, Û is inverted numerically in Octave or

numpy. For the following study of the amplification of the nonlinear effective parameters, we use simplified

expressions of the effective parameters: for each effective parameter that we study, we consider that the

corresponding nonlinear parameter is non-null but that all other nonlinear parameters are null.

4.5.5 Amplification of the Nonlinear Effective Parameters

We consider a dispersion of nonlinear particles embedded in a linear matrix. We work in plain strain

conditions, with a 2D system. Both particles and matrix are isotropic. Therefore, the matrix is described by:

T̂1 = 2µ1ε̂1 + (K1 −µ1)Tr(ε̂1)Î , (4.120)
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and the particles by:

T̂2 = 2µ2ε̂2 + (K2 −µ2)Tr(ε̂2)Î
+3f Tr2(ε̂2)Î + eTr(ε̂22)Î +2eε̂2Tr(ε̂2)

+ 4gε̂2Tr(ε̂
2
2) + hTr3(ε̂2)Î + lε̂2Tr

2(ε̂2) + lTr(ε̂2)Tr(ε̂
2
2)Î .

(4.121)

In the case of small concentration c≪ 1, if we only consider longitudinal compression wave, then the

stress-strain relation for the effective material obtained by an homogenization procedure is:

T̂ = 2µeffε̂ + (Keff −µeff)Tr(ε̂)Î +3feffTr
2(ε̂)Î + heffTr

3(ε̂)Î . (4.122)

First observations

We are now trying to choose appropriate materials for the matrix and the inclusions as well as a specific

concentration in order to observe an amplification of the nonlinear parameters, namely obtain an effective

material with higher nonlinearities than that of the nonlinear inclusions. As we are more interested in

longitudinal compression waves, we will concentrate on parameters f and h in 2D, or F and H in 3D. We

want to obtain feff/Keff > f /K2D , heff/Keff > h/K2D and so on...

To obtain such amplifications, we will see that a high compressibility contrast is needed between the

matrix and the inclusions K1 ≫ K2 and µ1 ≈ µ2 ≪ K2. If, for instance: K1 = 100K2 and µ1 ≈ µ2 ≈ K2/10,

then, the inclusions are 100 times more compressible than the matrix, which can be qualified as hard and

incompressible and the speeds of sound in the matrix verify cL≫ ct .

Study of the quadratic amplifications

We suppose that f , 0 inside the particles and that all other nonlinearities are null. We obtain the following

linear and nonlinear effective parameters:

Keff = K1 + c
K2 −K1

c + (1− c)µ1+K2
µ1+K1

µeff = µ1 + c
µ2 −µ1

c + (1− c)
[

1+ 1
2

(

µ2
µ1
− 1

)

K1+2µ1
K1+µ1

]

feff =
cf (K1 +µ1)3

[c(K1 −K2) +K2 +µ1]
3 .

(4.123)

We are interested in determining the maximum value of the ratio feff/Keff compared to f /K2. Those values

represent the nonlinear parameter of the effective material and that of the inclusions, respectively. If we

solve the equation d
dc

(

feff
Keff

)

= 0, we can find the optimal volume fraction:

cf =
K1

4µ1

µ1 +K2

K1 −K2

(

1−
√

1− 8 µ1
K1

)

. (4.124)
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We note that cf exists only if µ1 < K1/8. In general, we know that 0 < µ1 < 3K1 and therefore we are

working on a very small region of the admitted zone (µ1 varies from 0 to 3K1 and the Poisson’s ratio ν1 is

negative for µ1 between K1 and 3K1).

We now determine the amplification of the quadratic nonlinearity, defined by: (feff/Keff)/(f /K2) and we

prove that it is a function of x = µ1/K1 and y = K1/K2. We finally obtain:

Af =

feff
Keff

f
K2

=
16(1+ x)3(1−

√
1− 8x)xy2

(1 + xy)2(y − 1)(3 +
√
1− 8x)(

√
1− 8x − 1− 4x)2

. (4.125)

It is easy to observe that we obtain the larger values of Af for small values of x and large values of y. It

can be seen by developing the function for x→ 0 and y→∞:

Af =
y

4
− xy2

2
+
xy

2
+
x

2
+
1
4
+

x

2y
+

1
4y

+ ..., (4.126)

where the leading term is y/4− xy2/2. We have therefore an amplification proportional to y = K1/K2. Under

the hypothesis x→ 0 and y→∞, we can simplify expression (4.124):

cf ≈ x +
1
y
. (4.127)

Finally, if µ1≪ K1, K2≪ K1 and µ1≪ K2, the optimal concentration is:

cf = x +
1
y
=
µ1 +K2

K1
≈ K2

K1
, (4.128)

which corresponds to an amplification of:

Af =
y

2

(1
2
− xy

)

=
K1

2K2

(

1
2
− µ1
K2

)

≈ K1

4K2
. (4.129)

We notice that the expressions of Af and cf are similar to that obtained for the quadratic terms of the

mass-spring system and the fluid system.

Study of the cubic amplifications

We now consider h , 0 within the particles and all other nonlinear constants are supposed null. We have:

heff =
ch(K1 +µ1)4

[c (K1 −K2) +K2 +µ1]
4
. (4.130)

The optimal volume ratio, obtained by differentiating the previous expression according to c is:

ch =
K1

3µ1

µ1 +K2

K1 −K2

(

1−
√

1− 3 µ1
K1

)

. (4.131)
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ch exists only if µ1 < K1/3. The ratio (heff/Keff)/(h/K2) can be written in terms of x and y as:

Ah =
heff
Keff

f
K2

=
27(1+ x)4

(√
1− 3x − 1

)

x2y3

(xy +1)3(y − 1)
(

2+
√
1− 3x

)(√
1− 3x − 1− 3x

)3 . (4.132)

We develop its Taylor series expansion for x→ 0 and y→∞:

Ah =
4y2

27
− 4xy3

9
+
2xy2

9
+
4y
27

+
2xy
9

+
4
27

+
2x
9

+ ..., (4.133)

where the leading term is 4y2/27− 4xy3/9. Similarly, we can simplify the expression for ch:

ch ≈
1
2

(

x +
1
y

)

=
cf
2
. (4.134)

Finally, if µ1≪ K1, K2≪ K1 and µ1≪ K2, the optimal volume fraction is:

ch =
1
2

(

x +
1
y

)

=
µ1 +K2

2K1
≈ K2

2K1
, (4.135)

which corresponds to an amplification of:

Ah =
4y2

9

(1
3
− xy

)

=
4K2

1

9K2
2

(

1
3
− µ1
K2

)

≈
4K2

1

27K2
2

. (4.136)

Once again, the expressions ofAh and ch are similar to that obtained for the cubic terms of the mass-spring

system and the fluid system.

Amplifications for 3D systems

We perform the same studies on the nonlinear effective constants for a 3D system in order to determine the

amplification factors (Ceff/Keff)/(C/K2) and (Heff/Keff)/(H/K2) as a function of x = µ1/K1 and y = K1/K2.

For the second order, the optimal concentration that we obtain is:

cC =
1
y

(

1+
4
3
xy

)

≈ 1
y
, (4.137)

and the amplification factor is:

AC =
Ceff
Keff

C
K2

=
y

4

(

1− 8
3
xy

)

≈ y

4
. (4.138)

For the third order, the optimal concentration that we obtain is:

cH =
1
2y

(

1+
4
3
xy

)

≈ 1
2y

, (4.139)
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d = 2 d = 3

g = 2 cf ≈ x + 1
y ≈ 1

y cC ≈ 1
y

(

1+ 4
3xy

)

≈ 1
y

Af ≈ y
2

(

1
2 − xy

)

≈ y
4 AC ≈ y

4

(

1− 8
3xy

)

≈ y
4

g = 3 ch ≈ 1
2

(

x + 1
y

)

=
cf
2 ≈ 1

2y cH = 1
2y

(

1+ 4
3xy

)

≈ 1
2y

Ah ≈ 4y2

9

(

1
3 − xy

)

≈ 4y2

27 AH = 4y2

27 (1− 4xy) ≈ 4y2

27

Table 4.4 – Optimal concentrations and amplification factors for the nonlinear parameters.

and the amplification factor is:

AH =
Heff
Keff
H
K2

=
4y2

27
(1− 4xy) ≈ 4y2

27
. (4.140)

Those results are summed up in table 4.4. As for 2D systems, we obtain the same optimal concentrations

and amplification coefficients as for the mass-spring and fluid systems.

Summary

To summarize the expressions of the nonlinear amplifications and optimal concentrations given above, for

2D and 3D systems and for second- and third-order terms, we have defined generic expressions that take

the dimensionality d (d = 2 for 2D systems, d = 3 for 3D systems) and the degree g (g = 2 for second-order

leading term, g = 3 for third-order terms) as parameters:

copt =
1+ bxy

(6− g)bx(y − 1)
(

1−
√
1− ax

)

, (4.141)

for the optimal concentration and:

Amp = 4g9−2g
(1 + bx)g+1

(1 + bxy)g
× yg

y − 1

(

b

2
× x

1−
√
1− ax

)g−1
× 1

(

5− g +
√
1− ax

)g+1 , (4.142)

for the corresponding amplification factor, where

b =
3d − 5
2d − 3 and a = (18− 5g)b. (4.143)

So, those expressions will give the optimal concentrations and corresponding nonlinear amplifications:

• (feff/Keff)/(f /K2) for d = 2 and g = 2,

• (heff/Keff)/(h/K2) for d = 2 and g = 3,

• (Ceff/Keff)/(C/K2) for d = 3 and g = 2,

• (Heff/Keff)/(H/K2) for d = 3 and g = 3.
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If, moreover, we make the hypothesis x→ 0, x > 0 and y→∞, the optimal ratio x∗ is given by:

dAmp(x)
dy

= 0. (4.144)

We obtain:

x∗→ g − 1
y
× 2d − 3
3d − 5 , (4.145)

and the corresponding amplification factor is:

Amp(x∗) ≈ 4g9−3gyg−1

(18− 5g)g−1(6− g)g+1
, (4.146)

and so the optimal concentration becomes:

copt(x
∗) ≈ g

2y
× 18− 5g

6− g . (4.147)

4.6 Interpretation and Exploitation

4.6.1 Interpretation

We can interpret the amplification of the nonlinear parameters as follows: because the matrix is composed of

an incompressible medium, and the inclusions of a less-incompressible medium, the stress applied to the

whole material will concentrate around the inclusions.

So, for a level of stress τ0 applied to the whole material, the inclusions will experiment a higher level

of stress τ1 > τ0, because this stress will be concentrated on smaller volumes. Consequently, the inclusions

will show a nonlinear behavior corresponding to this level of stress τ1. The effective material appears highly

nonlinear because under a stress τ0, it shows a behavior corresponding to that of the inclusions at stress

level τ1 > τ0. Finally, the behavior of the effective material appears more nonlinear than that of the nonlinear

inclusions, for the same stress level τ0.

4.6.2 Values of the Constants

Values of constants of soft and hard materials are given in tables 4.5 and 4.6 respectively.

Moreover, table 4.7 provides a list of publications giving the linear and nonlinear elastic constants of

some materials.

4.6.3 Exploitation

We consider a 2D system composed of inclusions of a (virtual) porous polymer in PDMS. The density,

longitudinal and transverse speeds and compressibility constants for those materials are indicated in

table 4.8.



98 CHAPTER 4. Mixing Laws for the Quadratic and Cubic Elastic Constants

ρ0 cl ct K2D
Material (kgm−3) (m s−1) (m s−1) (GPa)

Epoxy 1142 2569.5 — 7.54
Teflon 2140 1390 — 4.1347
Bakelite 1400 1590 — 3.539
RTV-112 1050 940 — 0.92778
PDMS 970 1100 110 1.1737

Polystyrene 1060 2350 1120 4.081

Table 4.5 – Physical constants of some soft materials

ρ0 cl ct K2D
Material (kgm−3) (m s−1) (m s−1) (GPa)

Steel 7630 6133 3200 287
Silicon carbide 3217 13060 7270 548.7

Alumina 3860 10520 — 427.19
Gold 19700 3240 1200 206.8

Sapphire 3990 11110 6040 491.61
Molybdenum 10000 6300 3400 396.9

Titanium carbide 5150 8270 5160 352.2
Tungsten 19400 5200 2900 524.58

Table 4.6 – Physical constants of some hard materials

Material CIJ CIJK

Ag, Silver [85] [86] [85] [87]
Al, Aluminium [86] [88] [86] [88]

Au, Gold [85] [86] [85] [87]
BaF2 [89] [87] [89]
CaF2 [90] [90]
CsBr [91] [91]
CsCl [91] [91]
CsI [91] [91]

Cu, Copper [86] [85] [92] [86] [85] [87] [92]
Diamond — [93]
Fe, Iron [86] [86]

Ge [94] [86] [94] [86] [87]
InSb — [87]
KBr [91] [91] [87]
KCl [91] [91] [87]
KF [91] [91]
KI [91] [91] [87]
LiBr [91] [91]
LiCl [91] [91]
LiF [91] [91] [87]

Material CIJ CIJK

LiI [91] [91]
MgO [94] [94] [87]
NaBr [91] [91]
NaCl [91] [91] [87]
NaF [91] [91] [87]
NaI [91] [91]

Nb, Niobate [86] [86]
Ni — [86]

RbBr [91] [91]
RbCl [91] [91]
RbF [91] [91]
RbI [91] [91]
Si — [86] [87]

SiO2-fused [94] [94]
SiO2-quartz — [87]

SrF2 [95] [95]
Steel [96] [96]

Steel-18Ni [74] [74]
Y3Fe5O12 — [87]

Table 4.7 – Index of references for the elastic constants of some materials.



4.6. Interpretation and Exploitation 99

ρ0 cl ct K2D
Material (kgm−3) (m s−1) (m s−1) (GPa)

PDMS 970 1100 110 1.1737
Porous polymer 991.3 131.2 65.6 0.128

Table 4.8 – Density, speed and compressibility constants for PDMS and an arbitrary polymer.

PDMS was chosen because of its high contrast between longitudinal and transverse speeds: K1≫ µ1. The

porous polymer has been chosen because of its low longitudinal speed compared to that of PDMS: K1≫ K2.

Such a porous polymer can be produced with the High Internal Phase Emulsion (HIPE) technique. Therefore,

its longitudinal and transverse speeds are realistic and are deduced from [97, 98]. Its density is that of typical

polymers (see table 4.5) but does not take into account the porosity, which value is unknown.

A study of nonlinear amplifications with a more realistic porous polymer has been performed and

published after this thesis was written [99].

The nonlinear parameters of the porous polymer are defined as follows: f = 10 ×K2D = 1.28GPa and

h = 100×K2D = 12.8GPa.

The effective linear (µeff and Keff) and nonlinear (feff and heff) parameters of the composite system are

calculated. We observe that the optimal concentration for cubic amplification is 0.0067. For this concentration,

the cubic amplification reaches 1042.6 and the quadratic amplification at this concentration is 4.69, as shown

on Figure 4.5.

Figure 4.5 – Variation of the quadratic and cubic amplifications with concentration. Variation of the
quadratic and cubic amplifications vs. concentration of porous polymer in the composite system.
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4.7 Conclusion

In this chapter, we have provided equations and interpretation for the amplification of quadratic and cubic

nonlinearities in systems composed of nonlinear inclusions in a linear matrix.

We have shown that those parameters are amplified relatively to the compressibility ratio of the con-

stituent materials and the characteristics of the matrix, and we have provided equations to predict those

amplifications as well as the optimal inclusion concentration to reach this amplification.

Since it is possible to obtain a greater amplification for the cubic elastic constant compared to that of

the quadratic elastic constant, our goal is to use a composite material as the defect in the nonlinear elastic

resonator described in chapter 3.

In the present chapter, we have derived static equations, independent of any time-dependent phenomena

such as wave propagation. In our dynamic systems like the bone structure and nonlinear resonator, the stress

is applied to the constituent by the means of longitudinal elastic wave propagation.

This is why the next chapter will deal with the dynamic behavior of a composite nonlinear material

designed using the equations of this chapter. We will try to verify that the amplification of the nonlinear

constants can also be obtained in the context of wave propagation through the composite material.



Chapter5

Numerical Study of 2D Nonlinear

Phononic Crystals

5.1 Introduction

In chapter 4, we have performed a derivation of the mixing laws of the quadratic and cubic nonlinear

parameters in 2D and 3D and proved that for some concentrations of nonlinear inclusions in a linear matrix,

those nonlinear parameters could be considerably amplified. We have provided an example of a system with

cubic amplification, consisting in inclusions of a nonlinear porous polymer in a linear PDMS matrix.

The homogenization procedure used in the previous chapter and its results for the porous polymer

inclusions in PDMS are valid for a static system and do not take into account any dynamic phenomenon such

as wave propagation or the application of a periodic stress function to the system.

We will now verify, through numerical simulation of elastic wave propagation, that the dynamic behavior

of a composite nonlinear system still follows those rules, i.e. that elastic wave propagation through a finite

section of the heterogeneous system described in section 4.6.3 is close enough to that in the effective medium

obtained with the homogenization procedure.

We will first describe Hedge, the framework which we used to perform the numerical simulations, and

the Elastodynamics Operator that we implemented in this framework for the purpose of simulating elastic

wave propagation in heterogeneous nonlinear media. Then, we will present the models and the results of the

simulations and conclude.

101
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5.2 A tool for 2D Nonlinear Elastodynamics: Hedge

5.2.1 The Discontinuous Galerkin Finite Elements Method

In order to perform a numerical study of 2D nonlinear PnCs, one needs to solve the elastic wave equation

numerically, including for nonlinear problems and for materials with a complex shape. The number of

available methods to solve this problem is relatively small, which makes the Discontinuous Galerkin (DG)

method particularly interesting. First the principle and improvements of the DG method will be described,

then its alternatives and finally its implementation on graphic processors.

Overview of the Discontinuous Galerkin method

In 2D, the space is divided into a mesh of contiguous triangular or quadrilateral elements (in 3D, those

are tetrahedral volumes). The Finite Elements Method (FEM) approximates the unknown solution of the

differential equation with polynomials on each element of the grid but does not allow a local statement on

each element [100].

In the Finite Volume Method (FVM), the equation is solved by calculating the local average on each of

those volumes. It is an iterative process and the value at tn only depends on the value at tn−1 and on the fluxes

that enter and leave the volume. This method is rather simple to implement but does not allow high-order

accuracy [100].

The DG method combines the advantages of those two methods: using polynomials of arbitrary order

of the FEM and using numerical fluxes at the interfaces of the FVM. The main difference between DG and

the FEM is that polynomials must be continuous at the interface of the elements in the FEM whereas the

solution can be discontinuous across the element interfaces in DG, which allows the incorporation the

well-established ideas of numerical flux functions from the FVM. So, by choosing carefully the values of

those fluxes, it is possible to minimize the error introduced by the approximation [100].

The DG method was first introduced by Reed and Hill in 1973, to solve hyperbolic partial differential

equations in the context of the neutron transport equation. It is also applied to elliptic problems, but those

don’t appear in elastodynamics (only in elastostatics where there is no time dependency) [101].

Solving the equation with DG can be done in two ways: modal (decomposition of the local solution in a

linear combination of several resonating modes) or nodal (resolution at chosen points before interpolating by

decomposing the local solution in a linear combination of orthogonal polynomials). Moreover, the method

can be p-adaptive (the order of the polynomials can vary from one element to another), h-adaptive (the

element size can vary locally) or hp-adaptive (both can vary) [102].

Application of the DG-FEM to elastodynamics

The 2D elastic wave equations can be written as a conservation equation which links the time derivative of a

state vector Q to the space derivatives of the flux vectors F and G and to the source vector S:

∂Q(t,x)
∂t

=
∂F(t,x)
∂x

+
∂G(t,x)

∂y
+S(t,x), (5.1)
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with:

Q =























































ρv1
ρv2
F11
F22
F12
F21























































, F =























































P11
P21
v1
0

0

v2























































, G =























































P12
P22
0

v2
v1
0























































, (5.2)

where Fij are the components of the deformation gradient, Pij are the components of the Piola-Kirchoff stress

tensor, vi the components of the particle velocity vector and x = [x,y] is the direction vector. This form makes

the DG resolution easier, especially for the nodal method described by Hesthaven and Warburton and also

facilitates the inclusion of nonlinear effects [100].

In computational seismology, Käser and Dumbser proposed to use the DG-FEM combined with the ADER

(Arbitrary high-order DERivatives) method, in order to solve the equation with high orders of accuracy

(practically up to order 10 for polynomials), both in time and in space. They explain that a recurrent issue is

about simulating the absorbing (where the wave is not reflected) and the free surface boundaries and show

that it can be done by imposing the numerical fluxes [103]. Then, de la Puente et al. extended this method in

2007 to 3D anisotropic materials and coupled it with viscoelastic effects [104].

In 2010, the ADER-DG method was improved by Castro et al. who added space-variable coefficients

that allow to deal with heterogeneous materials, including inside the same cell of the mesh. However, this

improvement only concerns 2D for now and does not deal well with discontinuities inside a cell [105].

Bou Matar et al. included in 2012 the quadratic and cubic nonlinearities and the quadratic hysteretic

nonlinearities by writing the equations of nonlinear elastodynamics in a conservative form. They also

introduced equations for attenuation and absorbing boundaries, called Nearly Perfectly Matched Layers

(NPML), and validated the method by comparing it to analytical results [75].

The application of DG-FEM to the 3D elastodynamics equation was analyzed by Delcourte and Glinsky-

Olivier in 2013. They demonstrated its numerical stability and studied its convergence [106].

DG-FEM GPU implementation

Graphical Processor Units (GPUs) were initially dedicated to image processing for the graphical output of

computers. They are now more and more used to general purpose computation, and some constructors sell

computation-dedicated graphic cards with no video output, such as nVidia Tesla, which can perform 1012

floating-point operations per second (1 TFLOPS).

Klöckner et al. has implemented a DG method in a software framework called Hedge. This enables

nodal DG to run on multi-CPUs and multi-GPUs. The authors applied their algorithm to the resolution of

Maxwell’s equation with polynomial orders from 1 to 9. The speedup between CPUs and GPUs varies from

14 to 65, the maximum being reached for the order 4 [107].
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5.2.2 Implementation of an Elastodynamics Operator

In order to solve for the propagation of elastic waves in a nonlinear heterogeneous medium, we implemented

an Elastodynamics Operator for the framework Hedge.

First, we implemented the resolution of the equations of acoustics in a homogeneous linear material.

In the linear Elastodynamics Operator, the Piola-Kirchoff stress tensor P is calculated with:

Pij = Cijkl
∂uk
∂xl

(5.3)

and the deformation gradient is:

Fkl =
∂uk
∂xl

+ δkl . (5.4)

Then, we added a possibility to create heterogeneities in the medium and we added the quadratic

nonlinear behavior of the materials composing the matrix and the inclusions. This way, the quadratic

Elastodynamics Operator can solve wave propagation in heterogeneous anisotropic media in 1D, 2D and 3D.

In the nonlinear quadratic Elastodynamics Operator, the Piola-Kirchoff stress tensor P is calculated with:

Pij = C ′ijkl
∂uk
∂xl

, (5.5)

where:

C ′ijkl = Cijkl +
1
2
Mijklmn

∂um
∂xn

and Mijklmn = Cijklmn +Cijlmδkn +Cilmnδjk +Ciklmδjn. (5.6)

Finally, we implemented a cubic nonlinear Elastodynamics Operator, which deals with both quadratic

and cubic elastic nonlinearities. For the sake of simplicity, we only implemented this cubic Elastodynamic

Operator for heterogeneous isotropic materials in 2D only. For this operator, following equation (4.113), the

Piola-Firchoff stress tensor P is defined as (in Einstein notation):

Pnm = 2µεnm +λεiiδnm

+ eεhkεkh +2eεiiεnm +3f (εii )
2δnm

+4gεpkεkpεnm + h(εii )
3δnm + l(εii )

2εnm + lεiiδnmεjkεkj ,

(5.7)

where λ and µ are the linear elastic constants, e and f the quadratic elastic constants and g , h and l the cubic

elastic constants. The components of the strain tensor are given by:

εij =
1
2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (5.8)

For our simulations, we only take into account the constants responsible for longitudinal compression

waves, namely f and h and consequently, the expression is simplified (in Einstein notation):

Pnm = µ

(

∂un
∂xm

+
∂um
∂xn

)

+λ
∂ui
∂xi

δnm +3f

(

∂ui
∂xi

)2

δnm + h

(

∂ui
∂xi

)3

δnm. (5.9)
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5.2.3 The Nearly Perfectly Matched Layers

The PML (Perfectly Matched Layers) are perfectly matched absorbing layers. In theory, no wave can be

reflected on it, whatever its incidence, its polarization or its frequency. In practice, some reflection can

appear in a discretized structure. Such absorbing conditions are particularly useful when simulating infinite

media (the wave seems to cross the border and does not come back).

In the context of the DG-FEM, a special type of PML, namely NPML (Nearly Perfectly Matched Layers),

was proposed by Hu and Cummer [108, 109] for electromagnetism and acoustics [110]. A publication by

Bou Matar et al. [75] proposes an improvement of NPML. It is that improvement that I used to implement

the NPML in the Elastodynamics Operator.

The difficult part in implementing NPMLs in Hedge is due to the need for a new partial differential

equation, since NPML use the stretched fluxes F ′′ .

The state equation, initially:
∂Q

∂t
− ∂Fx

∂x
−
∂Fy
∂y
− ∂Fz

∂z
= S(t), (5.10)

is transformed into:
∂Q

∂t
− ∂

∂x

(

Fx +F ′′x
κx

)

− ∂

∂y

(

Fy +F ′′y
κy

)

− ∂

∂z

(

Fz +F ′′z
κz

)

= S(t), (5.11)

where the auxiliary variables F ′′i are calculated with the following ordinary differential equations:

∂F ′′i
∂t

= −αiF
′′
i −

σi
κi

(

Fi +F ′′i
)

for all i ∈ {x,y,z} , (5.12)

and:

αi = 1.4π
di − i + i0

di
and κi = 1 and σi = 6

√

C11ρ

di

(

i − i0
di

)2

, (5.13)

where di is the width of the NPML and i0 ∈ {x0, y0, z0} is its position.

5.2.4 Validation of the Elastodynamics Operator

We have simulated the propagation of an elastic wave in a 2D structure with a rectangular shape, represented

on Figure 5.1 using the Elastodynamics Operator and compared it with the analytical result computed by the

Fortran program EX2DDIR. This program by Berg and Flemming implements an algorithm given by Berg

et al. [17] which uses the Cagniard-de Hoop method [111] to calculate the exact (analytical) response from a

vertical directional point source in an elastic half-space with a free surface.

We use two receivers that both record the horizontal and vertical displacements. On Figure 5.2 and 5.3,

the curves represent the propagation of an elastic wave in a solid with density ρ0 = 2200kgm−3, longitudinal

velocity cl = 3200ms−1, transverse velocity ct = 1847.5ms−1 with a Ricker wavelet source using parameters

fc = 7.25Hz, tD = 0.16s and a1 = −(πfc)2 in the equation:

s(t) = (0.5+ a1(t − tD)2)ea1(t−tD )
2
. (5.14)
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Figure 5.1 – Rectangular 2D structure used for the validation of the Elastodynamics Operator

The medium is a solid with dimensions 6000 m by 3000 m. The source is located on the top surface,

2000 m from the left surface. The two receivers are located on the same surface, the first one 1000 m on

the right side of the source and the second one 2000 m on the right side of the source. In a second time,

400-meter-wide NPMLs are added on the left, right and bottom surfaces.

Figure 5.2 – Horizontal (a) and vertical (b) particle displacement recorded at the first receiver.

The figures show a excellent agreement between the analytical solution and the numerical results obtained

with the Elastodynamics Operator at order five.

We have evaluated the agreement between the analytical and numerical solutions for all orders between 1

and 9, which gives the convergence of the numerical method. This study, represented on Figure 5.4 shows

that the difference between the numerical and analytical methods decrease from order 1 to order 4 and then
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Figure 5.3 – Horizontal (a) and vertical (b) particle displacement recorded at the second receiver.

reaches a plateau. The numerical error does not decrease significantly between orders 4 and 9.

Figure 5.4 – Numerical error when simulating wave propagation in our system between orders 1 and 9.
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ρ cl ct f h

970.14 kg/m3 959.58 m/s 109.65 m/s 41.39 GPa 91920 GPa

Table 5.1 – Constants for the effective medium. Properties of the effective medium described in section
4.6.3 used to validate the measurement of the quadratic and cubic nonlinearities in Hedge.

5.3 Numerical Studies on 2D Structures

5.3.1 Validation of the Nonlinear Parameters

In order to validate the principle of quadratic and cubic nonlinear parameters measurements, we study the

propagation of a longitudinal plane wave in a homogeneous medium. We consider the structure represented

on Figure 5.5 using the cubic Elastodynamics Operator in Hedge. The total length of the structure is 300 m

and its width is 20 m. The structure is periodical respectively to the y-axis. Two NPML with a thickness of

20 m are positioned at each end of the structure. The positions of the line source and the 20 receivers are

also depicted on Figure 5.5.

Figure 5.5 – Schematic of the model used for the validation of nonlinearities measurement inHedge. The
simulation domain consists in a 300 m × 20 m elongated rectangle made of the effective isotropic medium
described in section 4.6.3. The properties of the effective medium are given in table 5.1. Two NPML, with
a thickness of 20 m, are positioned at each end of the structure. The positions of the source and the 20
receivers are depicted.

This structure is simulated using the CUDA version of the operator. The excitation is produced by a

modulated sine function which expression is:

s(t) = A× sin(2πfct)× exp−((t−24/fc)fc/8)
2
, (5.15)

where A is adapted to produce a particle velocity of ~2mms−1 and fc = 40Hz. The particle velocity is

recorded at twenty positions. A Fourier transform of these time domain signals is made to extract the

amplitudes of the fundamental (at 40 Hz), second and third hamonics (at 80 Hz and 120 Hz, respectively)

of the emitted wave. The obtained evolution of the second harmonic component as a function of distance

is plotted on Figure 5.6 (stars). This evolution can be compared to the expected one. Indeed, in the case

of a longitudinal plane wave in an isotropic solid, the generation of the second harmonic component P2 is
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governed by a similar expression as the one derived for fluids [18]:

P2(x) = β
πfc
ρ0c

3
0

xP2
1 (0), (5.16)

where P1(0) is the pressure at the source, and β = 1+Bl / (2Al ) is the quadratic nonlinear coefficient of fluid.

It appears that the amplitude of the second harmonic component increases linearly with the distance x, as it

was obtained using Hedge. To be more quantitative in this comparison, we need to find the link between the

nonlinear parameters defined in fluids, i.e. β and η, and the one introduced in the numerical simulation, i.e.

f and h.

Figure 5.6 – 2nd harmonic vs. distance in a homogeneous medium. Evolution of the second harmonic
component as a function of distance x calculated with equation (5.16) (blue line) and with Hedge (stars).

Following the procedure developed by Kostek et al. [112], and extended up to third order by Hamilton

et al. [84], it is possible to link the nonlinear Landau’s parameters to the linear and nonlinear parameters Al ,

Bl , and Cl of fluids:
µ = 0,

K = Al ,

A = 0,

B = −Al ,

C =
1
2
(Al −Bl ) ,

E =
4
3
Al ,

F =
1
2
(Bl −Al ) ,

G =
Al

2
,

H =
1
24

(Al +Cl ) .

(5.17)
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Here, we would like to determine the nonlinear parameters f and h, defined in equation (4.112), as a

function of β and η in the case where Al ≪ Bl ≪ Cl . From equation (4.112) we have:

3f = C − A

2
≈ C ≈ −Bl

2
, (5.18)

h = 4H − 2E =
4
24

(Al +Cl )−
8
3
Al ≈

Cl

6
, (5.19)

leading to:

β = 1+
Bl

2Al
≈ −C

K
≈ − 3f

ρ0c
2
l

, (5.20)

η = 1+
Cl

2Al
≈ − Cl

2K
≈ 3h

ρ0c
2
l

. (5.21)

Plotting the evolution of the second harmonic component as a function of distance x calculated with

equation (5.16) (blue line), with the value of β given by equation (5.20), on Figure 5.6, we find that the

numerical and theoretical results are in excellent agreement.

Now, measuring the amplitude of the fundamental component on the source and the amplitude of the

second harmonic component, it is possible to determine the quadratic nonlinear parameter:

β =
ρ0c

3
0

πfc
× P2(x)

xP2
1 (0)

. (5.22)

The calculated value for the nonlinear quadratic parameter β from the numerical results obtained with Hedge

is in perfect agreement with the theoretical value, i.e. β = 139.

The same procedure can be used to measure the third order nonlinear parameter (h or η). The generation

of the third harmonic component P3 is governed by a more complex expression, but has been obtained by

Liu et al. as [19]:

P3(x) =
πfc

2ρ20c
5
0

P3
1 (0)

[

3πfc
c0

β2x2 +3(η − 1)x
]

, (5.23)

where η = 1 + Cl / (2Al ) is the cubic nonlinear coefficient of fluid. Now, when the quadratic nonlinear

parameter is null (β = 0), then the amplitude of the third harmonic component increases linearly with the

distance x:

P3(x) =
πfc

2ρ20c
5
0

P3
1 (0)3(η − 1)x. (5.24)

Thus, as we did for the quadratic nonlinear parameter, we determine the cubic nonlinear parameter from the

measurement of the evolution of the third harmonic component as a function of the distance x:

η =
4ρ20c

5
0

3ω
× P3(x)

xP3
1 (0)

− ωβ2x

2c0
, (5.25)

where ω = 2πfc is the pulsation.
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Figure 5.7 – 3rd harmonic vs. distance in a homogeneous medium with cubic nonlinearities only. Evo-
lution of the third harmonic component when the quadratic nonlinear parameter β = 0 as a function of
distance x calculated with equation (5.24) (blue line) and with Hedge (stars).

Nevertheless, it is important to notice that the contribution of the cubic nonlinear parameter to the

third harmonic component is in general quite small. In numerical experiment it is not a big issue, as we

can suppress the quadratic nonlinear parameter contribution, i.e. setting it equal to zero, but it is a strong

limitation for an experimental measurement of this parameter. Thus it is clear that the quadratic nonlinearity

plays an important role in the generation of the third harmonic. This is consistent with the simulations

performed in chapter 4.

First, we compare the evolution of the third harmonic component, when the quadratic nonlinear parameter

is null (β = 0), as a function of distance x calculated with equation (5.24) (blue line) and with Hedge (stars),

as shown on Figure 5.7. In this case, with β = 0, the third harmonic component increases linearly with the

distance as it was the case for the second harmonic component. Once again, the numerical and theoretical

results are in excellent agreement, and the calculated third order nonlinear parameter η = −60024 is the

equal to the theoretical value.

Finally, plotting the evolution of the third harmonic component as a function of distance x calculated with

equation (5.23) (blue line) and with Hedge (stars), considering both second and third order nonlinearities, we

obtain excellent agreement between theoretical and numerical results, leading to the same value of the third

order nonlinear parameter.
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Figure 5.8 – 3rd harmonic vs. distance in a homogeneous medium with quadratic and cubic nonlineari-
ties. Evolution of the third harmonic component as a function of distance x calculated with equation (5.23)
(blue line) and with Hedge (stars).

5.3.2 Validation of the Nonlinear Mixing Law in a Propagative System

We will now study the validity of the mixing law developed in chapter 4 when used in the prediction of

the propagation of an elastic wave in an heterogeneous nonlinear medium. Thus, we study the structure

represented on Figure 5.9 using the cubic Elastodynamics Operator in Hedge. The total length of the structure

is 200 m and its width is 1 m. The structure is composed of 200 unit cells with size 1 m × 1 m. The structure

is periodical respectively to the y-axis. Two 50-m-wide NPMLs are located on each x side of the structure.

Figure 5.9 –Heterogeneous medium constituted of nonlinear inclusions in a linear matrix. The structure
contains 200 inclusions, with size r = 0.04618 m and a = 1 m spacing between each center. A NPML is
present at each end of the structure. The positions of the source and the receiver are indicated.

Each unit cell is made of PDMS and contains a cylindrical inclusion of porous polymer with radius

0.04618 m. Hence, the area of each inclusion is πr2 = 0.0067m2 and the concentration of polymer in the

PDMS is πr2/a2 = 0.67 %. This structure corresponds to the one studied in section 4.6 to obtain high
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amplification of the third order nonlinearities. The linear elastic constants of the polymer are λ = 8.53MPa

and µ = 4.27MPa so K2D = λ+µ = 12.8MPa. The polymer has quadratic and cubic nonlinear constants whose

values for a concentration of 0.0067 are: f = 10 ×K2D = 128.0MPa and h = 100 ×K2D = 1.28GPa. Those

values correspond to what was defined in section 4.6.3. All the properties of the polymer and PDMS are

given in Table 4.8.

Figure 5.10 – Band structure of a PnC made of cylindrical inclusions of porous polymer in a PDMS
matrix. Band structure of a PnC made of 0.04618 m radius inclusions of porous polymer in a PDMS matrix,
and positioned in a square lattice with lattice parameter 1 m.

We need to work with low frequencies, in order to have λ ≫ a ≫ r. This way, the inclusions will be

“invisible” to wave propagation. To select this low frequency, we calculate with a Plane Wave Expansion

method [113] the band structure of the considered PnC made of 0.04618 m radius inclusions of porous

polymer in a PDMS matrix, and positioned on a square lattice with lattice parameter 1 m. The results

displayed on Figure 5.10 show that we need to select a frequency below 50 Hz if we want to stay in the first

Brillouin zone for the shear elastic waves propagating in the structure. Thus, the following simulations were

performed with a center frequency of 20 Hz.

This simulation is performed using the CUDA version of the operator. The particle velocity is recorded at

eighteen positions spaced by 5 m. An example of the particle velocity obtained 90 m away from the source

is represented on Figure 5.11. The excitation is produced by a modulated sine function which expression

is given by equation (5.15), where A is adapted to produce a particle velocity of ~5mms−1 and fc = 20Hz.

The particle velocities calculated in the heterogeneous and in the effective homogeneous media overlap. The

propagation in the considered heterogeneous medium seems to be similar to the one in a homogeneous
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medium, at the considered frequency, i.e. 20 Hz. However, in the inset of Figure 5.11, small time delay and

maximal particle velocity can be seen.

Figure 5.11 – Particle velocity comparison in PnC and effective homogeneous medium. The particle
velocity of a 20 Hz modulated sine wave is recorded for a propagation through a PnC (red) made of
0.04618 m radius inclusions of porous polymer in a PDMS matrix, and positioned on a square lattice with
lattice parameter 1 m, and through an effective homogenous media (black), 90 m away from the source. Inset:
zoom on the center part of the modulated sine wave.

We will now evaluate the values of feff and heff and compare them with what was expected. To estimate

these values of the quadratic and cubic nonlinear parameters, we use as in the previous section the value

P2(x) and P3(x) of the second and third harmonics, that we measure on the transmission spectrum from

Figure 5.12, where x is the length of the transmission. In order to verify the amplification of the nonlinear

quadratic and cubic parameters in the composite system modeled in our simulations, we need to estimate

the values of those nonlinear parameters, calculate the amplification ratio and compare it to the expected

amplification calculated in chapter 4, section 4.6.3.

The evolutions of the second (a, b) and third harmonic (c, d) components as a function of distance x calcu-

lated with equations (5.16) or (5.23) (blue line) and with Hedge (stars) are compared for the heterogeneous

structure of Figure 5.9 and the effective homogeneous medium on Figure 5.13. The evolutions calculated

with Hedge are for both second and third harmonics in excellent agreement with the theoretical predictions.

We use expressions (5.22) and (5.25) to evaluate the quadratic and cubic nonlinear parameters and

amplifications and we compare them to the theoretical values feff, heff, Af and Ah in table 5.2.

All these results validate the possibility to use the mixing law developed in chapter 4 in the simulation of

a nonlinear elastic medium up to third order.
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Figure 5.12 – Spectrum of the particle velocity of a 20 Hz modulated sine wave propagating through a
PnC. Spectrum of the particle velocity of a wave propagating through a PnC made of 0.04618 m radius
inclusions of porous polymer in a PDMS matrix, and positioned on a square lattice with lattice parameter
1 m, 90 m away from the source.

Structure feff (GPa) heff (GPa) Af Ah

Heterogeneous 41.49 -94390.7 4.70 1070
Homogeneous effective 41.39 -91920.7 4.69 1042

Table 5.2 – Comparison of observed and expected nonlinear parameters and amplifications. feff, heff, Af
and Ah are obtained with the analytical model.

5.4 Conclusion

In this chapter we have presented a numerical scheme based on the Discontinuous Galerkin Method that is

able to simulate nonlinear elastic wave propagation up to third order in heterogeneous solids of complex

shape. We implemented this numerical scheme in the framework Hedge.

First, we validated this implementation on benchmarks for a linear case by comparing the results of the

simulations with an analytical result. Then, we validated it for nonlinear cases [75]. For this validation, we

compared the evolution of the second and third harmonic components recorded in Hedge with the prediction

of their evolution according to expressions from the literature.

Those observations prove that the mixing law that we developed in chapter 4 is still valid in the scheme

of a propagative system, even though we developed those equations using a static external stress.

A first consequence is that we proved the possibility for one to design composite materials with enhanced
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Figure 5.13 – 2nd and 3rd harmonics vs. distance in homogeneous and heterogeneous NL media. Evolu-
tion of the second (a, b) and third harmonic (c, d) components as a function of the distance x calculated with
equations (5.16) or (5.23) (blue line) and with Hedge (stars). (a) Second harmonic evolution in an hetero-
geneous system. (b) Second harmonic evolution in an effective homogeneous system. (c) Third harmonic
evolution in an heterogeneous system. (b) Third harmonic evolution in an effective homogeneous system.

quadratic and cubic nonlinearities, of with a magnified ratio between cubic and quadratic nonlinearities.

Such a material could be used in the resonating cavity of the elastic resonator we designed in chapter 3 to

improve its figure of merit, i.e. the relation between the width of the hysteresis and the minimal power

needed to obtain that hysteresis.

The developed numerical scheme will also enable us to extend the study of nonlinear PnCs to higher

dimensions, i.e. in two or three-dimension systems, due to the ability of this implementation to benefit from

GPU and cluster-computing techniques.
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Conclusion

In this thesis, we have investigated the field of nonlinear phononic crystals and observed new phenomenon

such as dispersion of elastic waves through four-phonon interaction as well as bistable switching of an

elastic wave by a nonlinear resonator. Those phenomenon are due to the nonlinearities of the materials that

constitute the crystals. Some properties of the second- and third-order nonlinear constants of materials were

studied, such as how their values evolve when a nonlinear material is included in a linear matrix.

First, the PnCs were introduced and the state of the art was presented. We noted that very little work was

done concerning the study of nonlinear nongranular PnCs. Notably, the influence of the nonlinear elastic

parameters on the behavior of PnCs had never been studied.

Then, chapter 1 introduced preliminary calculations for the study of superlattices, i.e. 1D PnCs. Analytical

results were demonstrated for the calculation of the dispersion curves of linear layered structures. This

chapter also introduced numerical methods which are frequently used for simulating elastic wave propagation

and calculating the energy density in 1D and 2D structures.

The results from chapter 1 were used in chapter 2 in which we studied elastic wave dispersion in a bone

structure. We demonstrated that the stress-strain relation for a hydroxy apatite-collagen superlattice is highly

nonlinear due to the ability of collagen to absorb and desorb water. We showed that this nonlinear behavior

was responsible for energy dissipation through four-phonon interaction in correctly hydrated bones.

In chapter 3, we designed a nonlinear bistable switch based on a nonlinear elastic resonator. We used the

third-order (cubic) elastic constants of a steel inclusion to shift the resonance frequency of a resonating cavity.

The low or high transmission through the structure depends on the particle velocity in the incident wave.

As the quadratic nonlinearities break this process, we studied, in chapter 4, the ways to lower the second-

order and increase the third-order elastic constants in a composite material. Using mixing laws obtained

by a homogenization procedure, we calculated the values of those parameters for the material equivalent

to a system of nonlinear inclusions in a linear matrix. We showed that for specific concentrations, that we

calculated, the main cubic nonlinear elastic constant can be increased by a factor ~1000 while the quadratic

constant is only increased by a factor ~5.

Finally, in chapter 5, we exploited the results of chapter 4 in 2D numerical simulations of wave prop-

agation through a composite material constituted of porous polymer inclusions in a PDMS matrix. We

demonstrated that the static mixing laws we obtained are also valid for propagating systems and, conse-
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quently, that they could be applied to the resonator designed in chapter 3.

Prospect

As prospects for future work, the first research work to do would be performing new simulations to exploit

the mixing law in the 1D nonlinear elastic resonator presented in chapter 3. For this task, a study should be

performed on the materials, to find the most appropriate constituents for the matrix and nonlinear inclusions

of the central resonating cavity.

Then, this model of elastic resonator should be extended to 2D (an array of cylindrical inclusions in a

matrix, infinite in the z-direction) and 3D (an array of cylindrical inclusions in a plate with finite thickness).

The later case is the closest to what would be an elastic wave switching device. When a convenient structure

is proved by simulations to have the expected switching behavior, it could be actually created through

micromachining, tested and characterized.

Finally, the use of the magnetoelastic effect to tune the nonlinear elastic constants of the material present

in the defect should be studied. This would open the way for nonlinear dynamically tunable PnCs. The

influence of a magnetic wave on the nonlinear elastic constants of materials through the magnetoelastic

effect has already been studied and its use to tune the behavior of PnCs has been proposed. The study of the

nonlinear elastic switch in chapter 3 is the first step for creating an magnetically controlled elastic switch.

The designed structure along with its analytical model and parametric study provide a good base for future

studies that would include the magnetoacoustic effect.

Once the magnetoacoustic effect is successfully included in the model, the use of the spin reorientation

transition effect would improve the tunability of the system, since its instability induces a large variation of

the parameters from a small variation of the magnetic field.
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Appendix

A.1 Derivation of the Landau Coefficients to the Third Order

Derivation to the third order in 2D for all terms

If we write Ŝ the Eshelby’s tensor and ε̂d the strain inside the nonlinear inclusions 2, in a linear matrix 1,
then, according to the Eshelby’s theory of elasticity, we can write the two following results [82, 83]:

ε̂∞ = ε̂d + Ŝ
(

Ĉ−11 T̂d − ε̂d
)

where T̂d = Ĉ2 (ε̂d ) ε̂d , (A.1)

and:

Ŝ ε̂d =
K1 +2µ1
2(K1 +µ1)

ε̂d +
K1 − 2µ1
4(K1 +µ1)

Tr(ε̂d )Î , (A.2)

where K1 = K1,2D = λ1 +µ1.

The stress-strain relation inside the linear matrix is written:

T̂1 = Ĉ1ε̂1 = 2µ1ε̂1 + (K1 −µ1)Tr(ε̂1)Î . (A.3)

We transform the previous relation to express ε̂1 as a function of T̂1:

Tr(T̂1) = 2µ1Tr(ε̂1) + 2(K1 −µ1)Tr(ε̂1)

Tr(ε̂1) =
Tr(T̂1)
2K1

T̂1 = 2µ1ε̂1 + (K1 −µ1)
Tr(T̂1)
2K1

Î

ε̂1 =
T̂1
2µ1
− K1 −µ1

4K1µ1
Tr(T̂1)Î = Ĉ−11 T̂1.

(A.4)

We replace Ŝ ε̂d and ŜĈ−11 T̂d in equation (A.1) using equation (A.2):

ε̂∞ = ε̂d +
K1 +2µ1
2(K1 +µ1)

(

Ĉ−11 T̂d − ε̂d
)

+
K1 − 2µ1
4(K1 +µ1)

Tr
(

Ĉ−11 T̂d − ε̂d
)

Î . (A.5)
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We now replace Ĉ−11 T̂d and Tr
(

Ĉ−11 T̂d
)

using expression (A.4):

ε̂∞ = ε̂d +
K1 +2µ1
2(K1 +µ1)

(

T̂d
2µ1
− K1 −µ1

4K1µ1
Tr(T̂d )Î − ε̂d

)

+
K1 − 2µ1
4(K1 +µ1)

(

Tr(T̂d )
2µ1

− K1 −µ1
2K1µ1

Tr(T̂d )−Tr(ε̂d )
)

Î

= ε̂d

(

1− K1 +2µ1
2(K1 +µ1)

)

− K1 − 2µ1
4(K1 +µ1)

Tr(ε̂d )Î +
K1 +2µ1

4(K1 +µ1)µ1
T̂d

+

(

K1 − 2µ1
4(K1 +µ1)

(

1
2µ1
− K1 −µ1

2K1µ1

)

− K1 +2µ1
2(K1 +µ1)

K1 −µ1
4K1µ1

)

Tr(T̂d )Î

= ε̂d

(

1− K1 +2µ1
2(K1 +µ1)

)

− K1 − 2µ1
4(K1 +µ1)

Tr(ε̂d )Î +
K1 +2µ1

4(K1 +µ1)µ1
T̂d −

K1Tr(T̂d )Î
8(K1 +µ1)µ1

.

(A.6)

We now express T̂d using expression (4.114):

T̂d = 2µ2ε̂d +λ2Tr(ε̂d )Î

+ eTr(ε̂2d )Î +2eε̂d Tr(ε̂d ) + 3f Tr2(ε̂d )Î

+4gε̂d Tr(ε̂
2
d ) + hTr3(ε̂d )Î + lε̂d Tr

2(ε̂d ) + lTr(ε̂d )Tr(ε̂
2
d )Î ,

(A.7)

we calculate its trace:

Tr(T̂d ) = 2K2Tr(ε̂d ) + 2eTr(ε̂2d ) + (2e +6f )Tr2(ε̂d ) + (2l +4g)Tr(ε̂d )Tr(ε̂
2
d ) + (2h+ l)Tr3(ε̂d ), (A.8)

and we replace T̂d and Tr(T̂d ) by their expressions in equation (A.6).

We obtain:

ε̂∞ = Lε̂d +M Tr(ε̂d )Î +Nε̂d Tr(ε̂d ) +OTr(ε̂2d )Î +PTr2(ε̂d )Î

+Qε̂d Tr(ε̂
2
d ) +RTr(ε̂d )Tr(ε̂

2
d ) + Sε̂d Tr

2(ε̂d ) +T Tr3(ε̂d )Î ,
(A.9)

with:

L = 1+
1
2
K1 +2µ1
K1 +µ1

(

µ2
µ1
− 1

)

M =
2K2 −K1

(

1+ µ2
µ1

)

− 2(µ2 −µ1)
4(K1 +µ1)

N =
e

2µ1
× K1 +2µ1

K1 +µ1

O =
e

2
× 1
K1 +µ1

P =
3f
2
× 1
K1 +µ1

− e

4µ1
× K1

K1 +µ1

Q =
g

µ1
× K1 +2µ1

K1 +µ1

R =
lµ1 − gK1

2(K1 +µ1)µ1

S =
l

4µ1
× K1 +2µ1

K1 +µ1

T =
4hµ1 − lK1

8(K1 +µ1)µ1
.

(A.10)
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We separate the 2D space V into two domains: the matrix Vm and the inclusions Ve. We define the ratio
between the surfaces of the inclusions and the total surface:

c =
Ve

V
with 0 6 c≪ 1. (A.11)

We write the exact expression of the stress in the inhomogeneous medium:

〈T̂ 〉 = 1
V

∫

V
T̂ (~r)d~r =

1
V

[∫

Ve

T̂d (~r)d~r +
∫

Vm

Ĉ1ε̂(~r)d~r

]

=
Ve

V

1
Ve

∫

Ve

T̂ (~r)d~r +
1
V

∫

Vm

Ĉ1ε̂(~r)d~r

= c〈T̂d〉+
Ĉ1

V

[∫

Vm

ε̂(~r)d~r +
∫

Ve

ε̂(~r)d~r −
∫

Ve

ε̂(~r)d~r

]

= c〈T̂d〉+ Ĉ1

[

1
V

∫

V
ε̂(~r)d~r − Ve

V

1
Ve

∫

Ve

ε̂(~r)d~r

]

= c〈T̂d〉+ Ĉ1 [〈ε̂〉 − c〈ε̂d〉] .

(A.12)

This is an exact expression for which we had to make no approximation. Now, because c≪ 1, we make the
approximation that the stress and strain are homogeneous inside the inclusions, i.e. 〈T̂d〉 ≈ T̂d and 〈ε̂d〉 ≈ ε̂d .
So:

〈T̂ 〉 = cT̂d + Ĉ1 [〈ε̂〉 − cε̂d ] , (A.13)

and we use the following approximation:

〈ε̂〉 = cε̂d + (1− c)ε̂∞. (A.14)

Using equation (A.9) and expression (A.14), we obtain:

〈ε̂〉 = L′ ε̂d +M ′Tr(ε̂d )Î +N ′ ε̂d Tr(ε̂d ) +O′Tr(ε̂2d )Î +P ′Tr2(ε̂d )Î

+Q′ ε̂d Tr(ε̂
2
d ) +R′Tr(ε̂d )Tr(ε̂

2
d ) + S ′ ε̂d Tr

2(ε̂d ) +T ′Tr3(ε̂d )Î ,
(A.15)

with:
L′ = c + (1− c)L
M ′ = (1− c)M
N ′ = (1− c)N
O′ = (1− c)O
P ′ = (1− c)P

Q′ = (1− c)Q
R′ = (1− c)R
S ′ = (1− c)S
T ′ = (1− c)T .

(A.16)
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We calculate the following expressions:

Tr〈ε̂〉 = (L′ +2M ′)Tr(ε̂d ) + (2P ′ +N ′)Tr2(ε̂d ) + 2O′Tr(ε̂2d )

+ (Q′ +2R′)Tr(ε̂d )Tr(ε̂
2
d ) + (S ′ +2T ′)Tr3(ε̂d )

〈ε̂〉Tr〈ε̂〉 = L′(L′ +2M ′)ε̂d Tr(ε̂d ) + 2(N ′L′ +L′P ′ +N ′M ′)ε̂d Tr
2(ε̂d ) + 2O′L′ ε̂d Tr(ε̂

2
d )

+M ′(L′ +2M ′)Tr2(ε̂d )Î + (4P ′M ′ +P ′L′ +M ′N ′)Tr3(ε̂d )Î + (4O′M ′ +O′L′)Tr(ε̂d )Tr(ε̂
2
d )Î

〈ε̂〉2 = L′2ε̂2d +2L′M ′ ε̂d Tr(ε̂d ) + 2L′N ′ ε̂2d Tr(ε̂d ) + 2L′O′ ε̂d Tr(ε̂
2
d ) + 2(L′P ′ +M ′N ′)ε̂d Tr

2(ε̂d )

+M ′2Tr2(ε̂d )Î +2M ′O′Tr(ε̂d )Tr(ε̂
2
d )Î +2M ′P ′Tr3(ε̂d )Î

Tr〈ε̂〉2 = L′2Tr(ε̂2d ) + 2M ′(L′ +M ′)Tr2(ε̂d )

+ 2(L′N ′ +L′O′ +2M ′O′)Tr(ε̂d )Tr(ε̂
2
d ) + 2(L′P ′ +M ′N ′ +2M ′P ′)Tr3(ε̂d )

Tr2〈ε̂〉 = (L′ +2M ′)2Tr2(ε̂d ) + 2(L′ +2M ′)(2P ′ +N ′)Tr3(ε̂d ) + 4O′(L′ +2M ′)Tr(ε̂d )

Tr(ε̂2d )〈ε̂〉Tr〈ε̂〉
2 = L′3ε̂d Tr(ε̂

2
d ) + 2L′(L′M ′ +M ′2)ε̂d Tr

2(ε̂d ) +M ′L′2Tr(ε̂d )Tr(ε̂
2
d )Î +2M ′2(L′ +M ′)Tr3(ε̂d )Î

〈ε̂〉Tr2〈ε̂〉 = L′(L′ +2M ′)2ε̂d Tr
2(ε̂d ) +M ′(L′ +2M ′)Tr3(ε̂d )Î

Tr〈ε̂〉Tr〈ε̂〉2 = L′2(L′ +2M ′)Tr(ε̂d )Tr(ε̂
2
d ) + 2M ′(L′ +M ′)(L′ +2M ′)Tr3(ε̂d )

Tr3〈ε̂〉 = (L′ +2M ′)3Tr3(ε̂d ).
(A.17)

These expressions are finally rewritten as:
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where Û is the upper-triangle matrix:
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We invert equation (A.18) to obtain ε̂d , Tr(ε̂d ), etc. and we inject this result in the expression of 〈T̂ 〉:

〈T̂ 〉 = c
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〈ε̂〉Tr〈ε̂〉
Tr〈ε̂〉2Î
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to get:

〈T̂ 〉 =
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Tr2〈ε̂〉Î
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and therefore we can identify all the effective parameters as follows:
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Û−1 (A.22)

The exact full expressions of the effective parameters are given by Maple. They are too big to be written
here. For numerical simulations, the matrix Û is inverted numerically in Octave or with numpy in Python
programs.

Derivation to the third order in 3D for the leading terms

In 3D, for the sake of simplicity, we only consider the case of longitudinal compression waves.

So, we use the following expression for the stress-strain relation:

T̂d = 2µ2ε̂d +λ2Tr(ε̂d )I +CTr2(ε̂d )I +4H Tr3(ε̂d )I , (A.23)

where we have considered A = B = E = F = G = 0. This leads to:

Tr(T̂d ) = 2µ2ε̂d +Tr(ε̂d )I +CTr2(ε̂d )I +4H Tr3(ε̂d )I . (A.24)
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The compression modulus is:

K3D = λ+
2
3
µ = λ+2µ− 4

3
µ = ρ0

(

c2l −
4
3
c2t

)

, (A.25)

with the condition:

− 1 < ν3D =
3K3D − 2µ
2(3K3D +µ)

<
1
2
. (A.26)

The Eshelby tensor is:

Sε̂ =
6
5

K1 +2µ1
3K1 +4µ1

ε̂ +
1
5
3K1 − 4µ1
3K1 +4µ1

Tr(ε̂) I , (A.27)

and the Eshelby equation is:

ε̂d − Sε̂d + SC−11 T̂d = ε̂∞ where T̂d = C2 (ε̂d ) ε̂d , (A.28)

where:

C−11 (T̂d ) =
1

2µ1
T̂d −

3K1 − 2µ1
18µ1K1

Tr(T̂d )I , (A.29)

and:

T̂1 = C1ε̂1 = 2µ1ε̂1 +
(

K1 −
2
3
µ1

)

Tr(ε̂1)I . (A.30)

By writing the Eshelby tensor (A.27) in the Eshelby equation (A.28), we obtain:

ε̂d −
6
5

K1 +2µ1
3K1 +4µ1

ε̂d −
1
5
3K1 − 4µ1
3K1 +4µ1

Tr(ε̂d ) I +
6
5

K1 +2µ1
3K1 +4µ1

C−11 T̂d +
1
5
3K1 − 4µ1
3K1 +4µ1

Tr
(

C−11 T̂d
)

I = ε̂∞, (A.31)

which, when we replace C−11 by its expression, reduces to:

9K1 +8µ1
5(3K1 +4µ1)

ε̂d −
1
5
3K1 − 4µ1
3K1 +4µ1

Tr(ε̂d )I +
3
5

K1 +2µ1
3K1 +4µ1

1
µ1

T̂d −
K1 +

µ1
3

5µ1(3K1 +4µ1)
Tr(T̂d )I = ε̂∞. (A.32)

We now use expressions (A.23) and (A.24) and get:

Lε̂d +M Tr(ε̂d )I +QTr2(ε̂d )I +W Tr3(ε̂d )I = ε̂∞, (A.33)

with:

L = 1+
6
5

K1 +2µ1
3K1 +4µ1

(

µ2
µ1
− 1

)

M =
5K2 −K1

(

3+2µ2
µ1

)

− 4(µ2 −µ1)
5(3K1 +4µ1)

Q =
C

3K1 +4µ1

W =
4H

3K1 +4µ1
.

(A.34)

Now, we write:
〈ε̂〉 = cε̂d + (1− c)ε̂∞, (A.35)
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and:
〈T̂ 〉 = cT̂d +C1 [〈ε̂〉 − cε̂d ] . (A.36)

We calculate the following expressions:

〈ε̂〉 = [c + (1− c)L]ε̂d + (1− c)M Tr(ε̂d )I + (1− c)QTr2(ε̂d )I + (1− c)W Tr3(ε̂d )I

= L′ ε̂d +M ′Tr(ε̂d )I +Q′Tr2(ε̂d )I +W ′Tr3(ε̂d )I

Tr〈ε̂〉 = (L′ +3M ′)Tr(ε̂d ) + 3Q′Tr2(ε̂d ) + 3W ′Tr3(ε̂d )

Tr2〈ε̂〉 = (L′ +3M ′)2Tr2(ε̂d ) + 6Q′(L′ +3M ′)Tr3(ε̂d )

Tr3〈ε̂〉 = (L′ +3M ′)3Tr3(ε̂d ),

(A.37)

which we can write in a matrix form:
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The final expression for 〈T̂ 〉 is:

〈T̂ 〉 = c
[

2µ2ε̂d +
(

K2 −
2µ2
3

)

Tr(ε̂d )I +CTr2(ε̂d )I +4H Tr3(ε̂d )I
]

+2µ1
[

(L′ −C)ε̂d +M ′Tr(ε̂d )I +Q′Tr(ε̂d )I +Q′Tr2(ε̂d )I +W ′Tr3(ε̂d )I
]

+
(

K1 −
2µ1
3

)

[

(L′ −C +3M ′)Tr(ε̂d ) + 3Q′Tr2(ε̂d ) + 3W ′Tr3(ε̂d )
]

I .

(A.39)

Here again, the upper diagonal matrix Û is inverted to obtain 〈T̂ 〉 in terms of 〈ε̂〉 and of the properties of
the matrix and the inclusions and concentration c. Finally, the effective parameters can be identified in:
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The exact full expressions of the effective parameters are given by Maple. They are too big to be written
here. For numerical simulations, Û is inverted numerically in Octave or with numpy in Python programs.



126 APPENDIX A. Appendix



Publications and Communications

Publications

• O. Bou-Matar, P.-Y. Guerder, Y. Li, B. Vandewoestyne, K. Van Den Abeele, A nodal discontinuous Galerkin
finite element method for nonlinear elastic wave propagation, J. Acoust. Soc. Am. 131 (5), 3650-3663
(2012).

• P.-Y. Guerder, A. C. Deymier-Black, N. Z. Swinteck, J. O. Vasseur, O. Bou-Matar, K Muralidharan,
P. A. Deymier, Multi-phonon scattering processes in one-dimensional anharmonic biological superlattices:
understanding the dissipation of mechanical waves in mineralized tissues, Journal of the Mechanical
Behavior of Biomedical Materials. 37, 24-32 (2014).

• P.-Y. Guerder, S. Giordano, O. Bou-Matar, J. O. Vasseur, Tuning the elastic nonlinearities in composite
nanomaterials, Journal of Physics: Condensed Matter 27, (2015) 145304.

• P.-Y. Guerder, O. Bou-Matar, J. O. Vasseur, P. Deymier, Commutation of an elastic wave transmitted
through a 1D phononic crystal with a nonlinear resonator, submitted to Physical Review E, November
(2014).

Congresses

• O. Bou Matar, P.-Y. Guerder, Y. Li, Une méthode Galerkin discontinue nodale pour la propagation
non-linéaire d’ondes élastiques fonctionnant sur carte graphique (GPU), XIIèmes Journées d’Acoustique
Physique Sous-Marine et Ultrasonore, JAPSUS 2011, Lille (France), June 8-10 2011.

• O. Bou Matar, P.-Y. Guerder, Nonlinear elastodynamic simulations using a Discontinuous Galerkin method
on graphics processors, Acoustics 2012, Nantes (France), April 23-27 2012.

• O. Bou Matar, P.-Y. Guerder, H. Zhou, V. Aleshin, Nonlinear elastodynamic simulations using the discon-
tinuous Galerkin finite element method on graphics processors, 18th International Conference on Nonlinear
Elasticity in Materials, ICNEM XVIII, Ascona (Switzerland), 2013.

• P.-Y. Guerder, O. Bou Matar, J. O. Vasseur, P. A. Deymier, Elastic switch composed of a 1D phononic
crystal with a nonlinear resonator, IEEE International Ultrasonics Symposium, Chicago (United States),
September 3-6 2014.

127



128 Publications and Communications



Bibliography

[1] Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. Vasseur, and A.-C. Hladky-Hennion. “Phononic crystals
and manipulation of sound”. In: Physica Status Solidi 9 (2009), pp. 2080–2085 (cit. on pp. xiii, xiv,
1–3).

[2] R. H. Olsson III and I. El-Kady. “Microfabricated phononic crystal devices and applications”. In:
Measurement science and technology 20 (2009), p. 012002 (cit. on pp. xiii, xiv, 1–3).

[3] V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann. “Selective Transmis-
sion of High-Frequency Phonons by a Superlattice: The "Dielectric" Phonon Filter”. In: Phys. Rev. Lett.
43.27 (1979), pp. 2012–2016 (cit. on pp. xiii, 3).

[4] M. Sigalas and E. Economou. “Elastic and acoustic wave band structure”. In: Journal of Sound and
Vibration 158.2 (1992), pp. 377–382 (cit. on pp. xiii, 3).

[5] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani. “Acoustic band structure of
periodic elastic composites”. In: Phys. Rev. Lett. 71.13 (Sept. 1993), pp. 2022–2025 (cit. on pp. xiii, 3).

[6] F. R. Montero de Espinosa, E. Jiménez, and M. Torres. “Ultrasonic band gap in a periodic two-
dimensional composite”. In: Phys. Rev. Lett. 80 (1998), pp. 1208–1211 (cit. on pp. xiii, 3).

[7] T. Gorishnyy. “Hypersonic phononic crystals”. PhD thesis. Department of Materials Science and
Engineering at the Massachusetts Institute of Technology, 2007 (cit. on pp. xiii, 3).

[8] M.-H. Lu, L. Feng, and Y.-F. Chen. “Phononic crystals and acoustic metamaterials”. In: Materials
Today 12.12 (Dec. 2009), pp. 34–42 (cit. on pp. xiv, 2, 3).

[9] G. Chen, A. Narayanaswamy, and C. Dames. “Engineering nanoscale phonon and photon transport
for direct energy conversion”. In: Superlattices and Microstructures 35 (2004), pp. 161–172 (cit. on
pp. xiv, 3).

[10] J.-F. Robillard, O. Bou Matar, J. O. Vasseur, P. A. Deymier, M. Stippinger, A.-C. Hladky-Hennion,
Y. Pennec, and B. Djafari-Rouhani. “Tunable magnetoelastic phononic crystals”. In: Applied Physics
Letter 95 (2009), p. 124104 (cit. on pp. xiv, 3, 4, 50).

[11] O. Bou Matar, J. F. Robillard, J. O. Vasseur, A.-C. Hladky-Hennion, P. A. Deymier, P. Pernod, and
V. Preobrazhensky. “Band gap tunability of magneto-elastic phononic crystal”. In: Journal of Applied
Physics 111.054901 (2012), pp. 1–12 (cit. on pp. xiv, 3, 4, 50, 69).

[12] M. M. Beaky, J. B. Burk, H. O. Everitt, M. A. Haider, and S. Venakides. “Two-Dimensional Photonic
Crystal Fabry–Perot Resonators with Lossy Dielectrics”. In: IEEE Transactions on Microwave Theory
and Techniques (1999) (cit. on pp. xvii, 26).

[13] S. M. Bowman. “The tensile behavior of demineralized bovine cortical bone.” In: Journal of Biome-
chanics 29.11 (1996), pp. 1497–1501 (cit. on pp. xviii, 38, 39).

[14] K. Manktelow, M. J. Leamy, and M. Ruzzene. “Multiple scales analysis of wave–wave interactions in a
cubically nonlinear monoatomic chain”. In: Nonlinear Dynamics 63.1-2 (2011), pp. 193–203 (cit. on
pp. xviii, 46).

129



130 Bibliography

[15] N. Z. Swinteck, K. Muralidharan, and P. A. Deymier. “Phonon Scattering in One-Dimensional
Anharmonic Crystals and Superlattices: Analytical and Numerical Study”. In: Journal of vibration and
acoustics 135.4 (2013) (cit. on pp. xviii, 46).

[16] K. Naugolnykh and L. Ostrovsky. Nonlinear Wave Processes in Acoustics. Cambridge University Press,
1998 (cit. on pp. xx, 61).

[17] P. Berg, F. If, P. Nielsen, and O. Skovgaard. “Modeling the earth for oil exploration”. In: Helbig, K.
Pergamon Press, 1994. Chap. Analytical reference solutions, pp. 421–427 (cit. on pp. xxv, 105).

[18] L. Adler and E. Hiedemann. “Determination of the Nonlinearity Parameter B/A for Water and m-
Xylene”. In: The Journal of the Acoustical Society of America 34.4 (1962), pp. 410–412 (cit. on pp. xxv,
109).

[19] X. Liu, J. Li, X. Gong, Z. Zhu, and D. Zhang. “Theoretical and experimental study of the third-order
nonlinearity parameter C/A for biological media”. In: Physica D: Nonlinear Phenomena 228.2 (2007),
pp. 172–178 (cit. on pp. xxv, 110).

[20] M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos. “Optimal bistable switching
in nonlinear photonic crystals”. In: Physical Review E 66.5 (2002), pp. 55601.1–55601.4 (cit. on pp. 4,
49, 50).

[21] N. Boechler, G. Theocharis, and C. Daraio. “Bifurcation-based acoustic switching and rectification”.
In: Nature Materials 3072 (2011), pp. 19–22 (cit. on pp. 4–6, 49).

[22] J. Yang and C. Daraio. “Frequency- and Amplitude-Dependent Transmission of Stress Waves in
Curved One-Dimensional Granular Crystals Composed of Diatomic Particles”. In: Experimental
Mechanics (July 2012) (cit. on pp. 4, 5).

[23] V. F. Nesterenko. “Propagation of nonlinear compression pulses in granular media”. In: Journal of
Applied Mechanics and Technical Physics 24.5 (1983), pp. 733–743 (cit. on p. 5).

[24] A. Shukla, M. H. Sadd, and H. Mei. “Experimental and computational modeling of wave propagation
in granular materials”. In: Experimental mechanics 30.4 (1990), pp. 377–381 (cit. on p. 5).

[25] C. Daraio, V. F. Nesterenko, and S. Jin. “Strongly nonlinear waves in 3D phononic crystals”. In:
American Institute of Physics Conference Proceedings 706 (2004) (cit. on p. 5).

[26] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin. “Tunability of solitary wave properties in one
dimensional strongly nonlinear phononic crystals”. In: Phys. Rev. E 73 (2006), p. 026610 (cit. on p. 5).

[27] A. Merkel, V. Tournat, and V. Gusev. “Dispersion of elastic waves in three-dimensional noncohesive
granular phononic crystals: Properties of rotational modes”. In: Physical Review E 82.3 (Sept. 2010),
pp. 031305–1.10 (cit. on p. 5).

[28] J. Cabaret, V. Tournat, and P. Béquin. “Amplitude-dependent phononic processes in a diatomic
granular chain in the weakly nonlinear regime”. In: Physical Review E 86.4 (Oct. 2012), pp. 1–10
(cit. on pp. 5–7, 49).

[29] F. Göncü, S. Luding, and K. Bertoldi. “Exploiting pattern transformation to tune phononic band gaps
in a two-dimensional granular crystal.” In: The Journal of the Acoustical Society of America 131.6 (June
2012), EL475–EL480 (cit. on p. 5).

[30] A. Spadoni and C. Daraio. “Generation and control of sound bullets with a nonlinear acoustic lens.”
In: Proceedings of the National Academy of Sciences of the United States of America 107.16 (Apr. 2010),
pp. 7230–4 (cit. on p. 6).

[31] P. Deymier. “Acoustic Metamaterials and Phononic Crystals”. In: vol. 173. Springer Series in Solid-
State Sciences. Springer, 2013. Chap. 7 (cit. on p. 6).



Bibliography 131

[32] J.-N. Gillet, Y. Chalopin, and S. Volz. “Atomic-Scale Three-Dimensional Phononic Crystals With a
Very Low Thermal Conductivity to Design Crystalline Thermoelectric Devices”. In: Journal of Heat
Transfer 131.4 (2009), p. 043206 (cit. on pp. 6, 7).

[33] A. M. Marconnet, T. Kodama, M. Asheghi, and K. E. Goodson. “Phonon Conduction in Periodically
Porous Silicon Nanobridges”. In: Nanoscale and Microscale Thermophysical Engineering 16.4 (Dec.
2012), pp. 199–219 (cit. on p. 6).

[34] E. Dechaumphai and R. Chen. “Thermal transport in phononic crystals: The role of zone folding
effect”. In: Journal of Applied Physics 111.7 (2012), p. 073508 (cit. on pp. 6, 7).

[35] A. Sgouros, M. M. Sigalas, G. Kalosakas, K. Papagelis, and N. I. Papanicolaou. “Phononic band gap
engineering in graphene”. In: Journal of Applied Physics 112.9 (2012), p. 094307 (cit. on p. 7).

[36] M. Maldovan. “Narrow Low-Frequency Spectrum and Heat Management by Thermocrystals”. In:
Physical Review Letters 110.2 (Jan. 2013), p. 025902 (cit. on p. 7).

[37] O. Bou Matar, V. Preobrazhensky, and P. Pernod. “Two-dimensional axisymmetric numerical simula-
tion of supercritical phase conjugation of ultrasound in active solid media”. In: J. Acoustic Soc. Am.
118.5 (2005), pp. 2880–2890 (cit. on pp. 28, 60).

[38] T. Özdenvar and G. A. McMechan. “Causes and reduction of numerical artefacts in pseudo-spectral
wavefield extrapolation”. In: Geophysical Journal International 126.3 (1996), pp. 819–828 (cit. on
p. 28).

[39] M. Ghrist, B. Fornberg, and T. A. Driscoll. “Staggered time integrators for wave equations”. In: SIAM
Journal on Numerical Analysis 38.3 (2000), pp. 718–741 (cit. on p. 28).

[40] P.-Y. Guerder, A. C. Deymier-Black, N. Z. Swinteck, J. O. Vasseur, O. Bou-Matar, K. Muralidharan,
and P. A. Deymier. “Multi-phonon scattering processes in one-dimensional anharmonic biological
superlattices: Understanding the dissipation of mechanical waves in mineralized tissues”. In: Journal
of the mechanical behavior of biomedical materials 37 (2014), pp. 24–32 (cit. on p. 33).

[41] A. R. Ten Cate. Oral Histology: Development, Structure and Function. St Louis, MO: Mosby, 1980 (cit. on
p. 33).

[42] I. Jager and P. Fratzl. “Mineralized Collagen Fibrils: A Mechanical Model with a Staggered Arrange-
ment of Mineral Particles”. In: Biophys. J. 79 (2000), pp. 1737–1746 (cit. on p. 33).

[43] J. D. Currey. Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press, 2002 (cit. on
p. 33).

[44] A. C. Deymier-Black, J. D. Almer, S. R. Stock, D. R. Haeffner, and D. C. Dunand. “Synchrotron
X-Ray Diffraction Study of Load Partitioning During Elastic Deformation of Bovine Dentin”. In: Acta
Biomaterialia 6 (2010), pp. 2172–2180 (cit. on p. 33).

[45] A. Boyde and K. S. Lester. “An Electron Microscope Study of Fractured Dentinal Surfaces”. In:
Calcified Tissue Research 1 (1967), pp. 122–136 (cit. on p. 33).

[46] R. M. Dillaman, R. D. Roer, and D. M. Gay. “Fluid Movement in Bone: Theoretical and Empirical”. In:
J Biomech. 1 (1991), pp. 163–177 (cit. on p. 33).

[47] L. Bertinetti, A. Tampieri, E. Landi, C. Ducatti, P. A. Midgley, S. Coluccia, and G. Martra. “Surface
Structure, Hydration, and Cationic Sites of Nanohydroxyapatite: Uhr-Tem, Ir, and Microgravimetric
Studies”. In: Journal of Physical Chemistry C. (2007) (cit. on p. 34).

[48] A. De Simone, L. Vitagliano, and R. Berisio. “Role of Hydration in Collagen Triple Helix Stabilization”.
In: Biochem Biophys Res Commun. (2008) (cit. on pp. 34, 38).

[49] K. M. Ravikumar and W. Hwang. “Region-Specific Role of Water in Collagen Unwinding and Assem-
bly”. In: Proteins (2008) (cit. on pp. 34, 38).



132 Bibliography

[50] B. Kahler, M. V. Swain, and A. Moule. “Fracture-Toughening Mechanisms Responsible for Differences
in Work to Fracture of Hydrated and Dehydrated Dentine”. In: J. Biomech. (2003) (cit. on p. 34).

[51] J. J. Kruzic, R. K. Nalla, J. H. Kinney, and R. O. Ritchie. “Crack Blunting, Crack Bridging and
Resistance-Curve Fracture Mechanics in Dentin: Effect of Hydration”. In: Biomaterials (2003) (cit. on
p. 34).

[52] J. S. Nyman, A. Roy, X. Shen, R. L. Acuna, J. H. Tyler, and X. Wang. “The Influence of Water Removal
on the Strength and Toughness of Cortical Bone”. In: J. Biomech. (2006) (cit. on p. 34).

[53] C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson. “Effects of Hydration on the
Mechanical Response of Individual Collagen Fibrils”. In: App. Phys. Lett 92 (2008), p. 233902 (cit. on
p. 34).

[54] S. G. Gevorkian, A. E. Allahverdyan, D. S. Gevorgyan, A. L. Simonian, and C. K. Hu. “Stabilization
and Anomalous Hydration of Collagen Fibril under Heating”. In: PLoS One (2013) (cit. on p. 34).

[55] F. Larché. “Thermodynamics of stressed solids”. In: Am. Ceramics Soc. Bulletin 64.10 (1985), p. 1344
(cit. on p. 35).

[56] F. Larché and J. Cahn. “The interactions of composition and stress in crystalline solids”. In: Acta
Metallurgica 33.3 (1985), pp. 331–357 (cit. on p. 35).

[57] J. Catanese Iii, E. P. Iverson, R. K. Ng, and T. M. Keaveny. “Heterogeneity of the Mechanical Properties
of Demineralized Bone”. In: J. Biomech 32 (1999), pp. 1365–1369 (cit. on p. 38).

[58] A. J. Heim and W. G. Matthews. “Determination of the Elastic Modulus of Native Collagen Fibrils Via
Radial Indentation”. In: App. Phys. Lett. 89 (2006), p. 181902 (cit. on p. 38).

[59] G. D. Fullerton, M. Amurao, A. Rahal, and I. L. Cameron. “Micro-Ct Dilatometry Measures of
Molecular Collagen Hydration Using Bovine Extensor Tendon”. In:Medical Physics 38 (2011), pp. 363–
376 (cit. on p. 38).

[60] R. Camley, B. Djafari-Rouhani, L. Dobrzynski, and A. Maradudin. “Transverse elastic waves in
periodically layered infinite and semi-infinite media”. In: Phys. Rev. B 27.12 (1983), p. 7318 (cit. on
p. 39).

[61] J. A. Thomas, J. E. Turney, R. M. Iutzi, C. H. Amon, and A. J. H. McGaughey. “Predicting Phonon
Dispersion Relations and Lifetimes from the Spectral Energy Density”. In: Physical Review B 81 (2010),
p. 081411 (cit. on p. 40).

[62] C. J. Westover and M. H. Dresden. “Collagen hydration: Pulsed nuclear magnetic resonance studies
of structural transitions”. In: Biochimica et Biophysica Acta (BBA) - Protein Structure 365.2 (1974),
pp. 389–399 (cit. on p. 43).

[63] J. H. Kinney, R. Nalla, J. Pople, T. Breunig, and R. Ritchie. “Age-Related Transparent Root Dentin:
Mineral Concentrations, Crystallite Size and Mechanical Properties”. In: Biomaterials 26 (2005),
pp. 3363–3376 (cit. on p. 48).

[64] R. S. Weinstein, C. Wan, Q. Liu, Y. Wang, M. Almeida, C. A. O’Brien, J. Thostenson, P. K. Roberson,
A. L. Boskey, T. L. Clemens, and S. C. Manolagas. “Endogenous Glucocorticoids Decrease Skeletal
Angiogenesis, Vascularity, Hydration, and Strength in Aged Mice”. In: Aging Cell 9 (2010) (cit. on
p. 48).

[65] S. C. Manolagas. “Estrogen-Centric to Aging and Oxidative Stress: A Revised Perspective of the
Pathogenesis of Osteoporosis”. In: Endocr Rev. 31 (2010), pp. 266–300 (cit. on p. 48).

[66] L. Landau and E. Lifshitz. Physique théorique: Mécanique. Physique théorique. Éd. Mir, 1994 (cit. on
pp. 49–51, 56).



Bibliography 133

[67] M. Gei, A. Movchan, and D. Bigoni. “Band-gap shift and defect-induced annihilation in prestressed
elastic structures”. In: Journal of Applied Physics 105 (2009), p. 063507 (cit. on p. 50).

[68] J. O. Vasseur, O. Bou Matar, J.-F. Robillard, A.-C. Hladky-Hennion, and P. A. Deymier. “Band
structures tunability of bulk 2D phononic crystals made of magneto-elastic materials”. In: AIP
Advances 1.4 (2011), p. 041904 (cit. on p. 50).

[69] A. H. Nayfeh and D. T. Mook. Nonlinear Oscillations. Wiley-VCH, 1995 (cit. on pp. 51, 56).

[70] V. L. Preobrazhenskii, M. A. Savchenko, and N. A. Ekonomov. “Nonlinear self-action of sound waves
in an antiferromagnet with easy-plane anisotropy”. In: Pris’ma Zh. Eksp. Teor. Fiz. 28.2 (July 1978),
pp. 93–97 (cit. on p. 55).

[71] A. Klimov, Y. Ignatov, N. Tiercelin, V. Preobrazhensky, P. Pernod, and S. Nikitov. “Ferromagnetic
resonance and magnetoelastic demodulation in thin active films with an uniaxial anisotropy”. In:
Journal of Applied Physics 107.93916 (1978), pp. 1–6 (cit. on p. 55).

[72] P. Markoš and C. M. Soukoulis. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed
Materials. Ed. by P. U. Press. Princeton and Oxford, 2008 (cit. on pp. 60, 62).

[73] B. Fornberg. A practical guide to pseudospectral methods. Vol. 1. Cambridge university press, 1998
(cit. on p. 61).

[74] H. Yang, W. Yost, and J. H. Cantrell. “Effect of aging on the third-order elastic moduli of 18Ni
maraging steel”. In: Ultrasonics symposium (1987), pp. 1131–1135 (cit. on pp. 61, 98).

[75] O. Bou Matar, P.-Y. Guerder, Y. Li, B. Vandewoestyne, and K. Van Den Abeele. “A nodal discontinuous
Galerkin finite element method for nonlinear elastic wave propagation”. In: J. Acoust. Soc. Am. 131.5
(2012), pp. 3650–3663 (cit. on pp. 61, 62, 103, 105, 115).

[76] V. Y. Zaitsev. “A model of anomalous elastic nonlinearity of microinhomogeneous media”. In: Acoustic
letters 19.9 (1996), pp. 171–174 (cit. on p. 72).

[77] I. Y. Belyaeva and V. Y. Zaitsev. “Nonlinear elastic properties of microinhomogeneous hierarchically
structured media”. In: Acoustical Physics 43.5 (1997), pp. 510–515 (cit. on pp. 73, 74).

[78] E. C. Everbach, Z.-m. Zhu, P. Jiang, B. T. Chu, and R. E. Apfel. “A corrected mixture law for B/A”. In:
The Journal of the Acoustical Society of America 89.1 (1991), pp. 446–447 (cit. on p. 76).

[79] S. Giordano, P. L. Palla, and L. Colombo. “Nonlinear elastic Landau coefficients in heterogeneous
materials”. In: Europhysics letters 83.66003 (2008), pp. 1–5 (cit. on pp. 81, 83).

[80] S. Giordano, P. Palla, and L. Colombo. “Nonlinear elasticity of composite materials”. In: The European
Physical Journal B-Condensed Matter and Complex Systems 68.1 (2009), pp. 89–101 (cit. on pp. 82, 83,
88).

[81] L. D. Landau and E. Lifshitz. “Theory of Elasticity, vol. 7”. In: Course of Theoretical Physics 3 (1986)
(cit. on p. 83).

[82] J. D. Eshelby. “The determination of the elastic field of an ellipsoidal inclusion, and related problems”.
In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 241.1226
(1957), pp. 376–396 (cit. on pp. 84, 119).

[83] T. Mura. Micromechanics of defects in solids. Vol. 3. Springer, 1987 (cit. on pp. 84, 85, 119).

[84] M. F. Hamilton, Y. A. Ilinskii, and E. A. Zabolotskaya. “Separation of compressibility and shear
deformation in the elastic energy density (L)”. In: Acoustical Society of America Journal 116 (2004),
pp. 41–44 (cit. on pp. 89, 109).

[85] Y. Hiki and A. V. Granato. “Anharmonicity in Noble Metals; Higher Order Elastic Constants”. In:
Physical Review (1966), pp. 411–419 (cit. on p. 98).



134 Bibliography

[86] V. A. Lubarda. “New estimates of the third-order constants for isotropic aggregates crystals”. In:
Science (1997), pp. 471–490 (cit. on p. 98).

[87] L. K. Zarembo and V. A. Krasil’Nikov. “Nonlinear phenomena in the propagation of elastic waves in
solids”. In: Soviet Physics Uspekhi (1971), pp. 778–797 (cit. on p. 98).

[88] V. Chiroiu, P. P. Delsanto, L. Munteanu, C. Rugina, and M. Scalerandi. “Determination of the second-
and third-order elastic constants in Al from the natural frequencies”. In: Journal of the Acoustical
Society of America (1997), pp. 193–198 (cit. on p. 98).

[89] D. Gerlich. “Third-Order Elastic Moduli of Barium Fluoride”. In: Physical Review (1968), pp. 947–951
(cit. on p. 98).

[90] S. Alterovitz and G. Gerlich. “Third-Order Elastic Moduli of Calcium Fluoride”. In: Physical Review
(1969), pp. 999–1002 (cit. on p. 98).

[91] P. B. Ghate. “Third-order Elastic Constants of Alkali Halide Crystals”. In: Physical Review (1965),
A1666–A1674 (cit. on p. 98).

[92] W. B. Gauster and M. A. Breazeale. “Ultrasonic Measurement of the Nonlinearity Parameters of
Copper Single Crystals”. In: Physical Review (1968), pp. 655–661 (cit. on p. 98).

[93] J. Lang and Y. Gupta. “Experimental Determination of Third-Order Elastic Constants of Diamond”.
In: Physical Review Letters (2011), pp. 1–4 (cit. on p. 98).

[94] E. H. Bogardus. “Third-Order Elastic Constants of Ge, MgO and Fused SiO2”. In: Journal of Applied
Physics (1965), pp. 2504–2513 (cit. on p. 98).

[95] S. Alterovitz and G. Gerlich. “Third-Order Elastic Moduli of Strontium Fluoride”. In: Physical Review
B (1970), pp. 2718–2723 (cit. on p. 98).

[96] D. M. Egle and D. E. Bray. “Measurement of acoustoelastic and third-order elastic constants for rail
steel”. In: Journal of the Acoustical Society of America (1976), pp. 741–744 (cit. on p. 98).

[97] M. T. Gokmen, W. Van Camp, P. J. Colver, S. A. Bon, and F. E. Du Prez. “Fabrication of porous
“clickable” polymer beads and rods through generation of High Internal Phase Emulsion (HIPE)
droplets in a simple microfluidic device”. In: Macromolecules 42.23 (2009), pp. 9289–9294 (cit. on
p. 99).

[98] T. Brunet, J. Leng, O. Mondain-Monval, et al. “Soft Acoustic Metamaterials”. In: Science 342.6156
(2013), pp. 323–324 (cit. on p. 99).

[99] P.-Y. Guerder, S. Giordano, O. Bou-Matar, and J. Vasseur. “Tuning the elastic nonlinearities in
composite nanomaterials”. In: Journal of Physics: Condensed Matter 27.14 (2015), p. 145304 (cit. on
p. 99).

[100] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods. Springer, 2007 (cit. on
pp. 102, 103).

[101] W. H. Reed and T. R. Hill. “Triangular mesh methods for the neutron transport equation”. In: Tech.
Rep. LA-UR-73-479 (1973) (cit. on p. 102).

[102] V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky. “An hp-adaptive discontinuous Galerkin finite-
element method for 3-D elastic wave modelling”. In: Geophys. J. Int. 183 (2010), pp. 941–962 (cit. on
p. 102).

[103] M. Käser and M. Dumbser. “An arbitrary high-order discontinuous Galerkin method for elastic waves
on unstructured meshes – I. The two-dimensional isotropic case with external source terms”. In:
Geophys. J. Int. 166 (2006), pp. 855–877 (cit. on p. 103).



Bibliography 135

[104] J. de la Puente, M. Käser, M. Dumbser, and H. Igel. “An arbitrary high-order discontinuous Galerkin
method for elastic waves on unstructured meshes – IV. Anisotropy”. In: Geophys. J. Int. 169 (2007),
pp. 1210–1228 (cit. on p. 103).

[105] C. E. Castro, M. Käser, and G. B. Brietzke. “Seismic waves in heterogeneousmaterial: subcell resolution
of the discontinuous Galerkin method”. In: Geophys. J. Int. 182 (2010), pp. 250–264 (cit. on p. 103).

[106] S. Delcourte and N. Glinsky-Olivier. “Analysis of a discontinuous Galerkin method for elastodynamic
equations. application to 3D wave propagation.” In: (2013) (cit. on p. 103).

[107] A. Klöckner, T. Warburton, J. Bridge, and J. Hesthaven. “Nodal discontinuous Galerkin methods on
graphics processors”. In: Journal of Computational Physics 228 (2009), pp. 7863–7882 (cit. on p. 103).

[108] W. Hu and S. A. Cummer. “The nearly perfectly matched layer is a perfectly matched layer”. In:
Antennas and Wireless Propagation Letters, IEEE 3.1 (2004), pp. 137–140 (cit. on p. 105).

[109] S. A. Cummer. “A simple, nearly perfectly matched layer for general electromagnetic media”. In:
Microwave and Wireless Components Letters, IEEE 13.3 (2003), pp. 128–130 (cit. on p. 105).

[110] W. Hu, A. Abubakar, and T. M. Habashy. “Application of the nearly perfectly matched layer in
acoustic wave modeling”. In: Geophysics 72.5 (2007), SM169–SM175 (cit. on p. 105).

[111] A. Hoop. “A modification of Cagniard’s method for solving seismic pulse problems”. English. In:
Applied Scientific Research, Section B 8.1 (1960), pp. 349–356 (cit. on p. 105).

[112] S. Kostek, B. K. Sinha, and A. N. Norris. “Third-order elastic constants for an inviscid fluid”. In:
Journal of the Acoustical Society of America 94.5 (1993), pp. 3014–3017 (cit. on p. 109).

[113] P. Deymier. “Acoustic Metamaterials and Phononic Crystals”. In: vol. 173. Springer Series in Solid-
State Sciences. Springer, 2013. Chap. 10 (cit. on p. 113).



136 Bibliography



List of Tables

1 Densité, module d’Young et vitesse des ondes élastiques pour l’hydroxy apatite et le collagène. xvii
2 Coefficients du développement en série de Taylor de Y (ε) et E(ε) pour le collagène. . . . . . xviii
3 Vitesses longitudinale et transverse et coefficient de compressibilité du polymère et du PDMS. xxiv

1.1 Density, linear elastic constant and longitudinal elastic wave velocity for steel and silica. . 27

2.1 Coefficients used in Taylor’s expansion series of Young’s modulus and elastic energy. . . . . 39
2.2 Density, Young’s modulus and elastic wave velocity for hydroxy apatite and collagen. . . . 42

3.1 Density, linear elastic constant and longitudinal elastic wave velocity for steel and silica. . 60
3.2 Nonlinear elastic constants of steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Compressibility factor and quadratic and cubic nonlinear constants of air and water. . . . 78
4.2 Comparison between the different notations for the nonlinear quadratic constants. . . . . . 80
4.3 Summary of the relations between CIJK tensor, the Landau constants and l,m,n notation. . 80
4.4 Optimal concentrations and amplification factors for the nonlinear parameters. . . . . . . 96
4.5 Physical constants of some soft materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Physical constants of some hard materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7 Index of references for the elastic constants of some materials. . . . . . . . . . . . . . . . . 98
4.8 Density, speed and compressibility constants for PDMS and an arbitrary polymer. . . . . . 99

5.1 Constants for the effective medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Comparison of observed and expected nonlinear parameters and amplifications. . . . . . . 115

137



138 List of Tables



List of Figures

1 Exemple de cristal phononique 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
2 Un super-réseau 1D avec des couches d’impédances Z1 et Z2. . . . . . . . . . . . . . . . . . xv
3 Courbes de dispersion calculées avec la loi de dispersion. . . . . . . . . . . . . . . . . . . . xvi
4 Spectre en transmission pour une structure avec et sans défaut. . . . . . . . . . . . . . . . . xvi
5 Représentation schématique du modèle de la structure osseuse simulée. . . . . . . . . . . . xvii
6 Graphique de densité d’énergie spectrale (DES) pour le vecteur d’ondes π/a. . . . . . . . . xix
7 Représentation du cristal phononique 1D considéré. . . . . . . . . . . . . . . . . . . . . . . xx
8 « Fit » de la puissance de sortie par la courbe théorique. . . . . . . . . . . . . . . . . . . . . xxi
9 Un système masse-ressort comportant des ressorts de constantes K1 et K2. . . . . . . . . . . xxii
10 Inclusions non-linéaires dans une matrice linéaire. . . . . . . . . . . . . . . . . . . . . . . . xxiii
11 Variation des amplifications quadratique et cubique avec la concentration. . . . . . . . . . xxiv
12 Validation linéaire et non-linéaire de l’opérateur élastodynamique. . . . . . . . . . . . . . . xxv
13 Milieu hétérogène constitué d’inclusions non-linéaires dans une matrice linéaire. . . . . . xxvi

14 Example of a phononic crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
15 Basic diagram of a precompressed granular phononic crystal. . . . . . . . . . . . . . . . . . 4

1.1 A 1D superlattice with alternate layers with impedances Z1 and Z2. . . . . . . . . . . . . . 9
1.2 Dispersion curves calculated with the dispersion law. . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Graphical solutions of equation (1.47). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Graphical solutions of equation (1.68). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 A 1D bilayer with impedances Z1 and Z2 with external layers with impedances Z0 and ZL. 21
1.6 A 1D system composed of N bilayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7 Transmission curves for 5 and 7 bilayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 A 1D system composed of N bilayers and a central defect with width dC and impedance ZC . 22
1.9 Transmission curves for 5 and 7 bilayers with a central defect. . . . . . . . . . . . . . . . . . 23
1.10 A 1D system composed of N bilayers with external layers with impedances ZC and ZL. . . 23
1.11 Quality factor versus the number of bilayers for different materials. . . . . . . . . . . . . . 27
1.12 Staggered grid as used in the Pseudospectral method. . . . . . . . . . . . . . . . . . . . . . 29
1.13 Mass-spring system as it is used by the SED method. . . . . . . . . . . . . . . . . . . . . . . 31

2.1 Elastic curves for collagen in the presence of water. . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Schematic representation of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Band structure of the AB superlattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 SED spectrum of the system at low and high initial displacements. . . . . . . . . . . . . . . 45
2.5 Taylor series of the elastic energy versus strain for the collagen/water open system. . . . . 46
2.6 SED spectrum for a specific wave vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

139



140 List of Figures

3.1 Comparison of resonance curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Phononic crystal composed of N bilayers with a central defect. . . . . . . . . . . . . . . . . 57
3.3 Two views of the “S” curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Representation of the considered 1D PnC without (a) and with (b) a defect. . . . . . . . . . 60
3.5 Transmission spectrum of the structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Output particle velocity versus the input particle velocity. . . . . . . . . . . . . . . . . . . . 64
3.7 Resonance frequency of the defected structure for different input particle velocities. . . . . 65
3.8 Fit of the output power by the theoretical curve. . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9 Variation of the shape of the S curve according to the variation of β, ∆ and Q. . . . . . . . . 67
3.10 Variation of the threshold power and width of the “S” curve. . . . . . . . . . . . . . . . . . 68

4.1 Mass-spring system model containing nonlinear springs with constants K1 and K2. . . . . 72
4.2 Global nonlinear parameters βm and δm of a medium composed of air bubbles in water. . . 78
4.3 Quadratic nonlinear inclusions in a linear matrix. . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Cubic nonlinear inclusions in a linear matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Variation of the quadratic and cubic amplifications with concentration. . . . . . . . . . . . 99

5.1 Rectangular 2D structure used for the validation of the Elastodynamics Operator . . . . . 106
5.2 Horizontal (a) and vertical (b) particle displacement recorded at the first receiver. . . . . . 106
5.3 Horizontal (a) and vertical (b) particle displacement recorded at the second receiver. . . . 107
5.4 Numerical error when simulating wave propagation in our system between orders 1 and 9. 107
5.5 Schematic of the model used for the validation of nonlinearities measurement in Hedge. . . 108
5.6 2nd harmonic vs. distance in a homogeneous medium. . . . . . . . . . . . . . . . . . . . . . 109
5.7 3rd harmonic vs. distance in a homogeneous medium with cubic nonlinearities only. . . . 111
5.8 3rd harmonic vs. distance in a homogeneous medium with quadratic and cubic nonlinearities. 112
5.9 Heterogeneous medium constituted of nonlinear inclusions in a linear matrix. . . . . . . . 112
5.10 Band structure of a PnC made of cylindrical inclusions of porous polymer in a PDMS matrix. 113
5.11 Particle velocity comparison in PnC and effective homogeneous medium. . . . . . . . . . . 114
5.12 Spectrum of the particle velocity of a 20 Hz modulated sine wave propagating through a PnC. 115
5.13 2nd and 3rd harmonics vs. distance in homogeneous and heterogeneous NL media. . . . . 116





Theoretical and numerical study of nonlinear phononic crystals

Abstract

This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities
are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the
crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an
elastic wave through the crystals.

A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a
structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a
strong link between bones hydration and their ability to dissipate the energy.
The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a
switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when
the amplitude of the incident wave reaches a threshold. A full analytical model is provided.
The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic
nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is
performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some
concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.

For this thesis, an innovative tool based on the Discontinuous Galerkin (DG) finite element method is devel-
oped for the simulation of elastic wave propagation, in linear and nonlinear systems and in finite and semi-infinite
media. The implementation of this DG code for 2D and 3D simulations benefits from the efficient exploitation of modern
computer infrastructure (GPU units, clusters) using the property of massive parallelization of DG algorithms.
This thesis is part of a joint agreement for an international PhD degree between École Centrale de Lille and the Materials
Science and Engineering department of the University of Arizona at Tucson.

Keywords: phononic crystals, nonlinear elastodynamics, numerical simulations

Étude théorique et numérique des cristaux phononiques non-linéaires

Résumé

Ce travail porte sur l’étude théorique et numérique des cristaux phononiques non-linéaires. Les non-linéarités étudiées
sont celles dues aux constantes élastiques d’ordre deux (quadratiques) et trois (cubiques) des matériaux constituant les
cristaux. Les effets non-linéaires sont étudiés grâce à des méthodes d’éléments finis en simulant la propagation d’une
onde élastique à travers les cristaux.

Un premier projet de recherche a porté sur l’étude d’une structure osseuse, et plus spécifiquement sur la dis-
persion des ondes élastiques dans une structure constituée d’une alternance de couches de collagène et d’hydroxy apatite.
Les simulations montrent qu’il existe un lien étroit entre l’hydratation des os et leur capacité à dissiper l’énergie.
La seconde étude réalisée concerne un résonateur élastique. Une structure constituée d’inclusions d’acier dans de la silice
présente un comportement de commutateur (switch) lorsque les non-linéarités cubiques de l’acier sont prises en compte.
Cet effet fortement non-linéaire apparaît lorsque l’amplitude de l’onde incidente dépasse un certain seuil. Un modèle
analytique complet est fourni.
La dernière étude réalisée montre la conception de matériaux composites possédant de fortes non-linéarités cubiques
mais de faibles non-linéarités quadratiques. La dérivation des lois de mélange des paramètres élastiques d’un matériau
non-linéaire dans un matériau linéaire est effectuée à l’ordre trois. Les équations montrent une forte amplification des
paramètres non-linéaires du matériau résultant pour certaines concentrations. Les simulations permettent de conclure
que le résonateur mentionné ci-dessus peut effectivement être réalisé.

Pour cette thèse, un outil numérique innovant basé sur la méthode des éléments finis de type Galerkin Dis-
continu (DG) est développé pour la simulation de la propagation d’ondes élastiques, dans des systèmes linéaires et
non-linéaires et dans des milieux finis et semi-infinis. L’implémentation de ce code DG pour des simulations 2D et 3D
tire parti des infrastructures de calcul actuelles (processeurs graphiques, clusters) grâce à la propriété de parallélisation
massive des algorithmes DG.
Cette thèse s’est déroulée dans le cadre d’une cotutelle entre l’École Centrale de Lille et le département de Science et
ingénierie des matériaux de l’Université d’Arizona, à Tucson.

Mots clés : cristaux phononiques, élastodynamique non-linéaire, simulations numériques


	Abstract
	Acknowledgements
	Contents
	Résumé en français
	Introduction
	Étude analytique et numérique des super-réseaux 1D
	Dispersion des ondes élastiques dans une structure osseuse
	Étude d'un résonateur élastique non-linéaire
	Lois de mélange pour les paramètres élastiques quadratique et cubique
	Étude numérique des cristaux phononiques non-linéaires 2D
	Conclusion et perspectives

	Introduction
	1 Analytical and Numerical Study of 1D Superlattices
	1.1 Introduction
	1.2 One-Dimensional Superlattices
	1.3 Analytical Method: Transfer Matrix Method
	1.3.1 Propagation in a Layer
	1.3.2 Propagation in a Bilayer
	1.3.3 Band Structure in a 1D Phononic Crystal
	1.3.4 Propagation of Amplitudes
	1.3.5 Transmission Through a Bilayer
	1.3.6 Transmission Through N Bilayers
	1.3.7 Transmission Through N Bilayers with a Defect
	1.3.8 Reflected Impedance Through a Multilayer
	1.3.9 Transmission Through N Bilayers with Quarter-Wavelength Layers

	1.4 Numerical Methods
	1.4.1 Pseudospectral Method
	1.4.2 Finite Difference Time Domain
	1.4.3 Spectral Energy Density

	1.5 Conclusion

	2 Dispersion of Elastic Waves in a Bone Structure
	2.1 Abstract
	2.2 Introduction
	2.3 Models
	2.3.1 Thermodynamics of a Stressed Solid Solution
	2.3.2 Nonlinear Young's Modulus of Collagen

	2.4 Methods
	2.4.1 Matrix Transfer Method
	2.4.2 SED-FDTD Method

	2.5 Results
	2.5.1 Matrix Transfer Method
	2.5.2 SED-FDTD Method

	2.6 Conclusion

	3 A Nonlinear Elastic Resonator
	3.1 Abstract
	3.2 Introduction
	3.3 Nonlinear Oscillators
	3.3.1 Base Equation
	3.3.2 Study of the Resonance Curves

	3.4 Analytical Model
	3.4.1 Derivation of the Resonator Equation
	3.4.2 Complete Model of the Transmission
	3.4.3 Study of the "S" Curve

	3.5 Models and Methods
	3.6 Results
	3.6.1 Linear Resonator
	3.6.2 Nonlinear Resonator

	3.7 Discussion
	3.7.1 Parametric Study

	3.8 Conclusion

	4 Mixing Laws for the Quadratic and Cubic Elastic Constants
	4.1 Introduction
	4.2 1D Mass-Spring System Model
	4.2.1 Low-concentration Case
	4.2.2 High-concentration Case

	4.3 Mixing Law for a Fluid in 3D
	4.4 Relations Between Constants for Isotropic Solids
	4.4.1 Compression Modulus
	4.4.2 Tensor for the Linear Constants
	4.4.3 Tensor for the Nonlinear Quadratic Constants

	4.5 Landau Coefficients in a Heterogeneous Medium
	4.5.1 Derivation to the Second Order
	4.5.2 Expressions for the Quadratic Nonlinearities
	4.5.3 Derivation to the Third Order
	4.5.4 Expressions for the Quadratic and Cubic Nonlinearities
	4.5.5 Amplification of the Nonlinear Effective Parameters

	4.6 Interpretation and Exploitation
	4.6.1 Interpretation
	4.6.2 Values of the Constants
	4.6.3 Exploitation

	4.7 Conclusion

	5 Numerical Study of 2D Nonlinear Phononic Crystals
	5.1 Introduction
	5.2 A tool for 2D Nonlinear Elastodynamics: Hedge
	5.2.1 The Discontinuous Galerkin Finite Elements Method
	5.2.2 Implementation of an Elastodynamics Operator
	5.2.3 The Nearly Perfectly Matched Layers
	5.2.4 Validation of the Elastodynamics Operator

	5.3 Numerical Studies on 2D Structures
	5.3.1 Validation of the Nonlinear Parameters
	5.3.2 Validation of the Nonlinear Mixing Law in a Propagative System

	5.4 Conclusion

	General Conclusion
	Conclusion
	Prospect

	A Appendix
	A.1 Derivation of the Landau Coefficients to the Third Order

	Publications and Communications
	Bibliography
	List of Tables
	List of Figures

