Régulation de l’agressivité tumorale mammaire par la protéine tyrosine phosphatase PTPL1/PTPN13

Mohamed Hamyeh

To cite this version:

HAL Id: tel-01490435
https://tel.archives-ouvertes.fr/tel-01490435
Submitted on 15 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Délivrée par L’Université de MONTPELLIER

Préparée au sein de l’école doctorale CBS2 Et de l’unité de recherche IRCM
Signalisation de l’invasion tumorale U1194
Avenue des apothicaires-Montpellier
Spécialité : Biologie Santé

Présentée par Mohamed HAMYEH

REGULATION DE L’AGRESSIVITE TUMORALE MAMMAIRE PAR LA PROTEINE TYROSINE PHOSPHATASE PTPL1/PTPN13

Soutenue le 03 Octobre 2016 devant le jury composé de

M.Jérôme SOLASSOL, Pr, Chu-Montpellier, IRCM
Mme. Corinne BOUSQUET, Dr, IRCT-Toulouse
M.Hubert HONDERMARCK, Pr, Université Newcastle, Australie
M.Bruno POZZETTO, Pr, Chu et GIMAP, Saint-Etienne
M. Serge URBACH, Dr , IGF-Montpellier
M.Gilles FREISS, Dr, IRCM-Montpellier

Président
Rapporteur
Rapporteur
Examinateur
Examinateur
Directeur de Thèse
TABLE DES MATIERES

Introduction ... 7

Chapitre I .. 7
1. Historique : Cancers et traitements à travers le temps ... 7
2. Anatomie de la glande ... 9
 2.1. Développement au cours de la vie ... 9
 2.2. Anatomie .. 10
3. Le cancer du sein .. 11
 3.1. Epidémiologie : ... 11
 3.2. Etiologie : .. 14
4. Cancérisation et métastases .. 16
 4.1. La formation de la tumeur primaire ... 17
 4.2. L’invasion tumorale et La formation de métastases .. 18
5. Classification des cancers du sein .. 21
 5.1. Les tumeurs ER+ .. 22
 5.2. Les tumeurs HER2+ .. 22
 5.3. Les triples négatifs ... 22
6. Traitements ... 23
 6.1. La chirurgie ... 23
 6.2. La radiothérapie ... 24
 6.3. La chimiothérapie ... 24
 6.4. Les thérapies ciblées .. 24
 6.5. La nouvelle génération de thérapie ciblée : ... 25

Chapitre II : Phosphorylation, spectrométrie de masse et protéomique .. 30
1. La phosphorylation .. 30
2. Phosphorylation et cancer .. 31
3. La spectrométrie de masse : outil de choix pour l’étude de phosphorylation 31
4. Etudes des protéines : Protéomique .. 34
5. Phosphoprotéomique .. 35
 5.1. Analyse de la phosphorylation par spectrométrie de masse .. 36
 5.2. Préparation de l’échantillon: .. 36
 5.3. Reconnaissance des phosphopeptides .. 37
 5.5. Quantification de phosphorylation ... 39
6. Les stratégies d’étude des voies de signalisation .. 40
 6.1. Protéomique quantitative : SILAC ... 40
7. Interactomique .. 41

Chapitre III : Les tyrosines kinases et les tyrosines phosphatases .. 45
1. Les tyrosines Kinases ... 45
 1.1. Les récepteurs HERs .. 47
2. Les voies de signalisation principales induites par une phosphorylation sur tyroïne : 50
 2.1. Voie des RAS/RAF/MAPK .. 51
Remerciements

Mes sincères remerciements vont d’abord à mon directeur de thèse, Gilles Freiss qui m’a accueilli dans son équipe. Merci Gilles pour ta patience, ta disponibilité et ta compassion, ton soutien et tous tes encouragements. Tu m’as abondamment donné durant toutes ces années.

Mes remerciements vont également à ma première formatrice, Carole Puech, pour m’avoir transmis efficacement les techniques de laboratoire. Merci Carole pour tes soutiens et ton écoute, bien souvent au-delà du cadre de ma formation;

Je remercie grandement aussi Peter Coopmann, notre Directeur de l’équipe « Signalisation de l’Invasion tumorale » pour sa sympathie et sa gentillesse;

Merci à Patrice Nicolas Tschopp, Président de la Société anonyme Alconi Management, qui a cru en moi dès 2012 en m’accordant soutiens, conseils et financements, avant et pendant mes années de thèse, mais aussi après pour la compléter par un MBA dans la perspective de réaliser ensuite un projet professionnel déjà identifié.

J’adresse mes remerciements particuliers au Professeur Bruno Pozzetto à St-Etienne, qui m’a fait découvrir son laboratoire avec encouragements et gentillesse, alors que je me trouvais alors seul en France lors de mon arrivée du Liban en 2011. Merci de faire partie de mon jury ; sa présence valorise ma thèse.

Je remercie aussi tous les autres membres du jury de thèse, Corinne Bousquet pour l’intérêt qu’elle m’a spontanément témoigné ; Hubert Hondermarck qui a m’a apporté des observations pertinentes, déjà dès ma première année de thèse ; Serge Urbach pour notre collaboration efficace et ses explications en protéomique et Jérôme Solassol qui a accepté présider le jury.

Merci à toute ma famille au Liban, à mes frères et sœurs, à mon père et tout spécialement à ma mère Leïla, qui a toujours été présente pour moi, même depuis le Liban, dont l’amour inconditionnel, dévoué et sans limite, ainsi que les prières m’ont toujours accompagné et sans qui je n’aurai pas pu arriver aux succès d’aujourd’hui. Merci à ma deuxième famille en Suisse, à mami Hildgard, à Marc-Antoine, Francine et Stéphane, ainsi qu’à Cyril, Grace, Christèle, Ilona et Léandro.

J’adresse mes remerciement chaleureux à tous mes amis et particulièrement mes amis les plus proches Rabih Darwiche, doctorant en Suisse, toujours généreux avec ses témoignages d’amitié et ses soutiens, ses encouragements et sans qui je n’aurai pas pu venir en France ; à Hassan Moussa qui est resté au Liban, mais où il continue de m’accueillir avec affection ; à Patou, mon meilleur ami à Montpellier qui a toujours été là pour moi et dont les farces me font toujours rire ; à Antoine ghyselene pour sa sagesse, sa sensibilité et nos petites soirées ; à Florian Zuccolo pour sa folie stimulante et son humour
et pour les soirées à Lyon ; à Pierre Isnardon pour sa disponibilité et son aide et pour ses visites toujours trop courtes à mon goût ;

Mes remerciements vont aussi à toute l’équipe de l’ICM et la cantine : à David, Leila, Sandrine, Edith, Marie et Elodie qui habitent aux Aubes ; à mes amis de la fac Mimi et Cycy pour nos soirées prolongées au 1810 à St-Etienne et à Lyon; à tous mes amis étudiants et doctorants à Montpellier pour les bons moments passés ensemble autour de chicha et d’agapes joyeuses, à William, Toufic, Mona, Amanda, Rana, Racha, Emile, Benoit, William, Joelle et à Laura, le papillon de notre équipe et ma stagiaire préférée, ainsi qu’à Dalila, notre stagiaire la plus « Stylish » ; à toute la famille Roux-Levrat à Lyon, à Marie-T, Carole, Chréstian et Nono qui m’ont toujours témoigné leur affection et dont je n’oublie pas la gentillesse ;

J’adresse ma reconnaissance à Maha Jaafar, mon enseignante durant mes années de Bac au Liban, merci pour son affection fraternelle ; je suis heureux de ses mots qui résonnent encore dans mes oreilles lorsqu’elle se réfère à mon parcours pour encourager ses jeunes élèves au Liban ; à Nathalie Perek, Jean-Louis Magnard, Alain Guignandon, les responsables d’études à l’université Jean-Monnet à Saint-Etienne.

Merci aussi à tous celles et ceux qui m’ont proposé des idées et avec qui j’ai réalisé des manips : Sophie Patingre et Cathy. Merci à Philippe Montcourrier, à Dany Chalbos, à tous les membres de mon équipe surtout les protéomistes : Alain Mange et Romain Larive. Merci aussi à Charlène et le petit Yoan de la plateforme d’histologie à l’IRCM, à Julien Cau de l’IGH pour son aide devant un microscope parfois très capricieux, à Sandrine URVOY de l’école doctorale pour sa gentillesse, en bref un grand merci à tout le cadre institutionnel de Montpellier et de St-Etienne.

Ma reconnaissance un peu nostalgique va à mon école perchée dans les montagnes du Sud Liban, à mon village bénit : Qana ; à mon village natal : Taraya ; à mon université à Beyrouth, période teintée pour moi de souvenirs heureux avec Rabih, Mohamad et Hassan, mais aussi de souvenirs moins heureux ; merci également à l’Ecole Coral International School à Jeddah pour mon parcours professionnel d’enseignant avec elle ;

Merci à tous ceux qui m’ont aidé et qui m’ont souri.

… et aussi merci à la France, mon pays d’accueil dès 2011 où j’ai trouvé soutiens et compétences pour me former et construire mon avenir avec enthousiasme et confiance.

Le fruit de ce travail est dédié à Maman, Laila et à toutes les femmes qui souffrent du cancer ou autre...
Liste d’abréviations ou de désignation

17-AGG : 17-déméthoxygeldanamycine
AKT/PKB : AK-mouse strain transforming capabilities/ protéine kinase B :
APC : adenomatus polyposis coli protein
APCI : Atmospheric Pressure Chemical Ionization
CID : collision –induced dissociation
CK : cytokeratin
CML : chronic myeloid leukemia
EC : électrophorèse capillaire
EGF : Epidermal growth factor
EMT : Epithelial–mesenchymal transition
ERK : extracellular signal regulated kinase
ES : Ewing sarcoma
FAK : focal adhesion kinase
FDA : U S Food and Drug Administration
FERM : 4.1 protein ezrin radixin moesin domain
FRS2 : FGFR substrate 2
GAB : growth factor receptor bound protein2-associated binding protein
GFP : Green Fluorescent Protein
GSK-3 : Glycogen synthase kinase 3
HCD : Higher-energy collisional dissociation
HER : Human Epidermal Receptor
HESI : Heated Electrospray Ionization
HHS : hypothalamo-hypophyso-surrénalien
HIF : leukemia inhibitoy factor
HPLC : High-performance liquid chromatography
HIP : Heat shock proteins
iCAT : isotope-coded affinity tags
IGF : Insulin-like growth factor
IPP : interaction protéine-protéine.
IRS1 : Insulin receptor substrate 1
iTRAQ : isobaric tags for relative and absolute quantification
LC-ESI-MS : liquid chromatography-electrospray ionisation-mass spectrometer
LIM : Lin-11, Isl-1, Mec-3
LOH : Loss of heterozygosity
LPA : lysophosphatidic acid
MALDI-TOF : Matrix-assisted laser desorption/ionization-time of flight
MAPK : mitogen activated protein kinase
MEF : mouse embryonic fibroblast
MEK : mitogen-activated extracellular signal regulated kinase-activated kinase
MMTV : Mouse mammary tumor virus
mTOR : mammalian target of rapamycin
NF-κB : nuclear factor-κB
PDZ : post synaptic density protein
(PSD95), Drosophila disc large tumor suppressor (Dlag1), and zonula occludens-1 protein (z0-1)
PH : Pleckstrin homology
PI3K : Phosphoinositide 3-kinase
PKC : protein kinase C
PRK-2 : protein kinase-related kinase 2
PTEN : Phosphatase and TENsin homolog
PTP : protein tyrosine phosphatase
PU-H71 : 8-[(6-iodo-1,3-benzodioxol-5-yl)sulfonyl]-9-[3-(propan-2-ylamino)propyl]purin-6-amine
RAF : Rat fibrosarcoma
RAS : Rat sarcoma
RE : Récepteur estrogène
RIL : reversion-induced LIM
RTK : Récepteur Tyrosine Kinase
SDS-PAGE : sodium dodecyl sulfate-Polyacrylamide gel electrophoresis
SERD : selective estrogen receptor degradation
SERM : selective estrogen receptor modulator
SH : sulfydryl
SH2 : Src homology 2
SHIP : SH2 domain-containing inositol 5'-phosphatase
SHP1 : Src homology region 2 domain-containing phosphatase-1
SILAC : stable isotop labeling aminoacid in cell culture
SSTR : Somatostatin receptor
STAT : stat signal transducer and activator of transcription
TNFR : tumoral necrotic factor receptor
TRP : Transient receptor potential channel
VEGF : Vascular endothelial growth factor
ZRP-1 : zyxin-related protein-1
Introduction

Chapitre I

1. **Historique : Cancers et traitements à travers le temps**

Le cancer est une maladie très ancienne dont les traces se trouvent dans des squelettes humains datant de la préhistoire. Les preuves crédibles les plus anciennes consistent en des masses tumorales trouvées dans des dinosaures fossiliisées (*Cretaceous hadrosaurs*) qui ont vécu il y a 70 millions d’années, ces masses contenaient des tumeurs bénignes mais 0.2% des échantillons ont montré un caractère malin métastatique. Des traces de cancer ont été trouvées sur des momies découvertes dans les pyramides égyptiennes, sur des momies péruviennes et sur des découvertes de monuments funéraires étrusques. Le papyrus chirurgical d’Edwin Smith est un document égyptien écrit aux environs de 1600 avant J.-C. en caractères hiératiques une forme cursive d’écriture de l’ancienne Égypte. Ce traité décrit quarante-huit cas de blessures, fractures, dislocations ou tumeurs et leur traitement. Il contient aussi le diagnostic de huit cas de tumeurs mammaires ainsi que les traitements au moyen d’outils de cautérisation. Selon Herodote, vers 525 ans avant J-C, Atossa, la fille de Cyrus et la femme de Darius fit appeler le fameux médecin grec Democedes pour une tumeur du sein, elle guérit sans que l’on connaisse le traitement utilisé.

Le mot cancer tire son origine du mot latin homonyme qui signifie « crabe ». C’est Hippocrate (460-377 avant J-C) qui, le premier, compare le cancer à un crabe par analogie à l’aspect des tumeurs du sein avec cet animal lorsqu’elles s’étendent à la peau. La tumeur est en effet centrée par une formation arrondie entourée de prolongements en rayons semblables aux pattes d’un crabe. Cette comparaison est reprise ultérieurement par Galien le successeur le plus connu d’Hippocrate (131-201 après J-C) qui écrit un traité des tumeurs et décrit avec beaucoup de précision le cancer du sein : "Maintes fois, nous avons vu aux mamelles une tumeur exactement semblable à un crabe. En effet, de même que chez cet animal il existe des pattes des deux côtés du corps, de même, dans cette affection, les veines étendues sur cette tumeur contre nature présentent une forme semblable à celle d’un crabe. Nous avons guéri souvent cette affection à son début. Quand elle a pris une étendue considérable, personne ne l’a guérie sans opération." (In Galien, "de la méthode thérapeutique, à Glaucón, livre II").

Galién a amélioré la compréhension du cancer, il a classé les tumeurs selon leurs malignités. Les *De tumoribus secondum naturam* (tumeurs selon la nature) comprennent les enflammements naturels tel que le développement pubertal des seins et l’utérus en gestation. *De tumoribus supar naturam* (tumeurs surnaturelles) comprenant les abcès, les gonflements inflammatoires. *De tumoribus praeter naturam* (tumeurs au-delà de la nature), qui correspondent aux cancers tel que nous l’entendons de nos jours.

Après la chute de Rome en 476, les connaissances médicales de l’empire romain ont stagné. Dans cette période plusieurs médecins ont émergé tels que Aetius d’Amidenus (502-575) et Paulus AEginetas (Paul d’Egine) (625-690) qui ont chacun pris les travaux de Galién comme source de leurs connaissances médicales.
Ensuite, Léonide à Alexandrie dans le deuxième siècle après JC a fait des observations sur le cancer du sein : « Le cancer du sein apparaît principalement chez les femmes et rarement chez les hommes. La tumeur est douloureuse à cause de l’intense traction du mamelon. Il faut s’abstenir d’opérer quand la tumeur s’empare sur la totalité du sein et adhère au thorax. Mais si la tumeur squirrheuse commence sur le bord et se propage sur plus de la moitié du sein, il faut amputer le sein sans cautérisation »

Paulus AEgineta a remarqué la présence des nœuds lymphatiques dans les aisselles des femmes qui ont le cancer du sein et il a préconisé une extraction de coquelicot pour soulager la douleur. Les connaissances grecques se sont propagées jusqu’à la civilisation arabe. Abu-Marwan abd el-Malik al-Zuhr ou Avenzoar (1094-1162) a décrit pour la première fois les symptômes du cancer de l’œsophage et de l’estomac dans son livre *kitab al-taysir fi al-mudawat wa al-tadbir* (Le manuel pratique des traitements et des régimes).

Dans la période allant entre les moyens âges et la deuxième guerre mondiale, L’Europe a connu une renaissance d’intérêt pour la culture grecque. L’Italien, Gabriele Fallopius (1523-1562), a décrit les différences cliniques entre les tumeurs malignes et les tumeurs bénignes comme on le sait à nos jours. Il a caractérisé les tumeurs malignes par leur fermeté ligneuse, leurs formes irrégulières, leur multi-lobulation, leur adhésion aux tissus avoisinants et par des vaisseaux sanguins congestionnés autour de la lésion. En 1773, l’académie de Lyon, a attribué le prix de meilleur rapport scientifique sur « Qu’est ce que le cancer » à Bernard Peyrilhe (1735-1804) pour ses investigations de thèse sur la nature, les causes et le traitement du cancer. Il a postulé la présence des « matières ichoreuses » ; des facteurs proches aux virus émergeant de la lymphe dégradée ou putréfiée et promouvant les cancers. Ses travaux en chirurgie ont abouti à l’ablation des ganglions lymphatiques axillaires. Inspiré par les travaux de Peyrilhe, William Halsted, chirurgien new yorkais, (1852-1922) a rendu populaire la mastectomie radicale. Robert Bemak (1815-1865), mieux connu pour ses travaux sur le lien entre les couches embryonnaires et l’organe mature, postule que le cancer n’est pas une formation mais une transformation du tissu normal, qui ressemble ou diffère (si dégénéré) au tissu d’origine. Louis Bard (1829-1894) a élargi les observations de Bemak en proposant que la cellule cancéreuse, contrairement à la cellule normale, souffre des défauts durant la division ce qui aboutit à la formation de tumeur. En 1926, Johannes andreas Grib Fibiger (1867-1928) a eu le prix Nobel de physiologie/médecine pour ses travaux consistant à nourrir des souris avec des cafards contenant des larves de spiroptera. Fibiger a observé une croissance tumorale dans les estomacs de la majorité des souris. C’était la première fois où les cellules normales se transforment par manipulation expérimentale en cellules ayant toutes les caractéristiques du cancer.

Ja
dis, on pensait que les dieux gèrent le destin de l’homme, sa santé et les maladies. La médecine et la religion étaient entrelacées et pratiquées par les sages et les prêtres qui étaient révérés comme étant intermédiaires de dieux. L’avancée des sciences du moyen âge à l’époque de la 2ème guerre mondiale a finalement abouti à la découverte de l’anesthésie en 1842 par Crawford W. Long, l’a
depsie en 1867 par Joseph Lister, le rayonnement X en 1895 par Wilhelm Conrad Röntgen (prix Nobel de Physique en 1901), l’Uranium par Henri Becquerel, et le radium et le polonium par Marie et Pierre Curie (Prix Nobel de physique 1903 et Prix Nobel de chimie 1911), tout cela a participé dans la mise en place d’un
traitement anticancéreux, actuellement nommé la radiothérapie. Le gaz moutarde, agent de formation des cloques, est considéré pour la première fois comme un agent de guerre chimique par l’armée impériale allemande. Il a été largement utilisé dans la première guerre mondiale, la première fois en 1915 sur une ville belge Ypres, d’où son appellation ultérieure Ypérite. En 1919, le corps médical militaire américain indique une baisse de nombre de globules blancs chez les soldats survivants à l’exposition au gaz moutarde. L’Ypérite étant actuellement la base de la chimiothérapie cytotoxique. Dans le siècle dernier, en 1990 un jeune oncologue dit : « c’est dur à admettre, mais le cancer est une discipline presque compassionnelle. Dans la plupart des cas nous n’avons malheureusement pas beaucoup de solutions thérapeutiques à offrir à nos malades ». À cette époque l’arsenal thérapeutique des praticiens consistait en la chirurgie, la radiothérapie et la chimiothérapie qui détruisent également les cellules saines et malades.

L’histoire ne s’arrête pas là, puisque de nouvelles stratégies, comme la thérapie ciblée, sont en permanence testées pour faire reculer la maladie.

2. Anatomie de la glande

2.1. Développement au cours de la vie

Le développement anatomique de la glande mammaire commence dès les premières semaines de la vie foetale. À la 4ème semaine, la crête mammaire, épaississement bilatéral de l’ectoderme, apparaît. Ensuite deux bourgeons mammaires apparaissent le long de cette crête, ils sont symétriques et situés au niveau pectoral. À la 6ème semaine, les deux bourgeons mammaires persistent et forment l’aréole alors que la crête disparaît. Cette étape constitue la fin de la période embryonnaire.

Au cours du 5ème mois, les bourgeons mammaires s’invaginent dans le mésoderme sous-jacent en 15 à 20 prolongements cylindriques pleins, lesquels se dilatent à leur extrémité. Au 7ème mois, une lumière se creuse dans ces prolongements, c’est l’ébauche des canaux galactophores.

Au 8ème mois, ces canaux s’ouvrent au niveau d’une dépression épithéliale située à l’emplacement du futur mamelon. En profondeur, les canaux se différencient en unités glandulaires. En fin de période foetale, le sein est représenté par un léger relief cutané où se situent les orifices des canaux galactophores.

La glande reste au repos jusqu’à la puberté. Chez le garçon, la glande mammaire reste à ce stade toute la vie, à l’âge adulte, elle est réduite à un petit amas glandulaire et reste susceptible de présenter les mêmes pathologies que chez les femmes.

La ramification des canaux galactophores et de la lobulation à partir du tissu conjonctif augmente légèrement dans la période prépubertaire. À la puberté le volume mammaire
augmente, les sécrétions hormonales liées aux premiers cycles ovulatoires stimulent la croissance des canaux, des lobules et des alvéoles.

Durant chaque cycle menstruel, les seins subissent des fluctuations selon les variations des concentrations plasmatiques des hormones féminines. Ces variations deviennent plus importantes lors de la première grossesse avec élaboration des structures permettant la lactation.

2.2. Anatomie

Le sein est une masse d’environ 200 g chez la jeune fille, 500 g chez les femmes allaitantes, semi-sphérique de taille d’environ 12 cm en hauteur et largeur, occupant la partie antéro-supérieure du thorax, de part et d’autre du sternum en avant des muscles pectoraux, en regard de l’espace compris entre la 3ème et la 7ème côte.

Comme le montre la figure 1, la structure du sein est comparable à celle d'une grappe de raisin. Entre 15 et 25 lobes de tissu glandulaire. Le tissu adipeux et le tissu glandulaire sont étroitement mélangés dans le sein. Chez la femme jeune, il y a à peu près autant de tissu graisseux que de tissu glandulaire, mais avec l’âge la proportion de tissu graisseux augmente. Elle augmente aussi avec la taille du sein. Chaque lobe est composé d’ascini, drainé par de fins canaux, qui forment un réseau complexe, puis se rejoignent pour former un canal galactophore collecteur. Ces canaux se regroupent ensuite pour former 4 à 18 canaux lactifères (9 en moyenne) qui débouchent au niveau du mamelon. 65 % du tissu glandulaire est situé dans les 30 mm qui entourent la base du mamelon, zone dans laquelle le tissu graisseux est presque inexistant. Le diamètre des principaux canaux lactifères qui débouchent au mamelon va de 1,2 à 2,5 mm de diamètre, tandis que l’ouverture au niveau du mamelon fait 0,4 à 0,7 mm ; elle est entourée d’un petit muscle circulaire.

Fig.1. Coupe sagitale du sein

Source: http://www.cancer.ca/fr-ca/cancer-information/cancer-type/breast/anatomy-and-physiology/?region=on
Les seins sont pleinement fonctionnels pendant la lactation. L’anatomie du sein lactant reste très peu étudiée, malgré les progrès de l’imagerie médicale. Les mammographies sont plus difficiles à lire pendant l’allaitement, en raison de l’augmentation de volume des seins et de la présence de lait, qui augmente la densité des images.

Pendant la lactation, l’échographie a permis de constater que le tissu glandulaire était environ 2 fois plus volumineux que le tissu graisseux, mais là encore il existe d’importantes variations individuelles.

Le lait est synthétisé en continu dans les ascini à partir des nutriments apportés par le sang artériel, les déchets sont déversés dans le sang veineux. Les cellules sécrétrices de l'alvéole fabriquent le lait qui est excrété dans la lumière de l’acinus. Les mécanismes exacts de la sécrétion de tous les composants du lait restent bien souvent mal connus, mais ils sont multiples (exocytose, transcytose, excrétion paracellulaire, Etc.). Les parois de l'alvéole sont en collagène, et sont doublées de cellules myoépithéliales. Ces cellules, sous l'action de l'ocytocine se contractent et chassent le lait dans le canal excréteur.

3. Le cancer du sein :

3.1. Epidémiologie :
Le cancer du sein est un problème majeur de santé publique. C’est le cancer féminin le plus répandu, il représente un tiers des cancers féminins. Dans le monde, le nombre de nouveaux cas augmente chaque année : 1.1 million femmes sont diagnostiquées et 410,000 femmes en meurent.

En France, on estime en qu'entre 40 000 et 50 000 femmes sont atteintes chaque année avec 53 000 nouveaux cas estimés en 2011. Le nombre de nouveaux cas a doublé entre 1980 et 2000. Parallèlement, les taux d’incidence standardisés ont fortement augmenté de 2.42% jusqu’en 2000 avant de se stabiliser puis de diminuer à partir de 2005 : 56,3 cas pour 100 000 personnes en 1980, 97,8 en 2005 et 88,0 en 2012, comme renseigné dans la figure3. Cette baisse, observée surtout chez les femmes de tranche d’âges située de 50 à 74 ans, revient d’abord au diagnostic précoce, mais aussi à la diminution de la prescription de traitements hormonaux de la ménopause. Le délai court entre la baisse de prescription des traitements hormonaux et la diminution de l’incidence des tumeurs de stade précoce fait penser que ces traitements jouent le rôle d’élément « initiateur ». Le pronostic de vie des patientes atteintes au cancer du sein s’est considérablement amélioré. La survie nette était de 81% à 5 ans entre

Fig.2. Anatomie d’un acinus mammaire

Source : http://www.lllfrance.org/1762-l-anatomie-du-sein
1989 et 1991, elle a augmenté jusqu’à 89 % entre 2001 et 200417, ce qui place la France au troisième rang en Europe. Ceci revient au dépistage précoce et à la mise en place des plateformes de génétique moléculaire qui permettent l’accès gratuit aux tests et aux consultations de génétique 18. Le diagnostic à un stade de plus en plus précoce de ces cancers et l’amélioration de la prise en charge thérapeutique contribuent à l’augmentation de la survie.

Malgré la forte hausse de l’incidence jusqu’aux alentours de 1995, le niveau de mortalité en cancer du sein est restée relativement stable durant cette période, puis a diminué significativement jusqu’en 2012. En effet, la mortalité baisse en moyenne de 0,6 % par an entre 1980 et 2012, et de 1,5 % par an entre 2005 et 2012 (figure 3).

\textbf{Fig.3.} Évolution de l’incidence et de la mortalité du cancer du sein en France de 1980 à 2005. Le niveau d’incidence a augmenté constamment jusqu’à ce qu’il double en 2005. La mortalité présente une très légère diminution.

Le risque d’être atteint de ce cancer entre 0 et 74 ans varie selon la cohorte de naissance. Il passe de 5,8 % pour la cohorte née en 1920 à 9,7 % pour celle née en 1945, puis diminue un peu à 9,1 % pour la cohorte née en 1950 (figure 4).
L’épidémiologie présente une variabilité géographique. En effet, dans les pays industrialisés, l’incidence est cinq fois plus élevée que dans les pays en voie de développement. Au sein du même pays, la variabilité géographique existe aussi. Selon le nombre des nouveaux cas, la France peut être divisée en 3 régions selon la figure 5. La Corse et l’Occitanie (l’ancienne région Languedoc-Roussillon-Midi-Pyrénées) bénéficient des plus bas niveaux d’incidence.

Fig.4. Risque cumulé 0-74 ans en % selon la cohorte de naissance, cancer du sein :

Fig.5. Taux d’incidence des cancers du sein chez les femmes en 1995 (projections). L’incidence présente une variabilité géographique. On y distingue 3 classes selon la hausse de l’incidence. Zones où l’incidence est faible (moins de 75 patientes parmi 100.000), Incidence moyenne (entre 75 et 84 patients parmi 100.000) et haute incidence (plus de 85 patientes parmi 100.000). Issu de la Santé observée de la FNORS, Sources : Francim-exploitation Fnors
3.2. Etiologie :

Plusieurs études épidémiologiques et expérimentales ont permis d’identifier plusieurs facteurs susceptibles d’augmenter le risque de développer un cancer du sein :

3.2.1. Facteurs hormonaux :

a. Facteurs hormonaux endogènes : les femmes ayant été réglées avant l’âge de 12 ans ainsi que celle dont la ménopause est survenue après l’âge de 55 ans sont exposées à un risque augmenté de développer un cancer du sein. Le fondement biologique de cette association correspond à l’exposition prolongée à l’imprégnation hormonale qui existe durant la période d’activité des ovaires.

De la même façon, les femmes n’ayant pas eu d’enfant ou celles n’ayant pas allaité ont un risque de cancer du sein légèrement supérieur aux autres femmes. En effet, les femmes qui ont mené au moins une grossesse à terme avant l’âge de 30 ans présentent, en moyenne, un risque de cancer du sein diminué de 25 % par rapport aux femmes nullipares, ainsi que les femmes ayant allaité pendant une durée totale d’au moins 25 mois présentent un risque réduit de 33 % par rapport à celles qui n’ont jamais allaité, l’explication biologique de l’association inverse entre l’allaitement et le risque de cancer du sein n’est pas entièrement connu. Toutefois, quelques mécanismes pourraient être plausibles. La lactation cause des changements hormonaux dans le corps de la femme ; une augmentation de prolactine et diminution d’oestrogènes. Par conséquent, la lactation réprimerait l’apparition et le développement du cancer du sein.

b. Facteurs hormonaux exogènes : les femmes qui utilisent couramment des contraceptifs oraux ainsi que celles ayant suivi un traitement hormonal substitutif (THS) pendant cinq ans ou plus ont un risque de contracter un cancer du sein augmenté de 25% et 26% à35% respectivement. Dans les deux cas le risque chute dès l’arrêt de l’utilisation du traitement hormonal.

3.2.2. Facteurs génétiques, environnementaux, démographiques

a. Antécédents familiaux : L’existence de formes familiales de cancer du sein est connue depuis longtemps. La recherche a mis en évidence des de prédisposition au cancer du sein qui sont transmis dans certaines familles. Deux gènes, BRCA1 et BRCA2, semblent les plus impliqués. Le risque associé aux mutations de ces gènes dépasse 80% lorsque le sujet porteur atteint l’âge de 70 ans.

En pratique, le risque d’avoir un cancer du sein est double chez une femme dont la mère ou la sœur a eu la maladie. Si le cancer est survenu chez la mère avant la ménopause, les risques chez la fille sont encore plus élevés.

b. Antécédents personnels : Après un cancer à un sein, une femme présente 4 à 5 fois plus de risque de développer une tumeur au niveau de l’autre sein par rapport aux femmes sans
antécédent. En moyenne, cela concerne 15 % des femmes traitées pour un cancer du sein. En général, les lésions non-prolifératives sont liées à un faible risque, tandis que les lésions prolifératives sans atypie multiplient le risque par deux et les lésions prolifératives avec atypie augmentent ce risque d’au moins quatre fois²⁹.

c. Âge : Deux tiers des cancers du sein surviennent après 50 ans. La maladie est rare chez la femme de moins de 35 ans et tout à fait exceptionnelle au-dessous de 20 ans³⁰.

d. Radiations ionisantes : Le sein est l’un des organes les plus sensibles aux effets des radiations. L’exposition des femmes aux radiations ionisantes avant l’âge de 40 ans augmente le risque de développer un cancer mammaire dans les années ultérieures³¹. Les radiations ionisantes augmentent le risque de cancer du sein dans la mesure où elles endommagent l’ADN et ses constituants.

e. Densité du tissu mammaire : Pour les femmes ayant des seins denses en mammographie, le risque est multiplié de deux à six fois³²,³³.

3.2.3. Facteurs liés à l’hygiène de vie

b. Sédentarité et surpoids : La sédentarité et le surpoids pourraient aussi avoir une influence sur le risque de cancer : ceci est peut-être dû au fait que le tissu graisseux stocke facilement certaines hormones impliquées dans le développement de ces cancers, ceci explique l’augmentation d’environ 50% du risque de cancer du sein chez les femmes obèses ménopausées³⁹. Les femmes ayant un surpoids de plus de 20 kg à partir de l’âge de 18 ans présentent, après la ménopause, un risque de cancer du sein multiplié par deux³⁴. On rappelle ici qu’après la ménopause, l’aromatisation des androgènes dans le tissu adipeux est l’une des plus importantes sources d’estrogènes circulants.

En particulier chez les femmes ménopausées, l’activité physique modérée (30 à 60 minutes au moins 4 fois par semaine) réduit de 35% le risque de cancer du sein³³. L’obésité après la ménopause est un facteur risque indépendant du cancer du sein, elle peut être évitée par l’activité physique, une composante majeure du maintien de l’équilibre énergétique³⁵.

c. Alcool : L’alcool est le seul facteur nutritionnel établi pour être associé à un risque de cancer du sein, ce risque est augmenté de 7% pour une consommation journalière d’une boisson alcoolique. L’alcool cause l’augmentation des hormones dans le sérum et la production accrue de facteurs de croissance IGF (insulin-like growth factor) qui peuvent avoir un rôle mitogène et inhibent l’apoptose³⁶,³⁷,³⁸,³⁹.

Il est certain que la fumée du tabac est une importante source de substances carcinogènes, cependant les données concernant la corrélation entre tabagisme et risque de cancer mammaire sont contradictoires et le rôle du tabagisme dans l’étiologie des cancers du sein n’est pas encore établi.
4. Cancérisation et métastases

Comparée à la cellule normale, la cellule cancéreuse acquiert six caractéristiques essentielles indiquées dans la figure 6 : une autonomie vis-à-vis des signaux stimulant la prolifération, une insensibilité aux signaux inhibiteurs de la prolifération, la capacité de la cellule d’échapper aux systèmes déclenchant la mort cellulaire programmée, l’acquisition d’un potentiel de réplication infini, la capacité des cellules à susciter la néo-angiogenèse et l’acquisition d’un pouvoir invasif. Deux autres caractéristiques émergentes impliquées dans la pathogenèse, la première est la reprogrammation du métabolisme cellulaire afin de répondre au besoin accru d’énergie des cellules néoplasiques prolifératives, la deuxième permet aux cellules tumorales de s’échapper à la surveillance immunitaire particulièrement les cellules lymphocytaires B et T, les macrophages et les natural-killers. Les deux dernières caractéristiques de la néoplasie qui facilitent l’acquisition d’un phénotype tumoral : l’instabilité du génome et l’inflammation.

Le cancer est un processus multi-causal et de caractère évolutif. Selon le modèle classique de la progression tumorale, une cellule ayant subi une accumulation d’altérations génétiques échoue à maintenir les mécanismes de réparation des cassures de ses gènes, la cellule ensuite subit une expansion clonale grâce à l’activation de prolifération et de survie. La dissémination métastatique constitue la cause majeure de mortalité liée au cancer.

Après la formation de la masse tumorale primaire, certaines cellules s’échappent de cette masse, circulent dans les vaisseaux sanguins et lymphatiques et colonisent d’autres niches. On parle donc de la formation de métastases. Les différentes étapes de formation de la tumeur ainsi que sa généralisation peuvent être décrites comme le montre la figure 7:
4.1. La formation de la tumeur primaire

Les cellules épithéliales subissent des altérations génétiques successives qui aboutissent à l’activation d’oncogènes et l’inactivation de gènes suppresseurs de tumeurs qui peuvent provoquer des modifications phénotypiques de l’épithélium mammaire telle que l’hyperplasie et la dysplasie. L’hyperplasie correspond à une prolifération cellulaire incontrôlée. Ces cellules deviennent métaplasiques, elles prolifèrent de façon anarchique et commencent à se transformer. La dysplasie correspond à une lésion précancéreuse avec une anomalie du renouvellement cellulaire associé à des degrés divers d’atypies, de différenciation et de modifications architecturales. Elle est due à un trouble acquis de l’homéostasie cellulaire résultant d’anomalies génétiques qui perturbent la division et la maturation cellulaire. Les cellules dysplasiques peuvent se transformer en cellules cancéreuses dans des délais très variables. L’état dysplasique peut être diagnostiqué par des examens cytologiques, histologiques et anatomopathologiques pour évaluer le pronostic, informer sur le grade d’avancement de la cancérisation et par suite adapter la thérapie.

Le tissu précancéreux présente des lésions histopathologiques détectables avant l’apparition d’un cancer. La formation de la tumeur primaire se divise en deux étapes : la dysplasie et le carcinome in situ. Une fois que la taille de la tumeur dépasse les 2 mm de diamètre le système angiogénique se met en place.

Quand la tumeur atteint le stade final de dysplasie, elle commence le stade de carcinome in situ qui se définit comme étant une prolifération des cellules cancéreuses épithéliales sans parvenir à franchir la membrane basale, elle y reste confinée. Ceci est dû à la présence des éléments de cohésion intercellulaires et structures adhésives tels que l’E-cadhérine. Il est quasiment impossible de distinguer histologiquement le carcinome in situ et la dysplasie de haut grade. Le dépistage est en effet très important à ce stade pour le pronostic, le traitement...
peut être local et efficace. Il se peut que le carcinome \textit{in situ} demeure non-invasif pendant des années, mais dans la majorité des cas (75\%) il évolue en carcinome invasif.

\textbf{4-2. L’invasion tumorale et La formation de métastases}

Avant de former des métastases, les cellules tumorales invasives ont plusieurs étapes à franchir :

- Département cellulaire et invasion de la matrice extracellulaire.
- L’intravasation des cellules tumorales dans les vaisseaux sanguins et lymphatiques
- La survie des cellules tumorales dans la circulation vers d’autres organes
- L’extravasation des cellules tumorales qui quittent alors les vaisseaux et envahissent un organe secondaire
- La prolifération des cellules tumorales dans un site étranger.

Nous nous intéressons particulièrement à la première étape qui concerne l’acquisition précoce de caractère invasif quand les cellules se détachent et envahissent. Pour acquérir ce caractère invasif les cellules subissent une transition d’un phénomène épithelial à un phénomène mésenchymateux, ensuite la dissémination métastatique exige une activation de la migration et de l’invasion.

Les cellules tumorales invasives peuvent gagner les vaisseaux sanguins et lymphatiques. Elles s’accumulent alors dans les ganglions lymphatiques les plus proches (ganglions axillaires) ou se dirigent vers d’autres régions du corps et génèrent ainsi des métastases. Une très faible proportion de cellules tumorales circulantes (moins d’une cellule sur 10,000) peut former des métastases à distance qui est l’étape ultime de la progression tumorale.

L’écosystème stromal contient une variété de types cellulaires, entre autres, des adipocytes, des cellules endothéliales angiogéniques, des cellules immunitaires infiltrées et des fibroblastes. Les fibroblastes associées au cancer ou CAFs (cancer associated fibroblast) proviennent de plusieurs types des cellules progénitrices : les fibroblastes résidents, les pérycytes, les cellules endothéliales ou épithéliales mais aussi les fibrocytes circulantes dérivées de la moelle osseuse et les cellules souches mésenchymateuses (MSCs). Ces fibroblastes sont associés aux cellules tumorales tout au long de la croissance et de la progression tumorales. Ils produisent des facteurs de croissance et chimioines. Leur contractilité est responsable du remodelage de la matrice et de l’alignement du collagène pour faciliter la migration45.

18
Dans le contexte tumoral, les cellules stromales et tumorales secrètent des facteurs stimulants la migration. Ces facteurs ont été identifiés tel que L’AMF (autocrine motility factor), le SF (scatter factor) et le TGFβ (Transforming growth factor B). Tous ces facteurs ont un effet dispersant les cellules et améliorant l’invasion et la migration et favorisent la transition épithélio-mésenchymateuse ou EMT.

La transition épithélio-mésenchymateuse ou EMT est un processus embryonnaire de transdifférenciation permettant de générer des cellules de phénotype mésenchymateux à partir d’un épithélium structuré. Cette transition s’accompagne de la perte des jonctions cellulaires, de la dépolarisation cellulaire, de la destruction de la membrane basale et de l’invasion (figure 8). C’est un processus morphogénique qui a un rôle fondamental dans le développement : la mise en place du mésoderme pendant la gastrulation, la migration des cellules de la crête neurale, la formation des valves cardiaques, etc. Elle a un rôle essentiel dans la cicatrisation de blessures, etc. En dehors de la physiologie, l’activation anormale de l’EMT est impliquée dans deux types de pathologies : Les fibroses tissulaires et les cancers.

Il est maintenant établi que l’aberrante réactivation d’EMT est considérée comme l’une des forces motrices de la dissémination métastatique. Elle permet aux cellules malignes d’acquérir...
la mobilité et la plasticité nécessaires lors de la dissémination47. L’EMT interrompt les desmosomes, les hémidesmosomes et les jonctions serrées et induit la perte d’expression des molécules d’adhésion en particulier des cadhérines.

Lors de la progression tumorale, des études ont constaté une induction constitutive des voies de signalisation contrôlant l’EMT comme les voies Wnt, Hedgehog, Notch, ainsi que des voies de signalisation empruntées par les cytokines de types TGF-β, EGF, FGF et HGF et une réactivation des facteurs de transcription qui dirigent le processus en particulier les protéines Snail, Twist et Zeb. Certains cas de stress peuvent induire ces facteurs. Par exemple, la prolifération anarchique des cellules conduit à une compression mécanique capable d’induire l’expression de Twist1,48 par le biais de la voie Wnt49. Il en est pareil lors de l’hypoxie, Twist 1, Snail et Slug peuvent être induites via HIF\textsubscript{1}50,51.

La migration est un phénomène cyclique complexe nécessitant l’intervention de système de réorganisation de cytosquelette et celui d’attachement des cellules à un substrat, telles les intégrines. Pour migrer, la cellule se polarise d’abord et produit ensuite des extensions membranaires. Pour stabiliser ces extensions membranaires au niveau de la matrice, les cellules forment des contacts focaux52 ensuite les corps cellulaires avancent dans la direction du mouvement, ensuite le complexe d’adhésion à l’arrière de la cellule se désassemble permettant ainsi à la cellule d’avancer dans le mouvement. Certains facteurs solubles du stroma ont des propriétés chimiotactiques et peuvent moduler la migration53. Pour migrer d’une manière efficace, toutes les étapes de la migration doivent être coordonnées dans le temps et dans l’espace54 afin de maintenir un équilibre de mouvement. La cellule doit organiser harmonieusement l’assemblage et le désassemblage de ses contacts focaux en avant et en arrière de la cellule respectivement. Un petit déséquilibre peut inhiber ou retarder la migration55.

Les modes de migration des cellules cancéreuses sont très diverses et dépendent du type cellulaire et des interactions intercellulaires et avec le microenvironnement53. Les études de migration ont d’abord focalisé sur la migration d’une cellule unique (single cell migration)56, où les cellules perdent l’adhésion cellule-cellule comme dans les cas de la leucémie et du lymphome57. Par contre dans la majorité des cancers, histomorphologiquement, l’unité d’invasion la plus fréquente est un groupe de cellules dont le comportement global définit des fonctions malignes58–60. Dans ce genre de migration collective, les cellules restent cohésives tout en perdant des composant des contacts cellulaires61. Dans le processus métastatique, les interactions intercellulaires doivent être rompues et les interactions de la cellule avec la matrice extracellulaire doivent être modulées de façon dynamique.

La migration est nécessaire à l’invasion, en effet les cellules doivent migrer et franchir la lame basale pour pouvoir envahir les tissus environnants.

Pendant le stade d’invasion, les cellules subissent des modifications phénotypiques et géniques. Les protéines d’ancrage à la matrice et les jonctions intercellulaires sont en effet altérées. L’adhésion assurée par des composants moléculaires tels que les intégrines, lectines
et E-cadhrines est perdue au cours du processus de l’invasion. Les cellules qui perdent leurs contacts intercellulaires acquièrent des capacités migratoires et forment des pseudopodes pour s’aider à se déplacer. Les cellules acquièrent aussi des capacités invasives qui leur confèrent le potentiel de se détacher de la tumeur primaire, de franchir la membrane basale et d’envahir la matrice extracellulaire par la sécrétion de plusieurs protéases dégradant la matrice : des métalloprotéases MMP, des plasmines cathepsines et des glycosidases. Certaines enzymes métalloprotéases sont capables de réguler la formation des nouvelles vascularisations en clivant le plasminogène et en générant l’angiostatine.

5. Classification des cancers du sein

Les cancers sont classés aujourd’hui morphologiquement selon certains critères : taille, type histologique, capacité d’envahir les ganglions, présence des récepteurs hormonaux (œstrogène-ER et progestérone PR) et surexpression de récepteurs HER2.

En fonction de ces caractéristiques, le pronostic sera évalué et le traitement sera adapté. Le progrès des approches transcriptomiques et histopathologiques a permis une classification plus affinée. Les données transcriptomiques ont permis de distinguer six types de cancers du sein : les cancers luminaux A et B, normal-like, basal-like, claudin-low et HER2+.

Les cancers Luminaux A et B : ces cancers se distinguent par l’expression des récepteurs aux œstrogènes (ER). Les cancers luminaux A sont de bas grade, ont tendance à se développer assez lentement, et ont un meilleur pronostic alors que les cancers luminaux B ont un niveau de multiplication généralement plus rapide que les cancers luminaux A et leurs pronostics ne sont pas aussi bons.

Les cancers du sein dits normal-like, sont caractérisés par un profil triple négatif (ER- ; PR- et ne surexprimant pas HER2) et par l’expression de gènes observés dans le tissu mammaire normal et le tissu adipeux.

Les cancers de type basal: La plupart de ces cancers sont dit triple négatif, ce qui signifie qu’ils manquent d’expression d’œstrogène, de progestérone et de HER2. Ce type est plus fréquent chez les femmes présentant des mutations du gène BRCA1. Pour des raisons qui ne sont pas bien comprises, ces cancers sont plus fréquents chez les jeunes et les femmes afro-américaines.

Les cancers HER2+: Ces cancers ont des copies supplémentaires du gène HER2 et parfois quelques autres. Ces cancers ont tendance à croître rapidement et ont un mauvais pronostic, mais ils peuvent souvent être traités avec succès avec des thérapies ciblées visant à HER2.
Une partie des cancers triple négatifs sont des « claudin-low » probablement issues des cellules souches. Les tumeurs de cette catégorie se caractérisent par un déficit d’expression en protéines « Claudin » : des composés importants dans la jonction entre cellules épithéliales.

Les cancers associés au plus mauvais pronostic sont les basal-like, claudin-low et Her2+. De point de vue clinique, les cancers peuvent être classés en trois groupes thérapeutiques :

5.1. Les tumeurs ER+

5.2. Les tumeurs HER2+

15% des cancers du sein surexpriment HER2. L’expression de HER2 dans ces cancers est un marqueur de mauvais pronostic à cause de la capacité proliférative accélérée. Certains de ces cancers expriment les récepteurs hormonaux, récepteurs aux oestrogènes et la progestérone. Ces tumeurs surexpriment les gènes de l’amplicon HER2 par exemple le GRB7, PGAP3, TGFB1-induced antiapoptotic factor 1 et TNF receptor associated factor 4. 40 à 80% des tumeurs HER+ présentent une mutation de P53.

5.3. Les triples négatifs

Représentant 10 à 15% des cancers du sein. Ils sont caractérisés par l’absence des récepteurs aux oestrogènes, à la progestérone et Her2. Ils englobent les sous types basaux et les claudin-low qui partagent quelques caractéristiques communes comme la sous-expression des marqueurs luminaux comme les cytokératines Cks 8 et 18 et la surexpression des marqueurs basaux comme les Cks 5, 14 et 17. Les claudin-low sont plus riches en marqueurs de l’EMT par exemple, la perte d’expression des protéine de jonctions cellulaire de type E-cadhérine, Claudine 3,4 et 7 et l’acquisition des caractéristique de « souchitude » ou la signature des cellules initiatrices des tumeurs : CD44+/CD24-. Les tumeurs de type triple négatif sont le plus souvent des carcinomes canalaire infiltrants, mais le carcinome canalaire in situ peut aussi être triple négatif. Les femmes présentant des mutations du gène BRAC1 sont plus à risque de développer un cancer du sein de type basal. 82% des cancers de cette classe présentent une mutation de P53.
6. Traitements

Il est impossible d’éviter la survenue d’un cancer du sein. Néanmoins, il est possible de le dépister précocement pour cela, il faut :

- Un suivi régulier auprès de son médecin.
- Une consultation par an à partir de l’âge de 30 ans est fortement conseillée.
- Des mammographies régulières : Ce test consiste en une prise de deux clichés radiologiques par sein. Si une anomalie est détectée, des examens complémentaires seront prescrits (mammographie complémentaire, échographie, ponction et éventuellement biopsie).

Il n’y a pas un traitement pour tous les cancers. Le traitement est en général adapté aux patientes (âge, statut hormonal) et aux caractéristiques de la maladie (stade, type, localisation). Les traitements du cancer du sein consistent en quatre approches complémentaires et souvent associées : la chirurgie, la radiothérapie, l'hormonothérapie et la chimiothérapie.

6.1. La chirurgie

La chirurgie consiste en ôter la tumeur. La tumeur est ensuite analysée et caractérisée. Les résultats des analyses sont indispensables au choix de la thérapie associée. La chirurgie reste le traitement de base contre le cancer du sein.

- Tumorectomie : ablation de la tumeur.
- Mastectomie partielle : ablation de la tumeur ainsi qu'une partie des tissus avoisinants.
- Mastectomie radicale : ablation totale du sein et du revêtement des muscles pectoraux sans toucher aux muscles.

En général, les patientes ont recours à une reconstruction mammaire après l’ablation.

Effets indésirables

6.2. La radiothérapie

Souvent associée à la chirurgie, la radiothérapie est un traitement local qui est utilisé avant la chirurgie pour réduire la taille de la tumeur, ou pour détruire d’éventuelles cellules tumorales présentes après la chirurgie. La radiothérapie met en œuvre deux techniques soit des rayonnements externes soit de matériaux radioactifs dans le sein (curiethérapie).

Effets indésirables

Les effets indésirables de la radiothérapie sont le plus souvent : fatigue, déglutition douloureuse, toux irritative, réactions cutanées, etc.

6.3. La chimiothérapie

La chimiothérapie consiste en l’administration d’un ou de plusieurs médicaments cytotoxiques ciblant les cellules qui se divisent rapidement. Ces médicaments vont se diffuser dans l’organisme entier et atteindre également les micrométastases repérées ou pas par les examens. Les produits de chimiothérapie utilisés dans le cancer du sein sont : la doxorubicine, le cyclophosphamide, le fluorouracile, le méthotrexate et les taxanes.

Effets indésirables

La chimiothérapie présente des effets indésirables majeurs car la diffusion du traitement est systémique et ne connaît pas de sélectivité. Le traitement détruit les cellules cancéreuses, mais aussi certaines cellules à croissance rapide ce qui cause la chute des cheveux et anémie. Les manifestations indésirables les plus fréquentes sont : fatigue, moins bonne résistance aux infections, perte d'appétit, modification du goût, nausées, vomissements et infections buccales (stomatites).

6.4. Les thérapies ciblées

Historiquement, l’hormonothérapie est la première thérapie ciblée mise en place. Elle est la plus largement utilisée. D’autres approches de thérapie ciblée sont actuellement utilisées comme l’immunothérapie et les inhibiteurs des kinases

6.4.1 L’hormonothérapie :

Ce type de traitement est destiné aux femmes dont la tumeur exprime des récepteurs hormonaux et dont le développement est stimulé par les hormones sexuelles féminines, en particulier l’œstrogène et la progestérone.

Sur l’ensemble des cancers du sein, environ deux tiers présentent des récepteurs hormonaux.
Les patients portant des tumeurs luminales A répondent mieux au traitement hormonal et survivent plus longtemps que les patients avec des tumeurs luminales B72. Pendant les trois dernières décennies l’antagoniste des RE, le tamoxifène, est resté le traitement privilégié pour les cancers hormonosensibles. Plus récemment les inhibiteurs d’aromatase, produits empêchant la synthèse des estrogènes, ont montré de meilleurs résultats chez les femmes ménopausées73,74. Il existe une résistance primaire ou acquise qui apparaît lors du traitement. Le mécanisme de résistance est lié probablement à l’intersection de signalisation RE avec les récepteurs à activité tyrosine kinase, RTKs, comme c’est le cas de la signalisation RTK/PI3K/Akt/mTOR75,76.

Les molécules utilisées dans l’hormonothérapie bloquent l’action ou la synthèse des hormones, on distingue :

6.4.1.1 Les anti-estrogènes

Il en existe deux types : Les SERMs et les SERDs.

Les SERMs (Selective Estrogen Receptor Modulators) sont des composés qui entrent en compétition avec les hormones en se fixant sur leurs récepteurs sans induire l’effet prolifératif des hormones. Le tamoxifène et le toremifène appartiennent à cette classe d’antioestrogènes.

Les SERD (Selective Estrogen Receptor Degradation), ont un mécanisme d’action un peu différent, ce sont des molécules qui se fixent sur les récepteurs hormonaux et entraînent leur dégradation et par suite empêchent ainsi l’effet des hormones. Le fulvestrant est la molécule commerciale la plus utilisée de cette classe d’antioestrogènes.

6.4.1.2. Les inhibiteurs d’aromatase

L’aromatase est une enzyme qui se trouve dans le tissu graisseux, le foie, etc… et qui permet la transformation d’androgènes en œstrogènes. C’est la principale source d’œstrogènes chez les femmes ménopausées dont les ovaires ne fonctionnent plus. Les inhibiteurs d’aromatase vont donc entraîner la quasi disparition des œstrogènes au niveau même de la tumeur et les récepteurs d’œstrogènes ne pourront donc plus être ni liés ni activés. Ces molécules sont utilisées uniquement chez la femme ménopausée.

Effets indésirables

Il s’agit le plus souvent de bouffées de chaleur, pertes vaginales, prise de poids, douleurs musculaires ou articulaires, etc.

6.5. La nouvelle génération de thérapie ciblée :

La nouvelle génération de thérapie ciblée met en jeu des molécules qui ciblent spécifiquement les cellules tumorales ou leur environnement. Le grand intérêt de ce type de traitement est qu’il présente moins d’effets secondaires. Parmi les molécules les plus utilisées en cancérologie mammaire : Le trastuzumab (ciblant le sous-domaine II, domaine de
dimérisation de HER 2), le pertuzumab (ciblant le sous domaine IV de HER2), T-DM1 (ciblant le sous-domaine II, domaine de dimérisation de HER 2 couplé à un chimio-cytotoxique), le lapatinib (inhibiteur de l’activité kinase du récepteur HER2) et les inhibiteurs de HSP90.

6.5.1 Cas des tumeurs HER2 positives

L’exemple typique de la thérapie ciblée est le trastuzumab, un anticorps monoclonal humanisé ciblant le domaine extracellulaire du récepteur oncogénique à activité tyrosine kinase HER2 qui est surexprimé dans près de 15% des cancers mammaires. Le trastuzumab améliore la survie des patientes dans les stades primaires et avancés du cancer du sein.

Le pertuzumab est un anticorps monoclonal humanisé de classe IgG1, ciblant spécifiquement le domaine de dimérisation de HER2. La fixation du pertuzumab empêche la signalisation qui favorise la croissance tumorale en inhibant spécialement la voie PI3K et MAP kinase, aboutissant au final à l’arrêt de la prolifération et à l’apoptose. Il a été approuvé par la FDA, l’agence américaine des produits alimentaire et médicalementeux. Il est le traitement standard pour les cancers mammaires HER2+. Par ailleurs sa combinaison avec le trastuzumab et la chimiothérapie a donné de bons résultats.

Le T-DM1 est un complexe de trastuzumab conjugué avec le DM1, un agent chimiothérapique. Cette association permet non seulement de cibler les récepteurs HER2, mais aussi de délivrer des doses puissantes d’agent cytotoxique à l’intérieur de la cellule tumorale, alors que ces doses délivrées ne sont pas tolérées par voie classique. En clinique, T-DM1 a montré une activité relevante dans le traitement des cancers mammaires qui ont récidivés après le traitement avec le trastuzumab et le taxane.

Le lapatinib, un inhibiteur de tyrosine kinase spécifique des kinases HER1 et HER2 bloque la signalisation d’aval de ces récepteurs. Les essais cliniques en phase III n’ont pas montré de différence sur la survie à 3 ans entre la cohorte traitée par le trastuzumab et celle traitée par le lapatinib.

Les inhibiteurs de HSP90, les HSPs sont des molécules chaperonnes maintenant l’intégrité et la fonction de HER2. 17-Demethoxygeldanamycine (17-AAG) est un produit naturel capable de se lier à l’HSPB90 et bloquant ainsi son activité protectrice de HER2. Cet inhibiteur de HSP90 est entré en essai clinique en 1999. Globalement les inhibiteurs de HSP90 n’ont pas été sujets à beaucoup d’essais cliniques à cause de la pauvreté des résultats. Récemment 13 inhibiteurs sont en train d’être re-testés en clinique. Dans un modèle de cancer du sein triple négatif l’inhibiteur PU-H71 a montré une réponse complète (réduction de la prolifération et de l’invasion et augmentation de l’apoptose sans apparition de résistance ou de toxicité). Tanespimycine, une dérivée de geldanamycine, est un antibiotique et inhibiteur des HSP90 qui a montré, en combinaison avec le trastuzumab, une augmentation de taux de bénéfice clinique allant jusqu’à 59% dans le traitement des cancers HER2+ métastatique.
Malgré l’efficacité clinique des traitements proposés contre les tumeurs HER2+, il reste néanmoins un tiers des métastases de tumeurs HER2+ qui ne répondent pas à la thérapie et la moitié des patientes métastatiques dont les tumeurs étaient sensibles au traitement récidivent au bout d’un an\(^{84,85}\).

Les mécanismes de résistance aux traitements ciblés sont variés. Par exemple, l’inhibition de croissance induite par le trastuzumab peut être compensée par l’activation de la voie de signalisation IGF-1R/PI3K/Akt\(^{86,87}\). Les données cliniques suggèrent que le blocage de la voie PI3K/Akt présente un effet antitumoral dans les tumeurs résistantes au HER2. Akt est une cible en aval des récepteurs stimulés dans les cancers du sein, à savoir, IGF-1R, EGFR et HER2. Dans à peu près 50% des cancers du sein totaux, PTEN, une phosphatase cytoplasmique qui inhibe la voie P3K/Akt, est désactivée, soit par mutation ou par perte de l’hétérozygotie. Dans certains de ces cancers, les cellules résistantes montrent une hyperphosphorlation d’Akt, en revanche ces cellules sont sensibles aux inhibiteurs de PI3K\(^{88}\).

Pour contourner la résistance des tumeurs, plusieurs études sont en cours afin de combiner le trastuzumab avec des inhibiteurs de la voie PI3K/Akt, des agents antiangiogéniques, des régulateurs de cycle cellulaire et des inhibiteurs du récepteur l’IGF-1.

6.5.1 Cas des tumeurs triples négatives

La chimiothérapie est le seul traitement disponible et qui ai montré une certaine efficacité. Actuellement beaucoup d’études sont menées afin de mieux caractériser les cancers triples négatifs et trouver des marqueurs permettant d’améliorer la prise en charge des patientes. Plusieurs oncogènes ou voies de signalisation sont envisagés : Récepteur de facteur de croissance épidermique (EGFR), facteur de croissance endothélial vasculaire (VEGF), c-Myc, C-kit et les cytokératines basales (CK5, CK14 et CK17), Poly (ADP-ribose) polymerase-1 (PARP), p53, certaines tyrosine kinases, m-TOR, et protéines de « heat shock » (HSP27, HSP70 et HSP90) et TOP2A (DNA topoisomérase-2\(\alpha\))\(^{89,90}\).

D’ores et déjà, plusieurs molécules ciblant les protéines sont utilisées ou en cours d’essais cliniques :

Les inhibiteurs des PARP (poly adénosine diposphate ribose polymérase), enzymes nucléaires responsables de la réparation des cassures d’ADN par excision des bases. PARP1 est l’isoforme la plus commune. L’inhibition de PARP1 a montré un effet potentialisant l’effet de la radiothérapie, des inhibiteurs de toposiomérase I et des composants à base de platine. Dans les cancers mammaires triples négatifs, plusieurs inhibiteurs des PARP sont en développement : olaparib, inparib, et velipanib qui inhibe PARP1 et PARP2\(^{89}\) qui ont montré un effet synergique en association avec des agents cytotoxiques chez les patientes. Dans les cancers ovariens et certains cancers solides, l’olaparib a été testé en phase I et II. Actuellement il est en train d’être testé en phase III chez des patients qui présentent une mutation BRAC et qui ont récidivé après un traitement à base de platine\(^{91}\).
EGFR ou ErB-1 est le premier membre identifié de la famille des HER. Après la fixation du ligand, les monomères se dimérisent, le domaine intracellulaire du récepteur est autophosphorylé entraînant une cascade intracellulaire. Cette cascade est importante pour la prolifération, l’angiogenèse, la dissémination métastatique et l’inhibition de l’apoptose\(^9\). EGFR est surexprimé chez 40% à 50% des patientes atteintes du cancer du sein et dans 80% des cancers les triples négatifs. Le cetuximab est un anticorps chimérique monoclonal ciblant le domaine extracellulaire de l’EGFR et induisant son inactivation\(^9\). Il est utilisé classiquement, en association avec l’irinotécan, dans les cancers du colon métastatique avec le KRAS sauvage exprimant le récepteur du facteur de croissance épidermique (EGFR). Gefitinib, inhibiteur de l’activité tyrosine kinase de l’EGFR, a été approuvé dans le cancer des poumons à petite cellule, dans le cancer du sein triple négatif, mais une résistance acquise fait face à son effet\(^9\). Il a montré un bon résultat sur la survie des patients atteints de cancer colorectal métastatique et il a été approuvé en 2004 par la FDA\(^9\).

VEGF : l’angiogenèse est très importante pour la croissance des tumeurs surtout à partir de 2 mm de diamètre car l’oxygène et les nutriments ne diffusent pas au-delà de cette distance. Le signal angiogénique est média\(\text{\textregistered}\) par le facteur de croissance endothélial vasculaire (VEGF) pour induire la néovascularisation. L’expression de VEGF est élevée dans les DCIS (les carcinomes ductaux in situ) ainsi que dans les cancers du sein invasifs. La hausse d’expression de VEGF est positivement corrélée avec l’augmentation de la vascularisation et la taille des tumeurs\(^9\). Chez les patients avec un niveau élevé de VEGF, la progression tumorale continue malgré le traitement adjuvant classique et ces patients ont un taux de survie significativement plus bas que les patients qui en ont moins\(^9\). Le Bevacizumab est un anticorps anti-VEGF utilisé pour les patients ayant un cancer du sein triple négatif, il a été approuvé en 2008 par la FDA grâce à ses effets normalisants de la vascularisation permettant l’accès de la thérapie cytotoxique à la tumeur. Dans une étude clinique réalisée sur 75 patientes présentant un cancer du sein métastatique refractaire à la chimiothérapie, après traitement avec le Bevacizumab 16% ont présenté une stabilisation ou une régression de la maladie. Puis cette approbation lui a été retirée en décembre 2010 pour des causes de sûreté liées à l’encéphalopathie hypertensive, le syndrome néphrotique, la protéinurie, et les céphalées associées à des nausées et des vomissements\(^9\). Les approches utilisées dans la lutte contre l’angiogenèse tentent à bloquer l’irrigation de la tumeur et entraîner son « asphyxie ».

Les tyrosines kinases sont des régulateurs de la croissance et de la différenciation. Certaines sont surexprimées dans les cancers, elles sont associées à une capacité métastatique notable telles que HER2, EGFR, NRK, c-Src\(^9\). Plusieurs inhibiteurs de TK existent déjà : Lapatinib, erlotinib, gefitinib et imatinib sont utilisés comme traitement de plusieurs tumeurs solides. Dasatinib et lapatinib sont utilisés chez les patientes qui ont un cancer HER+.
Certaines molécules servent de marqueurs de pronostic ou de résistance à la chimiothérapie :

P53 : Codée par le gène suppresseur de tumeurs TP53, également appelé « le gardien du génome ». Il régule la croissance, la multiplication, l’apoptose et la stabilité chromosomique. P53 est muté dans 18 % à 25% des carcinomes mammaires primaires. Plusieurs études ont montré que la baisse de son expression est associée à un cancer mammaire agressif, son expression est corrélée avec une bonne réponse à la chimiothérapie et sa co-expression avec HER2 est significativement liée à une récidive précoce et au décès pendant une période assez courte après la chirurgie.

TOP2A : DNA Topo-isomérase II α, a un rôle important dans la transcription d’ADN. Elle induit des cassures temporaires dans les brins d’ADN, puis elle les répare causant ainsi un brassage et un changement topologique d’ADN. Dans les cancers mammaires triples négatifs et les carcinomes mammaires, ce gène est une cible des anthracyclines. Son expression est un marqueur d’une baisse de sensibilité aux anthracyclines.

Ki67 : est un marqueur cellulaire de prolifération. L’antigène Ki67 se localise dans le noyau durant l’interphase et se relocalise à la surface des chromosomes durant la mitose. Sa présence en grande quantité est une indication de prolifération accentuée et de dissémination métastatique. Dans les cancers du sein, le niveau élevé de Ki67 est associé à un mauvais pronostic même si ces tumeurs montrent de bons résultats vis-à-vis des combinaisons de chimiothérapie.

Il est particulièrement surexprimé dans les cancers ER négatifs et son expression est encore plus élevée dans les carcinomes.

Effet indésirable :

Les effets indésirables de la nouvelle génération de thérapie ciblée sont différents et moins marqués, souvent d’ordre cutané ou digestif, parfois cardiaque (hypertension).

Les traitements présentent des effets indésirables variables en fonction des patientes et des thérapies. Aucun moyen ne permet de prédire quelle patiente tolérerà mieux quel médicament.
Chapitre II : Phosphorylation, spectrométrie de masse et protéomique

1. La phosphorylation

La phosphorylation est l'addition d'un groupe phosphate (phosphoryl) PO_3^{2-} à une protéine ou à une petite molécule, telles que le glucose ou l'adénine et aux lipides phosphoinisitides tels que le phosphatidylinositol-4,5-bisphosphate (PIP2). Son rôle en biochimie est le sujet de très nombreuses études, on retrouve au moins 258 articles dans MEDLINE sur la phosphorylation dont la plupart concernant la phosphorylation des protéines.

Pour la première fois, un groupement phosphate a été identifié dans la protéine vitelline en 1906 par Phebus Levene à l'institut de recherche médical de Rockfeller. Puis en 1933 la phosphosérine a été identifiée dans la caséine par Fritz Lipmann, 20 ans plus tard la première phosphorylation enzymatique a été décrite. Et ce n’est que dans les années 1950 que Edmond H. Fischer et Edwin G. Krebs ont obtenu le prix nobel car ils ont déterminé que la phosphorylation des protéines est un processus réversible, médiée par des enzymes et capable de modifier la fonction des protéines.

Une fois qu’un gène est exprimé, il sera traduit en protéine fonctionnelle. La cellule contrôle l’avenir des protéines par ce qu’on appelle les modifications post-traductionnelles. La phosphorylation des protéines est une des modifications post-traductionnelles les plus importantes et les plus étudiées, elle est réversible et régule de nombreux processus biologiques.

La phosphorylation est catalysée par diverses protéines kinases, alors que les phosphatases se chargent de la déphosphorylation. L’équilibre entre la glycogénolyse et la glycogénogenèse illustre bel et bien l’antagonisme entre les kinases et les phosphatases. Cet équilibre est maintenu grâce à la glycogène phosphorylase et la glycogène synthase dont les activités sont régulées par des réactions de phosphorylation/déphosphorylation induites par les hormones : glucagon,adrénaline et insuline.

Dans les organismes eucaryotes seuls les acides aminés comportant une chaine latérale hydroxylée sont phosphorylables : Sérine, Thréonine et Tyrosine. Cependant, certaines études ont montré que l’histidine peut aussi être phosphorylée et il semble que la phosphorylation sur histidine serait plus fréquente que la phosphorylation sur tyrosine. Chez les procaryotes, la phosphorylation peut se faire sur les acides aminés : sérine, thréonine, tyrosine, arginine, lysine, histidine et aspartate.

La phosphorylation des protéines signifie l’addition d’un groupement négativement chargé, ce...
qui va engendrer un changement au niveau de la structure tridimensionnelle de la protéine et par suite de sa fonction et de ses interactions avec d’autres partenaires. Dans certaines protéines de type enzyme, la phosphorylation agit comme un bouton d’activation ou inactivation, régulant ainsi son activité. Par ailleurs la phosphorylation de certaines protéines peut réguler leur ubiquitination et par conséquent leur dégradation par le protéasome.

Lors de la transduction du signal, l’initiation du signal se déclenche souvent par une phosphorylation sur tyrosine. Dans la cascade, plusieurs protéines transmettent le signal par phosphorylation assurant ainsi l’amplification du signal. Le signal s’arrête une fois qu’une phosphatase déphosphoryle un substrat engagé dans une voie de signalisation.

2. Phosphorylation et cancer

La phosphorylation a un rôle régulateur vital dans plusieurs processus intracellulaires comme la croissance, la prolifération, la division cellulaire, le métabolisme, l’apoptose, la migration, le trafic des organites, l’immunité, l’apprentissage et la mémoire. Une perturbation affectant la phosphorylation peut aboutir à des caractéristiques cancéreuses comme la prolifération et la croissance incontrôlées. Elle peut également aboutir à des maladies neurodégénératives. Effectivement, les études montrent que les mutations qui touchent les kinases et les phosphatases sont souvent impliquées dans différents cancers et que plusieurs gènes codés par ces protéines sont soit des oncogènes soit des suppresseurs des tumeurs, c’est pour cela que les classes de ces enzymes sont des cibles importantes pour l’industrie pharmaceutique.

3. La spectrométrie de masse : outil de choix pour l’étude de phosphorylation

La spectrométrie de masse (MS) est une technique analytique qui identifie la composition chimique d’un échantillon en fonction du rapport masse / charge (m/z) des particules qui le composent. Le principe de base d’un spectromètre de masse est fondé sur trois modules essentiels (figure 9) : une source d’ionisation, qui transforme les molécules de l’échantillon en ions en phase gazeuse ; Un analyseur...
de masse, qui permet de séparer les ions en fonction de leur rapport m/z en générant des champs électriques ou magnétiques ; et un détecteur, qui soit transforme les ions en signal électrique, soit mesure le courant induit par les ions.

Les différentes parties du spectromètre :

1- la source : c’est le lieu d’ionisation des molécules et de fragmentation des ions. C’est une chambre en acier inoxydable, sous vide \(\approx 6 \times 10^{-7} \text{ mm Hg} \). L’émission des électrons dans la source se fait par un filament en rhénium et sont accélérés sous tension de 79 Volts. Les collisions entre les molécules et les électrons se font à très grande énergie de 70 eV ce qui permet la naissance des ions moléculaires ou des ions radicaux.

2-L’analyseur : qui sépare les ions en fonction de leur rapport m/z. Plusieurs variétés existent :
- Séparateur par champs électrique et magnétique
- Séparateur par des champs électriques (Quadripôle et Trappe d’ions)
- Séparateur par la vitesse des ions (Temps de vol)

3- collecteur d’ions ou détecteur : c’est la partie qui détecte les ions sortants et les exprime en fonction de leur abondance relative. L’échantillon à ce stade est à l’état gazeux et est trainé par un vide poussé dans chacun de ces éléments. Le détecteur présente un effet électro multiplicateur en sorte que l’ion entrant dans le collecteur émet plusieurs électrons : phénomène d’émission en cascade, ce qui fait qu’un courant d’électrons important est détecté à la sortie du collecteur.

A la sortie du détecteur, on collecte les ions : Chaque pic correspond à une valeur m/z sur le spectre de masse (figure 10).

Dans le spectre de masse : l’abscisse représente le rapport m/z et l’ordonnée représente l’intensité ou l’abondance relative des ions.

L’intensité du pic le plus intense du spectre est fixée arbitrairement à 100.

![Fig.10. Spectre obtenu par le spectromètre ; l’abondance relative en fonction du rapport masse/charge.](image-url)
4- Le système de traitement des données : Les spectromètres de masse sont pilotés par un ordinateur.

Les opérations assumées par le système de traitement :

- Réglage et calibrage du spectromètre
- Acquisition et stockage des données
- Traitement des données et recherche dans les banques de spectres

Exemple : Orbitrap Q-Exactive, la machine utilisée pour nos analyses protéomiques

Ce spectromètre de masse de thermoFisher est adapté pour l'analyse non ciblée ou ciblée de molécules avec une vaste gamme de masse moléculaire (de 50 à 6000 Da) dans des échantillons biologiques ou non biologiques, ainsi que pour l'analyse quantitative. Le Q-Exactive (figure 11) combine la sélection de précurseur haute performance grâce à l'analyseur quadripolaire et la haute résolution pour la détection des masses exactes (précision 5 ppm). Il est équipé d'une cellule de collision Higher-Energy Collisional Induced Dissociation (HCD) permettant l'acquisition de données spectrales MS/MS. Cet analyseur est couplé à une chaîne de chromatographie liquide U3000 et deux sources d'ionisation peuvent être employées : ionisation par électrospray (HESI) ou ionisation chimique à pression atmosphérique (APCI). Les applications typiques sont le profilage métabolomique à grande échelle, des screenings non ciblés en recherche clinique ou en toxicologie médico-légale, l'analyse métabolique dans les premières phases de développement des médicaments, l'analyse structurale par détermination des masses exactes, l'analyse de principes actifs et/ou d'impuretés dans les médicaments ou poudres stupéfiantes ou l'analyse d'échantillons environnementaux.
4. Études des protéines : Protéomique

La protéomique s’intéresse à l’étude du protéome, c’est-à-dire à l’ensemble des protéines constituant un organisme vivant dans sa globalité, un tissu, une cellule ou un compartiment cellulaire (ex: les protéines nucléaires, les protéines mitochondriales, les protéines membranaires...)\(^{120}\). La protéomique vise aussi à identifier, quantifier et déterminer la fonction de ces protéines cellulaires\(^ {121}\).

Le protéome est extrêmement dynamique à cause de différents types de protéines cellulaires existantes, leurs abondances, leurs modifications, leurs localisations subcellulaires, etc. Il dépend de l’état physiologique de la cellule ou du tissu. L’activité d’une protéine ne dépend pas que de son niveau d’expression ou de dégradation mais aussi de sa modification post-traductionnelle qui peut modifier son activité, sa stabilité, sa localisation et ses interactions avec les autres molécules. À peu près 300 différents types de modifications post-traductionnelles impactant les protéines sont connus à nos jours à savoir : la méthylation, l’acéthylation, l’amidation, la carboxylation, la glycosylation, l’ubiquitination et la phosphorylation. Ceci indique que les populations des protéines sont énormément diversifiées et hétérogènes.

L’approche traditionnelle consiste à séparer un mélange protéique complexe sur un gel d’électrophorèse puis à digérer les protéines et les analyser en spectrométrie de masse\(^ {122}\). Ensuite la séparation des protéines s’est beaucoup améliorée en mettant en place une stratégie de séparation basée sur des chromatographies successives afin d’augmenter au maximum le nombre de protéines identifiées\(^ {123}\).

Appliquée à l’étude des protéines, la spectrométrie de masse est largement impliquée dans plusieurs champs d’études. Elle constitue une méthode émergente pour leur caractérisation. Elle permet l’identification exhaustive des protéines exprimées par un organisme\(^ {124}\). Ceci a été rendu possible grâce au développement des techniques de séparations et l’avancée de différentes machines de spectrométrie de masse. De plus, cette approche s’est considérablement améliorée grâce à l’innovation de plusieurs logiciels de séquençage et des outils bioinformatiques.

Un deuxième aspect important largement utilisé en protéomique est l’analyse différentielle qui consiste à comparer les protéomes de deux états distincts par exemple : malade/sain, avec traitement/sans traitement, et comparer ensuite les variations au niveau de protéines.

La phosphorylation des protéines est l’une des modifications les plus étudiées et caractérisées. L’étude des protéines phosphorylées dans une cellule ou un tissu est désignée par la phosphoprotéomique.
5. Phosphoprotéomique

L’étude des phosphorylations dans une voie de signalisation est une tâche complexe. Dans une voie donnée, une protéine A phosphoryle la protéine B et B phosphoryle C. Alors que dans une autre voie, une protéine D phosphoryle A et C. La phosphoprotéomique, sous-partie de protéomique est une approche globale pour étudier la phosphorylation des protéines en utilisant la spectrométrie de masse. Ces techniques ont gagné d’ampleur durant les dernières années et ont contribué à améliorer la compréhension des réseaux de phosphorylation. Les phosphoprotéomistes ont réussi à étudier le dynamisme de phosphorylation dans plus de 6000 sites après la stimulation du facteur de croissance épidermique (EGF).

Une série des techniques ont été développées pour l’étude phosphoprotéomique. La première évidence de la phosphorylation d’une protéine serait la présence de deux bandes rapprochées dans la migration SDS-PAGE, ou la présence de plusieurs points de même masse moléculaire mais de points isoélectriques différents dans un gel poly acrylamide bidimensionnel. L’intensité de signal reflète le degré de phosphorylation.

L’étude protéomique par spectrométrie de masse peut aussi étudier des modifications post-traductionnelles portées par les protéines d’intérêt. La spectrométrie de masse est aujourd’hui l’outil de choix pour répondre aux questions des modifications post-traductionnelles portées par les protéines. Elle peut en effet identifier le type de modification (phosphorylation, glycosylation, oxydation...), déterminer les sites d’implantation de ces modifications.

L’étude des modifications post-traductionnelles en protéomique et en spectrométrie de masse, en particulier la phosphorylation, constitue une approche puissante pour étudier de façon globale les réponses moléculaires à l’activation des voies de signalisation. L’étude protéomique a permis d’explorer les voies de signalisations régulées par certaines kinases et phosphatases. Les voies de transduction du signal sont organisées en réseaux biochimiques qui permettent, suite à un stimulus extra ou intracellulaire, l’intégration des activités biochimiques des protéines et de produire des réponses biologiques adéquates d’une manière précise et reproductible.

Les méthodes traditionnelles d’analyses de phosphorylation impliquent l’incorporation d’un 32P dans les protéines cellulaires grâce à de l’ATP marqué radioactif *in vivo*. *In vitro* elle se fait grâce à une kinase purifiée et du γ^{32}P ATP. Les protéines radiomarquées sont détectées lors du fractionnement (electrophorèse 2D ou HPLC). Les protéines sont ensuite identifiées et l’acide phosphoaminés est déterminé. Le(s) site(s) de phosphorylation est/sont déterminé(s) par une digestion protéolytique de la protéine radiomarquée suivi par un séquençage peptidique en utilisant la dégradation d’Edmann. Ces techniques exigent des quantités significatives de protéines phosphorylées et impliquent l’usage de grande quantité de radioactivité. Une autre technique pour la détection des protéines phosphorylées est l’immunoprécipitation et le western blot qui se font grâce à des anticorps dirigés contre les protéines sous leurs formes phosphorylées (sur sérine, thréonine ou tyrosine).
5.1. Analyse de la phosphorylation par spectrométrie de masse

Dans les dernières années, la spectrométrie de masse a connu un essor considérable. Sachant que la spectrométrie de masse peut toujours être couplée à des méthodes d’analyses classiques de phosphoprotéines, les nouvelles technologies de spectrométrie de masse ont montré une capacité énorme en termes d’identification des molécules. La spectrométrie de masse donne avec exactitude la masse d’une protéine phosphorylée et la comparaison de masse de protéine phosphorylée avec la masse de son homologue non-phosphorylée ou traité avec des phosphatases permet la détermination de nombre de groupes phosphates liés à la protéine.

5.2. Préparation de l’échantillon:

Dans le cas idéal tout peptide phosphorylé doit apparaître détecté. Malheureusement, les analyses en spectrométrie de masse (MS) basées sur la digestion protéolytique fournissent rarement une couverture peptidique à 100% et en effet certains peptides se perdent. En plus les modifications négativement chargées peuvent entraver la digestion protéolytique par la trypsine. Enfin la détection en MS d’un phosphopeptide peut être masquée par ses homologues non phosphorylés. Plusieurs stratégies d’enrichissement sont proposées pour trier les phosphoprotéines avant l’analyse.

1- Fractionnement : C’est une méthode qui permet de réduire la complexité des peptides présents dans un mélange. Pour cela il faut passer les analytes à travers d’une colonne capillaire à bas débit. Les peptides sont élusés en plusieurs fractions, chaque fraction est moins complexe que le mélange principal.

2- IMAC : ou immobilized metal affinity chromatography, dans cette technique les ions métalliques souvent Fe³⁺ ou Ga²⁺ sont liées à un support chélatant. Les phosphopeptides sont sélectivement liés grâce à l’affinité entre les ions métalliques et le groupement phosphate. L’élution se fait par un tampon de pH élevé ou un tampon phosphate. L’usage d’un tampon phosphate exige une étape de dessalage avant l’analyse en MS.

3- Anticorps : Une protéine donnée peut-être isolée à partir d’un mélange complexe grâce aux anticorps. Pour cela il faut produire des anticorps suffisamment spécifiques.

D’une manière plus générale, il existe des anticorps qui peuvent reconnaître toutes les protéines contenant un résidu phosphorylé indépendamment de la séquence de la protéine, c’est le cas des anticorps anti-phosphosérine, anti-phosphothréonine et anti-phosphotyrosine. La phosphorylation sur résidu tyrosine bénéficie d’anticorps spécifiques et à large spectre, faisant de la chromatographie par immuno-affinité l’outil de choix pour l’enrichissement des protéines phosphorylées sur tyrosine.
La phosphorylation sur résidus sérine, thréonine et tyrosine peut être enrichie par chromatographie d’affinité pour un métal à base d’ions de fer ou de gallium ainsi que par affinité pour le dioxyde de titane. Les anticorps anti-phosphotyrosines ont été utilisés pour enrichir des phosphopeptides des extraits provenant des protéines phosphorylées \textit{in vivo} 130 ou \textit{in vitro} 131. Les phosphopeptides sont ensuite analysés en spectrométrie MALDI-TOF. Un mélange des anticorps peut-être utilisé ; deux anticorps anti-phosphotyrosine ont été utilisés pour isoler les protéines phosphorylées sur tyrosine dans le lysat des cellules HeLa traitées par l’EGF 132.

4- Marquage chimique : Dans ce type d’enrichissement, les protéines ou les peptides sont isolés à partir d’un mélange complexe 133. Les protéines ou les peptides sont exposés à un pH très élevé en présence d’Ethandithiol. Ceci induit la perte des groupes H_3PO_4 des phosphosérines et phosphothréonines par l’élimination-β. Le groupement phosphate largué sera remplacé par le tag Thiol. Ce thiol étant préalablement lié à la biotine par un groupe sulphydryl (SH), la protéine ou le peptide marqué sera isolé par chromatographie sur avidine. Il faut toutefois bloquer la fonction thiol avant de réaliser la chromatographie. Il est préférable de bloquer le thiol par oxydation 133 plutôt que par alkylation 134, car l’alkylation de cystéine peut subir une élimination β de la même manière que la phosphosérine ou la phosphothréonine.

5.3. Reconnaissance des phosphopeptides

Après la préparation des échantillons, tout peptide portant un phosphate doit être identifié et distingué des autres peptides présents. Plusieurs techniques basées sur la MS ont été développées.

1-Cartographie peptidique et traitement à la phosphatase

Après l’électrophorèse 1D ou 2D, les protéines subissent une digestion protéolytique puis une analyse en MALDI-TOF-MS afin de déterminer leurs masses 135. Si l’identité d’une protéine est déjà connue ou peut-être déduite à partir de ses fragments et que son signal est déplacé d’un nombre multiple de 80 Da ($\text{HPO}_3 =80\text{Da}$) c’est que ce peptide est phosphorylé. Pour avoir des résultats exploitables et une caractérisation fiable dans une étude phosphoprotéomique, il faut au moins 1 pmol de protéine soit présent dans une bande de gel. Afin d’acquérir le plus possible d’informations à partir d’un échantillon, il a été proposé de combiner la dégradation enzymatique (phosphatase alcaline) avec MALDI-TOF-MS 136.
2-Désintrégration post-source

Dans les MSs MALDI-TOF, la perte de HPO₃ ou d’autres éléments de H₃PO₄ a lieu après la source suite à la décomposition de l’ion métastable ou la CID (collision-induced dissociation) pour donner des ions-filles de même vitesse que l’ion parental mais d’une énergie moindre donc reconnaissables en réfléctron et non pas en mode linéaire. Les peptides phosphorylées sur sérine ou thréonine ont plus tendance à perdre H₃PO₄ alors que les peptides phosphorylés sur tyrosine ont plus tendance à perdre HPO₃. L’utilisation du laser de longueur d’onde infrarouge réduit la perte de phosphate en désintégration post-source et favorise ainsi le signal en mode réfléctron.

3- Scan de l’ion précurseur

Cette méthode utilise la détection des fragments spécifiques de phosphate pour signaler la présence d’un peptide phosphorylé. Cette approche est utilisée en général aux ions produits en ESI (electrospray ionisation). Sachant que la méthodologie de scan de l’ion précurseur se base sur la détection de phosphate pour indiquer la présence d’un phosphopeptide, certaines études basées sur la détection de l’ion immonium (R-CH=NH⁺₂ pour détecter un peptide tyrosine phosphorylé.

4-Detection de ³¹P

Au cours de la séparation en HPLC, la détection de phosphopeptides se fait en spectrométrie de masse à plasma à couplage inductif (ICP-MS) qui reçoit le ³¹P. Les masses des phosphopeptides putatifs sont mesurées dans un run en LC-ESI-MS.

5.4. Identification des sites de phosphorylation

Après l’identification du peptide portant la phosphorylation, il reste à déterminer le résidu phosphorylé. Dans des cas fortuits le peptide phosphorylé comporte une seule tyrosine ou sérine ou thréonine. Ceci facilite l’identification du site de phosphorylation. Dans la majorité des cas, la fragmentation des peptides est nécessaire pour l’identification et la caractérisation.

1-La dissociation induite par collision (CID):

La méthode la plus courante pour l’identification des sites de phosphorylation est la fragmentation en CID, après l’ionisation par électroébuliseur (ESI). L’ESI ou ionisation électrospray consiste à desolvater progressivement l’analyte ionisé en solution. La perte de phosphate sous forme HPO₃ ou H₃PO₄ est un événement favorable par rapport aux autres événements impliquant un clivage peptidique qui peut être utile pour la détermination de la séquence. Les ions fragmentés peuvent être mesurées en instrument : quadripôle, trappe d’ion, ou hybride Qq-TOF. Dans cette technique, la perte d’un groupe H₃PO₄ à partir d’un
fragment phosphorylé est non distinguable d’une perte d’H₂O à partir d’une molécule non phosphorylé. La dérivation de l’acide aminé terminal (une modification visant la structure chimique de l’acide aminé pour faciliter l’analyse) pourrait donner un spectre plus simple tout en gardant le groupement phosphate retenu sur le fragment.

Le fractionnement en HPLC ou EC (électrophorèse capillaire) peut être directement lié à un spectromètre de masse pour améliorer l’analyse. Cette analyse est souvent réalisée par une répétition de scan MS des pics chromatographiques et ensuite une sélection des ions les plus intenses à partir d’un scan pour générer les data de plusieurs peptides dans un mélange. Le développement des instruments dans lesquels la source MALDI est couplée à un analyseur QQ-TOF a permis une meilleure fragmentation CID des ions peptidiques générés par MALDI.

2- Désintégration in source : La formation d’un ion métastable qui a lieu entre la désorption et l’accélération de l’ion dans le tube de vol de MALDI-TOF est appelée in-source. Les spectres sont relativement plus simples à interpréter. Dans ce cas, la présence d’un phosphate sur un résidu donné est décalée de 80 Da

3- Dissociation de capture électronique :

La dissociation des protéines et des peptides se fait par irradiation du produit d’ESI. Ceci va conduire à une excitation spécifique. L’énergie absorbée permet de chauffer l’ion dans le spectromètre de masse de type « fourier transform ion cyclotron resonance mass spectrometer ».

5.5. Quantification de phosphorylation

Une fois déterminé(s), le(s) site(s) de phosphorylation, il serait donc utile de connaître la stoechiométrie, le ratio de peptide phosphorylé sur le ratio de ce même peptide non-phosphorylé. La quantification commence à partir de la séparation en HPLC (les phosphopeptides sont séparés de leurs homologues non-phosphorylés), l’analyse quantitative des acides aminés et l’intégration des deux pics dans la trace HPLC. On sait peu sur la manière dont la séquence peptidique peut impacter l’efficacité de former des ions à partir d’un peptide phosphorylé ou pas, mais la comparaison de l’intensité des pics de deux formes pourrait estimer la stoechiométrie.

Dans plusieurs études le marquage par isotope a été plus relevant pour quantifier le changement du niveau de phosphorylation. Ce marquage peut être réalisé via le milieu de culture ou par l’introduction d’un tag massique.

Malgré tout cet arsenal de variété de stratégies pour l’étude de phosphoprotéomique, la caractérisation complète des protéines extraites d’un échantillon biologique reste un grand challenge. En général, les règles ou les méthodes requises dans une telle étude peuvent être résumées :
1- L’enrichissement doit être le plus selectif possible.
2- Détection de phosphopeptide la plus exhaustive possible.
3- Une technique de repérage de tous les sites de phosphorylation. Le CID MS/MS et ECD (electron capture dissociation) ont donné des résultats raisonables.
4- Une méthode universelle pour mesurer le changement de phosphorylation in vivo.

Il existe déjà des librairies disponibles capables d’informer sur la séquence de la protéine, phosphorylation des protéines dans différentes espèces et les sites de phosphorylation etc à savoir phosphosite Plus :

6. Les stratégies d’étude des voies de signalisation

Afin d’étudier une voie de signalisation en protéomique, les expériences se sont basées sur la comparaison de deux états cellulaires ; le premier quand la voie étudiée est activée et le deuxième quand la voie est inhibée, le but étant d’identifier les composants cellulaires impactés par ce changement. Dans le cas d’étude de la signalisation régie par une phosphorylation, on procède d’abord à la purification des protéines portant cette modification puis à leur analyse en spectrométrie de masse.

6.1. Protéomique quantitative : SILAC

Les cellules, soumises à différentes conditions, n’expriment pas le même niveau de protéines. Pour contourner cette limitation, plusieurs stratégies quantitatives ont été développées sur la base du marquage des peptides ou des protéines par un différentiel de masse avant l’analyse au spectromètre telle que le SILAC, Stable Isotope Labeling with Amino acids in Cell culture (figure 12).

Pendant quelques jours les cellules sont mises en culture en présence des isotopes marquant la totalité des protéines cellulaires. Les protéines totales se trouvent lourdes ou légères selon les acides aminés utilisés, Lysine et Arginine respectivement avec 13C6 et 15N4 ou 12C6 et 14N4 en culture SILAC. Ensuite des quantités égales de matériel biologique « léger » ou lourd sont mélangées. Les protéines sont extraites et digérées par une protéase spécifique. Les peptides ainsi obtenus sont analysés et quantifiés par spectrométrie de masse dont les signaux des pics présentent un décalage en fonction de la masse.

Les entités biologiques sont mélangées juste après l’extraction, ce qui réduit la variabilité due
La SILAC est une technique relativement facile à mettre en œuvre comparée aux autres techniques de marquage chimique (i Cat et i TRAQ). Le SILAC est un outil puissant pour l’étude de la signalisation cellulaire.

Elle présente par contre deux inconvénients essentiels :

1- Perte importante des éléments minoritaires à cause de doublement de la complexité de l’échantillon.
2- Impossibilité de l’utiliser sur des biopsies humaines ou des fluides biologiques. Dans ce cas, il est possible d’utiliser un standard interne provenant de cellules en culture143,144.

7. Interactomique

Les interactions protéine-protéine (IPP) sont à la base de la plupart, si pas toutes, des fonctions cellulaires. La compréhension des réseaux d’associations stables et transitoires reste un objectif clé, tant pour la biologie des systèmes (où elle peut être combinée avec d’autres données «omiques» pour acquérir une meilleure compréhension des voies et des réseaux fonctionnels), que pour les études biologiques ciblées. Une gamme d’approches est actuellement utilisée pour identifier les interactions protéine-protéine (IPP) à haut débit.
Celles-ci comprennent la spectrométrie de masse précédée par une purification par affinité (AP-SM), la spectrométrie de masse précédée par cross-linking des complexes protéiniques ou cross-linking MS (XL-MS), spectrométrie de masse basée sur la corrélation de profilage des protéines (PCP-MS), et la stratégie de double hybride de levure.

Cartographie d’interaction des protéines en utilisant l’approche haut-débit de spectrométrie de masse basée sur la purification d’affinité

Les techniques de marquage de proximité, basées sur l'identification des protéines avoisinantes par des enzymes peuvent également être utilisés pour identifier les réseaux de protéines et de sonder des structures complexes.

À l'heure actuelle, la stratégie la plus populaire pour étudier l'interactome d'une protéine à haut et bas débit est l'AP-MS, dans laquelle une protéine appât endogène ou taguée est extraite à partir du lysat cellulaire en utilisant une résine d'affinité. Les protéines associées seront ensuite identifiées par chromatographie liquide-spectrométrie de masse tandem (LC-MS / MS). Deux récentes études à grande échelle concernant l'interactome humain mettant en œuvre l'AP-MS ont été réalisées. La première a pu identifier plus de 23,744 interactions impliquant 7,668 protéines. Pour se faire, ils ont inséré 600 protéines taguées par le flag HA dans les cellules HEK 293T. Les protéines co-précipitées avec les protéines taguées ont été identifiées en PA-MS et les résultats sont déposés sur une plate-forme.

Une deuxième étude réalisée par HEIN et ses collègues a montré l’importance de la force d’interaction et de l’abondance des protéines interagissant dans l’étude de l’interactome. Ils ont en effet incorporé 1.125 protéines taguées avec la GFP d’une manière stable sur leurs extrémités C et N terminales. 28,500 interactions mettant en jeu 5,400 protéines ont été identifiées. Grâce à l’approche spectrométrique de masse quantitative AP-MS, trois paramètres ont été étudiés : la spécificité d’interaction, la stoechiométrie des interactions et l’abondance des protéines impliquées dans ces interactions. Ces paramètres ont montré que les réseaux des protéines cellulaires sont dominés par des interactions faibles et astoechiométriques et qui jouent un rôle primordial dans la définition de topologie de ces réseaux. La base de données IntAct fournie à partir de ces résultats se trouve sur http://www.ebi.ac.uk/intact.

Ces deux études ont démontré un chevauchement important avec la base de données référentielle CORUM (Ressource complète des complexes de protéines de mammifères) qui
englobe 2.800 complexes de protéines vérifiés expérimentalement avec haute confiance et qui n’accepte le dépôt d’aucune donnée de travail à haut-débit
des interactions interprotéiques, elle présente néanmoins l’inconvénient de devoir lyser les cellules pour extraire les complexes qui seront destinés aux études en spectrométrie de masse. Cette approche peut briser les interactions faibles ou transitoires entre les protéines. Le développement d’une approche qui tague les protéines qui forment un complexe entre elles devient une nécessité pour maintenir l’intégrité du complexe. Les tests de marquage basés sur la proximité des protéines permettent de marquer d’une manière covalente in vivo les protéines d’un complexe en utilisant des enzymes biotinylantes à espace restreint ou limitées dans l’espace. Ensuite les protéines biotinylées seront extraites du lysat par affinité avec la streptavidine pour être analysées en spectrométrie de masse.

Deux techniques de marquage de proximité sont utilisées récemment pour l'analyse des complexes multiprotéiques et pour l'identification des composants protéiques des compartiments cellulaires spécifiques : La BioID et l’APEX. BioID implique l'expression de la protéine d'intérêt fusionnée à la biotine ligase. En effet, la biotinylation se fait sur des groupes amines sur les protéines voisines lorsqu’un excès de biotine est ajouté aux cellules. Tandis que le type sauvage de la biotine ligase BirA est capable de transférer la biotine seulement sur un substrat spécifique, le mutant BirA (Arg118Gly mutant) permet la biotinylation de toutes les protéines qui se trouvent à 10 nm de proximité. Comme avec AP-MS, l'identification d'une association protéine-protéine en utilisant BioID ne signifie pas une interaction physique directe.

APEX est un rapporteur d’une peroxydase monomérique dérivée de l’ascorbate peroxydase de pois ou de soja. APEX catalyse l'oxydation de la biotine-phénol en biotine phénoxyle en présence de H₂O₂, ayant pour résultat la biotinylation de protéines se trouvant à proximité de rayon <20 nm. Alors que la biotinylation des BirA est limitée aux résidus Lys, la biotinylation d’APEX se fait de manière covalente avec des acides aminés riches en électrons, tels que Tyr, Trp, His et Cys. APEX présente aussi un autre avantage dans la confirmation de la localisation des protéines d’un complexe. Il peut induire la précipitation du diaminobenzidine après la fixation en OsO₄, ce qui génère un contraste détecté par microscopie électronique. La mutation Ala134Pro d’APEX augmente l’efficacité de biotinylation. Comme dans la BioID, les protéines biotinylées sont purifiées grâce à la streptavdine pour réaliser l’analyse en spectrométrie de masse.
D’autres bases de données d’interactome sont construites à grande échelle grâce à la spectrométrie de masse précédée par un cross-linking ou XL-MS, ce qui fournit des informations supplémentaires sur la structure topographique des complexes de protéines. Bien que beaucoup des progrès importants aient été faits y compris le développement de cross-linkers clivables en MS, la sensibilité pourrait-être améliorée par l'ajout d’une étape de pré-fractionnement qui permettent d’isoler par affinité spécifiquement les complexes cross-linkés tagués153.

De même, les études de spectrométrie de masse basée sur la corrélation de profilage des protéines (PCP-MS) continuent également à augmenter en couverture et en spécificité. Cette approche se base sur la comparaison des résultats obtenus à interactome de référence154. Cette approche évite les étapes de purification d'affinité et sépare les complexes de protéines en utilisant une variété d'approches qui incluent la densité et l'exclusion de taille, exclusion d'ions et la chromatographie d'interaction hydrophobe.

Catographie haut-débit d’interaction binaire des protéines

Bien que XL-MS n'identifie pas précisément les interactions directes entre les protéines, les autres approches décrites ci-dessus (AP-MS, le marquage de proximité et la PCP-MS) peuvent confirmer la présence des protéines dans un même complexe multiprotéique. Une technique complémentaire qui a été utilisée pendant plus de 20 ans pour détecter les interactions interprotéiques directes est celle de double hybride. Dans cette approche, l'appât et la protéine-proie sont marquées, l'une ou l'autre est liée à l'ADN et l’autre est liée à un facteur de transcription. La liaison entre les deux induit la transcription d'un gène rapporteur. Bien que limitée par les défis techniques et biologiques qui incluent la nécessité de construire de grandes bibliothèques et les taux élevés de faux-négatifs et faux-positifs qui découle de l'absence de certaines modifications post-traductionnelles dans la levure qui régissent les associations protéine-protéine dans les cellules de mammifères, la stratégie double hybride reste une approche puissante pour détecter ou confirmer (ou les deux) les interactions binaires.
Chapitre III : Les tyrosines kinases et les tyrosines phosphatases

1. Les tyrosines Kinases

Les phosphorylations en tyrosine semblent être une étape clef de la signalisation cellulaire. En effet alors qu’elles ne représentent que 0.1 à 4% des phosphorylations des protéines elles sont impliquées dans de nombreux processus biologiques tels que la croissance cellulaire et le métabolisme. Après la découverte de la première tyrosine phosphorylation en 1978 sur la tyrosine kinase Src, une multitude de travaux de recherche ont pu identifier des protéines tyrosine kinases (PTKs) et montrer leurs rôles dans la cellule normale et dans la cellule cancéreuse.

Les tyrosines kinases sont une famille qui catalyse la phosphorylation sur un résidu tyrosine d’une protéine cible en utilisant un ATP, comme illustré dans la figure 13. La phosphorylation a un rôle majeur dans le maintien de l’homéostasie. Les tyrosines kinases sont impliquées dans plusieurs étapes du développement néoplasique et de la progression tumorale.

La découverte de l’oncogène cytoplasmique Src et son activité tyrosine kinase et celle de EGFR et son effet médié par une tyrosine kinase ont amélioré la compréhension du rôle des tyrosine kinases dans le cancer. Le séquençage du génome humain a montré la présence de plus de 90 tyrosines kinases parmi plus de 2000 kinases codées chez l’homme. Les études montrent de plus en plus l’implication de l’activité des kinases dans les cancers.

Les tyrosines kinases sont divisées en deux sous-groupes : Les récepteurs (RTK) comme EGFR, PDGFR, FGFR et IR et les non récepteurs (NRTK) comme Src, ABL, FAK et Janus kinase.
Les récepteurs tyrosines kinases, schématisées dans la figure 14, présentent ou pas des domaines extracellulaires pour la fixation du ligand, un seul domaine hydrophobe transmembranaire et un domaine intra-cytoplasmique contenant l’activité kinase. Les parties N et C terminales du domaine kinase contiennent des séquences régulatrices qui en fixant des protéines contenant le domaine SH2 bloquent le site actif des sous-unités catalytiques.

Le mécanisme de phosphorylation, résumé dans la figure 15, comprend deux étapes : la catalyse et la libération du substrat phosphorylé.

Les récepteurs tyrosines kinases, schématisées dans la figure 14, présentent ou pas des domaines extracellulaires pour la fixation du ligand, un seul domaine hydrophobe transmembranaire et un domaine intra-cytoplasmique contenant l’activité kinase. Les parties N et C terminales du domaine kinase contiennent des séquences régulatrices qui en fixant des protéines contenant le domaine SH2 bloquent le site actif des sous-unités catalytiques. Le mécanisme de phosphorylation, résumé dans la figure 15, comprend deux étapes : la catalyse et la libération du substrat phosphorylé.

Les NRTK sont des protéines cytoplasmiques très variables en termes de structure. Mise à part le domaine kinase, les NRTK peuvent posséder des domaines SH2 (Src homology 2 qui reconnaît des motifs phosphorylés sur tyrosine), SH3 (Src homology 3 qui reconnaît des motifs riches en proline) et PH (Plecktrin homology qui lie les phosphoinositides).
1.1. Les récepteurs HERs

Depuis la découverte des oncogènes et des gènes suppresseurs de tumeurs, et grâce au progrès de la biologie moléculaire, le cancer apparaît comme une maladie de la signalisation.

Les tyrosines kinases représentent une grande partie de l'ensemble des oncoprotéines qui jouent un rôle transformant dans une grande variété des cancers. C’est pourquoi, l'identification et le développemnt des thérapies pour les états pathologiques qui sont liés à une activation anormale des tyrosine kinases (l'expression accrue, une mutation ou une stimulation autocrine) conduisant à la signalisation oncogénique anormale ont pris une place centrale comme une cible puissante pour le traitement du cancer161,162.

Parmi les récepteurs à activité tyrosine kinase, les EGFRs, que nous détaillerons à titre d'exemple car ce sont les premiers étudiés et les mieux compris163. Ces récepteurs sont exprimés à l’état physiologique dans de nombreux types de tissus d’origine épithéliale, mésenchymateuse ou encore neurale, dans lesquels ils jouent un rôle majeur dans le développement, la prolifération, la différenciation et le métabolisme cellulaire164. Les récepteurs HER sont surexprimés ou présentent des mutations activatrices dans de nombreux types tumoraux et sont souvent associés avec un très mauvais pronostic dans les cancers du sein. Le signal de ces récepteurs peut être atténué par différents mécanismes : L’endocytose du récepteur et du ligand, la fusion des vésicules endocytosiques avec des endosomes précoces, ou l’action des certaines phosphatases165 telles que la protéine tyrosine phosphatase PTP1B. PTP1B est nécessaire à la formation de tumeurs dans les souris MMTV-HER2 en déphosphorylant une phosphorylation inhibitrice de l’oncogène src166. Elle est aussi capable de déphosphoryler le récepteur EGFR endocytosé167. PTEN déphosphoryle le second messager PIP3. D’autres phosphatases peuvent moduler le signal des EGFRs, telles que SHP1 qui induit la déphosphorylation de EGFR et HER2 dans des lignées du cancer du sein (SKBR3)168, PTPN9 qui induit la déphosphorylation de Erb2169 et PTPN13 qui régule négativement la phosphorylation de Erb2170. La phosphorylation de Her2 augmente lors de l’inhibition d’expression par SiRNA de PTPN3, PTPN13, PTPN14, PTPRB, PTPRD et PTPRE, PTPRN2170.

Les récepteurs HERs :

Les récepteurs de la famille du récepteur du facteur de croissance épidermique humain ou Human Epidermal growth factor (EGFR (ErbB-1/HER1), HER2 (ErbB-2), HER3 (ErbB-3) and HER4 (ErbB-4), sont parmi les premiers oncogènes identifiés et sont les récepteurs les plus étudiés en cancérologie. Ils font partie de la superfamille des récepteurs à tyrosine kinase.

La signalisation commence par la fixation du ligand sur le récepteur, ce qui induit la dimérisation du récepteur (homo ou hétérodimérisation). Dans le versant intracellulaire du récepteur, les tyrosines subissent une transphosphorylation induisant le recrutement des molécules de signalisation. Les réponses cellulaires diffèrent en fonction des différentes
combinaisons de dimérisation au niveau du récepteur
171, ce qui engendre un degré élevé de diversité de signalisation (figure 16). Il a été démontré qu’en général les signalisations provoquées par les hétérodimères sont plus actives que celles provoquées par les homodimères et que les hétérodimères induisent plus de phosphorylations sur tyrosine dans les protéines effectrices.

Her2 reste le partenaire préféré des HERs. Les hétérodimères contenant HER2 et plus particulièrement les dimères HER2-HER3 sont les plus actifs et les plus stables172 car la présence de HER2 améliore la stabilisation du dimère sans avoir besoin d’un ligand173 et HER3 peut recruter des médiateurs protéiques sans avoir d’activité kinase174. Le dimère HER2/HER3 fonctionne comme une unité oncogénique améliorant la prolifération dans le cancer du sein175.

Les ligands des récepteurs HER se divisent en trois groupes (figure 17) :
- Ceux qui se lient spécifiquement l’EGFR : Le EGF, l’amphiréguline et le TGFα.
- Ceux qui se lient à EGFR et HER4 : La β-celluline, l’héparin-binding-EGF et l’épiréguline
-Aucun ligand ne se fixe sur le récepteur orphelin HER2

1.1.1. HER1 ou EGFR

Deux sous populations des récepteurs HER1 ont été identifiées. Les récepteurs à haute affinité avec les ligands (EGF, TGF-α) et ceux à basse affinité de Kd ≈300 pM et 2 nM respectivement. La fixation des ligands à haute affinité active les voies des RAS/RAF/MAPK et PI3K/Akt, tandis que la fixation des ligands sur les récepteurs à basse affinité a pour conséquence l’activation des voies STAT (Signal Transducer and Activator of Transcription) et PLCγ/PKC (Phospholipase Cγ/Proteine kinase C). La majorité des réponses biologiques observées des EGFRs sont générées par les signalisations des EGFRs de haute affinité qui ne représentent que 10% des EGFRs. Il n’y a aucune différence structurale entre les deux sous populations de récepteurs EGFRs, elles dérivent du même transcrit et elles possèdent la même séquence d’acides aminés. La différence émane de différence de localisation sur la membrane plasmique ou de différence d’interaction avec des « sites externes » tels que les puits de clatherine. Une étude en 2008 a montré qu’il s’agit plutôt d’une coopérativité négative que de

Fig.17. Principaux ligands responsables de l’activation des récepteurs HER. Ces ligands présentent tous un domaine EGF-like qui leur confère leur spécificité de liaison. Ces ligands se divisent en trois groupes en fonction de leur affinité pour les différents récepteurs: Il n’existe aucun ligand identifié pour HER2. D’après García-Sáenz et al 2009
deux sous populations distinctes et qu’à basse concentration le dimère fixe un seul ligand et si la concentration du ligand est assez élevée le dimère est occupé par deux ligands183.

1.1.2. HER2

Dans la famille des HERs, HER2 est le plus proche de HER1184. Pas de ligands connus pour ce récepteur, mais lorsqu’il est surexprimé, il est capable de se dimériser en absence du ligand. HER2 est surexprimé dans à peu près 15% des cancers mammaires et est lié à un phénotype agressif72. Dans la majorité (95%) des cas, sa surexpression est due à l’amplification de son gène.

1.1.3. HER3

HER3 ne présente aucune activité kinase intrinsèque. L’activation des voies de signalisation dépend de sa dimérisation, habituellement avec HER2. Dans un premier temps HER3 n’est pas apparu dans la liste de screening des oncogènes et aucune altération importante d’HER3 n’a été mise en évidence dans les tumeurs humaines, son activité maligne émane de HER2. La perte de son expression dans les cellules surexprimant HER2 inhibe la croissance des cellules de la même manière que la perte de fonction de HER2.

1.1.4. HER4

HER4 présente une homologie avec EGFR, son mécanisme d’action n’est pas parfaitement expliqué. Son expression est associée avec un bon pronostic dans les cancers du sein de stade précocé185. La signalisation en aval d’HER4 est associée à la différenciation, l’apoptose et la diminution de la tumorigénicité.

2. Les voies de signalisation principales induites par une phosphorylation sur tyrosine :

Plusieurs voies de signalisation sont couplées aux récepteurs HERs : Les plus détaillées sont la voie des PI3K/Akt et la voie des RAS/RAF/MAPK (figure 18).

Les études moléculaires ont abouti à l’identification de principales voies de signalisation impliquées dans la tumorigénèse. Les deux voies majoritairement étudiées sont la voie

Fig.18. Principales voies de signalisation en aval des récepteurs HER : voie des PI3K/Akt, la voie des RAS/RAF/MAPK, la voie de JAK/STAT3 et Src/PLCγ. Les résidus tyrosine phosphorylés des récepteurs HER servent de sites d’ancre pour des adaptateurs intracellulaires tels que Grb2, des enzymes intracellulaires telles que PLCγ, ou encore des facteurs de transcription tels que STAT3. Le couplage des récepteurs HER à ces voies de signalisation permet une grande diversité de réponses cellulaires (prolifération, survie, migration, etc.) Extrait de Pines et al 2010
RAS/RAF/MAPK (Rat Sarcoma/ Rat Fibrosarcoma virus/Mitogen Activated Protein Kinase) et la voie des PI3K/Akt (Phosphatidylinositol 3-OH kinase/ Protéine kinase B). Ces deux voies agissent en aval des récepteurs à activité tyrosine kinase en particulier les HERs.

2.1. Voie des RAS/RAF/MAPK

La voie des RAS/RAF/MAPK, illustrée dans la figure 19, présente un rôle central dans la régulation de la croissance et de la survie cellulaire dans plusieurs cancers humains. Suite à la fixation d’un facteur de croissance sur son récepteur, ce dernier se dimère et s’active par un phénomène d’autophosphorylation sur des résidus tyrosines intracytoplasmiques sur lesquelles vient se fixer la protéine Gbr2 grâce à son domaine SH2. Sos rejoint Gbr2 par interaction avec des sites d’ancre pour former un complexe qui sera transloqué à proximité de RAS qui elle-même est liée à la membrane plasmique. Les membres de la superfamille RAS se lient à la membrane plasmique grâce à des modifications posttraductionnelles lipidiques que subissent les RAS. Les modifications les plus courantes sont la S-palmitoylation et la S-isoprenylation. Sos permet l’échange GDP-GTP sur RAS. RAS sous sa forme RAS-GTP présente une bonne affinité pour l’extrémité N-terminale de la sérine/thréonine kinase RAF. Ensuite une cascade de phosphorylation s’enchaîne : RAF (MAP kinase kinase kinase) qui recrute et phosphoryle MEK par interaction avec son extrémité C-terminale, MEK (mitogen-activated extracellular signal regulated kinase–activating kinase) (MAP kinase kinase) qui à son tour phosphoryle la MAP kinase ERK (Extracellular signal Regulated Kinase). Ensuite ERK est transloquée dans le noyau pour activer des acteurs-cibles impliqués dans la transcription du gène c-fos, la réplication et le

Fig.19. Les cascades de Mitogen-activated protein kinase (MAPK) sont des modules de signalisation ubiquitaires qui transmettent le signal de la surface de la cellule vers le cytoplasme puis vers les effecteurs nucléaires. Toutes les cascades de MAPK mettent en jeu la phosphorylation d’une séquence de trois kinases : La MAP Kinase Kinase (MAPKKK), La MAP Kinase (MAPKK) et la MAPK. La première cascade chez les vertébrés était la cascade ERK/MAPK. L’acronyme ERK désigne Extracellular signal-Regulated Kinase, et est dérivé du fait qu’une variété de signaux extracellulaires active cette cascade. La cascade ERK/MAPK est probablement la plus étudiée à cause de son rôle dans la transduction du signal des récepteurs tyrosine kinases (RTKs). Son activation débute par la fixation du ligand sur le récepteur entraînant la phosphorylation du domaine intracytoplasmique, puis l’activation du complexe SOS-GRB2 (son-of-sevenless- growth-factor-receptor bound protein-2), puis le recrutement d’une petite protéine GTPase appelée RAS qui va à son tour échanger un phosphate d’un GTP le transformant en GDP. Ceci va activer MAPKKK (RAF), qui à son tour active MAPKK (MEK) par phosphorylation sur sérine. En effet, l’activation de MEK induit la phosphorylation de MAPK (ERK). Une fois phosphorylée, ERK est transloquée dans le noyau où elle phosphoryle et active des facteurs de transcription agissant sur la croissance, la différenciation et la survie. D’après kim and bar-sagi 2004.
cycle cellulaire tels qu’Elk-1 et/ou Sap-1 et les protéines nommées TCF (ternary complex factors). Cette voie est largement impliquée dans la résistance à la thérapie ciblée anti EGFR. Plusieurs essais thérapeutiques ciblent les éléments de cette voie et sont actuellement en phase III, d’abord K-RAS (Kirsten Rat Sarcoma virus) dont la mutation est observée dans plusieurs types de cancers. Cette voie intervient dans l’oncogénèse et la progression tumorale.

2.1.1. RAS

La superfamille RAS englobe 150 membres divisés en cinq familles : RAS, RHO, RAB, ARF et RAN. La famille de proto-oncogène RAS comprend trois gènes bien caractérisés HRAS, NRAS et KRAS. L’activation du récepteur HER active le complexe Sos/Grb2 qui active RAS par échange GTP-GDP. Ce sont des protéines à activité GTPase qui existent donc sous deux états : Ras-GDP (forme inactive) et RAS-GTP (forme active). De point de vue structural, les protéines RAS possèdent une séquence à leur extrémité C-terminale dite « CAAX » qui subit certaines modifications telles que la méthylation qui stabilisent RAS à la membrane via des interactions entre des molécules positivement chargées liées à RAS et les molécules de la membrane plasmique négativement chargées. RAS comprend aussi un domaine de 160 acides aminés capable de fixer GTP ou GDP. Deux régions de RAS situées en position 30-38 et 61-77 changent selon la présence de GTP ou GDP, ces régions interagissent avec des protéines qui reconnaissent uniquement une des formes de RAS telle que RAF. Le passage entre ses deux différentes formes d’activation, RAS-GTP et RAS-GDP, est régulé par les GDI (GDP dissociation inhibiting protein) qui se complexent avec RAS-GDP, les facteurs d’échange qui sont responsables du départ de GDP et de la réception de GTP et finalement les GAP (GTPase activating protein) qui permettent l’hydrolyse du GTP et le retour de RAS à sa forme inactive RAS-GDP. En oscillant entre ses deux états d’activation RAS joue le rôle d’interrupteur de plusieurs signalisations aboutissant à la régulation de la survie, différenciation, migration et angiogenèse. Les premières études de HRAS et KRAS ont montré qu’ils pouvaient s’autophosphoryler, suggérant une activité kinase intrinsèque. Quelques années plus tard, les études ont montré que l’activité d’autophosphorylation était très faible et n’a probablement pas de signification physiologique. RAS peut également activer la PI3K via sa sous-unité p110 pour former un point de connexion avec la voie PI3K. RAS est muté dans plus de 60% des cancers du pancréas, 35-40% des cancers colorectaux et 33% des cancers des voies biliaires. Dans certaines tumeurs, des protéines GAP se trouvent mutées empêchant en effet le retour de RAS à son état inactif.

2.1.2. RAF

L’activation RAS induit la phosphorylation de la famille RAF (ARAF, BRAF, CRAF) qui sont des proto-oncogènes appartenant à la famille de la sérine/thréonine kinase. Plusieurs
phosphorylations participent dans l’activation de RAF : la phosphorylation sur sérines 43, 259, 471, 497, 499 ou 621194–196. Certaines études suggèrent aussi l’activation de RAF par la famille Src par phosphorylation sur tyrosines 340 et 341197. RAF peut interagir avec la protéine Rb198. Elle est capable d’activer MEK. Les mutations des RAF, notamment la mutation BRAF V600E sont liées à un mauvais pronostique dans les mélanomes199. BRAF se trouve mutée dans 59% des mélanomes, 18% des cancers colorectaux, 11% des gliomes, 3% des cancers du poumons, 9% des sarcomes, 4% des carcinomes ovariens, 2% des cancers du sein et 14% des cancers du foie200.

2. I.3. MEK

MEK est également une sérine-thréonine kinase. Elle est activée par RAF. Son activation conduit à une double phosphorylation de la protéine ERK au niveau d’un résidu tyrosine et d’un résidu thréonine201. Les mutations des MEK sont faiblement étudiées, néanmoins une étude récente montre que MEK1 est mutée dans 1% des cancers de poumons202.

2. I.4. ERK

A son tour ERK double phosphorylée par MEK, sera transloquée au niveau du noyau pour induire l’expression des gènes précoces codant pour des facteurs de transcription c-Fos, c-MYC, C-JUN ou JUNB, qui à leur tour stimulent l’expression des gènes du cycle cellulaire tels que la cycline D1 et CDK6. ERK peut être activée par divers mécanismes indépendants de la voie des RAS/RAF/MAPK tels que par la voie des intégrines. A son tour, ERK peut phosphoryler plus d’une centaine de substrats différents intervenant dans la différenciation, la survie et la motilitécellulaire.

2.2. La voie PI3Kinase/Akt

La voie PI3K/Akt/mTOR, schématisée dans la figure 20, est la voie la plus fréquemment altérée dans les cancers du sein. L’altération touche les composants moléculaires de la voie à partir du récepteur membranaire comme les RTKs, tels que les HER2, FGFR1, les sous-unités de la PI3K, les Akt, mTOR et P70S6K et autres effecteurs transcriptionnels. L’altération touche aussi la perte d’expression des régulateurs négatifs tels que PTEN. Un défaut d’activité de PTEN induit l’accumulation de PIP3 intracellulaire. Cette accumulation active plusieurs protéines contenant des domaines PH notamment PDK et Akt203,204. Les mutations, les surexpressions ou les délétions des protéines de signalisation de cette voie aboutissent à une perturbation du signal205. Par exemple, les mutations germinales de PTEN sont associées au développement des maladies telles que la maladie de Cowden mais aussi au développement des tumeurs en particulier du sein et de la thyroïde206–208. De plus, les mutations somatiques de PTEN sont fréquemment associées à des cancers humains tels que les glioblastomes et les adénocarcinomes de la prostate, de l’endomètre et de l’ovaire209.
Une fois activé, le récepteur RTK recrute les PI3Ks (formées des sous-unités catalytiques 110 kDa et sous unités régulatrices/adaptatrices 85 kDa) à la membrane plasmique grâce à la fixation des domaines SH2 (Src- homology) de la sous-unité p85a aux tyrosines phosphorylées du domaine intracellulaire du récepteur.

Fig.20. Schéma de la voie PI3K / Akt. La phosphatidylinositol 3- kinase (PI3K) est activée par liaison à un récepteur (récepteur tyrosine kinase) par des facteurs de croissance (GF) ou des cytokines (CY) aboutissant à la dimérisation du récepteur, sa transphosphorylation et une série d’événements ultérieurs qui participent dans l’activation intracellulaire de cette voie et qui aboutit à la phosphorylation du PIP2 en PIP3. PIP3 qui sert ensuite de second messager permettant la liaison des protéines contenant le domaine - pleckstrine homologie comme Akt. De ce fait Akt subit des changements conformationnels conduisant à sa phosphorylation par PDK1. Akt participe à la régulation de plusieurs processus comme la traduction des protéines, la croissance et l’apoptose. Cette voie est régulée négativement par des phosphatases comme PTEN qui déphosphorylent PIP3 ou par les phosphatases PHLPP ou PP2A qui déphosphorylent Akt même. Les flèches noires indiquent les processus d'activation et les flèches rouges les processus d'inhibition. RTK : récepteurs à tyrosine kinase; PTEN: phosphatase et tensin homologue; PIP3 : phosphatidylinositol 3-kinase; PDK1: 3-phosphoinositide-dependent protein kinase-1 ; mTOR : mammalian target of rapamycin ; GSK3b : glycogen synthase kinase 3b ; AMKK : AMP-activated protein kinase ;ERK : extracellular signal regulated kinase ; FKHR, forhead ; GDP :guanosine diphosphate; IRS : insulin receptor substrate; GSK3 : glycogen synthase kinase 3; MAPK :mitogen-activated protein kinase; NF-B : nuclear factor-B; PIP2 : phosphatidylinositol-3,4-diphosphate; PIP3 : phosphatidylinositol-3,4,5-trisphosphate; PKC : protein kinase C; STAT : signal transducer and activator of transcription ; Grb2 : growth factor receptor bound protein ; RAC : Ras-related C3 botulinum toxin substrate ; PKC/PKA : protein kinase A/C ; LKB1 : liver kinase B1 ; BAD : Bcl-2-associated death promoter protein. (Inspiré de Hennessy 2005)

2.2.1 PI3K

Les PI3Ks sont des enzymes qui phosphorylent les lipides inositols membranaires en position 3 du groupe inositol[210,211]. Les PI3Ks phosphorylent le phosphatidylinositol (4) phosphate (ou PI4P) pour générer le phosphatidylinositol (3,4) bisphosphate (PI3, 4-P2) et le phosphatidylinositol (4,5) bisphosphate (ou PIP2) pour générer le phosphatidylinositol (3, 4,5) trisphosphate (ou PIP3)[212]. PTEN (Phosphatase and Tensin Homologue) et SHIP (SH2 containing inositol phosphatase) sont deux phosphatases régulant l’activité des PI3K en déphosphorylant PIP3 pour produire respectivement phosphatidylinositol (4,5) bisphosphate.
(PI4, 5-P2) et phosphatidylinositol (3,4) bisphosphate (PI3, 4P2). Cette voie est également négativement régulée par la protéine phosphatase 2 (PP2A) et la PH-domaine leucine-rich-repeat-containing protein phosphatase (PHLPP1/2)113. Les enzymes du métabolisme des phosphoinositides (PI) sont sujettes à des mutations perte ou gain de fonction. Ces mutations sont directement liées à des pathologies humaines. La famille la plus importante de toutes les phosphoinositide kinases dans les mécanismes cellulaires est la famille PI3K. Elle comporte 4 classes : PI3KIA, PI3KIB, PI3KII et PI3KIII. La PI3Kα, membre de la classe PI3KIA, a montré une importance remarquable et est devenue une cible en oncologie car plusieurs mutations au gène PIK3CA, le gène qui code pour PI3Kα, ont été trouvées dans des cancers humains solides114. PI3Kα est activée par plusieurs oncogènes, deux de ses mutations décrites (E545K et H1047R) sont suffisantes pour causer une augmentation du niveau de PtdIns (3, 4, 5) P3 intracellulaire et par suite transformer les cellules115. Certains inhibiteurs sélectifs de cette kinase sont en essai clinique chez des patients qui présentent une mutation activatrice de PI3Kα dans des tumeurs solides. La monothérapie mettant en jeu ces inhibiteurs a donné des résultats relativement limités, en revanche leur association à d’autres acteurs comme PARP pourrait donner des résultats intéressants116.

Deux sous-unites forment les PI3Ks, formant un complexe hétérodimérique dont la sous-unité p110α a un rôle catalytique et la sous unité p85α qui a un rôle régulateur et adaptateur. La fixation de la sous-unité régulatrice au motif p-Y-X-X-M sur les tyrosines phosphorylés du récepteur induit l’activation de la PI3K.

Plusieurs espèces de PI existent par l’action de différentes kinases et phosphatases. Ces molécules de phosphatidylinositides jouent le rôle de seconds messagers qui interagissent directement avec des domaines protéiques fonctionnels comme PH (Pleckstrin Homology), FYVE (Fab-1, YGL023, Vps27, et EEA1), PX (phox), ENTH (Epsin N-terminal homology), etc. Ces espèces sont importantes dans la signalisation, le transport vésiculaire, la dynamique cellulaire et la formation spatio-temporelle des complexes protéiques en recrutant certaines protéines au niveau de la membrane plasmique117.

Le phosphatidylinositol (PtdIns) représente 80% des PI, est synthétisé au niveau du réticulum endoplasmique et est le précurseur des phosphoinositides116. Les différentes phosphorylations/déphosphorylations des espèces dérivées de PI donnent : PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,4) P2, PtdIns(3,5) P2, PtdIns(4,5) P2 et PtdIns (3, 4, 5) P3. On observe qu’aucune phosphorylation ne touche les carbones : 1, 2 et 6. On pense que cela revient à la difficulté d’accès de la kinase à ces carbones à cause de l’encombrement stérique.

2.2.2. Akt

Akt/PKB se fixe à la membrane grâce à PIP3 et sera phosphorylé par PDK induisant son activation et sa libération dans le cytosol pour phosphoryler ses substrats. Akt/PKB, une sérine/thréonine kinase est impliquée dans l’inhibition de l’apoptose, le métabolisme, la progression du cycle cellulaire, l’activation de la traduction des ARNm en protéines et l’augmentation de la survie113,118,119.

Une inactivation de PTEN entraîne une phosphorylation constitutive d’Akt210,221. La phosphorylation de Akt est favorisée par plusieurs types de facteurs de croissance tels que :
FGF2, PDGF, SCF, VEGF, NGF, etc, et des cytokines telles que : IL-3, IL-2, IL-4, IL-5, IL-8. Dans plusieurs types des cancers, Akt est surexprimé : dans le cancer de l’ovaire222, du pancréas223 et du sein224.

Akt active la survie cellulaire par plusieurs mécanismes : en régulant les gènes de la famille BCL2 et des caspases qui sont impliqués dans l’apoptose. L’apoptose est déclenchée par l’interaction de BCL2 avec la protéine BAD non phosphorylée. Une fois phosphorylé par Akt, BAD est séquestré dans le cytoplasme et ne peut plus exercer sa fonction pro-apoptotique225.

Akt induit l’activation des gènes impliqués dans la survie. Il phosphoryle des protéines de la famille IkB, libérant ainsi le facteur de transcription NFkB qui sera transloqué dans le noyau pour activer la transcription des gènes impliqués dans l’inflammation et l’inhibition de l’apoptose. Akt phosphoryle et inhibe la GSK-3 en réponse à l'insuline226 ce qui entraîne l'activation transcriptionnelle des gènes anti-apoptotiques tel que Mcl-1.

2.2.3. mTOR

Certains effets de la voie PI3K/Akt sont relayés par la voie mTOR/p70S6Kinase. mTOR (mammalian target of Rapamycin) est la cible la plus étudiée d’Akt et dont la partie C-terminale ressemble à la sous unité catalytique de PI3K. mTOR intervient dans la signalisation aboutissant à l’initiation de la synthèse des protéines en phosphorylant 4E-BP (eukaryotic translation initiation factor 4E binding protein) et p70S6kinase. La phosphorylation de 4E-BP1 (eukaryotic translation initiation factor 4E binding protein) par mTOR libère le facteur d’initiation de la traduction eIF4F. Les protéines synthétisées interviennent dans la progression du cycle cellulaire227.

Il existe deux formes de mTOR, le complexe mTORC1 et le complexe mTORC2. Le complexe mTORC1 est régulé par les voies de signalisation PI3K/Akt et MAPK. Les kinases p70S6K et mTORC1 peuvent jouer un rôle de rétrocontrôle négatif sur la voie PI3K en phosphorylant IRS1 et IRS2 (figure 21), causant leurs dégradations et interrompant ainsi la signalisation IGF1R et PI3K228.

![Fig.21. Boucles de rétrocontrôles négatifs de la voie PI3K/Akt/mTOR](image)

2.2.4. p70 S6kinase

p70 S6kinase est une sérine/thréonine kinase qui intervient dans la régulation du cycle cellulaire, la synthèse des protéines et la prolifération229. La p70 S6kinase est surexprimée dans de nombreux cancers.

Il existe 2 isoformes de P70S6k, l’isoforme cytoplasmique de 70 kDa, ainsi que l’isoforme nucléaire de 85 kDa230. Ces deux isoformes sont obtenues par épissage alternatif. La translocation nucléaire de P70S6K serait un moyen de régulation de son expression cytoplasmique. Par ailleurs la protéine p70S6K régule par rétrocontrôle négatif la voie de signalisation RAS/RAF/MEK/ERK.
3. Les phosphatases

3.1. Généralités et classifications :

Dans les décennies passées, les études des kinases ont été très nombreuses alors que les phosphatases étaient peu étudiées car la déphosphorylation était considérée comme une activité de base non spécifique. Des données récentes ont montré que les phosphatases participent à la régulation de phosphorylation et qu’elles jouent un rôle primordial dans la physiologie de la croissance, de la communication intercellulaire et de la différenciation.117,165,231

Les protéines phosphatases peuvent être classifiées selon leurs structures en familles distinctes, qui semblent évoluées de provenances ancestrales différentes, comme le montre le tableau 1. Plusieurs classifications ont été proposées et nous présenterons ici leur classification selon la spécificité des substrats :

- Les sérine/thréonine phosphatases : ce sont les phosphatases spécifiques aux protéines phosphorylées sur sérine ou thréonine. Elles sont très flexibles en termes de spécificité et variables en termes de structures. Elles comprennent les PPPs (phosphoprotéine phosphatases) et les PPM (Protéines phosphatases dépendantes de Magnésium). Certains membres de la famille PPP sont composés d’une sous-unité catalytique associée à une sous-unité régulatrice232. La famille des PPM est connue pour son strict besoin d’un ion divalent pour s’activer. Elle est connue aussi pour son insensibilité vis-à-vis des inhibiteurs des PPPs tel que l’acide okadaïque.
- Les PTPs : ce sont les phosphatases spécifiques aux protéines phosphorylées sur un résidu tyrosine. Elles possèdent des domaines d’interactions avec d’autres protéines et un ou deux domaines catalytiques conservés avec un résidu cystéine sensible à l’oxydation.

- Les Phosphatase à double spécificité (Dual specific phosphatases, DSPs). Dans cette famille, les phosphatases sont capables de déphosphoryler plusieurs types de substrat (ex : tyrosine et phospholipides). La majorité des PTPRs sont des récepteurs orphelins et n’ont pas de ligands connus.

4. Les tyrosines phosphatases

Une décennie après la découverte des PTK, PTP1B la première tyrosine phosphatase, agissant en voie inverse donc en déphosphorylant les protéines tyrosine-phosphorylées, a été découverte et clonée. Ensuite les découvertes se sont enchainées jusqu’à l’identification de 107 PTPs codées par le génome humain.

Les PTPs présentent la caractéristique d’être composées d’une combinaison de domaines modulaires (figure 22). 79 sur 107 PTPs présentent au moins un domaine de localisation ou de régulation en plus de leur domaine catalytique. Ces domaines peuvent servir à la régulation de l’activité phosphatase ou à la localisation de la protéine. Les PTPs sont très riches en termes de domaines ayant différents rôles : localisation, interaction, site de modification… À titre d’exemple, le domaine fibronectin type III-like qui est nécessaire à l’interaction des PTPs transmembranaires telles que LAR, PTPδ, PTPβ, CD45, PTPS31 avec d’autres protéines extracellulaires. Le domaine extracellulaire immunoglobulin-like est présent dans les PTPs LAR, PTPσ, CRYPα et PTPμ qui possèdent des sites de liaisons homophiliques pour les contacts cellule-cellule. Le domaine SH2, ou Src-homology-2 qui permet la liaison avec des protéines bi-tyrosine phosphorylées pour les phosphatases SHP1 et SHP2. Les domaines SH3 des protéines permettent l’interaction avec domaines riches en proline des PTPs c’est le cas PTPTYP, PTP-PEST et HDPTP. Finalement le domaine FERM permet la localisation à membrane plasmique comme dans le cas des PTPN3, PTPN13, PTPN14 etc.

Pour certains auteurs, une enzyme est classée en PTP si elle possède une homologie structurale au niveau de son domaine catalytique aux enzymes connues pour avoir une activité tyrosine phosphatase, indépendamment de sa spécificité, ainsi les « phosphatases à double spécificité » peuvent être classées dans les PTPs.

Les PTPs sont classées en 3 classes :

Les Classes I, II, III qui ont une activité catalytique basée sur une cystéine, une classe s’y rajoute est celle des phosphatases dont l’activité est dépendante de l’aspartate.

La classe I comprend les PTPs dont la structure est proche de la première PTP séquencée, PTP1B. Les 99 membres de cette famille peuvent être sous classées en :

- PTPs Classiques :
 - PTP récepteur-like
 - PTP non récepteur
- VHI-like ou DSPs (double spécifiques PTPs) :
 - la MKP, MAP Kinase Phosphatase.
 - DSPs atypiques
 - Slingshots
 - PRLs
 - CDC14
 - PTEN
 - Myotubularins.

La classe II : Basiquement comprend des phosphatases qui interviennent dans la régulation du cycle cellulaire comme les CDC24A, CDC25B et CDC25C. Leur activité catalytique est proche de celle de la classe I mais elles sont structurellement différentes. Elles présentent une similarité aux phosphatases bactériennes.

La classe III : Est largement répandu dans tous les royaumes de la vie : de la bactérie jusqu’à l’homme. Représenté par un seul membre (seul gène), LMWPTP (Low-Molecular Weight PTP) n’est pas bien décrit dans la littérature. Son polymorphisme génique est corrélé avec des maladies telles que le cancer et le diabète.

La classe des phosphatases dont la catalyse dépend de l’aspartate : La classe la plus récemment classifiée. Elle comporte FCP, SCP et les haloacides dehalogènases. En 2003, il a été montré que cette famille peut avoir une activité sérine tyrosine phosphatase. Les membres de cette famille jouent un rôle dans le développement, la morphologie nucléaire et le stress sodique dans la levure.

4.1 : Mécanisme d’action des PTPs à cystéine

Le site catalytique des PTPs contient le motif caractéristique HC(X)₃R et un acide aspartique qui sont indispensables à l’activité catalytique. La catalyse se fait en deux étapes détaillées dans la figure 23 :

L’atome du soufre de la cystéine du site catalytique sert de nucléophile pour attaquer le groupement phosphate du substrat pour former un composant intermédiaire cysteinyl-phosphate. Le groupe partant, le tyrosyl, sera protonné. La deuxième étape consiste en l’hydrolyse de l’intermédiaire formé (la phosphoenzyme) et le départ du phosphate grâce à un résidu aspartique qui agit comme une base.

Fig.23. Mécanisme catalytique de PTP, intermédiaire enzyme-substrat.

Le site catalytique est très conservé au cours de l’évolution et comporte des résidus cruciaux pour la catalyse et le largage du substrat. Le remplacement de la cystéine C, responsable d’attaquer le groupement phosphate du substrat, par une sérine S abolit complètement l’activité catalytique de l’enzyme créant ainsi un mutant catalytiquement « mort » ou phosphatase dead dit « mutant CS »241. La boucle WPD, une région très conservée du domaine catalytique, contenant les acides aminés : tryptophane, proline et aspartate joue un
rôle clé dans la déphosphorylation et la libération du produit. Elle change de conformation pour permettre l’accès de la tyrosine à la poche catalytique, sa conformation ouverte permettant la libération du substrat déphosphorylé et la réception d’un nouveau substrat. Le remplacement du résidu aspartate D de cette boucle par une alanine A donne un mutant qui lie le phosphate du substrat mais est incapable de relarguer celui-ci créant ainsi un mutant dit de substrat trapping ou mutant DA.

La spécificité stricte des PTPs pour les phosphotyrosines est due à une poche catalytique de 9 Angströms de profondeur alors que celle qui reconnait les phosphosérines et phosphothréonines mesure seulement 6 Angströms.

4.2. Régulation des PTPs.

Comme toutes les familles d’enzymes jouant un rôle majeur dans la signalisation intracellulaire, l’activité des PTPs est étroitement régulée in vivo par de nombreux mécanismes. Ces régulations sont hautement dynamiques dans le temps et dans l’espace.

L’activité des PTPs est finement régulée contrairement à ce qu’on pensait initialement. Les différents mécanismes de régulations des PTPs comprennent leur état d’oxydation, de phosphorylation, leur clivage ainsi que leur habilité à se dimériser.

Les phosphatases classiques dont l’activité est dépendante de la cystéine sont négativement régulées par l’oxydation. En effet, les PTPs I et II sont connues pour être sensibles à l’oxydation. La cystéine catalytique fonctionne comme un agent nucléophile. En fonction de l’environnement chimique du site actif des PTPs, la cystéine peut subir une baisse de la valeur de pKa. Cette baisse favorise les capacités nucléophiles et rend l’enzyme plus susceptible à l’oxydation par des agents oxydants comme les ROS, espèces réactives oxygénées, en réponse à des variétés de stimuli physiologiques, ce qui permet l’oscillation de la cystéine en acide sulphenique (SOH), sulphinique (SO₂H) ou sulphonique (SO₃H). Ces réactions sont transitoires et en général réversibles sauf si l’oxydation est poussée, ceci engendre une dérivée stable, l’acide sulfonique SO₃H. L’oxydation de la cystéine du site actif abolit la capacité nucléophile et rend l’enzyme inactive. Les calculs expérimentaux ont pu déterminer que les valeurs de pKa du groupe SH des PTPs se trouvent entre 4 et 6.

L’activité catalytique de PTP1B est affectée par l’oxydation. La formation de sulphenylamide, produit secondaire obtenu par oxydation des résidus du squelette peptidique de PTP1B, affecte la conformation spatiale du site actif. Ce changement favorise de nouvelles interactions avec de nouvelles protéines. Par exemple la forme oxydée de PTP1B améliore la fixation de la calpaine pour faciliter sa dégradation protéolytique. Bien qu’une autre étude a montré que la calpaine clive PTP1B pour l’activer.
La cellule cancéreuse présente un plus haut niveau de ROS que la cellule normale\(^\text{249}\). Il a été montré que les ROSs favorisent le signal mitogénique et la voie de survie. Certaines études ont corrélé la production élevée des ROS avec des lésions oncogéniques via l’activation de la GTPase RAS\(^\text{250}\) ou l’activation constitutive des kinases comme BCR-ABL. C’est le cas dans la leucémie myéloïde chronique\(^\text{251}\). Dans une étude intéressante, il a été montré par spectrométrie de masse que PTP1B est oxydée. Une fraction significative de PTP1B se trouve oxydée d’une manière irréversible dans les cellules de carcinome épidermique A431\(^\text{252}\). A part PTP1B, d’autres PTPs se trouvent oxydées dans les cellules A431 telles que PTPN4, PTPN21, PTPN23, PTPRA, PTPRE, PTPRK et PTPRS\(^\text{253}\). Un autre exemple d’oxydation d’une phosphatase est PTEN qui se trouve oxydée dans le cancer pancréatique\(^\text{254}\).

L’activité catalytique est également influencée par la phosphorylation, c’est le cas de SHP-1, SHP-2, PTPα, PTP1B, CD45 etc\(^\text{255-259}\). Par exemple, la phosphorylation sur sérine du domaine juxtamembranaire de PTPRA perturbe la forme dimérique inactive du récepteur et active la phosphatase. CD45 est une tyrosine phosphatase récepteur très abondante à la surface des lymphocytes. Des études ont montré que la stimulation des cellules CTLL, sous clone des cellules T murines, par l’IL-2 (interleukine 2) induit la phosphorylation de CD45 sur deux sérines sans qu’il y ait un changement de son activité\(^\text{260}\). \textit{In vitro}, CD45 a été phosphorylée par la caséine kinase II et PK-C purifiée, encore une fois cette phosphorylation n’a donné aucun changement d’activité\(^\text{261}\). Par contre, une autre étude a montré que le traitement des cellules T murines et des thymocytes par l’ionomycine, ionophore calcique qui induit l’influx du calcium dans l’espace intracellulaire, induit une perte de phosphorylation sur sérine et réduit l’activité tyrosine phosphatase de CD45\(^\text{262}\). Certaines autres études ont montré une tyrosine phosphorylation de CD45 et que cette phosphorylation, malgré qu’elle soit transitoire, semble être plutôt activatrice ou essentielle à l’activité catalytique de CD45\(^\text{263,264}\). L’activité de PTP1B est elle aussi régulée par phosphorylation. En effet, la phosphorylation sur sérine 352 de la séquence Lys-Gly-Ser-Pro-Leu de PTP1B engendrée par des kinases dépendantes de l’AMPc ou inhibiteurs de phosphatase 2A augmente jusqu’à 8 fois l’activité de cette phosphatase\(^\text{265}\).

SHP-1 est une tyrosine phosphatase qui joue un rôle important dans la régulation du signal des cellules T. Dans la lignée Jurkat, cellules immortalisées de lymphocyte T CD4 et largement utilisées pour l’étude de la leucémie aiguë lymphoblastomique T, la stimulation de TCR (T-cell receptor) induit une phosphorylation rapide et transitoire de SHP-1 sur sérine 591. Cette phosphorylation inhibe son activité et régule sa localisation, en effet sa localisation membranaire diminue et sa localisation nucléaire est empêchée\(^\text{266}\). Un autre exemple de la régulation de l’activité d’une PTP par phosphorylation est la perte de capacité de PTP1B de déphosphoryler le récepteur insulinaire dans les cellules de carcinome hépatocellulaire humain HepG2. Akt est une sérine/thréonine kinase effectrice de la voie insulinaire et qui phosphoryle ses protéines substrats au niveau d’un motif consensus RXRXXS/T. PTP1B contient cette séquence et est phosphorylée sur le résidu sérine 50 par Akt \textit{in vivo}. Cette phosphorylation régule négativement l’activité de PTP1B et positivement le signal de la voie insulinaire\(^\text{267}\).

Le clivage protéolytique de certaines PTPs constitue une forme de régulation. C’est le cas de la TC-PTP (T-cell protein tyrosine phosphatase). A l’état inactif, la protéine fait 45kDa et se localise au noyau. Le clivage de l’isoforme 45 kDa en 33 kDa par la trypsine aboutit à une protéine dont l’activité enzymatique est augmentée de 20 à 200 fois par rapport à la protéine
mère. Un autre exemple est celui de PTP1B, qui est activée sous forme 42 kDa une fois clivée par la calpaine.

La forme p66 PTPα est obtenue par clivage protéolytique de PTPα sous l’action de la calpaine. Cette forme existe dans toutes les cellules où PTPα est exprimée. Ce clivage induit la libération du domaine phosphatase catalytique dans le cytoplasme. La translocation réduit considérablement la capacité de cette phosphatase d’agir sur ses substrats qui se trouvent associés à la membrane, elle perd la capacité de déphosphoryler Src sur son extrémité régulatrice c-terminale ainsi qu’elle perd la capacité de déphosphoryler le canal potassium voltage-dépendant Kv2.1.

PTPRM, autrement appelée PTPµ est une protéine tyrosine phosphatase de type récepteur. Des études génomiques récentes ont identifié des mutations de cette phosphatase dans les cancers du colon, de l’endomètre et le HNSCC (Head and neck squamous cell carcinoma). Le clivage protéolytique de PTPRM est en relation avec une activité cancéreuse. La protéase furin-like clive PTPRM au niveau de ses quatre répétitions de FN III (fibronectine III), ce clivage génère deux sous-unités, d’une part une sous unité extracellulaire désignée sous unité E et qui comporte une séquence MAM (Meprin, A5 protein, µ protein tyrosine phosphatase), Ig (immunoglobuline) et trois répétitions FN III et d’autre part une sous unité P désignant Phosphatase et qui comporte un domaine transmembranaire associé à une répétition FNIII et un domaine intracellulaire. Dans la cellule normale les sous unités E et P sont liées par des interactions non-covalentes. Dans la cellule cancéreuse, les α et les γ sécrètes clivent la sous unité P pour libérer le domaine intracellulaire actif dans le cytoplasme. Sachant que la phosphatase totale avec ses deux sous unités E et P est détectable dans le tissu normal du cerveau, on ne trouve que des petits fragments protéolytiques dans les tumeurs du cerveau. Ces fragments peuvent être transloqués dans le noyau et réguler la migration cellulaire. Toutefois, le mécanisme d’action de ces fragments reste à déterminer.

L’homo-dimérisation des PTPs est un mécanisme important de régulation de leur activité, c’est le cas des certains RPTPs telles que PTPα, PTPσ, PTPε et CD45. Une fois dimérisé par l’effet du ligand, dans le modèle d’un récepteur chimérique EGFR/CD45 (le domaine extracellulaire de EGFR et le domaine cytoplasmique de la phosphatase), le domaine cytoplasmique de l’une sera masqué par un motif particulier de l’autre appelé helix-turn-helix wedge, bloquant par conséquent l’activité catalytique.

PTPα existe principalement sous forme homodimérique à la surface des cellules. Les différentes interactions entre les domaines de cette PTP (domaines extracellulaire, transmembranaire et les domaines phosphatases intracellulaires D1 et D2) stabilisent la forme dimérique. La fixation du ligand déstabilise le récepteur et sépare le dimère causant l’activation de la phosphatase.

phosphorylation de ses substrats : β-caténine, GIT1 (G protein-coupled receptor kinase-interactor 1) et Fyn (membre de la famille Src)\(^{283}\). Il a été montré dans les cellules U373 de glioblastome que la fixation du ligand induit le dimérisation de la région intracellulaire du récepteur et par suite l’inactivation de l’enzyme\(^{284}\). Des études sont en cours pour développer des anticorps thérapeutiques qui induisent la dimérisation et par conséquent l’inhibition de l’activité de certaines phosphatases\(^{285}\). PTP\(\beta/\zeta\) est surexprimée dans les tumeurs solides comparée aux tissus normaux. Foehr et al 2006 ont montré l’efficacité d’un anticorps monoclonal ciblant la fraction extracellulaire de PTP\(\beta/\zeta\). Couplé à une cytotoxine, la saporine, cet anticorps induit la mort des cellules tumorales de gliome \textit{in vitro} et retarde l’apparition de tumeurs dans un modèle murin de cellules de gliome humain U87\(^{286}\).

Dans les cas de certaines RPTPs, des études ont montré la présence de ligands agonistes et antagonistes comme c’est le cas pour DEP-1, LAR et PTP\(\sigma\)\(^{287-289}\). Aucune de ces trois études n’a étudié le mécanisme d’activation ou d’inactivation de ces phosphatases. Il se peut que la régulation de ces ligands passe une dimérisation.

Certains ligands ont été identifiés pour certaines RPTPs mais dans peu des cas on a observé une augmentation de l’activité de la phosphatase. La stimulation des cellules endothéliales PAE et des kératinocytes immortalisées HaCaT par le Matrigel\(^{TM}\), préparation des protéines extracellulaires, augmente l’activité de DEP-1 immunoprécipitée. Aussi, l’incubation de DEP-1 avec le Matrigel\(^{TM}\) augmente son activité qui était bloquée en présence du domaine extracellulaire soluble de DEP-1. Enfin, le mutant de DEP-1 dépourvu de la quasi totalité de son domaine extracellulaire échoue à donner une réponse à la stimulation par le Matrigel\(^{TM}\).

Certains résultats représentent un premier exemple de régulation positive d’une RPTP par un ligand\(^{287}\).

Certaines PTPs, particulièrement les SHP1 et SHP2, sont particulièrement régulées par le \textbf{repliement intramoléculaire}. Des études de cristallographie sur la protéine SHP2, structurellement similaire à SHP1, ont montré qu’à l’état inactif, le domaine SH2 N-terminal était lié par interaction de charges au domaine catalytique, empêchant ainsi toute liaison au substrat. Lors de ce blocage du site actif, le site de liaison du domaine SH2 est exposé vers l’extérieur. La liaison du domaine SH2 N-terminal à une autre protéine bi tyrosine phosphorylée provoque un switch allostérique au sein du domaine catalytique qui passe d’un état inactif à un état actif. Ce changement de conformation va rompre l’interaction entre le domaine SH2 et le domaine catalytique, laissant ce dernier libre d’accès aux substrats de la PTP\(^{290}\).
4.3. PTPs et cancers

<table>
<thead>
<tr>
<th>Glioma</th>
<th>Receptor PTPs</th>
<th>Non-Receptor PTPs</th>
<th>DSPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head/Neck</td>
<td>PTPRD PTPRM</td>
<td>PTPN1 PTPN3 PTPN8 PTPN22</td>
<td>DUSP4 DUSP26 CDKN3 PTP4A3</td>
</tr>
<tr>
<td>Esophagus</td>
<td>PTPRG PTPRD PTPRA</td>
<td></td>
<td>DUSP1 PTP4A3 PTP4A1 PTP4A3</td>
</tr>
<tr>
<td>Thyroid</td>
<td>PTPRJ PTPRF</td>
<td></td>
<td>DUSP6</td>
</tr>
<tr>
<td>Lung</td>
<td>PTPRD PTPRF PTPRG PTPRJ PTPRO PTPRT</td>
<td></td>
<td>DUSP1 DUSP4 DUSP6 PTP4A3</td>
</tr>
<tr>
<td>Breast</td>
<td>PTPRA PTPRG PTPRJ PTPRO PTPRF</td>
<td>PTPN1 PTPN6 PTPN11 PTPN12 PTPN13</td>
<td>DUSP1 PTP4A2 PTP4A3 CDKN3 DUSP23/25 DUSP4</td>
</tr>
<tr>
<td>Liver</td>
<td>PTPRH</td>
<td>PTPN1 PTPN3 PTPN6</td>
<td>DUSP1 CDKNG PTP4A3</td>
</tr>
<tr>
<td>Gastric</td>
<td>PTPRG PTPRF PTPRD PTPRA</td>
<td></td>
<td>DUSP1 PTP4A3</td>
</tr>
<tr>
<td>Pancreas</td>
<td>PTPRB2/2 PTPRH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td>PTPN1</td>
<td>DUSP1 DUSP6 PTP4A1 PTP4A2</td>
</tr>
<tr>
<td>Colorectal</td>
<td>PTPRD PTPRJ PTPRO PTPRT PTPRS PTPRR PTPRH PTPRA</td>
<td>PTPN12 PTPN3 PTPN5 PTPN13 PTPN14 PTPN21</td>
<td>PTP4A1 PTP4A2 PTP4A3 DUSP1 DUSP4</td>
</tr>
<tr>
<td>Bladder</td>
<td>PTPRG</td>
<td>PTPN1 PTPN6</td>
<td>DUSP1</td>
</tr>
<tr>
<td>Ovaries</td>
<td></td>
<td></td>
<td>DUSP1 DUSP2 DUSP6 PTP4A3</td>
</tr>
<tr>
<td>Prostate</td>
<td>PTPRG</td>
<td>PTPN6 PTPN1</td>
<td>DUSP1 DUSP16 CDKN3</td>
</tr>
<tr>
<td>Cervix</td>
<td></td>
<td></td>
<td>DUSP3 PTP4A3</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>PTPRG</td>
<td></td>
<td>DUSP16</td>
</tr>
<tr>
<td>Leukemia</td>
<td>PTPRG</td>
<td>PTPN6 PTPN7</td>
<td>DUSP2 DUSP7 DUSP12 MTMR6</td>
</tr>
<tr>
<td>Myeloma</td>
<td></td>
<td>PTPN6</td>
<td>PTP4A3</td>
</tr>
<tr>
<td>Melanoma</td>
<td>PTPRM PTPRD PTPRK PTPRB2</td>
<td>PTP4A3</td>
<td></td>
</tr>
</tbody>
</table>

Fig.24. Les gènes de PTPs en relation avec les cancers. Les PTP Casse I marquées par un potentiel oncogénique, en rouge. Les suppresseurs de tumeurs en bleu, Les PTPs à double rôle en vert, et celles qui ont un rôle ambigu et mal éluclidé en noir. Tiré de Hardy 2012.

4.3.1. Les PTPs oncogéniques

On a trouvé que certaines PTPs stimulent la signalisation proliférative des cellules en déphosphorylant des sites inhibiteurs sur des oncogènes. Ce sont les protéines tyrosine phosphatases oncogéniques.

Parmi les PTPs qui subissent une mutation ou surexpression dans les cancers : SHP2 (PTP11), PTP α (PTPRA), PTP ε (PTPRE), SAP1(PTPRH), PTP-LAR(PTPRF),
PTP1B (PTPN1), SHP1 (PTPN6) et HePTP(PTPN7).

Dans certains cas, des mutations conférant un gain de fonction à certaines PTPs peuvent être le point de départ des effets pro-oncogéniques. Leur action passe majoritairement par une activation des PTKs de la famille Src. C’est par exemple les cas des PTPα, PTPε, PTP1B et SHP1.

- La première phosphatase caractérisée, PTPN1 autrement nommée PTP1B, se trouve surexprimée dans 72% des tumeurs mammaires (21/29) et fortement associée à Neu291. Elle est responsable de l’activation de l’oncogène Src dans les MDA-MB-435292 et l’inhibition de l’expression (KO) ou de l’activité de PTP1B inhibe la formation de tumeur chez les souris transgéniques HER2293,294. Dans les cancers mammaires, des résultats contradictoires ont été observés, certaines études présentent PTP1B en tant que pro-oncogène et qu’elle contribue à leurs inductions295, alors que d’autres montrent que son expression est un marqueur de bon pronostic296.

- PTPα induit la transformation des fibroblastes par déphosphorylation de pY527 de Src297. Elle existe sous deux isoformes mais seule l’isoforme courte est capable d’induire la croissance indépendante d’ancrage dans les cellules NIH3T3, cellules primitives de fibroblastes murines298. En plus dans des lignées de cancer mammaire stimulées par le facteur de croissance épidémique (EGF), PTPα induit l’activation de Src par déphosphorylation sur tyrosine Tyr527/530299. L’inhibition de tyrosine phosphatase par le vanadate inhibe l’activité de Src par déphosphorylation de la tyrosine 527300.

- Récemment, le rôle oncogénique de SHP2 a été validé expérimentalement par une mutation activatrice. Le rôle pro-oncogénique de SHP2 (codée par PTPN11) découle du fait que la déphosphorylation de certains de ses substratslève l’inhibition de voies activant le signal mitogénique et pro-migratoire301. Les signalisations d’EGFR, FGFR3, RET RTK, ERBB2 et Bcr-Abl constitutivement actifs semblent être dépendantes de SHP2302,303. SHP2 est recrutée au niveau des complexes protéiques présents à la membrane plasmique grâce à ses domaines SH2, et ce, soit directement, soit indirectement via des protéines adaptatrices telles que IRS1 (insulin-receptor substrate-1), FRS2 (FGFR substrate 2), GAB1 ou GAB2 (growth factor receptor-bound protein-2-associated binding protein-1 or 2)301,304. Il semblerait qu’une classe importante des substrats de SHP2 soient des protéines dont la phosphorylation inhibe la voie RAS-Erk ou des protéines adaptatrices phosphorylées sur tyrosine et qui recrutent un régulateur négatif de RAS : « RAS-GTPase-Activating protein » (RAS-GAP). La déphosphorylation du site de liaison de RAS-GAP par SHP2 empêche son recrutement à la membrane plasmique et de ce fait augmente l’activité de RAS305.

- Il existe également d’autres PTPs qui sont capables de promouvoir les voies de signalisation oncogénique. C’est le cas de CD45306, la première phosphatase et prototype receptreur-like PTP306 qui est activée dans plusieurs types de leucémies et est considérée comme marqueur des tumeurs de nature hémato-lymphomes307 et des lymphomes non-hédgkiniens308. Un des mécanismes proposés quant à l’action de CD45 est son rôle de la voie JAK/STAT309 et l’activation des membres de la famille Src kinase tels Fyn et Blk310 et la surexpression de STAT3311.
La surexpression de la phosphatase régulatrice du cycle cellulaire cdc25 est détectée dans plusieurs types de cancers et son niveau d’expression est souvent corrélé avec un mauvais pronostic. Elle intervient dans la régulation du cycle cellulaire et la réponse aux dommages d’ADN. Le mécanisme de sa surexpression dans les cancers n’est pas clair et les résultats sont controversés. Certaines études montrent que sa surexpression n’est pas due à une amplification génique (cancers gastriques, colorectaux, ovariens, etc), d’autres suggèrent une corrélation entre le proto-oncogène et le facteur de transcription c-Myc (cancers : neurblaste, poumon non à petites cellules, non-hodgkinien). Un mécanisme alternatif serait une modification post-traductionnelle qui améliore sa stabilité.

En revanche, aujourd’hui il est établi que parmi les PTPs impliquées dans le cancer, plusieurs sont les produits des gènes suppresseurs de tumeurs.

4.3.2. Les PTPs suppresseurs de tumeurs

Depuis leur découverte, certaines PTPs sont conçues comme étant des suppresseurs de tumeurs du fait de leur effet antagoniste sur la signalisation induite par les PTKs oncogéniques. Non pas seulement au niveau du récepteur mais aussi dans la cascade en aval des récepteurs à activité tyrosine kinase.

Par différents mécanismes les PTPs contrarient les phénotypes d’agressivité tumorale, entre autre en régulant les adhésions cellulaires. Les PTPs telles que DEP1, PTP μ et PTP1B favorisent l’adhésion E-cadherine dépendante en déphosphorylant le complexe cadherine-caténine. Par ce fait ces PTPs effectuent un effet contraire aux tyrosine-kinases comme Src, EGFR et HGFR qui déstabilisent le complexe cadherine-caténine par phosphorylation.

Les altérations génétiques affectant les PTPs sont : délétions, perte d’hétérozygotie (perte d’un allèle sur un chromosome) ou mutations.

Parmi les PTPs qui subissent une baisse ou perte d’expression ou d’activité par mutation, perte d’hétérozygotie ou méthylation du promoteur dans les cancers on trouve :PTP11 (PTPN13), PTPD2 (PTPN14), PTPH1 (PTPN3), PTPp (PTPRT), LAR (PTPRF), DEP1 (PTPRJ), SHP1 (PTPN6), GELPP1 (PTPRO)… Etc.

Les PTPs sont sujettes à des mutations dans les cancers :

Presque la moitié des mutations qui touchent les PTPs récepteurs sont celles qui touchent le domaine extracellulaire. PTPRT (PTPp) est un membre des RPTPs. Son domaine extracellulaire présente trois séquences caractéristiques : domaine MAM (memprin/A5/PTPμ), domaine immunoglobuline et quatre répétitions fibronectine de type III.

Le domaine MAM pourrait avoir un rôle dans la dimérisation, le domaine immunoglobuline avec ses structures disulfides a un rôle dans les interactions homophiliques et hétérophiliques entre les molécules d’adhésion intercellulaires, et le motif fibronectine III intervient dans l’interaction avec les protéines de la matrice extracellulaire et les protéines d’adhésion intercellulaires.
PTPRT (PTPρ) est fréquemment mutée dans les cancers du colon, du poumon, de l’estomac et de la peau. Plus de la moitié des mutations liées aux malignités touchent le domaine extracellulaire. Les mutations liées au cancer et qui touchent les domaines MAM et immunoglobuline causent la perturbation des fonctions adhésives des cellules324,325.

Moins du tiers des mutations ponctuelles touchent la poche catalytique sans causer une déconfiguration tridimensionnelle de la protéine, c’est le cas de la mutation au niveau de glutamine 142 de la poche catalytique de PTPMT1326. Il est frappant de constater que les PTPs non récepteurs inactivées (inactivées par mutation dans les cancers du côlon) appartiennent toutes au sous-groupe qui contient un domaine FERM (4.1 Ezrin Radixin Moesin) qui est un domaine lipidique de liaison qui relie les filaments d’actine aux membranes313,327. Ceci suggère que la perte de ces PTP contribue à la régulation des propriétés adhésives et migratoires des cellules de cancer du côlon.

PTEN est la protéine tyrosine phosphatase la plus mutée, dans 15% des cancers, 30-40% des glioblastomes multiformes, 50% des carcinomes endométriaux, 31% des cancers du sein et 47% des cancers de poumon328,329. Elle déphosphoryle le PI (3, 4,5) P3 (PIP3) en PI(4,5) P2 (PIP2) sur la face interne de la membrane plasmique. PTEN exerce donc un rôle de régulateur négatif sur la voie PI3K/Akt qui stimule la progression dans le cycle, la prolifération, l’adhésion, la migration et la survie cellulaire330. Les cancers dont PTEN est mutée sont de mauvais pronostic331.

Les mutations des PTPs récepteurs non seulement abrogent l’activité catalytique, mais aussi elles peuvent interférer avec la capacité adhésive des cellules vu que certaines PTPR ont un rôle dans la signalisation induite par l’adhésion cellulaire. La cristallographie de PTPRM montre que les mutations réduisent l’adhésivité en abolissant les interactions homophiliques ou en affectant le repliement de la protéine332.

Les études de PTPRJ ou CD148 (le produit du gène DEP1) ont montré qu’elle est mutée ou délétée dans les cancers du sein, du colon, du poumon, de la thyroïde et dans le lymphome non-hodgkinien333–336. Sa mutation ou sa perte d’expression induit l’inhibition de la prolifération et la migration et module l’adhésion cellulaire. Sa réexpression dans les cellules tumorales mammaires a abouti à une baisse de 5 à 10 fois la croissance des cellules337. Les mêmes résultats sont retrouvés dans des cellules du cancer de pancréas, de thyroïde et du colon. Cependant, certaines études la présentent comme pro oncogéniques avec un rôle promoteur de la migration et de l’invasion des cancers mammaires338.

La PTP transmembranaire PTP-BAS ou PTPL1 (PTPN13) est mutée dans les cancers du sein, carcinome hépatocellulaire et colorectal. Elle a d’abord été montrée comme ayant un rôle pro-apoptotique dans des cellules cancéreuses mammaires MCF-7339,340. L’expression de PTPL1 est un marqueur de bon pronostic dans les cancers de prostate et du sein. Il est à noter que l’expression de PTPL1 baisse dans le tissu cancéreux et dans le tissu métastatique en comparaison au tissu bénin341. L’inhibition de PTPL1 in vitro et in vivo induit une augmentation de l’invasion et de la croissance tumorale341. Le mutant de substrat trapping de PTPL1 a permis de démontrer que Src, est déphosphorylé par PTPL1 sur tyrosine 419341. Les résultats connus concernant PTPL1 seront détaillés dans la partie PTPL1 (cf chapitre IV).
Les PTPs sont sujettes à des altérations épigénétiques :

L’altération épigénétique la plus récurrente et aboutissant au silencing des gènes est la méthylation des îlots CpG. Une réduction de l’expression des gènes par méthylation d’ADN est observée pour PTPRG dans 27% des lymphomes T cutanés, PTPRO dans 82% des leucémies lymphocytaires chroniques et pour PTPN13 dans 50% des carcinomes hépatocellulaires.

Les deux phosphatases inhibées par hyperméthylation du promuteur les plus particulièrement documentées sont : la SHP1 (codée par PTPN6) et GLEPP1 (Glomerular Epithelial Protein 1).

- SHP1 est une antagoniste de la signalisation des facteurs de croissance, son inactivation par hyperméthylation du promuteur a été décrite la première fois dans des lignées dérivées de lymphome cellulaire. Récemment on a aussi montré que son expression est inhibée par hyperméthylation du promuteur dans le cancer de l’endomètre, dans le lymphome à grande cellule anaplastique, dans différentes formes de leucémies et dans le myélome multiple.

L’expression de SHP1 est restaurée par un traitement par un agent déméthylant. La délétion de l’extrémité N-terminale de SHP-1 induit une activité phosphatase excessive ce qui perturbe les voies de signalisation et pourrait engendrer la tumorigènèse. L’inhibition de SHP1 a été observée dans le développement de plusieurs cancers : dans les lymphomes des cellules B et T, la leucémie lymphocytaire chronique des cellules T (TCLL) et la leucémie chronique myéloïde (CML). L’introduction de SHP1 dans des lignées de CML ou dans des lignées tumorales hématoïdiques induit la suppression de la croissance de ces lignées. Ces résultats montrent que SHP1 est un potentiel suppresseur de tumeur.

Aussi, SHP1 est impliquée dans la régulation de la croissance par la somatostatine dans des cellules de cancer de prostate PC-3 et LNCaP. La croissance de ces cellules est inhibée par la surexpression de somatostatine et elle est activée quand la somatostatine est bloquée. L’augmentation de la sécrétion de somatostatine est corrélée positivement à l’activité, l’expression et le recrutement de SHP1 par SST2. La surexpression de SHP1 inhibe la croissance des cellules PC-3.

SHP1 est une protéine régulatrice constituant une interconnexion entre la signalisation des cytokines et celle des récepteurs couplés aux protéines G. D’une part, le LIF (leukemia inhibitory factor) est une cytokine qui régule positivement l’axe hypothalamo-hypophysaire-surrénalien (hhs). La fixation de LIF sur son récepteur LIFr active la kinase jak2 qui induit la tyrosine phosphorylation de stat3 qui s’homodimérise et se transloque vers le noyau pour activer la transcription du gène POMC. La Pro-OpioMélanoCortine est un précurseur protéique de très nombreuses hormones polypeptidiques. SHP1 régule négativement cette voie en induisant la tyrosine déphosphorylation de jak2.

D’autre part la somatostatine est un neuropeptide ubiquitaire produit dans l’hypothalamus et agissant sur les cellules hypophysaires. Dans des cellules sur exprimant le récepteur sst2 comme les CHO (chinese hamster ovary), la fixation de la somatostatine sur ses récepteurs active SHP1 et induit des signaux anti-mitogènes. SHP1 induit également la déphosphorylation du récepteur de l’insuline et ses substrats IRS1 et SHC.
La notion que SHP-1 soit une cible des drogues anti-cancéreuses est concevable vu qu’elle régule négativement le cycle cellulaire et les voies pro-inflammatoires qui sont une partie inévitable de la transformation oncogénique, le but serait de l’activer.

- GLEPP1 est formée d’un seul domaine phosphatase intracellulaire et un domaine extracellulaire formé exclusivement de quatre répétitions de fibronectine III. L’hyperméthylation du promoteur PTPRO (le gène codant pour GLEPP1) a été décrite dans 50% des cancers du poumon et des cancers hépatocellulaires associés aux microsatellites. L’hyperméthylation du promoteur a aussi été décrit dans les foies des rats dans lesquels on a induit le cancer par le biais d’un régime alimentaire. La surexpression de GLEPP1 dans les cellules A549 du cancer du poumon, dans lesquelles le promoteur de PTPRO est méthylé, réduit la croissance ancrage-indépendante, la prolifération et la résistance à l’apoptose.

4.4. Les PTPs comme cibles potentielles des drogues anti-tumorales :

Plusieurs inhibiteurs des PTKs ont été proposés et validés en clinique. Ce n’est pas le cas pour les PTPs, d’abord pour leur émergence assez récente comme cible des drogues anti-tumorales.

Vu leurs rôles anti-oncogéniques ou pro-oncogéniques, la tendance maintenant conduit à les considérer comme des cibles thérapeutiques potentielles.

Comme pour la plupart des enzymes, des effets secondaires peuvent apparaître lors de l’inhibition ou l’activation d’une PTP, parce que les PTPs interviennent dans la régulation de plusieurs voies de signalisation et qu’une même voie de signalisation peut être régulée par plusieurs PTPs.

Du fait de la forte conservation de leur site actif, il est difficile de mettre au point une drogue spécifique ciblant spécifiquement une PTP donnée. Ce challenge existait pour les PTKs mais après le ciblage de la poche à ATP plusieurs inhibiteurs spécifiques ont vu le jour. Il pourrait en être de même pour les PTPs à cause de leurs richesses en domaines spécifiques propres à chaque PTPs. Ceci permettrait la mise au point des molécules spécifiques ciblant à la fois le site actif et ces sites spécifiques. Le résultat le plus encourageant jusqu’à présent est celui concernant l’inhibition spécifique d’une phosphatase PTP1B qui présente une similitude structurale avec la phosphatase TCPTP. Une molécule a montré une spécificité au moins 30 fois supérieure pour PTP1B comparé à TCPTP.

Parmi les difficultés rencontrées lors du design des molécules inhibitrices des PTPs se trouve la polarité élevée des composants actifs. Les molécules ne parviennent pas à franchir la membrane plasmatique et par conséquent présentent une mauvaise biodisponibilité. Très peu d’études ont pu montrer l’efficacité des inhibiteurs de PTP1B dans les cellules en culture. Ceci a amené à administrer la prodrogue avec des modifications chimiques favorisant son entrée dans les cellules.

SHP2 est la PTP oncogénique la plus concernée en termes de développement des traitements anticancéreux. Ainsi, de récents travaux ont montré l’efficacité et la spécificité d’un nouvel inhibiteur de SHP2, le phenylhydrazonopyrazolone sulfonate (PHPS1). Sur un autre front,
d’autres approches visent à cibler les domaines extracellulaires des PTPs récepteurs afin de moduler leur activité.

Des études poussées sont requises pour mieux comprendre les mécanismes par lesquels les PTPs interviennent dans la régulation pro ou anti-oncogénique afin de mettre en place des thérapies cliniquement relevantes.

Il n’existe pas d’activateurs des PTPs suppresseurs de tumeurs en pharmacopée, cependant l’étude des mécanismes d’activation de ces enzymes pourrait permettre de proposer certains produits tels que les analogues de la somatostatine. L’activation des phosphatases PTPs par les récepteurs de somatostatine présente un des mécanismes antiprolifératifs de la somatostatine et ses analogues. Les PTPs interviennent dans la signalisation de plusieurs types de récepteurs à activité tyrosine kinase. SHP-1, SHP2 et DEP-1/PTPη ont été identifiées parmi les PTPs effecteurs de la signalisation de récepteurs de la somatostatine366.

La somatostatine a un effet inhibiteur sur la sécrétion exocrine et endocrine de plusieurs hormones et facteurs de croissance, sur la motilité gastrique et intestinale et sur la prolifération cellulaire367, elle est un inducteur de l’apoptose367,368. La somatostatine a une demi-vie très courte de 1.5 min, d’où l’intérêt des analogues synthétiques qui sont plus stables tels que l’octreotide et le lanreotide. Les analogues ont le même effet que la somatostatine369. Pasireotide, un analogue de somatostatine, a montré un effet à large spectre des récepteurs de somatostatine d’où son avantage par rapport aux autres analogues utilisés en clinique370. Certains de ces analogues sont capables d’induire l’activité de SHP1 via les récepteurs sst2 et sst5371,372. SHP-1 s’associe au récepteur occupé par son ligand et déphosphoryle les récepteurs aux facteurs de croissance ainsi que leur système de signalisation. Ceci induit l’arrêt du cycle cellulaire en phase G0-G1371. Sur les membranes des cellules, l’analogue de somatostatine, RC-160, se lie au récepteur et recrute l’enzyme SHP1. Puis une stimulation d’activité tyrosine phosphatase membranaire par l’analogue est observée dans les cellules et son effet inhibiteur sur la prolifération cellulaire est par ailleurs annulé par l’orthovanadate, inhibiteur spécifique de la tyrosine phosphatase. L’ensemble de ces résultats est donc en faveur de l’implication d’une activité tyrosine phosphatase dans l’effet antiprolifératif des analogues stables de la somatostatine Via le récepteur sst2373.

Il existe 5 récepteurs aux somatostatines, SSTR1 à 5. Ces récepteurs appartiennent à la famille des récepteurs couplés aux protéines G.

Tous les récepteurs de somatostatine inhibent le cycle cellulaire. Ils activent des PTPs qui vont cibler des substrats spécifiques phosphorylés par les récepteurs des facteurs de croissance et inhibent en effet des voies mitogéniques telles que la voie ERK1/2, la voie PI3K/Akt et la voie d’acide nitrique/cGMP374. STTR 2 active la phosphatase SHP1 ce qui induit la déphosphorylation de l’unité p85 de PI3K et par suite l’inhibition de PI3K et Akt375. Les récepteurs SST1, SST2 et SST5 participent ensemble à l’inhibition de la voie (extracellularly Regulated Kinase) ERK1/2 via l’activation de la kinase JAK2/ la phosphatase SHP2 et la phosphatase PTPη qui déphosphoryle ERK1/2, ce qui aboutit finalement à l’arrêt du cycle cellulaire376. D’une manière intéressante SST2 a le comportement d’un gène
suppresseur de tumeurs dans le cancer pancréatique, son expression baisse dans 90% des adénocarcinomes pancréatiques humains, sa réexpression dans des lignées pancréatiques humaines induit l’apoptose et la sensibilité au facteur nécrotique tumorale \(\alpha \) -TNF\(\alpha \)377.

En inhibant PI3K, les petites protéines G Rac ou Rho, les récepteurs 1, 2, 3 et 4 des somatostatines inhibent l’invasion cellulaire374.

Chapitre IV : PTPL1

1. PTPL1 : Gène, Structure et fonction

PTPL1 autrement appelée FAP1, PTP-BAS, PTP1E et PTP-BL (son homologue murin), est codée par le gène PTPN13. Ces différents noms s’expliquent par le fait que cette PTP cytoplasmique a été clonée et caractérisée pour la première fois en 1994 par trois équipes indépendantes : l’équipe de Gonez, LJ378, celle de Maekawa379 et celle de Banville380.

PTPN13 occupe le locus chromosomique humain 4q21344. PTPL1 est la plus grande phosphatase cytoplasmique avec un poids moléculaire de 276906 Da, soit 2485 acides aminés, son ARN de 8.5kb comporte 8301 nucléotides avec 49 exons et 52 introns. Il existe 4 variants de PTPL1 obtenus par épissage alternatif ; l’isoforme 1 qui fait 2480 acides aminés, l’isoforme 2 qui fait 2466 acides aminés, l’isoforme 3 qui fait 2294 acides aminés et l’isoforme 4 de taille complète.

Elle peut jouer le rôle de protéine cargo qui peut avoir plusieurs partenaires et ceci est dû à la présence de plusieurs domaines d’interaction (figure 26). Le domaine N-terminal est un domaine 4.1/ezrin/radixin/moesin (FERM) qui permet une interaction avec la membrane plasmique et le cytosquelette. Le domaine catalytique phosphatase se trouve du coté C-terminal. Les cinq domaines PSD-95/Discs-large/ZO-1, PDZ (PDZ-1, PDZ-2, PDZ-3, PDZ-4 et PDZ-5) permettent des interactions protéine-protéine.

![PTPL1, PTPN13, FAP-1, PTPBAS, hPTP1E, PTP-BL diagram](image.png)

Fig. 25. Schéma de domaines de PTPL1 et ses partenaires. Tiré de Freiss et al 2011.

La fonction physiologique de PTPL1 n’est pas largement documentée. Il existe néanmoins des études qui ont essayé de comprendre son rôle. Les souris dans lesquelles on a fait un Knockout de PTP-BL (l’homologue de PTPL1 chez la souris) ont montré une régulation altérée de la
signalisation STAT (signal transducer and activator of transcription) dans les cellules T. En réponse à la fixation des cytokines sur les cellules T, la kinase JAK phosphoryle STAT qui est transloqué dans le noyau pour activer ses gènes cibles. PTPN13 induit la déphosphorylation de STAT et cause une baisse d’activation de l’expression des gènes induits par STAT. Les souris PTP-BLΔP/ΔP (qui expriment PTP-BL sans activité catalytique) sont viables, fertiles mais présentent des altérations au niveau de la réparation du nerf moteur sciatique. PTPL1 a également un rôle dans l’initiation des neurites des cellules ganglionnaires de la rétine et la survie des cellules gliales rétiniennes, l’axone de ces cellules ne se régénèrent pas après la lésion du nerf optique chez les souris PTP-BLΔP/ΔP. En 2009, mon équipe a montré le rôle de PTP-BL dans la différenciation des adipocytes. En effet, l’inhibition de PTP-BL par siRNA induit une réduction dramatique de la différenciation adipoctaire des cellules murines 3t3-L1 et de MEFs (mouse embryonic fibroblast) et il en est de même pour des MEF issues de souris PTP-BLΔP/ΔP, ce qui indique que l’activité catalytique de PTP-BL n’est pas impliquée.

2. PTPL1 et cancers

Plusieurs études ont montré que PTPL1 interagit avec des protéines connues pour avoir un lien avec le cancer et l’agressivité tumorale. En outre, il existe des différents arguments expérimentaux qui montrent un effet de la surexpression ou l’inhibition de PTPL1 sur l’agressivité tumorale. Des études cliniques ont aussi montré des pertes d’expression ou d’activité de PTPN13 dans les tumeurs et que son expression est un marqueur de bon pronostic dans les cancers du sein et de la prostate.

2.1. Partenaires protéiques impliqués dans les cancers

5 domaines PDZ permettent l’interaction de PTPL1 avec de nombreux partenaires protéiques impliqués en cancérologie. PTPL1 interagit via son domaine PDZ1 avec TAPP1 qui régule l’organisation du cytosquelette d’actine. Ce même domaine interagit avec la bromodomain-binding protéine BP75 qui peut stimuler la voie Wnt, la régulation de la glycogène synthase kinase-3β et la translocation nucléaire de la β-caténine. L’implication de la voie Wnt dans les cancers est bien établie.

La famille des facteurs de transcription NFkB (nuclear factor kB) joue un rôle clé dans la réponse immune et inflammatoire, le contrôle de la prolifération et l’apoptose, mais aussi dans la transformation maligne et leur activité est contrôlé négativement par leur interaction avec IkB. PTPL1 interagit via son domaine PDZ1 avec IkB et l’inhibition de PTPL-1 par l’expression de son mutant dominant-négatif (dépourvu d’activité phosphatase) engendre la phosphorylation d’IkB α sur tyrosine. L’interaction entre IkB et NFkB peut être régulée par des phosphorylations en serine qui induisent la dégradation de IkB mais aussi par des phosphorylations en tyrosine qui peuvent soit défavoriser l’interaction et entretenir une activation de NFkB (tyr42) soit au contraire induire une inhibition de NFkB (tyr 305).
résidu tyrosine dont la phosphorylation est régulée par PTPL1 n'a pas été identifié, mais selon le résidu déphosphorylé PTPL1 pourrait donc réguler l'activité de NFkB positivement ou négativement.

Le domaine PDZ-2 interagit avec deux membres de la super famille des récepteurs TNFR (super famille des récepteurs de facteur de nécrose tumorale) : la protéine de surface Fas et le récepteur neurotrophine p75. PDZ-2 peut également se lier à des protéines contenant le domaine LIM (Lin-11, Isl-1, Mec-3) telles que la protéine RIL (reversion-induced LIM) et la protéine ZRP-1 (zyxin-related protein 1) également appelée TRIP6. La protéine RIL est exprimée d’une manière ubiquitaire. Son expression est inhibée dans des biopsies issues de différents cancers humains tels que les cancers du sein, du foie et du colon.

RIL est également inhibée dans plusieurs lignées cancéreuses par hyperméthylation et sa reexpression inhibe la croissance ancrage-indépendante. Ces éléments suggèrent que la perte d’expression de RIL est associée à un comportement cellulaire malin. RIL se lie à l’oncogène Src, en même temps RIL se lie au domaine PDZ2 de PTPL1. Ceci va rapprocher PTPL1 de Src et induit en effet l’inactivation de la signalisation de Src par déphosphorylation par PTPL1.

TRIP6 ou ZRP-1 est une protéine qui appartient à la famille des Zyxines impliquées dans la mobilité cellulaire et le contrôle de la transcription. Grâce à son domaine LIM, TRIP6/ZRP-1 forme des complexes avec plusieurs protéines telles que p130cas et la supervilline afin de favoriser le réarrangement d’actine, l’adhésion et la migration cellulaire. L’expression ectopique de TRIP6/ZRP-1 induit l’invasion des cellules épithéliales MDCK et altère l’agrégation des cellules par découplage des jonctions adhérentes du cytosquelette.

PTPL1 contrarie la signalisation de Src via TRIP6 aussi. Le LPA (lysophosphatidic acid) induit la phosphorylation de TRIP6 par C-Src pour stimuler le changement morphologique et la migration cellulaire. PTPL1 induit la déphosphorylation de TRIP6 sur tyrosine 55 pour inhiber les effets de cette phosphorylation induit par LPA.

PTPL1 interagit par son domaine PDZ2 avec APC (adenomatous polyposis coli protein) qui est une protéine suppresseur des tumeurs. Les effets de cette interaction restent à découvrir.

PTPL1 pourrait réguler le cycle cellulaire par interaction de son domaine PDZ3 avec PRK-2 (protein kinase C-related kinase-2) qui est la seule protéine connue pour interagir avec ce domaine. PRK-2 est une serine/thréonine kinase régulée par la protéine G Rho. Il a été montré qu’elle jouait un rôle important dans le cycle cellulaire.

En plus de sa liaison avec Fas et RIL, Le domaine PDZ-4 se lie à CRIP-2 (cysteine-rich intestinal protein -2) et à PARG1 (PTPL 1-associated RhoGAP1) un effecteur putatif de rap2 qui est proposé comme une protéine supresseur de tumeur dans le lymphome du manteau. Le domaine PDZ4 de PTPL1 peut lier EphrinB1 qui est un ligand transmembranaire pour les récepteurs Ephrine classe B qui contrôlent la jonction cellule-cellule, ce qui suggère l’implication de PTPL1 dans le contrôle des jonctions cellulaires.

Le cinquième domaine PDZ de PTPL1, le PDZ-5 possède un seul partenaire, qui se lie également sur le domaine PDZ-1 c’est le TRPM-2 qui appartient à la super famille de TRP, transient receptor potential channel qui ont un rôle significatif dans la régulation de...
l’homéostasie calcique pendant la carcinogenèse de prostate. La technique ADNc array a montré que l’ARNm de TRPM2 est plus exprimé dans les tissus du cancer de prostate et dans des lignées du même cancer par rapport aux tissus et aux cellules normaux. De plus, l’inhibition de TRPM2 par SiRNA inhibe la croissance des cellules tumorales de la prostate sans avoir le même effet sur les cellules normales.406

Parmi les nombreuses protéines partenaires de PTPL-1, peu sont des substrats suggérant un rôle de ces partenaires dans la localisation de PTPL-1, la régulation de son activité et l’implication de PTPL1 à plusieurs processus biologiques.

2.2. Arguments phénotypiques

2.2.1. Rôle pro-oncogénique

2.2.1.1. La relation entre l’expression de PTPL1 et l’apoptose Fas-dépendante

L’implication de PTPL1 dans l’apoptose reste controversée. PTPL1 interagit avec le domaine C-terminal du récepteur pro-apoptotique FAS.407 La surexpression de PTPL1 dans les cellules Jurkat inhibe 50% de l’apoptose induite par un anticorps agoniste de Fas. L’étude moléculaire a pu identifier une séquence de trois résidus d’acides aminées SLV dans la partie C-terminale du récepteur Fas et qui est responsable de l’interaction avec le domaine PDZ2 de PTPL1. La microinjection des peptides SLV dans le cytoplasme des cellules du cancer du colon exprimant FAS et PTPL1 entraîne une apoptose fason-dépendante. Ce qui suggère l’effet inhibiteur de PTPL1 sur la signalisation apoptotique Fas-dépendante.408 En revanche, Fas murin ne contient pas la séquence SLV terminal et aucune interaction avec PTP-BL (l’orthologue de PTPL1 chez la souris) n’a été observée par Cuppen et al. Dans la même étude, la transfection de Fas humain dans les cellules murines de lymphome T qui expriment PTP-BL n’a montré aucune inhibition de l’apoptose Fas-dépendante. Ce qui indique que cette interaction n’est pas suffisante pour inhiber l’apoptose Fas-dépendante.409

L’interaction Fas/PTPL1 n’explique pas exclusivement le rôle de PTPL1 dans les voies de signalisation anti-apoptotiques ou pro-oncogéniques. En effet, PTPL1 est une cible transcriptionnelle de EWS-FLII, une protéine de fusion qui favorise la carcinogenèse et la croissance cellulaire dans les sarcomes d’Ewing (ESFT). Dans les cellules de sarcome d’Ewing, l’inhibition de PTPL1 cause une sensibilité augmentée à l’apoptose.410

Plusieurs laboratoires ont étudié la corrélation entre l’expression de PTPL1 et la résistance à l’apoptose Fas-dépendante.

Certaines études ont montré qu’il existe une expression élevée de l’ARNm de PTPL1 dans des cancers résistants à l’apoptose fason-dépendante tels que le sarcome de Kaposi,411 dans l’adénome pancréatique,412 dans le carcinome hépatocellulaire413 ainsi qu’une expression plus élevée dans les cellules T-helper-1 qui sont des cellules résistantes à l’apoptose que dans les cellules T-helper 2 qui sont sensibles à l’apoptose fason-dépendante.414 Au niveau mécanisme, il a été montré que PTPL1 inhibe l’export de Fas au niveau de la membrane plasmique, ce qui rend les cellules plus résistantes à l’apoptose.415 Plusieurs travaux ont trouvé une relation positive entre l’expression de PTPL1 et la résistance à l’apoptose Fas-dépendante dans les
cellules T infectées par HTLV-I (Human T cell leukemia/lymphoma virus type 1)\(^{407}\), dans des lignées du cancer ovarien\(^{416}\), dans les lignées du cancer pancréatique\(^{417}\), dans des cellules du carcinoma squameux de tête et cou\(^{418}\) et dans des lignées de leucémie myéloïde chronique\(^{419}\). En plus, dans les adénocarcinomes du colon qui n’expriment pas PTPL1, une corrélation positive a été trouvée entre le pourcentage des cellules tumorales apoptotiques et le nombre des lymphocytes exprimant Fas-L et infiltrant dans la tumeur, et ceci n’a pas été observé dans les cellules qui expriment PTPL1\(^{420}\).

D’autres équipes n’ont pas réussi à établir une corrélation entre l’expression de PTPL1 et la résistance à l’apoptose Fas-dépendante dans des lignées du cancer du côlon\(^{421,422}\), dans des lignées du cancer de prostate\(^{423}\), dans des lignées de leucémie des cellules T et des lignées de leucémie humaine exprimant Fas\(^{424,425}\) et dans des lignées et des biopsies de cancer ovarien\(^{416,426,427}\).

Une étude récente montre l’implication de PTPL1 dans la persistance des cellules souches leucémiques et la récidive dans la leucémie myéloïde chronique après traitement par un TKI, inhibiteur de la kinase oncogénique Bcr-Abl\(^{419}\). Dans un modèle \textit{in vivo}, chez des souris sous traitement par TKI, l’inhibition de PTPL1 par le tripeptide SLV réduit tous les événements qui se produisent après le traitement TKI seul (la résistance, la crise blastique et la récidive après une discontinuité de TKI)\(^{419}\). En raison de ces différents résultats, effet pro ou anti-apoptotique de PTPL1, Freiss et al ont étudié la sensibilité à l’apoptose Fas-dépendante dans des cellules tumorales mammaires qui expriment différents niveaux de PTPL1 : T47D qui expriment un niveau élevé de PTPL1, MCF-7 qui expriment PTPL1 et un clone de MCF-7, MCF-7-B3 dans lequel PTPL1 a été complètement inhibée. Les résultats ont montré que les cellules T47D sont sensibles alors que MCF-7 et MCF7-B3 sont résistante à l’apoptose Fas-dépendante, suggérant qu’il n’y a pas d’effet de PTPL1 sur la sensibilité à l’apoptose Fas-dépendante dans les lignées des cancers mammaires\(^{339}\). Au final, dans les cellules sensibles à l’apoptose Fas-dépendante, la surexpression de PTPL1 inhibe la signalisation de Fas, et ceci de manière dépendante de l’espèce et du type cellulaire ce qui suggère l’intervention d’autres protéines partenaires.

\textbf{2.2.2. Rôle anti-oncogénique}

\textbf{2.2.2.1. PTPL1 a un rôle pro-apoptotique dans le cancer du sein}

La première preuve de ce rôle de PTPL1 a été déduite à partir de son implication dans l’effet anti-facteur de croissance des anti-œstrogènes dans des cellules tumorales mammaires.

Le tamoxifène est un anti-œstrogène utilisé dans la thérapie adjuvante du cancer du sein. Il inhibe la croissance des cellules hormono-sensibles non seulement en bloquant les récepteurs hormonaux nucléaires mais aussi en inhibant l’activité mitogénique des facteurs de croissance en absence d’estrogènes\(^{428}\).

L’inhibition de la croissance des cellules MCF-7 par le tamoxifène est corrélée avec une augmentation de l’activité PTP associée à la membrane\(^{429}\) et le groupe de Gilles Freiss a montré que les anti-œstrogènes régulaient PTPL1\(^{430}\). L’inhibition de PTPL1 dans les cellules MCF-7 par la technique ARN anti-sens abolit complètement l’effet négatif de tamoxifène sur la croissance induite par les facteurs de croissance\(^{431}\). La régulation positive de l’expression
de PTPL1 après traitement par l’antioestrogène induit la baisse de phosphorylation d’IRS1 et d’Akt et augmente l’apoptose de 30%. Des études poussées grâce au mutant de substrat trapping ont montré que PTPL1 inhibe la signalisation de la voie PI3K/Akt en déphosphorylant IRS1 dans des cellules stimulées par des facteurs de croissance.

2.2.2.2. PTPL1 régule négativement la signalisation de HER2

HER2 est un récepteur à activité tyrosine kinase et sa dérégulation stimule l’apparition et la croissance tumorales (cf. chapitre III, paragraphe 1.1.2). Afin de déterminer les mécanismes cellulaires qui régissent la phosphorylation oncogénique de HER2, Zhu et al. ont effectué un screening d’une librairie des SiRNA dirigés contre l’ensemble des tyrosines phosphatases pour identifier celles dont l’inhibition favorise la phosphorylation de HER2. Ils ont montré que l’inhibition de PTPL1 augmente significativement la phosphorylation du domaine de signalisation de HER2 induite par les facteurs de croissance. Inversement la surexpression de PTPL1 inhibe la phosphorylation de HER2 et HER2 forme un complexe avec le mutant de substrate trapping de PTPL1 indiquant que HER2 est un substrat potentiel de PTPL1. Dans la même étude, les auteurs ont montré que les mutations de PTPL1 décrites dans l’étude des mutations des PTPs (cf. chapitre IV, paragraphe 2.3.1) inhibent l’activité catalytique de PTPL1 et induisent une augmentation de la phosphorylation de HER2. De même, l’invasion des cellules cancéreuses ovariennes surexprimant HER2 SKOV3 est augmentée par l’inhibition de PTPL1 ou la présence de PTPL1 mutée.

2.2.2.3. PTPL1 inhibe la signalisation de l’oncogène Src

Le ligand EphrinB est une molécule de signalisation transmembranaire qui peut subir une tyrosine phosphorylation par la kinase Src et une déphosphorylation par la phosphatase PTPL1. L’engagement du récepteur EphB avec son ligand EphrinB recrute Src qui phosphoryle la partie intracellulaire du ligand EphrinB et induit sa signalisation-reverse. Ensuite le ligand EphrinB recrute PTPL1, par interaction avec son domaine PDZ4 qui le déphosphoryle. Par ailleurs il a été montré in vitro, que le domaine catalytique de PTP-BL déphosphoryle EphrinB et Src in vitro. L’activation de Src a un rôle important dans la progression tumorale. Un des mécanismes aboutissant à son inactivation est celui mettant en jeu RIL. RIL est une protéine dont l’expression est perdue dans le cancer du colon et dans plusieurs autres types de cancers. RIL induit l’inactivation de Src en favorisant l’interaction entre Src et PTPL1, ce qui permet à PTPL1 de déphosphoryler Src au niveau de la boucle d’activation de Src et induire son inactivation. En effet, RIL colocalise avec PTPL1 et Src. L’inhibition de PTPL1 par SiRNA empêche la déphosphorylation de Src et empêche son inactivation. Egalement l’inhibition épigénétique de RIL dans certains cancers aboutit à l’interruption de l’inactivation de Src. Au même moment, afin d’évaluer le rôle de PTPL1 dans la progression tumorale, l’équipe de Gilles FREISS testé in vivo, sur des souris athymiques, la capacité invasive des cellules tumorales mammaries peu tumorigènes MCF-7 dans lesquelles PTPL1 a été inhibée par

En plus, l’inhibition de PTPL1 induit l’augmentation de la phosphorylation de Src sur tyrosine 419 et active la signalisation en aval de Src. Ainsi, on observe en effet l’activation des deux substrats de Src : FAK et p130cas. Les résultats sont confirmés par les expériences de mutant substrate-trapping de PTPL1, prouvant que la tyrosine 419 est un substrat direct de PTPL1 et cette déphosphorylation inhibe Src.

Une étude très récente montre un rôle anti-oncogénique de PTPL1 dans les tumeurs pulmonaires non à petite cellule. Dans ces tumeurs les traitements de base sont des inhibiteurs de tyrosines kinases (TKI) qui ciblent l’activité kinase des récepteurs EGFR. Dans les cellules réfractaires au traitement géfitinib (le TKI le plus utilisé contre le récepteur EGFR dans les cancers des poumons) on observe une augmentation de la présence de miR-26a. miR-26a inhibe PTPL1, ce qui maintient l’activation de Src et renforce ainsi la signalisation oncogénique de la voie EGFR. L’inhibition des miR-26a améliore la réponse au géfitinib dans ce type des cancers.

2.2.2.4. PTPL1 inhibe l’onco-signalisation du papillomavirus 16 (HPV16)

Le papillomavirus est associé avec 90% des cancers cervicaux, 25% des carcinomes squameux de la tête et du cou. L’extrémité C-terminal de la protéine E6 de l’HPV16 s’associe à PTPL1 et la dégrade et est associée avec un risque oncogénique élevé. *In vivo*, une synergie a été montrée entre l’inhibition de PTPL1 (par ShPTPL1 ou HPV16E6) et H-RASV12 ou Erb2 induisant une croissance indépendante de l’ancrage, une augmentation de l’invasion tumorale et une augmentation de la phosphorylation de Erk1/2 dans un modèle de carcinome squameux et dans un modèle de cancer épithélial d’amygdales. La réexpression de PTPL1 inverse les résultats.

2.2.2.5. Autres preuves de l’effet anti-croissance et anti-migration de PTPL1

La voie Wnt module la croissance des cellules β du pancréas par interaction avec PTPL1. L’expression de PTPL1, et non son mutant catalytiquement inactif, donne des effets antagonistes à ceux obtenus par la surexpression de Wnt3a et inhibe en effet la croissance des cellules INS-1, des cellules β du pancréas. Il a été montré que PTPL1 interagit avec des composants de la voie Wnt en particulier β-caténine. Ceci suggère un rôle important de PTPL1 dans la régulation de la prolifération des cellules-β pancréatiques.
Une étude très récente conforte le rôle suppresseur de tumeur de PTPL1. La surexpression PTPL1 inhibe la prolifération, l’invasion et la transition épithélio-mésenchymateuse (TEM) dans des lignées de carcinome hépatocellulaire en inactivant la voie EGFR/ERK.

L’équipe de Gilles FREISS a étudié l’effet de PTPL1 sur les paramètres biologiques associés à l’agressivité des cellules tumorales, en particulier l’invasion et l’adhésion.

Ils ont étudié l’invasion en chambre de Boyden et ils ont trouvé que l’activité invasive des cellules MCF-7 et T47D augmente significativement, de 50%, après l’inhibition de PTPL1. Ceci suggère le rôle inhibiteur d’invasion de PTPL1. Ils ont ensuite étudié l’influence de PTPL1 sur l’adhésion sur des matrices telles que le Matrigel, la fibronectine et le collagène 4. Le résultat montre que l’inhibition de PTPL1 diminue de 40% l’adhésion des cellules.

2.3. Arguments cliniques
Les mécanismes qui aboutissent à l’inhibition de PTPL1 dans les cancers ont été décrits : mutations du gène, perte d’hétérozygotie ou hyperméthylation du promoteur.

2.3.1. Les mutations de PTPL1
Dans les cancers du colon le gène de PTPL1, PTPN13, est touché par 19 mutations dont 8 sont des délétions du domaine catalytique et 2 inhibent l’activité catalytique. Des mutations avec décalage du cadre de lecture ou d’autres affectant le domaine catalytique ont été identifiées dans les carcinomes hépatocellulaires. Ceci suggère une activité anti-oncogénique de PTPL1.

2.3.2. Perte de l’hétérozygotie
Le locus 4q21 contenant le gène de PTPL1 est fréquemment déleté, induisant ainsi une perte d’allèle (LOH, loss of heterozygosity) dans certains cancers des ovaires et du foie.

2.3.3. Hyperméthylation du promoteur
La régulation épigénétique de PTPL1 est bien établie dans le cancer. PTPL1 est sous-exprimée ou inhibée dans 94% des lignées des cancers de lymphome non hodgkinien, 50% des lymphomes hodgkinien, 30% des cancers du sein, 60% des cancers gastriques et 67% des carcinomes hépatocellulaires. Dans la majorité des lignées où PTPL1 est sous exprimée, une augmentation de la méthylation a été retrouvée. Ces résultats sont confirmés dans les carcinomes hépatocellulaires qui présentent dans 66.7% une hyperméthylation du promoteur de PTPN13. Très récemment, dans certains cancers dans lesquels le promoteur de PTPN13 a été trouvé hyperméthylé, la déméthylation du promoteur par un agent déméthylant tel que le 5-azacytidine relance l’expression de PTPL1 et inhibe la croissance. Ceci a été montré dans certaines lignées de lymphomes non hodgkiniens.

2.3.4. Régulation par les miRNAs
Le dernier mécanisme identifié de régulation de PTPL1 est l’inhibition par les micro-RNAs ou miRNAs. PTPL1 a été identifiée comme une cible de miR185. Ces miR185s sont surexprimés dans les cancers rénaux à cellules claires et dans les cancers de vessie. Une autre étude a montré que PTPL1 est la cible de mi200c et est responsable de la régulation de l’apoptose Fas-dépendante dans certaines lignées du cancer ovarien, rénal et du côlon. En fait, le changement du niveau d’expression miR200c dans les cellules modifie leur sensibilité à l’apoptose Fas-dépendante. La surexpression de miR200c inhibe l’expression PTPL1 et l’inhibition de PTPL1 par shRNA restaure l’apoptose inhibée par anti-miR200c. Une étude récente montre aussi l’effet de miR200c sur PTPL1 ; Dans les cellules résistantes à la chimiothérapie à base de 5-fluouracile, un niveau d’expression élevé de PTPL1 a été observé. L’inhibition de PTPL1 in vivo et in vitro améliore l’effet de la chimiothérapie. L’inhibition de PTPL1 par miR200C sensibilise les cellules résistantes à la chimiothérapie et déclenche l’apoptose. PTPL1 est également régulée négativement par miR26a, comme l’indique le paragraphe 2.2.2.3 du chapitre IV.

2.3.5. PTPL1 a un intérêt pronostique dans le carcinome hépatocellulaire

Dans une étude récente, l’expression de PTPL1 a été évaluée dans une analyse en microarray de tissu sur des biopsies prélevées de 282 patients atteints du carcinome hépatocellulaire. Le résultat montre une baisse d’expression de PTPL1 dans ces tissus et l’analyse a révélé que l’expression élevée PTPN13 est corrélée avec un pronostic favorable chez les patients HCC en post-opératoire.

2.3.6. PTPL1 a un intérêt pronostique dans le cancer du sein

La mesure de l’expression de PTPL1 a été réalisée par RT-PCR sur 291 prélèvements tumoraux de patientes avec un suivi clinique de 10 ans. L’expression de PTPL1 a ensuite été corrélée aux données cliniques des patientes (statuts en récepteurs hormonaux, récidives et décès). Les résultats indiquent que le taux de survie était significativement plus élevé chez les patientes qui avaient un plus haut niveau d’expression de PTPL1 (figure 26). Les mêmes résultats sont obtenus si on considère la population entière ou les patientes uniquement RE+. Ceci indique qu’une forte expression de PTPL1 est un marqueur indépendant de bon pronostic.
2.3.7. **PTPL1 est sous exprimée dans les métastases**

Dans les cellules tumorales agressives, le niveau d’expression de l’ARNm de PTPL1 baisse. Pour l’expression de la protéine PTPL1, Freiss et al ont montré par des analyses immunohistochimiques sur un tissu microarray que l’expression de PTPL1 diminue du tissu normal à la métastase. Pour cela ils ont étudié l’expression de PTPL1 dans trois types de tissus (tissu bénin à la proximité de la tumeur, tissu de cancer primaire et tissu métastatique prélevé au niveau des ganglions lymphatiques) et ils ont trouvé que l’expression de PTPL1 est significativement moins importante dans le tissu cancéreux que dans le tissu bénin, et dans la métastase que dans la tumeur primaire correspondante (figure 27).

![Fig. 26. Courbe de survie basée sur le taux d’expression relative de PTPL1 dans une population de 291 patientes.

Les chiffres entre parenthèses indiquent le taux de décès/le total des patientes dans chaque groupe. Extrait de Révillon et al 2009](image)

![Fig. 27. Différence de l’expression de PTPL1 entre des échantillons bénin, cancéreux et métastatique. Résultats obtenus par le test de Mann-Whitney. Extrait de Glondu-lassis 2010](image)
3. Objectifs

La majorité des études, en particulier cliniques, présente PTPL1 comme un suppresseur de tumeurs. L’activité de PTPL1 est inhibée dans une multitude des cancers et son expression est un indicateur de bon pronostic dans le cancer mammaire.

Les résultats de l’équipe, obtenus in vivo ont montré l’effet anti-oncogénique de PTPL1 : l’inhibition de PTPL favorise l’invasion, la migration et réduit l’adhésion. Ceci a été montré dans des cellules tumorales mammaires peu agressives, les MCF-7, qui ne présentent pas tous les mécanismes d’agressivité utilisés par les cellules tumorales agressives. Nous avons donc proposé de réaliser une étude plus exhaustive de la signalisation de PTPL1 dans la régulation de l’agressivité dans le cancer du sein agressif. Nous avons mis en place un modèle des clones iso-géniques exprimant, d’une manière stable et inductible par la doxycycline, PTPL1 ou son mutant phosphatase dead ou mutant catalytiquement inactif autrement appelé le PTPL1-CS dans des lignées MDA-MB-231 qui sont des cellules cancéreuses mammaires agressives.

Le travail se divise en deux axes essentiels :

1- Validation du modèle en termes d’expression de PTPL1 et étude de la régulation de l’agressivité selon l’expression de PTPL1.

2- Réalisation des études protéomiques, en se basant sur ce modèle, permettant de décrypter la signalisation de PTPL1.
Présentation de l’article
Le suppresseur des tumeurs PTPN13 inhibe l’invasion en stabilisant les jonctions intercellulaires \textit{in vitro et in vivo}

Cet article est le fruit des quelques années de travaux dirigés par Gilles FREISS afin de mieux concrétiser le rôle de PTPN13 dans le cancer. Les anciens travaux de l’équipe présentent PTPN13 comme un suppresseur des tumeurs. En revanche, on sait peu sur les mécanismes physiologiques expliquant ce rôle anti-oncogénique de PTPN13.

Mon équipe a déjà montré que l’inhibition de PTPN13 dans les cellules tumorales mammaires hormono-sensibles, les MCF-7, augmente l’agressivité de ces cellules \textit{in vivo et in vitro} 341. Egalement, dans une étude préalable réalisée sur des biopsies des patientes atteintes du cancer du sein \textit{in situ} ou métastatique, mon équipe a montré que l’expression de PTPL1/PTPPN13 dans le cancer et dans le tissu métastatique est inférieure à celle observée dans le tissu normal. Dans cette étude, grâce à l’obtention des données de survie des patientes, nous montrons que PTPL1/PTPN13 est corrélée avec un bon pronostic. Afin d’étendre nos connaissances sur l’impact de PTPN13 dans les cellules agressives et d’éclaircir son mécanisme, nous avons développé un modèle murin génétiquement modifié exprimant HER2 et un modèle cellulaire du cancer mammaire triple négatif.

L’étude \textit{in vivo} sur des souris déjà démarrée avant mon arrivée dans l’équipe et avant que je sois formé sur l’expérimentation animale, a permis de montrer le rôle de l’activité catalytique de PTPN13 dans le contrôle de la tumorigénèse des souris transgénique MMTV-HER2. Dans les souris exprimant l’oncogène HER2 dans la glande mammaire, la perte de l’activité catalytique de PTPN13 (souris PTPL1-\textit{AP} g39 P-\textit{AP} MMTV-HER2) non seulement raccourcit le temps de latence et augmente la fréquence d’apparition des tumeurs mais provoque également l’apparition de tumeurs plus agressives.

\textit{In vitro}, j’ai démontré que l’expression de PTPN13 dans les cellules MDA-MB-231 réduit significativement différents aspects liés à l’agressivité de ces cellules. Le modèle de clones isogéniques de cellules MDA-MB-231 transfectées avec PTPN13 ou PTPN13-CS (mutant du domaine catalytique dont l’activité phosphatase est complètement abolie) a été développé au laboratoire avant mon arrivée. J’ai vérifié l’expression de PTPN13 dans ces clones et j’ai réalisé plusieurs tests fonctionnels visant à estimer les effets de l’expression et/ou de l’activité catalytique de PTPN13. J’ai étudié la migration collective en test de blessure et la migration individuelle en cell-tracking. Les résultats montrent que seulement avec PTPN13 fonctionnelle, les cellules sont moins mobiles alors qu’en présence de PTPN13 catalytiquement inactive ou en absence de PTPN13 les cellules sont plus mobiles. L’inhibition de PTPN13 par SiRNA dans les clones exprimant PTPN13 re-induit la migration pour devenir comparable à celle du contrôle de transfection. J’ai également testé la capacité de ces cellules à envahir une matrice mimant la matrice extracellulaire. Le test d’invasion en chambre de
boyden couvert du Matrigel a permis de montrer que PTPN13 réduit également la capacité invasive de ces cellules.

Ensuite nous avons réalisé une étude protéomique afin d’identifier les fonctions biologiques affectées par l’activité de PTPN13. Le but de l’étude étant d’identifier le rôle des déphosphorylations induites par PTPN13 sur le phosphoprotéome total. Pour cela j’ai réalisé une étude SILAC pour comparer le tyrosine-phosphoprotéome des clones exprimant PTPN13 ou PTPN13-CS. Nous avons identifié 1389 protéines immunoprécipitées avec un anti-phosphotyrosine, parmi celles-ci 97 semblent différemment phosphorylées (20% de variation au minimum entre les deux conditions). L’étude de « gène ontologie » montre très clairement que parmi les protéines régulées il y a un fort enrichissement des protéines présentes aux jonctions intercellulaires ou liées à leur régulation.

Pour confirmer ce résultat, nous avons étudié l’effet de PTPN13 sur la formation et la stabilisation des contacts cellulaires. Nous avons réalisé un test d’agrégation 3D dans les clones de MDA-MB-231 exprimant ou non PTPN13 fonctionnelle ou PTPN13-CS et dans les cellules MCF-7 exprimant un shRNA contrôle ou un shRNA dirigé contre PTPN13. Nos résultats montrent une augmentation du pourcentage de cellules formant des agrégats en présence de PTPN13. Cette augmentation n’est pas retrouvée dans les clones sur-exprimant la forme catalytiquement inactive. Ensuite par vidéo-microscopie, nous avons estimé le temps de contact entre les cellules en présence de PTPN13 fonctionnelle ou pas. Nous avons montré une augmentation significative de la durée de contact entre les cellules exprimant PTPN13, alors que la surexpression de la forme catalytiquement inactive de PTPN13 n’a pas d’effet. Nous avons réalisé des tests d’immunofluorescence contre des protéines impliquées dans les jonctions adhérentes et dans les desmosomes. Dans les clones de cellules MDA-MB-231 exprimant PTPL1, on observe une apparition de l’E-cadhérine et une relocalisation de la desmogléine au niveau des jonctions cellulaires.

L’ensemble de ces résultats qui démontrent que PTPL1 peut réduire l’agressivité tumorale in vivo et in vitro en renforçant les jonctions cellulaires sont présentés en détail dans la version provisoire de mon article de thèse joint ci-après.

Pour compléter cet article deux études sont en cours :

- Nous évaluons actuellement la tumorigénicité des clones exprimant PTPN13 ou son mutant CS dans des souris athymiques. Nous rechercherons également dans ce modèle l’apparition de métastases et étudierons, comme pour le modèle transgénique les paramètres anatomopathologiques permettant de définir l’agressivité des tumeurs obtenues (index mitotique, présence de tumeurs multilobées, présence de figures d’EMT ou d’embole vasculaire).

- Nous développons un marquage en immunohistochimie des protéines des jonctions (E-Cadhérine, desmogléine..) afin d’évaluer l’effet de la surexpression de PTPN13 (clones dans les souris athymiques) ou de sa perte d’activité (modèle transgénique) sur les jonctions cellulaires dans les tumeurs obtenues dans les deux modèles in vivo.
The tumor suppressor PTPN13 inhibits tumor invasiveness through cell/cell contact stabilization in vitro and in vivo.
Hamyeh M., Bernex F., Larrive R., Naldi A., Urbach s., Puech C., Backache W., Coopman P., Hendriks W.and Freiss G.

Abstract
Previous studies showed that protein tyrosine phosphatase N13 (PTPN13) inhibits aggressiveness phenotype in hormone-dependent MCF7 breast cancer cell line. However, the underlying mechanism is still poorly clarified. Using two genetically modified models, we investigated PTPN13 effects on hormone-independent breast cancer subtypes; we thus generated a cellular model of MDA-MB-231 isogenic clones overexpressing PTPN13, as well as a murine model expressing Her2 in mammary gland (MMTV-Her2 mice) and KO for PTPN13 catalytic domain. Inhibition of PTPN13 catalytic activity in MMTV-Her2 mice increased tumor frequency and aggressiveness. In triple negative breast cancer MDA-MB-231 cells, PTPN13 negatively regulates cell motility and invasion. Combination of phosphoproteomic and gene ontology analyses clearly revealed that PTPN13 regulates phosphorylation or expression of intercellular junction related proteins. By cell aggregation test and video tracking, we confirmed that PTPN13 stabilizes intercellular junction in MDA-MB-231 clones but also in hormone-dependent MCF7 cells. Furthermore, immunofluorescence studies showed that desmosomes and adherens junctions are sustained by PTPN13 expression. Altogether, these data provide the first evidence for PTPN13 impact on hormone-independent breast tumor aggressiveness and highlight its action through cell-cell junctions stabilization.

Key words: PTPN13, aggressiveness, cell junction.

Introduction
Breast cancer is the most common malignancy among women with an estimated 1 million new cases per year worldwide. In most cases, the clinical issue in oncology is not the primary tumor, as it can be surgically removed, but the metastatic spread,
which is the leading cause of death in breast cancer patients. One of the first and most crucial steps of the metastatic cascade is the acquisition of invasive capacity, which is accompanied by the reorganization of the actin cytoskeleton related to disruption of intercellular junctions and loss of cell polarity.

Breast cancer is a heterogeneous group of diseases classified into three major subtypes \(^1,^2\). Two of these are characterized by expression of steroid hormone receptors (estrogen receptor [ER] and progesterone receptor [PR]) or overexpression of the oncogenic receptor tyrosine kinase (RTK) HER2. Therapies targeting these receptors have led to significant increase in patient survival \(^3,^4\). On the contrary, the triple-negative breast cancer subtype (TBNC) is negatively defined by absence of HER2 overexpression and ER or PR expression, highlighting our lack in understanding the pathways driving TNBC. The emergency, in breast cancer, is now to develop targeted therapies for TNBC, as done for tumors overexpressing HER2 / Neu. Indeed, these cancers are very aggressive and associated with poor prognosis \(^5\). They are mostly characterized by hyper activation of phosphorylation cascades generally initiated on tyrosine residues. \textit{In vivo}, this reversible and dynamic phosphorylation is initiated by protein tyrosine kinases. Protein tyrosine phosphatases (PTPs) also regulate the equilibrium of tyrosine phosphorylation and, in principle, can serve as antagonists to TK signaling to play a prominent role in tumor suppression \(^6\). However, much less is known about the role of PTPs in suppressing tumorigenesis.

PTPN13 (also called PTPLN13, FAP-1, PTP-BAS, PTP1E), is the nonreceptor type protein tyrosine phosphatase (PTP) with the higher molecular weight, 270 kDa \(^7,^8\). Its physiological functions are poorly documented. PTP-BL (mouse homolog of PTPN13) mice that lack the PTP-BL PTP activity show mild impairment of motor nerve repair \(^9\) and we described the role of this phosphatase in adipocyte differentiation \(^10\). We reported the first evidence of the negative action of PTPL1 on cancer growth through our work on the anti-growth factor effect of antioestrogens in breast cancer \(^11,^12\). Other groups confirmed that the \textit{PTPL1/PTPN13} gene presents the characteristics of a tumor suppressor gene\(^6,^13\). Its expression is frequently down-regulated or silenced through promoter hypermethylation within several tumor types\(^14,^15\). A large scale study mutational analysis of colorectal cancers identified PTPL1 as one of the 3 most frequently mutated PTPs in colorectal cancers, mutations also found in other tumors \(^16\). In addition, the \textit{PTPL1/PTPN13} gene is located on chromosome 4q21, a region
frequently deleted in ovarian and liver cancers17. In agreement with these data, we showed that PTPL1 mRNA expression is an independent prognostic marker for increased overall survival in breast cancer, indicating that PTPL1 is an important regulatory element of human breast tumour aggressiveness18.

Finally, we also showed that inhibiting PTPN13 expression by shRNA in poorly invasive hormono-dependant MCF7 cells increases the growth of xenografts injected into the "mammary fat pad " of athymic mice through Src dephosphorylation19. However, PTPN13 extinction in these cells leads to an increase in their invasive capacity by a mechanism independent of Src expression19.

Together, these results suggest that PTPL1 is involved in the regulation of cell invasiveness through an unsolved mechanism. In this study, in order to extend our knowledge on PTPN13 impact on cell invasiveness to hormone-independent model and to decipher its mechanism of action on tumor invasion we developed genetically modified murine and cellular models corresponding to Her2+ and TNBC tumors. We show here that in mice lacking PTPN13 catalytic domain ErbB2-induced breast tumor present reduced latency and more aggressive phenotype. On the other hand, in MDA-MB 231, Her2 negative hormone-independent invasive breast cancer cell, PTPL1 overexpression inhibits cell invasiveness through cell/cell adhesion stabilization.

\section*{Results}

\textbf{High level of PTPN13 protein expression is a prognostic marker for overall survival in breast cancer.}

In a previous retrospective study realized by RT/PCR on two hundred ninety one patients we showed that PTPN13 mRNA expression is an independent prognostic marker for increased overall survival in breast cancer18. The overall survival of patients from KM-Plotter 20 cohorts, analyzed based on their PTPN13 expression level, confirms the prognostic interest of PTPN13 on large patient set, with an hazard ratio of 0.79 (Fig1A).

At the protein level, using immunohistochemistry on a tissue micro array, we have previously shown that PTPN13 expression is decreased in breast cancer and metastasis specimens compared with nonmalignant tissues19. Survival data of patients are now accessible and we note that all patients with a tumor expressing
PTPN13 (IRS- assayed in our previous study) at a level comparable to that of nonmalignant breast tissue are alive after 6 years follow up. The overall survival of patients, now analyzed based on their expression level of PTPN13, shows that high level of PTPN13 protein expression is significantly associated with a better survival (Fig1B).

PTPN13 phosphatase activity delays breast cancer development and tumor invasiveness.

To explore the role of PTPN13 in breast tumor development, we crossed mice lacking PTP-N13 tyrosine phosphatase activity (PTPBL-dP) with the MMTV-Her2 transgenic mouse strain, which has been shown to develop mammary carcinomas before one year in 70% of females, and the mice were monitored weekly for tumor apparition for 57 week. In our study, tumors arose between 244 and 384 d of age in 42% of MMTV-HER2/PTP-BL wt/wt mice, whereas 79% of the MMTV-HER2/PTP-BL dP/dP mice develop tumors between 165 and 393 d of age. Compared with the MMTV-HER2/PTP-BL wt/wt mice (median time to tumor onset (T50) 384 d), the time course of mammary tumor development in the MMTV-HER2/PTP-BL dP/dP mice was significantly advanced (T50 289 d,). In fact, tumor development was advanced by approximately 100 days and tumor occurrence was practically doubled in the MMTV-HER2/PTP-BL dP/dP strain (Fig2A).

Although the number of nodule was similar in tumors of both strains, microscopic analyses showed that the histopathology of MMTV-HER2/PTP-BL dP/dP tumors was markedly different from that of MMTV-HER2/PTP-BL wt/wt tumors (Fig2B). Indeed, the proportion of multilobular nodules was increased (from 42% to 90%) (Fig 2C,D), pictures of minimal to moderate epithelial-mesenchymal transition were observed in 84% of the nodule of MMTV-HER2/PTP-BL dP/dP tumors and absent in MMTV-HER2/PTP-BL wt/wt (Fig 2E,F,G,H), and images of cancer cells embolization in vessel was found in 46% of MMTV-HER2/PTP-BL dP/dP tumors and never found in MMTV-HER2/PTP-BL wt/wt tumors (Fig 2I). However the mitotic index increase (from 4 to 6) was not significant, suggesting that PTPN13 has an influence on the cellular aggressiveness with regard to surrounding tissues rather than on the tumor cell growth.

Finally, microscopic analyses of liver and lung from mice with tumor allowed to show one metastases in only one MMTV-HER2/PTP-BL dP/dP mouse (Fig 2J,K). These
results clearly demonstrate that PTPN13 catalytic activity deficiency in MMTV-Her2 strain not only reduces tumor latency and increase tumor frequency, but also increases invasiveness and aggressiveness of tumor.

PTPN13 regulates MDA-MB 231 cell motility and invasiveness

To extend our knowledge on PTPN13 impact on cell invasiveness to hormone-independent model and to decipher its mechanism of action on tumor invasion we developed, using Flp-in Trex system, isogenic clones of MDA-MB231 hormone-independent breast cancer cell line expressing PTPN13 or its catalytically inactive mutant (PTPN13-CS). This cell line was chosen for its low endogenous PTPN13 expression and its invasive capacity. We obtained three clones expressing PTPN13 (N13-1, 2 and 3 clones) and only one clone expressing the catalytically inactive mutant (N13-CS clone). All the clones express comparable PTPN13 protein level after Doxycycline stimulation and low level (but superior to wild type or mock transfected MDA-MB-231) in control conditions (Fig 3A). While PTPN13 expression did not regulate cell growth in this model we tested cell motility and invasiveness as biological parameters associated with tumour cell aggressiveness and quantifiable in *in vitro* assays (Fig 3B to G.). In wound healing test we assayed global cell mobility and observed a non-significant loss of cell migration in the three clones transfected with PTPN13 in control condition. After PTPN13 induction by doxycycline the migration of PTPN13 expressing clones N13-1, N13-2 and N13-3 was respectively inhibited by 48%, 67% and 46 % in comparison to mock transfected MDA-MB-231 clone. In the same condition N13-CS clone expressing catalytically inactive PTPN13 showed a moderately increased migration (Fig 3B). In order to test whether the differences between mock and N13 clones was uniquely due to PTPN13 expression, we inhibited PTPN13 expression by siRNA in these clones. While PTPN13 inhibition had no effect in mock clone, it significantly restored migration in N13 clones (Fig 3C). We then assayed the PTPN13 ability to inhibit individual cell motility using video cell tracking at low density, we observed a cell speed inhibition in N13 clones (50 to 70% inhibition of average speed) with 2 to 3 times more cells with a speed lower than 7.5 µm/h (Fig 3D) and a cell speed comparable to mock transfected MDA-MB-231 clone for CS clone. The use of PTPN13 siRNA in N13 clones restored normal speed (Fig 3E). Altogether these results demonstrate the PTPN13 ability to down regulate cell migration/mobility through its phosphatase activity.
We next investigated the impact of PTPN13 on cell invasiveness using a Matrigel coated Boyden chamber test. The three N13 clones showed a 40 to 50% decrease in invasiveness compared to mock transfected MDA-MB-231 clone (Fig 3F) while the PTPN13-CS transfection do not affect the invasive capacity of cell (Fig 3G) demonstrating the PTPN13 ability to down regulate cell invasiveness through its phosphatase activity.

Together using this model of genetically modified cell line we demonstrated the PTPN13 negative effect on cell aggressiveness in hormone-independent breast cancer cells.

Phospho proteomics analyses of changes induced in mammary cancer cells by PTPN13 expression points to intercellular junctions.

Mass spectrometry (MS)-based proteomics was used to decipher global impact of PTPL1 expression on tyrosine phosphorylations. Using SILAC, the lysine-arginin residues of proteins were labeled in MDA-MB-231 clones (N13 and CS) and 2 opposite experiments were done simultaneously by reversing culture conditions and cells (Fig. 4A). Mean labeling efficiency of cells was greater than 95% after eleven culture days. MaxQuant algorithms, which also calculated the exact heavy/light isotope (H/L) ratio of each protein identified nearly 1400 different proteins from anti-phosphotyrosine immunoprecipitate from mixed MDA-MB-231 N13 and CS clones (Table S1). The presence of IRS1 and TRIP6, two of rare known PTPN13 substrates, among the negatively regulated phosphoproteins in PTPN13 expressing cells confirmed our approach. For further analysis, a stringent list of 97 regulated proteins was identified by statistically significant H/L ratio of their different identified peptides (TableS2) and an inverted H/L ratio upper than 1.2 in the two labeling conditions (Table S3).

Gene ontology enrichment analysis was performed to determine the enrichment of differentially tyrosine phosphorylated proteins with Panther gene ontology WEB tool using bonferonni correction. “Cell junction assembly” and “cell-cell junction organization” ranked top of significantly enriched “biological process” terms, and “desmosome” “focal adhesion” and “spindle midzone” top of “cellular component” term. Regulated proteins clusterisation analysis using DAVID-cluster WEB tool highlighted three clusters of gene corresponding to “cell junction”, “cell division” and “apoptosis” (Fig.4B). PTPN13 implication in cell growth and apoptosis was discussed.
in the literature and implication of PTPL1 at midbody during cell division was also documented. However in the MDA-MB-231 clones, used for the proteomic analyses, we did not observe change in cell proliferation in vitro and the increase of mitotic index in tumor from genetically modified mice was weak and not statistically significant.

Interestingly the “cell junction” cluster ranked top in this analyses like “Cell junction assembly” and “desmosome” in gene ontology enrichment analyses. We focused on this cluster of 16 genes corresponding to three sub heading terms, “desmosome”, “occluding junction” and “focal adhesion”. We note that all protein related to focal adhesion were less associated to tyrosine phosphorylated protein immunoprecipitation in cells expressing PTPN13, while the majority of cell-cell junction proteins were more associated to tyrosine phosphorylated protein immunoprecipitation in cell expressing PTPN13. Thus suggesting a PTPN13 direct or indirect effect on focal adhesion through phosphorylation/dephosphorylation cascades while effect on cell-cell junction, which are absent in MDA-MB-231 cells, would appear to be indirect through stabilization or changes in proteins interaction.

PTPN13 stabilizes intercellular junctions in cellulo

In order to investigate the functional significance of changes in tyrosine phosphorylation or stability of junction constituents or regulators on cell adhesion formation, cell-cell adhesion in 3D culture condition was first determined using a previously described protocol of cell aggregation on MDA clones. Aggregation was significantly increased in PTPN13 expressing MDA clones with two to three fold more aggregates of more than 5 cells (Fig 5A). We realized the same test in MCF7 clones (sh Control or Sh PTPN13) in which PTPN13 knock down using ShRNA inhibits cell aggressiveness in vitro and in vivo. In MCF7 poorly aggressive cells the proportion of cells involved in aggregates of more than 5 cells was 2.5 fold higher than in MDA-MB-231 Mock clone, and inhibition of PTPN13 expression results in a 30 to 40% decrease in the proportion of cells involved in aggregates of more than 5 cells (Fig 5B).

To quantify the PTPN13 expression effect on dynamics of cell-cell interactions, we then identified cell-cell division in time-lapse videos and recorded the duration of intercellular contact. We observed that the mean lifetime of cell-cell interactions
(t_{contact})^{30} was increased to 1200mn or 1500mn in the three MDA-MB-231 N13 clones compared to mock transfected clone 450mn, or CS clone 500mn (Fig 5C). In MCF7 Sh Control clone cell-cell interaction after cell division was continuous during all the time of the video (1500mn) and in the MCF7 ShPTPN13 clone 5% of cells part during the time of the video (data not shown).

Altogether, these results indicate that PTPN13 expression associated changes in tyrosine phosphorylation of cell-cell adhesion proteins was associated with a regulation of cell-cell adhesion dynamic, and that PTPN13 expression promotes and stabilizes cell junctions.

In order to analyze the impact of PTPN13 expression on specific junctions, we performed immunofluorescence assays specific for adherens junctions (E-cadherin) and desmosomes (desmoglein) on MDA clones. It is know that MDA-MB-231 cells, unlike MCF7 cells (Fig 5D,E left panels), do not present cell-cell junction and fail to express E-cadherin or desmoglein at cell-cell contact. We confirmed the absence of visible junction or E-cadherin staining in mock transfected clone (Fig 5D) and a diffuse desmoglein signal (Fig 5E). In contrast in N13 clone-1 desmoglein relocalized to cell-cell contact and we observed a punctuate E-cadherin staining at cell-cell contact (Fig 5D,E).

Discussion

We have previously shown that PTPN13 mARN expression level is an independent prognostic indicator of favourable outcome for patients with breast cancer\(^\text{18}\) and that PTPN13 protein expression is decreased in breast cancers and metastases compared to benign breast tissues\(^\text{19}\). In agreement with this first result, the overall survival of patients from KM-Plotter\(^\text{20}\) cohorts have been now analyzed based on their expression level of PTPN13 and the results confirm the prognostic interest of PTPN13 on large patient set, with an hazard ratio of 0.79 (Fig1a). In this study we assessed the PTPN13 prognostic value at protein level. Using immunohistochemistry on a tissue micro array, we noted that all patients with a tumor expressing PTPN13 at a level comparable to that of nonmalignant breast tissue are alive after 6 years of follow up and we showed that high level of PTPN13 protein expression is significantly associated with a better survival (fig 1b). These results were corroborated by observations of other laboratories on breast cancer. Indeed an analysis of gene expression profiles in response to an mTOR inhibitor in estrogen receptor-positive
breast cancer classified PTPL1 in the good prognosis group of genes associated with resistance to the mTOR inhibitor. Wei et al evaluating the effect colorectal cancer-associated variants on the risk of breast cancer confirmed the association of a PTPN13 variant with variations in the risk of breast cancer in a Chinese Han population. Furthermore, studies on many tumor types, such as ovarian, prostate or hepatocellular carcinoma, showed a loss of PTPN13 expression in cancers versus normal tissues, in high grade versus low grade tumors or that high PTPN13 expression was correlated with a favourable prognosis respectively. Moreover, a biostatistical analysis identified PTPN13 as a hub gene in the constructed lung cancer network and demonstrated the prognostic importance of PTPN13 in four independent lung cancer datasets.

Using in vitro and animal models, we previously found that PTPL1 regulated the aggressiveness of a poorly tumorigenic hormone-dependant MCF7 mammary cell line since we observed that silencing of the phosphatase led to an increased tumor growth in athymic mice, an increase of cell proliferation when the cells are seeded on extra-cellular matrix components, and an increase of invasiveness associated with decreased cell adhesion of PTPN13 knockdown cells. Here, in order to extend our knowledge on PTPN13 impact on cell invasiveness to hormone-independent model we developed genetically modified murine and cellular models corresponding to Her2 positive and TNBC tumours. We showed that mice lacking PTPN13 catalytic domain ErbB2-induced breast tumour present reduced latency (from 369 to 289 days), enhanced frequency (from 42% to 79 %) and more aggressive phenotypes (mitotic index, tumour necrosis, multilobular tumours and picture of cancer cells embolization in vessel and EMT) (Fig 2). In isogenic clones of MDA-MB-231, HER2 negative and hormone-independent breast cancer cells, transfected with wild type PTPN13 or its catalytically inactive mutant, we demonstrated the PTPN13 negative effect on cell migration and invasion (Fig 3). These results allow to generalize our previous results to the hormono-independent breast cancers. Furthermore, they are in agreement with the data obtained for other tissues. Indeed, PTPN13 was recently shown to inhibit vascular endothelial cell movement through interaction with Necl-4 and V-EGF-R, to inhibit the invasion ability of PC3 prostate cancer cells, to negatively regulate anchorage-dependent anchorage-independent growth in vitro and restrain tumorigenicity in vivo in lung cancer cells (NCI-H292) and to inhibit cell invasion in HEPG2 and 97H hepatocellular carcinoma cell lines. Altogether, these results
indicate a PTPN13 implication in cell migration and cell invasion control in numerous cellular models.

Few substrates of PTPN13 were known and the signaling pathways impacted by the phosphatase were poorly studied. We developed a SILAC phosphoproteomic approach to determine PTPN13 effect on tyrosine phosphorylation in MDA clones comparing N13 clone with CS clone. We confirmed our previous results with IRS-1 among the regulated phosphoproteins. However Src which was a PTPN13 substrate was not detected as phosphoprotein in this study, and we confirmed the absence of Src phosphorylation by western blot in our cell culture condition. Gene ontology enrichment analysis clearly showed that the cellular compartment the most affected by a continuous expression of catalytically active PTPN13 are the intercellular junctions. The stability of theses junctions which plays a crucial role in epithelial-mesenchymal transition and in cancer invasion was highly regulated by tyrosine phosphorylation. Using 3D cell aggregation and video cell tracking assays we confirmed that PTPN13 expression increases and stabilizes cell/cell adhesion in hormono-dependant MCF7 and hormono-independent MDA-MB 231 cells. Finally we showed, by desmoglein and E-cadherin immunofluorescence, that PTPN13 regulates desmosomes and adherens junctions formation.

In summary, using mice and cellular genetically modified models we confirmed the PTPN13 tumor suppressor action in new hormono-independent breast cancer models, and we showed that PTPN13 regulates tumour aggressiveness through cell/cell junctions stabilization. These results point to the necessity of further studies on the mechanisms by which the catalytic activity of this phosphatase is regulated, and reinforces the interest to analyze the signalling pathways regulated by this phosphatase in order to identify new therapeutic targets involved in invasion and metastases.
Materials and methods

Cell lines and antibodies

MDA-MB-231 cells were cultured in DMEM, MCF-7 cells in dulbecco’s modified Eagle’s medium Ham’s F12/DMEM (50%/50%), all supplemented with 10% FCS. The Flp-In MDA-MB-231 cells, which contain a unique Flp recombination target (FRT) site and a lacZ-Zeocin fusion gene, were obtained by transfection with pFRTLacZeo from Invitrogen. To develop a doxycycline (Dox)-inducible expression system in MDA-MB-231 cells, the Flp-In/TREx MDA-MB-231 cells (called MDA Mock in result section) constitutively expressing the tetracycline repressor were established by introducing pcDNA6/TR (Invitrogen) into the Flp-In MDA-MB-231 cells. The Flp-In/TREx MDA-MB-231 cells expressing PTPN13 or its catalytically inactive CS mutant under Dox control were generated using manufacturer instruction. Briefly, HA-tagged PTPN13 and PTPN13 CS²³ were cloned into the pcDNA5/FRT/TR vector (Invitrogen) to yield pcDNA5/FRT/PTPN13 vectors. pcDNA5/FRT/PTPN13 and pOG44 (Invitrogen) were cotransfected at a ratio of 1:9 (w/w) into Flp-In/TREx MDA-MB-231 cells and clones resistant to hygromycin B (500µg/ml) were selected. The 3 selected clones expressing wild-type PTPN13 were then confirmed for the Dox-induced PTPN13 expression and designated Clones N13-1, N13-2 and N13-3. The selected clone expressing catalytically inactive PTPN13 was then confirmed for the Dox-induced PTPN13 expression and designated N13-CS clone.

MCF7-shC and MCF7 shPTPN13 were previously described¹⁹. Small interfering RNA (siRNA) transfections were carried out using the Oligofectamine reagent method (Invitrogen). The two PTPN13-specific siRNA (Si3:7313-GGAAAGAAGAGUUCGUUUA-7331 and Si4:1028-CAGAUCAGCUUUCUGUAA-1046), and the non targeting siRNA control were from MWG.

The following monoclonal and polyclonal antibodies were used: anti-HA (12CA5, Roche); anti-phosphoTyrosine (PY99 santacruz) and anti-actin (Sigma); anti-PTPN13 (H300, Santa Cruz Biotechnology); anti-E-Cadherin (36E BD bioscience); anti-desmoglein (Cell signalling technology).
Patient survival KM Plotter.
In order to confirm the correlation between PTPN13 expression and breast cancer clinical data, survival analysis was performed on a breast cancer meta-data set composed by 3,554 samples using the Km-plotter online analysis tool. The Kaplan–Maier curves of relapse-free survival time, the hazard ratio with 95% confidence intervals and log-rank test P values for 17 years follow up were calculated using 204201_s_at probe set and automatically selected cut off.

Tissue array Immunohistochemistry
Tissue array containing selected areas of paraffin-embedded sections from primary breast cancers, benign breast tissues and lymph node metastases was obtained from SuperBioChips Laboratories. It was analysed with anti-PTPL1 (AC21 from AbCam) as previously described19. Staining was revealed using a standard avidin-biotin enhanced immunoperoxidase technique (R.T.U. Vectastain Kit, Vector Labs). PTPN13 immunostaining was cytoplasmic. An immunoreactive score (IRS) was calculated based on the percentage of positive epithelial cells (<1%=0; 1-30%=1; 31-50%=2; 51–80%=3; >80%=4) multiplied by the staining intensity (negative=0; very weak=0.5; weak=1; moderate=1.5; strong=2), resulting in a value between 0 and 8.

Mouse experimental procedure.
PTPN13 DeltaP/DeltaP mice9 were backcrossed with FVB wild-type mice for six generations to introduce the targeted PTPN13 alleles onto an FVB background. MMTV-HER2 transgenic mice were generated in an FVB strain by Finkle et al 21. MMTV-HER2 and PTPN13 DeltaP/DeltaP mice were interbred to generate females of the required genotypes. Genotypes for PTPN13 and HER2 were determined by PCR analysis as previously described, 9,21 respectively. Mice were kept on a 12h light/12h dark cycle and were allowed free access to food and water. Animals were monitored daily for physical well-being and were examined weekly for tumour occurrence for 57 weeks. Animals carrying tumor >1000mm3 were sacrificed and tumor, lungs, liver and mammary glands were collected as described in histological analysis. All animal experiments were performed in compliance with the guidelines of the French
government and the regulations of the Institut National de la Santé et de la Recherche Médicale for experimental animal studies (agreement CEEA-LR-12166).

Histological analysis.
Complete necropsies were performed and tissues used for histology were fixed in 10% neutral buffered formalin and embedded in paraffin, sectioned at 4 µm, stained with hematoxylin and eosin and examined for pathological findings.

Immunoblot analysis.
Cells were washed twice in ice-cold PBS and lysed in lysis buffer [40 mM Tris (pH8), 5mM MgCl2, 40mM Na4P207, 1% Triton x-100, 10mM EDTA, 50 mM NaF, 100µM Na3VO4, 1/250 aprotinin, 1 mM AEBSF]. Equal amounts of each cell lysate were separated on 7.5 or 10% SDS/polyacrylamide gel before immunobloting as described\(^2\) with the indicated antibody.

Scratch Wound healing test
For wound healing experiments, 500,000 cells were seeded on 6-well plates and cell layers (90-100% confluence) were wounded by tip-scraping 24h later. Cells were washed with fresh medium to remove floating cells and refed with fresh medium supplemented with 10% FCS and wound healing was imaged at time 0 and 6 hours later with an inverted phase-contrast microscope (primovert-Zeiss). Wound closure rates were followed with a reference point in the field of the wound. The procedure allowed to image an identical spot each time. Width was evaluated at each time on 4 points for each scratch using imageJ software.

Transwell invasion assay
Cells were detached with Trypsin-EDTA, and resuspended in 1% FBS DMEM. 3.104 cells/well were seeded in triplicate in the upper chamber of a BD BioCoat Cell Culture Insert (8 µm diameter pore; BD Biosciences) precoated with 30 µg of Matrigel (Becton Dickinson). The lower chamber contained DMEM with 10% FBS as the chemoattractant. After 24h, the unmigrated cells in the upper chamber were gently
scraped off the filter. Quantity of cells which have migrated through the filter was evaluated with the colorimetric MTT-assay, as previously described\(^9\).

Cell tracking assay

10 000 cells were plated on 24 well plate. 24h later, phase contrast timelapses were taken using a Carl Zeiss Axiovert200M and a 20x LD PLAN-NEOFLUAR 0.4 PH2 Korr lens every 30 minutes for 24 or 48h. Cells were kept in cell culture conditions using a temperature-controlled incubation chamber and 5% CO2 humid air perfusion. Images were acquired using a Photometrics Coolsnap HQ CCD camera controlled by Metamorph software. Different experimental conditions were followed during the same timelapse using Ludl motorized XY stage and diascopic illumination shutter. Cell tracking analyses were performed using ImageJ software (National Institutes of Health, Bethesda, MD) on 16 cells/well and cell velocity was estimated for each cell every 30 minutes.

Quantification of Cell-cell Adhesion Dynamics

Cell-cell interactions were observed by time-lapse microscopy using a Zeiss Axiovert 200 M microscope with phase contrast images collected every 30 minutes for 48h. Dividing cells in the first 12h of observation were tracked and the duration of cell-cell contact was recorded. Two cells were categorized as remaining in contact if their cell bodies appeared to be touching upon visual inspection of the image.

Silac

- **Cell culture**

For each SILAC, 2 opposite experiments were done simultaneously by reversing culture conditions and cells (clone N13-2 and N13-CS). Cells were grown either in heavy or light medium. silac condition : The appropriate amount of heavy L-arginine \([13C6,15N4]\) ; Invitrogen Corp., Cergy Pontoise, France), L-lysine \([13C6,15N2]\); Sigma, Saint Quentin Fallavier, France) or light L-arginine \([12C6,14N4]\)-L-Arg, light L-lysine \([12C6,14N2]\)-LLys Sigma) was added lysine- and arginine-free DMEM (Euromedex, Souffelweyersheim, France) complemented with 10% dialysed FBS (Invitrogen Corp.).
After 11 days cell culture, isotopes integration rate reaches 95%, cells are then lysed. Total phosphotyrosine proteins are caught by anti-phosphotyrosine immunoaffinity beads PY99. Proteins are then prone to DTT reduction, IAA alkylation, then migrated on 12% SDS-PAGE gel. Proteins are extracted by series of TriEthylAmmonium BiCarbonate 1M rehydration/ Acetonitrile dehydration. Proteins are finally digested by trypsin (GOLD promega 1 μg/μl, 50 mM acetic acid).

Mass spectrometeric analysis

Samples (1 μl) were analyzed online using a nonoESI Qexactive mass spectrometer (Thermo Fisher Scientific, Waltham, MA) coupled with a RSLC HPLC (Dionex, Amsterdam, Netherlands). Desalting and pre-concentration of samples were performed on-line on a Pepmap® precolumn (0.3 mm x 10 mm). A gradient consisting of 2-24% B in 68 min, 24-40% B in 15 min, 40-72% B in 5 min and 80% B for 10 min (A = 0.1% formic acid, 2% acetonitrile in water ; B = 0.1 % formic acid in acetonitrile) at 300 nl/min was used to elute peptides from the capillary (0.075 mm x 150 mm) reverse-phase column (Pepmap®, Dionex). Nano-ESI was performed with a spray voltage of 1.9 kV, a heated capillary temperature of 250°C. A cycle of one full-scan mass spectrum (350–1500 m/z) at a resolution of 70,000, followed by ten data-dependent MS/MS spectra was repeated continuously throughout the nanoLC separation. All MS/MS spectra were recorded at a resolution of 17,500, an isolation window of 2 m/z (AGC target 1e5, NCE 26). Data were acquired using Xcalibur software (v 2.2, Thermo Fisher Scientific, Waltham, MA).

Raw data analysis was performed using the MaxQuant software (V. 1.4.1.2). Retention time-dependent mass recalibration was applied with the aid of a first search implemented in the Andromeda software and peak lists were searched against the UniProt human database (Complete proteome set with isoform; http://www.uniprot.org), 255 frequently observed contaminants as well as reversed sequences of all entries. Standard MaxQuant settings were applied. Enzyme specificity was set to Trypsin/P. Up to two missed cleavages were allowed and only peptides with at least seven amino acids in length were considered. Oxidation on methionine and phosphorylation on serine, threonine and tyrosine were set as variable modification. Peptides identifications were accepted based on their false discovery rate (1%). Accepted peptide sequences were subsequently assembled by MaxQuant into proteins, to achieve a false discovery rate of 1% at the protein level.
Relative protein quantifications in samples to be compared were performed based on the median SILAC ratios, using MaxQuant with standard settings.

Cell aggregation assay

Cell aggregation assay was performed as described in Boterberg et al. 2001. Briefly, cells were washed by PBS Mg/Ca free then completely dissociated during 5 min by trypsinization at 37°C. 150X103 cells triplicate were then seeded on bottom-treated 24-well plates (ultra low attachment surface-Corning) with CaCl2 4mM or EGTA chelator 1mM. Plate was put to rotate at 80 rpm on POS-300- Grant-bio rotator for 18h in cell culture conditions. The formed aggregates were disrupted by pipeting, fixed by 2% PFA during 20' then marked by hoechst. Size and number of aggregates was measured using a Thermo Scientific Cellomics BioApplications- Image with a Zeiss 20X 0.4 NA Korr LD Plan Neofluar lens.

Immunofluorescence microscopy.

Cells, plated on coverslips, were fixed with 3.7% formaldehyde in PBS for 15 min and permeabilized with 0.5% Triton X-100 in PBS for 10 min. Immunolabelling was performed as described with TRITC conjugated secondary antibodies (Jackson ImmunoResearch Laboratories). Coverslips were mounted with mounting medium and visualised with a Zeiss Imager M2 with Apotome using a PlanApochromat 40x/1.3 DIC (oil) objective (Nikon).

Statistical analysis

Results for cell proliferation, migration, invasion and aggregates were assessed with student’s t test. All statistical tests were two sided, and P values less than 0.05 were considered as statistically significant.
Figures Legend

Figure 1: Determination of prognostic value of *PTPN13* mRNA and protein expression

A. Association of *PTPN13* RNA expression with the relapse free survival of breast cancer patients in www.kmplot.com. (see Methods for analysis details). HR—hazard ratio; log-rank *P*—log-rank test *P* value for the curves comparison. Numbers below graphs indicate number of patients at risk—total and at consecutive time points; *n* = 3,554—meta-data set composed of 3,554 samples associated with the Km-plotter online analysis tool.

B. Association of *PTPN13* protein expression with the overall survival of breast cancer patients. Kaplan–Meier curves for overall survival of individuals with breast cancer classified on the basis of *PTPN13* expression assayed by immunohistochemistry. The curves were drawn and analyzed using Prism software. (*n* =34) log-rank *P*—log-rank test *P* value for the curves comparison.
Figure 2: Enhancement of tumoral frequency and invasiveness in mammary tumors with PTPN13 deficiency

A: Kaplan-Meier kinetic analysis of tumor occurrence in MMTV-HER2/PTPN13^{wt/wt} and MMTV-HER2/PTPN13^{DP/DP} transgenic female mice. In order to detect mammary tumors, mice were examined weekly. The curves were drawn and analyzed using Prism software. Log rank tests of survival plots of the data indicated a statistically significant difference (P <0.032. The number of animals analyzed for each genotype (n) and the median time to tumor onset (T50) are also shown.

B to J: anatomopathological analysis of tumors.

B: summary table of anatomopathological analysis

C, E, G are tumors issued from MMTV-HER2/PTPN13^{WT/WT} mice; D, F,H tumors from MMTV-HER2/PTPN13^{DP/DP} mutant mice.

C&D: enhancement of nodules constituting the tumor, compared between a PTP^{WT/WT} mouse in C and D in a PTP^{DP/DP} mouse g=2.5

E&F: enhancement of the local invasiveness into the surrounding tumoral microenvironment. Comparison between a PTP^{WT/WT} mouse in E and in a PTP^{DP/DP} mouse in F g=10. Yellow arrows show cellular invasion in the stroma, with cells arranged in tubules, rare in the^{WT/WT} and numerous in the^{DP/DP} tumor.

G&H: increased epithelia mesenchymal transition (EMT) in the absence of PTP activity, G, and F g=40. The high power field on the tubules (yellow arrows) shows the EMT of tumoral cells, as indicated by a white arrowhead.

I: Example of tumoral embolization in a vein from PTP^{DP/DP} tumor: Two tumoral cells in the lumen of a vein (yellow arrow). At the periphery of the nodular tumor, malignant epithelial cells are infiltrating the microenvironment. Some cells are going in vessels.

J&K: In one lung section from a MMTV-HER2/PTPN13^{DP/DP} mutant mouse, is observed in I, a massive embolization of tumoral cells (indicated by the black asterisk) in a big lung blood vessel, erythrocytes being found only at the periphery of tumoral cells (erythrocytes indicated by a black arrow) g=5. In J, a metastatic tumoral nodule is found in the lung: the nodule is indicated by a black asterisk and delineated in black. The nodule is seen between the alveolar spaces, compresses them and infiltrates the stroma, g=20.
Figure 3: PTPN13 regulates MDA-MB 231 cell motility and invasiveness

A. Expression of PTPN13 in stable cell clones was monitored by western blot using anti-PTPN13 antibodies. Loading control was obtained by re-probing the membrane with anti-actin.

B&C. Directional migration was measured by scratch wound healing assays and wound closure rates were measured as indicated in methods. **B. Left panel:** Phase contrast optical photomicrographs of scratch at times 0 and 6h. **B. Right panel:** Results are the means ± s.e.m of 3 independent experiments (N13-1) or 7 independent experiments (Mock,N13-2,N13-3,CS). *P<0.05, **P<0.005 versus Mock. D. In presence of Dox, PTPN13 inhibition by SiRNA restore migration in N13-2 clone. Results are the means ± s.e.m of 3 independent experiments. **P<0.005 versus Mock.

D&E. In presence of Dox, individual migration was measured by video microscopy and cell tracking and cells were categorized as slow (< 7.5µm/h) medium (7.5 to 15µm/h) and fast (>15µm/h). **D. Speed:** was evaluated every 30mn for 48h on 16 cells/clone in two independent experiments (n>1500). **E. PTPN13 inhibition by SiRNA restore migration in N13-1 clone. Speed was evaluated every 30mn for 24h on 12 cells/clone in two independent experiments (n>500).

F&G. In presence of Dox, cell invasiveness was evaluated by boyden chamber test. Cells were plated onto the upper well of a Matrigel coated Transwell Boyden Chamber and allowed to migrate toward chemoattractant 10% FBS for 24 hr. The percentage of cells that migrated through Matrigel-coated filters was quantified relative to total seeded cells. Data represent the percentage of cells that migrated to the lower side of the filter. Results are the means ± s.e.m from 3 independent experiments *P<0.05, **P<0.01.
Figure 4: Phosphoproteomic data elucidate the biological processes impacted by PTPL1 in breast cancer cells.

A: Experimental design of SILAC-based quantitative phosphoproteome analysis. Phosphotyrosine-dependent protein complexes from MDA-MB-231 cells expressing wild-type PTPL1 or a phosphatase-dead mutant are identified and quantified by mass spectrometry. To select the 97 PTPL1 targets amongst the 1225 quantified proteins, we applied the Wilcoxon test on the SILAC ratios of the peptides assigned to the proteins. Then we performed an empirical estimation of the false discovery rate and retained the proteins with a threshold of 0.0005 and more than 20% of variation of SILAC ratios. WT, wild-type; PTPase-dead, phosphatase-dead; id., identification; quant., quantification.

B: Integrative bioinformatics analysis of the proteins selected as PTPL1 targets. The significantly altered phosphotyrosine-dependent proteins were classified according to their associated GO terms and clustered with the DAVID functional annotation tool. Red boxes: proteins associated with the sub GO term.
Figure 5: PTPN13 stabilizes intercellular adhesion

A&B. Cell-cell adhesion formation was evaluated using a 3D cell aggregation assays. Size and number of aggregates is read using a Thermo Scientific Cellomics BioApplications and proportion of each aggregates size was calculated and plotted using Prism software. 100 Pixels correspond to approximately 3 cells. **A.** MDA-MB-231 clones. Results are the means ± s.d, of 4 independent experiments. *P<0.05 versus Mock. **A.** MCF7 clones. Results are the means ± s.d, of 4 independent experiments. *P<0.05; **P<0.01 versus MCF7 shC.

C. Cell-cell adhesion stability was evaluated using cell video tracking. Time of contact of daughter cells after cell division was visually evaluated. Results are the mean ± s.e.m for at least 20 cells/clones. **P<0.0001.

D&E. Adherens junctions and desmosomes were visualized in the indicated clones by immunofluorescence using anti E-Cadherin (D) and anti-Desmoglein (E) respectively.

Fig 1

A

Probability

Expression

- low
- high

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>low</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1884</td>
<td>1670</td>
</tr>
<tr>
<td></td>
<td>1204</td>
<td>1111</td>
</tr>
<tr>
<td></td>
<td>574</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>10</td>
</tr>
</tbody>
</table>

Time (months)

HR = 0.78 (0.7 - 0.88)
logrank P = 3.6e-05

B

Percent survival

- PTPN13 IRS<4
- PTPN13 IRS>4

Month elapsed
Fig 2

A

![Graph showing survival of mice with different genotypes](image)

T50=289 (n=19)

T50=384 (n=19)

logrank P=0.032

B

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Mice with tumor</th>
<th>Tumoral nodule/mouse</th>
<th>Multilobular nodule</th>
<th>Nodule cavitaire kystique</th>
<th>Ulceration 1:yes 0:no</th>
<th>Mitotic Index</th>
<th>Angiogenesis</th>
<th>Intra tumoral fibrosis</th>
<th>EMT pictures/analysed nodules</th>
<th>Embolisation</th>
<th>Metastases/analysed mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMTV-HER2/PTPN13 wt</td>
<td>8/19</td>
<td>1.31+/−1.9</td>
<td>13/25</td>
<td>31/25</td>
<td>100%</td>
<td>0</td>
<td>4</td>
<td>Minimal to moderate</td>
<td>0/25</td>
<td>0/8 nodules</td>
<td>0/8</td>
</tr>
<tr>
<td>MMTV-HER2/PTPN13 dp/dp</td>
<td>15/19</td>
<td>2.26+/−1.9</td>
<td>38/43</td>
<td>38/43</td>
<td>88%</td>
<td>0</td>
<td>6</td>
<td>Minimal to moderate</td>
<td>4/23:0</td>
<td>7/15 nodules</td>
<td>1 (lung)/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/23:rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6/23:moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9/23:numerous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig 4

A

MDA-MB-231
2 biological replicates, 2 technical replicates
+ PTPN13 WT
+ PTPN13 CS (PTPase-dead)

Metabolic labelling (SiLAC)
Lysis
P-Tyr enrichment
Digestion
nLC-MS/MS

Peptide id. & quant. : MaxQuant
Statistical analysis
Bioinformatic analysis

B

Cell junction organization
Cell death

LAMB3
SHROOM3
ARHGEF7
CTTN
PXN
PALLD
TNS1
PARD3
TJP1
TJP2
DSP
EVPL
PKP2
PKP3
PKP4

Cluster #1 Score: 3.84
Cell junction

G6PD
PARP1
KRT18
AURKA
PARD3
RACGAP1
KIF23

Cluster #2 Score: 0.94
Cell cycle

TP53
TGM2
HSPD1
BAG3
KRT18
PRKRA
ARHGEF7
RPS27L
ASNS
PEG10
NCKAP1
ATX10
PARP1
TGFBI11
IRS1

Cluster #3 Score: 0.93
Cell death

Cluster #2 Score: 0.94
Cell cycle

Cluster #3 Score: 0.93
Cell death
Fig 5

A

![Bar chart showing the percentage of aggregates of different sizes for MCF7 shC and MCF7 shPTPN13.](image)

- **Mock**
- N13-1
- N13-2
- N13-3
- CS

B

![Bar chart showing the percentage of aggregates of different sizes for MCF7 shC and MCF7 shPTPN13.](image)

- MCF7 shC
- MCF7 shPTPN13
Fig 5

C

![Graph showing the time of contact for different conditions.

- Mock
- N13-1
- N13-2
- N13-3
- CS

D

MCF7 | Mock | N13-2 | CS

![Immunofluorescence images of MCF7 cells with E-cadherin staining.

E-cadherin

- MCF7
- Mock
- N13-2
- CS

![Immunofluorescence images of MCF7 cells with Desmoglein staining.

Desmoglein

- MCF7
- Mock
- N13-2
- CS

118
Résultats supplémentaires

Nos résultats de protéomique associés aux tests fonctionnels montrent clairement que PTPL1 intervient dans la régulation des contacts cellulaires en les stabilisant. Ces résultats sont principalement obtenus dans les cellules cancéreuses mammaires hormono-indépendantes et très agressives MDA-MB-231. On s’est demandé si PTPN13 inhibe également l’agressivité en jouant sur les jonctions dans les cellules MCF-7.

Les tests fonctionnels ont montré que l’extinction de PTPN13 dans les cellules hormono-sensibles et peu agressives MCF-7 augmente l’agressivité de ces cellules in vivo et in vitro, déstabilise les jonctions intercellulaires (cf article), mais aussi régule la croissance cellulaire et l’adhésion sur différentes matrices. Nous avons recherché par phospho-protéomique si comme dans les cellules MDA-MB 231 l’action de PTPN13 était ciblée principalement sur les jonctions ou si d’autre compartiment cellulaire ou grandes fonction cellulaires semblaient impactées.

Pour cela nous avons remis en culture les clones de cellules MCF-7 transfectées avec un shRNA-contrôle ou avec un shRNA spécifique de PTPL1 qui avaient été décrits par Muriel Glondu. Nous nous sommes assurés d’abord en western blot de l’inhibition de PTPL1 dans les MCF-7 transfectées par sh-PTPL1 (figure 28).

Ensuite, nous avons réalisé une approche SILAC sur des clones de cellules MCF-7 transfectées ou pas avec sh-PTPN13. L’incorporation maximale des isotopes dans ces cellules est atteinte entre 3 à 5 jours après la culture. Le même protocole de SILAC a été suivi: La lyse des cellules et le mélange des lysats, l’enrichissement de protéines phosphorylées sur tyrosine, la réduction/alkylation, la séparation sur gel, l’excision des bandes, l’extraction des protéines par des séries d’hydratation/déshydratation, la digestion par la trypsine puis l’identification des peptides en spectrométrie de masse. Pour mieux identifier les protéines dont la phosphorylation sur tyrosine change significativement avec ou sans PTPN13, nous avons là aussi réalisé l’expérience avec un marquage des protéines soit dans les cellules sh-Contrôle soit dans les cellules sh-PTPN13. Les protéines cibles sont celles dont le ratio lourd/léger change en sens inverse dans les deux conditions de culture.
1290 protéines ont été identifiées parmi lesquelles nous avons considéré seulement 67 dont la phosphorylation est au moins régulée de 50% et dont la significativité de la régulation est calculée comme dans l’article (Tableau 2 et 3).

<table>
<thead>
<tr>
<th>Description (FPP)</th>
<th>Ratio H/L normalized A</th>
<th>Ratio H/L normalized B</th>
<th>Regulation in sh-PTPN13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferon-induced transmembrane protein 1</td>
<td>0,10</td>
<td>1,71+</td>
<td></td>
</tr>
<tr>
<td>Galectin-3-binding protein</td>
<td>0,19</td>
<td>1,70+</td>
<td></td>
</tr>
<tr>
<td>Heat shock protein beta-8</td>
<td>0,20</td>
<td>2,53+</td>
<td></td>
</tr>
<tr>
<td>Isoform 2 of Poly [ADP-ribose] polymerase 9</td>
<td>0,31</td>
<td>1,65+</td>
<td></td>
</tr>
<tr>
<td>Keratin, type II cytoskeletal 6B</td>
<td>0,31</td>
<td>1,51+</td>
<td></td>
</tr>
<tr>
<td>E3 ubiquitin-protein ligase DTX3L</td>
<td>0,36</td>
<td>1,81+</td>
<td></td>
</tr>
<tr>
<td>BAG family molecular chaperone regulator 3</td>
<td>0,40</td>
<td>1,72+</td>
<td></td>
</tr>
<tr>
<td>Galectin-3</td>
<td>0,43</td>
<td>1,82+</td>
<td></td>
</tr>
<tr>
<td>Estrogen receptor</td>
<td>0,46</td>
<td>1,50+</td>
<td></td>
</tr>
<tr>
<td>Ribosomal RNA-processing protein 7 homolog A</td>
<td>0,52 NaN</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Isoform 2 of Rho GTPase-activating protein 36</td>
<td>0,53 NaN</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ATP synthase subunit f, mitochondrial</td>
<td>0,58 NaN</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Melanoma-associated antigen O1</td>
<td>0,60 NaN</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ATP-dependent RNA helicase DDX3Y</td>
<td>0,61 NaN</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial import inner membrane translocase</td>
<td>0,66</td>
<td>1,48+</td>
<td></td>
</tr>
<tr>
<td>subunit Tim17-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP/ATP translocase</td>
<td>0,74</td>
<td>1,77+</td>
<td></td>
</tr>
<tr>
<td>Glutathione S-transferase Mu 3</td>
<td>0,92</td>
<td>1,53+</td>
<td></td>
</tr>
<tr>
<td>ATP-dependent RNA helicase DDX50</td>
<td>NaN</td>
<td>1,51+</td>
<td></td>
</tr>
<tr>
<td>40S ribosomal protein 527-like</td>
<td>NaN</td>
<td>1,53+</td>
<td></td>
</tr>
<tr>
<td>CDP-diacylglycerol–inositol 3-phosphatidyltransferase</td>
<td>NaN</td>
<td>1,63+</td>
<td></td>
</tr>
<tr>
<td>Exosome complex component RRP42</td>
<td>NaN</td>
<td>1,78+</td>
<td></td>
</tr>
<tr>
<td>E3 ubiquitin-protein ligase HUWE1</td>
<td>NaN</td>
<td>2,01+</td>
<td></td>
</tr>
<tr>
<td>TGF-beta-activated kinase 1 and MAP3K7-binding</td>
<td>NaN</td>
<td>2,16+</td>
<td></td>
</tr>
<tr>
<td>protein 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipopolysaccharide-responsive and beige-like</td>
<td>NaN</td>
<td>5,77+</td>
<td></td>
</tr>
<tr>
<td>anchor protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-2-syntrophin</td>
<td>NaN</td>
<td>27,38+</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2 : Liste de protéine dont la phosphorylation est régulée négativement par PTPN13.

Ratio H/L (heavy/Light) désigne le rapport des peptides issus des cellules mises en culture en conditions Silac lourd (H)/léger.

Manip A : Cellules MCF-7 Sh-contrôle en condition de culture SILAC lourd

Manip B : cellules MCF-7 Sh-contrôle en condition de culture SILAC léger
<table>
<thead>
<tr>
<th>Description (FPF)</th>
<th>Ratio H/L normalized A</th>
<th>Ratio H/L normalized B</th>
<th>Regulation in sh-PTPN13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epilakin</td>
<td>1.06</td>
<td>0.67</td>
<td>-</td>
</tr>
<tr>
<td>Isoform 2 of R3H domain-containing protein 1</td>
<td>1.11</td>
<td>0.66</td>
<td>-</td>
</tr>
<tr>
<td>Histone H2B type 1-C/E/F/G/L</td>
<td>1.17</td>
<td>0.66</td>
<td>-</td>
</tr>
<tr>
<td>Histone H2A type 2-A</td>
<td>1.23</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>Epilakin</td>
<td>1.39</td>
<td>0.62</td>
<td>-</td>
</tr>
<tr>
<td>Rho guanine nucleotide exchange factor 39</td>
<td>1.40</td>
<td>0.67</td>
<td>-</td>
</tr>
<tr>
<td>GOS ribosomal export protein NMD3</td>
<td>1.48</td>
<td>0.58</td>
<td>-</td>
</tr>
<tr>
<td>Neprilisin</td>
<td>1.50</td>
<td>0.47</td>
<td>-</td>
</tr>
<tr>
<td>Urothrine</td>
<td>1.50NaN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Genetic suppressor element 1</td>
<td>1.50NaN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cat eye syndrome critical region protein 2</td>
<td>1.59 NaN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Small nuclear ribonucleoprotein E</td>
<td>1.54</td>
<td>0.93</td>
<td>-</td>
</tr>
<tr>
<td>LMN domain transcription factor LMO4</td>
<td>1.55</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td>C-Myc-binding protein</td>
<td>1.55</td>
<td>0.97</td>
<td>-</td>
</tr>
<tr>
<td>SNW domain-containing protein 1</td>
<td>1.55</td>
<td>0.97</td>
<td>-</td>
</tr>
<tr>
<td>Sorbitol dehydrogenase</td>
<td>1.55 NaN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hypoxanthine-guanine phosphoribosyltransferase</td>
<td>1.57</td>
<td>0.80</td>
<td>-</td>
</tr>
<tr>
<td>Eomesoderm homolog</td>
<td>1.50</td>
<td>0.85</td>
<td>-</td>
</tr>
<tr>
<td>Dolichol-phosphate mannosyltransferase subunit 1</td>
<td>1.59</td>
<td>0.90</td>
<td>-</td>
</tr>
<tr>
<td>DNA dC-dU-editing enzyme APOBEC-3B</td>
<td>1.60</td>
<td>0.67</td>
<td>-</td>
</tr>
<tr>
<td>Histone chaperone ASF1B</td>
<td>1.63</td>
<td>0.59</td>
<td>-</td>
</tr>
<tr>
<td>ATP-dependent DNA helicase Q5</td>
<td>1.63</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>F-box-like/WD repeat-containing protein TBL1XR1</td>
<td>1.66</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td>Calcium/calmodulin-dependent protein kinase type II subunit delta</td>
<td>1.69</td>
<td>0.93</td>
<td>-</td>
</tr>
<tr>
<td>Calponin-2</td>
<td>1.71</td>
<td>0.43</td>
<td>-</td>
</tr>
<tr>
<td>Catenin delta-2</td>
<td>1.80</td>
<td>0.50</td>
<td>-</td>
</tr>
<tr>
<td>POZ and UIM domain protein 5</td>
<td>1.81 NaN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X-ray repair cross-complementing protein 6</td>
<td>1.82 NaN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A kinase (PRKA) anchor protein B-like, isoform CRA_c</td>
<td>1.89 NaN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AT-rich interactive domain-containing protein 2</td>
<td>1.90</td>
<td>0.65</td>
<td>-</td>
</tr>
<tr>
<td>Catechol O-methyltransferase</td>
<td>1.94</td>
<td>0.82</td>
<td>-</td>
</tr>
<tr>
<td>Tensin-2</td>
<td>2.06</td>
<td>0.54</td>
<td>-</td>
</tr>
<tr>
<td>Homeobox protein Hox-C6</td>
<td>3.33 NaN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dystrophin</td>
<td>NaN</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Desmin-1</td>
<td>NaN</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>Nucleopaspin-like protein 2</td>
<td>NaN</td>
<td>0.43</td>
<td>-</td>
</tr>
<tr>
<td>Ras-related protein Rab-5C</td>
<td>NaN</td>
<td>0.47</td>
<td>-</td>
</tr>
<tr>
<td>Multifunctional methyltransferase subunit TRM112-like protein</td>
<td>NaN</td>
<td>0.61</td>
<td>-</td>
</tr>
<tr>
<td>UTP58S protein C1orf13</td>
<td>NaN</td>
<td>0.65</td>
<td>-</td>
</tr>
<tr>
<td>Rho guanine nucleotide exchange factor 7</td>
<td>NaN</td>
<td>0.65</td>
<td>-</td>
</tr>
<tr>
<td>Breast cancer anti-estrogen resistance protein 1</td>
<td>NaN</td>
<td>0.67</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 3 : liste de protéine dont la phosphorylation est régulée positivement par PTPN13. Ratio H/L (Heavy/Light) désigne le rapport des peptides issus des cellules mises en culture en conditions Silac lourd (H)/léger.

Manip A : Cellules MCF-7 Sh-contrôle en condition de culture SILAC lourd

Manip B : cellules MCF-7 Sh-contrôle en condition de culture SILAC léger
L’étude en gène ontologie des protéines sélectionnées montre que PTPN13 régule plusieurs processus biologiques et agissent sur un spectre plus large de compartiment cellulaire comme le montre la figure 29.

Fig.29. l’annotation Gene ontology. A : processus biologiques dont l’enrichissement est lié à l’activité de PTPN13. B : composants cellulaires régulés par PTPN13. Les chiffres en gras correspondent aux nombres de protéines dont la phosphorylation est régulée par PTPN13 parmi les protéines appartenant à une voie de signalisation donnée. Ces données sont obtenues grâce à http://pantherdb.org
Parmi les « processus biologiques » régulés par PTPN13: l’organisation de la chromatine, la migration, l’adhésion intercellulaire, les cascades de la voie Erk1-2 et la voie MAPK, la croissance cellulaire, la différenciation et la morphogénèse, divers métabolismes, la régulation de différents transports et la réparation de l’ADN. Parmi les composants cellulaires régulés par PTPN13 on retrouve différents types de jonctions cellulaires, la chromatine, le cytosquelette d’actine et la membrane post-synaptique.

Comme attendu, on retrouve bien la régulation de la migration et des jonctions cellulaires par PTPN13, mais aussi on observe la régulation de la voie ERK et MAPK et la croissance. Il a été déjà montré que PTPN13 régule la croissance dans les cellules MCF-7\(^{341}\). On retrouve aussi une régulation de la chromatine qui laisse penser à un effet plus général sur l’expression des gènes et un effet sur la morphogénèse et les métabolismes que nous n’avons pas encore étudiés.

Nous avons sélectionné des protéines identifiées avec au moins 3 peptides et dont la phosphorylation est significativement régulée par PTPN13 dans le SILAC appliqué sur nos modèles de clones MDA-MB-231 ou MCF-7. A et B étant deux manips inversées.

<table>
<thead>
<tr>
<th>Protein & cells</th>
<th>Ratio H/L normalized A</th>
<th>Ratio H/L normalized B</th>
<th>nb of peptides/ significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTT in MDA-231</td>
<td>1,2</td>
<td>0,7</td>
<td>19 S</td>
</tr>
<tr>
<td>CTT in MCF-7</td>
<td>0,8</td>
<td>1,05</td>
<td>13 N.S</td>
</tr>
<tr>
<td>PARD3 in MDA231</td>
<td>1,3</td>
<td>0,6</td>
<td>26 S</td>
</tr>
<tr>
<td>PARD3 in MCF-7</td>
<td>0,8</td>
<td>1,2</td>
<td>22 N.S</td>
</tr>
<tr>
<td>HSPβ8 in MDA-231</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HSPβ8 in MCF-7</td>
<td>0,2</td>
<td>2,5</td>
<td>3 S</td>
</tr>
<tr>
<td>SSB in MDA-231</td>
<td>1,9</td>
<td>0,7</td>
<td>7 S</td>
</tr>
<tr>
<td>SSB in MCF-7</td>
<td>0,7</td>
<td>1,6</td>
<td>4 S</td>
</tr>
</tbody>
</table>

En protéomique, ces protéines sont régulées significativement au moins dans un des deux modèles cellulaires : SSB dans les deux, CTT et PARD3 dans les MDA-231 seulement, HSPβ8 dans les MCF-7. Nous avons testé en IP-P-Tyr la phosphorylation de ces protéines dans les cellules MCF-7 sh-contrôle (donc avec la présence de PTPN13) ou MCF-7 shPTPN13 (sans PTPN13) comme le montre la figure 30. Nous avons immunoprécipité les protéines phosphorylées sur tyrosine du lysat total des cellules grâce aux anticorps anti-p-tyr.
ensuite nous avons révélé la présence des protéines d’intérêt en utilisant des anticorps spécifiques.

La cortactine est une protéine sous forme de microfilament qui interagit avec la F-actine et régule l’assemblage et l’organisation de cytosquelette d’actine. Elle intervient dans la transduction du signal induite par c-src, étant un de ses substrats les plus importants. Son implication dans le cancer est établie, elle est surexprimée dans 15% des cancers mammaires métastatiques et 30% des carcinomes squameux de tête et cou. Sa surexpression dans les cancers invasifs en fait un marqueur d’invasivité. C’est le cas des mélanomes, des cancers

Fig. 30. IP-P-Tyr des protéines probables effectrices de PTPL1. Les cellules MCF-7 transfectées par sh-contrôle ou par sh dirigé contre PTPN13 sont lysées. Les protéines tyrosine-phosphorylées totales sont extraites à partir de la même quantité des protéines du lysat par des anticorps globaux (PY99), puis des anticorps dirigés contre les protéines d’intérêt sont utilisés. L’expression totale de ces protéines dans les mêmes lysats est également visualisée en utilisant des anticorps spécifiques. Dans tous les cas, la tubuline est un contrôle interne. Les protéines testées sont respectivement : A : cortactine, B : PARD3, C : HSPB8, D : SSB.
colorectaux et des glioblastomes452–456. Nos résultats de protéomique en association avec les résultats de western blot confirment que la cortactine est plus phosphorylée en absence de PTPN13, ce qui fait de cette protéine un effecteur potentiel de PTPN13 impliqué dans la régulation du cytosquelette.

Le gène \textbf{PARD3} code pour la protéine « Partitioning defective 3 homolog », ce gène est essentiel pour la division asymétrique. Il joue un rôle dans la polarité et l’adhésion intercellulaire457. Dans le carcinome squameux cellulaire des poumons (LSCC), PARD3 a montré un rôle suppresseur de tumeurs : sa perte induit la perte des contacts intercellulaires et son expression réduit les propriétés métastatiques et invasives458. Il en est de même dans les carcinomes squameux cellulaires de l’œsophage (ESCC), où il se trouve délété. Sa réexpression dans des lignées d’ESCC induit le recrutement de ZO1, marqueur de jonctions serrées, au niveau des jonctions457. En protéomique PARD3 apparaît dans la liste des protéines négativement régulées par PTPN13 dans le modèle MDA. Dans le modèle MCF-7, nous n’observons pas de variation significative de sa phosphorylation en protéomique, par contre l’expérience d’IP/WB semble indiquer une augmentation de sa phosphorylation en présence de PTPL1. Des études complémentaires sont donc nécessaires pour confirmer que l’expression de PTPL1 à des effets différents sur la phosphorylation de cette protéine dans nos deux modèles cellulaires.

La protéine de choc thermique \textbf{HSP\textsubscript{22}}, autrement appelé HSP22 est une protéine ubiquitaire qui fait partie de la famille des HSPs. Les études de HSP\textsubscript{22} ont montré son implication dans la progression tumorale459. Le traitement des cellules tumorales mammaires hormonosensibles MCF-7 par l’E2 (7\textbeta-estradiol) induit l’augmentation de l’ARNm de HSP\textsubscript{22}. HSP\textsubscript{22} est impliquée dans la régulation de la prolifération cellulaire, de l’hypertrophie cardiaque, de l’apoptose et la carcinogenèse. Plusieurs mutations sont corrélées avec différents maladies neuromusculaires460. Cette protéine ne sort pas dans la liste des protéines régulée dans les MDA-231. En MCF-7, l’absence de PTPN13 induit une augmentation de la phosphorylation de HSP\textsubscript{22} en protéomique. Le même résultat est observé en IP/P-Tyr. Ce qui suggère que HSP\textsubscript{22} pourrait être un effecteur de PTPN13 impliqué dans la régulation de la croissance cellulaire.

\textbf{SSB}, Autrement appelée La, lupus protéine, genuine La ou LAPR3, intervient dans plusieurs mécanismes de métabolisme d’ARN. Elle se lie aux transcrits pour assurer un bon repliement et pour les protéger de la digestion des exonucléase461. SS-B a un rôle fondamental dans l’assemblage de l’ARN-t, elle a été décrite comme étant une protéine chaperonne du \textit{preARN-t}462,463. Son rôle dans la traduction de 5’TOP (terminal oligopyrimidine tract) change en fonction de son état de phosphorylation sur sérine 366 par CK2 (casein kinase2)464–466. Peu d’informations existent par rapport à sa régulation. Le rôle oncogénique de La a été jusqu’ici attribué à ses gènes cibles médiés par IRES, en particulier BiP, MDM2 et cycline D1 qui sont
eux-mêmes associés indépendamment à la malignité6467,6468. Sommer et al a pu démontrer que la surexpression de La induit la migration et l’invasion469 et qu’une surexpression de La a été observée dans les cancers du col de l’utérus et les cancers de la tête et du cou469,470. Dans des cellules de cancer hépatocellulaire, La induit l’EMT par l’intermédiaire du laminin B1471. Une étude assez récente a démontré que La peut être phosphorylée par l’Akt \textit{in vitro}472. Nos résultats de protéomiques montrent une augmentation de la phosphorylation de SSB en absence de PTPN13 dans les deux modèles cellulaires. Ces résultats sont confirmés par l’immunoprécipitation de la forme tyrosine phosphorylée ce qui permet de proposer SSB comme un effecteur de PTPN13 impliqué dans la régulation de l’expression génique et dans l’invasion.
Discussion et perspectives

PTPL1/PTPN13 est un candidat suppresseur des tumeurs. Comme le présentent les travaux de plusieurs équipes ainsi que les anciens travaux de mon équipe, PTPL1/PTPN13 est mutée ou sous-exprimée dans plusieurs types des cancers : cancer colorectal, cancer du foie, cancer de l’estomac, cancer des ovaires et cancer du sein\(^442,473,474\).

PTPL1/PTPN13 est un marqueur de bon pronostic

PTPL1/PTPN13 est un marqueur de bon pronostic dans le cancer du sein ceci a été montré en corrélant l’expression en RT-PCR de PTPL1/PTPN13 dans des échantillons tumoraux avec une survie des patientes pendant 10 ans\(^475\). Mon équipe a montré en immunohistochimie sur des biopsies prélevées de chez des patientes atteintes du cancer du sein, que PTPL1/PTPN13 est sous-exprimée dans la tumeur par rapports au tissu bénin et sous-exprimée dans le tissu métastatique par rapport au tissu cancéreux\(^341\). Dans cette étude, nous avons pu corrêler l’expression au niveau protéine de PTPL1/PTPN13 avec la survie des patientes à 6 ans et nous trouvons encore une fois que les patientes dont les tumeurs expriment plus de PTPL1/PTPN13 présentent un pourcentage de survie supérieur. Ceci confirme que PTPL1/PTPN13 est un marqueur de bon pronostic.

PTPL1/PTPN13 a un rôle suppresseur des tumeurs dans les cancers hormono-dépendant et hormono-indépendant *in vivo* et *in vitro*

L’équipe a démontré dans une étude préalable que l’inhibition de PTPL1/PTPN13 dans les MCF-7, qui sont des cellules tumorales hormonosensibles peu invasives, favorise le caractère agressif que ce soit *in vivo* ou *in vitro*. Cette inhibition a augmenté la capacité des cellules à migrer et à envahir et a réduit leur capacité d’adhésion\(^341\).

L’urgence actuelle en cancérologie mammaire est la mise au point de thérapies ciblées des cancers qui n’expriment pas les récepteurs aux oestrogènes et à la progestérone. Les cancers HER2+ et les triples négatifs sont les cancers les plus agressifs et sont associés à un très mauvais pronostic. Ces cancers sont caractérisés souvent par des cascades de phosphorylation souvent initiées sur tyrosine. PTPL1/PTPN13 pourrait y jouer un rôle vu l’accumulation des preuves pour son implication comme suppresseur de tumeur dans plusieurs types de cancers.

Notre objectif était d’étudier l’effet de PTPL1/PTPN13 dans d’autres types cellulaires, autre que le modèle hormono-sensible, pour vérifier si PTPL1/PTPN13 est bien un suppresseur de
tumeur dans l’ensemble des cancers mammaires et d’étudier par la suite son mécanisme d’action.

Dans le but d’élucider le rôle anti-oncogénique de PTPL1 dans différents classes des cancers mammaires, nous avons mis en place deux modèles génétiquement modifiés d’étude de PTPN13. Un système murin surexprimant HER2 et un modèle cellulaire du cancer du sein triple négatif. Nous avons transfecté PTPL1 ou son mutant catalytiquement inactif dans le modèle de cellules du cancer mammaire MDA-MB-231, qui n’expriment pas ou peu de PTPL1 endogène. Ceci nous a permis d’une part d’étudier le rôle de PTPN13 en termes d’expression et d’activité catalytique. La pertinence de ce modèle réside dans le fait que toutes les cellules ont inséré, par la stratégie T-Rex-Flp-In, une seule copie de l’ADN de la phosphatase sauvage ou mutée dans un même site d’insertion. Nous avons ainsi obtenu des clones isogéniques dans les quels l’expression de PTPL1 est conditionnelle sous l’effet de la doxycycline, une dérivée de la tétracycline. Toute différence fonctionnelle ou biochimique ne peut s’expliquer que par la présence de PTPL1 ou son activité catalytique.

J’ai débuté ma thèse en validant les clones au niveau protéique par western blot et au niveau ARN en Q-PCR. Les résultats ont montré qu’après 24 h de stimulation par la doxycycline, l’expression de PTPL1 dans les clones des cellules MDA-MB-231 est comparable à celles des cellules MCF-7, soit a peu près 10 fois supérieure à celle des cellules sauvages.

Ensuite j’ai étudié l’impact de cette expression sur le comportement agressif des cellules en particulier la croissance, la migration, l’invasion et l’adhésion. Ces paramètres sont étroitement liés à la première étape de l’invasion tumorale. Alors qu’aucun impact sur la croissance n’a été trouvé, PTPL1/PTPN13 inhibe la migration collective des cellules en test de blessure, inhibe la migration individuelle des cellules en cell-tracking et inhibe l’invasion en chambre de Boyden. Actuellement, nous évaluons la tumorigénicité des clones exprimant PTPN13 ou son mutant CS dans des souris athymiques. Nous rechercherons également dans ce modèle l’apparition de métastases et étudierons, comme pour le modèle transgénique les paramètres anatomopathologiques permettant de définir l’agressivité des tumeurs obtenues (index mitotique, présence de tumeurs multilobées, présence de figures d’EMT ou d’embole vasculaire).

L’étude sur les souris transgéniques exprimant HER2 avec PTP-BL (l’orthologue murin de PTPL1) ou PTP-BL-ΔP (catalytiquement inactive) montrent que les souris HER2-PTP-BL-ΔP développent des tumeurs plus agressives dans un temps plus court comparés à celles HER2-PTP-BL sauvage. Ceci montre que l’inhibition de l’activité catalytique de PTPN13 réduit la latence tumoraire et donne des tumeurs plus invasives.
PTPL1/PTPN13 intervient dans la stabilisation des jonctions des cellules

Afin d’identifier les mécanismes anti-tumoraux mis en place par l’expression de PTPL1/PTPN13 dans notre modèle cellulaire, nous avons comparé le phosphotyrosine-protéome total dans des cellules exprimant PTPN13 sauvage et PTPN13CS. Les protéines régulées par PTPN13 sont 67 parmi plus de 1200 identifiées. L’annotation « gène ontologie » montre que parmi les protéines régulées il y a une forte proportion de protéines qui entrent dans la structure ou la régulation des contacts intercellulaires.

Nous avons marqué les contacts cellulaires en immunofluorescence. Les jonctions adhérentes et les desmosomes par E-cadhérine et desmoglénine 2 respectivement étant donné qu’elles sortent parmi les composants cellulaires les plus enrichis. Les cellules qui expriment PTPL13 présentent une expression partielle de E-cadhérine au niveau des contacts entre les cellules alors que les cellules contrôles sont négatives pour l’E-cadhérine. La desmoglénine, marqueur général des desmosomes, est relocalisée au niveau des jonctions en présence de PTPN13 alors que dans le contrôle elle est exclusivement cytoplasmique.

Nous avons aussi étudié l’impact de PTPL1/PTPN13 sur les jonctions cellulaires en termes de formation de contact cellulaire (test agrégation) et de stabilité de ces contacts (durée des contacts en vidéo-microscopie). La présence de PTPN13 sauvage favorise la formation des agrégats de taille plus importante dans le test d’agrégation 3D. La vidéo-microscopie a montré que les cellules qui expriment PTPL1/PTPN13 ont une durée de contact plus élevée que celles qui ne l’expriment pas, donc PTPL1 favorise les contacts intercellulaires.

Avantage du modèle cellulaire

Nous avons validé un modèle cellulaire pertinent qui a permis l’obtention des réponses biologiques liées à la présence de PTPN13 avec une amplitude d’effet assez importante comparée à l’amplitude observée lors de l’étude de l’impact d’inhibition de PTPN13 dans les MCF-7. Nos résultats suggèrent que PTPN13 est un suppresseur des tumeurs dans les différents types de cancer mammaires car elle inhibe l’agressivité tumorale dans des modèles hormono-sensible et hormono-indépendant.

PTPL1/PTPN13 suppresseur des tumeurs !

Vu les effets de PTPN13 sur les paramètres d’agressivité (migration, adhésion et invasion), il serait plus judicieux de dire, selon nos résultats que c’est un suppresseur des métastases au lieu de suppresseur des tumeurs car nous n’avons pas d’éléments indiquant que les cellules
perdent de leur identité tumorale après expression de PTPL1. D’autres marqueurs de l’identité tumorale seront à étudier pour montrer que PTPN13 réduit le caractère tumoral des cellules (marqueur métabolique tel que le métabolisme du glucose476 ou de la choline477, apoptotique tels que CD95, bax, Bcl-2, caspases478,479 ou EMT tel que snail, slug ou twist480.

Substrats de PTPL1/PTPN13

PTPN13 réduit d’agressivité des cellules en intervenant dans la stabilisation des contacts cellulaires. Il serait souhaitable d’augmenter son action, par contre il n’existe pas d’activateurs de PTPN13 dans la pharmacopée. Donc il faut trouver des stratégies alternatives pour déclencher son effet oncosupresseur.

Nos études protéomiques ont abouti à identifier des effecteurs de PTPN13 impliqués dans les junctions cellulaires. Il faudrait identifier les substrats directs à travers lesquels PTPN13 met en place ses mécanismes de stabilisation des jonctions. Le mutant de substrate-trapping de PTPN13 portant la mutation DA est capable de fixer le substrat sans pouvoir le libérer, fonctionnant comme un piège à substrat. Nous disposons dans nos tiroirs d’un clone isogénique exprimant ce mutant. L’identification des protéines qui coprécipitent avec ce mutant permettra d’identifier les substrats de PTPL1 dans notre modèle cellulaire. Pour cela nous proposons un triple SILAC en comparent simultanément les protéines qui coprécipitent avec le produit de purification de PTPL1 dans les clones: contrôle de transfection, le clone exprimant PTPN13 sauvage et le clone exprimant le mutant PTPN13DA. Les substrats étant les protéines qui coprécipitent préférentiellement avec le mutant de substrate-trapping de PTPL1.

Nous avons opté pour une purification en utilisant des anticorps ciblant le tag HA, une séquence qui entre dans la construction de PTPN13 transfécée dans nos clones. Ensui te on élué PTPL1 grâce aux peptides HA. Nous avons mis à point le protocole de purification et d’élution. Nous avons fait un premier essai en spectrométrie pour évaluer l’état de complexation de protéines avec PTPL1. Sans aucun marquage, nous avons pu identifier à peu près 600 protéines qui coprécipitent avec PTPL1.

Une protéine est un substrat si elle coprécipite avec le mutant de substrat trapping. En immunoprécipitant cette protéine il faut retrouver PTPL1 et vice-versa. Le substrat doit être déphosphorylé par PTPL1 donc nos résultats de phosphoprotéomique sont aussi utiles dans ce sens. D’autres techniques peuvent être envisageables comme les tests de déphosphorylation \textit{in vitro} et des vérifications de variation de phosphorylation dans les clones exprimant PTPN13 et PTPN13CS par immunoprécipitation et western blot. Des expériences de surexpression ou d’inhibition de ces substrats permettront ensuite d’évaluer leur importance dans les effets de PTPL1 sur l’agressivité tumorale et ainsi définir de nouvelles cibles thérapeutiques.
Une connaissance exhaustive des substrats (directs ou indirects) de ce suppresseur de tumeur devrait permettre d’identifier de nouvelles cibles thérapeutiques impliquées dans l’invasion des cellules cancéreuses mammaires. Les études de PTPL1 pourraient avoir des retombées médicales au niveau pronostic et curatives. Il serait donc très intéressant d’investir une autre approche pour définir de nouvelles cibles thérapeutique en étudiant les mécanismes de régulation de l’expression ou de l’activité de PTPN13.

Résumé graphique

Fig.31. Résumé graphique : les différentes voies empruntées par PTPL1 pour réguler les différents comportements cellulaires.
Références
8. université médicale virtuelle francophone-. *Anatomie de la glande mammaire, université médicale virtuelle francophone- Paris,2011*.

100. Hasebe, T. et al. p53 expression in tumor-stromal fibroblasts is closely associated with the nodal metastasis and outcome of patients with invasive ductal carcinoma who received neoadjuvant therapy. Hum. Pathol. 41, 262–270 (2010).

Breast cancer is a major problem for public health of which the incidence continues to increase. The mortality is often linked to estrogen in hormone-sensitive breast cancers. My team has shown that PTPL1 mediates the pro-apoptotic effect of anti-estrogen in hormone-dependent breast tumor cells MCF-7.

We then studied the impact of this phosphatase on cell junctions and showed that PTPL1 overexpression enhances cell aggregate formation in 3D culture, increases cell contact stability, relocates desmoglein to the cell junctions, and induces E-cadherin re-expression at the level of cell-cell contacts in MDA-MB-231 cells. Furthermore, we conducted a comparative proteomic (SILAC) in order to study the global tyrosine phosphatome in MCF-7 and MDA-MB-231 cells with or without PTPL1. Our findings suggest that PTPL1 regulates the phosphorylation of proteins involved in different signaling pathways already described in the literature to be impacted by PTPL1, but its catalytic activity is crucial for the inhibition of aggressiveness. We test the clones tumorigenicity in athymic mice.

Résumé en Français

La régulation de l’agressivité tumorale mammaire par la protéine tyrosine phosphatase PTPL1/PTPN13

Le cancer du sein est un problème majeur de santé publique dont l'incidence est en permanente augmentation. La mortalité est le plus souvent due aux métastases. Les études concernant PTPL1, la plus grande des tyrosines phosphatases cytoplasmiques, ont montré que PTPL1 présente les caractéristiques de supprimeur de tumeur. PTPL1 se trouve mutée dans plusieurs types de cancers et son expression est un marqueur de bon pronostic dans les tumeurs mammaires. Mon laboratoire a également montré que PTPL1 participe à l'effet pro-apoptotique des anti-oestróges dans les cellules tumorales hormono dépendantes en déphosphorylant IRS1, le substrat d'IGF1-receptor freinant ainsi la voie PI3K/Akt. PTPL1 régule également la croissance, l'invasion et l'adhésion dans les cellules cancéreuses mammaires peu agressives MCF-7.

Nous avons établi un modèle cellulaire de clones iso-génétiques capables d'exprimer PTPL1 ou ses mutants d'une manière inductible dans les cellules cancéreuses mammaires invasives MDA-MB-231. D'une part, nous avons montré un impact négatif de l'expression de PTPL1 sur le phénotype invasif de ces cellules. D'une manière intéressante, le mutant catalytiquement inactif a montré un comportement similaire à celui du contrôle de transfection. Ceci montre l'importance de l'activité catalytique de PTPL1 dans l'inhibition du phénotype agressif. Nous testons maintenant in vivo la tumorigenicité des clones chez les souris athymiques.

D'autre part, nous avons étudié par protéomique comparative (SILAC) la tyrosine phosphorylation globale des protéines cellulaires dans les cellules MCF-7 et MDA-MB-231 exprimant ou non PTPL1. Parmi les protéines identifiées nous retrouvons des acteurs des différentes voies de signalisations connues dans la littérature pour être impactées par PTPL1, mais de manière remarquable plus du quart des protéines identifiées sont liées aux jonctions cellulaires ou à leur régulation. Nous avons donc étudié l'effet de la phosphatase sur les jonctions cellulaires et montré que la surexpression de PTPL1 favorise la formation d'agrégats cellulaires en culture 3D, augmente la stabilité des contacts cellulaires en vidéo-microscopie, localise la desmogleine aux jonctions cellulaires et induit une réexpression de la E cadhérine au niveau du contact cellule/cellule dans les cellules MDA-MB-231.

Les jonctions et la polarité cellulaires sont très importantes en cancérologie en particulier dans le processus invasif qui est la première étape de la dissemination métastatique donc il serait maintenant important d'identifier les substrats directs de PTPL1 pour élucider la signalisation de PTPL1 vers les jonctions et proposer de nouvelles cibles thérapeutiques.

Mots clés : PTPL1/PTPN13, cancer du sein, SILAC, jonctions cellulaires.

Résumé en Anglais

The regulation of breast tumor aggressiveness by Protein Tyrosine Phophatase PTPL1/PTPN13

Breast cancer is a major problem for public health of which the incidence continues to increase. Its mortality is often linked to metastasis formation. Studies on PTPL1, the largest protein tyrosine phosphatase, have shown that it presents the characteristics of a tumor suppressor gene. PTPL1 is mutated in several types of cancers and its expression is associated with good prognosis in prostate and breast cancers. My team has shown that PTPL1 mediates the pro-apoptotic effect of anti-oestrogen in hormone-sensitive tumor cells by dephosphorylating IRS1, Insulin growth factor-1 receptor substrate, thus blocking PI3K/Akt pathway. In addition, PTPL1 regulates the growth, the invasion, and the adhesion of low aggressive breast tumor cells MCF-7.

Our team established an isogenic cellular model capable of expressing PTPL1 or its mutants (phosphatase-dead and substrate-trapping mutants) in an inducible fashion in invasive cells. We showed that functional PTPL1 expression has a negative impact on cell aggressive phenotypes. Interestingly, the phosphatase-dead mutant exhibits the same behavior as the transfection control. This evidences that PTPL1 activity is crucial for the inhibition of aggressiveness. We are currently testing the clones tumorigenicity in athymic mice.

Furthermore, we conducted a comparative proteomic (SILAC) in order to study the global tyrosine phosphatome in MCF-7 and MDA-MB-231 cells with or without PTPL1. Our findings suggest that PTPL1 regulates the phosphorylation of proteins involved in different signaling pathways already described in the literature to be impacted by PTPL1. Remarkably, the quarter of proteins identified belong to cell junction structure or regulation. We then studied the impact of this phosphatase on cell junctions and showed that PTPL1 overexpression enhances cell aggregate formation in 3D culture, increases cell contact stability, relocates desmoglein to the cell junctions, and induces E-cadherin re-expression at the level of cell-cell contacts in MDA-MB-231 cells.

Cell junctions and polarity are very important in oncology and particularly in the invasive process which is the first step in the metastatic dissemination. Our ongoing work focuses on identifying direct substrates for PTPL1 in order to elucidate the underlying PTPL1 signal leading to cell junctions and consequently propose a novel therapeutic targets.

Key words : PTPL1/PTPN13, breast cancer, SILAC, cell junctions.