Etude des cavités optiques de filtrage de sortie du détecteur d’ondes gravitationnelles Advanced Virgo

Marine Ducrot

To cite this version:

HAL Id: tel-01489175
https://tel.archives-ouvertes.fr/tel-01489175v2
Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UNIVERSITÉ GRENOBLE ALPES

THÈSE
Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ GRENOBLE ALPES
Spécialité : Physique Subatomique et Astroparticules
Arrêté ministériel : 7 août 2006

Présentée par
Marine Ducrot

Thèse dirigée par Benoit Mours
et co-encadrée par Romain Gouaty

préparée au sein du Laboratoire d’Annecy-le-Vieux de Physique des Particules
et de l’école doctorale de physique de Grenoble

Etude des cavités optiques de filtrage de sortie du détecteur d’ondes gravitationnelles Advanced Virgo

Thèse soutenue publiquement le 29 septembre 2016,
devant le jury composé de :

Edwige Tournefier
Directeur de recherche, LAPP - CNRS, Présidente
Matteo Barsuglia
Directeur de recherche, APC - CNRS, Rapporteur
Pierre-François Cohadon
Maître de conférences, LKB - CNRS, Rapporteur
Laurent Pinard
Ingénieur de recherche, LMA - CNRS, Examinateur
Benoit Mours
Directeur de recherche, LAPP - CNRS, Directeur de thèse
Romain Gouaty
Chargé de recherche, LAPP - CNRS, Co-Encadrant de thèse
Table des matières

1 Les ondes gravitationnelles 11
 1.1 Les ondes gravitationnelles dans la relativité générale 12
 1.2 Sources et signaux d’ondes gravitationnelles 14
 1.2.1 Les systèmes binaires 14
 1.2.2 Le fond stochastique 15
 1.2.3 Les supernovas ... 15
 1.3 Détectection directe : GW150914 15
 1.4 Détecteurs .. 16

2 Le détecteur Advanced Virgo 19
 2.1 Interféromètre de Michelson ... 20
 2.2 Sensibilité d’un Michelson simple 21
 2.3 Configuration optique d’Advanced Virgo 23
 2.3.1 Cavité Fabry-Perot .. 24
 2.3.2 Recyclage de la puissance 25
 2.3.3 Recyclage du signal ... 25
 2.3.4 Contrôles et détection synchrone 25
 2.3.5 Filtrage de la frange noire ou Output Mode Cleaner 27
 2.4 Sensibilité d’Advanced Virgo ... 28
 2.5 Les bancs de détection .. 30

3 Filtrage du faisceau de frange noire par l’OMC 35
 3.1 Comportement d’un faisceau laser 36
 3.1.1 Approximation de la solution de l’équation d’onde 36
 3.1.2 Modes à géométrie rectangulaire 38
 3.1.3 Modes à géométrie cylindrique 39
 3.1.4 Lois de propagation .. 40
 3.1.5 Matrice de transfert ou loi ABCD 41
 3.2 Cavité optique .. 43
 3.2.1 Filtrage fréquentiel .. 43
 3.2.2 Filtrage géométrique ... 44
 3.2.3 Verrouillage d’une cavité 45
 3.3 Objectif de l’OMC ... 46
 3.3.1 Filtrage ... 46
 3.3.2 Pertes ... 47
3.3.3 Bruits en longueurs ... 47
3.4 Paramètres retenus pour les cavités OMC 48
 3.4.1 Géométrie et matériau 49
 3.4.2 Finesse ... 50
 3.4.3 Rayon de courbure ... 51
 3.4.4 Filtrage et optimisation des paramètres 52
3.5 Waist w_0 théorique de la cavité OMC Advanced Virgo 56
3.6 Support de l’OMC .. 57
3.7 Déformation attendue de la cavité 57
3.8 Pertes attendues par astigmatisme 61
 3.8.1 Interface verre-silice ... 64
 3.8.2 Angle d’incidence sur le miroir sphérique 64
4 Finesse .. 65
 4.1 Finesse déduite des paramètres de surface 66
 4.1.1 Mesures faites au LMA 66
 4.1.2 Mesures faites au LAPP 67
 4.2 Principe de la mesure par balayage 71
 4.2.1 Méthode de calcul de la finesse 71
 4.2.2 Banc de tests et opérations 73
 4.2.3 Balayage en fréquence 76
 4.2.4 Balayage en température 77
 4.2.5 Algorithme de mesure de la finesse 78
 4.3 Finesse déduite à partir de balayages en fréquence 80
 4.3.1 Artefact électronique .. 80
 4.3.2 Influence des modes d’ordre supérieur 81
 4.3.3 Influence de la puissance du laser 83
 4.3.4 Influence de la vitesse des balayages 86
 4.3.5 Influence de la température 86
 4.3.6 Influence du bruit du DAC 87
 4.3.7 Influence de la fréquence d’échantillonnage 88
 4.3.8 Valeur moyenne des finesse de la cavité 6 provenant d’un balayage en fréquence 90
 4.3.9 Valeurs de finesse des cavités 5, 7 et 8 90
 4.4 Finesse mesurée à partir d’un balayage en température 90
 4.5 Valeurs de finesse pour les polarisations S and P 94
 4.6 Conclusion .. 97
5 Rayons de courbures ... 99
 5.1 Estimation de l’erreur sur le rayon de courbure à partir des cartes de polissage .. 100
 5.2 Mesure par réflexion directe du faisceau sur la cavité 103
 5.2.1 Méthode de caractérisation d’un faisceau avec une caméra .. 103
 5.2.2 Caractérisation du faisceau 104
 5.2.3 Caractérisation de la face sphérique 105
 5.3 Mesure avec le faisceau transmis des cavités résonnantes 108
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Mesure par un balayage de la cavité</td>
<td>112</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>116</td>
</tr>
<tr>
<td>6</td>
<td>Biréfringence</td>
<td>119</td>
</tr>
<tr>
<td>6.1</td>
<td>Biréfringence d’un substrat</td>
<td>120</td>
</tr>
<tr>
<td>6.2</td>
<td>Caractéristiques du Suprasil 3001</td>
<td>121</td>
</tr>
<tr>
<td>6.3</td>
<td>Présence d’un deuxième pic de résonance TEM_{00}</td>
<td>121</td>
</tr>
<tr>
<td>6.4</td>
<td>Biréfringence induite</td>
<td>122</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Influence du couple de serrage</td>
<td>123</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Influence de la température</td>
<td>124</td>
</tr>
<tr>
<td>6.5</td>
<td>Mesures et minimisation des pertes</td>
<td>124</td>
</tr>
<tr>
<td>7</td>
<td>Mesure du bruit en longueur de l’OMC</td>
<td>127</td>
</tr>
<tr>
<td>7.1</td>
<td>Spécification</td>
<td>128</td>
</tr>
<tr>
<td>7.2</td>
<td>Bruits thermiques de l’OMC</td>
<td>129</td>
</tr>
<tr>
<td>7.3</td>
<td>Configuration optique</td>
<td>131</td>
</tr>
<tr>
<td>7.4</td>
<td>Etalonnage des signaux</td>
<td>135</td>
</tr>
<tr>
<td>7.5</td>
<td>Mesure</td>
<td>136</td>
</tr>
<tr>
<td>8</td>
<td>Impacts des résultats des paramètres de l’OMC sur la sensibilité du détecteur</td>
<td>139</td>
</tr>
<tr>
<td>8.1</td>
<td>Qualité de filtrage de l’OMC</td>
<td>140</td>
</tr>
<tr>
<td>8.2</td>
<td>Pertes dans l’OMC</td>
<td>142</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Pertes par diffusion et absorption</td>
<td>142</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Pertes par astigmatisme</td>
<td>145</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Pertes par biréfringence</td>
<td>146</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Observations du faisceau transmis</td>
<td>146</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Pertes totales</td>
<td>147</td>
</tr>
<tr>
<td>8.3</td>
<td>Bruit en longueur de l’OMC</td>
<td>147</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusion</td>
<td>150</td>
</tr>
<tr>
<td>A</td>
<td>Cavité Fabry-Perot</td>
<td>153</td>
</tr>
<tr>
<td>B</td>
<td>Caméra</td>
<td>155</td>
</tr>
<tr>
<td>C</td>
<td>Déformation de la face courbe d’une cavité</td>
<td>157</td>
</tr>
<tr>
<td>D</td>
<td>Acronymes et définitions</td>
<td>159</td>
</tr>
<tr>
<td>D.1</td>
<td>Acronymes</td>
<td>159</td>
</tr>
<tr>
<td>D.2</td>
<td>Définitions</td>
<td>159</td>
</tr>
<tr>
<td>Bibliographie</td>
<td>164</td>
<td></td>
</tr>
</tbody>
</table>
Remerciements

Ces trois années ont été très riches et j’ai rencontré de nombreuses personnes qui ont permis de les rendre encore plus belles. J’espère que ces quelques mots seront à la hauteur de ce que j’ai reçu de leur part.

Je commencerai pas remercier les deux groupes de direction du LAPP s’étant succédés au cours de ces trois années de thèse, avec pour directeur Yannis Karyotakis et Giovanni Lamana. Ils m’ont accueilli et permis d’évoluer au sein du laboratoire. Je remercie également mon groupe, le groupe Virgo sous la direction de Frédérique Marion, pour m’avoir donné la chance d’effectuer cette thèse.

Je voudrais sincèrement remercier les membres de mon jury qui ont accepté d’évaluer mon travail, Edwige Tournefier, Matteo Barsuglia, Pierre-François Cohadon et Laurent Pinard. L’intérêt pour mon travail et leur implication avant et pendant la soutenance ont été très agréable et je les remercie de l’apport de leurs commentaires, remarques et questions. Toutes les personnes avec qui j’ai travaillé ont été importantes et je les remercie de leur attention. Un merci tout particulier à Michał que j’ai surement embêté mais qui a toujours été là pour répondre à mes questions ou tout simplement pour discuter. J’ai maintenant, grâce à toi, encore plus goût à trouver des réponses.

J’aurais plein d’anecdotes à donner, mais j’ai préféré nommer chacun d’entre vous avec la pensée de tous ces moments partagés avec vous. Merci aussi à tous ceux que j’aurais pu oublier, mais dont les sourires ont tous été importants.

Je finirai par remercier Pierre-François, qui mérite 1000 remerciements. Du sud de la France au Chili en passant par San Francisco, merci d’être là ;)

Merci aussi à Maeva, Charlène, Benjamin et Julie :)

Merci du fond du cœur à Cyril d’avoir partagé ces trois années avec moi. Merci d’être à côté de moi.

Enfin, merci aux deux amours de ma vie, mon frère et ma maman, et j’ai une pensée pleine d’affection pour ceux qui sont partis.
INTRODUCTION

Près de 100 ans après leur prédiction par Albert Einstein, la première observation directe d’ondes gravitationnelles a été annoncée par les collaborations LIGO et Virgo. Ces ondes gravitationnelles provenaient de la coalescence de deux trous noirs et ont été détectées le 14 septembre 2015. Un deuxième événement a été observé le 26 décembre 2015. Ceci ouvre le champ à une toute nouvelle astronomie et une nouvelle manière d’étudier la gravitation.

Une onde gravitationnelle est une déformation de l’espace temps qui se propage à la vitesse de la lumière. Ces déformations sont si petites que seules les ondes gravitationnelles émises par des phénomènes violents dans l’univers sont détectables.

Ces détecteurs mesurent les variations de distances induites par les ondes gravitationnelles entre des masses libres séparées de plusieurs kilomètres. Cette mesure se fait par interférométrie de Michelson. Un faisceau laser est envoyé le long de deux bras puis recombiné au niveau de la séparatrice de l’interféromètre. Les variations de longueurs sont déduites du changement de puissance observé par des photo-détecteurs. Afin d’atteindre la sensibilité de l’instrument, le système de détection comprend des cavités optiques placées en sortie de l’interféromètre, également appelées Outpout Mode Cleaner ou OMC.

Ces cavités ont pour objectif de filtrer les profils de faisceaux déformés par de mauvais alignements ou des défauts de miroir de l’interféromètre mais également les signaux auxiliaires de contrôle polluant le signal d’une onde gravitationnelle.

Ce manuscrit développe l’étude et la caractérisation de l’Output Mode Cleaner. Tout d’abord afin de comprendre l’objectif d’Advanced Virgo, le chapitre 1 aborde ce que sont les ondes gravitationnelles, leurs origines et les phénomènes physiques qu’elles permettent d’étudier.

Leurs caractéristiques nécessitent des détecteurs spécifiques et très sensibles. Le fonctionnement, la configuration optique ainsi que la sensibilité du détecteur Advanced Virgo sont ensuite développés dans le chapitre 2.

Le système de détection qui en découle requiert la présence d’une cavité de filtrage OMC placée en sortie de l’interféromètre. Les différents types de filtrages et les paramètres requis sont approfondis dans le chapitre 3.

Les cavités optiques, composantes de l’OMC, ont été étudiées et caractérisées. Les méthodes mises en places et les résultats obtenus pour les paramètres de la finesse et du rayon de courbure
sont présentés dans les chapitres 4 et 5.

LES ONDES GRAVITATIONNELLES

Sommaire

1.1 Les ondes gravitationnelles dans la relativité générale 12
1.2 Sources et signaux d’ondes gravitationnelles 14
 1.2.1 Les systèmes binaires 14
 1.2.2 Le fond stochastique 15
 1.2.3 Les supernovas ... 15
1.3 Détecteur directe : GW150914 15
1.4 Détecteurs .. 16
Ce chapitre présente dans un premier temps les ondes gravitationnelles dans le cadre de la relativité générale (dans la section 1.1), puis les sources susceptibles d’émettre des ondes gravitationnelles détectables sur Terre (dans la section 1.2). La première détection directe ainsi que les événements plus récents sont considérés dans la section 1.3. Finalement les instruments développés afin de détecter ces ondes gravitationnelles sont présentés dans la section 1.4.

1.1 Les ondes gravitationnelles dans la relativité générale

La théorie de la relativité générale [21] consiste à ne plus considérer la gravitation comme une force mais comme une déformation de l’espace temps engendrée par une masse où plus généralement une énergie.

Ce principe se traduit par l’équation d’Einstein dont le terme de gauche représente la déformation, et celui de droite l’énergie :

\[R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R = -\kappa T_{\mu\nu} \quad (1.1) \]

avec \(R_{\mu\nu} \) le tenseur de Ricci, \(g_{\mu\nu} \) la métrique, \(R \) la courbure scalaire, \(\kappa = \frac{8\pi G}{c^4} \), \(G \) la constante universelle de gravitation, \(T_{\mu\nu} \) le tenseur énergie-impulsion.

En supposant un espace plat, la métrique peut se réécrire :

\[g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \quad (1.2) \]

avec \(\eta_{\mu\nu} \) la métrique de l’espace plat de Minkowski avec pour convention (+,-,-,-) et \(h_{\mu\nu} \) la perturbation de la métrique.

Les équations linéarisées d’Einstein peuvent s’écrire sous la forme [33] :

\[\Box^2 T^{\mu\nu} = -2\kappa T^{\mu\nu} \quad (1.3) \]

avec \(\Box \) le d’Alembertien.

En se plaçant dans le vide loin de toute matière ou énergie, les solutions de cette équation peuvent s’écrire comme la superposition de solutions du type onde plane, les ondes gravitationnelles.

\[T^{\mu\nu} = A^{\mu\nu} \exp(i k_\rho x^\rho) \quad (1.4) \]

avec \(A^{\mu\nu} \) les composantes constantes, en général complexes, et \(k_\rho \) les composantes réelles d’un vecteur.

Il peut être montré que les deux composantes indépendantes du tenseur amplitude \(A^{\mu\nu} \) correspondent aux deux états de polarisations possibles d’une onde gravitationnelle. Toute onde
Les ondes gravitationnelles peuvent être obtenues par la superposition de ces deux polarisations auxquelles sont associées une amplitude et une phase [33].

\[h^{\mu
u} = (h_+ \epsilon_+^{\mu\nu} + h_x \epsilon_x^{\mu\nu}) \exp(ik_\rho x^\rho) \]

(1.5)

La figure 1.1 représente l’effet d’une onde gravitationnelle sur des masses libres selon les deux amplitudes de polarisation \(h_+ \) et \(h_x \). Les masses libres sont disposées en cercle dans un plan transverse à la direction de propagation de l’onde. La variation relative de distance entre les masses est le phénomène physique recherché par les détecteurs d’ondes gravitationnelles, voir le chapitre 2.

![Figure 1.1](image)

Figure 1.1 – Représentation de l’effet d’une onde gravitationnelle se propageant perpendiculairement à un plan contenant des masses libres disposées en cercle, selon les deux amplitudes de polarisation \(h_+ \) et \(h_x \). Chaque masse libre est représentée par un point sur la figure.

A partir des équations précédentes il peut être montré que le rayonnement gravitationnel est un rayonnement quadrupolaire nécessitant une asymétrie de la source. La luminosité totale du rayonnement gravitationnel peut se dériver de l’équation (1.3) [33] :

\[L = \text{cte} \left(\frac{v}{c} \right)^6 \left(\frac{R_s}{R} \right)^2 \]

(1.6)

avec \(\text{cte} \) une constante homogène à une puissance et dépendant de l’asymétrie de la source, \(v \) la vitesse caractéristique de la source, \(R_s = \frac{2GM}{c^2} \) le rayon de Schwarzschild et \(R \) le rayon de la source. Il est observé que plus la source est compacte et relativiste plus le rayonnement gravitationnel est important.
1.2 Sources et signaux d’ondes gravitationnelles

Les objets astrophysiques capables d’émettre des ondes gravitationnelles d’amplitudes détectables pour Advanced Virgo sont généralement des objets compacts relativistes et asymétriques lors d’événements violents dans l’univers.

La fréquence, la durée et plus généralement la forme du signal d’onde gravitationnelle dépendent de la nature de ces objets.

Certaines sources susceptibles d’émettre des ondes gravitationnelle détectables ainsi que les signaux observables sont abordés dans cette section.

1.2.1 Les systèmes binaires

Les systèmes binaires compacts sont des systèmes composés de deux étoiles à neutrons (BNS), de deux trous noirs (BBH) ou d’une étoile à neutrons et un trou noir (NSBH). Tout au long de leur existence les systèmes binaires perdent de l’énergie par émission d’ondes gravitationnelles mais ces ondes sont trop faibles et à trop basses fréquences pour être détectables par les instruments actuels (Advanced Virgo et Advanced LIGO). Cependant, peu de temps avant leur coalescence, ces objets atteignent des vitesses relativistes pour enfin fusionner. À ce moment là, l’amplitude et la fréquence des ondes gravitationnelles émises sont suffisamment importantes pour espérer être détectées. Les formes d’onde de ce type d’objets sont bien modélisées ce qui permet l’utilisation des techniques de filtrage adapté pour la recherche de ces signaux.

À la sensibilité nominale les détecteurs Advanced Virgo et Advanced LIGO devraient pouvoir observer plusieurs dizaines d’événements par an.

Détection indirecte : PSR B1913+16

Grâce à ce phénomène J. H. Taylor and J. M. Weisberg ont montré que les deux étoiles se rapprochaient et accéléraient au fil du temps en parfaite concordance avec la perte d’énergie par émission d’ondes gravitationnelles prédite pour un tel système [54] [61]. Cette observation constitue une preuve indirecte de l’existence des ondes gravitationnelles.

Les étoiles à neutrons sont des objets astrophysiques très denses. Ce type d’objet émet des ondes gravitationnelles à condition qu’il soit asymétrique par rapport à son axe de rotation [58]. L’émission est continue et périodique d’une période double à celle de rotation de l’étoile. Les recherches de ce types de signaux n’ont permis l’obtention que de limites supérieures.
1.2.2 Le fond stochastique

Des sources astrophysiques incohérentes et non discernables telles que des systèmes binaires peuvent être à l’origine d’un bruit de fond d’ondes gravitationnelles. Ce bruit de fond d’ondes gravitationnelles est appelé fond stochastique. Le fond stochastique comprend également les ondes gravitationnelles primordiales émises au tout début de l’expansion de l’univers après le Big Bang.

Après la première détection directe d’ondes gravitationnelles GW150914 [3], l’intensité du fond diffus d’ondes gravitationnelles (proche de 25 Hz) a été affinée [1]. Les détecteurs Advanced LIGO et Advanced Virgo à leur sensibilité nominale pourraient les mesurer.

1.2.3 Les supernovas

Les supernovas correspondent à l’explosion et aux phénomènes proches suivant l’explosion d’étoiles. Elles peuvent être classifiées selon 4 catégories : les Ia, Ib, Ic et les types II. Les supernovas de type Ia résultent d’explosions thermonucléaires supposées symétriques et ne devraient pas émettre d’ondes gravitationnelles détectables. Les supernovas de type Ib, Ic et type II sont des supernovas dites gravitationnelles dont les progéniteurs sont des étoiles de masses de plus de 9 M\(_\odot\). En fin de vie les réactions nucléaires de l’étoile ne sont plus suffisantes pour compenser la force de gravitation. L’étoile s’effondre puis explose. Les ondes gravitationnelles générées par ce type d’objet astrophysique sont de faibles amplitudes et de formes d’onde difficilement prévisibles. Le pic d’émission pour de telles sources est attendu autour du kHz [36]. Les détecteurs actuels ne pourront y être sensibles qu’à condition que les sources soient dans un univers proche (\(\sim\) dans notre galaxie, de diamètre de 30 kpc).

Ce type d’événement devrait se produire quelques fois par siècle dans notre galaxie.

1.3 Détection directe : GW150914

Pour la première fois, le 14 septembre 2015, les collaborations LIGO et Virgo ont observé le passage d’une onde gravitationnelle sur Terre provenant de la coalescence de deux trous noirs il y a 1.3 milliard d’années [3]. Cette onde a été détectée en coinçidence par les deux interféromètres LIGO dans une bande de fréquence de 35 à 250 Hz avec un pic d’amplitude de 1.0 \times 10^{-21}. La forme du signal correspond à la fusion de deux trous noirs de 36\(^{+5}_{-4}\)M\(_\odot\) et 29\(^{+4}_{-5}\)M\(_\odot\) en un seul de 62\(^{+4}_{-4}\)M\(_\odot\) avec 3.0\(^{+0.5}_{-0.8}\)M\(_\odot\)c\(^2\) d’énergie perdue par émission d’onde gravitationnelle, principalement pendant le dernier dixième de seconde. Ce rayonnement émis sous forme d’ondes gravitationnelles équivaut à la puissance du rayonnement électromagnétique de l’univers observable. La figure 1.2 représente la forme du signal quelques dixièmes de secondes avant et après la fusion des deux trous noirs en un seul. La vitesse et la séparation des deux objets durant cette période sont également représentées.

Autres événements : GW151226 et LVT151012

Deux autres événements ont été observés depuis GW150914 : GW151226 et LVT151012 [2, 56].
Les ondes gravitationnelles

Figure 1.2 – En haut : Amplitude h du signal d’onde gravitationnelle émise sur une période de quelques dixièmes de secondes avant et après la coalescence des deux trous noirs. En bas : Vitesse et séparation des deux objets pour le même intervalle de temps correspondant [3].

L’événement GW151226 a été détecté dans une bande de fréquence de 35 à 250 Hz avec un pic d’amplitude de 3.4×10^{-22}. La forme du signal correspond à la fusion de deux trous noirs de $14.2^{+8.3}_{-3.7} M_\odot$ et $7.5^{+2.3}_{-2.3} M_\odot$ en un seul de $20.8^{+6.1}_{-1.7} M_\odot$.

Le niveau de confiance de l’événement LVT151012 est de l’ordre de 2σ soit plus faible que GW150914 et GW151226 qui sont à plus de 5σ [2] [56]. Les masses des trous noirs mises en jeu, pour une interprétation astrophysique, sont de $23^{+18}_{-6} M_\odot$ et $13^{+4}_{-5} M_\odot$.

Ces premières détections ouvrent la voie à une nouvelle astronomie.

L’observation d’ondes gravitationnelles provenant d’objets susceptibles d’émettre également dans le domaine électromagnétique, tel qu’un système étoile à neutron et trou noir ou deux étoiles à neutrons, est le nouveau défi. Il permettra, entre autre, l’étude de phénomènes astrophysiques mal connus (sursaut gamma, contrainte d’effondrement, mécanisme d’explosion etc...). De plus des méthodes indépendantes de mesures de la constante de Hubble (traduisant la vitesse d’expansion de l’univers actuel) pourrait être effectuées [16] [55].

1.4 Détecteurs

Le premier à proposer un détecteur d’ondes gravitationnelles fut J. Weber dans les années 60. Les barres de Weber étaient des barres en aluminium dont la fréquence de résonance était de l’ordre de 1 à 2 kHz [60]. Au passage d’une onde gravitationnelle ces barres devaient rentrer
en résonance. La variation de longueur induite aurait alors été détectée par des capteurs piezo-électriques placés autour de ces barres. Ce détecteur n’étant pas assez sensible et présentant une bande passante très limitée, d’autres détecteurs furent proposés.

Dès les années 70, R. Weiss et D. Muehlner décrivirent un détecteur basé sur l’interférométrie laser [44]. Le principe du détecteur consiste à avoir un interféromètre de Michelson dans le vide dont les miroirs sont isolés dans le plan horizontal du détecteur. De cette manière les miroirs peuvent être considérés comme des masses libres. Lors du passage d’une onde gravitationnelle, la longueur relative des bras de l’interféromètre varie. La variation de puissance en sortie du détecteur est alors la signature du passage d’une onde.

Plusieurs détecteurs virent le jour dans les années 90 : Virgo et GEO, des interféromètres basés respectivement à Cascina en Italie et près d’Hanovre en Allemagne, et deux détecteurs LIGO à Hanford et Livingston aux États-Unis.

Les détecteurs actuels Advanced Virgo et Advanced LIGO font partie de la deuxième génération d’interféromètres qui devraient atteindre une sensibilité nominale (de quelques Hz à quelques kHz) meilleure d’un facteur 10 par rapport aux détecteurs initiaux. Deux autres détecteurs devraient rejoindre prochainement Advanced Virgo et Advanced LIGO : KAGRA au Japon et LIGO India en Inde.

La troisième génération de détecteurs est envisagée à l’horizon 2030 avec Einstein Telescope et Cosmic Explorer améliorant d’un ordre de grandeur la sensibilité des détecteurs de deuxième génération.

LISA est un projet de détecteur spatial prévu pour 2034 [51]. Sa sensibilité se situerait à plus basse fréquence que les détecteurs actuels, soit entre 10^{-4} et 1 Hz [52]. Certaines sources observables avec les détecteurs terrestres de deuxième ou de troisième génération pourraient alors être observées jusqu’à quelques années avant leur coalescence. De plus de nouveaux types d’objets, comme les trous noirs supermassifs, deviendraient observables.
Sommaire

2.1 Interféromètre de Michelson .. 20
2.2 Sensibilité d’un Michelson simple 21
2.3 Configuration optique d’Advanced Virgo 23
 2.3.1 Cavité Fabry-Perot .. 24
 2.3.2 Recyclage de la puissance 25
 2.3.3 Recyclage du signal 25
 2.3.4 Contrôles et détection synchrone 25
 2.3.5 Filtrage de la frange noire ou Output Mode Cleaner 27
2.4 Sensibilité d’Advanced Virgo 28
2.5 Les bancs de détection ... 30
Ce chapitre présente le fonctionnement d’un détecteur d’onde gravitationnelle et les technologies requises afin d’atteindre la sensibilité nécessaire à leur détection. L’objectif étant d’introduire les cavités optiques de filtrage ou Output Mode Cleaner (OMC) placées en sortie du détecteur.

Advanced Virgo est un détecteur d’onde gravitationnelle basé sur le principe d’un interféromètre de Michelson. Les miroirs de l’interféromètre sont suspendus à un système de pendule permettant de les considérer comme libres dans une certaine bande de fréquence. Ils suivent alors les déformations de l’espace. Lors du passage d’une onde gravitationnelle la distance relative entre les miroirs fluctue. Cette différence de longueur se traduit par une variation de puissance en sortie du détecteur, signature du passage d’une onde.

Ces fluctuations sont si faibles qu’il est nécessaire d’agir sur un ensemble de bruits pouvant dégrader la sensibilité du détecteur. Un système de suspensions appelé super-atténuateurs permet de limiter l’impact du bruit sismique sur les miroirs. Le détecteur est placé sous vide afin de n’être sensible ni aux fluctuations d’indice de l’air, ni aux vibrations acoustiques.

Dans ces conditions, le mode de détection ainsi que la sensibilité du détecteur exige une cavité optique de sortie appelé OMC.

Le principe et la sensibilité d’un interféromètre de Michelson sont présentés sections 2.1 et 2.2. La configuration optique et la sensibilité du détecteur Advanced Virgo sont ensuite développées sections 2.3 et 2.4. Les bancs utilisés pour la détection et particulièrement SDB1 sur lequel se situe l’OMC sont abordés section 2.5.

2.1 Interféromètre de Michelson

Un interféromètre de Michelson se compose d’un faisceau laser, d’une lame semi-réfléchissante, de deux miroirs de bout de bras et de photo-détecteurs. Le faisceau laser est envoyé sur la lame semi-réfléchissante placée à 45° qui sépare le faisceau vers les miroirs de bout de bras. Les faisceaux laser sont alors réfléchis par ces miroirs et se recombinent ensuite au niveau de la séparatrice créant des interférences. La puissance et le profil du faisceau sont mesurés en sortie de l’interféromètre par des photo-détecteurs.

Pour un faisceau incident d’amplitude E_{in} et en supposant la séparatrice parfaitement semi-réfléchissante, l’amplitude du faisceau transmis par l’interféromètre est :

$$E_t = -\frac{E_{in}}{2} \left(r_x e^{-j2\omega L_x} + r_y e^{-j2\omega L_y} \right)$$

(2.1)

avec L_x et L_y les longueurs des bras (voir figure 2.1), r_x et r_y les réflectivités (contenant les pertes) des miroirs de bouts de bras et ω la pulsation du laser.
La puissance transmise par l'interféromètre peut alors s'écrire :

\[P_t = E_t E'_t \] \hspace{1cm} (2.2)

\[P_t = \frac{P_{in}}{4} \left(r_x^2 + r_y^2 + 2r_x r_y \cos(\Phi_0) \right) \] \hspace{1cm} (2.3)

avec \(\Phi_0 = \frac{2\omega (L_x - L_y)}{c} \) la différence de phase entre les faisceaux transmis par chaque bras.

La puissance transmise par l'interféromètre dépend de la différence de phase \(\Phi_0 \), donc de la différence de longueur des bras \(\Delta L = L_x - L_y \).

L’expression peut se réécrire comme :

\[P_t = \frac{P_{in}}{4} \left(r_x^2 + r_y^2 \right) \left(1 + C \times \cos(\Phi_0) \right) \] \hspace{1cm} (2.4)

avec le contraste \(C = \frac{2r_x r_y}{r_x^2 + r_y^2} \).

Lorsque \(\Phi_0 = 0[2\pi] \) la puissance en sortie de l’interféromètre est maximale. L’interféromètre est dit réglé sur la frange blanche. A contrario lorsque \(\Phi_0 = \pi[2\pi] \) la puissance est minimale, l’interféromètre est dit réglé sur la frange noire. Le contraste est maximal lorsque les réflectivités \(r_x \) et \(r_y \) sont égales et que les faisceaux ont le même profil de puissance pour pouvoir interférer.

2.2 Sensibilité d’un Michelson simple

Lors du passage d’une onde gravitationnelle la différence de longueur relative \(\delta L = \delta L_x - \delta L_y \) des deux bras varie. Cette variation de longueur s’exprime par une différence de phase \(\delta \Phi \) entre
les deux faisceaux qui interfèrent :

\[\delta \Phi = \frac{2\pi}{\lambda} 2hL \] \hfill (2.5)

avec \(h \) l’amplitude de l’onde gravitationnelle et \(L \) la longueur moyenne des deux bras, en supposant que l’onde gravitationnelle arrive de manière optimale, c’est à dire selon un axe perpendiculaire au plan de l’interféromètre \(\delta L_x = -\delta L_y = \frac{1}{2} hL \). Le facteur 2 vient du fait que la lumière fait un aller-retour dans chaque bras.

Au premier ordre, la variation de phase \(\delta \Phi \) engendrée par une onde gravitationnelle, produit une variation \(\delta P \) de la puissance à la sortie de l’interféromètre :

\[\delta P = \frac{P_{\text{in}}}{4} \left(r_x^2 + r_y^2 \right) \times C \times \delta \Phi \times \sin (\Phi_0) \] \hfill (2.6)

Le principe de détection d’Advanced Virgo repose sur la détection de cette variation de puissance. Le système de détection est dit continu.

La sensibilité de l’interféromètre est limitée par un bruit fondamental appelé bruit de graine de photons. En effet il existe une incertitude sur le nombre de photons reçus par le photo-détecteur. Cette incertitude suit une loi de Poisson.

La puissance détectée sur un temps \(\tau \) s’écrit alors :

\[P_t = N \frac{h_{\nu} \nu}{\tau} \] \hfill (2.7)

avec \(N \) le nombre moyen de photons reçus par le photo-détecteur, \(h_{\nu} \) la constante de Planck. L’incertitude de cette puissance détectée est donc :

\[\sigma_p = \sqrt{N \frac{h_{\nu} \nu}{\tau}} \] \hfill (2.8)

En utilisant l’équation (2.7) il est obtenu :

\[\sigma_p = \sqrt{P_t \frac{h_{\nu} \nu}{\tau}} \] \hfill (2.9)

La densité spectrale du bruit de photon peut alors s’écrire, en utilisant l’équation (2.4) :

\[\delta \tilde{P}_{\text{bruit de photon}} = \sqrt{h_{\nu} \nu P_{\text{in}} \left(1 + C \times \cos (\Phi_0) \right)} \] \hfill (2.10)

dans le cas où \(r_x \sim r_y \sim 1 \).

Ainsi une onde gravitationnelle ne sera détectable que si la densité spectrale du bruit de photon est inférieure à la variation de puissance \(\delta P \) induite par une onde gravitationnelle en sortie du détecteur, soit (voir équation 2.6) :

\[\delta \tilde{P}_{\text{bruit de photon}} < \delta \tilde{P} \] \hfill (2.11)
L’expression de $\delta \hat{P}$ se déduit de l’équation (2.6), soit :

$$\sqrt{h_\nu \nu P_{in} (1 + C \times \cos(\Phi_0))} < \hat{h} \frac{4\pi L}{\lambda} \times \frac{P_{in}}{2} C \times \sin(\Phi_0)$$ (2.12)

avec \hat{h} l’amplitude du signal d’une onde gravitationnelle par $\sqrt{\text{Hz}}$.

L’amplitude minimale détectable lorsque le détecteur n’est pas réglé sur la condition stricte de frange noire est donc :

$$\tilde{h}_{\text{bruit de photon}} = \frac{\lambda}{2\pi L} \sqrt{\frac{h_\nu \nu \sqrt{1 + C \times \cos(\Phi_0)}}{P_{in}}} \times \frac{1}{C \times \sin(\Phi_0)}$$ (2.13)

L’expression est minimale pour :

$$\cos (\Phi_0) = \frac{-1 + \sqrt{1 - C^2}}{C}$$ (2.14)

Pour un contraste $C \approx 1$, cette expression correspond à un réglage de l’interféromètre proche de la frange noire. De plus, pour connaître le sens de variation de phase et donc de puissance, Φ_0 ne doit pas être nul.

Dans ces conditions, l’équation (2.13) peut se réécrire :

$$\tilde{h}_{\text{bruit de photon}} = \frac{\lambda}{2\pi L} \sqrt{\frac{h_\nu \nu}{P_{in}}} \times \frac{1}{\sqrt{1 - \sqrt{1 - C^2}}}$$ (2.15)

Cette équation montre que la sensibilité du détecteur dépend de la longueur des bras et de la puissance incidente.

Pour un contraste $C = 1$, une longueur d’onde du faisceau laser de $\lambda = 1064$ nm, une puissance incidente $P_{in} = 125$ W et une longueur des bras de 3 km, le bruit de grenaille limitant la sensibilité du détecteur est de :

$$\tilde{h}_{\text{bruit de photon}} = 1.5 \times 10^{-21} \text{ Hz}^{-1/2}$$ (2.16)

L’amplitude attendue d’une onde gravitationnelle est de l’ordre de $h = 10^{-22}$. La sensibilité d’un Michelson simple n’est donc pas suffisante.

Une configuration optique plus complexe est nécessaire et présentée dans la section suivante.

2.3 Configuration optique d’Advanced Virgo

La configuration optique d’Advanced Virgo est composée d’une séparatrice (BS) et de deux miroirs de bout de bras (NE) et (WE). Pour augmenter la sensibilité du détecteur Advanced Virgo, des miroirs ont été rajoutés dans les bras mais également en entrée et en sortie de l’interféromètre. Ils constituent des cavités résonantes amplifiant le signal d’onde gravitationnelle ou la puissance effective de l’interféromètre, voir la figure 2.2.
2.3.1 Cavité Fabry-Perot

Deux miroirs, NI et WI, ont été installés dans chaque bras de l’interféromètre, voir la figure 2.2. Chaque bras est ainsi constitué d’une cavité Fabry-Perot, voir annexe A. Cette cavité va augmenter la longueur effective des bras d’un facteur G appelé gain de la cavité. Le gain des cavites Fabry-Perot est (voir annexe A) :

$$G = \frac{2F}{\pi}$$

(2.17)

avec la finesse $F = 450$. La longueur effective des bras passe de 3 km à environ 900 km.

La finesse est un paramètre qui dépend de la réflectivité des miroirs (voir la section 3.2.1) :

$$F = \frac{\pi \sqrt{r_1 r_2}}{1 - r_1 r_2}$$

(2.18)

avec r_1 et r_2 les réflectivités des miroirs de la cavité Fabry-Perot.

La variation de phase entre les deux bras s’exprime alors par :

$$\delta \Phi = \frac{4\pi}{\lambda} \frac{2F}{\pi} hL$$

(2.19)

Dans cette configuration l’amplitude minimale détectable par un interféromètre limité par
le bruit de photon va s’écrire [29] :
\[\tilde{h} = \frac{2\pi}{F} \frac{\lambda}{2\pi L} \sqrt{\frac{h_p \nu}{2P_{in}}} \frac{1}{\sqrt{1 - \nu^2}} \cdot \sqrt{1 + \left(\frac{f}{f_c} \right)^2} \] (2.20)

avec la fréquence du pôle de la cavité \(f_c = c/4FL \).

La présence de cette cavité améliore la sensibilité du signal à basse fréquence et la dégrade pour des fréquences supérieures à la fréquence du pôle de la cavité.
La présence des cavités Fabry-Perot requiert une qualité élevée des surfaces et du traitement de surface des miroirs de l’ordre du nanomètre [35].

2.3.2 Recyclage de la puissance

La sensibilité d’Advanced Virgo est améliorée en augmentant la puissance incidente sur la séparatrice, voir l’équation (2.20). Par exemple pour améliorer la sensibilité d’un facteur 3, il faudrait augmenter la puissance du laser d’un facteur 9 ce qui est technologiquement difficile.

C’est pourquoi un miroir dit de recyclage (PR) est placé en entrée de l’interféromètre. En effet une grande partie de la puissance est réfléchie vers le laser lorsque l’interféromètre est réglé sur la frange noire. Ce miroir constitue avec les miroirs d’entrée de chaque bras la cavité optique de recyclage. Le faisceau est renvoyé en phase vers l’interféromètre. Le coefficient de recyclage maximum dépend alors des pertes dans l’interféromètre [17].

2.3.3 Recyclage du signal

Un deuxième miroir de recyclage (SR) est rajouté en sortie de l’interféromètre. Il permet de créer une nouvelle cavité résonante dans l’interféromètre ce qui a pour effet d’amplifier le signal, et donc de réduire le bruit de photons à haute fréquence. La bande de fréquence d’Advanced Virgo est ainsi élargie, voir la figure 2.3.

Il est possible de pouvoir ajuster la sensibilité du détecteur grâce à ce miroir. Ainsi l’observation de certains objets astrophysiques pourra être privilégiée.

2.3.4 Contrôles et détection synchrone

Plusieurs degrés de liberté du détecteur doivent être contrôlés : fréquence du laser, longueur des cavités, réglage de la frange noire etc... L’acquisition de tous ces contrôles est complexe. Pour des raisons de planning, il a donc été décidé de procéder par étape. Dans un premier temps le miroir de recyclage du signal (SR) n’a pas été installé.

Le principe de détection synchrone est la technique utilisée pour contrôler l’interféromètre. Elle consiste à moduler la phase du faisceau principal à différentes fréquences [12]. Cela revient à créer une superposition de champs électromagnétiques à des longueurs d’ondes légèrement différentes. Ces nouvelles composantes sont appelées des bandes latérales.
Figure 2.3 – Sensibilité d’Advanced Virgo pour différentes configurations optiques et à différentes puissances.

Figure 2.4 – Schéma du détecteur Advanced Virgo.

Les bandes latérales ne résonnent pas toutes dans les mêmes cavités et permettent de contrôler différents degrés de libertés. La bande latérale à 6 MHz résonne dans la cavité constituée des miroirs PR, NI et WI. La bande latérale à 56 MHz résonne dans la cavité constituée des miroirs PR, NI, WI et SR. La bande latérale à 8 MHz ne résonne dans aucune cavité, voir la figure 2.4.

Auparavant, cette technique était également utilisée pour la détection des ondes gravitationnelles, mais avait pour inconvénients d’augmenter légèrement le bruit de photons et de rajouter certains bruits techniques.

Maintenant, la détection utilisée est la détection continue, ce qui nécessite d’éliminer du faisceau de frange noire les bandes latérales.

2.3.5 Filtrage de la frange noire ou Output Mode Cleaner

L’Output Mode Cleaner (ou OMC) est la cavité optique de filtrage de sortie de l’interféromètre, voir la figure 2.5. Elle permet d’améliorer le contraste en filtrant les imperfections géométriques des faisceaux venant des cavités de l’interféromètre et de filtrer les bandes latérales. Le fonctionnement de la cavité OMC est développé dans le chapitre 3.

![Diagramme de l'interféromètre Advanced Virgo et de son système optique de filtrage de sortie appelé OMC.](image)

Figure 2.5 – Schéma du détecteur Advanced Virgo et de son système optique de filtrage de sortie appelé OMC.
2.4 Sensibilité d’Advanced Virgo

Cette section présente l’ensemble des bruits fondamentaux pouvant polluer la bande de fréquence, de 10 Hz à 10kHz, du détecteur et les techniques développées afin de les limiter.

La figure 2.6 représente la sensibilité nominale d’Advanced Virgo en fonction de la fréquence ainsi que l’ensemble des bruits fondamentaux qui limite cette sensibilité.

Figure 2.6 – Courbe de sensibilité d’Advanced Virgo dans la configuration 125 W et le miroir de recyclage du signal [42]. En noir la somme des bruits fondamentaux.

Bruit sismique Le détecteur est sensible, entre autre, aux bruits sismiques à basses fréquences, représentés en jaune sur la figure 2.6 mais non observable car en dessous de 10 Hz. Un système composé d’un pendule inversé, d’une série de pendules en cascade et d’atténuateurs verticaux
composés de ressorts à lames permettent de filtrer les bruits à partir de quelques hertz. Ces "super-atténuateurs" sont placés au niveau de chaque miroir. Un ensemble d'actionneurs permettent également de maintenir les miroirs dans une position nominale [22].

Bruit Newtonien Les variations sismiques, en vert sur la figure 2.6, induisent entre autre des variations de la gravité auxquelles les masses tests (miroirs) sont sensibles [34]. La contribution du bruit Newtonien ne devrait pas être significative dans la bande de détection d’Advanced Virgo.

Bruit quantique Le bruit quantique, en violet sur la figure 2.6, correspond aux fluctuations statistiques du nombre de photon mesurés par les photo-détecteurs ou réfléchis sur les surfaces des miroirs. Ce bruit est une conséquence directe de l’aspect corpusculaire de la lumière.

A basse fréquence, ces fluctuations génèrent une variation de la pression de radiation du faisceau sur les masses tests, filtrées par les pendules mécaniques. Une manière de diminuer le bruit quantique à haute fréquence est d’augmenter la puissance du laser. En faisant cela, la pression de radiation et ses fluctuations à basse fréquence augmentent. Il s’agit de faire un compromis entre le bruit quantique à basse et haute fréquence compte tenu des autres bruits de l’interféromètre. [17].

L’augmentation de la masse des miroirs, pour réduire le bruit thermique pendulaire, permet également de limiter le bruit du à la pression de radiation du faisceau.

La puissance nominale d’Advanced Virgo est de 125 W. Compte tenu de l’absorption faible mais non nulle à la surface et dans les miroirs, cette puissance implique des déformations des miroirs qui seront corrigées avec des compensateurs thermiques.

Bruit thermiques des miroirs Les miroirs, sont avec leur traitement de surface ("coating") des objets ayant de nombreux degrés de liberté qui sont en équilibre thermique avec le milieu ambiant et dont l’énergie associée fluctue, provoquant un bruit dit thermique. En particulier, le bruit associé aux dépôts de surface (courbe rouge de la figure 2.6) est important. Pour réduire l’impact de ces bruits, la taille des faisceaux est maximisée afin de moyennir leur effets, et des matériaux à faibles pertes sont recherchés pour concentrer ces bruits dans des bandes de fréquence limitées.

Autres bruits thermo-optiques Les bruits dus aux fluctuations microscopiques d’indice ou encore élastiques dans les miroirs et plus particulièrement dans les traitements de surface sont représentés en pointillés cyan sur la figure 2.6.

Bruit thermique des suspensions Les bruits thermiques des suspensions et des miroirs, en bleu sur la figure 2.6, sont dominants à moyenne fréquence c’est-à-dire entre une dizaine de hertz et une centaine de hertz. Ils ont pour origine les fluctuations thermiques excitant suspensions et miroirs.

Les bruits thermiques des suspensions peuvent prendre trois formes :
— L’oscillation pendulaire
— Les oscillations verticales
— Les modes violons

Le mode pendule du miroir à \(f \approx 0.7 \) Hz est observé en bleu figure 2.6. La décroissance de ce bruit est en \(f^{-\frac{5}{2}} \) ce qui le rend dominant jusqu’à une dizaine de hertz. Les oscillations verticales sont faibles et de l’ordre de quelques hertz. Les modes violons quant à eux correspondent à la résonance mécanique des fils et ses harmoniques au delà d’une centaine de hertz.

Pour limiter le bruit thermique des suspensions, les miroirs sont relativement lourds (42 kg) et équipés de suspensions monolithique (fils en silice fondu) [13].

Gaz résiduel En pointillé en rouge sur la figure 2.6 est représenté le bruit dû aux fluctuations d’indice optique dans le vide atteint.

2.5 Les bancs de détection

Les bancs de détection regroupent les bancs suspendus SDB1 et SDB2 dont le principal objectif est d’extraire le signal de frange noire. D’autres bancs sont également installés afin d’extraire des faisceaux auxiliaires servant au contrôle de l’interféromètre : EDB, SNEB, SWEB, SPRB et SIB2 voir figure 2.7 [12].

Des bruit d’environnement, tels que l’air conditionné, les systèmes de refroidissement (ventilateur électronique) et les pompes à vides ont un impact sur la sensibilité du détecteur [25] et particulièrement sur le bruit lié à la lumière diffusée induite sur les bancs non isolés, qui peut polluer les signaux mesurés par les photodiodes, ou être réinjecté dans l’interféromètre. Des améliorations au niveau de l’infrastructure, pour diminer ces sources de bruits, ont été mises en place [12] et les principaux bancs optiques SDB2, SNEB, SWEB, SPRB et SIB2 ont été conçus pour être suspendus et placés sous vide (figure 2.7).

Le banc SDB1 (voir la figure 2.8) héberge avant tout le système de cavités optiques de filtrage OMC. Un télescope [53] placé en amont de l’OMC, formé d’une lentille de ménisque, de deux miroirs paraboliques ainsi que de deux lentilles, permet d’ajuster la taille et la position du waist du faisceau en fonction des caractéristiques de l’OMC. La face courbe du miroir SR participe également à la diminution de la taille du faisceau. Un Faraday est installé sur le banc. Il permet ne pas réintroduire de la lumière diffusée dans l’interféromètre [12]. Ce banc extrait aussi des faisceaux auxiliaires servant au contrôle. Le schéma optique de SDB1 est représenté sur la figure 2.9.

Le banc SDB2 comporte des photo-détecteurs (photodiodes, photodiodes à cadrant et caméras) pour permettre d’aligner l’interféromètre, contrôler l’OMC et surtout acquérir le signal de frange noire.
Figure 2.7 – Banc suspendus et faisceaux extraits de l’interféromètre Advanced Virgo.
Figure 2.8 – Photographie du banc de détection SDB1 lors de sa phase d’assemblage, janvier 2015. Crédit photo : M. Ducrot
Figure 2.9 – Schéma Optocad du banc de détection SDB1.
Le détecteur Advanced Virgo
Filtrage du faisceau de frange noire par l’OMC

Sommaire

3.1 Comportement d’un faisceau laser
- 3.1.1 Approximation de la solution de l’équation d’onde
- 3.1.2 Modes à géométrie rectangulaire
- 3.1.3 Modes à géométrie cylindrique
- 3.1.4 Lois de propagation
- 3.1.5 Matrice de transfert ou loi ABCD

3.2 Cavité optique
- 3.2.1 Filtrage fréquentiel
- 3.2.2 Filtrage géométrique
- 3.2.3 Verrouillage d’une cavité

3.3 Objectif de l’OMC
- 3.3.1 Filtrage
- 3.3.2 Pertes
- 3.3.3 Bruits en longueurs

3.4 Paramètres retenus pour les cavités OMC
- 3.4.1 Géométrie et matériau
- 3.4.2 Finesse
- 3.4.3 Rayon de courbure
- 3.4.4 Filtrage et optimisation des paramètres

3.5 Waist w_0 théorique de la cavité OMC Advanced Virgo

3.6 Support de l’OMC

3.7 Déformation attendue de la cavité

3.8 Pertes attendues par astigmatisme
- 3.8.1 Interface verre-silice
- 3.8.2 Angle d’incidence sur le miroir sphérique
Le filtrage du faisceau en sortie de l’interféromètre est assuré par deux cavités optiques appelées Output Mode Cleaner ou OMC.

Le détecteur présente des imperfections optiques qui ont pour effet de détériorer la qualité de l’interférence entre les faisceaux réfléchis par chaque bras. Dans ce cas, la puissance résiduelle transmise sur la frange noire augmente.

Cet effet se traduit pas une dégradation de la sensibilité de l’interféromètre. De plus, pour pouvoir contrôler l’interféromètre, différentes composantes fréquentielles appelées bandes latérales sont introduites dans le faisceau. Tout comme le défaut de contraste, les bandes latérales contribuent à la présence de lumière parasite dans le faisceau de frange noire. Cette lumière parasite doit être filtrée pour que la sensibilité ne soit pas détériorée.

Le niveau de sensibilité requis dans Advanced Virgo nécessite un niveau de filtrage spécifique par l’OMC sans que celui-ci n’introduise des pertes ou du bruit supplémentaires. Les paramètres de la cavité ont donc été choisis selon des critères bien précis qui sont présentées dans ce chapitre.

Les outils fondamentaux nécessaires à l’étude d’une telle cavité sont présentés dans ce chapitre. Dans un premier temps, les propriétés et outils concernant la propagation d’un faisceau laser sont abordés dans la section 3.1. Les types de filtrage qui peuvent être réalisés et les paramètres de la cavité qu’il faut ajuster en conséquence sont expliqués section 3.2.

Les paramètres à prendre en compte afin de maximiser le filtrage et limiter les pertes et le bruit en longueur de la cavité, sont présentés section 3.3. La géométrie et les paramètres retenus pour l’OMC sont donnés section 3.4. Le waist du faisceau qui en découle est présenté section 3.5. Le design du support ainsi que les contraintes appliquées sur la cavité sont estimés section 3.6 et 3.7.

Enfin, les pertes dues à l’astigmatisme du faisceau sont présentées section 3.8.

3.1 Comportement d’un faisceau laser

Pour comprendre le fonctionnement d’une cavité OMC, il est nécessaire de revenir sur le comportement d’un faisceau laser. Le laser utilisé dans Advanced Virgo est un laser Nd Yag de longueur d’onde 1064 nm.

3.1.1 Approximation de la solution de l’équation d’onde

Un faisceau laser peut, par beaucoup d’aspects, s’apparenter à une onde plane ; bien que la distribution d’intensité ne soit pas uniforme mais concentrée sur l’axe de propagation et que le front d’onde soit légèrement courbé.

Ainsi la composante d’un champ ou potentiel de lumière cohérente, noté u, satisfait l’équation d’onde (voir [39]) :

$$\nabla^2 u + k^2 u = 0$$

avec $k = 2\pi/\lambda$ le nombre d’onde et λ la longueur d’onde du faisceau laser.

Pour une onde se propageant selon l’axe z, u s’écrit sous la forme :

$$u (x, y, z) = \psi (x, y, z) \exp (-j k z)$$
avec ψ la fonction complexe représentant les différences entre un faisceau laser et une onde plane et x, y, z les coordonnées cartésiennes.

Ainsi en insérant (3.2) dans l’équation (3.1) et en se situant dans l’approximation paraxiale est obtenu :

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2jk\frac{\partial \psi}{\partial z} = 0$$ (3.3)

Une solution particulière de cette équation, aussi appelée mode fondamental ou TEM$_{00}$, est (voir [39]) :

$$\psi (r, z) = \exp \left\{ -j \left(P(z) + \frac{k}{2q(z)} r^2 \right) \right\}$$ (3.4)

où :

$$r^2 = x^2 + y^2$$ (3.5)

avec $P(z)$ le déphasage complexe et $q(z)$ un rayon de courbure complexe, ou encore la variation transverse de l’amplitude et la courbure du front d’onde :

$$q(z) = q_0 + z$$ (3.6)

avec :

$$q_0 = j\frac{\pi w_0^2}{\lambda}$$ (3.7)

w_0 étant le waist du faisceau avec $w(z = 0) = w_0$ (voir la section 3.1.4).

Figure 3.1 – Profil d’intensité gaussien du mode fondamental
Le profil d’intensité du mode fondamental est présenté sur la figure 3.1 avec w le rayon du faisceau.

Le mode fondamental est le faisceau injecté dans l’interféromètre. Un mauvais alignement ou des défauts de miroirs peuvent modifier le profil du faisceau. Au mode fondamental peuvent alors se superposer des modes d’ordre supérieur qui correspondent à d’autres solutions de l’équation (3.3).

Deux types de modes d’ordre supérieur sont observés : les modes à géométrie rectangulaire appelés modes transverses électromagnétiques (TEM) ou modes d’Hermite-Gauss et les modes à géométrie cylindrique appelées modes de Laguerre-Gauss.

3.1.2 Modes à géométrie rectangulaire

![Figure 3.2 – Mode à symétrie rectangulaire](image)

Pour un système à géométrie rectangulaire, une solution de l’équation (3.3) est de la forme :

$$
\psi(x, y, z) = g\left(\frac{x}{w(z)}\right) \cdot h\left(\frac{y}{w(z)}\right) \exp\left\{-j\left[P(z) + \frac{k}{2q(z)}\left(x^2 + y^2\right)\right]\right\}
$$

(3.8)

où g est une fonction de x et z, h une fonction de y et z, $P(z)$ le déphasage complexe et $w(z)$ le rayon du faisceau avec w_0 le rayon du faisceau en $z = 0$ correspondant au waist du faisceau [39].

L’équation (3.3) est satisfaite si :

$$
g(x, z) \cdot h(y, z) = H_m\left(\sqrt{2} \frac{x}{w(z)}\right) H_n\left(\sqrt{2} \frac{y}{w(z)}\right)
$$

(3.9)

où m et n sont des nombres entier associés aux modes transverses et dont la somme $m + n$ correspond à l’ordre du mode.
Après avoir injecté la solution (3.8) dans l’équation (3.3), l’équation différentielle pour \(g \) et \(h \) devient :

\[
\frac{d^2 H_m}{dx^2} - 2x \frac{dH_m}{dx} + 2mH_m = 0
\]

(3.10)

Ceci est une équation polynomiale d’Hermite \(H_m(x) \) d’ordre \(m \).

Les polynômes d’Hermite sont donc de la forme :

\[
H_0(x) = 1 \\
H_1(x) = 2x \\
H_2(x) = 4x^2 - 2 \\
H_3(x) = 8x^2 - 12x
\]

Si \(m = n = 0 \), on retombe sur le mode fondamental soit le TEM\(_{00}\). Des exemples des modes transverses de différents ordres sont représentés sur la figure 3.23.

3.1.3 Modes à géométrie cylindrique

![Figure 3.3 – Mode à symétrie cylindrique](image)

Pour un système à géométrie cylindrique, la solution de l’équation (3.3) est (voir[39]) :

\[
g(r, z) = \left(\sqrt{2} \frac{r}{w(z)} \right)^l L^l_p \left(2 \frac{r^2}{w(z)^2} \right)
\]

(3.11)

avec \(l \) et \(p \) des nombres entiers associés aux modes de Laguerre-Gauss et dont la somme correspond à l’ordre du mode.

Quelques polynômes de Laguerre :

\[
L^0_l(x) = 1
\]
\[L_1^l(x) = l + 1 - x \]
\[L_2^l(x) = \frac{1}{2} (l + 1) (l + 2) - (l + 2) x + \frac{1}{2} x^2 \]

Des exemples des modes à géométrie cylindrique pour différents \(l \) et \(p \) sont représentés sur la figure 3.23.

3.1.4 Lois de propagation

Cette section rappelle les lois de propagation d’un faisceau laser. Par commodité, deux paramètres réels sont introduits \(R \) et \(w \) tel que :

\[
\frac{1}{q(z)} = \frac{1}{R(z)} - j \frac{\lambda}{\pi w(z)^2} \tag{3.12}
\]

avec \(R(z) \) le rayon de courbure du front d’onde, et \(w(z) \) le rayon du faisceau.

Un faisceau gaussien a pour caractéristique d’avoir une taille minimale \(2w_0 \) lorsque le front d’onde est plat (ou le rayon de courbure \(R \) infini), avec \(w_0 \) le rayon minimal appelé également waist (voir figure 3.4).

![Figure 3.4](image-url)

Figure 3.4 – Propagation d’un faisceau gaussien selon l’axe \(z \). \(w(z_0) = w_0 \) est le waist du faisceau.

Après avoir combiné les équations (3.12) et (3.6), il est obtenu (voir [39]) :

\[w^2(z) = w_0^2 \left[1 + \left(\frac{\lambda z}{\pi w_0^2} \right)^2 \right] \tag{3.13} \]

\[R(z) = z \left[1 + \left(\frac{\pi w_0^2}{\lambda z} \right)^2 \right] \tag{3.14} \]

La partie réelle du déphasage complexe \(P(z) \) (vu équation 3.4), également appelé phase de Gouy, représente le déphasage accumulé entre des modes de différents ordres au cours de leur propagation.
La phase de Gouy du mode fondamental, noté $\Phi(z)$, est :

$$\Phi(z) = \arctan\left(\frac{z}{Z_R}\right)$$

(3.15)

avec $Z_R = \frac{\pi w_0^2}{\lambda}$.

La phase de Gouy des modes d’ordre supérieur est :

$$\Phi_{mn} = 2(m + n + 1) \arctan\left(\frac{L}{z_R}\right)$$

(3.16)

Une relation utile par la suite est obtenue en combinant (3.13) et (3.14) :

$$\frac{\lambda z}{\pi w_0^2} = \frac{\pi w^2}{\lambda R}$$

(3.17)

3.1.5 Matrice de transfert ou loi ABCD

<table>
<thead>
<tr>
<th>N°</th>
<th>Systèmes Optiques</th>
<th>Matrice de transfert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(d) (d) (n) (n) (1) (2)</td>
<td>(1) (\frac{d}{n}) 0 1</td>
</tr>
<tr>
<td>2</td>
<td>(f) (n) (n) (f)</td>
<td>(1) (\frac{n}{f}) 0 1</td>
</tr>
</tbody>
</table>

Figure 3.5 – Systèmes optiques et matrices associées ; de haut en bas : propagation libre sur une distance d et traversée d’une lentille mince convergente de focale f dans un milieu d’indice n.

La propagation du faisceau à travers différentes optiques peut être décrite en utilisant la notion de matrice de transfert T ou loi ABCD [39]. Le principe est d’associer chaque élément optique, que ce soit lentille ou espace, à une matrice 2×2 (voir la figure 3.5). Le produit
matriciel de l’ensemble des éléments permet d’obtenir la matrice T. Le produit matriciel se fait dans le sens inverse des éléments traversés par le faisceau tel que :

$$ T = T_N ... T_2 T_1 $$ (3.18)

$$ T = \begin{pmatrix} A & B \\ C & D \end{pmatrix} $$ (3.19)

Avec N le nombre total des systèmes optiques.

La relation entre la partie imaginaire du rayon de courbure complexe q_0 (3.6) avant le système optique et q'_0 après le système optique, appelée également loi ABCD et utilisée par la suite est :

$$ q'_0 = \frac{Aq_0 + B}{Cq_0 + D} $$ (3.20)

Comportement théorique d’un faisceau gaussien à travers un système optique

Le comportement d’un faisceau gaussien à travers un système optique est représenté figure 3.6. Avec w_0 le waist du laser, w'_0 le waist du faisceau après le système optique, σ la distance entre le waist du laser et la focale objet F du système optique, σ' la distance entre le waist après le système optique et la focale image F' du système optique.

![Figure 3.6 – Comportement d’un faisceau gaussien à travers un système optique.](image)

La matrice de transfert T pour un système optique constitué d’une lentille est la suivante :

$$ T = \begin{vmatrix} \frac{\sigma'}{f'} & \frac{\alpha \sigma'}{f'} + f' \\ -\frac{\sigma}{f'} & -\frac{\sigma}{f'} \end{vmatrix} $$ (3.21)

Le système obtenu est :

$$ \begin{cases} -q_0 q'_0 - \sigma \sigma' = -ff' \\ \sigma q'_0 = -\sigma' q_0 \end{cases} $$ (3.22)
3.2 Cavité optique

Une cavité optique est un système composé de miroirs permettant de faire résonner un faisceau lumineux dans des conditions bien spécifiques.

Le système des cavités OMC est placé en sortie du détecteur afin de filtrer le faisceau porteur du signal d’onde gravitationnelle.

Deux types de filtrages sont nécessaires : le filtrage fréquentiel des bandes latérales et le filtrage géométrique des modes d’ordre supérieur.

3.2.1 Filtrage fréquentiel

Dans le cas d’une cavité simple, voir figure 3.7, deux miroirs de réflectivités et transmissions r_1, t_1 et r_2, t_2 se font face à une distance L. D’après l’équation (A.5), l’amplitude du champ électrique transmis E_t peut s’écrire :

$$E_t = \frac{t_1 t_2 e^{-j\phi}}{1 - r_1 r_2 e^{-j\phi}} E_{in}$$

(3.23)

avec E_{in} l’amplitude du champ électrique incident sur la cavité, $\phi = 2\omega L/c$ la variation de phase obtenue après un aller-retour du faisceau dans la cavité.

La puissance transmise s’écrit :

$$P_t = E_t E_t^*$$

(3.24)

$$P_t = \frac{t_1^2 t_2^2}{1 - 2r_1 r_2 \cos(\phi) + r_1^2 r_2^2 P_{in}}$$

(3.25)
Si $r_1 \sim r_2 \sim 1$, la puissance transmise s’écrit :

$$P_t = \frac{1}{1 + \frac{4r_1 r_2}{(1 - r_1 r_2)^2} \sin^2 \left(\frac{\varphi}{2} \right)} P_{\text{in}} \quad (3.26)$$

La puissance transmise est maximale pour $\varphi = 2\pi p$, avec $p \in \mathbb{N}$. Pour remplir la condition de résonance, la variation de phase du faisceau après un aller-retour dans cette cavité doit donc être un multiple entier de 2π. Ainsi, le faisceau ne sera résonant qu’à des fréquences particulières. Tout autre faisceau à des fréquences différentes que les fréquences de résonance sera supprimé par interférences destructives. Le filtrage est dit fréquentiel.

Pour simplifier l’étude, un paramètre sans dimension est utilisé : la finesse F. La finesse est définie comme le rapport entre l’intervalle entre deux pics $\Delta \Phi$ ou l’intervalle spectral libre (ou Free Spectral Range, FSR) et la largeur à mi-hauteur d’un pic de résonance $d\Phi$.

$$F = \frac{\Delta \Phi}{d\Phi} \quad (3.27)$$

$$F = \frac{2\pi}{d\Phi} \quad (3.28)$$

A mi-hauteur la puissance du pic est :

$$P_t = \frac{P_{\text{in}}}{2} \quad (3.29)$$

d’où :

$$\sin^2 \left(\frac{d\Phi}{2} \times \frac{1}{2} \right) = \frac{(1 - r_1 r_2)^2}{4 r_1 r_2} \quad (3.30)$$

or $\frac{1 - r_1 r_2}{2\sqrt{r_1 r_2}} \ll 1$

La largeur à mi-hauteur peut donc s’écritre :

$$d\Phi = \frac{2(1 - r_1 r_2)}{\sqrt{r_1 r_2}} \quad (3.31)$$

Donc :

$$F = \frac{\pi r_1 r_2}{1 - r_1 r_2} \quad (3.32)$$

3.2.2 Filtrage géométrique

Le filtrage géométrique consiste à remplacer un des miroirs plans de la cavité présentée dans la section 3.2.1 par un miroir sphérique. Dans ces conditions la variation de phase accumulée par un mode d’indice n, m après un aller-retour dans la cavité s’écrit :

$$\phi = 2\omega \frac{L}{c} + \Phi_{mn} \quad (3.33)$$

avec Φ_{mn} la phase de Gouy pour une mode d’ordre TEM_{mn}, voir l’équation (3.16).
Figure 3.8 – À gauche : Représentation d’une cavité plan-courbe. À droite : Puissance transmise du faisceau en fonction de sa phase pour le mode fondamental en bleu et le mode d’ordre 1 en vert.

Le déphasage lors d’un aller-retour pour un mode d’ordre TEM_{mn} dépend du rayon de courbure. Chaque mode supérieur se propage dans la cavité en accumulant une phase de Gouy qui lui est propre, ce qui permet de séparer sa résonance de celle du mode fondamental. Les modes d’ordre supérieur ne resonnent pas aux mêmes fréquences de résonance. La cavité est dite non dégénérée, par opposition par exemple à une cavité faite de deux miroirs plans.

Pour que le mode fondamental du faisceau laser résonne dans la cavité, il faut que le rayon de courbure du faisceau (équation (3.14)), au niveau du miroir de la cavité considéré, ait le même rayon de courbure que celui-ci. Le waist de la cavité est donc celui du faisceau.

Le faisceau se propageant selon l’axe z, le rayon de courbure du faisceau s’écrit :

$$R(z) = z + \frac{z^2 R}{z}$$ \hfill (3.34)

La figure 3.8 représente une cavité plan-courbe de longueur L. Dans ce cas particulier d’une cavité plan-courbe, le waist se situe sur le miroir plan : $z_1 = 0$, $R(z_1) = \infty$, $R(z_2) = R$ et $w(z_1) = w(0) = w_0$.

Le waist du faisceau w_0 en fonction du rayon de courbure R de la cavité et de la distance L entre les deux miroirs s’écrit donc :

$$w_0^2 = \frac{\lambda}{\pi} \sqrt{L(R-L)}$$ \hfill (3.35)

3.2.3 Verrouillage d’une cavité

Les deux sections précédentes ont montré la possibilité de filtrer les bandes latérales et les modes d’ordre supérieur en décalant leurs résonances par rapport à celle du mode fondamental.

Il est donc nécessaire de contrôler la cavité de manière à ce que le faisceau transmis soit le mode fondamental au maximum de sa puissance de résonance. La cavité est dans ce cas-là dite verrouillée.
La méthode utilisée est la méthode dite de Pound-Drever-Hall [18]. Pour obtenir un signal d’erreur, la phase du faisceau est modulée à une pulsation Ω. La puissance est mesurée avec une photodiode délivrant un signal électrique qui est ensuite numérisé. Le signal d’erreur est obtenu en multipliant le signal de la photodiode par $\cos(\Omega t + \phi)$ et en appliquant un filtre passe-bas.

Une boucle d’asservissement sur la fréquence du laser ou la longueur optique de la cavité est appliquée afin que le signal d’erreur obtenu reste proche de zero.

3.3 Objectif de l’OMC

L’objectif de l’OMC est de filtrer les modes d’ordre supérieur afin d’améliorer le contraste mais également de filtrer les bandes latérales. S’il est nécessaire de mettre en place un OMC pour améliorer la sensibilité du détecteur, celui-ci peut entraîner des pertes et/ou du bruit. C’est pourquoi un ensemble de paramètres sont à prendre en compte afin non seulement d’atteindre les spécifications de filtrages requises mais également afin de limiter les pertes et le bruit introduit par une telle cavité.

3.3.1 Filtrage

La principale contrainte sur le filtrage est imposée par la sensibilité requise du détecteur. L’objectif est de ne pas détériorer le niveau du bruit de photons nominal de plus de 1% pour chaque composante parasite résiduelle de l’OMC. Cette contrainte peut s’écrire telle que :

$$\sqrt{P + \delta P} < 1.01\sqrt{P}$$

(3.36)

avec P la puissance de la frange noire en transmission de l’OMC et δP la variation de puissance créée par la contribution des bandes latérales et des modes d’ordre supérieur.

Le bruit de photon n’est dominant qu’au delà de 100 Hz, figure 2.6. Cette spécification sur le bruit est donc tout à fait conservative.

La proportion de puissance des bandes latérales en transmission de l’OMC doit être un facteur 50 en dessous de la puissance de la porteuse. De même, la puissance attendue au niveau des modes d’ordre supérieur doit être un facteur 50 en dessous de la puissance de la porteuse.

Pour une puissance du TEM$_{00}$ attendue en transmission de la cavité $P = 80$ mW, la contribution de chaque composante parasite résiduelle de l’OMC δP doit donc être inférieure à 1.6 mW.

Historiquement, une deuxième spécification, dérivée des contraintes sur les performances du contrôle de l’asymétrie des bras de l’interféromètre, appelé mode différentiel, avait été établie [12]. Cette spécification de 80 μW pour les modes d’ordre supérieur de la porteuse et par bande latérale permettait de garantir que leurs puissances résiduelles en sortie de l’OMC ne polluaient pas le signal d’erreur utilisé pour contrôler le mode différentiel de l’interféromètre. Mais cette spécification de 80 μW incluait un double facteur 10 de sécurité. Le premier permettait d’assurer que le bruit injecté par les signaux de contrôles soit un facteur 10 sous la courbe de la spécification de 80 μW.

1. Ce qui est équivalent à avoir un bruit technique 10 fois plus bas que la sensibilité d’Advanced Virgo, critère générique pour le design d’Advanced Virgo.
de sensibilité et un deuxième facteur 10 permettait une marge de sécurité supplémentaire. Cette deuxième marge de sécurité n’a pas été conservée. Seul le premier facteur 10 a été conservé, spécification qui est la même que pour les autres bruits techniques d’Advanced Virgo. La spécification limite sur la somme totale de la contribution des bandes latérales et des modes d’ordre supérieur pour le mode différentiel a donc finalement été choisie à 800 µW.

Cette spécification est celle utilisée dans le chapitre 8. A noter que la spécification de 80 µW a été historiquement prise en compte lors du design de la cavité OMC.

Le filtrage des bandes latérales dépend de la largeur du pic de résonance. Les paramètres agissant sur la largeur du pic de résonance sont la longueur géométrique de la cavité et sa finesse. En augmentant ces deux paramètres, la largeur du pic diminue, augmentant ainsi le filtrage.

Le filtrage des modes d’ordre supérieur dépend en outre du rayon de courbure, comme expliqué dans la section 3.2.2.

Il est rappelé qu’Advanced Virgo fonctionnera dans un premier temps sans recyclage du signal (SR) avec une puissance de 25 W, puis le miroir SR sera installé (plus exactement une de ses faces subira un traitement de surface réfléchissant) et la puissance du laser sera augmentée à 125 W. Les bandes latérales de 6 et 56 MHz ne résonnent pas dans les mêmes cavités (voir la section 2.3.4), ce qui implique que la distribution de leurs modes d’ordre supérieur ne sera pas la même. De plus, la distribution de puissance des bandes latérales et des modes d’ordre supérieur va dépendre de la qualité des surfaces des miroirs.

La configuration utilisée pour déterminer les paramètres de filtrage de la cavité prend en compte la présence des double cavités de recyclage (avec les miroirs PR et SR) à 125 W.

3.3.2 Pertes

Les pertes dans l’OMC peuvent avoir différentes origines : les pertes par absorption dans le substrat liées au matériau choisi, les pertes par diffusion dues à des défauts de miroirs (polissage et traitement de surface), les pertes dues aux déformations du faisceau liées à la géométrie de la cavité ou encore les pertes dues à la polarisation intrinsèque du matériau.

3.3.3 Bruits en longueurs

Les résonances mécaniques du support de l’OMC, des supports et des montures optiques environnants ou encore du substrat (qui va dépendre de sa longueur) sont susceptibles de se coupler au bruit en longueur\(^2\) de l’OMC et de dégrader la sensibilité d’Advanced Virgo.

Le bruit en longueur de la cavité OMC génère des fluctuations de la puissance transmise qui peuvent polluer la bande de fréquence sensible du détecteur. Le couplage du bruit en longueur de la cavité dans la sensibilité de l’interféromètre dépend de la précision avec laquelle la cavité est maintenue proche de la condition de résonance.

\(^2\) Le bruit en longueur correspond à des fluctuations de la longueur optique du substrat.
D’après l’équation (3.26) et en notant \(\Delta l_0 \) l’écart en longueur de la cavité par rapport à la condition stricte de résonance, le bruit en longueur de la cavité noté \(\delta l \) fait varier la puissance en transmission de la cavité OMC tel que :

\[
P - \delta P = \frac{1}{1 + \left(\frac{2F_{OMC}}{\pi}\right)^2 \sin^2 \left(\frac{2\pi}{\lambda} (\Delta l_0 + \delta l)\right)} P
\]

avec \(F_{OMC} \) la finesse de l’OMC.

Soit :

\[
\frac{\delta P}{P} = 2(4F_{OMC})^2 \Delta l_0 \delta l \lambda
\]

La spécification sur le bruit en longueur de la cavité maximum qui peut être toléré, a été choisie de manière à ce que que la projection de ce bruit sur la courbe de sensibilité du détecteur soit un facteur 10 en dessous de la courbe du bruit de photon sur toute la bande passante de l’interféromètre [12].

Cette spécification se traduit par la condition suivante :

\[
\Delta l_0 \delta l \leq \frac{1}{10.64} \frac{\lambda^3}{F L_{off} F_{OMC}^2} \frac{2h\nu}{P_0 G_{PRC} T_{SR}}
\]

où \(F \) est la finesse des bras \((F = 446), L_{off} \) l’écart de l’asymétrie de longueur de l’interféromètre par rapport à la condition stricte de frange noire appelé aussi offset différentiel \((L_{off} = 10^{-11} \text{ m})\), \(P_0 \) la puissance injectée dans l’interféromètre \((P_0 = 125 \text{ W})\), \(G_{PRC} \) le gain de la cavité de recyclage \((G_{PRC} = 37.5)\) et \(T_{SR} \) la transmission du miroir SR \((T_{SR} = 0.2)\).

Pour une précision de verrouillage donnée, le couplage du bruit en longueur de l’OMC est proportionnel à la finesse au carré. Les fluctuations en longueur de la cavité dépendent du matériau, de sa géométrie et de la taille du faisceau résonnant, voir l’équation 7.11.

3.4 Paramètres retenus pour les cavités OMC

Les paramètres de l’OMC (géométrie, matériaux...) ont été optimisés pour satisfaire les contraintes sur le filtrage des modes d’ordre supérieur mais aussi minimiser les pertes et les bruits.

L’OMC de la version initiale de Virgo était une cavité triangulaire de 2.5 cm de long, avec une finesse de 50 et un rayon de courbure de 300 mm [17]. Cette cavité a bien fonctionné mais compte tenu des changements pour Advanced Virgo les spécifications de l’OMC ont du être adaptées afin d’atteindre la sensibilité requise.
3.4.1 Géométrie et matériau

Dans le cas de l’OMC, les cavités utilisées ne peuvent pas être des cavités linéaires à deux miroirs. En effet, le faisceau réfléchi sur la cavité, contenant les bandes latérales ainsi que les modes d’ordre supérieur, ne doit pas être renvoyé vers l’interféromètre. De plus, une limitation d’espace sur le banc optique de l’OMC nécessite de limiter la taille de la cavité. La cavité a donc été choisie repliée et monolithique.

Un ensemble de paramètres ont été analysés afin de choisir le matériau le plus adapté aux besoins de l’OMC. La faible absorption du matériau (0.3 ppm/cm), son homogénéité, son caractère isotrope et sa faible biréfringence induite font partie des paramètres qui ont permis de retenir le suprasil 3001\cite{48}.

L’élément nécessitant le plus de changements sur la cavité OMC Advanced Virgo par rapport à l’OMC Virgo est le filtrage des bandes latérales. En augmentant la longueur géométrique de la cavité, la largeur du pic de résonance diminue, augmentant ainsi le filtrage des bandes latérales. Mais plus la longueur de la cavité augmente plus les fréquences de résonances mécaniques de celle-ci diminuent, prenant le risque de polluer la bande de détection\cite{12}.

Au vu de l’ensemble de ces paramètres, la géométrie retenue pour la cavité est celle d’une cavité dite en noeud papillon (dû au chemin optique parcouru dans la cavité), de longueur 6.2 cm (voir la figure 3.10). Le choix de l’angle d’incidence résulte d’un compromis entre la minimisation des pertes et de l’astigmatisme induit. La minimisation de la quantité de lumière pouvant être rétro diffusée dans la direction du faisceau incident privilégie un angle d’incidence supérieur à 5°. La minimisation de l’astigmatisme quant à elle est favorisée par un angle d’incidence inférieur à une dizaine de degrés. La valeur choisie est de 8.7°.

Le trajet du faisceau dans l’OMC est représenté sur la figure 3.10. Le faisceau arrive avec un angle d’incidence de 8.7° sur la première face et est réfléchi sur la face opposée (face 2) à
l’intérieur de la cavité ; le faisceau est alors renvoyé sur la face sphérique (face 3) et ressort enfin par la dernière face (face 4) après avoir effectué plusieurs aller-retour dans la cavité.

Epaisseur = 10

Dimensions en mm

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2Lgeo</td>
<td></td>
</tr>
<tr>
<td>Lgeo</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>Lgeo</td>
<td>0.013</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.10 – Plan de la cavité OMC et schéma optique.

3.4.2 Finesse

De la même manière que la longueur de la cavité, la finesse intervient dans le filtrage des bandes latérales. La largeur du pic d’Airy diminue avec l’augmentation de la finesse (équation 3.27). Cependant une valeur de finesse élevée présente les inconvénients suivants :

3. Le nombre d’aller-retours dans la cavité est de l’ordre de \(\frac{2F}{\pi} \) avec \(F \) la finesse de la cavité.
Longueur de la cavité \(L = (61.315 \pm 0.200) \) mm (mesuré le long du parcours optique entre deux faces opposées)

Distance entre le centre optique de deux faces adjacentes \(l = (13.034 \pm 0.100) \) mm

Angle d’inclinaison de chaque face \(\theta = (6.00 \pm 0.03) \)°

Rayon de courbure de la face sphérique \(R = (1700 \pm 8) \) mm

<table>
<thead>
<tr>
<th>Table 3.1 – Paramètres principaux de la cavité OMC avec les barres d’erreurs permises, données au fabricant.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamètre d’ouverture de chaque surface</td>
</tr>
<tr>
<td>Défauts de planéité de surface</td>
</tr>
<tr>
<td>Micro rugosité (fréquence spatiale proche de 1000 m(^{-1}))</td>
</tr>
<tr>
<td>(au delà de l’ouverture de 8 mm)</td>
</tr>
</tbody>
</table>

Table 3.2 – Spécifications sur la qualité de polissage des quatre faces du mode cleaner.

- La boucle de contrôle et l’actionneur pour le verrouillage de la cavité doivent être plus rapides. Le verrouillage devient plus difficile à acquérir avec une finesse élevée.
- La finesse est également source de pertes. Plus la finesse est grande, plus les pertes par diffusion sont importantes [57].
- La finesse intervient également dans le couplage du bruit en longueur (section 3.3.3).

La contribution maximale de la bande latérale à 6 MHz en transmission de l’OMC (voir la discussion de la section 3.4.3) dans la configuration dual-recycling (PR et SR installés) à 125 W est l’élément qui a permis de déterminer la finesse minimale de la cavité, en fonction du rayon de courbure de 1700 mm choisi préalablement. Cette valeur minimale a été retenue afin de diminuer la contrainte sur le bruit thermo-réfractif [31], voir la section 3.3.3.

Il sera vu dans la section 3.4.4 que la finesse retenue pour les cavités OMC Advanced Virgo est de 142.5.

3.4.3 Rayon de courbure

Le choix du rayon de courbure nécessite de prendre en compte trois critères :

- Le rayon de courbure doit permettre le filtrage des modes d’ordre supérieur, voir section 3.2.2.
- Sa valeur ne doit pas être trop petite pour ne pas créer un excès de lumière diffusée. En effet, le rayon de courbure définit la taille du waist, voir l’équation (3.35), et la lumière diffusée est proportionnelle à l’inverse du waist au carré [26].
- Un rayon de courbure trop faible va augmenter le bruit thermo-réfractif. En effet, le bruit thermo-réfractif évolue comme l’inverse du waist au carré, voir l’équation (7.11).
Il sera vu dans la section 3.4.4 que le rayon de courbure retenu pour les cavités OMC Advanced Virgo est de 1700 mm.

3.4.4 Filtrage et optimisation des paramètres

Le filtrage des bandes latérales et des modes d’ordre supérieur va dépendre de la finesse et du rayon de courbure. Afin de tracer la figure de mérite de l’OMC (puissance transmise des bandes latérales et des modes d’ordre supérieur), il est nécessaire de connaître la contribution des bandes latérales et des modes d’ordre supérieur en entrée de l’OMC.

Pour atteindre les spécifications demandées de 80 µW avec une seule cavité optique, il est nécessaire d’avoir une finesse de ~500. Or il a été vu les inconvénients d’une grande finesse dans la section 3.4.2. La conception de l’OMC retenue est donc celle de deux cavités en série, voir figure 3.12, de finesse 142.5.

Les figures 3.13 et 3.14 représentent la puissance des bandes latérales et des modes d’ordre supérieur en transmission de deux cavités en fonction du rayon de courbure pour une finesse de 142.5. La spécification de 80 µW dans ces conditions est atteinte pour un rayon de courbure de 1700 mm.

La figure 3.11 représente quant à elle la puissance des bandes latérales et des modes d’ordre supérieur en transmission d’une seule cavité en fonction du rayon de courbure pour une finesse de 142.5, à partir des puissances en entrée de la cavité présentées table 3.4. La spécification de 1.6 mW dans ces conditions n’est même pas atteinte.

Le rayon de courbure retenu pour les cavités OMC Advanced Virgo est de 1700 ± 8 mm. Autour du rayon de courbure de 1700 mm se trouve la résonance des modes 11 et 12 des bandes latérales et de la porteuse. Une sous-estimation de ces modes ou une variation du rayon de courbure sont susceptibles d’augmenter la contribution des bandes latérales et des modes d’ordre supérieur du faisceau filtré en transmission de l’OMC. Une attention particulière est porté au rayon de courbure de l’OMC observé par ces modes dans le chapitre 5.
Table 3.3 – Puissances attendues de la porteuse et des bandes latérales avec leurs modes d’ordre supérieur en entrée de l’OMC dans la configuration recyclage de la puissance (avec PR) à 25 W. SB1 est la bande latérale à 6.27 MHz et SB2 la bande latérale à 56.44 MHz [12] [20].

<table>
<thead>
<tr>
<th>Ordre m + n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porteuse (mW)</td>
<td>80</td>
<td>200</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>150</td>
<td>150</td>
<td>75</td>
<td>25</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>SB1 (mW)</td>
<td>8.4</td>
<td>20</td>
<td>3.2</td>
</tr>
<tr>
<td>SB2 (mW)</td>
<td>116</td>
<td>58</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 3.4 – Puissances attendues de la porteuse et des bandes latérales avec leurs modes d’ordre supérieur en entrée de l’OMC dans la configuration dual-recycling (avec PR et SR) à 125 W. SB1 la bande latérale à 6.27 MHz et SB2 la bande latérale à 56.44 MHz [12] [20].

<table>
<thead>
<tr>
<th>Ordre m + n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porteuse (mW)</td>
<td>80</td>
<td>200</td>
<td>60</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>60</td>
<td>250</td>
<td>250</td>
<td>95</td>
<td>60</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>SB1 (mW)</td>
<td>2.5</td>
<td>6.3</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>SB2 (mW)</td>
<td>160</td>
<td>80</td>
<td>13</td>
</tr>
</tbody>
</table>

Figure 3.11 – Figure de mérite pour une cavité OMC avec une finesse de 142.5.
Figure 3.12 – CAO du support double de l’OMC.

Figure 3.13 – Figure de mérite pour deux cavités OMC en série avec une finesse de 142.5.
Figure 3.14 – Zoom autour du rayon de courbure de 1700 mm de la figure de mérite pour deux cavités OMC en série avec une finesse de 142.5. Identification des modes d’ordre supérieur 11 et 12.
3.5 Waist w_0 théorique de la cavité OMC Advanced Virgo

La figure 3.15 représente une cavité OMC Ad. Virgo dépliée. D’après la loi ABCD, vue dans la section 3.1.5, la matrice de transfert de la cavité OMC Ad. Virgo est :

$$T = T_2 T_1$$ (3.40)

avec $T_1 = \begin{pmatrix} 1 & 4L_{geo} \\ n & 1 \end{pmatrix}$ et $T_2 = \begin{pmatrix} 1 & 0 \\ -\frac{n}{f} & 1 \end{pmatrix}$ les matrices associées aux systèmes optiques présentés figure 3.5.

En utilisant l’équation (3.20) le rayon du faisceau est définit tel que :

$$w^2 = \frac{2\lambda B}{\pi} \frac{1}{\sqrt{4 - (A + D)^2}}$$ (3.41)

En combinant les équations (3.41) et (3.17) le waist de la cavité s’écrit :

$$w_0^2 = \frac{\lambda}{n\pi} \sqrt{2L_{geo}(R - 2L_{geo})}$$ (3.42)

Pour un rayon de courbure $R = 1700$ mm, un indice optique $n = 1.44963$, une longueur géométrique $L_{geo} = 62$ mm, et une longueur d’onde $\lambda = 1064$ nm ; le waist de cavité est de $w_{ox} = w_{oy} = 321 \mu$m.
3.6 Support de l’OMC

Les deux cavités optiques sont placées en série sur un support composé d’une partie fixe et d’une autre amovible, voir figure 3.16. La partie amovible est motorisée et permet d’aligner la seconde cavité par rapport au faisceau transmis par la première. La position du premier support en cuivre est fixe et est tournée de 2.7° par rapport à la base du support en aluminium, permettant au faisceau incident d’avoir un angle de 8.7° par rapport à la normale de la face d’entrée de la cavité, voir la section 3.4.1.

Des cellules de Peltier⁴ sont situées en dessous de chaque plaque de cuivre sur laquelle est posée la cavité (voir la figure 3.17 et 3.18). Elles permettent d’asservir la température des cavités lors du verrouillage de celles-ci. Le temps de réponse des peltiers est de l’ordre d’une centaine de secondes.

Un piézo-électrique⁵ (5×5 mm²), situé au dessus de la cavité et maintenu par une vis, module la longueur de la cavité pour obtenir un signal d’erreur. Ce piézo est également utilisé comme actionneur complémentaire aux Peltier lors du verrouillage en température afin de contrôler la longueur de la cavité [12]. En effet le temps de réponse du piézo est bien plus rapide que celui des peltiers puisqu’il permet de moduler la longueur de la cavité à une dizaine de kHz.

La vis se visse dans un pont en invar, présentant une faible dilatation thermique. Au départ, les ponts étaient situés au milieu des cavités mais pour des problèmes de biréfringence (voir le chapitre 6), la conception du support a dû être modifiée. L’emplacement de ce pont et donc de la force appliquée sur les cavités est actuellement situé à 1/3 en avant de chaque partie du support, voir la figure 3.16.

Des couvercles en aluminium sont placés sur chaque cavité, assurant un rôle d’écran thermique, les protégeant des manipulations autour du banc et les immunisant de la lumière diffusée sur d’autres éléments du banc.

3.7 Déformation attendue de la cavité

Une force est appliquée sur chaque cavité à travers une vis tenant le piézo-électrique placé au dessus de la cavité, voir schéma figure 3.18.

Le lien entre le couple de serrage et la pré-tension, d’après les formules empiriques de Kellermann et Klein [38], s’écrit :

\[C = F \cdot (0.161p + 0.583\mu_t d_2 + 0.25\mu_h (D_{\text{ext}} + D_{\text{int}})) \] \hspace{1cm} (3.43)

avec C le couple de serrage en N.m, F la précontrainte en N, p le pas de la vis, \(\mu_t \) le coefficient de frottement du filetage, \(d_2 \) le diamètre moyen du filetage, \(\mu_h \) le coefficient de frottement sous tête, \(D_{\text{ext}} \) le diamètre extérieur de la tête de vis en mm, \(D_{\text{int}} \) le diamètre intérieur de la tête de vis en mm.

⁴. Marlow Industries, Inc., RC 3-6 L
⁵. Physikinstrumente, Multicouche PICMA avec fil, PL055.31
Figure 3.16 – CAO finale du support OMC (sans les cavités) vue de dessus, actuellement sur le site.

Figure 3.17 – Photographie du banc de détection SDB1, octobre 2014. Au premier plan, le support du mode cleaner avec les cavités 6 et 5 de gauche à droite. Crédit photo : M. Ducrot
Figure 3.18 – Schéma de la CAO d’une cavité. Vue en coupe.

Un détermination simplifiée du couple de serrage, surtout utilisé aux Etats-Unis [4], s’écrit :

\[
C = K \times D \times F
\] \hspace{1cm} (3.44)

avec \(C\) (en N.m) le couple de serrage, \(K\) (sans dimension) le coefficient de friction, \(D\) (en m) le diamètre de la vis et \(F\) (en N) la pré-tension. Le facteur \(K\) est connu expérimentalement et selon le type de vis peut varier jusqu’à un facteur 3 [4].

Prenons les coefficients de frottements égaux à 0.2, le pas de vis à 0.5 mm, les diamètres de la vis à 3 mm et le couple égal à \(1.5 \times 10^{-2}\) N.m. Les résultats de la pré-contrainte \(F\) basés sur les formules (3.43) et (3.44) sont respectivement \(\simeq 205\) N.m et \(\simeq 250\) N.m.

En considérant le design actuel, c’est-à-dire la vis serrée directement sur le piézo (5 \(\times\) 5 mm\(^2\)), la pression appliquée sur le substrat est telle que :

\[
P = \frac{F}{S} = 10 \text{ MPa}
\] \hspace{1cm} (3.45)

avec \(F = 250\) N.m.

Le module d’Young du suprasil 3001 est de 70 GPa [48].

La déformation du matériau dans ces conditions est de l’ordre de \(1.4 \times 10^{-4}\) %. Les cavités ont une épaisseur de 10.08 mm. Une force de 250 N.m sur une épaisseur de 10.08 mm implique une déformation de \(\simeq 1.4 \mu\text{m}\). L’angle formé entre le dessus de la cavité et les surfaces traitées est dans ces conditions de l’ordre de \(\alpha' \simeq 45 \mu\text{rad}\), figure 3.19.

Cette déformation induit une courbure des surfaces planes telle que :

\[
R' = \frac{e}{\alpha'} \simeq 220 \text{ m}
\]

avec \(\alpha' \simeq 45 \mu\text{rad}\) l’angle de déformation et \(e = 10.08\) mm l’épaisseur de la cavité.
Figure 3.19 – Déformation de la cavité.

Le nouveau rayon de courbure R_2 du miroir courbe après déformation est (voir Annexe C) :

$$\frac{1}{R_2} = \frac{1}{R_1} + \frac{1}{R'} \tag{3.46}$$

Avec $R_1 = 1.700$ m, $R' = 220$ m, le nouveau rayon de courbure du miroir sphérique est $R_2 \simeq 1.687$ m.
Cette déformation induit une limite supérieure sur l’astigmatisme du faisceau en X et en Y.

Impact sur le waist w_0 de la cavité

Figure 3.20 – Cavité Advanced Virgo dépliée avec des miroirs de rayons de courbure $R' = 220$ m et $R_2 = 1.687$ m.

Les nouveaux rayons de courbure en Y induits par la déformation de la cavité impliquent un nouveau waist en Y ainsi qu’une nouvelle position de ce waist. La nouvelle cavité dépliée est représentée figure 3.20.
La matrice T associée est :

Filtrage du faisceau de frange noire par l’OMC

\[
T_1 = \begin{pmatrix} 1 & \frac{L_{geo}}{n} \\ 0 & 1 \end{pmatrix}
\]

\[
T_2 = \begin{pmatrix} 1 & 0 \\ -\frac{n}{f_2} & 1 \end{pmatrix}
\]

\[
T_3 = \begin{pmatrix} 1 & 0 \\ -\frac{n}{f'} & 1 \end{pmatrix}
\]

avec la longueur géométrique \(L_{geo} = 62\) mm, \(f' = 110\) m la focale des miroirs plans après déformation et \(f_2 = 843.5\) mm la focale du miroir sphérique après déformation.

La déformation de la cavité est supposée n’avoir un effet que sur le rayon de courbure vertical. Dans ces conditions, une simulation a été faite avec le logiciel optique Optocad donnant un waist en Y \(w_{0y} = 319\) \(\mu\)m [6]. Le waist en X est toujours de \(w_{0x} = 321\) \(\mu\)m. La différence entre la position de ces deux waists en sortie d’une cavité est de l’ordre \(\Delta z_0 < 1.6\) mm.

3.8 Pertes attendues par astigmatisme

Les pertes par astigmatisme peuvent avoir différentes origines :

- Le passage du faisceau à l’interface silice/vide
- L’angle d’incidence du faisceau au niveau du miroir sphérique de la cavité
- Ou encore l’astigmatisme propre du miroir sphérique et des faces planes de la cavité

L’objectif est d’estimer ces pertes entre l’entrée du faisceau dans l’OMC (constitué de deux cavités placées en série) jusqu’à sa propagation environ 41 mm après la surface de sortie de l’OMC, c’est à dire entre les points A et C comme illustrés sur la figure 3.21.

Le champ électrique d’une onde sphérique gaussienne s’écrit :

\[
E(x, y, z) = \frac{K}{\sqrt{w_x(z)w_y(z)}} \exp \left(-x^2 \left(\frac{1}{w_x(z)^2} + i \frac{k}{2R_x(z)}\right) - y^2 \left(\frac{1}{w_y(z)^2} + i \frac{k}{2R_y(z)}\right) - ikz + i\zeta(z)\right)
\]

Avec :

\(K = \sqrt{\frac{2}{\pi}}\) une constante de normalisation

\(w_x(z)\) le rayon du faisceau selon l’axe x en z

\(w_y(z)\) le rayon du faisceau selon l’axe y en z

\(\zeta(z) = \frac{z}{Z_R}\) la phase Gouy

\(R_x(z) = z + \frac{Z_{R_x}}{z}\) le rayon de courbure du front d’onde selon l’axe x
Filtrage du faisceau de frange noire par l’OMC

\[R_y(z) = z + \frac{Z_{R_y}}{z} \] le rayon de courbure du front d’onde selon l’axe y
\[Z_R = \frac{\pi w_0^2}{\lambda} \] la longueur de Rayleigh

Les pertes par astigmatisme de l’OMC ont été estimées en étudiant chacune des cavités en commençant par celle placée sur le support fixe de l’OMC.

Considérons une cavité dont le champ au niveau du waist à l’entrée de la cavité est noté \(E_1(x_1, y_1, z_1) \) et le champ au niveau du waist en sortie de la cavité est noté \(E_2(x_2, y_2, z_2) \) comme représenté sur la figure 3.22.

Le pourcentage de puissance transmise \(|M|^2 \) entre l’entrée et la sortie de la cavité peut s’exprimer comme le module carré de l’intégration du produit scalaire des deux champs normalisés, soit :

\[
M = \frac{K^2}{\sqrt{w_{1x}w_{1y}w_{2x}w_{2y}}} \int \exp \left\{ -x^2 \left[\left(\frac{1}{w_{1x}^2} + \frac{1}{w_{2x}^2} \right) - \frac{ik}{2} \left(\frac{1}{R_{1x}} - \frac{1}{R_{2x}} \right) \right] \right\} dx \\
\int \exp \left\{ -y^2 \left[\left(\frac{1}{w_{1y}^2} + \frac{1}{w_{2y}^2} \right) - \frac{ik}{2} \left(\frac{1}{R_{1y}} - \frac{1}{R_{2y}} \right) \right] \right\} dy
\]

(3.48)

\[
|M|^2 = \frac{4}{w_{1x}w_{2x}w_{1y}w_{2y}} \times \left[\left(\frac{1}{w_{1x}^2} + \frac{1}{w_{2x}^2} \right)^2 + \left(\frac{k}{2} \right)^2 \left(\frac{1}{R_{1x}} - \frac{1}{R_{2x}} \right)^2 \right]^{-\frac{1}{2}} \times \\
\left[\left(\frac{1}{w_{1y}^2} + \frac{1}{w_{2y}^2} \right)^2 + \left(\frac{k}{2} \right)^2 \left(\frac{1}{R_{1y}} - \frac{1}{R_{2y}} \right)^2 \right]^{-\frac{1}{2}}
\]

(3.49)
Figure 3.22 – Représentation des faisceaux au niveau des waists théoriques de la cavité.

Le banc SDB1 sur lequel se trouve l’OMC permet d’adapter le faisceau à l’entrée de l’OMC (waist et position du waist) pour maximiser la résonance du faisceau dans la première cavité. De même, la deuxième partie du support OMC permet d’ajuster la position de la deuxième cavité monolithique afin de maximiser la résonance du faisceau dans celle-ci.

Plaçons-nous dans le cas où :

\[w_\alpha = \frac{w_{\alpha,0x} + w_{\alpha,0y}}{2}, \quad z_\alpha = 0 \]

\[w_\beta = w_\beta \left(w_{\beta,0x}(z_\beta), w_{\beta,0y}(z_\beta) \right), \quad z_\beta = \frac{z_{\beta,0x} + z_{\beta,0y}}{2} \]
(3.50)

\[w_\gamma = w_\gamma \left(w_{\gamma,0x}(z_\gamma), w_{\gamma,0y}(z_\gamma) \right), \quad z_\gamma = \frac{z_{\gamma,0x} + z_{\gamma,0y}}{2} \]

Les pertes L sont alors égales à :

\[L = 1 - |M|^2 \]
(3.51)
Ces équations sont utilisées dans le chapitre 8 afin d’estimer les pertes dans chaque cavité et enfin dans l’OMC.

3.8.1 Interface verre-silice

![Diagram of beam at the glass-silica interface](image)

Figure 3.23 – Faisceau à l’interface verre-silice.

\[
\frac{D_a}{D_n} = \frac{\cos (\sin^{-1} (nsin\theta))}{\cos \theta}
\]

(3.52)

Si \(\theta = 6^\circ\) : \(\frac{D_a}{D_n} = 0.9939\).

Pour \(w_{1x} = 321 \times 0.9939\mu m\) et \(w_{1y} = w_{2x} = w_{2y} = 321 \mu m\), les pertes dues à l’angle de 6° de la cavité sont, d’après la formule (3.49), de l’ordre de 19 ppm pour une cavité.

3.8.2 Angle d’incidence sur le miroir sphérique

Les pertes sont de l’ordre de :

\[
L = \left(\frac{\rho \theta^2}{4(\rho - 2L_{geo})} \right)^2
\]

(3.53)

Pour \(\rho = 1700 \text{ mm} \), \(L_{geo} = 62 \text{ mm}\) et \(\theta = 6^\circ\), les pertes sont de l’ordre de 9 ppm pour la cavité.
4 Finesse

Sommaire

4.1 Finesse déduite des paramètres de surface 66
 4.1.1 Mesures faites au LMA .. 66
 4.1.2 Mesures faites au LAPP 67
4.2 Principe de la mesure par balayage 71
 4.2.1 Méthode de calcul de la finesse 71
 4.2.2 Banc de tests et opérations 73
 4.2.3 Balayage en fréquence 76
 4.2.4 Balayage en température 77
 4.2.5 Algorithme de mesure de la finesse 78
4.3 Finesse déduite à partir de balayages en fréquence 80
 4.3.1 Artefact électronique .. 80
 4.3.2 Influence des modes d’ordre supérieur 81
 4.3.3 Influence de la puissance du laser 83
 4.3.4 Influence de la vitesse des balayages 86
 4.3.5 Influence de la température 86
 4.3.6 Influence du bruit du DAC 87
 4.3.7 Influence de la fréquence d’échantillonnage 88
 4.3.8 Valeur moyenne des finesse de la cavité 6 provenant d’un balayage en fréquence .. 90
 4.3.9 Valeurs de finesse des cavités 5, 7 et 8 90
4.4 Finesse mesurée à partir d’un balayage en température 90
4.5 Valeurs de finesse pour les polarisations S and P 94
4.6 Conclusion ... 97
La finesse des cavités OMC d’Advanced Virgo est un paramètre déterminant dans la qualité de filtrage du faisceau de sortie de l’interféromètre. Ce chapitre présente les méthodes et résultats de la caractérisation de ce paramètre. Ces résultats sont utilisés dans le chapitre 8 lors de la détermination du niveau de filtrage des cavités.

Dès les premiers tests, les résultats de finesse obtenus ont présenté un écart important par rapport aux valeurs de finesse attendues. De cet écart ont déculé plusieurs lots de mesures. Le contenu de ce chapitre retient l’ensemble des méthodes mises en place, accompagnées de tests sur les paramètres expérimentaux pouvant influencer les mesures effectuées. Cette étude a permis, en plus d’une meilleure compréhension de la cavité, d’augmenter le niveau de confiance des résultats sur les finesses des cavités.

Deux méthodes de mesures ont été mises en œuvre :

- La première à partir des paramètres de surface des cavités ou d’échantillons-tests.
- La deuxième à partir des propriétés résonantes de la cavité

Les deux méthodes de détermination de la finesse sont développées section 4.1 et 4.2. Des mesures ont suivi afin de répondre aux écarts de finesse observés. Dans ce contexte, un ensemble de paramètres expérimentaux ont été testés. Ces mesures sont rassemblées section 4.3 pour les mesures à partir de balayage en fréquence, et section 4.4 pour les mesures à partir des balayages en température. La dernière section concerne les mesures de finesse pour la polarisation P, section 4.5.

4.1 Finesse déduite des paramètres de surface

4.1.1 Mesures faites au LMA

La finesse d’une cavité constituée de quatre faces réfléchissantes est donnée par :

\[
F = \frac{\pi \sqrt{r_1 r_2 r_3 r_4}}{1 - r_1 r_2 r_3 r_4} \tag{4.1}
\]

où \(r_1, r_2, r_3, r_4 \) sont les réflectivités de chaque face de la cavité, figure 3.10.

Les réflectivités peuvent être calculées en utilisant :

\[
r_n = \sqrt{1 - T_n - S_n} \tag{4.2}
\]

où \(T_n \) est la transmission de la surface \(n \) et \(S_n \) les pertes par diffusion.

Il est à noter que la formule (4.1) ne tient pas compte d’éventuelles pertes par absorption dans le substrat (0.3 ppm/cm) et dans le coating (<2 ppm par face). Pour une finesse de 142.5 (spécification retenue, voir le chapitre 3), les pertes par absorption dans le substrat induisent une variation de 0.01 sur la finesse. Elles peuvent donc être considérées comme négligeables.
Deux jeux de deux cavités ont été traités séparément. Les cavités de chaque lot (lot 1 et 2) ont subi leur traitement de surface en même temps au LMA. Elles étaient accompagnées d'échantillons de verre témoins sur lesquels les mesures de transmission ont été faites par la suite. En effet, les tests de réflectivité des dépôts effectués ne peuvent se faire qu'à travers des échantillons de géométries simples.

Le LMA a donc mesuré la transmission des témoins placés dans chacun des lots ainsi que les pertes par diffusion de chaque face des cavités. Les résultats sont présentés table 4.1.

Les valeurs de finesse \(F_{\text{transmission LMA}} \) attendues sont reportées dans la table 4.2. La variation de la diffusion de quelques ppm pour les cavités 5 et 7 ne change pas significativement l’estimation de leur finesse.

L’impact des pertes par diffusion sur la finesse est de l’ordre de 0.3% pour le lot 1 et de 0.2% pour le lot 2. Les pertes par diffusion mesurées par le LMA ont donc un impact négligeable sur l’estimation des valeurs de finesse.

Echantillons tests

<table>
<thead>
<tr>
<th>Témoins du lot 1 (cavités 6 et 8)</th>
<th>Surface d’entrée</th>
<th>2(^{\text{ème}}) surface</th>
<th>3(^{\text{ème}}) surface</th>
<th>Surface de sortie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.94%</td>
<td>2 ppm</td>
<td>2 ppm</td>
<td>2.18%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 ppm</td>
<td>28 ppm</td>
<td>40 ppm</td>
</tr>
<tr>
<td>Témoins du lot 2 (cavités 5 et 7)</td>
<td>Surface d’entrée</td>
<td>2.14%</td>
<td>4 ppm</td>
<td>2.10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22 & 20 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 & 9 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 & 11 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 & 4 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 & 9 ppm</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 – Transmission \(T \) mesurée sur les échantillons, pertes par diffusion \(S \) mesurée sur les cavités. Ces mesures ont été faites avec un angle d’incidence de 6° sur les surfaces dans l’air. Normalement, les angles devraient être de 8.7° mais cette différence n’impacte pas significativement les résultats, comme cela a été vérifié sur une partie des cavités. Les pertes par diffusion du lot 1 ont été mesurées sur la cavité 6.

<table>
<thead>
<tr>
<th>(F_{\text{transmission LMA}}) avec les témoins</th>
</tr>
</thead>
<tbody>
<tr>
<td>cavités 6 et 8</td>
</tr>
<tr>
<td>150.5</td>
</tr>
</tbody>
</table>

Table 4.2 – Valeurs de finesse attendues des cavités en prenant en compte les pertes par diffusion.

4.1.2 Mesures faites au LAPP

Les mesures du LMA ont été faites sur des témoins placés en même temps que les cavités dans la machine de traitement de surface. Les positions des témoins et des cavités dans la machine sont nécessairement différentes, ce qui peut impliquer des différences de réflectivités.

Une mesure complémentaire à celle du LMA a été effectuée. Les réflectivités des faces sont déduites de la puissance mesurée en transmission des substrats lorsque ces derniers sont
parcourus pas un faisceau laser non couplé à la cavité. Pour cela, le faisceau incident est désaligné de manière à ce que les réflexions multiples sur les faces du substrat ne se superposent pas. Le faisceau ne résonne pas dans la cavité.

Deux désalignements différents, correspondant à des chemins optiques distincts à l’intérieur des substrats, ont été utilisés sur les cavités 5 et 7. Les résultats de ces deux configurations optiques, notés ”désalignement 1” et ”désalignement 2” comme indiqués sur la figure 4.1, ont ensuite été confrontés.

![Diagram](https://via.placeholder.com/150)

Figure 4.1 – À gauche, désalignement 1 du faisceau dans la cavité : le faisceau est réfléchi sur les faces 2 et 3 avant d’atteindre la face de sortie. À droite, désalignement 2 du faisceau dans la cavité : le faisceau passe directement de la surface plane 1 à la surface plane 4.

Tout d’abord la puissance P_{incid} est mesurée à l’entrée de la cavité. Ensuite, la puissance P_{transm} en transmission de la surface 4 est mesurée. La complexité de la mesure se trouve dans l’identification du faisceau, en transmission de la cavité, n’ayant pas subi de réflexions multiples. En effet, un ensemble de faisceaux peuvent être identifiés en transmission de la cavité après désalignement. Afin de mesurer la puissance transmise du faisceau n’ayant subi aucune réflexion multiple, les comportements des faisceaux transmis, lors d’un désalignement, sont comparés. Le faisceau subissant le moins l’effet d’un désalignement est celui dont la puissance est mesurée. Un courant résiduel appelé courant d’obscurité $P_{\text{courant d’obscurit}e}$ est mesuré en l’absence de faisceau incident puis soustrait à la puissance transmise, voir équation (4.3). La transmission moyenne des surfaces 1 et 4 est ainsi obtenue, les transmissions des surfaces 2 et 3 sont négligées ainsi que le courant d’obscurité du faisceau incident.

$$T = \sqrt{\frac{P_{\text{transm}} - P_{\text{courant d’obscurite}}}{P_{\text{incid}}}}$$ (4.3)
Les mesures de puissances incidente, transmise et de courant d’obscurité sont reportées dans la table 4.3. Les valeurs de finesse qui en découlent sont présentées dans la table 4.4. Les deux types d’alignements donnent des résultats comparables. Les fineses moyennes ainsi que leurs erreurs systématiques estimées à partir de la plus grande déviation du lot de mesures sont regroupées dans la table 4.5.

Les fineses obtenues pour les cavités 7 et 5 sont plus basses que les fineses obtenues à partir des réflectivités mesurées au LMA.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>Mesures</th>
<th>7</th>
<th>Mesures</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P_{\text{incidente}} (mW)</td>
<td>M1\text{\textsubscript{7}}</td>
<td>46.33 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{transmise}} (\mu W)</td>
<td>M1\text{\textsubscript{7}}</td>
<td>29 ± 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{courant d’obscurité}} (\mu W)</td>
<td>M1\text{\textsubscript{7}}</td>
<td>2.2 ± 0.5</td>
</tr>
<tr>
<td>F_{\text{désalignement 1}}</td>
<td></td>
<td>P_{\text{incidente}} (mW)</td>
<td>M2\text{\textsubscript{5}}</td>
<td>46.108 ± 0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{transmise}} (\mu W)</td>
<td>M2\text{\textsubscript{5}}</td>
<td>29 ± 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{courant d’obscurité}} (\mu W)</td>
<td>M2\text{\textsubscript{5}}</td>
<td>0.25 ± 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{incidente}} (mW)</td>
<td>M3\text{\textsubscript{5}}</td>
<td>46.07 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{transmise}} (\mu W)</td>
<td>M3\text{\textsubscript{5}}</td>
<td>29 ± 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{courant d’obscurité}} (\mu W)</td>
<td>M3\text{\textsubscript{5}}</td>
<td>0.25 ± 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{incidente}} (mW)</td>
<td>M4\text{\textsubscript{5}}</td>
<td>44.17 ± 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{transmise}} (\mu W)</td>
<td>M4\text{\textsubscript{5}}</td>
<td>27 ± 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_{\text{courant d’obscurité}} (\mu W)</td>
<td>M4\text{\textsubscript{5}}</td>
<td>0.25 ± 0.5</td>
</tr>
</tbody>
</table>

Table 4.3 – Mesures de puissance incidente, transmise et de courant d’obscurité pour un ensemble de mesures M. Le type de désalignement ainsi que la cavité considérée sont indiqués.

Les pertes par diffusion sont sensées être les pertes dominantes. Les pertes internes de la cavité ont été mesurées au LAPP. Ces pertes sont de l’ordre de 1% pour la cavité 6 [49], ce qui est en accord avec le calcul de perte par diffusion $P_{\text{diffusion}}$ (voir l’équation (4.4)), de l’ordre de 1% au regard des pertes par surface mesurées au LMA, voir la table 4.1.

$$P_{\text{diffusion}} = \frac{2F}{\pi} \sum_{i} S_{i}$$ \hspace{1cm} (4.4)

La différence de valeurs de finesse ne s’explique donc pas à travers une méstimation des pertes.
<table>
<thead>
<tr>
<th>Cavité</th>
<th>7</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{17}</td>
<td>129 ± 2</td>
<td>M_{15}</td>
</tr>
<tr>
<td>$F_{\text{décalage 1}}$</td>
<td></td>
<td>M_{25}</td>
</tr>
<tr>
<td>M_{27}</td>
<td>122 ± 2</td>
<td>M_{35}</td>
</tr>
<tr>
<td>$F_{\text{décalage 2}}$</td>
<td></td>
<td>M_{37}</td>
</tr>
<tr>
<td>M_{45}</td>
<td>119 ± 3</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4 – Valeurs des finesse obtenues à partir des puissance incidente, transmise et du courant d’obscurité pour un ensemble de mesures M. Le type de décalage ainsi que la cavité considérée sont indiqués.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>7</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\text{décalage}}$</td>
<td>126 ± 6</td>
<td>123 ± 13</td>
</tr>
</tbody>
</table>

Table 4.5 – Les valeurs de finesse obtenues par les mesures de réflectivités des cavités 7 et 5 avec deux décalages différents et leurs erreurs systématiques qui enveloppent toutes les mesures et leurs barres d’erreurs.
Les valeurs de finesse déterminées à partir des paramètres mesurés au LMA et au LAPP présentent des écarts importants et qui semblent incompatibles avec les barres d’erreurs. Afin de répondre à cet écart, une autre méthode de mesure a été développée, qui utilise les propriétés de résonance des cavités : le balayage.

4.2 Principe de la mesure par balayage

Cette section développe les méthodes permettant de retrouver la valeur de finesse d’une cavité à partir de balayages faits sur l’ensemble de sa gamme spectrale.

La puissance transmise par une cavité est telle que :

$$P_{DC} = \sum_{N} \frac{P_{\text{max}}(N)}{1 + \left(\frac{2F}{\pi}\right)^2 \sin^2 \left(\frac{2\pi L_{\text{opt}} \nu}{c} - N \arccos \left(\sqrt{1 - \frac{2L_{\text{geo}}}{\rho}}\right)\right)}$$ (4.5)

Les paramètres en rouge sont ceux de la cavité. $L_{\text{geo}} = 62.0$ mm est la longueur géométrique (voir la table ???). $L_{\text{opt}} = 2nL_{\text{geo}}$ est la longueur optique correspondant à la moitié d’un aller-retour du faisceau dans la cavité, $n= 1.44963$ l’indice optique de la silice, ρ le rayon de courbure (ou RoC), F la finesse, N l’ordre du mode du faisceau, ν la fréquence du faisceau laser, c la vitesse de la lumière et P_{max} la puissance incidente dans le mode TEM d’ordre N.

Deux méthodes ont été utilisées pour balayer les résonances de la cavité :

- La première méthode consiste à faire varier la fréquence ν du laser (méthode du balayage en fréquence, présentée section 4.2.3)

- La deuxième méthode consiste à changer la température de la cavité (méthode du balayage en température, présentée section 4.2.4). L’indice optique de la cavité varie avec la température ce qui change la longueur optique à travers $L_{\text{opt}} = 2nL_{\text{geo}}$. La longueur géométrique change aussi légèrement avec la température mais cette variation est négligeable comparée à l’impact du changement d’indice [17].

Le bancs de test et les boucles d’asservissements nécessaires à ces mesures sont présentés dans la section 4.2.2. L’algorithme utilisé afin de traiter l’ensemble des données est décrit section 4.2.5.

4.2.1 Méthode de calcul de la finesse

Sur la figure 4.2 est représentée la variation de puissance du faisceau transmis en fonction de sa variation de phase après un aller-retour $\delta \Phi$ (figures 4.2 et 4.3). L’équation (4.5) peut être réécrite de la manière suivante :

$$P_{DC}(\delta \Phi) = \frac{P_{\text{max}}}{1 + \left(\frac{2F}{\pi}\right)^2 \sin^2 (\delta \Phi)}$$, (4.6)
La largeur d’un pic de résonance appelé pic d’Airy, peut être définie à un niveau correspondant à la fraction \(p \) de la hauteur maximale du pic par :

\[
P_{DC}(\frac{d\Phi_p}{2}) = pP_{\text{max}} \tag{4.7}
\]

avec \(p \) compris entre 0 et 1, \(d\Phi_p \) la largeur du pic à la puissance \(pP_{\text{max}} \), voir figure 4.3.

En injectant l’équation (4.7) dans l’équation (4.6) il est obtenu :

\[
F = \sqrt{\frac{1}{p} - 1 - \frac{\Delta \Phi}{2 \sin(\frac{d\Phi_p}{2})}} \tag{4.8}
\]
avec $\Delta \Phi = 2\pi$ un intervalle spectral libre (ou FSR, Free Spectral Range), la distance entre deux résonances successives du même mode par exemple un mode TEM$_{00}$, figure 4.2.

Le déphasage $\delta \Phi$ varie linéairement en fonction du temps au cours d’un balayage. L’équation (4.8) peut se réécrire sous la forme :

$$F = \sqrt{\frac{1}{p} - 1} \frac{\Delta \Phi}{2 \sin \left(\frac{d_1 \times \pi}{\Delta t \times 2} \right)}$$

avec dt la largeur à mi-hauteur exprimée en seconde et Δt le FSR en secondes.

4.2.2 Banc de tests et opérations

Un banc de test a été conçu pour mesurer la finesse des cavités. Le dispositif expérimental est présenté figure 4.4.

Le laser utilisé est un laser à solide Nd-YAG de longueur d’onde 1064 nm. Un cube polarisateur est placé à la sortie du laser afin de ne garder que la polarisation S du faisceau. La conception du banc est telle que le waist du faisceau est adapté au waist des cavités [19]. Plusieurs photodiodes et caméras ont été utilisées pour étudier les faisceaux transmis et réfléchis par chaque cavité, et pour fournir les signaux d’erreurs nécessaires à l’asservissement du laser et des cavités. Les caméras sont utilisées durant l’alignement du faisceau sur les cavités afin d’observer les modes d’ordre supérieur transmis (HOM). La photodiode Pr$_{B1p}$ est une référence permettant de connaître la puissance sortante du laser. Pr$_{B1s1}$ mesure la puissance du faisceau réfléchi par la cavité du support 1 et Pr$_{B1t1}$ et Pr$_{B1t3}$ mesurent les faisceaux transmis respectivement par les cavités sur le support 1 et 2. Dans ce chapitre, les cavités à tester sont sur le support 1 sauf indication contraire.
Figure 4.4 – Schéma du banc de test. Les suffixes Pr et Img définissent respectivement les photodiodes et les caméras CCD ou cmos. Toutes les boucles de stabilisation représentées sur le schéma ne sont pas utilisées simultanément, voir la méthode de balayage ou de verrouillage utilisée.
Boucles d’asservissements

Plusieurs boucles d’asservissements sont utilisées sur le banc, figure 4.4. En effet, la mesure de la valeur de la finesse nécessite la stabilisation de différents paramètres : la puissance du laser, la température de la cavité lors d’un balayage en fréquence (section 4.2.3) ou de la fréquence du laser lors d’un balayage en température (section 4.2.4).

Pour une valeur de consigne X_0 et une mesure X, le signal d’erreur $X-X_0$ est utilisé pour déterminer le signal de correction. Ce signal est filtré numériquement puis converti en un signal analogique avec un convertisseur numérique-analogique ou Digital Analogue Converter (DAC), selon la boucle d’asservissement, soit en entrée de l’unité électronique d’asservissement du laser [43] soit en entrée de l’unité électronique d’asservissement en température de la cavité mode cleaner. La mesure du paramètre à contrôler est fournie par une photodiode PD, figure 4.5.

![Diagram](image)

Figure 4.5 – Schéma d’une boucle d’asservissement sur le banc de test.

Stabilisation de la puissance du laser La puissance du laser est asservie en utilisant la photodiode Pr_B1p (figure 4.4).

Avec cette boucle d’asservissement les fluctuations de puissance résiduelle sont de l’ordre de

$\frac{\Delta P}{P} < 10^{-3}$ avec ΔP la fluctuation $P_{\text{max}}-P_{\text{min}}$ de la puissance P durant cinq minutes, voir la figure 4.7.

Stabilisation en fréquence d’une cavité pour un balayage en température Lors d’un balayage en température d’une cavité, il est nécessaire que le faisceau incident sur celle-ci soit stable en fréquence. Une boucle d’asservissement en fréquence du laser est donc nécessaire. Pour cela, la présence d’une deuxième cavité est essentielle, voir figure 4.4. Un faisceau secondaire, issu du même laser, est aligné sur cette deuxième cavité. Une boucle d’asservissement est alors mise en place à partir d’une photodiode placée en transmission de celle-ci. La fréquence du laser est donc stabilisée par rapport à la longueur de la cavité.
Stabilisation en température d’une cavité pour un balayage en fréquence Une sonde en température est insérée dans le support en cuivre de l’OMC afin de mesurer sa température T. Le contrôle de l’OMC en température se fait avec deux cellules de Peltier placées entre le support en aluminium et celui en cuivre comme représenté figure 4.6. Pour une température de consigne T_0, le signal d’erreur $T-T_0$ est utilisé pour envoyer un signal de correction au contrôleur des cellules de Peltier à travers le DAC.

Les fluctuations en température moyennes enregistrées pour ce montage sont de l’ordre de ±0.5 m°C sur une période de 10 min. Ces fluctuations en température sont représentées figure 4.7 en bas à gauche.

4.2.3 Balayage en fréquence

Un balayage en fréquence est une variation linéaire périodique de la fréquence du laser au cours du temps. Ce signal triangulaire est présenté figure 4.7. Pour changer la fréquence du laser une tension est appliquée en entrée de l’unité de contrôle électronique du laser, ce qui modifie la température du cristal du laser. L’amplitude, le niveau bas (l’offset) et la fréquence du balayage sont choisis préalablement.

En parallèle, l’OMC est stabilisé en température avec les cellules de Peltier (section 4.2.2).

La figure 4.7 en haut à gauche représente la variation de la puissance en transmission d’une cavité en fonction du temps durant un balayage en fréquence. Chaque pic observé avec $P_{B1}t1$ est un pic d’Airy correspondant au mode TEM$_{00}$, voir dans la section 3.1.

Un FSR pour un balayage en fréquence est défini tel que :

$$\Delta \nu = \frac{c}{2L_{opt}}$$ (4.10)

avec $\Delta \nu$ la variation en fréquence pour décrire un FSR, c la vitesse de la lumière et L_{opt} la longueur optique de la cavité.

1. Wavelength Electronics, Inc., TCS650
Figure 4.7 – Balayage en fréquence. En haut à gauche : puissance transmise par une cavité en fonction du temps. En haut à droite : tension de commande appliquée au laser en fonction du temps. Amplitude, offset et fréquence sont respectivement à 4 V, −3 V et 0.004 Hz. En bas à gauche : cavité stabilisée en température en fonction du temps. En bas à droite : puissance du laser stabilisée en fonction du temps.

4.2.4 Balayage en température

Une variation de température de la silice change son indice optique ainsi que sa longueur géométrique, \(L_{opt} \), utilisée dans la formule (4.5). Un balayage en température est une variation de la température d’une cavité, réalisée au moyen de cellules de Peltier, au cours du temps. Un signal triangulaire est également utilisé pour la commande en température.

Un FSR pour un balayage en température est défini tel que :

\[
\Delta L_{opt} = \frac{\lambda}{2}
\]

(4.11)

avec \(\Delta L_{opt} \) la variation de longueur optique correspondant à la variation en température, \(\lambda = 1064 \) nm la longueur d’onde.

La figure 4.8 représente en haut à gauche la puissance transmise par la cavité en fonction de la température. Pour un balayage en température la distance entre deux pics correspond à une variation en température de \(\approx 0.55 \) °C. Cette remarque met en lumière l’importance de la stabilisation de la température pour un balayage en fréquence, voir section 4.2.3.

La précision de la stabilisation en température pour un balayage en fréquence (0.5 m°C, voir la section 4.2.2) associée à la variation en température entre deux pics de résonance du mode fondamental pour un balayage en température (0.55 °C), implique une variation du FSR de l’ordre de 1/1000 lors d’une mesure, soit une variation de plus de 10 % de la largeur à

mi-hauteur (pour une variation de 0.5 m°C dans la période de largeur à mi-hauteur considéré). Afin d’augmenter la précision de la mesure (< 10 % de la valeur de la finesse), il faut augmenter la statistique et faire un grand nombre de balayages. Dans ces conditions un programme a été développé afin de mesurer la finesse automatiquement à partir des prises de données.

4.2.5 Algorithme de mesure de la finesse

Le calcul de la finesse nécessite d’estimer les erreurs systématiques de la mesure causées par des effets extérieurs (puissance incidente, vitesse du balayage, ...). Ces effets systématiques seront discutés section 4.3. Pour ces raisons, le sens de la rampe de tension (montée ou descente) et le côté du pic (gauche ou droite) ont été distingués figure 4.9.

La première étape est de trier les données pour enregistrer les segments courts de données contenant les pics, voir la figure 4.10 :

- Le programme lit 2000 points de données. La fréquence d’échantillonnage est de 1000 Hz et permet de n’avoir qu’un pic de résonance sur le TEM00 par segment.

- Ces 2000 points sont divisés en quatre parties, $[0; \frac{4}{4}]$.

- Le programme trie les 1000 points de la partie centrale (segment $[\frac{1}{4}; \frac{3}{4}]$), en cherchant les pics de puissance supérieur à 70% de la puissance maximale observée durant la période de prise de données. Si un pic est identifié, le segment des 2000 points de données est enregistré pour
La seconde étape du programme est d’extraire les paramètres de chaque pic identifié dans les données.

Il a été vu précédemment que le calcul de la finesse pouvait être effectué avec différentes largeurs de pic. Les largeurs choisies pour ce calcul ont été les largeurs à 0.8 P_{max}, 0.5 P_{max} et 0.2 P_{max}, figure 4.9. Les données sont analysées de la manière suivante :

- Une parabole est ajustée aux données autour du sommet du pic afin d’obtenir précisément la position de son maximum, figure 4.11. Il en découle la valeur de cette puissance maximum, P_{max}, et donc les puissances à 0.8 P_{max}, 0.5 P_{max} et 0.2 P_{max}.

- Pour chaque hauteur de pic une régression linéaire est faite sur les trois points à gauche et à droite du pic, figure 4.11. Les largeurs à 0.8P_{max}, 0.5 P_{max} et 0.2 P_{max} de la puissance maximum sont déterminées et les largeurs droite et gauche sont distinguées avec la position du maximum du pic.

- La direction du balayage (montée ou descente) est également notée.
Avec l’ensemble de ces paramètres, il est possible de remonter à la valeur de la finesse. La largeur utilisée dans le calcul de la finesse est la valeur moyenne des largeurs des deux pics d’un FSR, voir partie 4.2.1.

4.3 Finesse déduite à partir de balayages en fréquence

Les mesures de finesse à partir des paramètres de surface ont donné des résultats différents selon que ces mesures aient été effectuées sur les substrats OMC ou bien sur les échantillons tests (sous section 4.1.1 ou 4.1.2). Cette section présente l’ensemble des mesures de finesse à partir d’un balayage en fréquence. L’utilisation du balayage en fréquence de la cavité permet, en plus de confirmer les résultats de finesse mesurées au LAPP à partir des paramètres de surfaces, de tester un ensemble de paramètres qui peuvent avoir un effet sur la finesse du substrat (effet de la puissance, de la vitesse du balayage...).

4.3.1 Artefact électronique

Pour rappel, les largeurs gauche et droite du pic sont distinguées. Dès les premières mesures est apparu un effet d’asymétrie des pics. Cette asymétrie se traduisait par des finesse de droite plus élevées que les finesse de gauche et ceci indépendamment du sens du balayage (montant ou
Cette asymétrie, après de nombreuses recherches, s’est avérée provenir d’un artefact électronique dans la chaîne de lecture de la photodiode placée en transmission de l’OMC : le filtre de mise en forme, présent dans la partie analogique de la chaîne de lecture, n’était pas correctement compensé par le filtre numérique inverse. Cela induisait un temps de retard différent de la chaîne de lecture sur la gauche ou la droite du pic, d’où l’asymétrie observée. Cet effet n’est présent que lorsque la vitesse de balayage nécessite l’utilisation de données dans la bande de fréquence de 2 à 12 Hz.

La figure 4.12 montre le cas avec et sans filtre de mise en forme à 0.8, 0.5 et 0.2 de la puissance maximale pour une même cavité. La chaîne électronique a été corrigée à la fin de la campagne de mesures. Les résultats reportés dans les sections suivantes sont uniquement ceux non affectés par cet effet.

4.3.2 Influence des modes d’ordre supérieur

Afin de tester l’influence de modes d’ordre supérieur proche de la résonance du TEM\(_{00}\) sur la valeur de finesse, il est nécessaire de distinguer le sens du balayage mais également le côté du pic. Si un mode d’ordre supérieur est proche de la résonance du mode fondamental (TEM\(_{00}\)), ce pic devrait être asymétrique. Lorsque la direction du balayage (montée ou descente) change, l’ordre d’apparition des HOM change, voir figure 4.9. Ce qui implique qu’une finesse ”left up” correspond à une finesse ”right down”. En effet une largeur gauche d’un pic d’Airy sur un balayage montant correspond à une largeur droite d’un pic d’Airy sur un balayage descendant. Voilà pourquoi les finesses ”left up” et ”right down” et les finesses ”right up” et ”left down” ont été rassemblées sur la figure 4.14 et les tables de la section.

La figure 4.13 représente la fiche technique du balayage en fréquence associée aux histo-
Figure 4.12 – Histogramme des valeurs de finesse obtenus à 80%, 50% and 20% de la puissance maximale du pic pour des balayages avec (en haut) et sans (en bas) filtre de mise en forme fait le 18/07/2014 (cavité 6). En rouge les finesse calculées à partir des largeurs droites et en bleu les finesse calculées à partir des largeurs gauches du pic.

Figure 4.13 – Sur la gauche, paramètres du balayage en fréquence : amplitude, offset et fréquence. Le premier histogramme représente l’histogramme de l’ensemble des FSR mesurés en temps. Avec les paramètres choisis, un FSR est effectué en 38.1 secondes. L’histogramme de droite correspond à la distribution de la valeur de finesse pour une largeur prise à mi-hauteur du pic.
grammes des FSR en secondes et des finesse calculées à partir de 50% de P_{max}. Le RMS de l’histogramme du FSR montre que la longueur de celui-ci est plus stable que la valeur de la finesse (0.7% pour le FSR versus 7% pour la finesse). Les fluctuations de la finesse proviennent donc des fluctuations de la largeur des pics, ce qui correspond aux fluctuations attendues (due à la stabilisation en température, voir section 4.2.1). La figure 4.14 représente les histogrammes des valeurs de finesse rassemblés selon le sens de balayage et du coté du pic observé. Aucun biais sur les valeurs de finesse dû à la présence de mode d’ordre supérieur n’est observé.

![Histogrammes de finesse](image.png)

Figure 4.14 – Histogrammes des valeurs de finesse (cavité 6) triées selon le sens du balayage (montant/descendant) et selon le coté des pics de résonance considéré (gauche/droit), définis dans la partie 4.2.5. La largeur utilisée pour les calculs est celle à $P = 0.5 P_{\text{max}}$. Les valeurs moyennes des finesse sont reportées table 4.6.

4.3.3 Influence de la puissance du laser

Afin de vérifier les effets thermiques dans la cavité dues à l’absorption de puissance, trois lots de balayages à trois puissances incidentes différentes 4, 8 et 12 mW ont été effectués. La résonance du TEM$_{00}$ implique une augmentation de la puissance du faisceau à l’intérieur de la cavité. Si la cavité est sujette à des effets thermiques dus à l’absorption de puissance du
TEM$_00$, il devrait être observé une différence de finesse entre les balayages montants et les balayages descendants. En effet, si le balayage en fréquence est montant, l’effet d’une augmentation en température de la cavité au moment de la résonance va impacter l’indice optique de la cavité ce qui devrait déceléer de manière effective le balayage en fréquence. Lors d’un balayage descendant, l’effet sera inversé, et le balayage en fréquence devrait être accéléré de manière effective. Cet effet devrait augmenter avec la puissance du laser.

Résultats pour différentes puissances

Les figures 4.15 et 4.16 présentent les balayages réalisés à 4 et 12 mW. De la même manière que pour les balayages faits précédemment à 8 mW, la longueur des FSR est plus stable que la valeur des finesse à 4 et 12 mW. La table 4.6 résume les valeurs de finesse de la cavité 6 pour les puissances à 4, 8 et 12 mW. Aucun des effets thermiques mentionnés précédemment ne sont observés. La moyenne de la finesse sur l’ensemble de ces balayages est de 121.2 avec une erreur systématique de l’ordre de 1%

Remarque : La valeur de la finesse obtenue à partir des balayages en fréquence du laser est, de la même manière que les mesures effectuées au LAPP (voir la section 4.1.2), plus basse que celle déduite des échantillons témoins (voir la section 4.1.1).

Tableau 4.6

<table>
<thead>
<tr>
<th>Date</th>
<th>07/17/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMC</td>
<td>6</td>
</tr>
<tr>
<td>B1p(mW)</td>
<td>4</td>
</tr>
<tr>
<td>Amplitude (V)</td>
<td>4</td>
</tr>
<tr>
<td>Offset (V)</td>
<td>2</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>0.002</td>
</tr>
<tr>
<td>Peltiers</td>
<td>22°C</td>
</tr>
</tbody>
</table>

Figure 4.15 – Sur la gauche, paramètres du balayage en fréquence : amplitude, offset et fréquence. Le premier histogramme représente l’histogramme de l’ensemble des FSR mesurés en temps, le deuxième celui des valeurs de finesse. Avec les paramètres choisis, un FSR est effectué en 38.2 secondes.

<table>
<thead>
<tr>
<th>Date</th>
<th>07/24/2014</th>
<th>OMC</th>
<th>#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1p(mW)</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude (V)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset(V)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency(Hz)</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peltiers</td>
<td>22°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Puissance du laser (mW)</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude (V)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fréquence(Hz)</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Nbr FSR</td>
<td>1073</td>
<td>1547</td>
<td>1554</td>
</tr>
<tr>
<td>F<sub>80%</sub></td>
<td>120.8 ± 0.2</td>
<td>121.1 ± 0.2</td>
<td>121.0 ± 0.2</td>
</tr>
<tr>
<td>F<sub>50%</sub></td>
<td>120.7 ± 0.2</td>
<td>121.5 ± 0.2</td>
<td>121.0 ± 0.2</td>
</tr>
<tr>
<td>F<sub>20%</sub></td>
<td>120.2 ± 0.2</td>
<td>120.6 ± 0.2</td>
<td>120.6 ± 0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>F<sub>80%</sub> up</td>
<td>121.1</td>
<td>121.3</td>
</tr>
<tr>
<td>F<sub>50%</sub> up</td>
<td>121.2</td>
<td>121.0</td>
</tr>
<tr>
<td>F<sub>20%</sub> up</td>
<td>121.0</td>
<td>120.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>F<sub>80%</sub> down</td>
<td>120.7</td>
<td>121.3</td>
</tr>
<tr>
<td>F<sub>50%</sub> down</td>
<td>120.6</td>
<td>121.2</td>
</tr>
<tr>
<td>F<sub>20%</sub> down</td>
<td>120.0</td>
<td>120.6</td>
</tr>
</tbody>
</table>

TABLE 4.6 – Valeur de la finesse en fonction de la puissance incidente du laser. Erreurs statistiques uniquement.
4.3.4 Influence de la vitesse des balayages

L’étude suivante porte sur les effets systématiques associés aux vitesses de balayages. Plusieurs balayages à différentes vitesses ont été effectués. Les résultats sont reportés dans la table 4.7.

Le balayage le plus lent a des valeurs de finesse légèrement supérieures aux deux autres vitesses de balayages. Mais les valeurs de finesse au sein de ce balayage ne sont pas uniformes. En effet, la valeur de finesse obtenue varie selon le sens de balayage ou le côté du pic considéré. L’hypothèse avancée est que le laser à basse fréquence est plus bruyant. Les vitesses de balayages ont été choisies par la suite en conséquence (généralement à une fréquence de 0.002 Hz pour une amplitude de 4 V).

Une deuxième remarque peut être faite concernant la dispersion des mesures. En effet, plus le balayage est lent plus celle-ci est importante. Afin de comprendre cette dispersion, l’influence de la stabilisation en température sur les mesures de finesse a été étudiée.

<table>
<thead>
<tr>
<th>Cavité 6</th>
<th>26/07/14</th>
<th>18/07/14</th>
<th>23/07/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puissance du laser (mW)</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Amplitude (V)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fréquence(Hz)</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>Nbr FSR</td>
<td>2289</td>
<td>3701</td>
<td>4060</td>
</tr>
<tr>
<td>F_{80%}</td>
<td>123.3 ± 0.3</td>
<td>121.1 ± 0.2</td>
<td>120.5 ± 0.1</td>
</tr>
<tr>
<td>F_{50%}</td>
<td>122.6 ± 0.3</td>
<td>121.2 ± 0.2</td>
<td>121.3 ± 0.1</td>
</tr>
<tr>
<td>F_{20%}</td>
<td>121.6 ± 0.3</td>
<td>120.6 ± 0.2</td>
<td>120.6 ± 0.1</td>
</tr>
<tr>
<td>F_{80% up}</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>122.0</td>
<td>122.8</td>
<td>121.2</td>
</tr>
<tr>
<td>F_{50% up}</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>121.4</td>
<td>122.7</td>
<td>121.2</td>
</tr>
<tr>
<td>F_{20% up}</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>121.1</td>
<td>122.6</td>
<td>121.1</td>
</tr>
<tr>
<td>F_{80% down}</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>125.0</td>
<td>125.1</td>
<td>121.0</td>
</tr>
<tr>
<td>F_{50% down}</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>124.1</td>
<td>124.3</td>
<td>120.9</td>
</tr>
<tr>
<td>F_{20% down}</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>123.5</td>
<td>123.0</td>
<td>120.4</td>
</tr>
</tbody>
</table>

Table 4.7 – Valeurs des finesse en fonction de la vitesse du balayage. Les erreurs présentées ici sont uniquement statistiques.

4.3.5 Influence de la température

Dans le cas d’un balayage en température, un FSR est effectué pour une variation de 0.55 °C. La partie 4.3.2 a montré que la sensibilité de la mesure de la finesse se situait au niveau de la mesure de la largeur à mi-hauteur des pics d’Airy TEM_{00}. Cette partie présente l’influence
Figure 4.17 – Largeur à mi-hauteur des pics en fonction de la variation en température min et max dans l’intervalle de temps considéré. Balayage des 26, 18 et 23/07/2014, table 4.7.

de la température d’une cavité lors de balayages en fréquence. L’étude s’est donc attachée à regarder la valeur de la largeur à mi-hauteur en fonction de la variation en température ΔT (figure 4.17) pour les trois vitesses de balayages vu section 4.3.4. ΔT est en degré et correspond à la différence de température minimale et maximale enregistrée dans l’intervalle de temps correspondant à la largeur à mi-hauteur.

La figure 4.17 montre que les fluctuations en température sont plus grandes pour des balayages lents mais aucune corrélation n’est observée entre la largeur du pic et la température.

Un autre élément pouvant intervenir dans la dispersion des mesures de finesse est le bruit du DAC.

4.3.6 Influence du bruit du DAC

Le niveau de bruit du DAC utilisé pour piloter la fréquence du laser dépend de la tension qui lui est appliquée. Le bruit du DAC en fonction de sa fréquence et pour différentes tensions appliquées est représenté figure 4.18 [45]. Le bruit à basse fréquence augmente avec la tension appliquée. Afin de voir si la mesure de la finesse est limitée par le bruit du DAC, plusieurs largeurs à mi-hauteur ont été mesurées à différentes tensions : les largeurs à $0.2 P_{\text{max}}$, $0.5 P_{\text{max}}$ et $0.8 P_{\text{max}}$ entre $[-0.5V; 0.5V]$ et pour des tensions inférieures et supérieures à cet intervalle jusqu’à ±2 V. La vitesse des balayages utilisés implique une utilisation du DAC à des fréquences proches de 3 Hz (largeur des pics étudiés ≈ 0.3 s). Les résultats sont présentés figure 4.19 et table 4.8.

Les largeurs et intrinsèquement les finesse ne semblent pas limitées par le bruit du DAC.
Si tel était le cas les valeurs de largeurs proches de 0 V devrait avoir des RMS bien plus faibles que les autres largeurs ce qui n’est pas le cas.

Figure 4.18 – A gauche : bruit du DAC pour différentes entrées DC [45]. A droite : en vert la rampe appliquée au laser afin d’avoir un balayage en fréquence, en rouge les pics observés durant cette rampe.

Figure 4.19 – Largeurs à 20%, 50% et 80% de la puissance maximum d’un pic. En rouge la valeur des largeurs mesurées pour une tension comprise entre -0.5 et 0.5 V, en bleu les autres cas.

4.3.7 Influence de la fréquence d’échantillonnage

Historiquement, certains lots de données ont été pris à des fréquences d’échantillonnage différentes. Afin de ne pas introduire de biais dans les mesures, l’effet de la fréquence d’échantillonnage a été testé sur les données. Des données à 1 kHz ont été ré-échantillonnées à 200 Hz. La mesure de finesse a ensuite été extraite de l’ensemble de ces deux lots de données correspondant à la même période de mesure. Les résultats sont reportés table 4.9. Aucun effet dû au ré-échantillonnage n’est observé.
$$07/21/2014 \nu = 0.002 \text{ Hz}$$

<table>
<thead>
<tr>
<th>Entrées</th>
<th>Moyenne</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width 0.8 P_{max} $[-0.5\text{V},0.5\text{V}]$</td>
<td>258</td>
<td>0.156</td>
</tr>
<tr>
<td>Width 0.8 P_{max} $<-0.5\text{V or }>0.5\text{V}$</td>
<td>1289</td>
<td>0.158</td>
</tr>
<tr>
<td>Width 0.5 P_{max} $[-0.5\text{V},0.5\text{V}]$</td>
<td>258</td>
<td>0.313</td>
</tr>
<tr>
<td>Width 0.5 P_{max} $<-0.5\text{V or }>0.5\text{V}$</td>
<td>1289</td>
<td>0.3162</td>
</tr>
<tr>
<td>Width 0.2 P_{max} $[-0.5\text{V},0.5\text{V}]$</td>
<td>258</td>
<td>0.628</td>
</tr>
<tr>
<td>Width 0.2 P_{max} $<-0.5\text{V or }>0.5\text{V}$</td>
<td>1289</td>
<td>0.634</td>
</tr>
</tbody>
</table>

Table 4.8 – Largeur à 20%, 50% et 80% du maximum du pic pour des valeurs de DAC particulières.

<table>
<thead>
<tr>
<th>Cavité 6</th>
<th>1000 Hz</th>
<th>200 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puissance du laser (mW)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Amplitude (V)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fréquence (Hz)</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Nbr FSR</td>
<td>1547</td>
<td>1547</td>
</tr>
<tr>
<td>$F_{80%}$</td>
<td>121.1 ± 0.2</td>
<td>121.1 ± 0.2</td>
</tr>
<tr>
<td>$F_{50%}$</td>
<td>121.5 ± 0.2</td>
<td>121.4 ± 0.2</td>
</tr>
<tr>
<td>$F_{20%}$</td>
<td>120.6 ± 0.2</td>
<td>120.5 ± 0.2</td>
</tr>
<tr>
<td>F_{up}</td>
<td>121.3 ± 0.2</td>
<td>121.3 ± 0.2</td>
</tr>
<tr>
<td>F_{down}</td>
<td>121.6 ± 0.2</td>
<td>121.6 ± 0.2</td>
</tr>
<tr>
<td>F_{right}</td>
<td>121.1 ± 0.2</td>
<td>121.1 ± 0.2</td>
</tr>
<tr>
<td>F_{left}</td>
<td>121.0 ± 0.2</td>
<td>121.1 ± 0.2</td>
</tr>
</tbody>
</table>

Table 4.9 – 07/21/14. Colonne de droite : résultat pour les données ré-échantillonnées à 200 Hz. Colonne de gauche : résultats provenant du lot original de données à 1 kHz.
4.3.8 Valeur moyenne des finesse de la cavité 6 provenant d’un balayage en fréquence

Six valeurs de finesse ont été obtenues à 0.5 P_{max} (voir tables 4.6 et 4.7) correspondant aux balayages avec différents paramètres (différentes puissances incidentes, différentes vitesses de balayage). La moyenne des finesse pondérée par les erreurs statistiques est :

$$F_{\text{average}} = \left(\sum_{i} \frac{1}{\delta F_i^2} \right)^{-1} \sum_{i} \frac{F_i}{\delta F_i^2} = 121.3 \pm 0.1$$ (4.12)

avec δF_i les erreurs statistiques et i les différentes mesures.

Les incertitudes données sont les erreurs statistiques. L’écart entre la plus grande et la plus petite mesure est utilisé pour estimer les erreurs systématiques. La valeur de la finesse de la cavité 6 avec son erreur systématique est :

$$F_{\text{average}} = 121.3 \pm 2.9$$ (4.13)

4.3.9 Valeurs de finesse des cavités 5, 7 et 8

Les cavités 7 et 5 font partie du même lot de traitement de surface. Les résultats des mesures sont reportés table 4.10. Pour chaque cavité sont observées des valeurs de finesse identiques à 1% près. Ces valeurs de finesse, extraites de la méthode de balayage des cavités, confirment les valeurs obtenues par les mesures de transmission faites au LAPP (section 4.1).

4.4 Finesse mesurée à partir d’un balayage en température

Afin de rechercher des erreurs systématiques provenant des balayages en fréquence, un autre type de mesure a été mis en place : les balayages en température.

Cette mesure est légèrement plus complexe que l’application d’une stabilisation en température puisqu’un balayage en température n’est pas linéaire sur l’ensemble de sa rampe. Lorsque le balayage change de direction (augmentation pour une diminution de température et vice-versa), les cellules de Peltier ne livrent plus une réponse linéaire. La longueur des FSR est alors modifiée. Pour remédier à cet effet, seules les parties considérées comme quasi linéaires de milieu de rampe ont été gardées, soit entre 22 °C et 24 °C, correspondant à 3 FSR entiers. En dépit de cette coupure, trois valeurs de FSR sont observées sur l’histogramme figure 4.20. Ces trois valeurs correspondent aux différentes tailles de FSR venant de la non linéarité de la rampe. Si la finesse ne semble pas impactée par les différentes valeurs de FSR (compensée par la largeur des pics), la réponse non linéaire des cellules de Peltier laisse apparaître une petite queue de distribution.

Les histogrammes extraits des résultats des valeurs de finesse sont reportés figure 4.20 et figure 4.21. La petite queue de distribution des finesse peut avoir un biais sur les valeurs
Table 4.10 – Valeurs des finesses obtenues pour les cavités 7, 5 et 8.

<table>
<thead>
<tr>
<th>Cavités</th>
<th>7</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser power (mW)</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Amplitude (V)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>0.004</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>25</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Nbr FSR</td>
<td>9668</td>
<td>2016</td>
<td>1080</td>
</tr>
</tbody>
</table>

F\textsubscript{80%} 124.7 ± 0.1 123.9 ± 0.1 126.6 ± 0.3
F\textsubscript{50%} 124.6 ± 0.1 124.2 ± 0.1 126.4 ± 0.3
F\textsubscript{20%} 124.1 ± 0.1 123.8 ± 0.1 125.8 ± 0.3
F\textsubscript{up} 124.5 ± 0.1 124.4 ± 0.1 127.0 ± 0.3
F\textsubscript{down} 124.7 ± 0.1 124.0 ± 0.1 125.9 ± 0.3
F\textsubscript{right} 124.6 ± 0.1 124.1 ± 0.1 126.6 ± 0.3
F\textsubscript{left} 124.6 ± 0.1 123.8 ± 0.1 126.4 ± 0.3

Figure 4.20 – A gauche : paramètres du balayage. Au milieu : histogramme des FSR mesurés pour des températures comprises entre 22°C et 24°C. A droite : histogramme de la finesse.
Figure 4.21 – Distribution de la finesse estimée par un balayage en température en fonction de trois largeurs de pic différentes. Voir table 4.11 pour les valeurs moyennes.

Figure 4.22 – Balayage en fréquence du 18/07/2014. Valeurs de finesse obtenues à partir des largeurs à 80%, 50% et 20% de la puissance maximum du TEM$_{00}$. En rouge les histogrammes des finesse de droites en bleu celles de gauches. Les valeurs moyennes des finesse sont reportées table 4.6.
La finesse obtenue pour les balayages en température est identique à celle obtenue par les balayages en fréquence (équation 4.13), soit de l’ordre de 121 pour la cavité 6.

L’étallement de la distribution des valeurs de finesse pour les balayages en température (voir la figure 4.21) est plus petit que pour les balayages en fréquence (voir la figure 4.22). La température de la cavité ne domine donc pas l’étallement observé pour les balayages en fréquence.

La documentation du laser indique que le bruit en fréquence du laser est de l’ordre de 1 kHz à 10 Hz ce qui ne permet pas d’expliquer l’étallement des valeurs de finesse pour les balayages en fréquence. Le bruit en fréquence n’évolue pas en 1/f. À 1 Hz il est de l’ordre de 100 kHz, ce qui ne permet toujours pas de comprendre l’étallement de 10% des valeurs de finesse pour les balayages en fréquence. Ces mesures ont été faites lorsque le laser était stabilisé en fréquence. Il est possible que le bruit en fréquence du laser soit plus important lors d’un balayage en fréquence que lors d’une stabilisation.

L’étallement de la distribution des finesse obtenues par un balayage en température s’explique quant à elle par l’effet de la stabilisation en température. En effet une variation de 10^{-4} °C pour une largeur à mi-hauteur (voir la figure 4.3.5) correspond à une variation d’un peu plus de 2% de la largeur à mi-hauteur (voir la section 4.2.4).

Un autre effet a été testé : la possibilité d’un bruit créé lors d’un balayage en fréquence, par la combinaison de la commande en puissance du laser associé au signal triangulaire envoyé au laser pour la rampe. Des balayages ont alors été effectués sans la stabilisation en puissance,
mais aucun changement notable ne fut observé. Le bruit en fréquence du laser à basse fréquence reste l’hypothèse privilégiée.

4.5 Valeurs de finesses pour les polarisations S et P

Le chapitre 6 aborde avec plus de détails ce que sont les polarisations S et P. Les mesures effectuées ont été faites avec un faisceau laser polarisé S grâce à un cube polariseur placé à la sortie du laser, figure 4.4.

Comme cela a été décrit dans le chapitre 3, un actionneur piezo-électrique est placé au dessus de la cavité pour moduler sa longueur et ainsi produire le signal d’erreur pour son contrôle. Or cette pression appliquée par le piezo sur la cavité déforme légèrement le substrat, section 3.7. Cette déformation crée de la biréfringence, voir chapitre 6. Deux polarisations résonnent alors séparément dans la cavité.

Afin de mesurer la finesse de la cavité vue par la polarisation P sans enlever des éléments du montage (cube polariseur placé à la sortie du laser), une lame demi-onde est placée à l’entrée de l’OMC. Dans ces conditions, la polarisation P est maximisée et les polarisations obtenues sont les suivantes : 59 % de polarisation P pour 41% de polarisation S. Un cube polariseur est placé à la suite de la lame demi-onde pour ne faire résonner que la polarisation P dans la cavité. Les résultats sont présentés figure 4.23.

De la même manière le cube est tourné pour ne permettre uniquement qu’à la polarisation S de résonner dans la cavité. Les résultats sont présentés figure 4.24. Ceux-ci sont en accord avec ceux obtenus dans l’ensemble du chapitre pour la cavité 6. En effet, à l’issue du cube polariseur placé à la sortie du laser la polarisation est, comme voulu, majoritairement la polarisation S. La faible proportion de P n’impacte pas les mesures de finesse de la polarisation S.

L’ensemble des valeurs obtenues sont présentées table 4.12. Comme attendu, en raison du faible écart des angles d’incidence par rapport à la normale, une différence assez faible de finesse entre la polarisation S et P est observée. En effet, les angles d’incidences sont proches de la normale, modifiant ainsi peu les coefficients de réflexions vus par les polarisations S et P.

\[
F_{\text{pol-S}} = 121.3 \pm 2.9
\]

(4.14)

\[
F_{\text{pol-P}} = 110.7 \pm 2.9
\]

(4.15)
Figure 4.23 – Résumé des mesures faites avec le faisceau polarisé P.

Figure 4.24 – Résumé des mesures faites avec le faisceau polarisé S.
Table 4.12 – Valeurs de finesse de la cavité 6 pour les polarisations S et P.

<table>
<thead>
<tr>
<th></th>
<th>cavité 6 pol-S 08/12/2014</th>
<th>cavité 6 pol-P 08/11/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puissance du laser (mW)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Amplitude (V)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fréquence (Hz)</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Température(°C)</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Nbr FSR</td>
<td>2838</td>
<td>2016</td>
</tr>
<tr>
<td>$F_{80%}$</td>
<td>120.2 ± 0.1</td>
<td>110.9 ± 0.1</td>
</tr>
<tr>
<td>$F_{50%}$</td>
<td>120.9 ± 0.1</td>
<td>111.3 ± 0.1</td>
</tr>
<tr>
<td>$F_{20%}$</td>
<td>120.3 ± 0.1</td>
<td>110.0 ± 0.1</td>
</tr>
</tbody>
</table>
4.6 Conclusion

Ce chapitre a mis en lumière les mesures et résultats obtenus pour les finesse des cavités de l’OMC Advanced Virgo. Les spécifications pour l’ensemble des cavités étaient de 142.5.

Les valeurs de finesse dérivées des mesures de transmission du LMA faites sur des échantillons placés en même temps que les cavités lors de leur traitement de surface sont :

<table>
<thead>
<tr>
<th>Témoin 1 (cavités 8 et 6)</th>
<th>Témoin 2 (cavités 7 et 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>150.5</td>
</tr>
<tr>
<td></td>
<td>146.3</td>
</tr>
</tbody>
</table>

Les finesse provenant des mesures de transmission faites au LAPP sur les surfaces des cavités sont :

<table>
<thead>
<tr>
<th>Cavité</th>
<th>7</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{désalignement}</td>
<td>126 ± 6</td>
<td>123 ± 13</td>
</tr>
</tbody>
</table>

Les valeurs de finesse sont plus basses que celles obtenues à partir des paramètres de surface sur des échantillons-tests au LMA. Les pertes de la cavité, dominées par les pertes par diffusion, sont faibles et ne peuvent donc pas expliquer la différence de valeur de finesse observée.

D’autres techniques de détermination de la finesse ont donc été mises en œuvre. En particulier, plusieurs séries de mesures ont été faites en utilisant la technique du balayage en fréquence. La cavité 6 a alors été au cœur de la recherche d’erreurs systématiques. La puissance incidente, la vitesse de balayage, la fréquence d’échantillonnage ou encore le bruit du DAC sont autant de paramètres dont l’influence sur la mesure de finesse a été vérifiée. De plus, une autre méthode de mesure a été utilisée : le balayage en température. L’ensemble de ces mesures a donné des résultats en accord avec les valeurs obtenues à partir des mesures de transmission faites au LAPP. Les résultats de finesse utilisés comme références par la suite sont présentés dans la table ci-après et incluent les erreurs systématiques discutées dans ce chapitre :

<table>
<thead>
<tr>
<th>Cavités</th>
<th>6</th>
<th>7</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>121.3 ± 2.9</td>
<td>124.6 ± 2.9</td>
<td>124.2 ± 2.9</td>
<td>126.4 ± 2.9</td>
</tr>
</tbody>
</table>
5

RAYONS DE COURBURES

Sommaire

5.1 Estimation de l’erreur sur le rayon de courbure à partir des cartes de polissage ... 100
5.2 Mesure par réflexion directe du faisceau sur la cavité 103
 5.2.1 Méthode de caractérisation d’un faisceau avec une caméra 103
 5.2.2 Caractérisation du faisceau ... 104
 5.2.3 Caractérisation de la face sphérique 105
5.3 Mesure avec le faisceau transmis des cavités résonnantes 108
5.4 Mesure par un balayage de la cavité 112
5.5 Conclusion ... 116
Les cavités constituant l’OMC sont composées de quatre faces dont une face sphérique, voir chapitre 3. Le rayon de courbure de la face sphérique détermine notamment le waist du faisceau, ainsi que la qualité de filtrage des modes d’ordre supérieur de la porteuse et des bandes latérales.

Un miroir sphérique non uniforme peut être à l’origine de l’astigmatisme d’un faisceau, c’est-à-dire un faisceau avec des rayons différents selon les axes Ox et Oy. L’astigmatisme d’un faisceau peut générer des pertes et altérer le filtrage des cavités.

Il a été vu dans le chapitre 3 que la cavité OMC Advanced Virgo peut être sujette à une déformation, due à la contrainte appliquée sur le piezo, impliquant un changement de la courbure de ses faces réfléchissantes. De plus, les cartes de surface des miroirs présentent des déformations locales qui peuvent également induire une variation locale du rayon de courbure. L’alignement du faisceau ainsi que le mode du faisceau considéré sont des paramètres qui peuvent aussi changer les déformations observées par le faisceau et donc le rayon de courbure local effectif.

Trois méthodes ont ainsi été mises en place afin de mesurer les rayons de courbure en X et en Y des quatre cavités. Selon les méthodes, le rayon de courbure évalué est celui du rayon de courbure de la face sphérique, ou celui du rayon de courbure effectif de la cavité (mesure prenant en compte d’éventuelles courbures et déformations locales des faces planes).

La caractérisation du rayon de courbure des cavités est donc essentielle. Ce chapitre présente les mesures des rayons de courbures des cavités Advanced Virgo. Ces résultats sont utilisés dans le chapitre 8 lors de la détermination des pertes et de la qualité de filtrage des cavités.

L’estimation de l’erreur sur le rayon de courbure à partir des cartes de surface du miroir courbe est présentée dans la section 5.1. La première méthode de mesure du rayon de courbure est basée sur l’analyse d’un faisceau réfléchi directement sur la face sphérique de la cavité, section 5.2. La deuxième méthode consiste à analyser un faisceau en transmission d’une cavité verrouillée en fréquence, section 5.3. Et la troisième requiert d’effectuer un balayage en fréquence de la cavité et d’analyser la puissance transmise du faisceau, section 5.4.

5.1 Estimation de l’erreur sur le rayon de courbure à partir des cartes de polissage

L’erreur sur le rayon de courbure du miroir sphérique est, d’après le polisseur [Winlight], conforme aux spécifications de 8 mm. Les cartes de polissage des quatre faces des cavités 5, 6, 7 et 8 ont été transmises au LAPP. L’erreur sur le rayon de courbure de la face sphérique peut donc être estimée à partir des cartes de surface fournies par le polisseur. En effet, chaque déformation peut être associée à une variation de courbure ponctuelle de la surface étudiée, voir annexe C.

Il est à noter que le rayon de courbure de 1700 mm a été soustrait aux cartes des faces sphériques. La mesure directe du rayon de courbure à partir des cartes est donc impossible.
La méthode mise en place consiste à modéliser un faisceau gaussien de rayon de 321 µm pondérant les déformations de la carte autour d’une coordonnée x_0 et y_0.

L’ajustement d’une parabolóïde $f(x, y)$ sur cette carte pondérée est ensuite effectuée, avec $f(x, y) = Ax^2 + By^2 + Cxy + D$ [6].

Le rayon de courbure ponctuel en x et en y dû aux déformations de surface est alors :
\[\rho_x = \frac{1}{2A} \text{ et } \rho_y = \frac{1}{2B} \]

Le nouveau rayon de courbure ponctuel de la face sphérique, associé à la carte pondérée pour un faisceau en \(x_0 \) et \(y_0 \), est donc (voir l’annexe C):

\[\frac{1}{R_\diamond} = \frac{1}{\rho_{\text{specification}}} + \frac{1}{\rho_\diamond} \]

avec \(\rho_{\text{specification}} = 1700 \text{ mm} \), \(\rho_\diamond \) le rayon de courbure ponctuel dû aux déformations avec \(\diamond = x \) ou \(\diamond = y \).

La méthode est réitérée pour un ensemble de coordonnées \(x_0 \) et \(y_0 \).

La carte fournie par Winlight est une carte d’environ 200 sur 260 pixels de 52 \(\mu \)m chacun, voir figure 5.1. Le sens de la carte n’est pas connu. Le design de la cavité a été pensé de manière à ce que le faisceau se situe au centre de chaque face. Une erreur sur l’angle des faces peut induire un décentrage du faisceau [28], [27]. Le défaut de parallélisme mesuré par Winlight peut introduire un décentrage allant jusqu’à 1 mm dans certain cas [6]. Lors des alignements sur la face d’entrée, un décalage du faisceau par rapport au centre de la face de l’ordre de quelques millimètres (côté face 1) a été estimé.

L’évaluation des rayons de courbures locaux s’effectue donc sur un élément de surface restreint de \(3 \times 3 \text{ mm}^2 \) centré sur le milieu de la carte. La pondération de la carte par le faisceau est faite sur un ensemble de 625 coordonnées \(x_0 \) et \(y_0 \) de cet élément de surface. Soit un déplacement d’environ 2.3 pixels entre chaque estimation des rayons de courbures ponctuels \(R_x \) et \(R_y \). La moyenne et l’écart type des histogrammes obtenus pour les cartes de la face sphérique des cavités 5, 6 et 7 sont regroupés table 5.1.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_x) (mm)</td>
<td>1703 ± 15</td>
<td>1701 ± 11</td>
<td>1710 ± 25</td>
<td>1708 ± 18</td>
</tr>
<tr>
<td>(\rho_y) (mm)</td>
<td>1702 ± 23</td>
<td>1702 ± 9</td>
<td>1704 ± 17</td>
<td>1707 ± 12</td>
</tr>
</tbody>
</table>

Table 5.1 – Estimation de la variation du rayon de courbure selon les axes X et Y pour les cavités 5, 6, et 7.

Selon la position du faisceau sur le miroir sphérique, le rayon de courbure observé peut varier jusqu’à plus ou moins vingt-cinq millimètres selon les cavités et l’axe considéré. La cavité 6 est la cavité dont la variation du rayon de courbure est la plus proche des spécifications, jusqu’à plus ou moins 11 mm pour 8 mm dans les spécifications, dont la taille de la zone de mesure n’avait cependant pas été spécifiée.

Remarque : pour de mêmes cartes de surfaces, un choix de rayon de courbure plus grand impliquerait une plus grande dépendance aux variations de surface sur le rayon de courbure choisi, voir l’équation (5.1).
Sur la figure 5.1, les échelles de couleurs ont été choisies identiques pour chaque carte afin de pouvoir les comparer les unes aux autres. Les cartes classées par ordre croissant de déformations sont celles des cavités $6 \times 5 < 7 \sim 8$. Les variations les plus importantes sont excentrées. Mais il est important de noter que le faisceau n’est pas réfléchi au centre des faces.

5.2 Mesure par réflexion directe du faisceau sur la cavité

Une première méthode simple de l’étude du rayon de courbure de la face sphérique est d’utiliser la réflexion directe d’un faisceau, dont les caractéristiques sont connues, sur la cavité (voir la figure ci-contre). L’étude en réflexion de ce faisceau permet de remonter, grâce aux lois de la propagation d’un faisceau gaussien, au rayon de courbure de la face sphérique.

Ainsi cette étude se distingue en deux parties : la première est l’analyse du faisceau avant réflexion sur la face sphérique et la deuxième consiste en l’analyse du faisceau après réflexion sur la face sphérique.

5.2.1 Méthode de caractérisation d’un faisceau avec une caméra

Le faisceau est analysé en différents points le long de son axe de propagation avec une caméra (Annexe B).

La caméra se fixe au banc sur les trous taraudés. Pour ce type de mesure, la direction de propagation du faisceau est choisie le long d’une ligne de trous taraudés. Dans ces conditions, l’erreur de position relative de la caméra sur le banc est inférieure au mm.

Pour chaque position, la caméra permet d’observer un profil de puissance. Le profil de puissance étant supposé gaussien, une gaussienne est ajustée sur une section choisie du faisceau (ici en x et en y). Cet ajustement est fait avec le logiciel GxClient observé en Annexe B, figure B.1.

\[
I(a) = I_0 \exp \left(-2 \frac{a^2}{w(z)^2} \right) \tag{5.2}
\]

avec $w(z)$ le rayon du faisceau en fonction de sa position z et $a = x$ ou $a = y$.

Connaissant la taille du faisceau selon ces deux axes et en différents points z, il est possible de remonter aux paramètres des waists w_{0x}, w_{0y} et de la position de ces waists z_{0x}, z_{0y}.

Une minimisation de χ^2 est effectuée sur l’ensemble des données à partir de la fonction de propagation d’un faisceau gaussien :
\[w(z) = w_0 \sqrt{1 + \left(\frac{\lambda(z - z_0)}{\pi w_0^2} \right)^2} \]

(5.3)

Les paramètres de l’ajustement, \(w_0 \) et \(z_0 \), sont libres.

La figure 5.2 représente la taille du faisceau en fonction de la position de la caméra sur le banc ainsi que la courbe ajustée sur les données en X et en Y. Les erreurs de mesures sont de la taille des points. Le zéro représenté sur cette figure est une origine choisie arbitrairement sur le banc optique correspondant à un trou taraudé.

Figure 5.2 – Différentes tailles de faisceau en \(x \) et en \(y \) en fonction de leur position sur le banc en sortie de la cavité 5 ; points sur lesquels sont ajustés une courbe afin d’obtenir le waist \(w_0 \) et sa position \(z_0 \).

5.2.2 Caractérisation du faisceau

Cette sous-section présente la caractérisation du faisceau avant réflexion sur la face sphérique. Les deux montages utilisés sont présentés sur la figure 5.4. Ces deux montages permettent de vérifier la reproductibilité de la paramétrisation du faisceau avant réflexion sur la face sphérique.
Les deux montages ont été conçus de manière à ce que le faisceau soit préalablement filtré. Pour cela la cavité 7 a été utilisée. Ce filtrage permet d’avoir un faisceau plus proche d’une gaussienne que celui observé à la sortie du laser. Malgré tout, le faisceau observé en transmission de la cavité 7 présente des déformations, voir image ci-contre, dont l’origine sera discutée chapitre 8.

Les deux montages sont pratiquement identiques si ce n’est le déplacement d’une optique et l’ajout d’une des faces planes de la cavité optique 8 dans le montage 2, figure 5.4. L’angle de réflexion sur la face plane de la cavité 8 est inférieur à 10°, proche des conditions du faisceau sur la face lorsque il y a résonance (pour rappel, 6°).

Les résultats des waists images X et Y et de leurs positions pour ces deux montages sont présentés figure 5.5. Les résultats de caractérisation du faisceau pour les deux montages sont compatibles.

Caractérisation du faisceau. Deux setups utilisés.

![Diagramme des deux montages](image)

Figure 5.4 – Deux montages afin d’étudier le faisceau avant réflexion sur la face sphérique d’une cavité. A gauche : montage 1 ; faisceau sortant de la cavité 7 puis réfléchi par plusieurs miroirs/ séparatrices plans. A droite : montage 2 ; faisceau sortant de la cavité 7 puis réfléchi par plusieurs miroirs/ séparatrices plans puis par un des faces planes de la cavité 8.

5.2.3 Caractérisation de la face sphérique

Le montage 2 de la figure 5.4 est réutilisé et adapté. Afin de caractériser la face sphérique, la position de la cavité 8 est inversée afin que le faisceau soit réfléchi sur sa face sphérique. La taille du faisceau sur la cavité 8 est de l’ordre d’une centaine de µm. Pour rappel, la spécification du waist de la cavité est de 321 µm. Selon la position du faisceau sur la face, celui-ci voit un rayon de courbure local de la face sphérique. Plusieurs mesures ont été effectuées. Chacune d’entre elles correspond à une position estimée du faisceau sur la face sphérique, voir
Pour chaque position du faisceau sur la face sphérique sont obtenus quatre paramètres \(w'_0X \), \(w'_0Y \), \(z'_0X \) et \(z'_0Y \) avec la méthode de caractérisation d’un faisceau avec une caméra, présentée précédemment.

La focale du miroir sphérique est déduite de ces mesures, ce qui permet d’obtenir son rayon de courbure.

D’après l’équation (3.22) :

\[
 w'_0(f, w_0, \sigma) = \sqrt{\frac{f^2 w_0^2}{\left(\frac{\pi}{\lambda}\right)^2 w_0^4 + \sigma^2}}
\]

avec \(\sigma \) la distance entre le waist objet \(w_0 \) et la focale objet \(F \) du système optique (voir la figure 3.6). Le système optique est constitué du miroir courbe qui peut être assimilé à une lentille divergente, voir la figure 5.6.

D’après le montage optique, présenté sur la figure 5.4, \(\sigma \) dépend de la distance focale objet et d’une constante \(K \) déterminée par l’expérience telle que \(\sigma = f + K \) (voir la figure 5.6).

L’équation (5.4) peut se réécrire :

\[
 0 = \left[\left(\frac{w'_0}{w_0} \right) - 1 \right] f^2 + \left(\frac{w'_0}{w_0} \right)^2 2Kf + \left(\frac{w'_0}{w_0} \right)^2 \left[\left(\frac{\pi}{\lambda} \right)^2 w_0^4 + k^2 \right]
\]

La résolution de cette équation du second degré permet d’obtenir le rayon de courbure vu par le faisceau :

\[
 \rho = 2 \times f
\]
Figure 5.6 – Systèmes optiques équivalents. Schéma du haut : miroir convexe de rayon \(\rho = CS \). Schéma du bas : lentille concave équivalente, \(CS = 2F'O \). La position du waist objet du faisceau est représentée sur le schéma. Remarque : la position de la focale \(f \) de cette figure est inversée par rapport à la figure 3.6 où le système optique est considéré comme convergent.

Figure 5.7 – Positions du faisceau sur le miroir sphérique. Chaque couleur correspondant à une position étudié du faisceau sur la face.
La figure 5.8 présente les valeurs de rayons de courbure déduites de l’étude du faisceau réfléchi pour différentes positions sur la face sphérique de la cavité 8. Les deux figures correspondent chacune aux paramètres de caractérisation du faisceau du montage 1 et 2 respectivement, voir figure 5.4. À partir des paramètres w_0, w'_0, σ et de leurs erreurs, $\delta \rho(w_0, w'_0, z_0)$ est estimée par simulation Monte Carlo.

Les rayons de courbure sur la figure 5.8 sont globalement inférieurs à la spécification de 1700 mm. Certaines mesures, enlevées de la figure 5.8, ne sont pas exploitables dues à la mauvaise qualité du faisceau incident en Y, voir la figure 5.3. Cette déformation du faisceau et son origine seront discutés dans le chapitre 8.

5.3 Mesure avec le faisceau transmis des cavités résonnantes

Un faisceau laser résonant dans une cavité optique a, en transmission de celle-ci, les paramètres qui lui ont été donnés par les faces de la cavité. Ainsi, étudier le faisceau avec une caméra en transmission d’une cavité permet d’étudier le rayon de courbure effectif de la cavité.

Le faisceau laser est tout d’abord aligné sur la cavité. Une boucle de contrôle est ensuite appliquée sur le laser afin que le faisceau circulant dans la cavité soit verrouillé sur le mode fondamental, section 3.2.3. Puis, le faisceau transmis est analysé avec une caméra selon la méthode présentée précédemment.
Les quatre cavités ne transmettent pas toutes un faisceau parfaitement gaussien. En effet les cavités 5, 7 et 8 présentent un faisceau en transmission déformé, voir figure 5.9. De plus, cette déformation varie selon l’axe de propagation du faisceau, voir figure 5.10.

La profil de puissance du faisceau en X et en Y est considéré au premier ordre comme gaussien. Un ajustement de la fonction \(w(z) \) (équation (5.3)) sur les données acquises en transmission de la cavité 8 est présenté sur la figure 5.11. Ceci permet d’obtenir les waists \(w_{0x} \) et \(w_{0y} \) en X et en Y ainsi que la différence de leurs positions \(D_z = z_{0x} - z_{0y} \). Les paramètres \(w_0 \) et \(D_z \) des différentes cavités sont répertoriés dans les tables 5.2 et 5.3.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{0x}) (mm)</td>
<td>0.340 ± 0.007</td>
<td>0.329 ± 0.004</td>
<td>0.345 ± 0.008</td>
<td>0.326 ± 0.005</td>
</tr>
<tr>
<td>(w_{0y}) (mm)</td>
<td>0.329 ± 0.006</td>
<td>0.328 ± 0.004</td>
<td>0.319 ± 0.006</td>
<td>0.325 ± 0.005</td>
</tr>
</tbody>
</table>

Table 5.2 – Valeurs des waists des cavités en X et Y.
Figure 5.11 – Différentes tailles de faisceau en x et en y en fonction de leur position sur le banc en sortie de la cavité 8 ; points sur lesquels sont ajustés la fonction $w(z)$ (formule (5.3)) afin d’obtenir le waist w_0 et sa position z_0. L’origine de l’axe z est arbitraire.
Tableau 5.3 – Différence entre la position longitudinale des waists horizontal et vertical pour chaque cavité. $Dz = z_{0x} - z_{0y}$.

En supposant la cavité composée d’un seul miroir sphérique, z_{0x} et z_{0y} devraient être confondus, voir la section 3.2.2. Dans la section 3.7, il a été démontré que la déformation de la cavité tend à définir deux positions de waist différentes. Ces déformations impliquent une différence de position Dz_0 des waists X et Y du faisceau pouvant aller jusqu’à 1.5 mm. Les valeurs observées pour les cavités 5, 7 et 8 (voir la table 5.3) sont plus importantes que la valeur de 1.5 mm attendue. À noter que la géométrie du faisceau observé peut être due à l’inhomogénéité du substrat, difficile à estimer et qui pourrait influencer les paramètres du faisceau.

Une différence entre les waists en X et en Y ainsi qu’entre leurs positions peuvent être à l’origine de pertes dans l’OMC, voir la section 3.8.

D’après la table 5.2 et 5.3 les cavités présentant le moins de fluctuations entre le waist en X et en Y et leurs positions sont : dans l’ordre croissant les cavités $6 < 5 < 7 \sim 8$. Les pertes résultantes de ces valeurs sont présentées dans le chapitre 8.

Rayons de courbures

D’après la formule (3.35) :

$$\rho = \frac{1}{2L_{geo}}\frac{w_0^4}{\lambda} + 2L_{geo}$$

(5.7)

les valeurs de rayons de courbures des cavités sont obtenues à partir des valeurs de waists du tableau 5.2 et résumées table 5.4.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{0x} (mm)</td>
<td>2098 ± 162</td>
<td>1854 ± 84</td>
<td>2217 ± 194</td>
<td>1792 ± 102</td>
</tr>
<tr>
<td>ρ_{0y} (mm)</td>
<td>1854 ± 168</td>
<td>1834 ± 83</td>
<td>1653 ± 115</td>
<td>1772 ± 101</td>
</tr>
</tbody>
</table>

Tableau 5.4 – Rayons de courbure obtenus en X et Y à partir des valeurs de waist.

Une différence de rayon de courbure en X et en Y ressort de ces mesures. Mais les barres d’erreurs ne permettent pas d’estimer les rayons de courbure vus par les modes d’ordre supérieur et ainsi estimer la qualité de filtrage de l’OMC.
5.4 Mesure par un balayage de la cavité

Cette section présente la mesure du rayon de courbure d’une cavité par un balayage en fréquence du laser, voir la sous-section 4.2.3. Les cavités ne sont pas dégénérées\footnote{Une cavité non dégénérée est une cavité dont les modes d’ordre supérieur ne ressonnent pas dans la cavité aux mêmes fréquences que le mode fondamental.}, ce qui permet d’observer la résonance de chaque mode d’ordre supérieur à des fréquences différentes. Les fréquences de résonances obtenues permettent de déterminer le rayon de courbure vu par chaque mode d’ordre supérieur (voir équation (4.5)).

![Graphique de FSR](image)

Figure 5.12 – Identification des modes d’ordre supérieur 1 à 10 en fonction de leur position dans le FSR. En ordonnée : la puissance normalisée à la puissance maximale du mode fondamental. En bleu sont observées les zones de résonances de chaque mode pour l’intervalle de rayon de courbure $\rho = [1650 - 1750]$ mm.

La courbe noire (figure 5.12) correspond aux données obtenues en transmission de la cavité 8, au cours d’un balayage en fréquence. La puissance a été renormalisée à la puissance maximale. En bleu sont observées les zones de résonances de chaque mode pour l’intervalle de rayon de courbure $\rho = [1650 - 1750]$ mm.

Les pics du balayage des modes d’ordre 2 à 10 sont généralement décalés par rapport à leur zone de résonance, indiquant que les rayons de courbure vus par ces modes sont inférieurs à...
1700 mm.

Mesure

Un code a été développé afin d’identifier les maximums locaux des FSR, déterminer leurs positions et ainsi définir leurs rayons de courbure associés. La figure 5.13 est la superposition d’un ensemble de FSR. La figure 5.14 représente la distribution des rayons de courbure pour chaque mode, extrapolés à partir de leurs positions dans le FSR. Plus le mode N augmente, plus la position de son pic de résonance est sensible au rayon de courbure, voir formule (4.5).

![Figure 5.13 - Superposition de FSR afin de déterminer le rayon de courbure moyen vu par les modes d’ordre supérieur 1 à 10. En ordonnée : la puissance normalisée à la puissance maximale du mode fondamental. Le mode fondamental a été soustrait de chaque FSR. Les courbes bleues et rouges correspondent respectivement aux balayages montants et descendants.](image)

Le rayon de courbure observé par les modes d’ordre supérieur est différent car ils sondent des zones de miroir différentes. Selon l’alignement du faisceau, l’ensemble des modes excités n’est pas le même et donc les rayons de courbure observés sont différents. Pour un même ordre, plusieurs combinaisons de modes sont possibles (par exemple pour l’ordre 1 les TEM$_{01}$ et TEM$_{10}$).

Cette particularité a été mise à profit en désalignant légèrement le faisceau résonant en vertical et/ou horizontal afin d’étudier les rayons de courbures effectifs des cavités.

La figure 5.15 représente les rayons de courbures observés par les modes d’ordre 1 à 5 pour différents balayages des cavités 5, 6 et 7. Elle différencie en plus les désalignements du faisceau...
Figure 5.14 – Distribution des valeurs de rayons de courbure pour les modes d’ordre supérieur 1 (bleu) à 10 (marron) de la cavité 6.

- Outre une faible statistique sur les désalignements horizontaux (figure 5.15), la différence de rayons de courbures entre alignements horizontaux et verticaux ne semble pas pertinente.

- La valeur moyenne et l’écart-type des rayons de courbures observés par le mode d’ordre 1 pour les cavité 5, 6 et 7 est (figure 5.15) :

 \[
 \rho_{\text{cavité } 5, \text{TEM}_1} = 1.647 \pm 0.131 \text{m} \\
 \rho_{\text{cavité } 6, \text{TEM}_1} = 1.711 \pm 0.058 \text{m} \\
 \rho_{\text{cavité } 7, \text{TEM}_1} = 1.735 \pm 0.172 \text{m}
 \]

- La valeur moyenne et l’écart-type des rayons de courbures observés par les modes 2 à 5 respectivement pour les cavité 5, 6 et 7 sont (figure 5.15) :

 \[
 \rho_{\text{cavité } 5, \text{TEM}_{mn>1}} = 1.681 \pm 0.015 \text{m} \\
 \rho_{\text{cavité } 6, \text{TEM}_{mn>1}} = 1.693 \pm 0.025 \text{m}
 \]
\[\rho_{\text{cavité}7,\, \text{TEM}_{mn>1}} = 1.639 \pm 0.025 \, \text{m} \] (5.13)

Les écarts entre les rayons de courbure des modes d’ordre 1 pour une cavité donnée sont de plus en plus grands selon les cavités : \(6 < 5 < 7\). Les modes d’ordre supérieur dépendent moins de l’alignement que les modes d’ordre 1. Cette différence peut s’expliquer par le fait que plus les modes sont d’ordre élevés plus ceux-ci sont étalés géométriquement et moins ils sont sensibles aux variations locales ou celles induites par les déformation de la cavité (section 3.7).

Figure 5.15 – Rayon de courbure observé en fonction du mode pour les cavités 5, 6 et 7 pour différents alignements et différents balayages. Différenciation d’un alignement vertical (v), horizontal (h) ou indéfini (?)
Rayons de courbures

5.5 Conclusion

Trois études indépendantes sur le rayon de courbure des cavités 5, 6, 7 et 8 ont été réalisées.

- L’étude par reflexion directe du faisceau sur la face sphérique de la cavité 8 a permis d’estimer un rayon de courbure de l’ordre de $\rho \approx [1200–1800]$ mm. Le faisceau utilisé n’étant pas parfaitement gaussien et la cavité 8 présentant des défauts de surfaces, la mesure est entachée de grandes imprécisions. En effet, malgré une amélioration de la forme du faisceau après avoir été filtré par la cavité 7, celui-ci subit une déformation propre à la cavité dont l’origine sera discutée dans le chapitre 8.

- L’étude par un faisceau transmis des cavités verrouillées est également tributaire de la forme du faisceau en transmission de la cavité. Une différence de rayon de courbure en X et en Y ressort de ces mesures pour certaines cavités. Les valeurs sont rappelées dans la table ci-dessous. D’après les barres d’erreurs, cette méthode n’est pas suffisante pour estimer les rayons de courbure et ainsi estimer la qualité de filtrage de l’OMC. De plus, cette méthode n’est sensible qu’au rayon de courbure vu par le mode fondamental, qui pourrait être différent de ceux vus par les modes d’ordre supérieur dont dépend la qualité de filtrage de l’OMC.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Cavité} & 5 & 6 & 7 & 8 \\
\hline
\rho_{0x} \text{ (mm)} & 2098 \pm 162 & 1854 \pm 84 & 2217 \pm 194 & 1792 \pm 102 \\
\rho_{0y} \text{ (mm)} & 1854 \pm 168 & 1834 \pm 83 & 1653 \pm 115 & 1772 \pm 101 \\
\hline
\end{array}
\]

- L’étude par un balayage en fréquence du rayon de courbure présente les résultats des rayons de courbure observés pour les modes d’ordre 1 et les modes d’ordre 2 à 5 pour chacune des cavités. Cette méthode est la seule qui exploite la variation en puissance en transmission de la cavité au cours d’un balayage au lieu de la propagation du faisceau au cours d’un verrouillage.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Cavité} & 5 & 6 & 7 \\
\hline
\rho_{\text{TEM}_{1}} \text{ (mm)} & 1647 \pm 131 & 1711 \pm 58 & 1735 \pm 172 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{Cavité} & 5 & 6 & 7 \\
\hline
\rho_{\text{TEM}_{mn>1}} \text{ (mm)} & 1681 \pm 15 & 1693 \pm 25 & 1639 \pm 25 \\
\hline
\end{array}
\]

L’estimation de l’erreur sur le rayon de courbure à partir des cartes de surfaces ainsi que les déformations des cavités semblent compatibles avec l’écart entre les mesures effectuées.

Les modes susceptibles de dégrader la qualité du filtrage des cavités sont les modes d’ordre 11 et 12, voir la section 3.4.4. Les rayons de courbure observés par les modes d’ordre supérieur d’ordre 2 à 5 sont ceux utilisés pour estimer les rayons de courbure vus par les modes d’ordre 11 et 12 et donc la qualité de filtrage de chacune des cavités.
D’autre part, l’analyse du profil du faisceau transmis par les cavités résonantes a permis d’observer des différences entre les waists \(w_{0x} \) et \(w_{0y} \) du faisceau ainsi que leurs différences de positions \(D_{z0} \) (voir les tables ci-dessous), ce qui permet dans le chapitre 8 d’estimer les pertes dues à l’astigmatisme.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{0x}) (mm)</td>
<td>0.340 ± 0.007</td>
<td>0.329 ± 0.004</td>
<td>0.345 ± 0.008</td>
<td>0.326 ± 0.005</td>
</tr>
<tr>
<td>(w_{0y}) (mm)</td>
<td>0.329 ± 0.006</td>
<td>0.328 ± 0.004</td>
<td>0.319 ± 0.006</td>
<td>0.325 ± 0.005</td>
</tr>
</tbody>
</table>

Les cavités 6 et 5 sont les cavités présentant le moins de défauts pour l’ensemble des paramètres décrits dans ce chapitre (profil de puissance du faisceau transmis et astigmatisme). Ce sont donc celles qui ont été installées dans Advanced Virgo.
Rayons de courbures
6 Biréfringence

Sommaire

6.1 Biréfringence d’un substrat .. 120
6.2 Caractéristiques du Suprasil 3001 121
6.3 Présence d’un deuxième pic de résonance TEM_{0}(0) 121
6.4 Biréfringence induite ... 122
 6.4.1 Influence du couple de serrage 123
 6.4.2 Influence de la température 124
6.5 Mesures et minimisation des pertes 124
La biréfringence du Suprasil 3001, matériau composant les cavités OMC, peut être source de pertes.

6.1 Biréfringence d’un substrat

La polarisation de la lumière peut être décomposée en deux polarisations rectilignes : la polarisation S perpendiculaire au plan d’incidence (par rapport aux surfaces des miroirs) qui est le plan de l’interféromètre, et la polarisation P contenue dans ce plan.

Les charges d’un milieu anisotrope ne vont pas se comporter de la même manière selon qu’elles se déplacent dans un sens ou dans un autre. Ainsi, un milieu anisotrope a des indices de réfraction différents selon les directions du champ électrique à travers le cristal : le matériau considéré est dit biréfringent.

Cette biréfringence du milieu peut être naturelle ou bien induite. En effet, une contrainte électrique ou mécanique sur un substrat pas ou peu anisotrope peut créer de la biréfringence.

Figure 6.1 – Décomposition de la polarisation S sur les axes lents et rapides dans le plan transverse à l’axe de propagation. La polarisation P est alors horizontale et n’est pas représentée sur ce schéma.

Un matériau biréfringent présente un axe optique privilégié appelé axe optique qui n’est pas forcément aligné par rapport à la polarisation S ou P. La lumière se propageant dans le matériau peut être décomposée suivant deux axes de polarisations orthogonaux : l’axe rapide, parallèle à l’axe optique, et l’axe lent. Ces deux polarisations observent des indices optiques différents. Elles vont donc résonner pour des fréquences du laser ou des longueurs optiques de
la cavité différentes. Il est d’ailleurs possible qu’un mode de la polarisation rapide se superpose avec un autre mode de la polarisation lente.

Un faisceau polarisé S incident sur cette cavité peut être décomposé selon l’axe rapide et lent de la cavité, voir la figure 6.1. Les polarisations lentes et rapides ne vont pas nécessairement résonner pour les mêmes conditions. Une de ces polarisations est donc privilégiée. Le faisceau transmis est une combinaison des polarisations S et P sauf si l’axe optique est aligné avec la polarisation S ou P ou si la biréfringence est suffisamment faible.

6.2 Caractéristiques du Suprasil 3001

La silice choisie pour la conception des cavités OMC est le Suprasil 3001 [12]. Ce matériau est très peu biréfringent, $\Delta n < 6.10^{-7}$ [48].

Il a été vu section 4.2.3 que l’intervalle spectrale libre (FSR) pouvait s’écrire comme la variation en fréquence $\Delta \nu$:

$$\Delta \nu = \frac{c}{4nL_{geo}}$$ \hspace{1cm} (6.1)

avec $n = 1.44963$ l’indice optique du Suprasil 3001 et $L_{geo} = 62$ mm la longueur géométrique de la cavité.

Considérons les FSR pour la polarisation R ”rapide” et L ”lente” telle que :

$$(FSR)_R = \frac{c}{4nL_{geo}}$$

$$(FSR)_L = \frac{c}{4(n+\Delta n)L_{geo}}$$

avec $\Delta n = 6.10^{-7}$.

Dans ces conditions, la différence entre les deux FSR des polarisations R et L serait :

$$\Delta (FSR) = (FSR)_R - (FSR)_L \simeq 345 \text{ Hz}$$

ce qui impliquerait, pour une longueur d’onde $\lambda = 1064$ nm, un décalage entre les FSR des polarisations rapide et lente de l’ordre de :

$$\frac{c}{\lambda} \times \Delta (FSR) \times \frac{1}{(FSR)^2} \simeq 14\%$$ \hspace{1cm} (6.2)

La biréfringence du matériau peut donc induire un décalage des résonances de la polarisation R et L jusqu’à 14% de la longueur d’un FSR soit bien plus que la largeur d’un pic d’Airy.

6.3 Présence d’un deuxième pic de résonance TEM00

Lors de différents balayages, dans des conditions de mesures indépendantes, la variation de position d’un pic dans le FSR est observée.
En effet, la résonance de ce pic, considéré au départ comme le mode d’ordre 11, peut selon les conditions de mesure (serrage de la cavité, température de stabilisation) se déplacer de plus de 8% de la longueur du FSR.

La mise en place d’un cube séparateur de polarisation S et P en transmission de la cavité a permis d’observer que ce pic était dominé par la polarisation P, ce qui correspond à la résonance de la polarisation L^1, voir la figure 6.2. Les modes d’ordre supérieur de la polarisation L peuvent également être identifiés. Les deux premiers modes d’ordre supérieur de la polarisation L sont indiqués sur la figure 6.2.

L’observation de cette résonance correspond à la biréfringence naturelle possible pour le Suprasil 3001.

![Figure 6.2](image.png)

Figure 6.2 – Puissance transmise par la cavité en fonction de la différence de phase lors d’un aller-retour dans la cavité. La puissance est normalisée par la puissance du pic de résonance TEM$_{00}$ de la polarisation R. En jaune, identification des pics de résonance de la polarisation L. En bleu, identification des zones de résonances des modes d’ordre supérieur d’ordre 1 à 11 pour la résonance de la polarisation R.

6.4 Biréfringence induite

Une contrainte mécanique sur un matériau peut créer une biréfringence dite induite [37]. Or une contrainte mécanique est appliquée sur la cavité. Un piézo-électrique, utilisé pour moduler

1. La polarisation "lente" est prise ici par convention comme étant la polarisation proche de l’axe de polarisation P et n’est pas forcément celle qui se propage le plus lentement.
la longueur de la cavité, est placé directement sur le substrat en étant serré avec une vis, voir la section 3.6. Cette sous-section présente les effets de la biréfringence induite observée sur les cavités OMC.

6.4.1 Influence du couple de serrage

Des tests ont été effectués afin de comprendre l’influence de la force appliquée sur la cavité sur la biréfringence du matériau.

Le principe de la mesure consiste à utiliser un tournevis dynamométrique afin de connaître le couple appliqué sur la vis. Différents couples sont appliqués et des balayages sont effectués afin d’observer le positionnement de la résonance du TEM\(_{00}\) de la polarisation L dans l’intervalle spectrale libre (FSR). La figure 6.3 représente les FSR obtenus pour cinq couples appliqués (0, 5, 10, 15 et 20 cN.m). Ces couples ont été appliqués de manière croissante, du plus petit serrage ou plus grand serrage, sans desserrage intermédiaire. Plus le serrage est fort, plus le pic de résonance du TEM\(_{00}\) de la polarisation L s’éloigne du pic de résonance du TEM\(_{00}\) de la polarisation R. Le serrage crée bien une biréfringence induite sur le matériau.

Il peut être remarqué que la polarisation L est observable dans le cas où aucune contrainte n’est appliquée sur la cavité. Le matériau présente bien une biréfringence naturelle.

![Figure 6.3](image)

Figure 6.3 – Cinq FSR superposés correspondant à cinq couples appliqués de manière progressive sur la vis tenant le piezo sur la cavité : 0 (bleu), 5 (vert), 10 (rouge), 15 (violet) et 20 (noir) cN.m.

Lors des tests, il s’est vite avéré que le couple appliqué sur la vis ne correspondait pas à la force réelle appliquée sur la cavité. En effet, la reproductibilité de la mesure a été vérifiée en
desserrant puis resserrant la vis pour un couple donné. Le pic de polarisation L étant supposé être un bon indicateur de la force appliquée, celui-ci ne résonne pas au même endroit dans le FSR pour plusieurs serrages avec le tournevis dynamométrique avec un même couple.

6.4.2 Influence de la température

L’influence de la température sur la biréfringence du matériau a également été testée. Pour cela, quatre températures de stabilisation de la cavité, pour une condition de serrage de la cavité donnée, ont été appliquées. Un balayage en fréquence est effectué à chaque nouvelle stabilisation en température.

La figure 6.4 représente un FSR pour les quatre stabilisations en température différentes 19, 20.5, 23.5 et 25 °C. Il est observé un changement de phase de résonance du TEM$_{00}$ de la polarisation L selon la température de la cavité. Plus la température augmente plus le pic de résonance du TEM$_{00}$ de la polarisation L s’éloigne du pic de résonance du TEM$_{00}$ de la polarisation R.

Une fois serrée, la cavité est soumise à des contraintes qui peuvent être amenées à évoluer. En effet, des changements de températures de stabilisations peuvent dilater ou contracter la cavité et changer les contraintes appliquées sur celle-ci.

Pour une condition de serrage donnée, le changement de température de stabilisation de la cavité a donc une influence sur la biréfringence du matériau.

6.5 Mesures et minimisation des pertes

La polarisation attendue en entrée de l’OMC est la polarisation S. Comme il a été vu précédemment, les cavités présentent de la biréfringence naturelle et induite. Leurs axes optiques ne sont pas parallèles à l’axe de polarisation S. Lorsque la cavité est verrouillée sur la résonance du TEM$_{00}$ de la polarisation R, la polarisation L est réfléchie par la cavité, impliquant une diminution de la puissance transmise.

De plus, l’OMC est composé de deux cavités placées en série. Des pertes supplémentaires seront observées si leurs axes optiques ne sont pas alignés.

La biréfringence due à une anisotropie du matériau peut être diminuée ou compensée par une contrainte inverse aux lignes de stress déjà présentes dans le substrat.

Différents montages mécaniques pour le piézo-électrique ont donc été étudiés afin de diminuer les pertes. Certains d’entre eux, pour la cavité 6, sont présentés sur la figure 6.5. Les différentes proportions des polarisations S et P en entrée et en transmission de la cavité ainsi que la proportion de polarisation L réfléchie ont également été mesurées.

La montage mécanique pour les deux cavités 6 et 5 placées en série et installées sur Advanced Virgo est représenté sur la figure 3.16. Le piézo-électrique et donc la force appliquée sur chaque cavité est située à environ 1/3 de la longueur de la cavité. L’avantage de cette méthode est en effet de réduire les pertes dues à la biréfringence mais elle a pour conséquence de modifier également le rayon de courbure en Y des miroirs de l’OMC et donc de créer de l’astigmatisme difficile à prévoir. Dans ces conditions, les pertes dues à la biréfringence ainsi que l’astigmatisme
Figure 6.4 – En haut : différents FSR superposés correspondant à différentes températures de stabilisation d’une cavité : 19, 20.5, 23.5, 25 °C. En bas : zoom entre 2.6 et 3.4 radian. On observe un déplacement de la résonance du TEM\textsubscript{00} pol-L en fonction de la température de la cavité.
Figure 6.5 – Différents montages mécaniques testés sur la cavité 6 afin d’augmenter la puissance transmise de la polarisation rapide avec différentes proportions de polarisation S ou P en entrée de la cavité.

et le mode matching des cavités sont mesurés inférieurs à 1.4 % [59].

Une solution pour minimiser l’effet de la birefringence serait de placer des lames demi et quart d’onde motorisées en entrée de l’OMC, entre les deux cavités OMC et en sortie de l’OMC. Ceci nécessiterait un changement de conception du support OMC ainsi que du banc mais permettrait de minimiser les pertes dues à la birefringence tout en s’adaptant aux conditions extérieures (température, polarisation du faisceau incident etc...) pouvant modifier la birefringence et les pertes. Néanmoins la mise en place de ces lames ne doit pas créer plus de pertes que celles, déjà faibles, créées par la birefringence de la cavité OMC.
Mesure du bruit en longueur de l’OMC

Sommaire

<table>
<thead>
<tr>
<th>Section</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Spécification</td>
<td>128</td>
</tr>
<tr>
<td>7.2</td>
<td>Bruits thermiques de l’OMC</td>
<td>129</td>
</tr>
<tr>
<td>7.3</td>
<td>Configuration optique</td>
<td>131</td>
</tr>
<tr>
<td>7.4</td>
<td>Etalonnage des signaux</td>
<td>135</td>
</tr>
<tr>
<td>7.5</td>
<td>Mesure</td>
<td>136</td>
</tr>
</tbody>
</table>
Le bruit en longueur de l’OMC se traduit par une variation de puissance en transmission de l’OMC qui pollue le signal d’onde gravitationnelle, en particulier si la cavité n’est pas rigoureusement à résonance. Son couplage dans l’interféromètre dépend donc de la précision du verrouillage des cavités OMC. Il peut avoir pour origine des résonances mécaniques excitées par le bruit sismique résiduel ou des bruits thermiques. Pour les cavités monolithiques choisies, le bruit thermique dominant est le bruit thermo-réfractif. Ce bruit a pour origine les variations de l’indice optique du matériau en fonction des fluctuations statistiques de la température.

Les spécifications sur le bruit en longueur, compte-tenu des caractéristiques des cavités OMC, sont présentées dans la section 7.1. Les bruits thermiques attendus dans l’OMC sont considérés dans la section 7.2. La mesure et les conditions de mesures du bruit en longueur de l’OMC sont développées dans les sections 7.3, 7.4 et 7.5.

7.1 Spécification

La détermination des valeurs de finesse des cavités dans le chapitre 4, permet de donner une valeur numérique supérieure au bruit en longueur (voir la section 3.3.3).

D’après l’équation (3.39) et pour une valeur de finesse $F = 122.8$ (moyenne des finesses des cavités 6 et 5 installées sur le banc SDB1) le produit du bruit en longueur δl par la précision du verrouillage Δl_0 doit être inférieur à :

$$\Delta l_0 \delta l \leq 5.6 \times 10^{-28} \text{ m}^2 \text{ Hz}^{-1/2} \tag{7.1}$$

La limite supérieure du produit $\Delta l_0 \delta l$ de l’OMC de Virgo était de $3.6 \times 10^{-27} \text{ m}^2 \text{ Hz}^{-1/2}$ à 100 Hz, soit un ordre de grandeur au dessus de la spécification de l’OMC Advanced Virgo.

Les mesures de précisions de verrouillage sur les cavités Advanced Virgo faites au LAPP [49] sont telles que :

$$\Delta l_0 \simeq 3 - 6 \times 10^{-13} \text{ m} \tag{7.2}$$

Cette valeur est cinq à dix fois meilleure que ce qui a été mesurée pour la précision du verrouillage de l’OMC Virgo [47], [30] soit $\Delta l_0 \leq 6 \times 10^{-12} \text{ m}$. Ceci est dû entre autre à l’utilisation des PZT comme actionneurs, ce qui a permis d’avoir une bande passante plus large.

La spécification sur le bruit en longueur de la cavité Advanced Virgo est donc de :

$$\delta l \leq 0.9 - 1.9 \times 10^{-15} \text{ m Hz}^{-1/2} \tag{7.3}$$

Cette limite supérieure du bruit en longueur est proche de celle qui avait été mesurée dans Virgo [30] de : $\delta l \leq 6 \times 10^{-16} \text{ m Hz}^{-1/2}$ à 100 Hz et $\delta l \leq 1 \times 10^{-16} \text{ m Hz}^{-1/2}$ à 10 kHz.
7.2 Bruits thermiques de l’OMC

Le bruit en longueur de l’OMC devrait être limité par des bruits thermiques. Certains d’entre eux sont développés dans cette section. Les expressions de ces spectres de bruits (en m/$\sqrt{\text{Hz}}$) sont considérées ci-dessous pour une seule cavité OMC. La figure 7.1 représente ces spectres en fonction de la fréquence pour une cavité OMC. Les différents paramètres utilisés sont regroupés dans la table 7.1.

![Figure 7.1 – Bruits thermiques théorique d’une cavité OMC.](image)

Bruit brownien Le bruit brownien est un bruit ayant pour origine l’agitation thermique et des frictions internes dans le matériau. Il peut être calculé en utilisant le théorème de fluctuations-dissipation de H. B. Callen et T. A. Welton [10]. Le bruit brownien dans un miroir et dans le coating d’un miroir sont développés ci-après.

1. Il a fallu recouper plusieurs articles afin de tracer ce spectre de bruits. Si la liste des bruits thermiques est ici non exhaustive, les articles y faisant référence sont nombreux et ne sont pas tous cités ici. Pour un maximum de cohérence, la formule donnant les différents spectres dans ce chapitre a été comparée aux articles référencés (voir notes de bas de pages).
2. Il a été relevé un facteur 2 en trop dans les équations (15) de Levin [40] et (3) de Nakagawa [46] par rapport à ce qui est attendu. Nous prendrons w le waist du faisceau tel qu’il est défini dans le chapitre 3. Le
130 Mesure du bruit en longueur de l’OMC

\[\delta l_{BR\text{mirroir}} \simeq \left(\frac{2k_B T (1 - \sigma^2)}{\sqrt{\pi^3 E (w/\sqrt{2})}} \right)^{1/2} \]

(7.4)

Le bruit brownien du substrat affecte les quatre faces coatées d’une cavité OMC dont les déplacements peuvent être corrélés. De plus, le faisceau se propage dans la silice. Le bruit brownien du substrat peut s’écrire comme la limite supérieure \(4n \delta l_{BR\text{mirroir}} \). Avec \(n \) l’indice du substrat.

Bruit brownien du coating Le bruit thermique dû aux frictions internes des couches alternatives de \(\text{Ta}_2\text{O}_5 \) et \(\text{SiO}_2 \) déposées sur la silice a été estimé en 2001 par G. M. Harry & al [32]. Son spectre est donné par :

\[\delta l_{BR\text{coating}} \simeq \left(\frac{2k_B T d}{\pi^2 E f (w/\sqrt{2})^2} \left(\frac{E_f \phi_\parallel}{E \phi_\perp} + \frac{E_\parallel}{E_\perp} \right) \right)^{1/2} \]

(7.5)

Une cavité OMC est constituée de 4 miroirs coatés et la propagation du faisceau se fait dans de la silice. Le bruit brownien des coating d’une cavité est donc \(\sqrt{4n} \delta l_{BR\text{coating}} \).

Bruit thermo-élastique du substrat V. B. Braginsky & al en 1999 [7] suggère l’addition d’un bruit mécanique dû à l’expansion du matériau. Son spectre est donné par :

\[\delta l_{TE\text{mirroir}} \simeq \left(\frac{4k_B T^2 \alpha^2 (1 + \sigma)^2}{\sqrt{\pi^5 (DC)^2 w^3 f^2}} \right)^{1/2} \]

(7.6)

Le bruit thermo-élastique du substrat d’une cavité est donc \(\sqrt{4n} \delta l_{TE\text{substrat}} \).

Bruit thermo-élastique du coating Les propriétés élastiques du coating sont également à l’origine de dissipations, présentées par M. M. Fejer en 2004 [24]. Son spectre est donné par :

\[\delta l_{TE\text{coating}} \simeq \left(\frac{8\sqrt{2}k_B T^2}{\pi \sqrt{\omega}} \frac{d^2}{w^2} (1 + \sigma)^2 \frac{C_f^2}{C_s^2} \alpha^2 \frac{\Delta^2}{\kappa C_s} \right)^{1/2} \]

(7.7)

avec :

\[\Delta^2 = \left\{ \frac{C_s}{2\alpha C_f} \left[\frac{\alpha_\parallel}{1 - \sigma} + \frac{1 + \sigma}{1 + \sigma_\parallel} \right] \left(1 - 2\sigma \frac{E_\parallel}{E_\perp} \right) \right\}_{\text{avg}} - 1 \]

(7.8)

avec la moyenne du terme entre parenthèses telle que :

\[(X_\phi)_{\text{avg}} = \frac{d_{\text{Ta}_2\text{O}_5}}{d_{\text{SiO}_2\text{O}} + d_{\text{Ta}_2\text{O}_5}} X_{\text{Ta}_2\text{O}_5} + \frac{d_{\text{SiO}_2\text{O}}}{d_{\text{SiO}_2\text{O}} + d_{\text{Ta}_2\text{O}_5}} X_{\text{SiO}_2\text{O}} \]

(7.9)

\(r_0 \) de Levin est égale à \(r_0 = w/\sqrt{2} \) et le \(w \) de Nakagawa est égal à \(w_{\text{Nakagawa}} = w/\sqrt{2} \). Ensuite, pour plus de clarté, Braginsky [7] et Liu [41] ont noté \(r_0 \) tel que \(r_0 = w/\sqrt{2} \). Numata quant à lui a noté \(w_0 \) qui correspond ici à \(w_0 = w/\sqrt{2} \).

3. Le \(w \) de Harry est égale à \(w_{\text{Harry}} = w/\sqrt{2} \).
et $\diamond = Ta_2O_5$ ou $\diamond = SiO_2O$.

Bruit thermo-réfractif L’indice optique est dépendant de la température (voir l’indice β dans la table 7.1). Les fluctuations thermiques au sein du matériau entraînent donc des fluctuations d’indices dans le matériau [9]. Son spectre est donné par :

$$\delta l_{TR} \simeq \frac{\beta^2 L_{rt} k_B T^2}{DC \pi a^2} \int_0^\infty \frac{\xi e^{-\xi}}{W^2 + \xi^2} d\xi$$ \hspace{1cm} (7.10)

avec $W = \frac{\omega(w/\sqrt{2})^2}{2a^2}$ et $a^2 = \frac{\kappa_{DC}}{BT}$.

Le cas adiabatique consiste à négliger l’atténuation des fluctuations thermiques par les diffusions thermiques, c’est-à-dire considérer la longueur de diffusion comme plus petite que la taille du faisceau. En considérant le cas adiabatique4, cette formule peut se simplifier par :

$$\delta l_{TR} \simeq \frac{2\beta \sqrt{L_{rt} k_B T}}{DC} \frac{1}{\sqrt{\pi} \left(\frac{w}{\sqrt{2}}\right)^2 2\pi f}$$ \hspace{1cm} (7.11)

Le bruit thermo-réfractif est le bruit thermique dominant, voir la figure 7.1.

7.3 Configuration optique

La mesure du bruit en longueur des cavités OMC nécessite un banc de mesure adéquat. Le schéma du banc optique utilisé pour la mesure du bruit en longueur est représenté figure 7.2. Il est composé des éléments suivants :

- un laser à 1064 nm ;
- des optiques pour ajuster la taille du faisceau et l’aligner sur les cavités et les photodiodes ;
- deux cavités OMC (8 et 7) placées en parallèles sur deux supports indépendants notés support 1 et support 2, afin d’éliminer les bruits liés au laser ;
- plusieurs photodiodes utilisées pour Advanced Virgo [5], disposées à la sortie du laser et des deux cavités (PD1, PD2 et PD3).

Le faisceau laser est modulé à une fréquence de 9 kHz avec son PZT. Le principe de mesure du bruit en longueur de la cavité consiste à observer le signal démodulé de la photodiode en transmission d’une cavité verrouillée en longueur. Ce signal est calibré en mètre, voir la section 7.4.

Deux photodiodes sont placées en transmission de chaque cavité. L’une sert à la boucle d’asservissement, l’autre à la mesure du bruit en longueur. Le laser est verrouillé en fréquence sur la cavité placée sur le support 1. Le gain unité de la boucle d’asservissement en fréquence du laser se situe à environ 100 Hz. La deuxième cavité est quant à elle verrouillée en longueur sur le laser grâce à son PZT et ses cellules de Peltier. Le gain unité de la boucle d’asservissement

4 [9] Eq (5.2)
Tableau 7.1 – Paramètres utilisés pour calculer les bruits thermiques.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Symboles</th>
<th>Valeurs</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante de Boltzmann</td>
<td>k_b</td>
<td>$1.38 \times 10^{-23} \text{ m}^2\text{kg.s}^{-2}\text{K}^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Rayon du faisceau1</td>
<td>w</td>
<td>321 μm</td>
<td>[12]</td>
</tr>
<tr>
<td>Température</td>
<td>T</td>
<td>300 K</td>
<td></td>
</tr>
<tr>
<td>Substrat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacité thermique volumique</td>
<td>C_s</td>
<td>$1.64 \times 10^6 \text{ J.K}^{-1}\text{m}^{-3}$</td>
<td></td>
</tr>
<tr>
<td>Capacité thermique massique</td>
<td>C</td>
<td>$746 \text{ J.K}^{-1}\text{kg}^{-1}$</td>
<td>[31]</td>
</tr>
<tr>
<td>Coefficient de Poisson</td>
<td>σ</td>
<td>0.17</td>
<td>[48]</td>
</tr>
<tr>
<td>Coefficient d’expansion thermique</td>
<td>α</td>
<td>$5.1 \times 10^{-7} \text{ K}^{-1}$</td>
<td>[48]</td>
</tr>
<tr>
<td>Conductivité thermique</td>
<td>κ</td>
<td>$1.38 \text{ W.m}^{-1}\text{K}^{-1}$</td>
<td>[48]</td>
</tr>
<tr>
<td>Densité du substrat</td>
<td>D</td>
<td>2200 kg.m^{-3}</td>
<td>[48]</td>
</tr>
<tr>
<td>Dépendance en température de l’indice optique2</td>
<td>β</td>
<td>$1.0 \times 10^{-5} \text{ K}^{-1}$</td>
<td>[48]</td>
</tr>
<tr>
<td>Indice optique</td>
<td>n</td>
<td>1.44963</td>
<td>[48]</td>
</tr>
<tr>
<td>Longueur géométrique*</td>
<td>$L = 2 * L_{rt}$</td>
<td>248 mm</td>
<td></td>
</tr>
<tr>
<td>Module d’Young</td>
<td>E</td>
<td>$7.3 \times 10^{10} \text{ Pa}$</td>
<td>[23]</td>
</tr>
<tr>
<td>Perte mécanique3</td>
<td>Φ</td>
<td>10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Coating*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle de perte4</td>
<td>ϕ_{\parallel}</td>
<td>5×10^{-4}</td>
<td>[48]</td>
</tr>
<tr>
<td>Capacité thermique5</td>
<td>C_f</td>
<td>$1.9 \times 10^6 \text{ J.K}^{-1}\text{m}^{-3}$</td>
<td></td>
</tr>
<tr>
<td>Capacité thermique du tantale</td>
<td>$C_{Ta_2O_5}$</td>
<td>$2.1 \times 10^6 \text{ J.K}^{-1}\text{m}^{-3}$</td>
<td>[24]</td>
</tr>
<tr>
<td>Coefficient de Poisson5</td>
<td>σ_f</td>
<td>0.20</td>
<td>[24]</td>
</tr>
<tr>
<td>Coefficient de Poisson du tantale</td>
<td>$\sigma_{Ta_2O_5}$</td>
<td>0.23</td>
<td>[24]</td>
</tr>
<tr>
<td>Coefficient d’expansion thermique5</td>
<td>α_f</td>
<td>$2.3 \times 10^{-6} \text{ K}^{-1}$</td>
<td>[24]</td>
</tr>
<tr>
<td>Coefficient d’expansion thermique du tantale</td>
<td>$\sigma_{Ta_2O_5}$</td>
<td>$3.6 \times 10^{-6} \text{ K}^{-1}$</td>
<td>[24]</td>
</tr>
<tr>
<td>Épaisseur du coating</td>
<td>d</td>
<td>6 μm</td>
<td>[14]</td>
</tr>
<tr>
<td>Module d’Young du coating5</td>
<td>E_f</td>
<td>$9.2 \times 10^{10} \text{ Pa}$</td>
<td></td>
</tr>
<tr>
<td>Module d’Young du tantale</td>
<td>$E_{Ta_2O_5}$</td>
<td>$1.4 \times 10^{11} \text{ Pa}$</td>
<td>[24]</td>
</tr>
</tbody>
</table>

* Lors des premières estimations du bruit thermo-réfractif [12, 50] une erreur sur la longueur de la cavité s’était glissée dans les calculs, 248 au lieu de 124 mm, augmentant d’un facteur $\sqrt{2}$ le bruit thermo-réfractif attendu.

* L’épaisseur totale du film de dépôt est de 6 μm avec une épaisseur de 2.5 μm pour le tantale et 3.5 μm pour la silice. Ces épaisseurs correspondent au rapport des indices de réfraction des deux matériaux ($n_{Ta_2O_5} \approx 2.07$ et $n_{SiO_2O} \approx 1.45$).

1 Le rayon du faisceau est approximé par le waist de la cavité.

2 Braginsky [9] a utilisé $\beta = 1.5 \times 10^{-5}$, mais la documentation sur le suprasil [48] indique des valeurs inférieures pour des longueur d’onde plus faibles que $1064 \times 10^{-9} m$. Ces valeurs diminuant avec l’augmentation de la longueur d’onde nous avons choisi de prendre $\beta = 1 \times 10^{-5}$.

4 On considère ici que $\phi_{\parallel} = \phi_{\perp}$.

5 $X_f = (X)_{avg}$
Figure 7.2 – Schéma optique du banc de mesure du bruit en longueur.
en longueur de la cavité se situe à environ 0.3 Hz. A noter que pour cette mesure les gains des boucles de contrôles sont optimisés pour ne pas réintroduire de bruit. La précision de verrouillage des cavités pour cette mesure n’est donc pas celle recherchée pour Advanced Virgo.

La mesure du bruit en longueur de la cavité est sensible à un ensemble de bruits parasites :

— **Le bruit en fréquence du laser** C’est pour ne plus être tributaire de ce bruit que sont utilisées deux cavités placées en parallèle. En effet, la soustraction des deux signaux en transmission des cavités permet d’éliminer la contribution du bruit en fréquence du laser.

— **Le bruit en puissance du laser** Le laser est soumis à un bruit en puissance à haute fréquence qui pollue la mesure du bruit thermoréfractif. Le signal observé par la photodiode placée en sortie du laser (PD3, voir la figure 7.2) est donc soustrait aux deux signaux en transmission des cavités avant démodulation.

— **Les résonances mécaniques** Les résonances mécaniques provenant de la structure du banc font varier la longueur de la cavité. Certaines de ces résonances sont couplées à travers le serrage du piézo sur la cavité. En effet, des résonances disparaissent lorsque aucune force n’est appliquée sur le piézo.

— **Le flux d’air** Le flux d’air installé au niveau du banc de test affecte le faisceau. Le bruit augmente lorsque le flux est allumé. Les mesures ont donc été effectuées sans flux d’air.

— **Le bruit des photodiodes** Le bruit des photodiodes ainsi que du bruit quantique ont été estimés à environ 9.5×10^{-17} m/$\sqrt{\text{Hz}}$. Soit près d’un facteur 10 en dessous du bruit thermo-réfractif attendu. Le bruit des photodiodes ne limite pas la mesure.

Plusieurs tests ont été effectués avant d’arriver à ces conditions de mesures. Au cours des premiers tests, les signaux d’erreur étaient obtenus à partir de la modulation de chaque cavité par son propre PZT (configuration utilisée dans Advanced Virgo). Ceci impliquait de trouver une résonance mécanique pour chacune des cavités afin de maximiser l’amplitude du signal d’erreur en transmission de chaque cavité. Cette résonance variait au cours du temps, ce qui changeait entre autre la phase de démodulation, rendant la mesure complexe. La modulation du laser avec son PZT est donc la solution retenue.

Finalement les variations de puissance observées par chaque photodiode sont telles que :

$$\delta P_{PD3} = \delta P$$ \hspace{1cm} (7.12)

$$\delta P_{PD1} = \delta P_{\text{longueur cavité 1}} + \delta P_{\text{fréquence laser}} + \alpha_1 \delta P_{PD3}$$ \hspace{1cm} (7.13)

$$\delta P_{PD2} = \delta P_{\text{longueur cavité 2}} + \delta P_{\text{fréquence laser}} + \alpha_2 \delta P_{PD3}$$ \hspace{1cm} (7.14)
avec les variations en puissance : \(\delta P \) dues aux variations en puissance du laser, \(\delta P_{\text{fréquence laser}} \) dues aux variations en fréquence du laser et \(\delta P_{\text{longueur cavité 1 et 2}} \) les variations en longueurs des cavités 1 et 2, \(\alpha_1 \) et \(\alpha_2 \) les coefficients normalisant la puissance observée par chaque photodiode en transmission des cavités 1 et 2.

7.4 Étalonnage des signaux

![Graphique 7.3](image.png)

Figure 7.3 – A gauche : puissance transmise par la cavité en fonction du temps. A droite : signal d’erreur correspondant. La pente du signal démodulé (signal d’erreur), lors d’un balayage linéaire de la fréquence du laser, permet de calibrer le spectre en m/\(\sqrt{\text{Hz}} \).

Afin de mesurer le bruit en m/\(\sqrt{\text{Hz}} \), les signaux sont étalonnés. Pour cela, la condition de résonance d’une cavité est utilisée : la variation de longueur de la cavité pour parcourir un FSR est égale à la longueur d’onde divisée par deux.

Les cavités sont stabilisées en température et un balayage linéaire en fréquence du laser des cavités est effectué. Le balayage permet d’obtenir la valeur de l’intervalle en temps entre deux résonances ainsi que la pente du signal d’erreur au niveau de la résonance de chaque cavité, voir la figure 7.3. Le signal calibré peut donc s’écrire :

\[
S_c = S \times \frac{1}{a} \times \frac{1}{\Delta T_{\text{FSR}}} \times \frac{\lambda}{2}
\]

avec \(S_c \) le signal démodulé calibré en m/\(\sqrt{\text{Hz}} \), \(S \) le signal démodulé en W/\(\sqrt{\text{Hz}} \), a la pente du signal d’erreur au niveau de la résonance en W/s lors d’un balayage, \(\Delta T_{\text{FSR}} \) le temps (en s) pour effectuer un FSR lors d’un balayage et \(\lambda \) la longueur d’onde (en m). La précision de cet étalonnage est de l’ordre de 10%, évaluée en comparant plusieurs mesures.
7.5 Mesure

La figure 7.4 représente la mesure du bruit en longueur des deux cavités OMC.
Les courbes vertes et bleues représentent les signaux démodulés étalonnés en mètre en transmission des cavités 8 et 7 placées respectivement sur le support 1 et 2 ; la courbe grise correspond au bruit de fréquence du laser en mètre réinjecté par le pièzo de la cavité asservie en longueur ; la courbe noire est la soustraction des courbes verte, bleue et grise, ce qui correspond à la mesure du bruit en longueur des deux cavités, voir l’équation (7.16) ; et les courbes rouge et magenta sont les courbes théoriques du bruit thermo-réfractif dans les cas adiabatique et non adiabatique.

\[S_{BL} = S_{c,1} - S_{c,2} - S_{c,2\text{PZT}} \]

(7.16)

Entre 10 et 20 Hz, la mesure du bruit en longueur (en noir) est en adéquation avec les valeurs théoriques (rouge et magenta). Le bruit thermo-réfractif de l’OMC n’est donc pas plus grand que celui prévu par la théorie et il n’existe pas d’autre bruit en longueur plus grand que celui-ci dans cette bande de fréquence.

Il est possible qu’à basse fréquence, en dessous de 10 Hz, la mesure soit polluée par des fluctuations thermiques macroscopiques de l’OMC dues aux fluctuations de la température ambiante.

Les pics sur l’ensemble du spectre correspondent quant à eux à des résonances mécaniques du banc de test qui n’ont pas pu être éliminées. Au dessus de 20 Hz, cette mesure donne une limite supérieure du bruit en longueur de l’OMC. Cette limite est due aux conditions de mesures (table optique non suspendue, mesure dans l’air etc...).
Figure 7.4 – Mesure du bruit en longueur de l’OMC Advanced Virgo. Le bruit en longueur mesuré est représenté par la courbe noire qui correspond à la soustraction des courbes verte (cavité sur le support 1), bleue (cavité sur le support 2) et grise (bruit en fréquence du laser réinjecté par le PZT).
8 Impacts des résultats des paramètres de l’OMC sur la sensibilité du détecteur

Sommaire

8.1 Qualité de filtrage de l’OMC .. 140
8.2 Pertes dans l’OMC ... 142
 8.2.1 Pertes par diffusion et absorption 142
 8.2.2 Pertes par astigmatisme ... 145
 8.2.3 Pertes par biréfringence .. 146
 8.2.4 Observations du faisceau transmis 146
 8.2.5 Pertes totales ... 147
8.3 Bruit en longueur de l’OMC .. 147
8.4 Conclusion ... 150
L’objectif de l’OMC est de filtrer les bandes latérales ainsi que les modes d’ordre supérieur tout en évitant les pertes ou l’injection de bruits supplémentaires dans le signal de frange noire. L’OMC installé sur Advanced Virgo est composé des cavités 6 puis 5 placées en série. La caractérisation des paramètres de ces cavités présentée dans les chapitres précédents permet de déterminer la qualité de filtrage, mais également les pertes induites et le bruit en longueur de l’OMC.

8.1 Qualité de filtrage de l’OMC

La représentation de la contribution des bandes latérales et des modes d’ordre supérieur en transmission de l’OMC est appelée figure de mérite (voir le chapitre 3). Elle permet d’évaluer la qualité du filtrage des cavités OMC. Pour tracer la figure de mérite en fonction du rayon de courbure, il est nécessaire de connaître la finesse des cavités composantes de l’OMC. Ensuite, afin de connaître la contribution des bandes latérales et des modes d’ordre supérieur, il est important de connaître le rayon de courbure observé par les modes d’ordre supérieur susceptibles de contribuer majoritairement à la puissance transmise.

Les mesures de finesse des cavités, vues au chapitre 4, ont montré une différence par rapport aux spécifications et aux mesures faites au LMA. La figure de mérite obtenue pour une finesse de 142.5 dans la configuration avec le miroir SR à 125 W, vue au chapitre 3, doit être mise à jour. Les valeurs de finesse obtenues pour les cavités 5 et 6 sont rappelées dans la table 8.1. La valeur moyenne des finesse des cavités de 5 et 6 de 122.8 est celle utilisée pour tracer la figure de mérite.

<table>
<thead>
<tr>
<th>Cavités</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>121.3 ± 2.9</td>
<td>124.2 ± 2.9</td>
</tr>
</tbody>
</table>

Table 8.1

Les cavités OMC sont des cavités non dégénérées. Mais certains modes d’ordre élevé résonnent à proximité du mode TEM$_{00}$. Les premiers modes d’ordre supérieur à résonner proche de la fréquence de résonance du mode TEM$_{00}$ (à une distance d’environ 8% de la longueur du FSR) sont les modes d’ordre 11 et 12. De plus, les modes d’ordre 11 et 12 de la bande latérale à 6 et 56.44 MHz sont également les modes susceptibles de résonner à des fréquences proches du mode TEM$_{00}$, voir la figure 3.14.

Le chapitre 5 a permis d’estimer les rayons de courbures effectifs pour les modes d’ordre supérieur 2 à 5 des cavités 5 et 6, qu’il est raisonnable d’extrapoler aux modes d’ordre 11 et 12,
voir la table 8.2. Il existe peu de différences entre les rayons de courbure observés pour chaque cavité, ce qui permet d’utiliser un rayon de courbure moyen pour la figure de mérite.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_{\text{TEM}_{m>1}}) (m)</td>
<td>1.681 ± 0.015</td>
<td>1.693 ± 0.025</td>
</tr>
</tbody>
</table>

Table 8.2 – Rayons de courbure observés par les modes 2 à 5 pour les cavités 5 et 6.

Une simulation récente donnant cette contribution à 25 W sans SR a été refaite [15]. Elle prend en compte les cartes de surfaces des miroirs (PR, BS, les CP, WI et NI) actuellement installées sur le site. Les valeurs obtenues sont présentées dans la table 8.3.

<table>
<thead>
<tr>
<th>Ordre (m + n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porteuse (mW)</td>
<td>80</td>
<td>200</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>150</td>
<td>150</td>
<td>75</td>
<td>25</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>SB1 (10^{-2} \text{mW})</td>
<td>840</td>
<td>8.1</td>
<td>66.2</td>
<td>11.5</td>
<td>28.1</td>
<td>6.5</td>
<td>7.6</td>
<td>4.2</td>
<td>3.3</td>
<td>2.7</td>
<td>2.2</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>SB2 (10^{-2} \text{mW})</td>
<td>11600</td>
<td>7.4</td>
<td>35.2</td>
<td>39.5</td>
<td>55.1</td>
<td>13.4</td>
<td>32.4</td>
<td>7.3</td>
<td>11.5</td>
<td>5.0</td>
<td>2.5</td>
<td>4.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 8.3 – Puissances attendues de la porteuse et des bandes latérales avec leurs modes d’ordre supérieur en entrée de l’OMC dans la configuration à 25 W avec PR. SB1 la bande latérale à 6.27 MHz et SB2 la bande latérale à 56.44 MHz. L’estimation de la puissance des modes d’ordre supérieur pour SB1 et SB2 est faite avec les cartes de surface des miroirs BS, CP, et WI et NI en juin 2016 [15].

<table>
<thead>
<tr>
<th>Ordre (m + n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porteuse (mW)</td>
<td>80</td>
<td>200</td>
<td>60</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>60</td>
<td>250</td>
<td>250</td>
<td>95</td>
<td>60</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>SB1 (10^{-2} \text{mW})</td>
<td>250</td>
<td>2.6</td>
<td>20.7</td>
<td>3.6</td>
<td>8.8</td>
<td>2.0</td>
<td>2.4</td>
<td>1.3</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>SB2 (10^{-2} \text{mW})</td>
<td>16000</td>
<td>10.2</td>
<td>51.0</td>
<td>57.1</td>
<td>79.7</td>
<td>19.3</td>
<td>46.8</td>
<td>10.6</td>
<td>16.7</td>
<td>7.2</td>
<td>3.5</td>
<td>5.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 8.4 – Puissances attendues de la porteuse et des bandes latérales avec leurs modes d’ordre supérieur en entrée de l’OMC dans la configuration à 125 W avec PR et SR. SB1 la bande latérale à 6.27 MHz et SB2 la bande latérale à 56.44 MHz.

Plusieurs configurations de la cavité SR sont possibles, impliquant des conditions de résonance des faisceaux différentes et donc des puissances variables des bandes latérales et des modes d’ordre supérieur en entrée de l’OMC. La simulation avec SR de la contribution des bandes latérales et des modes d’ordre supérieur en entrée de l’OMC à 125 W avec les cartes des miroirs n’a pas encore été refaite. Cependant, afin d’avoir quand même une estimation de la contribution des bandes latérales et des modes d’ordre supérieur en transmission de la cavité dans la configuration où les deux miroirs de recyclage sont installées (PR et SR), en prenant en compte
les cartes de surfaces des miroirs (PR, BS, les CP, WI et NI), les valeurs de la table 8.3 ont été pondérées par le rapport des puissances des tables 3.3 et 3.4 avec et sans SR. Les résultats obtenus sont dans la table 8.4.

Les figures de mérite de l’OMC pour les configurations à 25 W sans SR et 125 W avec SR sont représentées respectivement sur les figures 8.1 et 8.2.

Dans ces conditions, la contribution totale des bandes latérales et des modes d’ordre supérieur est dominée par la contribution du TEM$_{00}$ de la bande latérale à 6 MHz. Dans la configuration 25 W sans SR, la contribution totale entre 1600 et 1700 mm est de 0.432 mW ce qui reste inférieur aux spécifications de 800 µW (provenant des bruits de contrôle) et 1.6 mW (provenant du bruit de photon), voir la section 3.3.1. Dans la configuration 125 W avec SR, la puissance de la bande latérale à 6 MHz en entrée diminue car celle-ci ne résonne pas dans la cavité de recyclage du signal. La contribution totale en transmission de la cavité diminue donc aussi, passant à 0.129 mW.

La spécification dérivée des contraintes sur les performances du contrôle de l’asymétrie des bras de l’interféromètre, de 800 µW pour la somme des composantes parasites résiduelles de l’OMC, est donc atteinte.

L’objectif principal du filtrage par l’OMC est de ne pas déteriorer la sensibilité d’Advanced Virgo, en garantissant que la puissance totale parasite en sortie de l’OMC ne dégrade pas le niveau de bruit de photon de plus de 1%, soit 1.6 mW. Cette spécification est également atteinte par l’OMC.

8.2 Pertes dans l’OMC

Les pertes dans l’OMC peuvent avoir différentes origines :

— la diffusion sur les faces des cavités
— l’absorption dans le substrat et les traitements de surface
— l’astigmatisme des cavités
— la biréfringence du matériau.

8.2.1 Pertes par diffusion et absorption

Des mesures des pertes par diffusion sur les faces des cavités ont été faites au LMA. Les valeurs obtenues ont permis d’estimer des pertes de l’ordre de 1 % pour chacune des cavités. Des mesures effectuées sur la cavité 6, voir le chapitre 4, concordent avec les résultats extrapolés des mesures faites au LMA.

La valeur de l’absorption du matériau de 0.3 ppm/cm implique des pertes dans une cavité de l’ordre de 0.03 %. Les pertes par absorption dans les traitements de surface sont du même ordre de grandeur.
Figure 8.1 – Figure de mérite de la contribution des bandes latérales et des modes d’ordre supérieur en transmission de l’OMC à 25 W, sans SR et avec $F = 122.8$. En traits pointillés les spécifications.
Figure 8.2 – Figure de mérite de la contribution des bandes latérales et des modes d’ordre supérieur en transmission de l’OMC à 125 W, avec SR et avec $F = 122.8$. En traits pointillés les spécifications.
Les pertes attendues par diffusion et absorption dans l’OMC composé de deux cavités sont donc de l’ordre de 2,1 %. Les pertes par diffusion et absorption dans l’OMC constitué des cavités 5 et 6 ont été mesurées à deux périodes différentes. Les résultats obtenus sont de 2,1 et 3,5 % [49, 59]. Lors de la mesure des pertes à 3,5 %, de la poussière a été observée sur une des cavités, ce qui peut peut-être expliquer la différence avec la mesure à 2,1 %. Les cavités ont été ensuite nettoyées mais la mesure n’a pas été refaite.

8.2.2 Pertes par astigmatisme

L’astigmatisme peut avoir différentes origines : l’asphéricité des faces des cavités, la déformation des substrats, l’angle d’incidence à l’entrée et à la sortie des cavités ou encore leurs défauts de surface.

La méthode de calcul des pertes de l’OMC dues à l’astigmatisme à partir des waists des cavités \(w_{0x} \) et \(w_{0y} \) en X et en Y ainsi que de leurs différences de positions \(Dz_0 = z_{0x} - z_{0y} \) a été vue dans le chapitre 3, section 3.8.

Dans le chapitre 5, l’étude du faisceau en transmission des cavités a permis d’obtenir les valeurs \(w_{0x} \), \(w_{0y} \) et \(Dz_0 \) des cavités 5, 6, 7 et 8, voir les tables 8.5 et 8.6.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{0x}) (mm)</td>
<td>0.340 ± 0.007</td>
<td>0.329 ± 0.004</td>
<td>0.345 ± 0.008</td>
<td>0.326 ± 0.005</td>
</tr>
<tr>
<td>(w_{0y}) (mm)</td>
<td>0.329 ± 0.006</td>
<td>0.328 ± 0.004</td>
<td>0.319 ± 0.006</td>
<td>0.325 ± 0.005</td>
</tr>
</tbody>
</table>

Table 8.5 – Valeurs des waists des cavités en X et Y.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Dz_0) (cm)</td>
<td>4.0 ± 1.0</td>
<td>0.7 ± 0.4</td>
<td>4.8 ± 0.9</td>
<td>7.2 ± 1.3</td>
</tr>
</tbody>
</table>

Table 8.6 – Différence longitudinale entre la position du waist horizontal et vertical pour chaque cavité. \(Dz = z_{0x} - z_{0y} \).

Les pertes de chaque cavité ont été estimées à partir d’une simulation Monte Carlo pour un intervalle de confiance de 2\(\sigma \). Les paramètres du faisceau incident ont été choisis tels que son waist soit égal à la moyenne des waists en X et en Y de la cavité considérée et que la position du waist soit sur la face d’entrée de la cavité. Les résultats obtenus sont dans la table 8.7. Les cavités présentant le moins de pertes dues à l’astigmatisme sont les cavités 6 et 5.

<table>
<thead>
<tr>
<th>Cavité</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>0.4 %</td>
<td>0.1 %</td>
<td>0.5 %</td>
<td>0.9 %</td>
</tr>
</tbody>
</table>

Table 8.7 – Pertes à l’entrée de l’OMC

L’OMC est composé de deux cavités en série. Chaque cavité est à l’origine de pertes. De plus, les pertes ne sont pas les mêmes selon l’ordre des cavités choisies, voir l’équation (3.50)

La valeur minimale de pertes par astigmatisme attendue dans l’OMC composé des cavités 6 puis 5 est donc de l’ordre de 0.5 %.

<table>
<thead>
<tr>
<th>PERTES</th>
<th>2ème cavité</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

La valeur minimale de pertes par astigmatisme attendue dans l’OMC composé des cavités 6 puis 5 est donc de l’ordre de 0.5 %.

Table 8.8 – Pertes dans l’OMC pour différentes configurations de deux cavités placées en série.

8.2.3 Pertes par biséfringence

Il a été vu dans le chapitre 6 que les pertes dues à la taille et à la position du waist du faisceau incident sur l’OMC (également appelé mode matching), à la biséfringence et l’astigmatisme de l’OMC composé des cavités 6 et 5 ont été mesurées comme étant inférieures à 1.4 % [59]. Pour diminuer les pertes par biséfringence et atteindre cette valeur de 1.4 %, le design du support OMC a été modifié (voir la figure 3.16). Etant donné les pertes par astigmatisme attendues de 0.5%, les pertes mesurées dues à la biséfringence et le mode matching sont de l’ordre de 1%.

8.2.4 Observations du faisceau transmis

![Faisceau observé](image)

Figure 8.3 – A gauche exemple de faisceau observé en transmission des cavités 5, 7 et 8. A droite exemple de faisceau observé en transmission de la cavité 6.
Les trois cavités 8, 7 et 5 ne transmettent pas un faisceau parfaitement gaussien, voir le chapitre 5. Les défauts des profils de puissance des faisceaux transmis par ces cavités se ressemblent mais ne sont pas tous de la même intensité. Les faisceaux transmis par les cavités 7 et plus particulièrement 8 sont plus déformés que la cavité 5. Ces déformations ressemblent à la superposition d’un faisceau gaussien avec un mode d’ordre supérieur vertical, voir la figure 8.3.

Les modes d’ordre supérieur 11 et 12 proches de la résonance du TEM\(_{00}\) sur lequel la cavité est verrouillée ne permettent pas d’expliquer ce profil. En effet, leur contribution est trop faible. Il est possible que des modes d’ordre supérieur, de l’ordre des modes 11 et 12, de la polarisation lente résonne sur la résonance du TEM\(_{00}\) de la polarisation rapide, voir le chapitre 6. Mais des tests avec différentes polarisations en entrée de la cavité n’ont pas permis d’identifier des changements notables sur le profil de puissance du faisceau transmis.

Une autre hypothèse pourrait expliquer ces différences : l’inhomogénéité des substrats. En effet, les cavités ont été découpées à partir de blocs de silice. Une étape importante de la conception du matériau est son refroidissement. C’est lors de ce refroidissement que des différences de contraintes entre le cœur du bloc et l’extérieur peuvent apparaître. L’emplacement des cavités découpées dans le bloc de silice n’est pas connu.

Une simulation du faisceau transmis par la cavité 8 à partir des cartes de surface dont les défauts sont augmentés d’un facteur 4, et pour un astigmatisme de 35 mm de la face sphérique, a permis d’obtenir un faisceau semblable à celui qui est observé en transmission de la cavité 8 [6]. La valeur choisie pour l’astigmatisme est réaliste compte tenu des mesures présentées au chapitre 5. La non homogénéité du matériau pourrait donc avoir un effet équivalent à des défauts augmentés au niveau des faces de la cavité. La différence d’homogénéité, difficile à prévoir, entre les substrats n’est donc pas à exclure pour expliquer le profil de puissance du faisceau transmis.

Que ce soit pour l’évaluation du profil de puissance des faisceaux transmis, des pertes par astigmatisme ou encore la biréfringence des substrats, les cavités présentant les moins de défauts sont les cavités 5 et 6.

8.2.5 Pertes totales

Les pertes totales de l’OMC ont été mesurées à 3.5 ou 4.9 % dans le pire des cas (les cavités n’ayant pas été nettoyées) [59]. Ces valeurs sont de l’ordre de grandeur des pertes attendues d’environ 4 % [12].

8.3 Bruit en longueur de l’OMC

La contribution du bruit en longueur sur la courbe de sensibilité dépend de la réponse optique de l’interféromètre $R_{\text{interféromètre}}$ et de la longueur des bras L_{bras} :

$$
\delta h(f)_{\text{OMC}} = 32 F^2 \times \frac{\delta l(f)_{\text{OMC}} \Delta l_0}{\lambda^2} \times \frac{P}{R(f)_{\text{interféromètre}} \times L_{\text{bras}}}
$$

(8.1)

avec F la finesse de l’OMC, δl_{OMC} le bruit en longueur de l’OMC, Δl_0 la précision du verrouillage, $\lambda = 1064$ nm la longueur d’onde, $P = 80$ mW la puissance du TEM$_{00}$ de la portée transmise par l’OMC à 125 W, $R_{\text{interféromètre}}$ en W/m dans la configuration avec la double cavité de recyclage (PR + SR) à 125 W et $L_{\text{bras}} = 3$ km la longueur des bras de l’interféromètre.

La figure 8.4 représente la contribution du bruit en longueur de l’OMC mesuré (voir le chapitre 7) avec une précision de verrouillage $\Delta l_0 = 6.10^{-13}$ m.

Les courbes rouge et jaune, obtenues pour la valeur de la finesse mesurée de l’OMC $F = 122.8$, correspondent respectivement à des précisions de verrouillage atteintes avec l’OMC Advanced Virgo de $\Delta l_0 = 3.10^{-13}$ m et $\Delta l_0 = 6.10^{-13}$ m.

Les courbes de la sensibilité d’Advanced Virgo (en trait plein noir) et de la sensibilité d’Advanced Virgo divisée par un facteur 10 (en pointillés noirs) sont également représentées sur la figure 8.4.

La contribution du bruit en longueur de l’OMC est bien un facteur 10 en dessous de la courbe de sensibilité d’Advanced Virgo entre 10 et 100 Hz.
Impacts des résultats des paramètres de l’OMC sur la sensibilité du détecteur

Figure 8.4 – Limite supérieure de la contribution du bruit en longueur de l’OMC mesuré jusqu’à 100 Hz sur la courbe de sensibilité Advanced Virgo. La courbe bleue est la projection du bruit en longueur de l’OMC mesuré. Les courbes jaune et rouge sont la projection du bruit thermo-réfractif dans le cas adiabatique pour différentes précisions de verrouillages et pour une finesse de $F = 122.8$.

AdV Noise Curve with some tech noises: $P_{\text{in}} = 125.0$ W

- Advanced Virgo sensitivity
- Advanced Virgo sensitivity/10
- OMC length noise, $\Delta l_0 = 6.10^{-13}$ m
- Thermo-refractive noise, $\Delta l_0 = 6.10^{-13}$ m
- Thermo-refractive noise, $\Delta l_0 = 3.10^{-13}$ m
8.4 Conclusion

L’étude des cavités et de leurs paramètres a permis dans ce chapitre d’évaluer les qualités de filtrage, les pertes et l’impact du bruit en longueur de l’OMC et de déterminer les deux meilleures cavités à installer sur Advanced Virgo.

Les bandes latérales ainsi que les modes d’ordre supérieur en transmission de l’OMC ne doivent pas générer une hausse du bruit de photon de plus de 1 %, ce qui correspond à une contribution en puissance de 1.6 mW en transmission de l’OMC. De plus, les performances du contrôle de l’asymétrie des bras de l’interféromètre nécessitent une contribution inférieure à 800 µW pour la somme des composantes parasites résiduelles de l’OMC. Compte tenu de la finesse mesurée, la contribution des bandes latérales ainsi que des modes d’ordre supérieur en transmission de l’OMC a été estimée de l’ordre de 0.432 mW pour la configuration sans le miroir SR à 25 W et de 0.129 mW pour la configuration avec le miroir SR à 125 W, ce qui est bien en dessous des spécifications de 800 µW et 1.6 mW. Le filtrage de l’OMC atteint donc les spécifications requises pour les deux configurations de l’interféromètre à 25 W et 125 W.

Les pertes totales mesurées sont comprises entre 3.5 % et 4.9 % et sont donc proches des pertes attendues des pertes attendues de l’ordre de 4 %.

La mesure du bruit en longueur a permis de montrer que celui-ci ne limite pas la sensibilité d’Advanced Virgo dans la bande de fréquence entre 10 et 100 Hz, qui est la bande de fréquence dans laquelle les bruits techniques sont les plus nombreux dans les interféromètres.
Conclusion

Advanced Virgo est un détecteur d’ondes gravitationnelles dont le système de détection nécessite deux cavités de filtre placées en série appelées Output Mode Cleaner (OMC) et situées en sortie de l’interféromètre. L’objectif de l’OMC est de filtrer les modes d’ordre supérieur afin d’améliorer le contraste mais également de filtrer les bandes latérales. Ce manuscrit s’est focalisé sur l’étude des cavités optiques composantes de l’OMC Advanced Virgo.

Ces cavités sont des cavités monolithiques en silice de 6 cm de long dites "en nœud papillon". Quatre cavités ont été testées et caractérisées afin de déterminer les deux cavités qui seraient installées sur Advanced Virgo.

Plusieurs méthodes ont été décrites pour la caractérisation des finesse des cavités : à partir des paramètres de surfaces des cavités et en étudiant leurs résonances. Les mesures détaillées dans cette thèse sont cohérentes entre elles mais diffèrent des spécifications retenues pour le design des cavités. Les méthodes développées pour la caractérisation des rayons de courbure ont également montré, pour une cavité, des écarts aux valeurs requises lors de la conception allant jusqu’à 3%. Au cours des mesures, la résonance de la deuxième polarisation du faisceau décalée en phase, a été observée. Les quatre cavités présentent des différences entre elles. Certaines transmettent un faisceau non gaussien et présentent une plus grande biréfringence naturelle.

Les deux cavités retenues et installées sur Advanced Virgo sont les cavités dont le faisceau transmis est gaussien, le rayon de courbure compatible avec les spécifications et les pertes par biréfringence pour deux cavités placées en série sont minimisées par une solution mécanique.

La finesse et le rayon de courbure mesurés pour les cavités retenues ont permis d’estimer la qualité de filtrage de l’OMC en considérant la puissance transmise des bandes latérales et des modes d’ordre supérieur. Le système OMC atteint les spécifications de filtrage requises en se situant à un facteur 2 et 6 en dessous de la spécification de 0.8 mW, provenant du contrôle des bras de l’interféromètre, pour les deux configurations du déteceur respectivement à 25 et 125 W. Les pertes mesurées de l’ordre de 4% atteignent également les spécifications. Une limite supérieure du bruit en longueur de la cavité a été mesurée. Celle-ci est au niveau du bruit thermo-refractif théorique attendu pour de telles cavités entre 10 et 20 Hz. La mesure du bruit en longueur de l’OMC montre que sa contribution reste, entre 10 et 100 Hz, un facteur 10 en dessous de la courbe de sensibilité.

La qualité de filtrage de la frange noire, les pertes ainsi que le bruit en longueur mesuré entre 10 et 100 Hz de l’OMC atteignent les spécifications requises pour le niveau de sensibilité nominale d’Advanced Virgo.

Après les premières détections directes d’ondes gravitationnelles provenant de la coalescence de trous noirs par les collaborations LIGO et Virgo, le détecteur Advanced Virgo devrait
acquérir ses premières données en 2017 et participer au futur d’une astronomie gravitationnelle palpitante.
Dans le cas d’une cavité simple, voir figure A.1, deux miroirs de réflectivités et de transmission r_1, t_1 et r_2, t_2 se font face à une distance L. Pour remplir les conditions de résonance, la variation de phase du faisceau après un aller-retour dans cette cavité doit être un multiple entier de 2π :

$$\Phi = 4\pi L \frac{\nu}{c} = 2\pi p$$ \hspace{1cm} (A.1)

avec Φ la phase, ν la fréquence, c la célérité de la lumière et p un entier.

Figure A.1 – Représentation d’une cavité simple.

Les champs de la cavité s’écritent :

$$E = \sqrt{T}E_{in} + \sqrt{R}E'$$ \hspace{1cm} (A.2)

$$E_r = \sqrt{T}E' - \sqrt{R}E_{in}$$ \hspace{1cm} (A.3)

avec \sqrt{R} et \sqrt{T} les coefficients de reflexion et de transmission de la cavité.

Le signe moins de l’équation(A.3) résulte de la réflexion.

1. $R=r_1^2$ et $T=t_1^2$
L’amplitude du champ électrique dans une cavité Fabry-Perot est définie telle que :

\[
E = t_1 \sum_{i=1}^{n} (r_1 r_2)^{n-1} \left(e^{-j2\omega L_c} \right)^n e^{j2\omega L_c} E_{in} \tag{A.4}
\]

\[
E_t = t_1 t_2 \sum_{i=1}^{n} (r_1 r_2)^{n-1} \left(e^{-j2\omega L_c} \right)^n e^{j2\omega L_c} E_{in} \tag{A.5}
\]

\[
E_r = r_1 E_{in} - t_1^2 t_2 \sum_{i=1}^{n} (r_1 r_2)^{n-1} \left(e^{-j2\omega L_c} \right)^n E_{in} \tag{A.6}
\]

Le champ E de la cavité s’écrit alors :

\[
E = \frac{t_1}{1 - r_1 r_2 e^{-j2\omega L_c}} E_{in} \tag{A.7}
\]

La puissance stockée dans la cavité s’écrit donc :

\[
P = G \frac{P_0}{1 + \left(\frac{2F\pi}{L_c} \right)^2 \sin^2 \left(-2\pi L_c \nu c\right)} \tag{A.8}
\]

avec G le gain tel que :

\[
G = \frac{E}{E_{in}} \times \frac{E^*}{E_{in}^*} \tag{A.9}
\]

Pour une cavité résonante (équation A.1) :

\[
G = \left(\frac{t_1}{1 - r_1 r_2} \right)^2 \tag{A.10}
\]

Dans le cas d’une cavité avec un miroir de réfectivité et transmission \(r_2 = 1 \) et \(t_2 = 0 \), la puissance à résonance s’exprime :

\[
P_{max} = \frac{1 + r_1}{1 - r_1} P_0 \tag{A.11}
\]

Pour des finesse supérieures à quelques dizaines, la puissance à résonance peut s’exprimer aussi :

\[
P_{max} = \frac{2F}{\pi} P_0 \tag{A.12}
\]

avec \(F = \frac{\pi \sqrt{r_1 r_2}}{1 - r_1 r_2} \).

\[\text{2. En utilisant la série numérique : } \sum_{i=0}^{n} x^n = \frac{1}{1-x} \]
Différentes caméras ont été utilisées afin d’observer les faisceaux sur le banc : une caméra CCD et une caméra CMOS. Une des différences technologiques majeures entre ces deux types de caméra est la suppression d’un effet appelé « smearing » dans le cas de la caméra CMOS. L’effet de « smearing » propre aux caméras CCD se traduit par l’apparition d’une bande verticale lumineuse [https://www.ptgrey.com/KB/10317] comme nous pouvons l’observer sur la figure B.1. Ceci est dû à la pollution des charges par des zones hautement éclairées lors du transfert des charges le long des lignes verticales. On peut tout de même, si les paramètres de densité de puissance du faisceau et de temps d’intégration de la caméra sont adaptés, utiliser la caméra CCD pour les mesures de taille de faisceau.

Aucun effet lié au type de caméra utilisé sur la taille du faisceau n’a été observé [19].

Figure B.1 – A gauche : image du faisceau sans smear. A droite : image du faisceau avec smear.
DÉFORMATION DE LA FACE COURBE D’UNE CAVITÉ

Une force est appliquée à travers la vis maintenant le piézo sur la cavité. Cette force implique une déformation de la cavité et donc de ses surfaces traitées. Pour une déformation α' de la cavité (voir section 3.7), le nouveau rayon de courbure R_2 du miroir courbe après déformation est :

$$\frac{1}{R_2} = \frac{\cos \alpha'}{R_1} + \frac{\cos \alpha_1}{R'}$$ \hspace{1cm} (C.1)

avec R_1 le rayon de courbure initial, R_2 le rayon de courbure après déformation, R' le rayon de courbure de la déformation et α' et α_1 les angles attachés aux rayons de courbures respectifs R' et R_1, voir figure C.1.

α' et α_1 étant petits, l’équation (C.1) peut s’écrire :

$$\frac{1}{R_2} = \frac{1}{R_1} + \frac{1}{R'}$$ \hspace{1cm} (C.2)

Figure C.1 – Représentation de l’estimation du changement de courbure du miroir courbe avant et après déformation de la cavité.
Déformation de la face courbe d’une cavité
D

ACRONYMES ET DÉFINITIONS

D.1 Acronymes

BS Beam Splitter, séparatrice
CP Compensation Plate, lame compensatrice
DC Détection Continue
FSR Free Spectral Range, intervalle spectrale libre (ou ISL)
HOM High Order Mode, mode d’ordre supérieur
LMA Laboratoire des Matériaux Avancés
NE North-End, miroir de bout du bras nord
NI North-Input, miroir d’entrée du bras nord
OMC Output Mode Cleaner, système optique de filtrage de sortie
PR Power Recycling, miroir de recyclage de la puissance
PZT Titano-Zirconate de Plomb, piezoélectrique
RoC Radius of Curvature, rayon de courbure
SR Signal Recycling, miroir de recyclage du signal
WE West-End, miroir de bout du bras ouest
WI West-Input, miroir d’entrée du bras ouest

D.2 Définitions

waist ou w_0 col d’un faisceau gaussien ou rayon minimale de celui-ci
Bibliographie

[59] Michał Wąs for the DET team. The OMCs are working. VIR-0562A-14, 2014. 126, 145, 146, 147

Résumé

Un siècle après leur prédiction par Albert Einstein, le 14 septembre 2015 des ondes gravitationnelles provenant de la coalescence de deux trous noirs ont été observées, ouvrant ainsi le champ à une toute nouvelle astronomie et une nouvelle manière d’étudier la gravitation.

La faible amplitude des ondes gravitationnelles nécessite des détecteurs spécifiques et très sensibles. Advanced Virgo est un interféromètre kilométrique de deuxième génération dédié à la détection des ondes gravitationnelles. Un des éléments nécessaires pour atteindre la sensibilité requise est le système optique de filtrage appelé l’Output Mode Cleaner ou OMC, placé en sortie de l’interféromètre, et composé de deux cavités optiques.

Ce manuscrit présente l’étude et la caractérisation de ce système optique de filtrage. Ce travail a permis de sélectionner les deux cavités actuellement installées dans le détecteur Advanced Virgo. Les performances de filtrage et l’impact de l’OMC sur la sensibilité du détecteur sont également décrits.

Mots clés : Astrophysique, Ondes gravitationnelles, Interférométrie, Advanced Virgo, Cavités optiques

Abstract

About 100 years after their prediction by Albert Einstein gravitational waves produced by the coalescence of two black holes were observed on the 14th of September 2015, opening the field of gravitational wave astronomy and a new way to study gravitation.

The small amplitude of gravitational waves requires specific and very sensitive detectors. Advanced Virgo is a second generation kilometric interferometer dedicated to the detection of gravitational waves. A necessary element to reach the required sensitivity is the filtering optical system named the Output Mode Cleaner or OMC, placed at the output of the interferometer, and composed of two optical cavities.

This thesis shows the study and characterisation of this optical system. This work informed the selection of the two optical cavities actually installed in the Advanced Virgo detector. The filtering performances and impact of the OMC on the detector sensitivity are also described.

Keywords : Astrophysic, Gravitational waves, Interferometry, Advanced Virgo, Optical cavities