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Abstract
In this thesis we study holomorphic dynamical systems depending on parameters. Our main goal is
to contribute to the establishment of a theory of stability and bifurcation in several complex variables,
generalizing the one for rational maps based on the seminal works of Mañé, Sad, Sullivan and Lyubich.

For a family of polynomial like maps, we prove the equivalence of several notions of stability, among the
others an asymptotic version of the holomorphic motion of the repelling cycles and of a full-measure subset
of the Julia set. This can be seen as a measurable several variables generalization of the celebrated ⁄-lemma
and allows us to give a coherent definition of stability in this setting. Once holomorphic bifurcations are
understood, we turn our attention to the Hausdorff continuity of Julia sets. We relate this property to the
existence of Siegel discs in the Julia set, and give an example of such phenomenon. Finally, we approach the
continuity from the point of view of parabolic implosion and we prove a two-dimensional Lavaurs Theorem,
which allows us to study discontinuities for perturbations of maps tangent to the identity.

Résumé
Dans cette thèse, on s’intéresse aux systèmes dynamiques holomorphes dépendants de paramètres. Notre
objectif est de contribuer à une théorie de la stabilité et des bifurcations en plusieurs variables complexes,
généralisant celle des applications rationnelles fondées sur les travaux de Mañé, Sad, Sullivan et Lyubich.

Pour une famille d’applications d’allure polynomiale, on prouve l’équivalence de plusieurs notions de
stabilité, entre autres une version asymptotique du mouvement holomorphe des cycles répulsifs et d’un
sous-ensemble de l’ensemble de Julia de mesure pleine. Cela peut être considéré comme une généralisation
mesurable à plusieurs variables du célèbre ⁄-lemme et nous permet de dégager un concept cohérent de
stabilité dans ce cadre. Après avoir compris les bifurcations holomorphes, on s’intéresse à la continuité
Hausdorff des ensembles de Julia. Nous relions cette propriété à l’existence de disques de Siegel dans
l’ensemble de Julia, et donnons un exemple de ce phénomène. Finalement, on étudie la continuité du point
de vue de l’implosion parabolique. Nous établissons un théorème de Lavaurs deux-dimensionel, ce qui
nous permet d’étudier des phénomènes de discontinuité pour des perturbations d’applications tangentes à
l’identité.

Sunto
In questa tesi, studiamo sistemi dinamici olomorfi dipendenti da un parametro, con l’obiettivo di contribuire
ad una teoria di stabilità e biforcazione a più variabili complesse che generalizzi quella per frazioni razionali
basata sui lavori di Mañé, Sad, Sullivan e Lyubich.

Per una famiglia di polynomial-like maps dimostriamo l’equivalenza di numerose nozioni di stabilità, tra
le quali una versione asintotica del movimento olomorfo dei cicli repulsivi e di un sottoinsieme di misura
piena dell’insieme di Julia. Questo può essere visto come una generalizzazione misurabile a più variabili
del famoso ⁄-lemma e ci permette di dare una definizione coerente di stabilità in questo contesto. Dopo
aver compreso le biforcazioni olomorfe, ci interessiamo alla continuità Hausdorff degli insiemi di Julia.
Mettiamo in relazione questa proprietà con l’esistenza di dischi di Siegel nell’insieme di Julia, e diamo un
esempio di questo fenomeno. Infine, studiamo la continuità dal punto di vista dell’implosione parabolica,
e dimostriamo un teorema di Lavaurs a due variabili. Questo ci permette di studiare dei fenomeni di
discontinuità per perturbazioni di mappe tangenti all’identità.
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Introduction

This thesis is devoted to the study of holomorphic dynamical systems depending on parameters.
Our main goal is to contribute to the establishment of a theory of stability and bifurcation in
several complex variables, generalizing the one for rational maps based on the seminal works of
Mañé, Sad, Sullivan and Lyubich.

The precise objects we will study are holomorphic families of polynomial-like maps. These maps
naturally appear when dealing with semi-local problems within holomorphic dynamical systems
and must be thought of as a generalization of the endomorphisms of Pk (the higher dimensional
analogue of rational maps). Let us stress that they also provide a bridge towards the understanding
of the (more complicated) dynamics of transcendental maps in several complex variables.

In the first part of this thesis we generalize to this setting results already due to Berteloot
and Dupont for families of endomorphisms of Pk. We prove that several reasonable notions of
dynamical stability are actually equivalent, among the others the harmonicity of the Lyapounov
function and the existence of equilibrium webs. This is a notion of dynamical stability for the
equilibrium measures, which implies a weak version of holomorphic motion for the Julia sets. The
main difficulty here is the lack of a Green function in this more general situation. While some
proofs will be essentially adaptations of the ones on Pk, others require to completely rethink the
strategy of proof. We exploit here some tools introduced by Dinh-Sibony and Pham.

We then proceed to the main result of the thesis: we establish that the holomorphic motion
of repelling points contained in the Julia set is enough to recover the holomorphic motion of a
full-measure subset of the Julia sets. While this fact is ensured in dimension 1 by the celebrated
⁄-lemma, in several complex variables the failure of Hurwitz Theorem means that motions of dif-
ferent points may intersect. The goal of this part is thus to prove that, up to removing a negligible
set of these motions, we can still recover a holomorphic motion of almost all the Julia set. This,
together with the results of the previous part, allows us to give a coherent definition of stability
and bifurcation for polynomial-like maps (and for endomorphisms of Pk). The proof of this fact,
and in general all our approach to stability and bifurcations, heavily relies on ergodic theory and
on the use of plurisubharmonic functions, a point of view initiated in dimension 1 by Brolin (for
single endomorphisms) and De Marco (for the study of bifurcations within families). We then
show how to recover an asymptotic motion of the repelling cycles from the other equivalent notions
of stability. Let us stress that the results in this part are new also in the setting of endomorphisms
of Pk, and constitute our main contribution to the subject.

Once holomorphic bifurcations are understood, we turn our attention to the Hausdorff continu-
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xii Introduction

ity of Julia sets. Following Berteloot and Dupont, we prove that higher dimensional Siegel discs –
which are an obstruction to the existence of holomorphic motions, as in dimension 1 – may be
seen as an obstruction to continuity, too. For some particular families we prove that, provided
that these Siegel discs are outside the Julia set (as in dimension 1), the continuity of the Julia
set would imply the holomorphic motion. Although the fact that Siegel discs are disjoint from
the Julia set may seem a reasonable request, we prove that this is not the case in general. This
shows that the question about the equivalence of continuity and holomorphic stability may be
more difficult than expected.

Although the strategy based on Siegel discs seems to fail in the general situation, there is another
way to attack this problem in dimension one: the theory of parabolic implosion. This rapidly
became one of the cornerstones of the one-dimensional theory after the foundational works by
Lavaurs and Douady. While this theory is today well developed and applied in dimension one,
there is not at present an analogue in several complex variables. Here the theory begins with
recent results in the semi-attracting setting, due to Bedford-Smillie-Ueda and Dujardin-Lyubich.
The goal of the last part of this work is then to provide an analogous treatement in the completely
parabolic setting, by a precise study of perturbations of endomorphisms of C2 tangent to the
identity at the origin. As an application, we get estimates for the discontinuity of the large Julia
set (i.e., the complement of the Fatou set) and (for regular polynomials) of the filled Julia set.

A brief survey of the context
The one-dimensional theory Given a dynamical system, it is reasonable to try to decompose
it into two complementary subsets: a first one, where the dynamics is stable (i.e., the Ê-limit
of a point depends continuously on the point itself), and its complement, where the asymptotic
dynamics is sensitive to the initial conditions. Without additional assumptions, it is difficult to say
more about this decomposition. It is thus fair enough to say that global holomorphic dynamics as
it is known today started when, in 1917, Fatou and Julia [Fat19, Fat20a, Fat20b, Jul68] had the
intuition to try and apply Montel Theorem – stating that an equibounded family of holomorphic
functions is equicontinuous – to the family of the iterates of a rational map. This gives a powerful
criterion for stability, which leads to the following definition.

Definition 1. Let f be a rational map. The Fatou set is the maximal open set where the family of
iterates {fn} is normal. The Julia set J is the complement of the Fatou set.

The Fatou and Julia sets are easily seen to be completely invariant. Moreover (see, e.g.,
[Zal98, BD00, Mil06]), an application of Montel Theorem and Zalcman renormalization Lemma
[Zal75] gives the following equivalent characterizations of the Julia set.

Theorem 2 (Fatou, Julia). Let f be a rational map. Then

• the repelling periodic points belong to the Julia set J , and J is the closure of these points; and

• with at most two exceptions, the preimages of any point on the Riemann sphere accumulate all
the Julia set.
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Let us now consider a holomorphic family f⁄ of rational maps, i.e., let us assume a holomorphic
dependence of our system from a parameter ⁄ in some complex manifold M . We want to study
the following question:

how does the Julia set J⁄ vary with ⁄?

Since repelling points are dense in J , it is natural to approach this question by studying how the
repelling points behave under perturbation. The central definition here is the following notion of
holomorphic motion.

Definition 3. Let E be a subset of the Riemann sphere, � be a complex manifold and ⁄
0

œ �. A
holomorphic motion of E over � centered at ⁄

0

is a map

h : � ◊ E æ P1

(⁄, z) ‘æ h⁄(z)

such that

• h⁄0 = id|E;

• E – z ‘æ h⁄(z) is one-to-one for every ⁄ œ �;

• � – ⁄ ‘æ h⁄(z) is holomorphic for every z œ E.

A holomorphic motion is thus a holomorphic family of injections from E to P1, parametrized
by the manifold �. In particular, it gives a lamination on the subset fi⁄ ({⁄} ◊ J⁄) of the product
space � ◊ P1. One important property of any holomorphic motion is the fact that it automatically
extends to the closure of E. This is the content of the so-called ⁄-lemma, which is (once again) a
consequence of Picard-Montel Theorem, combined with Hurwitz Theorem.

Lemma 4 (⁄-lemma, Mañé-Sad-Sullivan [MSS83]). A holomorphic motion h of E extends to a
holomorphic motion h of E (and moreover h is continuous).

The idea of this lemma is the following. Take any z œ E. We want to define a unique holomorphic
motion for this point, coherent with the ones of the points of E. To do this, we can approximate z
with points zn œ E, and consider the motions hz

n

(⁄) of these points. By means of Picard-Montel
Theorem, the hz

n

’s form a normal family, and we can thus define a motion hz of z as a limit of this
sequence. To conclude, we just need to ensure that this limit is unique. But this, since we are in
dimension 1, follows from an application of Hurwitz Theorem.

Let now z
0

, . . . , fn≠1

⁄0
(z

0

) be a repelling n≠cycle for f⁄0 . By the implicit function theorem, there
exists a holomorphic motion of this cycle on a neighbourhood �⁄0 of ⁄

0

that conjugates the
dynamics (f⁄ ¶ h⁄ = h⁄ ¶ f⁄0). We say that the cycle moves holomorphically when this happens,
or that there is a holomorphic motion of these points as periodic repelling points. The following
theorem is then a consequence of the ⁄-lemma and the density of the repelling cycles in the Julia
set.

Theorem 5 (Lyubich [Lyu83b], Mañé-Sad-Sullivan [MSS83]). Let f⁄ be a holomorphic family of
rational maps. If the repelling cycles move holomorphically (as repelling points), then the Julia sets
J⁄ move holomorphically (and the motion conjugates the dynamics).
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This theorem allows one to give the following definition.

Definition 6. The stability locus is the subset of the parameter space where the Julia set moves
holomorphically. Its complement is the bifurcation locus.

From the definition the stability locus is open, but it is not clear even that it should be non
empty. It turns out that this set is actually dense in the parameter space. This is a consequence of
the fact that the critical points are finite.

Dynamical stability as described above is strongly related to the critical dynamics. Indeed, it
turns out that the behaviour of the critical orbits under perturbation completely determines the
stability of a rational map. Let us assume for simplicity that the family has marked critical points.
This means (since a rational map of degree d has 2d ≠ 2 critical points, counting with multiplicity),
having holomorphic functions c

1

, . . . , c
2d≠2

parametrizing the critical points. For every ci, we can
then consider the sequence of maps ⁄ ‘æ fn

⁄ (c(⁄)).

Theorem 7 ([Lyu83b, MSS83]). The bifurcation locus is the union of the non-normality loci of the
critical orbits fn

(ci(⁄)).

In order to continue the description of the picture in dimension one, we have to make a step
back to 1965. In this year, Brolin proved the following quantitive version of the equidistribution of
preimages for a polynomial map. This can be seen as the start of the use of potential-theoretic
tools in holomorphic dynamics.

Theorem 8 (Brolin [Bro65]). Let f be a polynomial map on C of degree d Ø 2. The equilibrium
measure µ of the filled Julia set is ergodic, supported on the Julia set and

1

dn

ÿ

bœf≠n

(a)

”b ≠æ
næŒ

µ

for all a œ C, with at most one exception.

This result was later generalized to rational maps by Lyubich, who also proved the analogous
equidistribution result for the repelling cycles, as well as studied entropy properties of these
systems.

Theorem 9 (Lyubich [Lyu83a]). Let f be a rational map of degree d Ø 2. The equilibrium measure µ
is the only measure of maximal entropy log d. Moreover,

1

dn

ÿ

pœR
n

”p ≠æ
næŒ

µ

where the sum is taken over n-periodic repelling points.

In order to explain the potential theoretic approach to bifurcations, we shall now focus on a
polynomial family (p⁄)⁄œM of a given degree d Ø 2, i.e., a holomorphic function

p : M ◊ C æ M ◊ C
(⁄, z) ‘æ (⁄, p⁄(z))
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For simplicity, we assume that these polynomials are monic and that the critical points are marked
as above. We need to introduce two objects. The first one is the Green function of p, defined as

G(⁄, z) := lim

næŒ
d≠n

log

+ |pn
⁄(z)| ,

where log

+

(x) := max (0, log x). Since the convergence is locally uniform, the function G is
plurisubharmonic (or psh, for brevity) on the product space M ◊ C. Moreover, it is not difficult to
check that G(⁄, z) = 0 precisely on the filled Julia sets, where the sequence pn

⁄(z) is bounded. The
Julia set of p⁄ is the boundary of the filled Julia set and its equilibrium measure µ⁄ is given by
µ⁄ = ddc

zG(⁄, ·).

The second object we need is the Lyapounov exponent, defined as

L(⁄) =

ˆ
log

--pÕ
⁄(z)

-- µ⁄(z).

It easily follows from Birkhoff Theorem that the Lyapounov exponent is the exponential rate of
growth of (pn

⁄)

Õ
(z), for µ⁄-almost every point z. A similar property holds also for the repelling

cycles, although it is less obvious to establish. More precisely, we have

L(⁄) = lim

næŒ
d≠n

ÿ

zœR
n

1

n
log

---(pn
⁄)

Õ
(z)

---

where the sum is taken over the repelling points of (exact) period n (see e.g., [Ber10]). Thus,
the Lyapounov exponent is strictly related to the behaviour of the repelling cycles. It is then
reasonable to try to detect their bifurcations by means of this function.

On the other hand, by its very definition, the Lyapounov exponent encodes a relation between
the equilibrium measure (which is the laplacian of the Green function) and the critical orbit. This
relation is made clear by the following formula, due to Przytycki [Prz85]:

L(⁄) = log d +

d≠1ÿ

j=1

G(⁄, cj(⁄)).

From this formula we readily deduce that L is psh, continuous and bounded from below by log d.
Applying ddc

⁄ to it, we get the following fundamental relation.

ddc
⁄L(⁄) =

d≠1ÿ

j=1

ddc
⁄G(⁄, cj(⁄))

deals with holomorphic
motions of repelling cycles

detects the instability
of the orbit of cj(⁄)

It follows immediately from this formula and Lyubich-Mañé-Sad-Sullivan Theorem that the support
of ddc

⁄L(⁄) coincides with the bifurcation locus. Przytycki formula was later generalized to rational
maps by De Marco [DeM01, DeM03], who also gave the following fundamental definition.
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Definition 10. The bifurcation current for a family or rational maps is

Tbif = ddc
⁄L(⁄).

Since L is psh, Tbif is a (1, 1)-positive closed current on the parameter space M . For the
quadratic family, it is a measure on the (one-dimensional) parameter space, which coincides with
the equilibrium measure of the Mandelbrot set, whose boundary is the bifurcation locus. The
bifurcation locus of a family of rational maps and the associated bifurcation current have been
studied extensively. We refer to [Ber11] and [Duj11] for an account of techniques and results in
this direction.

The Theorem that we seek to generalize to higher dimension is thus the following.

Theorem 11 (Lyubich, Mañé-Sad-Sullivan, De Marco). Let f be a holomorphic family of rational
maps. Then the following are equivalent:

1. the repelling cycles move holomorphically;

2. the Julia sets move holomorphically;

3. the Lyapounov function is pluriharmonic.

The higher dimensional setting Let us now move to several complex variables. The natural
generalization of a rational map is an endomorphisms of Pk. For such a map, we can still define
(see [DS10]) a Green function G, but this time its laplacian is not a measure but a (1, 1)-current.
The object of interest here is the so-called Green current, given by T := ddcG + ÊF S , where ÊF S is
the Fubini-Study form of Pk. Since the Green function is locally continuous, it is meaningful to
consider the measure given by

µ := T k.

This was first done by Fornaess and Sibony ([FS95, FS94]). Such a measure is ergodic and enjoys
much of the properties of its one-dimensional counterpart. Indeed, by the work of Fornaess-Sibony,
Briend-Duval [BD99, BD01] and Dinh-Sibony we know that µ is the only measure of maximal
entropy and that both repelling cycles and preimages of generic points equidistribute this measure.
We thus define the Julia set of an endomorphism of Pk to be the support of the measure µ. This
is in general smaller than the complement of the Fatou set, which turns out to coincide with
the support of the Green current. One difference with respect to the dimension 1 is worthy of
particular attention: in general, we may have repelling points outside the Julia set. Examples of
this phenomenon were given by Hubbard-Papadopol [HP94] and Fornaess-Sibony [FS01].

Let us now consider a family of endomorphisms of Pk, parametrized by a complex manifold M .
The first to adress the problem of studying bifurcations within such families have been Bassanelli
and Berteloot [BB07], who generalized to this setting Przytycki-De Marco formula, thus relating
the Lyapounov function and the critical dynamics. The study of the Lyapounov function had also
been undertaken by Bedford and Smillie ([BS92, BS98]) for Hénon maps and by Bedford and
Jonsson ([Jon99, BJ00]) for regular polynomial endomorphisms.

To introduce Bassanelli-Berteloot formula, let G(⁄, z) be the Green function for the family f .
We can consider the k-power of its laplacian (added to the Fubini-Study form) on the product
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space, given by

EGreen =

1
ddc

⁄,zG + ÊF S

2k
.

This is a (k, k)-current on M ◊ Pk, with the property that its slice at every ⁄ (roughy speaking, the
restriction to the vertical fiber) is the equilibrium measure of f⁄. Bassanelli-Berteloot formula is
then the following (see [BB07]):

ddc
⁄L = (fiM )ú (EGreen · Cf ) .

Here Cf denotes the integration current on the critical set of f (counting the topological multi-
plicity) and L is the sum of the Lyaponov exponents of f⁄. Heavily exploiting this formula, and
the regularity properties of the Green function, Berteloot and Dupont proved the equivalence of
various reasonable notions of stability, among the others the existence of a kind of holomorphic
motion for the equilibrium measure, an equilibrium web (see Definition 18 below), implying the
existence of a weak form of holomorphic motion for the Julia sets, where graphs corresponding to
different points may a priori intersect. Here another crucial definition is the one of Misiurewicz
parameters.

Definition 12. A parameter ⁄
0

œ M is called a Misiurewicz parameter if there exist a neighbourhood
N⁄0 µ M of ⁄

0

and a holomorphic map ‡ : N⁄0 æ Pk such that:

1. for every ⁄ œ N⁄0 , ‡(⁄) is a repelling periodic point;

2. ‡(⁄
0

) œ J⁄0;

3. there exists an n
0

such that (⁄
0

, ‡(⁄
0

)) œ fn0
(C);

4. ‡(N⁄0) * fn0
(C),

where C is the critical set of f .

Their result can then be stated as follows.

Theorem 13 (Berteloot-Dupont [BD14b]). Let f be a holomorphic family of endomorphisms of Pk.
Then the following are equivalent:

1. the Lyapounov function is harmonic;

2. there are no Misiurewicz parameters;

3. there exists an equilibrium web.

If k = 2, the above conditions are also equivalent to

4. the repelling cycles in the Julia set move holomorphically.

Let us mention here that, in the setting of dissipative Hénon maps, by completely differents
methods a parallel study of stability has been undertaken by Berger, Dujardin and Lyubich (see
[DL13, BD14a]).
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Families of polynomial-like maps We now consider a holomorphic family of polynomial-like
maps. These are proper holomorphic maps g from U to V , where U b V are open subsets of Ck,
with V convex (this assumption can be relaxed to V Stein). In this work we study bifurcations
within families of such maps, being interested in the ones of large topological degree, i.e., the ones
satisfying

dú
k≠1

:= lim sup

næŒ
sup

S
Î(gn

)ú (S)Î1/n
U < dt,

where the sup is taken over all positive closed (1, 1)-currents of mass less or equal than 1 on U . In
particular, notice that the topological degree dt dominates the volume growth of the hypersurfaces.

Polynomial-like maps are a natural generalization of endomorphisms of Pk (which in turn can
be studied as polynomial-like maps by considering a lift to Ck+1). By the work of Dinh and Sibony
[DS03, DS10], we know that the ones of large topological degree enjoy much of the properties
introduced in the previous sections, namely the existence of an equilibrium measure of maximal
entropy describing the asymptotic distribution of repelling points and preimages of generic points.
On the other hand, the main tools in the study of endomorphisms of Pk are not available here: the
Green function and current. As a consequence, the generalization of Przytycki-De Marco formula
in this context, heavily relying on the Green function, is not obvious at all. This has been done
by Pham [Pha05], who proved the existence of a positive closed current E on the product space
with the property that the slices are the equilibrium measures. This result in turn relies on work
by Dinh and Sibony about the slicing of horizontal currents. Moreover, Pham proved that the
intersection between such a current E and the integration current on the critical set Cf is well
defined. This allowed him to get the fundamental formula

ddcL = fiú (E · Cf )

where the projection is as usual on the parameter space. This will be the starting point of our
work.

Parabolic implosion In dimension one, a way to study bifurcation phenomena is given by the
theory of parabolic implosion. Let us briefly recall the foundational results of this theory. We refer
to [Dou94] for a more extended introduction to the subject, as well as to the original work by
Lavaurs [Lav89]. Consider the polynomial map on C tangent to the identity given by f(z) = z +z2.
The origin is a parabolic fixed point for f . The dynamics is attracting near the negative real
axis: there exists a parabolic basin B for 0, i.e., an open set of points converging to the origin
after iteration. The origin is on the boundary of B, and the convergence happens tangentially
to the negative real axis. The iteration of f on B is semiconjugated to a translation by 1. More
precisely, there exists an incoming Fatou coordinate Ïÿ

: B æ C such that, for every z œ B, we have
Ïÿ ¶ f(z) = f(z) + 1.

The same happens for the inverse iteration near the positive real axis: we have a repelling basin
R of points converging to 0 under some inverse iteration, and the convergence happens tangentially
to the positive real axis. We can construct in this case an outgoing Fatou parametrization, i.e., a
map Âo

: C æ R such that f ¶ Âo
(z) = Âo

(z + 1). It is worth noticing here that the union of B
and R gives a full pointed neighbourhood of the origin.

Notice that the incoming Fatou coordinate is a map from the dynamical plane to C, while the
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outgoing Fatou parametrization is a map from C to the dynamical plane. In particular, given any
– œ C and denoting by t– the translation by – on C, the composition L– := Âo ¶ t– ¶ Ïÿ is well
defined as a function from B to R. Such a map is usually called a Lavaurs map, or a transfer map.

We consider now the perturbation fÁ(z) = z + z2

+ Á2 of the system f , for Á real and positive.
As Á ”= 0, the dynamics abruptly changes: the parabolic point splits in two (repelling) points ±iÁ,
and the orbits of points in B can now pass through the “gate" between these two points. Using the
Lavaurs map it is possible to give a very precise description of this phenomenon, by studying the
dynamics of high iterates of the perturbed maps fÁ, as Á æ 0. The following definition plays a
central role in this study.

Definition 14. Given – œ C, an –-sequence is a sequence (Á‹ , n‹)‹œN œ (C ◊ N)

N such that n‹ æ Œ
and n‹ ≠ fi

Á
‹

æ – as ‹ æ Œ.

Notice in particular that the definition of –-sequence implies that Á‹ tends to the origin tan-
gentially to the positive real axis. More precisely, there exists a constant c such that, for every
‹ sufficiently large, we have |Im Á‹ | Æ c |Á‹ |2. The following result gives the limit description of
suitable high iterates of fÁ.

Theorem 15 (Lavaurs [Lav89]). Let fÁ(z) = z + z2

+ Á2

+ o(z2, Á2

) and (Á‹ , n‹) be an –-sequence.
Then fn

‹

Á
‹

æ L–, locally uniformly on B.

One of the most direct consequences of this theorem is the fact that the set-valued functions
Á ‘æ J(fÁ) and Á ‘æ K(fÁ) are discontinuous for the Hausdorff topology at Á = 0, where J and
K denote the Julia set and the filled Julia set, as usual (recall – see e.g. [Dou94] – that J(fÁ)

is always lower semicontinuous, while K(fÁ) is always upper semicontinuous). More precisely,
define the Lavaurs-Julia set J(f

0

, L–) and the filled Lavaurs-Julia set K(f
0

, L–) by

J(f
0

, L–) := { z œ C : ÷m œ N, Lm
– (z) œ J(f

0

) }
K(f

0

, L–) := { z œ C : ÷m œ N, Lm
– (z) /œ K(f

0

) }c .

Notice that the Lavaurs-Julia set J(f
0

, L–) is in general larger than the Julia set of f
0

. On the
other hand, the set K(f

0

, L–) is in general smaller than K(f
0

). The following Theorem then gives
an estimate of the discontinuity of the maps Á ‘æ J(fÁ) and Á ‘æ K(fÁ) at Á = 0.

Theorem 16 (Lavaurs [Lav89]). Let fÁ(z) = z + z2

+ Á2

+ o(z2, Á2

) and (Á‹ , n‹) be an –-sequence.
Then

lim inf J(fÁ
‹

) ∏ J(f
0

, L–) and lim sup K(fÁ
‹

) µ K(f
0

, L–).

In particular, at Á = 0,

1. the map Á æ J(fÁ) is lower semicontinuous, but not continuous;

2. the map Á æ K(fÁ) is upper semicontinuous, but not continuous.

Recently, a similar study has been undertaken for semi-parabolic fixed points by Bedford-Smillie-
Ueda [BSU12] (see also [DL13]). Their main result is as follows. Consider a family of polynomial
diffeomorphisms of C2, holomorphic in Á2, whose expression at the origin is given by

FÁ

A
x
y

B

=

A
x + x2

+ Á2

+ . . .
bÁy + . . .

B

. (1)
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Here |bÁ| < 1 and the omitted terms are of order at least 3 and 2 in the two lines, respectively.
By results of Ueda [Ued86, Ued91], there exists an attracting (two-dimensional) basin B and
a (one-dimensional) repelling leaf � for the origin. Moreover, there exist Fatou coordinates
Ïÿ

: B æ C and Ïo
: � æ C semiconjugating the system to a translation.

Theorem 17 (Bedford-Smillie-Ueda [BSU12]). Let FÁ be as in (1) and let (Á‹ , n‹) be an –-sequence.
Then F n

‹

Á
‹

æ T–, locally uniformly on B, where T– := (Ïo
)

≠1 ¶ t– ¶ Ïÿ.

From this Theorem, they deduce the discontinuity at Á = 0 of various dynamically-defined sets,
among others the (forward) Julia and filled Julia sets. However, notice that the limit map T–

in this context has a one-dimensional image (due to the exponential contraction of the system).
Thus, since it is not open, they need new arguments to deduce the above discontinuities from
Theorem 17.

Main results
In order to state our results, we have to give some definitions. First of all, the point of view here is
the following: we consider the space of maps

J := {“ œ O(M,Ck
) : “(⁄) œ J⁄ for every ⁄ œ M}

and want to study the action induced by the family f on this set. This is a compact metric space
for the topology of local uniform convergence. It is the space of all candidates as holomorphic
motions of points in the Julia set. The family f naturally induces a dynamical system on J , by the
natural action given by

(F · “) (⁄) := f⁄ (“(⁄)) .

In this work, we shall be mainly concerned with the study of the ergodic properties of the system
(J , F). The following is then a key definition.

Definition 18. An equilibrium web is a probability measure M on J such that:

1. FúM = M, and

2. (p⁄)ú M = µ⁄ for every ⁄ œ M , where p⁄ : “ ‘æ “(⁄) is the evaluation map.

The picture to have in mind is the following (see Figure 2.1): we have a set of graphs in the
product space (to be thought of as the support of M) and what the second condition says is that,
if we slice this measure at any parameter ⁄, what we get is exactly the equilibrium measure of
the map f⁄. Our goal can then be summarized as follows: given a holomorphic motion of the
repelling points, we want to find an equilibrium web M and a subset S µ J such that

1. the graphs of any two elements in S do not intersect;

2. M(S) = 1.

This would imply the existence of a true holomorphic motion for a full-measure subset of the
Julia set. In order to reach this goal, we have to make some preliminary steps. The first one
is to generalize to this setting the work done by Berteloot and Dupont [BD14b] for families of
endomorphisms of Pk.
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Theorem A. Let f be a holomorphic family of polynomial-like maps of large topological degree. Then
the following are equivalent:

1. the Lyapounov function is pluriharmonic;

2. there are no Misiurewicz parameters;

3. every parameter has a neighbourhood on which the family admits an equilibrium web M =

limn Mn, where the Mn’s are measures on J such that the graph of any “ œ fin Supp Mn

avoids the critical set of f .

The proof of this Theorem is the content of the second chapter of this work. Although some
parts of the proof are just adaptations of the arguments valid on Pk, others require to completely
rethink the strategy. In particular, the proof by Berteloot and Dupont that a Misiurewicz parameter
is in the support of the current ddcL heavily relies on the existence of the Green current. We will
thus give in Theorem 2.2.12 a completely different and more geometrical proof of this fact. An
important step is given by the following theorem, which is of independent interest and can be
seen as a generalization of Theorem 7.

Theorem B. Let f be a holomorphic family of polynomial-like maps of large topological degree dt.
Then

ddcL ”= 0 … lim sup

næŒ

1

n
log Î(fn

)ú Cf Î > log dú
k≠1

.

Once we have established the equivalence of the above notions of stability, we can proceed
with the main result of this work, which is the core of the third chapter. Our higher-dimensional
analogue of the holomorphic motion is the following (here �“ denotes the graph in the product
space of a map “).

Definition 19. An equilibrium lamination is a subset L of J such that

1. F(L) = L,

2. �“ fl �“Õ
= ÿ for every distinct “,“ Õ œ L,

3. µ⁄ ({“(⁄), “ œ L}) = 1 for every ⁄ œ M ,

4. �“ does not meet the grand orbit of the critical set of f for every “ œ L,

5. the map F : L æ L is dt-to-1.

Let us comment a bit this definition. The second and the third conditions ensure that we have
a holomorphic motion of a full-measure subset of the Julia set. The other conditions say that F
induces a covering, of degree dt, on L. In particular, we have a conjugacy of the dynamics on a full
measure subset of the Julia sets. In Chapter 3 we prove that equilibrium laminations exist when
the repelling points contained in the Julia set (called J-repelling points) move holomorphically.
More precisely we have the following, which is our higher-dimensional analogue of Theorem 11.
Let us stress that this result is new also for endomorphisms of Pk.

Theorem C. Let f be a holomorphic family of polynomial-like maps of large topological degree. Then
the following are equivalent:
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1. asymptotically all the J -repelling points move holomorphically;

2. there exists an equilibrium lamination;

3. the Lyapounov function is pluriharmonic.

The first point deserves some explanation. It means that we have a subset of elements P = finPn

of J , of cardinality Pn ≥ dn
t (i.e., the same as the repelling points) such that on every compact

subset of the parameter space the number of non-repelling elements of Pn is o(dn
t ). It is a slightly

weaker (and presumably equivalent) assumption than the motion of the J-repelling points. The
theorem above can actually be improved to the motion of all J-repelling cycles if the family is in
dimension 2 by a simple adaptation of arguments (sketched in Chapter 4) used by Berteloot and
Dupont on P2 (see Theorem 13). While their idea is to study the relation between bifurcations and
higher dimensional Siegel discs, our proof consists on a generalization to the metric space J of a
strategy due to Briend and Duval to recover the existence of repelling points from the existence
of a mixing measure with constant jacobian satisfying good asymptotic backward contraction
properties.

Combined with the stronger result by Berteloot and Dupont, we get the following characteriza-
tion of stability for endomorphisms of Pk.

Theorem D. Let f be a holomorphic family of endomorphisms of P2. Then the following are
equivalent:

1. the J -repelling cycles move holomorphically;

2. there exists an equilibrium lamination;

3. the Lyapounov function is pluriharmonic.

In dimension one, all the equivalent notions of stability given so far are also equivalent to
another one: the continuity of the Julia set for the Hausdoff topology. The simplest way to prove
this is by means of Siegel discs: when a repelling cycle stops to move holomorphically its multiplier
become of modulus one, creating (up to a small perturbation) a Siegel disc. Since such an object
is contained in the Fatou set, the desired discontinuity follows. In Chapter 4 we investigate the
relation between bifurcations and higher dimensional analogues of Siegel discs. In dimension two,
Siegel points are defined as (periodic) points where the system is linearizable and conjugated to a
rotation in one direction, while being repelling in the other one. A Siegel disc is then an invariant
holomorphic disc through a Siegel point, where the dynamics is conjugated to a rotation. We
prove that, at least in some particular families, the continuity of the Julia set would be equivalent
to the holomorphic stability provided that Siegel discs are outside the Julia set. This motivates the
question of whether a Siegel disc can be inside the Julia set. Naively speaking, the Julia set is the
most repelling part of the system, while a Siegel disk has a direction of Fatou type: it is thus at
least reasonable to expect that such an object should be disjoint from a Julia set. In Chapter 4 we
prove that this is not the case in general.

Example E. The polynomial endomorphism of C2 given by

F

A
z
w

B

=

A
z3

Áw3

+

1
1 +

1
ei◊

2

≠ 1

2
z≠z1
z0≠z1

2
(w2

+ 2w)

B

, (2)
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where Á is a small enough parameter and ◊ is of Brjuno type, extends to P2 and has a Siegel disc at
the point (≠1, 0) contained in the Julia set.

This means that the general strategy to try to prove the equivalence between continuity and
holomorphic motion by means of Siegel discs has at least to be reconsidered. On the other hand,
there is another (much more involved) way to get the discontinuity in dimension one: the theory
of parabolic implosion. This is the reason why we got interested in this latter subject.

As we saw before, while the one-dimensional theory is well-developed the study of parabolic
implosion in higher dimension has just begun, with recent results only in the semi-attracting
setting [BSU12, DL13]. The goal of the last chapter of this work is to provide a starting point in
the completely parabolic setting, by a precise study of perturbations of germs of endomorphisms
of C2 tangent to the identity at the origin. More specifically, we consider an endomorphism of C2

of the form

F
0

A
x
y

B

=

A
x + x2

(1 + (q + 1)x + ry + O(x2, xy, y2

))

y(1 + flx + O(x2, xy, y2

))

B

, (3)

where fl is real and greater than 1 and q, r œ C. For instance, F
0

may be the local expression of
an endomorphism of P2 (e.g., if the two components of F

0

are polynomials of the same degree
in (x, y) with 0 as the only common root of their higher-degree homogeneous parts). We shall
primarily be interested in this situation.

The map F
0

has a fixed point tangent to the identity at the origin, and two invariant lines
{ x = 0 } and { y = 0 }. By the work of Hakim [Hak97] (recalled in Section 5.1) we know that
[1 : 0] is a non-degenerate characteristic direction, and that there exists an open set B of initial
conditions, with the origin on the boundary, such that every point in B is attracted to the origin
tangentially to the direction [1 : 0]. Moreover there exists, on an open subset ÂC

0

of B, a (one
dimensional) Fatou coordinate ÊÏÿ, with values in C, such that ÊÏÿ ¶ F

0

(p) =

ÊÏÿ
(p) + 1.

A similar description holds for the inverse map. Indeed, after restricting ourselves to a neigh-
bourhood U of the origin where F

0

is invertible, we can define the set R of points that are attracted
to the origin tangentially to the direction [1 : 0] by backward iteration. There is then a well defined
map ÊÏo

: ≠ ÂC
0

fl U æ C such that ÊÏo ¶ F
0

(p) =

ÊÏo
(p) + 1 whenever the left hand side is defined. It

is actually possible to construct two-dimensional Fatou coordinates (see [Hak97]), but we shall
not need them in this work.

Consider now a perturbation FÁ of F
0

of the form

FÁ

A
x
y

B

=

A
x + (x2

+ Á2

)–Á(x, y)

y(1 + flx + —Á(x, y))

B

=

A
x + (x2

+ Á2

)(1 + (q + 1)x + ry + O(x2, xy, y2

) + O(Á2

))

y(1 + flx + O(x2, xy, y2

) + O(Á2

))

B

.

(4)

Our goal is to study the dependence on Á of the large Julia set J1

(FÁ) (i.e., the complement of the
Fatou set which, for endomorphisms of P2, coincides with the support of the Green current and is
in general larger than the Julia set) near the parameter Á = 0. Our main result is the following
Theorem, which is a partial generalization of Theorem 15 to our setting. As in dimension 1,
–-sequences (see Definition 14) play a crucial role. The set ÂC

0

introduced above will be precisely
defined in Proposition 5.1.1, and the Fatou coordinates ÊÏÿ and ÊÏo in Lemma 5.1.2.
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Theorem F. Let FÁ be a holomorphic family of endomorphisms of C2 as in (4). Let F
0

be invertible
on a neighbourhood U of the origin and let ÊÏÿ

:

ÂC
0

æ C and ÊÏo
: ≠ ÂC

0

æ C be the (1-dimensional)
Fatou coordinates for F

0

. Let B be the attracting basin for the origin for the map F
0

with respect to
the characteristic direction [1 : 0] and R the repelling one. Let – be a complex number and (n‹ , Á‹) be
an –-sequence. Then every compact subset C µ B fl {y = 0 } has a neighbourhood UC where, up to
extracting a subsequence, we have

F n
‹

Á
‹

æ T–

locally uniformly, where T– is a well defined open holomorphic map from UC to C2, with values in R.
Moreover,

ÊÏo ¶ T–(p) = – +

ÊÏÿ
(p) (5)

whenever both sides are defined.

As a consequence, we shall deduce an estimate of the discontinuity of the large Julia set in
this context (notice that the discontinuity itself follows from an application of Theorem 15 to the
invariant line { y = 0 }). We say that, given U µ ÂC

0

, a map T– : U æ C2 is a Lavaurs map if there
exists an –-sequence (Á‹ , n‹) such that F n

‹

Á
‹

æ T– on U . We then have the following result (see
Section 5.5.2 for the definition of the Lavaurs-Julia sets J1

(F
0

, T–) in this setting).

Theorem G. Let FÁ be a holomorphic family of endomorphisms of P2 as in (4) and T– : U æ C2 be
a Lavaurs map such that F n

‹

Á
‹

æ T– on U for some –-sequence (Á‹ , n‹). Then

lim inf J1

(FÁ
‹

) ∏ J1

(F
0

, T–).

Finally, we consider a family of regular polynomials, i.e., polynomial endomorphisms of C2

admitting an extension to P2

(C). For these maps (which are in particular polynomial-like maps),
it is meaningful to define the filled Julia set K as the set of points with bounded orbit. In analogy
with the one-dimensional theory, we deduce from Theorem F an estimate for the discontinuity
of the filled Julia set at Á = 0 (see Section 5.5.3 for the definition of the set K(F

0

, T–)) and in
particular deduce that Á ‘æ K(FÁ) is discontinuous at Á = 0. Notice that, differently from the case
of the large Julia set, this is not already a direct consequence of the 1-dimensional theory.

Theorem H. Let FÁ be a holomorphic family of regular polynomial maps of C2 as in (4) and
T– : U æ C2 be a Lavaurs map such that F n

‹

Á
‹

æ T– on U for some –-sequence (Á‹ , n‹). Then

K(F
0

, T–) ∏ lim sup K(FÁ
‹

).

Moreover, Á ‘æ K(FÁ) is discontinuous at Á = 0.

Techniques and ideas of proof

We shall now give a brief description of the strategy of the proof of the main results of this work,
focusing on the tecniques used to prove them.
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Chapter 2: Misiurewicz parameters and bifurcations

Chapter 2 is devoted to the proof of Theorem A. A crucial role here is played by Misiurewicz
parameters (see Definition 12): the core of Chapter 2 indeed consists in proving that Misiurewicz
parameters are contained in the bifurcation locus, and are dense in it. We focus here on the first
statement.

Theorem A’. Let f be a holomorphic family of polynomial-like maps of large topological degree.
Then Misiurewicz parameters are contained in the support of the bifurcation current ddcL.

Establishing this theorem is the main difference between the second chapter and the work of
Berteloot and Dupont [BD14b] for endomorphisms of Pk. Indeed, their approach to this statement
relies on the existence of a potential – the Green function – for the Green current EGreen. We
thus need to adopt a different approach, completely rethinking the strategy of proof. The idea is
the following: in dimension 1, a Misiurewicz parameter is responsible (because of the expansive
behaviour of the system at the intersection between the repelling cycle and the postcritical set) of
the non-normality of the critical orbit. Moreover, a Misiurewicz parameter is never isolated: it is
quite straightforward to see that the existence of one Misiurewicz parameter implies the existence
of many others nearby. This is related to a large growth of the mass of the postcritical set in this
region of the parameter space. A crucial step in establishing the result above in thus proving
Theorem B. The proof of this result, as most of the material in the first part of this work, relies on
the theory of slicing of currents. We give in Appendix A.1 a brief account of this theory.

In view of Theorem B, the proof of Theorem A’ thus consists in showing that, near a Misiurewicz
parameter, the volume growth of the postcritical set is as close as we want to dn

t . In order to do
this, we construct (exploiting the mixing property of the equilibrium measure, and a procedure
essentially due to Briend-Duval) a ball, contained in the dynamical space of the Misiurewicz
parameter, with a lot (i.e., more than

1
dú

k≠1

2n
) of preimages for fn contained in it. Exploiting the

contracting behaviour of these inverse branches, we can construct a cylinder T
0

in the product
space with the same properties: more than cn smaller tubes Tn,i, contained in it, sent biholomor-
phically to T

0

by fn. But now we can arrange the local picture (see Figure 2.2) in such a way that
the component of the postcritical hypersurface fn0

(Cf ) intersecting the repelling cycle must cross
all the Tn,i’s. By applying fn, the intersections between fn0

(Cf ) and the small tubes Tn,i are all
sent to analytic subsets of T

0

, whose volume is thus uniformly bounded from below. We thus get
that the volume of fn0+n

(Cf ), is larger than
1
dú

k≠1

2n
(up to a constant). This gives the desired

growth of the critical volume, and the assertion follows from Theorem B.

Let us spend two words on the density of the Misiurewicz parameters in the bifurcation locus.
This is established by proving that, in absence of Misiurewicz parameters, we can construct a
holomorphic graph in the product space avoiding the postcritical set. It is not difficult to prove,
using the backward equidistribution property of preimages, that this implies the existence of an
equilibrium web. The idea here is to construct a large hyperbolic set at a fixed parameter and
consider a holomorphic motion of this set. Since there are no Misiurewicz parameters, all repelling
cycles contained in this motion must avoid (or be contained in) the postcritical set. It follows that
the same must be true for every holomorphic graph of the motion. It is thus enough to establish
that the original hyperbolic set is not completely contained in the postcritical set. This can be
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done by an entropy argument: indeed, an hyperbolic set of sufficiently large entropy cannot be
contained in any hypersurface. This is easily seen for endomorphisms on Pk, and the same holds
for polynomial-like maps of large topological degree. The proof of this fact is essentially the
same given by Dinh and Sibony to estimate the topological entropy of a polynomial-like map,
combined with a relative version of the variational principle following from Brin-Katok theorem.
Nevertheless, since we did not find the precise result we need in the literature, we included a
complete proof of this statement in Appendix A.2, together with a brief summary of the notions of
entropy dimensions that we need.

Chapter 3: holomorphic motions in higher dimension

The main result of Chapter 3 is the following higher-dimensional analogue of Theorem 5.

Theorem C’. Let f be a holomorphic family of polynomial-like maps of large topological degree. If
the repelling cycles in J move holomorphically then there exists an equilibrium lamination.

We want to stress a difference with respect to the one-dimensional proof of this statement. As
we saw, in dimension one this result is a consequence of Montel Theorem, combined with Hurwitz
Theorem. The characterization of stability by means of the Lyapounov exponent can be seen there
as a secondary (although very useful) way to look at bifurcations. Here the situation is different.
We are not able to give a direct proof of the above result without using the results of the previous
chapter, and in particular the characterization of stability by means of the Lyapounov exponent.

The first step in the proof consists indeed in proving that the holomorphic motion of the repelling
cycles in J implies the existence of a particular equilibrium web M: an acritical and ergodic one.
Here acritical means that M gives no mass to the singular part of J , defined as

Js :=

Y
]

[“ œ J : �“ fl

Q

a
€

m,nØ0

f≠m
(fn

(Cf ))

R

b ”= ÿ

Z
^

\ .

To prove this property we need to use the results of the previous chapter, and in particular
the condition on the harmonicity of L. Once we prove this, we can transform the system
(J \ Js, F , M) into an invertible one. This is done by means of the natural extension. This is a
classical construction, and it allows us to somehow assume that the system was already invertible.

Our goal is then to prove that the set of elements of J whose graph intersects the graph of
some other element has measure 0 for M. The crucial step in the proof is to prove the following
backward contraction property for graphs (see Figure 3.1).

Key proposition. There exist a measurable function ÷ : X = J \ Js æ]0, 1] and a positive constant
A such that for M-almost every “ œ X the following hold:

1. f≠n is defined on a tubular neighbourhood T (“,÷ (“)) of �“; and

2. f≠n
(T (“,÷ (“))) µ T (F≠n“, e≠nA

).

Once we have established this property, the fact that M gives no mass to the set of intersect-
ing graphs follows from an application of Poincaré recurrence Theorem. The existence of an
equilibrium lamination then easily follows.
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Let us thus describe the proof of the Key Proposition above. We exploit a method, developed by
Briend-Duval [BD99] for endomorphisms of Pk (and generalized by Dinh-Sibony [DS03, DS10]
to polynomial-like maps), which proves the analogous statement at a fixed parameter. Namely,
given a polynomial-like map of large topological degree g almost every point x (with respect to
the equilibrium measure µ) is contained in a ball B(x,÷ (x)) where a local inverse g≠n is defined
for every n and satisfies the contraction property g≠n

(B(x,÷ (x))) µ B(g≠n
(x), e≠n‰1

). Here ‰
1

denotes the smallest Lyapounov exponent of the system (J, g, µ), which is known ([DS03]) to be
greater than 0. The main steps of the method are as follows:

• an asymptotic estimate of
..dg≠1

(·)
.. over the inverse orbit {g≠j

(x)} of a point x yields an
estimate of the radius of a ball centered at x where g≠n is defined, for every n, and of the
asymptotic rate of contraction of g≠n on this ball;

• the asymptotic estimate of
..dg≠1

.. is obtained from the fact that

for µ ≠ a.e. x : lim

næŒ
1

n

n≠1ÿ

j=0

log

...dg≠1

(g≠j
(x))

... =

ˆ
log

...dg≠1

(x)

... µ(x) = ≠‰
1

< 0,

where the first equality comes from the ergodicity of µ and Birkhoff Theorem.

In our setting, the same method reduces the problem to prove that

for M ≠ a.e. “ œ X : lim

næŒ
1

n

n≠1ÿ

j=0

log max

⁄

...df≠1

⁄ (F≠j“(⁄))

... < 0.

As M is ergodic, we still know that the limit equals
´

X log max⁄

...df≠1

⁄ (“(⁄))

... M(“). So, we only
need to prove that this integral is negative. In order to get this, we show that

lim

næŒ
1

n

ˆ
X

log max

⁄

...df≠n
⁄ (“(⁄))

... M(“) < 0 (6)

and then get the desired estimate after replacing our system by a suitable high iterate fN . Equation
(6) can be thought of as an estimate of a Lyapounov exponent for the ergodic system (J , F , M).
Establishing this is the main technical part of the chapter, where we need to exploit both the
ergodic properties of this system of graphs and properties of psh functions. Let un(“) be given by

un(“) = log max

⁄

...df≠n
⁄ (“(⁄))

... .

First of all, we prove that un œ L1

(M). This part is quite technical: we need to ensure that,
roughly speaking, the elements of J approach the critical part Js locally uniformly. Then, since
the sequence un is easily seen to be subadditive (i.e., un+m(“) Æ un(Fm“) + um(“)) we can apply
the ergodic version of Kingman subadditive theorem and see that the limit above exists and is
equal to limn un(“), for almost every “ œ J . We thus just need to prove that this limit is negative
for a generic element of J . By a Fubini-Tonelli argument (combined with Oseledets theorem)
applied to the product space M ◊ J we can prove that, for almost every “ œ J , the limit of
log

...df≠n
⁄ (“(⁄))

... is negative (uniformly in ⁄) for a full-measure subset of ⁄’s in M . We thus prove
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that the sequence is dominated (by arguments related to the ones giving the integrability of the
un’s), and the assertion can follow by an application of Lebesgue theorem.

Chapter 4: a Siegel disc in a Julia set

The main contribution in Chapter 4 is a simple example of an endomorphism of P2 with a Siegel
disc contained in its Julia set. Consider the map F (z, w) = (p(z), qz(w)) given in (2). It is
straighforward to see that such an endomorphism extends to P2 (the only reason to have the Áw3

term is to ensure this extension). Moreover, the system is linearizable at (≠1, 0), with a Siegel disc
centered at the origin of the vertical fiber. It follows from a result of Jonsson [Jon99] that the
Julia set of F is equal to

J(F ) = fizœJ
p

{ z } ◊ Jz.

Here Jz is the boundary (in the plane {z} ◊ C) of the set Kz := {Gz = 0}, where the function Gz

is defined by
Gz(w) := G(z, w) ≠ ÂG(z),

G and ÂG being the Green functions of F and z3 respectively. It is immediate to see that, if z œ Kp,
then

w œ Kz … the sequence Qn
z (w) := qpn≠1

(z)

¶ · · · ¶ qp(z)

¶ qz(w) is bounded.

By the form of F , for Á sufficiently small the Julia set of the map q
1

is a quasicircle passing through
the origin and thus, by Jonsson formula, we have {1} ◊ Jq1 µ J(F ). Since the preimages of 1

by z3 are dense in the unit circle, we have preimages of this quasicircle accumulating the point
(≠1, 0). Moreover, since the system is linearizable at (≠1, 0), these preimages are not contracted to
a point, but rotate and accumulate an open neighbourhood of 0 in the vertical fiber of ≠1. Since
the Julia set is closed, this implies the existence of a Siegel disc in the Julia set.

Chapter 5: a two-dimensional Lavaurs theorem

In Chapter 5 we study a phenomenon of parabolic implosion for endomorphisms of C2 tangent
to the identity. Our main result here is Theorem F, from which we deduce the estimates on the
discontinuity of the large Julia set and of the filled Julia set given in Theorems G and H. Our
strategy is essentially an adaptation of the one used by Bedford-Smillie-Ueda [BSU12] in the
semi-parabolic setting (i.e., for maps with a parabolic and an attracting eigenvalue at the fixed
point). The main difference here is the need to carefully estimate the second coordinate of the
points of the orbit, which in that case goes to zero exponentially with the number of iterations.
Notice in particular an important difference between our result and Theorem 17. While, because
of the contraction property just recalled, the image of the limit map in the semi-parabolic setting is
one-dimensional (and in particular contained in the one-dimensional repelling petal at the origin),
here our limit map is open. This allows us to recover the desired discontinuities more in the spirit
of the one dimensional theory.

Let us depict the strategy of our proof. The first point is to get an horizontal convergence for the
sequence of iterates F n

‹

Á
‹

of perturbed maps (where (Á‹ , n‹) is an –-sequence, as in Definition 14),
i.e., a convergence for the first coordinate. We first construct an approximate Fatou coordinate ÂwÁ
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for FÁ, satisfying

ÂwÁ(FÁ(x, y)) =

ÂwÁ(x, y) + 1 + O(y, x2, Á2

) =

ÂwÁ(x, y) + 1 + A(x, y,Á ).

Notice that the dependence of the error A(x, y,Á ) in y is linear. Then, we consider the ingoing and
outgoing normalizations of ÂwÁ given by

Âwÿ
Á :=

ÂwÁ +

fi

2Á
and Âwo

Á :=

ÂwÁ ≠ fi

2Á
.

We focus now on the attracting basin, since the situation is symmetric on the other side. By
means of the function Âwÿ

Á, we can define (denoting by (xj , yj) the orbit of p = (x, y) under FÁ) the
functions

ÊÏÿ
Á,m =

Âwÿ
Á(F m

Á (p)) ≠ m =

Âwÿ
Á(p) ≠ m +

mÿ

j=1

A(xj , yj , Á).

The point here is to prove that, when mÁ ≥ fi
2Á , we have

ÊÏÿ
Á,m

Á

æ ÊÏÿ.

This, together with the analogous convergence on the other side of the gate (i.e., in the repelling
basin), allows us to recover the horizontal convergence to a Lavaurs map. By the construction of
ÂwÁ, we can ensure that the difference between ÊÏÿ

Á,m
Á

and ÊÏÿ
+

qm
Á

j=0

A(xj , yj , Á) goes to zero as
Á æ 0. We thus need to prove that the series of the errors goes to 0, too, as Á æ 0. For the part of
the error in x2 and Á2 we can essentially get the estimate as in [BSU12]. The main difference here
is to get the convergence to zero for the series

m
Áÿ

j=0

|yj | .

Notice that this would be true for Á = 0. Indeed, by results of Hakim we know that the second
coordinate goes to zero under F

0

as 1/nfl, where fl > 1. The point here is thus to estimate the
modulus of the points in the orbit, by means of the partial coordinates ÂwÁ introduced above, to
ensure that the same happens as Á æ 0 (notice that we are considering a sum of an increasing
number of terms as Á goes to 0).

The second main point is to ensure the convergence in the second coordinate of the sequence of
maps F n

‹

Á
‹

. Roughly speaking, in the first part of the orbit (before passing through the gate), the
dynamics is contracting in the y direction, while, after the gate, the dynamics becomes expanding.
Our strategy is thus the following:

1. we ensure that the number of points in the orbit in the expanding part is no more than the
number of the points in the contracting one;

2. we then prove that each term in the expanding part is balanced by a suitable term in the
contracting one.

The first point is easily adressed in the following way: we divide the orbit in three parts, where the
central one roughly corresponds to the times where both coordinates are bounded by Á. We take
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some extra care to ensure, by introducing a non-symmetry in this central region of the system,
that we leave on the third part of the orbit less terms than in the first part.

The second point is the one really needing care. In order to compare the behaviour in the first
and third parts of the orbit, it is convenient to introduce the family HÁ(x, y) := (≠1, 0) ·F ≠1

Á (≠x, y)

(where · denotes the componentwise multiplication). This just amounts to study both the first
and the third part of the orbit in the same region of the space. We want to ensure that the orbit
of a point under HÁ does not go to 0 too fast (as Á æ 0) with respect to the orbit of a (possibly
different) point under FÁ. Denoting by (xF

j , yF
j ) and (xH

j , yH
j ) the two orbits, we thus want (by

the expression of (4)) that
JŸ

j=1

(1 + flxF
j ) ≥

JŸ

j=1

(1 + flxH
j ),

where J is the time the orbit spends in the first (and in the third) part. Since both xF
j and xH

j are
approximately harmonic in the regions under consideration, and fl > 1, it is enough to prove that

---xF
j ≠ xH

j

--- . log j

j2

.

This is done by estimating the distance of the two orbits in (a modification of) the chart ÂwÁ: this
is bounded by the logarithm of the number of iterations j, and gets transformed to a quantity
bounded by log j/j2 when passing to the dynamical space. This gives us the desired estimate in
the vertical direction, and allows us to conclude.
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Polynomial-like maps

In this preliminary chapter we introduce the main objects that we shall need in the sequel and fix
the notations that we shall use in all this work. Unless otherwise stated, all the results presented
here are due to Dinh and Sibony. In particular, we refer to the original paper [DS03] and to the
survey [DS10] for the details. We just prove in Lemma 1.3.10 an approximation result that we
will need in Section 2.2.3.

1.1. Definition and examples

The starting definition is the following.

Definition 1.1.1. A polynomial-like map is a proper holomorphic map g : U æ V , where U b V
are open subsets of Ck and V is convex.

Notice in particular that a polynomial-like map is a (branched) holomorphic covering from U to
V , of a certain degree dt (the topological degree of g). We shall always assume that the topological
degree satisfies dt Ø 2. We shall denote by Cg the critical set of g, by Jacg the determinant of the
(complex) Jacobian matrix and by Cg the integration current Cg = ddc

log |Jacg|, supported on Cg

(and taking into account the multiplicities).
Since polynomial-like maps share with polynomials the property of being a ramified covering, it

is natural to ask whether there may always exist a conjugation (of a certain regularity) between
a polynomial-like map and a polynomial. The following theorem by Douady and Hubbard
[DH85] answers to this question in dimension 1, and allows one to reduce the dynamical study of
polynomial-like maps in dimension 1 to that of polynomials.

Theorem 1.1.2 (Douady-Hubbard). In dimension 1, every polynomial-like map g : U æ V is
conjugated to a polynomial by means of a Hölder homeomorphism, on a neighbourhood of its filled
Julia set (see Definition 1.1.6).

1
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Notice that, in dimension k > 1, Theorem 1.1.2 does not hold (see [DS10, Example 2.25]). In
view of Theorem 1.1.2, in the following we shall be only interested in the case k > 1.

We shall now give some examples of polynomial-like maps. Lemma 1.1.3 allows us to construct
large families of examples by perturbation.

Lemma 1.1.3. Let g : U æ V µ Ck be a polynomial-like map and let V Õ open, convex and such that
U b V Õ b V . Then, any holomorphic map h : U æ Ck sufficiently close to g (for the topology of
uniform convergence on compact subsets) is a polynomial-like map from h≠1

(V Õ
) to V Õ.

The following are basic examples to have in mind when working with polynomial-like maps.

Example 1.1.4. Let F : Pk æ Pk be any holomorphic endomorphism of Pk of a given degree d, i.e.,
let F be given, in homogeneous coordinates, by

F ([z
0

: · · · : zk]) = [F
0

(z
0

, . . . , zk) : · · · : Fk(z
0

, . . . zk)]

where the Fi’s are homogeneous polynomials of degree d with the origin as only common zero.
Consider the lift ‚F := (F

0

, . . . , Fk) of F to Ck+1. Given any sufficiently large ball B(0, R) (such
that B(0, R) b ‚F (B(0, R))), the lift ‚F is a polynomial-like map from B(0, R) to ‚F (B(0, R)).
Endomorphisms of Pk can then be seen as a particular case of polynomial-like maps.

Example 1.1.5. Let f : Ck æ Ck be a polynomial map such that Îf(z)Î Ø 2 ÎzÎ for ÎzÎ Ø R. Then,
f is a polynomial-like map from B(0, R) to f (B(0, R)). By Lemma 1.1.3, every sufficiently small
perturbation h of f gives rise to new polynomial-like maps. In particular, the perturbation h can
be transcendental. Thus, polynomial-like maps can be seen as an intermediate step between the
polynomial behaviour and the (more complicated) transcendental one.

In this work, we shall be mainly interested in the iteration of polynomial-like maps. In order to
do this, it is natural to restrict our interest to the subset of U where all the iterates gn are defined.
This motivates the following definition.

Definition 1.1.6. The filled Julia set K of a polynomial-like map is the subset of U given by

K :=

‹

nØ0

g≠n
(U) .

Notice in particular that g≠1

(K) = K = g(K) and thus (K, g) is a well-defined dynamical
system.

In the following section, we recall the main properties of a polynomial-like map that we shall
need in the sequel. Then, in Section 1.3 we shall introduce the central objects of this work, the
holomorphic families of polynomial-like maps.

1.2. Main properties

1.2.1. Dynamical degrees and entropy

When studying an endomorphism F of Pk, the knowledge of just the (algebraic) degree d allows
one to know the number of preimages of points (which is dk), the degree of the images of
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hypersurfaces (equal to dk≠1 times the degree of the starting hypersurface), and more generally
the degree of the induced map from an analytic set of dimension p to its image (which is dp). All
this follows from the cohomological properties of Pk – which is a compact Kähler manifold – by
computing the degrees of the actions of Fú and F ú on the various cohomology groups, which are
generated by the right power of the Fubini-Study form.

All of this does not hold (in general) for a polynomial-like map g: the knowledge of the
topological degree is not enough to predict the volume growth of analytic subsets, and in general
the action of gú and gú on forms (and currents) of all degrees. We are thus led to consider more
general degrees than the topological one. In the following definitions, we denote by Ê the standard
Kähler form on Ck. Moreover, recall that the mass of a positive (p, p)-current T on a Borel set X is
given by ÎTÎ =

´
X T · Êk≠p.

Definition 1.2.1. Given a polynomial-like map g : U æ V , the dynamical degree of order p, for
0 Æ p Æ k, of g is given by

dp(g) := lim sup

næŒ

...(gn
)ú

1
Êk≠p

2...
1/n

W
= lim sup

næŒ
Î(gn

)

ú
(Êp

)Î1/n
g≠n

(W )

,

where W b V is a neighbourhood of K.

Definition 1.2.2. Given a polynomial-like map g : U æ V , the *-dynamical degree of order p, for
0 Æ p Æ k, of g is given by

dú
p(g) := lim sup

næŒ
sup

S
Î(gn

)ú (S)Î1/n
W

where W b V is a neighbourhood of K and the sup is taken over all positive closed (k ≠ p, k ≠ p)-
currents of mass less or equal than 1 on a fixed neighbourhood W Õ b V of K.

It is quite straighforward to check that these definitions do not depend on the particular
neighbourhoods W and W Õ chosen for the computations. Moreover, the following hold: dp Æ dú

p

for every p, dú
0

= 1 and dk = dú
k = dt. We also have dp(gm

) = dm
p and dú

p(gm
) =

1
dú

p(g)

2m
.

The following refinement of Lemma 1.1.3 ensures that a relation dú
p < dt is preserved by small

perturbations. We shall give in Lemma 2.2.7 a proof of this fact.

Proposition 1.2.3. Let g : U æ V be a polynomial-like map such that dú
p(g) < dt(g) for some p. Let

V Õ be a convex open set such that U b V Õ b V . If gÕ
: U æ Ck is a holomorphic map which is a

sufficiently small perturbation of g and U Õ
:= gÕ≠1

(V Õ
), then gÕ

: U Õ æ V Õ satisfies dú
p(gÕ

) < dt(gÕ
).

The following theorem gives a bound on the topological entropy (see Section A.2) of a
polynomial-like map and relates it with the dynamical degrees.

Theorem 1.2.4 (Dinh-Sibony [DS03],[DS10]). Let g : U æ V a polynomial-like map of topological
degree dt Ø 2. Then the topological entropy of g on K is less or equal than log dt. Moreover, all the
dynamical degrees dp(g) are smaller or equal than dt(p).

We do not detail here the proof of this theorem, since in Section 2.2.4 we will need a general-
ization of this result. Namely, we shall prove in Lemma A.2.6 that the topological entropy of (the
intesection of K with) any analytic set of dimension p is smaller or equal than dú

p.
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By the Variational Principle (see Theorem A.2.1), in order to get the opposite inequality
ht(g, K) Ø log dt it is enough to exhibit a measure whose metric entropy (see Section A.2) is equal
to log dt. This is done in the next section. We notice however that the same conclusion may follow
by an adaptation of the Misiurewicz-Przytycki estimate between the topological entropy and the
degree of a map ([MP77]), or of the one by Yomdin with the volume growth of submanifolds
([Yom87]).

1.2.2. The equilibrium measure and the Julia set

Given a polynomial-like map g, it is possible to associate to it an ergodic measure µg, called the
equilibrium measure of g, which is of constant Jacobian dt and maximizes the entropy. We give
here some ideas about its construction and introduce its main properties.

Theorem 1.2.5. Let g : U æ V be a polynomial-like map and ‹ be a probability measure supported
on V which is defined by an L1 form. Then d≠n

t (gn
)

ú ‹ converge to a probability measure µ which
does not depend on ‹. Moreover, for any psh function Ï on a neighbourhood of K the sequence
d≠n

t (gn
)ú Ï converge to Èµ,Ï Í œ{ ≠Œ}fi R.

For Ï psh, the function d≠n
t (gn

)ú Ï is also psh. The convergence of d≠n
t (gn

)ú Ï in Theorem 1.2.5
is in Lp

loc for every 1 Æ p < Œ if Èµ,Ï Í is finite, locally uniform otherwise.
By definition, proving the first convergence in Theorem 1.2.5 amounts to show that, for every

smooth function Ï compactly supported on V , the sequence d≠n
t (gn

)ú (Ï) converge to a constant
function cÏ. Since every smooth function with compact support is a difference of smooth psh
functions, we can replace the test Ï with a smooth psh function (but not compactly supported).
The key point in the proof is then to notice that the desired convergence (for any psh function in a
neighbourhood of K, even not continuous) is assured by the maximum principle (and Hartogs
Lemma).

Lemma 1.2.6. Let Ï be a psh function on a neighbourhood of K. Then d≠n
t (gn

)ú (Ï) converge to a
constant cÏ œ R fi ≠Œ. If cÏ œ R, the convergence is in Lp

loc for every 1 Æ p < Œ. If cÏ = ≠Œ, it is
locally uniform. If Ï is smooth, cÏ is finite.

We refer to the original work by Dinh and Sibony for details. Here we shall content ourselves to
give the main properties of the measure given by Theorem 1.2.5.

Definition 1.2.7. The measure µ given by Theorem 1.2.5 is called the equilibrium measure of g. The
support of µ is the Julia set of g, denoted with Jg.

Theorem 1.2.8. The equilibrium measure is ergodic and mixing.

From the construction of µ it is immediate to see that this measure satisfies gúµ = dtµ. Moreover,
by taking a ‹ supported outside K, we see that the Julia set is contained in the boundary of K. It
is actually possible to see that the support of µ is contained in the Shilov boundary of K, which
is in general smaller than the (topological) boundary, if the dimension is greater than 1. The
assumption on ‹ to be defined by a L1 form can be relaxed to just asking that ‹ does not charge
pluripolar sets.

The following property of µ will be useful in the sequel (see Lemma 1.3.4). It states that µ
maximizes (among all probability measures satisfying gú‹ = dt‹) the momentum against psh
functions.
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Proposition 1.2.9. Let g : U æ V a polynomial-like map of topological degree dt Ø 2. Let µ be the
equilibrium measure and ‹ any probability measure satisfying gú‹ = dt‹. Then for every psh function
Ï on a neighbourhood of K, we have È‹,Ï Í Æ Èµ,Ï Í. Equality holds for pluriharmonic functions.

The following Theorem ensures that µ does not charge the critical set of g. On the other hand,
notice that µ may charge proper analytic subsets. This is a difference with respect to the case of
endomorphisms of Pk, where this possibility is excluded by Chern-Levine-Nirenberg inequality,
because of the boundedness of the local potentials.

Theorem 1.2.10. Let f : U æ V be a polynomial-like map of degree dt. Then Èµ, log |Jacg|Í Ø
1

2

log dt.

The factor 1/2 comes from the fact that we are considering the complex jacobian matrix.
Theorem 1.2.10 implies that the Jacobian of µ with respect to g (i.e., the Radon-Nikodym
derivative of gúµ with respect to µ) is well-defined. By Theorem 1.2.5, this derivative is constant,
and equal to dt. The following is then a consequence of Parry Theorem A.2.4, the Variational
Principle A.2.1 and Theorem 1.2.4.

Corollary 1.2.11. The metric entropy of µ is equal to log dt. So, ht(g, K) = log dt and µ is a measure
of maximal entropy.

1.2.3. Lyapounov exponents

In this Section we introduce the Lyapounov exponents of a polynomial-like map with respect to
the equilibrium measure µ. These will play a crucial role in all this work. They can be thought of
as the exponential rates of expansion (or contraction) of the map in the different directions at
a generic point (with respect to the equilibrium measure) for the system. In order to introduce
them, we need some preliminary definition.

Let X be a measure space, T : X æ X a measurable map and ‹ a T -invariant probability
measure. In the literature (see e.g. [Arn98]), the triple (X, T,‹ ) is often called metric dynamical
system. In our applications, the system will usually be (K, g, µ). Notice in particular that we do
not make (almost) any assumption on the regularity of X, in order to be able to apply the results
to K. Let A : X æ GLk(C) be a a measurable map. The multiplicative cocycle generated by A is
the sequence

An(x) := A(gn≠1

(x)) · · · · · A(x).

Notice in particular that A(gm+n
(x)) = An(gm

(x))Am(x). The following Theorem by Oseledets
([Ose68], see also [Arn98]) gives, under some reasonable hypotheses, an asymptotic description
of the cocycle An.

Theorem 1.2.12 (Oseledets). Let T : X æ X be a measurable dynamical system and An a
multiplicative cocycle. Let ‹ be an ergodic measure for T . Then, if

log

+ ÎA(x)Î œ L1

(‹)

there exists an integer m, real numbers ‰
1

< · · · < ‰m, a full measure subset Y of X and, for every
x œ Y , a unique decomposition of Ck into a direct sum of linear subspaces Ei(x) such that
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1. Y is forward invariant;

2. the decomposition is forward invariant, i.e., A(x) (Ei(x)) ™ Ei(g(x));

3. for every v œ Ei(x) \ { 0 },

lim

næŒ
1

n
log ÎAn(x)vÎ = ‰i.

Moreover, if we also have
log

+

...A≠1

(x)

... œ L1

(‹)

then

1’. Y can be taken completely invariant;

2’. the decomposition is completely invariant, i.e., A(x) (Ei(x)) = Ei(g(x)).

The second part of Theorem 1.2.12 is usually referred to as the invertible Oseledets Theorem.
Consider now a polynomial-like map g : U æ V . Let µ be the equilibrium measure of g, as in

Definition 1.2.7. Notice that the function ÎdgxÎ is bounded from above on U . This implies that
the first part of Oseledec Theorem applies. Theorem 1.2.10 ensures that the same holds for the
second part.

Corollary 1.2.13. Let g : U æ V be a polynomial-like map and let µ be the equilibrium measure of
f . Then log

+

..dg≠1

.. œ L1

(µ). In particular, the invertible form of Theorem 1.2.12 applies for T = g,
‹ = µ and A(x) = dgx.

Proof. The first part of Oseledets Theorem 1.2.12 applies since the function ÎdgxÎ is bounded from
above on U . We have to prove that the fact that log |Jac| œ L1

(µ) implies that log

+

..dg≠1

.. œ L1

(µ).
This follows from the inequality, valid for any A œ GLk(C),

|det A| Æ
...A≠1

...
≠1

· ÎAÎk≠1 . (1.1)

This inequality follows from the fact that |det A| is the product of the k singular values of A, and..A≠1

..≠1 and ÎAÎ are, respectively, the smallest and the largest ones. Using (1.1) we deduce that,
for every x œ U ,

log

+

...dg≠1

x

... Æ (k ≠ 1) log

+ ÎdgxÎ + |log |det dgx|| .

The assertion follows since the first term on the right side is bounded on U and the second belongs
to L1

(µ) by assumption.

Definition 1.2.14. The numbers ‰i = ‰i(g), counted with multiplicity, are the Lyapounov exponents
of g with respect to µ. The Lyapounov function L(g) is the sum

L(g) =

ÿ
‰i(g).

By Oseledets Theorem 1.2.12 and Birkhoff Theorem, it follows that L(g) = Èµ, log |Jac|Í. By
Theorem 1.2.10, we thus have L(g) Ø 1

2

log dt for every polynomial-like map g.
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1.2.4. Maps of large topological degree

Let g be a polynomial-like map and µ its equilibrium measure. Even if the convergence of the
sequence d≠n

t (gn
)ú (Ï) to the constant Èµ,Ï Í holds for any psh function on a neighbourhood of K,

it is not true in general that that the integral Èµ,Ï Í is finite for any psh function. In this section
we introduce a class of polynomial-like maps whose equilibrium measure precisely integrate psh
function. Recall that the *-dynamical degrees were defined in Definition 1.2.2.

Definition 1.2.15. A polynomial-like map is of large topological degree if dú
k≠1

< dt.

The idea behind Definition 1.2.15 is the following. Consider any hypersurface in V . The associ-
ated integration current, suitably normalized, is a closed positive current of mass 1. Definition
1.2.15 in particular says that the volume growth of such an hypersurface is negligible with respect
to the volume growth – with multiplicity – of the whole space (which is of order dn

t ). Notice that
holomorphic endomorphisms of Pk (and thus their polynomial-like lifts as in Example 1.1.4) satify
the above estimate. Morever, by Proposition 1.2.3, a small perturbation of a polynomial-like map
of large topological degree still satisfy this property.

Polynomial-like maps of large topological degree share a lot of properties with endomorphisms
of Pk. We now give several equivalent definitions of this class of maps, and then state the main
properties that we shall need in the sequel.

Theorem 1.2.16. Let g : U æ V be a polynomial-like map and µ be its equilibrium measure. The
following are equivalent:

1. g has large topological degree;

2. psh functions are integrable with respect to µ;

3. µ can be extended to a linear continuous form of the cone of psh functions on V .

In particular, the equilibrium measure of a polynomial-like map of large topological degree does
not charge pluripolar sets. This is one of the most important properties of this class of maps.

Definition 1.2.17. Let V be an open subset of Ck. A measure ‹, with compact support in V , is
moderate if for any subset P of PSH(V ) bounded in L1

loc there exist two constants – > 0 and A > 0

such that e
‹, e–|Ï|

f
< A

for every Ï œ P.

Moderate measures behave very much like the Lebesgue measure for what concern psh functions.
Notice in particular that psh functions are in Lp

loc with respect to moderate measures, for every
1 Æ p < Œ. The equilibrium measure of a polynomial-like map of large topological degree enjoys
this property.

Theorem 1.2.18. Let g : U æ V be a polynomial-like map of large topological degree. Then the
equilibrium measure µ of g is moderate.
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We end this section by recalling two fundamental equidistribution results about the equilibrium
measure of a polynomial-like map of large topological degree that we shall repeatedly use in all
this work. They can also be seen as alternative characterizations of the equilibrium measure. They
are due to Briend-Duval and Dinh-Sibony[BD99, BD01, DS10] in the case of endomorphisms of
Pk, and to Dinh-Sibony [DS03, DS10] for polynomial-like maps of large topological degree.

Theorem 1.2.19. Let g : U æ V be a polynomial-like map of large topological degree dt Ø 2. Let Rn

denote the set of repelling n-periodic points in the Julia set J . Then

1

dn
t

ÿ

aœR
n

”a æ µ.

Notice that, differently from the case of endomorphisms of Pk, here we cannot deduce the
number of n-periodic points by Bezout Theorem. Nevertheless, it is possible to prove that they are
dn

t . In proving this we use the assumption that V is convex.

Theorem 1.2.20. Let g : U æ V be a polynomial-like map of large topological degree dt Ø 2. There
exists a proper analytic set E (possibly empty) contained in the postcritical set of g such that

d≠n
t (gn

)

ú ”a =

1

dn
t

ÿ

gn

(b)=a

”b æ µ

if and only if a does not belong to the orbit of E .

A remarkable consequence of the proof of Theorem 1.2.20 is the following estimate about the
smallest Lyapounov exponent for polynomial-like maps of large topological degree. It ensures that
the equilibrium measure of any such map is hyperbolic, i.e., all Lyapounov exponents are different
from 0. More precisely, the Lyapounov exponents are all strictly positive. This property will play a
crucial role in the proof of the main result of this work, namely the construction of an equilibrium
lamination for the Julia sets starting from the motion of repelling points, given in Chapter 3.

Theorem 1.2.21. Let g : U æ V be a polynomial-like map of large topological degree dt. Then
all the Lyapounov exponents of g with respect to the equilibrium measure are at least equal to
1

2

log

1
d

t

d
k≠1

2
> 0.

1.3. Holomorphic families
We now come to the main object of our study.

Definition 1.3.1. Let M be a complex manifold and U b V be connected open subsets of M ◊ Ck.
Denote by fiM the standard projection fiM : M ◊ Ck æ M . Suppose that for every ⁄ œ M , the
two sets U⁄ := U fl fi≠1

(⁄) and V⁄ := V fl fi≠1

(⁄) satisfy ÿ ”= U⁄ b V⁄ b Ck, that U⁄ is connected
and that V⁄ is convex. Moreover, assume that U⁄ and V⁄ depend continuously on ⁄ (in the sense of
Hausdorff). A holomorphic family of polynomial-like maps is a proper holomorphic map f : U æ V
fibered over M , i.e., of the form

f : U æ V
(⁄, z) ‘æ(⁄, f⁄(z)).
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Notice that, from the definition, f has a well defined topological degree, that we shall always
denote with dt and assume to be greater than 1. In particular, each f⁄ : U⁄ æ V⁄ may be viewed as
a polynomial-like map, of degree dt. We shall denote by µ⁄, J⁄ and K⁄ the equilibrium measure,
the Julia set and the filled Julia set of f⁄, while Cf , Jacf and Cf will be the critical set, the
determinant of the (complex) jacobian matrix of f and the integration current ddc

log |Jacf |. We
may drop the subscript f if no confusion arises.

The main question that we shall adress in this work is the following: how does the Julia set J⁄

vary with ⁄? It is immediate to see that the filled Julia set K⁄ varies upper semicontinuously for
the Hausdoff topology, and at the end of this section we shall see (Corollary 1.3.15) that the Julia
set J⁄ depends lower semicontinuously on the parameter for families of polynomial-like maps of
large topological degree (see Definition 1.2.15).

In this section we present some general results about holomorphic families of polynomial-like
maps, mainly following [DS10] and [Pha05]. We refer to the Appendix A.1 for the notions about
horizontal currents and slicing that we shall use.

By Lemma 1.1.3, given a polynomial-like map f⁄ : U⁄ æ V⁄, if we replace V⁄ by a slightly
smaller convex open set V Õ

⁄ µ V⁄ and U⁄ by U Õ
⁄ := f≠1

⁄ (V Õ
⁄), the map f⁄ : U Õ

⁄ æ V Õ
⁄ is still

polynomial-like. So, since the filled Julia set varies upper semicontinuously, when dealing with
local problems we shall assume that V⁄ does not depend on ⁄, i.e., that V = M ◊ V , with V an
open, convex and relatively compact subset of Ck.

For endomorphisms of Pk, the potential g of the Green current can be seen as a function in the
variables ⁄ œ M and z œ Pk. This allows one to construct a global object, a (k, k)-current on the
product space, whose slices are exactly the equilibrium measures µ⁄. This global object is usually
referred to as the equilibrium current. For polynomial-like maps, the lack of a potential for µ⁄ does
not permit to directly obtain an equilibrium current in the same way. Nevertheless, in [Pha05],
by exploiting the theory of slicing of horizontal currents Pham constructs such an object in the
setting of polynomial-like maps, i.e., a positive closed current on the space V whose slice at any ⁄
is precisely the equilibrium measure µ⁄ for f⁄. Lemma 1.3.4 below is the core of the proof of this
result, which is given in Theorem 1.3.5. Here and in all this section we shall make a repeated use
of the following result.

Theorem 1.3.2 (Dinh-Sibony, Pham). Let M and V be relatively compact open subsets of Cm and
Ck, respectively. Let R be a horizontal positive closed (k, k)-current and Â a psh function on M ◊ V .
Then

1. the slice ÈR, fi, ⁄Í exists for every ⁄ œ M , and its mass is independent from ⁄;

2. the function gÂ,R(⁄) := ÈR, fi, ⁄Í (Â(⁄, ·)) is psh (or identically ≠Œ).

If ÈR, fi, ⁄
0

Í (Â(⁄
0

, ·)) > ≠Œ for some ⁄
0

œ M , then

3. the product ÂR is well defined;

4. for every � continuous form of maximal degree compactly supported on M we have
ˆ

M
ÈR, fi, ⁄Í(Â)�(⁄) = ÈR· fiú

(�), ÂÍ. (1.2)
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In particular, the pushforward fiú(ÂR) is well defined and coincides with the psh function gÂ,R.

Appendix A.1 is essentially dedicated to the proof of this statement, following the work of Dinh,
Sibony and Pham. The four assertions are proved in Theorem A.1.11, Corollary A.1.12, Theorem
A.1.14, and Proposition A.1.18, respectively. In the proof of Lemma 1.3.4 we shall also need the
following fact (see [Hör07, Theorem 3.2.12]).

Lemma 1.3.3. Let uj be a sequence of psh functions in an open connected subset M µ Cm, converging
(as distributions) to a distribution v. Then v is defined by a psh function u and uj æ u in L1

loc(M).

Lemma 1.3.4. Let f : U æ V = M ◊ V be a holomorphic family of polynomial-like maps. Let Rn be
a sequence of horizontal positive closed (k, k)-currents on M ◊ V converging to a horizontal positive
closed (k, k)-current R and such that for every ⁄ œ M we have

ÈRn, fi, ⁄Í æ µ⁄, (1.3)

where µ⁄ is the equilibrium measure of f⁄. Then, ÈR, fi, ⁄Í = µ⁄ for every ⁄ œ M .

Notice that, since the Rn’s and R are horizontal, positive and closed, the existence of their slices
at any ⁄ œ M is ensured by Theorem A.1.11.

Proof. We have to show that, for every ⁄ œ M and for every smooth Â, compactly supported in
M ◊ V , we have

ÈR, fi, ⁄Í (Â(⁄, ·)) = Èµ⁄, (Â(⁄, ·))Í .

Since any such Â is a difference of two smooth psh functions, we can suppose that Â is smooth
and psh (but, obviously, not compactly supported). Define the following functions on M :

I
un(⁄) := fiú (ÂRn) = ÈÈRn, fi, ⁄Í , Â(⁄, ·)Í
u(⁄) := fiú (ÂR) = ÈÈR, fi, ⁄Í , Â(⁄, ·)Í .

By Theorem 1.3.2, all these functions are well defined and psh. Moreover, since fiú is continuous
and Rn æ R, we have that un æ u as distributions, and thus in L1

loc(M) (by Lemma 1.3.3). By
(1.3), we also have that the sequence un pointwise converge to the function

uÕ
(⁄) := Èµ⁄, Â(⁄, ·)Í .

Our goal is thus to prove that uÕ
= u.

First, remark that this equality holds almost everywhere. Indeed, uÕ and u are the pointwise and
the L1

loc limit of the same sequence of psh functions, and this implies their coincidence on a set of
full measure. Moreover, by Hartogs Lemma, the pointwise limit of a sequence of psh functions is
(pointwise) smaller than the L1

loc limit, and this implies that uÕ Æ u. We are thus left to prove that
uÕ Ø u.

Fix ⁄
0

œ M . Since u is psh, we have u(⁄
0

) = lim sup⁄æ⁄0 u(⁄), where the lim sup can be taken
over any full-measure subset M Õ µ M . Thus, since u = uÕ almost everywhere, there exists a
sequence of points ⁄m æ ⁄

0

in M such that u(⁄m) = uÕ
(⁄m) and u(⁄m) æ u(⁄

0

). Since we
are working locally and the filled Julia sets of the family vary upper-semicontinuously, we can
suppose that the support of µ⁄0 and all the supports of µ⁄

m

are contained in a common compact
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set L b V . So, up to a subsequence, the measures µ⁄
m

converge to a measure ‹⁄0 . Remark that, by
construction, we have u(⁄

0

) = limm uÕ
(⁄m) = È‹⁄0 , Â(⁄

0

, ·)Í and that, by continuity, ‹⁄0 satisfies
fú

⁄0‹
0

= dt‹0

.
The assertion follows since (by Proposition 1.2.9) the equilibrium measure µ⁄0 maximizes the

integrals against psh functions (among the invariant measures for f⁄0), and, by its very definition,
uÕ

(⁄
0

) = Èµ⁄0 , Â(⁄
0

, ·)Í.

Consider now a family of polynomial-like maps f : U æ V = M ◊ V as in Lemma 1.3.4. Let ◊
be a smooth probability measure compactly supported in V and consider the (positive and closed)
smooth (k, k)-currents on M ◊ V defined by induction as

Y
]

[
S

0

= fiú
V (◊)

Sn :=

1

d
t

fúSn≠1

=

1

dn

t

(fn
)

úS
0

.
(1.4)

The currents Sn are in particular horizontal positive closed (k, k)-currents on M ◊ V , whose slice
mass is equal to 1. Moreover, since by definition we have ÈS

0

, fi, ⁄Í = ◊ for every ⁄ œ M , we have
that ÈSn, fi, ⁄Í =

1

dn

t

(fn
⁄ )

ú ◊. In particular, since every f⁄ : U⁄ æ V is a polynomial-like map, for
every ⁄ œ M we have ÈSn, fi, ⁄Í æ µ⁄. The following Theorem is then a consequence of Lemma
1.3.4.

Theorem 1.3.5 ([Pha05], Proposition 2.1). Let f : U æ V be a holomorphic family of polynomial-like
maps. Then there exists a positive closed (k, k)-current E on V , supported on fi⁄ { ⁄ } ◊ K⁄, such that
for every ⁄ œ M the slice ÈE , fi, ⁄Í exists and is equal to µ⁄.

Proof. We can solve the problem locally (on M) and then recover a global E by means of a partition
of unity on M . We can thus assume from the beginning that the parameter space is a unit ball
B b M , and that V = B ◊ V . In this way, we also give a sense to the slice of E , otherwise
defined only for currents on a product space (but see also Remark A.1.4). Let ◊ be any smooth
positive measure on V and Sn be defined as in (1.4). Since the Sn’s have bounded mass on B ◊ V
(recall that B b M), we can extract a subsequence Sn

i

converging to a horizontal positive closed
(k, k)-current E on B ◊ V . We can also use the fact that the set of horizontal positive currents with
bounded slice mass is compact, see [DS06]. The assertion now follows applying Lemma 1.3.4 to
the sequence Sn

i

æ E .

Remark 1.3.6. Up to considering the Cesaro averages of the Sn’s, we can construct a current E as
above satisfying the extra property that fúE = dtE .

Definition 1.3.7. An equilibrium current for f is a positive closed current E on V, supported on
fi⁄ { ⁄ } ◊ K⁄, such that ÈE , fi, ⁄Í = µ⁄ for every ⁄ œ M .

The following result is now an immediate consequence of Theorem 1.3.2 (since, locally on M ,
an equilibrium current E is horizontal – by the upper semicontinuity of K⁄).

Corollary 1.3.8 ([Pha05], Proposition 2.1). Let f : U æ V be a holomorphic family of polynomial
like maps. Let Jac denote the determinant of the Jacobian and C the critical set of f . Let E be an
equilibrium current for the family. Then the product log |Jac| · E is well defined. In particular, the
intersection E · Cf = ddc

(log |Jac| · E) is well defined.
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Take now a B b M such that B ◊ V Õ µ V and E is horizontal on B ◊ V Õ and any psh function
u on B ◊ V Õ such that Èµ⁄0 , u(⁄

0

, ·)Í > ≠Œ for some ⁄
0

œ B. By Theorem 1.3.2 we know
that the distribution fiú (uE) is represented by the (plurisubharmonic) function ⁄ ‘æ Èµ⁄, u(⁄, ·)Í.
Notice that, while the product uE a priori depends on the particular equilibrium current E , the
pushforward is independent from the particular choice (by (1.2)).

This in particular applies with u = log |Jac|, since the hypothesis that Èµ⁄, log |Jac(⁄, ·)|Í > ≠Œ
is satisfied at every ⁄ by Theorem 1.2.10. By Oseledets theorem 1.2.12, the function ⁄ ‘æ
Èµ⁄, log |Jac(⁄, ·)|Í coincides with the Lyapounov function L(⁄), i.e., the sum of the Lyapounov
exponents of f⁄ with respect to µ⁄ (see Definition 1.2.14). The following definition is then well
posed.

Definition 1.3.9. Let f : U æ V be a holomorphic family of polynomial-like maps. The bifurcation
current of f is the positive closed (1, 1)-current on M given by

Tbif := ddcL(⁄) = fiú (Cf · E) , (1.5)

where E is any equilibrium current for f .

The following result gives an approximation of the current uE , for u psh, that we shall need in
Section 2.2.3.

Lemma 1.3.10. Let f : U æ V = M ◊ V be a holomorphic family of polynomial-like maps. Let ◊ be
a smooth positive measure compactly supported on V . Let Sn be as in (1.4) and E be any equilibrium
current for f . Let u be a psh function on M ◊ V and assume that there exists ⁄

0

œ M such that
Èµ⁄0 , u(⁄

0

, ·)Í > ≠Œ. Then, for every continuous form � of maximal degree and compactly supported
on M , we have

ÈuSn, fiú
(�)Í æ ÈuE , fiú

(�)Í , (1.6)

where the right hand side is well defined by Theorem 1.3.2.

Notice that the assumption Èµ⁄0 , u(⁄
0

, ·)Í > ≠Œ at some ⁄
0

is automatic if the family is of large
topological degree, by Theorem 1.2.16. Moreover, notice that (1.6) holds without the need of
taking the subsequence (and the right hand side is in particular independent from the subsequence
used to compute E). Finally, we do not need to restrict M to get the statement since � is compactly
supported. This also follows from the compactness of horizontal positive closed currents with
bounded slice mass, see [DS06].

Proof. We can suppose that � is a positive volume form, since we can decompose it in its positive
and negative parts � = �

+ ≠ �

≠ and prove the statement for �

+ and �

≠ separately. Moreover, by
means of a partition of unity on M , we can also assume that E is horizontal. By Theorem 1.3.2,
the product uE is well defined and the identity (1.2) holds with both R = E or Sn and Â = u. So,
it suffices to prove that

ˆ
M

ÈSn, fi, ⁄Í(u)�(⁄) æ
ˆ

M
ÈE , fi, ⁄Í(u)�(⁄). (1.7)

The assertion then follows since the slices of E , and thus also the right hand side, are independent
from the particular equilibrium current chosen.
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Set Ïn(⁄) := ÈSn, fi, ⁄Í (u(⁄, ·)) and Ï(⁄) := ÈE , fi, ⁄Í (u(⁄, ·)) = Èµ⁄, u(⁄, ·)Í. By Theorem 1.3.2,
the Ïn’s and Ï are psh functions on M . Moreover, at ⁄ fixed, we have (recalling the definition
(1.4) of the Sn’s and the fact that d≠n

t (fn
⁄ )ú u(⁄, ·) æ Èµ⁄, u(⁄, ·)Í since u(⁄, ·) is psh, see Theorem

1.2.5)

Ïn(⁄) = ÈSn, fi, ⁄Í u(⁄, ·) =

=
1

dn
t

(fn
⁄ )

ú
(◊), u(⁄, ·)

>
=

=
◊,

1

dn
t

(fn
⁄ )ú u(⁄, ·)

>

æ È◊, Èµ⁄, u(⁄, ·)ÍÍ = Èµ⁄, u(⁄, ·)Í = Ï(⁄).

Since u is upper semicontinuous (and thus locally bounded) all the Ïn’s are bounded from above.
This, together with the fact that they converge pointwise to Ï, gives that the convergence happens
in L1

loc. So, we have ˆ
Ïn� æ

ˆ
Ï�

which is precisely the assertion to prove.

The following Corollary immediately follows from Lemma 1.3.10, using u = log |Jac| and
Theorem 1.2.10.

Corollary 1.3.11. Let f : U æ V = M ◊ V µ Cm ◊ Ck be a holomorphic family of polynomial-like
maps. Let E be an equilibrium current and Sn be a sequence of smooth forms as in (1.4). Then for
every smooth (m ≠ 1, m ≠ 1)-form � compactly supported on M we have

ÈCf · Sn, fiú
(�)Í æ ÈCf · E , fiú

(�)Í .

We end this chapter with two consequences of the following continuity result, valid for families
of polynomial-like maps of large topological degree. Given an open subset of Ck, the topology on
the space of psh functions is the L1

loc one (with respect to the Lebesgue measure). Recall that this
topology coincides with the weak topology, as well as with the Lp

loc topology, for every 1 < p < Œ.

Theorem 1.3.12 (Dinh-Sibony[DS10]). Let f : U æ V be a holomorphic family of polynomial-like
maps of large topological degree. Let ⁄

0

œ M and W be a neighbourhood of the filled Julia set K⁄0 of
f⁄0 . Then, there exists a neighbourhood M

0

of ⁄
0

such that Èµ⁄, ÏÍ depends continuously on (⁄,Ï ) in
M

0

◊ PSH(W ).

The first consequence is that the Lyapounov function L(⁄) is continuous in ⁄. It is actually
possible to prove a stronger version of Theorem 1.3.12, implying the L is Hölder continuous.

Corollary 1.3.13. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree. Then, L is continuous on M .

Finally, we deduce from Theorem 1.3.12 that the Julia set varies lower semicontinuously with
the parameter. This follows from the following elementary Lemma. We say that a family of
measures ‹⁄ is continuous if È‹⁄, ÏÍ is continuous for every smooth test form Ï.

Lemma 1.3.14. Let ‹⁄, with ⁄ œ M , be a continuous family of probability measures, compactly
supported in a compact subset of Ck. Then, the map

⁄ ‘æ Supp ‹⁄
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is lower semicontinuous (with respect to the Hausdorff topology): given ⁄
0

œ M , for every Á > 0 there
exists a ” > 0 such that Supp ‹⁄0 is contained in a Á-neighbourhood of Supp ‹⁄ if |⁄ ≠ ⁄

0

| < ”.

Proof. We denote by (X)Á the Á-neighbourhood of a compact set X. Let p /œ (Supp ‹⁄
n

)Á for some
⁄n æ ⁄

0

. We prove that p /œ Supp ‹⁄0 . By assumption, the ball B(p,Á ) does not intersect the
support of any measure ‹⁄

n

, and this means that È‹⁄
n

flÍ = 0 for every test function fl supported
in B(p,Á ). By the continuity of the measures, it follows that È‹⁄0 , flÍ = 0, too, and this gives the
assertion.

The lower semicontinuity of Julia sets then immediately follows from Theorem 1.3.12, since
every smooth function with compact support is a difference of psh ones (not compactly supported).

Corollary 1.3.15. Let f : U æ V be a holomorphic family of polynomial-like maps of large topo-
logical degree. Then the Julia set (i.e., the support of the equilibrium measure µ⁄) varies lower
semicontinuously.



2
First notions of stability

In this chapter we are going to prove the equivalence between several notions of stability for a
holomorphic family of polynomial-like maps. This consists of a generalization to this more general
setting of works by Berteloot and Dupont in the case of endomorphisms of Pk. The main difference
with respect to their work is Section 2.2.3, and in particular the proof of Theorem 2.2.12. While
their approach exploits the existence of a Green function, we give here a different and more
geometrical proof in our setting, motivated by the fact that a Green function does not exist in our
situation.

2.1. Equilibrium webs

Recall that holomorphic families of polynomial-like maps were defined in 1.3.1. By the results
of Chapter 1, we can associate to every polynomial-like map a well-defined equilibrium measure,
whose support is, by definition, the Julia set. Our goal in this section is to introduce and study a
notion of holomorphic motion for the equilibrium measures. We shall see in subsequent sections
how this definition relates with other (more classical) definitions of stability (like the holomorphic
motion of repelling cycles, or the absence of Misiurewicz parameters) for a family of polynomial-
like maps.

In order to introduce this notion of stability for the equilibrium measure, we have to set some
definitions. We shall be mainly concerned with the space of holomorphic maps

O
1
M,Ck, V

2
:= { “ œ O

1
M,Ck

2
: ’⁄ œ M,“ (⁄) œ V⁄ } .

We endow this space with the topology of local uniform convergence. Since the family f is a map
from U to V, it is natural to consider the subset of O

1
M,Ck, V

2
given by

O
1
M,Ck, U

2
:= { “ œ O

1
M,Ck

2
: ’⁄ œ M,“ (⁄) œ U⁄ } .

15
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Notice that, by Montel Theorem, the subset O(M,Ck, U) is relatively compact in O(M,Ck, V).
The map f induces an action from this subset to all of O

1
M,Ck, V

2
by

F : O
1
M,Ck, U

2
æ O(M,Ck, V)

“ ‘æ F · “,

where (F · “) (⁄) = f⁄ (“(⁄)). The map F : O(M,Ck, U) æ O(M,Ck, V) gives a (partial) dynami-
cal system, in the same way than every polynomial-like slice f⁄ : U⁄ æ V⁄. In order to recover an
actual dynamical system, we directly restrict ouselves to the subset J of O(M,Ck, U) given by

J := {“ œ O(M,Ck, U) : “(⁄) œ J⁄ for every ⁄ œ M}.

Notice that, according to Montel Theorem, J is a compact metrizable space for the topology of
local uniform convergence. Moreover, since given any “ œ J the map F · “ still belongs to J , this
set is F -invariant and F induces a well-defined dynamical system on it.

We notice that nothing prevents the set J to be actually empty. The following lemma ensures
that, for families of polynomial-like maps of large topological degree (see Definition 1.2.15), even
if J may be empty over some parameter space M every point admits a neighbourhood where
this set (for the induced family) is not empty. This is a quite direct consequence of the lower
semicontinuity of the Julia sets (see Corollary 1.3.15).

Lemma 2.1.1. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree dt Ø 2 and fl œ O(M,Ck, U) such that fl(⁄) is n-periodic for every ⁄ œ M . Then, the set

Jfl := { ⁄ œ M : fl(⁄) is n-periodic, repelling and belongs to J⁄ }

is open.

On the other hand, it may happen that a repelling cycles leaves the Julia set (without stopping
being repelling). An example of this phenomenon is given in Section 2.1.3.

Proof. Assume there exists ⁄
0

œ M such that fl(⁄
0

) is repelling and belongs to J⁄0 . Since being
repelling is an open condition, we can suppose that fl(⁄) is repelling for every ⁄. We are going
to prove that, in a sufficiently small neighbourhood of ⁄

0

, we have fl(⁄) œ J⁄, thus proving the
assertion. Up to replacing f with fn, we can suppose that fl(⁄) is actually fixed and repelling for
every ⁄ and, up to locally change coordinates, we can also suppose that fl(⁄) = 0 for every ⁄.

Since fl(⁄) © 0, there exists a small polydisc D = D
1

◊ D
2

µ M ◊ Ck centered at (⁄
0

, 0) such
that f is injective and uniformly expanding on D. Fix a Á > 0 smaller than the radius of D

2

. By
the lower semicontinuity of J⁄ (Corollary 1.3.15), there exists a positive ” such that, for every
⁄ œ B(⁄

0

, ”), the Julia set J⁄0 is contained in the Á-neighbourhood (J⁄)Á of J⁄ (and, without loss
of generality, we can suppose that B(⁄

0

, ”) µ D
1

). This implies that, for every ⁄ œ B(⁄
0

, ”), there
exists a point p⁄ œ B(0, Á) fl J⁄.

But now, by the expansivity of f on D, this implies that, for every ⁄, 0 = fl(⁄) is accumulated by
preimages of a point of J⁄, and thus by points of J⁄. Since J⁄ is closed, this implies that 0 = fl(⁄)

belong to J⁄ for every ⁄ sufficiently close to ⁄. This proves the assertion.
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In the following sections we introduce and give the first properties of natural measures (strictly
related to the equilibrium measure at every slice) that we can consider on J .

2.1.1. Definition and basic properties

Let M be any probability measure compactly supported on O(M,Ck, U). Notice that we can
naturally associate to it the (k, k)-current on U given by

WM :=

ˆ
[�“ ]dM(“), (2.1)

where [�“ ] denotes the integration current on the graph �“ µ U of the map “ œ O(M,Ck, U). This
is a well defined closed positive current on U . We can also see WM as a (positive closed) current
on V.

By definition of holomorphic family, every parameter ⁄
0

œ M has a neighbourhood M⁄0 such
that the U⁄ b ÂU b ÂV b V⁄. for every ⁄ œ M⁄0 . This implies in particular that the current WM
is horizontal (see Definition A.1.9) on M⁄0 ◊ ÂV . Given ⁄ œ M , we can thus consider the slice
ÈWM, fi, ⁄Í (see Definition A.1.3), which can be seen as a measure on V⁄. We denote this measure
by M⁄. In this case, we have a very explicit description of M⁄. Indeed, we have

M⁄ =

ˆ
”“(⁄)

dM(“) = (p⁄)ú M,

where p⁄ : O(M,Ck, V) æ V⁄ is the evaluation map at ⁄ given by p⁄(“) := “(⁄). Notice in
particular that the operator p⁄ is linear and continuous.

The map F : O(M,Ck, U) æ O(M,Ck, V) is proper. This follows from Montel Theorem since,
for any ⁄, p⁄ is continuous and f⁄ : U⁄ æ V⁄ is proper. This means in particular that F induces a
well defined notion of pushforward from the measures on O(M,Ck, U) to those on O(M,Ck, V).

In the sequel, we shall be mainly interested on measures M supported on the compact metric
space J . In the following definition we introduce a central object in all our study.

Definition 2.1.2. Let f : U æ V be a holomorphic family of polynomial-like maps. An equilibrium
web is a probability measure M on J such that:

1. FúM = M, and

2. (p⁄)ú M = µ⁄ for every ⁄ œ M .

We shall say that the equilibrium measures µ⁄ move holomorphically (over M) if f admits an
equilibrium web.

Notice in particular that, since J is compact, every equilibrium web is automatically compactly
supported. Moreover given an equilibrium web M, we can see the triple (J , F , M) as an invariant
dynamical system.

The picture to have in mind in order to handle with this kind of objects is the following: we
have a set of graphs in the product space (to be thought of as the support of M) and what the
second condition says is that what we see when we slice this picture at any parameter ⁄ is precisely
the equilibrium measure µ⁄ of f⁄.

In the next lemma we give some elementary properties of the support of any equilibrium web.



18 First notions of stability

⁄

Ck

M

µ⁄

Figure 2.1.: an equilibrium web

Lemma 2.1.3. Let f : U æ V be a holomorphic family of polynomial-like maps of degree dt Ø 2.
Assume that f admits an equilibrium web M. Then

1. for every (⁄
0

, z
0

) œ M ◊ J⁄0 there exists an element “ œ Supp M such that z
0

= “(⁄
0

), and

2. for every (⁄
0

, z
0

) œ M ◊J⁄0 such that z
0

is n-periodic and repelling for f⁄0 there exists a unique
“ œ Supp M such that z

0

= “(⁄
0

) and “(⁄) is n-periodic for f⁄ for every ⁄ œ M . Moreover,
“(⁄

0

) ”= “Õ
(⁄

0

) for every “Õ œ Supp M different from “.

Proof. Since (p⁄0)ú M = µ⁄0 , there exist elements “n œ Supp M such that “n(⁄
0

) æ z
0

. Since J
is compact (and thus the same is true for Supp M), any limit value “ of the sequence (“n)n belons
to J and satisfies “(⁄

0

) = z
0

. This proves the first point.
For the second one we notice that, by the implicit function theorem, there exist a holomorphic

function w, defined on some neighbourhood M Õ of ⁄
0

that gives a holomorphic motion of z
0

as
a periodic point, i.e., such that w(⁄

0

) = z
0

and fn
⁄ (w(⁄)) = w(⁄) for every ⁄ œ M Õ. By analytic

continuation, it suffices to show that every “ œ Supp M as in 1 coincides with w on M Õ. We can
assume, without loss of generality, that w(⁄) is (uniformly) repelling on M Õ. This gives constants
A > 1 and r > 0 such that

Îw(⁄) ≠ fn
⁄ (z)Î = Îfn

⁄ (w(⁄)) ≠ fn
⁄ (z)Î Ø A Îw(⁄) ≠ zÎ

for every ⁄ œ M Õ and z such that Îw(⁄) ≠ zÎ < r. Up to shrinking M Õ, we have that Îw(⁄) ≠ “(⁄)Î <
r on M Õ and, since Supp M is compact, up to shrinking M Õ again we can also assume that the
same is true for all the orbit of “, i.e., that Îw(⁄) ≠ fmn“(⁄)Î < r on M Õ for every m Ø 1. This,
combined with the expansion estimate above, gives the desired coincidence of w and “.

2.1.2. Construction of equilibrium webs

Since equilibrium webs will play a crucial role in our study, it will be very important to be able
to build them. We present here two basic methods to do it. They are both applications of the
following general result, which has to be thought of as a counterpart of the basic ⁄-lemma in our
higher-dimensional setting.
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Theorem 2.1.4. Let f : U æ V be a holomorphic family of polynomial-like maps of degree dt Ø 2.
Let µ⁄ be the equilibrium measure of f⁄ and assume that there exists a sequence of probability
measures Mn on O

1
M,Ck, U

2
such that

1. limn (p⁄)ú Mn = µ⁄ for every ⁄ œ M ;

2. FúMn+1

= Mn or FúMn = Mn for every n Ø n
0

.

Then the equilibrium measures µ⁄ move holomorphically and any limit of
1

1

n

qn
l=1

Ml

2

n
is an

equilibrium web.

Proof. We set ÊMn :=

1

n

qn
l=1

Ml and denote by ÊM any limit of the sequence
1

ÊMn

2
, say with

ÊMn
j

æ ÊM. From 2 we get that ÊM is a Fú-invariant probability measure on O(M,Ck, V) (since
all the ÊMn’s have locally bounded mass). Moreover, since (p⁄)ú is continuous, condition 1 gives
that the slice of ÊM at every ⁄ is equal to µ⁄.

We are thus only left to showing that the support of ÊM is contained in J . Let “
0

œ O(M,Ck, U)

such that “
0

(⁄
0

) /œ J⁄0 for some ⁄
0

œ M . We are going to find an open neighbourhood A
0

of “
0

in O(M,Ck, V) such that ÊM(A
0

) = 0. To do so, consider a small neighbourhood A
0

of “(⁄
0

) such that µ⁄0(A
0

) = 0 (it exists since “
0

(⁄
0

) /œ J⁄0) and set A
0

:= p≠1

⁄ (A⁄0), i.e.,
A

0

:= { “ œ O(M,Ck, V) : “(⁄
0

) œ A
0

}. Since µ⁄0 = (p⁄0)ú (

ÊM), we get ÊM(A0) = µ⁄0(A
0

) = 0

and the assertion is proved.

As in the case of families of endomorphisms of Pk, Theorem 2.1.4 allows us to recover the
existence of equilibrium webs from the existence of particular elements in O(M,Ck, U), at least for
families of large topological degree (see Definition 1.2.15). The first way follows from Theorem
1.2.20.

Proposition 2.1.5. Let f : U æ V be a holomorphic family of polynomial-like maps of large
topological degree dt Ø 2. Assume that the parameter space M is simply connected and that there
exists “ œ O(M,Ck, U) such that the graph �“ does not intersect the post-critical set of f . Then,

the equilibrium measures move holomorphically and any limit of
3

1

n

qn
l=1

1

dl

t

q
F l‡=“ ”‡

4

n
is an

equilibrium web.

Notice the assumption on the parameter space to be simply connected. This is needed to ensure
the existence of the preimages.

Proof. Since the graph of “ does not intersect the postcritical set of f , for every n there exist
dn

t elements ‡n,j such that Fn‡n,j = “. By Theorem 1.2.20, this implies that the measures
Mn :=

1

dn

t

qdn

t

j=1

”‡
n,j

=

1

dn

t

q
Fn‡=“ ”‡ satisfy the hypotheses of Theorem 2.1.4. The assertion

follows.

The second way exploits Theorem 1.2.19. In order to state this, we need to give a preliminary
definition.
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Definition 2.1.6. For every ⁄ œ M , a repelling J -cycle is a repelling cycle which belongs to J⁄. We
say that the J -repelling cycles move holomorphically over M if, for every n, there exists a finite subset
{ fln,j , 1 Æ j Æ Nn } of J such that { fln,j(⁄), 1 Æ j Æ Nn } is precisely the set of n-periodic repelling
J -cycles of f⁄ for every ⁄ œ M .

Proposition 2.1.7. Let f : U æ V be a holomorphic family of polynomial-like maps of large
topological degree dt Ø 2. Assume that the repelling J-cycles of f move holomorphically over
the parameter space M and let (fln,j)

1ÆjÆN
n

be the elements of J given by the motion of these
n-periodic repelling cycles. Then, the equilibrium measures move holomorphically and any limit of1

1

dn

t

qN
n

j=1

”fl
n,j

2

n
is a equilibrium web.

Proof. The result follows from Theorem 2.1.4 and from the equidistribution of repelling periodic
points with respect to the equilibrium measure of a polynomial-like maps (see Theorem 1.2.19).
Notice that, since for every n the measure 1

dn

t

qN
n

j=1

”fl
n,j

is already Fú-invariant, we do not need to
take the Cesaro average in the proof of Theorem 2.1.4.

2.1.3. A repelling point leaving the Julia set

In this section we give a simple example of a family of polynomial endomorphisms of C2 (which
in particular are polynomial-like maps and extend to holomorphic endomorphisms of P2) with a
repelling point leaving the Julia set. More precisely, we consider the family given by

F⁄(z, w) = (1 ≠ ⁄)

A
z2

+ ”w
z ≠ Áw2

B

+ ⁄

A
w2

+ 2w
z2

+ 2z

B

(2.2)

where ” is any fixed real number strictly greater than 1, and Á is any positive real number such
that ”Á< 1

16

. We claim that this family satisfies the following properties:

1. for (complex) ⁄ in a neighbourhood of the real segment [0, 1], F⁄ extends to an endomor-
phisms of P2;

2. (0, 0) is a repelling fixed point for each F⁄;

3. (0, 0) /œ J
0

;

4. (0, 0) œ J
1

.

This gives an example of a repelling cycles leaving the Julia set. Below we prove the four assertions.

1 - Extension to P2 We must verify that, denoting with ÂF 1

⁄ and ÂF 2

⁄ the homogeneous parts of

maximal degree of the two components of F⁄, we have
1

ÂF 1

⁄

2≠1

fl
1

ÂF 2

⁄

2≠1

= {(0, 0)} for every
⁄ œ [0, 1]. This amounts to prove that (0, 0) is the only solution of the system

I
(1 ≠ ⁄)z2

+ ⁄w2

= 0

≠(1 ≠ ⁄)Áw2

+ ⁄z2

= 0.
(2.3)
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For ⁄ = 1, the assertion is immediate. Otherwise, from the first equation we get z2

= ≠ ⁄
1≠⁄w2

that, substituted in the second, gives w2

1
≠Á(1 ≠ ⁄) ≠ ⁄2

1≠⁄

2
= 0. So, we want to check that

≠Á(1 ≠ ⁄) ≠ ⁄2
1≠⁄ ”= 0 under our hypotheses. But this is true, because

≠(1 ≠ ⁄)

A

≠Á(1 ≠ ⁄) ≠ ⁄2

1 ≠ ⁄

B

= Á(1 ≠ ⁄)

2

+ ⁄2 (2.4)

is strictly positive for ⁄ real, by the assumpion that Á is real and strictly positive.

So, the family F⁄ extends to a family of endomorphisms of P2, for ⁄ in a neighbourhood of the
real line. Notice that here we used the fact that the term Áw2 in non zero, to extend F

0

, as well as
the choice F

1

(z, w) = (w2, z2

) (the argument would not work with F
1

(z, w) equal to (z2, w2

)).

2 - (0, 0) is a repelling fixed point for each F⁄ The differential at (0, 0) of F⁄ is

(DF⁄)

(0,0)

=

A
0 (1 ≠ ⁄)” + 2⁄

(1 ≠ ⁄) + 2⁄ 0

B

. (2.5)

So, being the trace equal to zero, we only need to verify that the modulus of the determinant is
greater than 1 for ⁄ œ [0, 1]. But all the quantities in (2.5) are real, so also the determinant is real.
It suffices then to show that the product of (1 + ⁄) and (1 ≠ ⁄)” + 2⁄ is greater than one. But with
⁄ œ [0, 1] the first is greater than or equal to 1, while the second is strictly greater than 1 (because
of the assumption that ” > 1), and the assertion follows.

3 - (0, 0) /œ J
0

In this section it shall be useful to make it explicit the dependence of F
0

on Á. In
particular, we shall denote by F Á

0

the map

F Á
0

A
z
w

B

=

A
z2

+ ”w
z ≠ Áw2

B

.

The argument presented here is essentially taken from [FS01, Section 4.1].

In [FM89], Friedland and Milnor introduced a decomposition of C2 defined as following: fix an
R > 0 and define the three sets

VR ={|z|, |w| Æ R},

V +

R ={|z| Ø R, |w| Æ |z|},

V ≠
R ={|w| Ø R, |z| Æ |w|}.

(2.6)

They proved that, for a Hénon automorphism h of C2, there exists an R such that

h
1
VR fi V +

R

2
µ VR fi V +

R . (2.7)
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In particular, this holds for the automorphism f0 of C2 given by

f0

A
z
w

B

=

A
z2

+ ”w
z

B

.

Remark that f0

= F 0

0

. Property (2.7) holds also for F Á
0

, for sufficiently small Á, in the sense that
there exist an R > 0 and an Á

0

> 0 such that, for every 0 < Á < Á
0

, we have

F Á
0

(VR fi V +

R ) µ VR fi V +

R . (2.8)

More precisely, we have the following Proposition, essentially contained in [FS01]. Remark that
this does not immediately follow from Friedland-Milnor result, since F Á

0

is not an automorphism
of C2 for Á ”= 0.

Proposition 2.1.8 (cp. Lemma 4.1 [FS01]). For every R > 8” the property (2.8) holds for F Á
0

, with
0 < Á < 1

2R .

Proof. We shall adopt the following notation:
I

z
1

:= z2

+ ”w

w
1

:= z ≠ Áw2.

We start proving the following: there exist a R and and Á
1

such that, for 0 < Á < Á
1

, in V +

R/2

we
have

a) |z
1

| Ø |z|2
2

;

b) |w
1

| Æ |z
1

|2
2

.

(2.9)

More precisely, this is true for I
Á

1

< 1

8

R > 8”.
(2.10)

The existence of some such R sufficiently large and Á
1

sufficiently small follows from the
definition of V +

R/2

. Let us verify that with the proposed values the requests are actually satisfied.

For a), we are asking that, on V +

R/2

, we have |z2

+ ”w| Ø |z|2
2

. Since |z2

+ ”w| Ø |z|2 ≠ ”|w|, it

suffices to find a R such that on V +

R/2

we have |z|2
2

> ”|w|. But on V +

R/2

we have |z| > |w|, so it

suffices to satisfy |z|
2

> ”, which gives R > 4|”|.
For the request b), we are asked that |z2

+”w|
2

Ø |z ≠Áw2|. Here it suffices to verify that |z|2≠”|w|
2

Ø
|z| + Á|w|2. Recalling that |z| Ø |w|, we get |z|2≠”|w|

2

Ø |z|2≠”|z|
2

= |z| |z|≠”
2

and |z|(|z| + Á|z|) =

|z|2 + Á|z|2 Ø |z|2 + Á|w|2. So, it suffices to verify that |z|≠”
2

Ø 1 + Á|z|. This leads to

|z| >
” + 2

1 ≠ 2Á
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and so to I
Á

1

< 1

2

R > 2

”+2

1≠2Á .

Summing up, we have found I
Á

1

< 1

2

R > max{4”, 2(”+2)

1≠2Á }.
(2.11)

In particular, being ” > 1, we see that the conditions (2.10) imply (2.11), and so we are done.

The next step will consist in proving that, after possibly increasing R and reducing Á
1

, we have
F Á

0

(V +

R ) µ VR fi V +

R and F Á
0

(VR) µ VR fi V +

R .
Let us start with the first. We shall see that this request does not imply to modify the constants.

We shall prove that I
|z| Ø R

|z| Ø |w|
∆

I
|z

1

| Ø R

|z
1

| Ø |w
1

|.

Remark that V +

R µ V +

R/2

, and so we have the estimates in (2.9). To prove that |z
1

| Ø R, we use

the estimate a), so that it suffices to verify that |z|2
2

Ø R. This is always true in V +

R if R Ø 2 (which
is implied by the previous request that R > 8”), and so we are done.

To prove that |z
1

| Ø |w
1

|, we use the estimate b), which immediately gives the assertion.
Remark that in particular we have proved that F Á

0

(V +

R ) µ V +

R , i.e., V +

R is forward invariant (as in
Friedland-Milnor Theorem).

So we are left to prove that, for R > 8” and Á < 1

2R , we have F Á
0

(VR) µ VR fi V +

R . This means
that we have to prove that, on VR, if |w

1

| Ø R then |z
1

| Æ |w
1

|, i.e.,
Y
__]

__[

|z| Æ R

|w| Æ R

|w
1

| Ø R

∆ |z
1

| Ø |w
1

|.

We shall proceed in the following way:

1. if |z| Æ R
2

(and |w| Æ R), we show that |w
1

| Æ R;

2. if (z, w) œ V +

R/2

fl VR, we show that |z
1

| Ø |w
1

| ;

3. on the missing “triangle” given by R
2

< |z| Æ |w| Æ R, we show that |z
1

| Ø |w
1

|.

For the first zone, we have |w
1

| = |z ≠ Áw2| Æ |z| + Á|w|2 Æ R
2

+ ÁR2. We want to impose that
the last term is smaller than R. So, we get Á < 1

2R .

Remark 2.1.9. The presence of the Á is the reason for which we cannot do a “uniform” estimate on
VR, but we have to treat the case with |z| near R separatedly (in fact, using |z| = R, the estimate
above becomes R + ÁR2 < R, which can never be satisfied, due to the positivity of Á).

For the second zone, we can use the estimates in (2.9). In particular, using b), we immediately
get the assertion.
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We are left with the “triangle”
R

2

< |z| Æ |w| Æ R, (2.12)

where we want to prove that |z
1

| Ø |w
1

|. Being R > 8”, we have |z|2 Ø R2
4

> 16”2 > ”(8”) Ø ”|w|,
which gives |z2 ≠ ”w| Ø |z|2 ≠ ”|w|. It thus suffices to prove that |z|2 ≠ ”|w| Ø |z| + Á|w|2, which is
equivalent to

|z|(|z| ≠ 1) = |z|2 ≠ |z| Ø ”|w| + Á|w|2

By (2.12), it suffices to verify that R
2

1
R
2

≠ 1

2
Ø ”R + ÁR2. Recalling that we already have R > 8”,

we finally come to

Á Æ 1

8

≠ 1

2R
.

But, again because of R > 8” > 8, we have that 1

8

≠ 1

2R Ø 1

2R , the previous estimate found for Á,
and the Proposition is proved.

Corollary 2.1.10. The endomorphism F
0

of the family (2.2) has the following property: there exists
a R > 8”, such that F

0

(VR fi V +

R ) µ VR fi V +

R , where VR and V +

R are as in (2.6).

Since F ≠1

0

(V ≠
R ) µ V ≠

R , it follows from Theorem 1.2.5 that the Julia set of F
0

is contained in V ≠
R .

Thus, (0, 0) is outside the Julia set.

4 - (0, 0) œ J
1

This immediately follows since F
1

(z, w) = (w2

+ 2w, z2

+ 2z) is conjugated to
H(z, w) = (w2, z2

) by means of a translation and (1, 1) is in the Julia set of H.

2.2. Equivalent characterizations

2.2.1. Definitions and statement

In order to state the main Theorem of this chapter we have to give a preliminary definition.

Definition 2.2.1. Let f : U æ V be a holomorphic family of polynomial-like maps. A point ⁄
0

œ M
is called a Misiurewicz parameter if there exist a neighbourhood N⁄0 µ M of ⁄

0

and a holomorphic
map ‡ œ O(N⁄0 ,Ck, V) such that:

1. for every ⁄ œ N⁄0 , ‡(⁄) and is a repelling periodic point;

2. ‡(⁄
0

) œ J⁄0;

3. there exists an n
0

such that (⁄
0

, ‡(⁄
0

)) œ fn0
(C);

4. ‡(N⁄0) * fn0
(C).

Notice that, by Lemma 2.1.1, condition 2 actually implies that, without loss of generality, we
have ‡(⁄) œ J⁄ for every ⁄ œ N⁄0 (up to shriking N⁄0).

Theorem 2.2.2. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree dt Ø 2. Then the following are equivalent:
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I.1 for every ⁄
0

œ M there exists a neighbourhood M
0

b M where the measures µ⁄ move
holomorphically and f admits a equilibrium web M = limn Mn such that the graph of any
“ œ fin Supp Mn avoids the critical set of f ;

I.2 the function L is pluriharmonic on M ;

I.3 there are no Misiurewicz parameters in M ;

I.4 for every ⁄
0

œ M there exists a neighbourhood M
0

b M and a holomorphic map “ œ
O

1
M

0

,Ck, U
2

such that the graph of “ does not intersect the postcritical set of f .

Notice that Proposition 2.1.5 readily proves that I.4 imples I.1. Moreover, if all the J-repelling
n-periodic points of sufficiently high period move holomorphically, Proposition 2.1.7 implies that
I.1 holds.

In the following sections we shall prove the three implications I.1 ∆ I.2 ∆ I.3 ∆ I.4 of Theorem
2.2.2. We remark here that the assumption that the family is of large topological degree will be
used to prove all the implications of Theorem 2.2.2.

2.2.2. Pluriharmonicity of L: I.1 ∆ I.2

The aim of this section is to prove the following theorem, which gives the implication I.1 ∆ I.2 of
Theorem 2.2.2.

Theorem 2.2.3. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree such that the equilibrium measures µ⁄ move holomorphically. Assume that an equilibrium
web M for the family if given by M = lim Mn, where �“ fl Cf = ÿ for every “ œ fin Supp Mn. Then
ddc

⁄L = 0 on M .

The argument will closely follow the one for families of endomorphisms of Pk given in [BD14b]
(see Proposition 3.5). The only small difference is how to get an estimate (Holder in Á) for the
µ-measure of a Á-neighbourhood of an analytic set. In the case of endomorphisms of Pk, this
follows from the Hölder continuity of the potential of the Green current. Here, as observed by
Dinh and Sibony ([DS10, p. 256]) we may exploit the fact that the equilibrium measure of a
polynomial-like map of large topological degree is moderate (see 1.2.17 and Theorem 1.2.18).
The desired estimate is given in the following lemma.

Lemma 2.2.4. Let f : U æ V be a polynomial-like map of large topological degree and let µ be
the equilibrium measure of f . Let Z be a codimension 1 analytic subset of V and denote by ZÁ the
Á-neighbourhood of Z. Then, there exist two positive constants A and – such that, for every sufficiently
small Á, we have that µ (ZÁ) Æ AÁ–.

Proof. Since V is convex, Z is given by { h = 0 }, where h is an holomorphic function on V . If
Á is small enough, we can suppose that ZÁ fl Supp µ µ { |h| < C

1

Á } for some positive constant
C

1

. So, up to rescaling, we have to prove that there exist positive constants A and – such that
µ ({ |h| < Á }) Æ AÁ–.

To do this, consider the psh function log |h|. Since f is of large topological degree, log |h| œ L1

(µ)

(see Theorem 1.2.16). So, by Theorem 1.2.18 there exist positive A and – such that
e
µ, e≠– log|h|

f
Æ A.



26 First notions of stability

Since on { |h| < Á } we have 1

Á–

Æ 1

|h|– , it follows that

µ ({ |h| < Á })

1

Á–
=

=
µ,

1

Á–
1{ |h|<Á }

>
Æ

=
µ,

1

|h|– 1{ |h|<Á }

>
Æ

e
µ, e≠– log|h|

f
Æ A,

which gives the assertion.

Once we have established Lemma 2.2.4, the proof of Theorem 2.2.3 can follow the one for
endomorphisms of Pk. The following lemma gives the key estimate on M that we need.

Lemma 2.2.5. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree. Let Z be a codimension 1 analytic subset of V which does not contain any fiber V fl fi≠1

M ({⁄}).
Assume that µ⁄ move holomorphically. and that there exists an equilibrium web satisfying M =

lim Mn, where �“ fl Z = ÿ for “ œ fin Supp Mn. Then, for every ⁄
0

œ M there exist a ball B⁄0
compactly contained in M and two constants A(⁄

0

) > 0 and a(⁄
0

) > 0 such that

M { “ œ J : �“|B
⁄0

fl ZÁ ”= ÿ } Æ AÁa.

for every sufficiently small Á > 0, where ZÁ is the Á-neighbourhood of Z.

In the proof of the above lemma we need the following elementary result.

Lemma 2.2.6. Let B be the unit ball in Ck and BÕ a relatively compact ball in B. There exists a
positive – such that supBÕ |Ï| Æ |Ï(t

0

)|– for every t
0

œ BÕ and every holomorphic function Ï from B
to the punctured unit disc Dú.

Proof. We first notice that the set D := { h œ O(B,D) : ÷t œ B
Õ
: h(t) = 0 } is compact (for the

topology of the local uniform convergence). Indeed, by Montel Theorem, every sequence in D
must have a converging subsequence to a function h

0

: B æ C. If this map is open we are done
(since B

Õ is compact). Otherwise, notice that the only possibility is that h
0

© 0, and the assertion
follows anyway.

This implies that the set H := { h œ O(B,H) : ÷t œ B
Õ
: h(t) = ≠1 } (where H is the left half

plane), is compact, too. So, there exists a positive constant – œ (0, 1] such that sup

tœB
Õ
Re h(t) Æ

≠–, for every h œ H.
Take now any Ï : B æ Dú as in the statement and let t

0

œ B
Õ. Without loss of generality, we can

assume that Ï(t
0

) œ (0, 1). Lifting Ï to H by the exponential map, we get a function h
0

: B æ H
satisfying h

0

(t
0

) = log Ï(t
0

) œ (≠Œ, 0). So the normalization h
1

:= ≠h
0

/h
0

(t
0

) belongs to H.
Since then Re h

1

(t) Æ ≠– on B
Õ we get, for any t œ BÕ, that |Ï(t)| = eRe h0(t) Æ e– log Ï(t0)

=

|Ï(t
0

)|–, and the assertion follows.

Proof of Lemma 2.2.5. Since we are dealing with a local problem, we can assume that V⁄ b Ck

is constant, i.e., that V = M ◊ V . We consider two open balls B⁄0 b B b M , both centered at
⁄

0

. We shall prove the statement on B⁄0 , possibly shrinking V and the balls B⁄0 and B. We can
assume without loss of generality that Z fl (B ◊ V ) is irreducible. Since V (and thus B ◊ V ) is
convex, we can find a holomorphic function h defining Z on B ◊ V , i.e., such that Z = { h = 0 }.
Now, if Á is small enough, we can assume that there exist positive constants C

1

, C
2

, C
3

, · , ·
0

such
that
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1. ZÁ µ { |h| < C
1

Á };

2. { |h| < Á } µ ZC2Á· ;

3. ZÁ fl ({ ⁄
0

} ◊ V⁄0) µ (Z fl ({ ⁄
0

} ◊ V⁄0))C3Á·0 .

One usesŁ ojasiewicz inequality for the second and the third inclusions. Let now “ œ Supp M
be such that �“|B

⁄0
fl ZÁ ”= ÿ (i.e., an element in the set whose M-mass has to be estimated).

By the assumptions on the approximations Mn of M and Hurwitz Lemma, it follows that either
�“ µ Z or �“ fl Z = ÿ. Even if we are in the second case, point 2 above and Lemma 2.2.6 (applied
with h ¶ “, whose modulus is uniformly bounded in “, since Supp M is compact) imply that
�“|B

⁄0
µ ZC4Á·– , for some positive C

4

(notice the restriction to the smaller ball B⁄0). So, we get

M { “ œ J : �“|B
⁄0

fl ZÁ ”= ÿ } Æ M { “ œ J : �“|B
⁄0

µ ZC4Á·– }
Æ M { “ œ J : (⁄

0

, “(⁄
0

)) œ ZC4Á·– }
= µ⁄0 (ZC4Á·– fl ({ ⁄

0

} ◊ V⁄0))

Æ µ⁄0

1
(Z fl ({ ⁄

0

} ◊ V⁄0))C3(C4Á·–

)

·0

2

The assertion then follows from Lemma 2.2.4.

We can now prove Theorem 2.2.3.

Proof of Theorem 2.2.3. Since the statement is local, we can prove it on a ball B compactly
contained in an other ball BÕ, still compactly contained in the parameter space M . Recalling
Definition 1.3.9, we have that

ddc
⁄L = (fiB)ú

1
WM · ddc

⁄,z log |Jac|
2

,

since
WM =

ˆ
J

[�“ ] dM (“) .

is an equilibrium current for f (see Definition 1.3.7). We are going to show that WM ·
ddc

⁄,z log |Jac| = 0, i.e., since WM is ddc-closed, that log |Jac| WM is ddc-closed. Since we can
assume that WM is a horizontal positive closed current (shrinking B and recalling that the filled
Julia set varies upper semicontinuously), log |Jac| WM is the limit of the currents vnWM, where
the vn’s are smooth psh functions decreasing to log |Jac| (by the monotone convergence Theorem).
We take as approximation of log |Jac| the sequence logÁ |Jac| = ‰Á ¶ log |Jac|, where ‰Á is some
sequence (decreasing as Á æ 0) of convex increasing functions such that ‰Á(x) = x for x Ø log Á
and limxæ≠Œ ‰Á(x) = 2 logÁ. Our goal is then to prove that

lim

Áæ0

ddc
logÁ |Jac| WM = 0.

Set WÁ := { |Jac| < Á } and SM,Á := { “ œ Supp M : �“|BÕ fl WÁ ”= ÿ }. We decompose WM as
WM,Á + Wú

M,Á, where

WM,Á =

ˆ
J

[�“ ] 1SM,Á

dM (“)



28 First notions of stability

and Wú
M,Á = WM ≠ WM,Á. We thus have

logÁ |Jac| WM = logÁ |Jac| WM,Á + logÁ |Jac| Wú
M,Á.

The second term of the right hand side is ddc closed, since log |Jac| is pluriharmonic on the graphs
not in SM,Á. In order to conclude, it is then enough to show that

lim

Áæ0

logÁ |Jac| WM,Á = 0.

But this follows from Lemma 2.2.5: since SM,Á µ { “ œ J : �“|BÕ fl (Cf )bÁ—

”= ÿ } for some positive
b and — (byŁ ojasiewicz inequality), we have

ÎlogÁ |Jac| WM,ÁÎ . |log Á| M (SM,Á) . Áa |log Á| ,

where ÎTÎ =

...
q

I,J TIJdzI · zJ

... :=

q |TIJ | denotes the sum of the masses of the distributional
coefficients of the (order 0) current T . This completes the proof.

2.2.3. Misiurewicz parameters belong to Supp ddcL: I.2 ∆ I.3

The goal of this section is to prove the implication I.2 ∆ I.3 of Theorem 2.2.2, i.e., that Misiurewicz
parameters (see Definition 2.2.1) belong to the support of the bifurcation current ddcL. This will
be done in Theorem 2.2.12 below. The idea is relate the mass of ddcL on a given open set � of the
parameter space with the growth of the mass of the currents fn

ú [C] on the vertical set V fl fi≠1

M (�).
This is done in Theorem 2.2.8. Then, we will show how the presence of a Misiurewicz parameter
allows us to get the desired estimate for the growth of the critical volume, permitting to conclude.

We shall need the following lemma, whose proof is a simple adaptation of the one of [DS10,
Proposition 2.7]. Recall that the mass of a positive (p, p)-current T on a relatively compact subset
K of Ck is given by

´
K T · Êk≠p, where Ê is the usual Kähler form. This is related with the sum of

the masses of the distributional coefficients of T by ÎTÎ Æ q
I,J |TIJ | Æ 2

p ÎTÎ.

Lemma 2.2.7. Let f : U æ V be a holomorphic family of polynomial-like maps. Let ” > dú
p(f⁄0).

There exists a constant C such that, for ⁄ sufficiently close to ⁄
0

, we have

Î(fn
⁄ )ú (S)ÎU

⁄

Æ C”n.

for every n œ N and every closed positive (k ≠ p, k ≠ p)-current S of mass less or equal than to 1 on
U⁄.

Proof. Since the problem is local, we can assume that the parameter space is the unit ball B µ Cm,
that ⁄

0

= 0 and that V = M ◊ V . Moreover, there exists some open and convex set ÂU such that
U⁄ b ÂU b V b Ck for every ⁄ œ B. Let Ê be the standard Kähler form on V .

Fix some ”
1

such that dú
p < ”

1

< ”. By the definition of dú
p, there exists some large N such that...

1
fN

0

2

ú
(S)

...ÂU
Æ ”N

1

for every positive closed (k ≠ p, k ≠ p)-current S of mass less or equal than 1

on ÂU . Moreover, if ⁄ is sufficiently close to 0 we have f≠N
⁄ (U⁄) b f≠N

0

(

ÂU) and thus
...
1
fN

⁄

2ú
Êp ≠

1
fN

0

2ú
Êp

...
LŒ

(f≠N

⁄

(U
⁄

))

Æ Á
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for some given Á such that 2

p+2Á < ”N ≠ ”N
1

. Since S is positive and of mass at most 1, writing S =q
I,J SIJdzI·dzJ we have that the coefficients SIJ are complex measures such that

q
I,J |SIJ | Æ 2

p.
Thus, given any smooth (p, p)-form –, by splitting S and – in their real and imaginary parts we
get

--´ S · –
-- Æ 4 Î–ÎLŒ

q
I,J |SIJ | Æ 2

p+2 Î–ÎLŒ . This implies that

...
1
fN

⁄

2

ú
(S)

...
U

⁄

=

ˆ
f≠N

⁄

(U
⁄

)

S ·
1
fN

⁄

2ú
Êp

Æ
ˆ

f≠N

0 (

ÂU)

S ·
1
fN

0

2ú
Êp

+

ˆ
f≠N

⁄

(U
⁄

)

S ·
Ë1

fN
⁄

2ú
Êp ≠

1
fN

0

2ú
Êp

È

Æ
...
1
fN

0

2

ú
(S)

...ÂU
+ 2

p+2Á Æ ”N
1

+ 2

p+2Á < ”N .

By induction on m, this implies the statement for every n of the form n = Nm. Namely, for every
⁄ sufficiently close to 0, we have

...
1
fNm

⁄

2

ú
(S)

...
U

⁄

Æ ”Nm

for every positive closed (k ≠ p, k ≠ p)-current on U⁄ of mass less of equal than 1. Notice in
particular the uniformity of the neighbourhood of ⁄ = 0 with respect to S.

Let us then prove the general case. Since every n can be written in the form n = Nm + r, with
0 Æ r < N , we have

Î(fn
⁄ )ú (S)ÎU

⁄

=

...
1
fNm

⁄

2

ú
((f r

⁄)ú (S))

...
U

⁄

Æ ”Nm · Î(f r
⁄)ú (S)ÎU

⁄

and it is thus enough to bound the terms
..
(f r

⁄)ú (S)

..
U

⁄

, uniformly on S (of mass less or equal
than 1), on some neighbourhood of ⁄ = 0. Since r takes a finite number of values, we may assume
that r = 1. We have

Î(f⁄)ú (S)ÎU
⁄

=

ˆ
U

⁄

((f⁄)ú S) · Êp
=

ˆ
f≠1

⁄

(U
⁄

)

S · (f⁄)

ú Êp Æ
ˆ

f≠1
0 (

ÂU)

S · (f⁄)

ú Êp

for ⁄ sufficiently close to 0. Since all the S’s are of mass bounded by 1, it is enough to bound the
LŒ-norm of (f⁄)

ú Êp, uniformly on ⁄ on some neighbourhood of 0. This follows since the forms
(f⁄)

ú
(Êp

) are continuous in ⁄, and the assertion is proved.

The following Theorem gives the relation between the mass of ddcL and the growth of the mass
of (fn

)ú Cf . We recall that Cf = ddc
log |Jacf | is the integration on the critical set of f , counting

the multiplicity. We set U
�

:= U fl
1
� ◊ Ck

2
and V

�

:= V fl
1
� ◊ Ck

2
.

Theorem 2.2.8. Let f : U æ V be a holomorphic family of polynomial-like maps. Set dú
k≠1

:=

sup⁄œM dú
k≠1

(f⁄), and assume that dú
k≠1

is finite. Let ” be greater than dú
k≠1

. Then for any open
subset � b M there exist positive constants cÕ

1

, c
1

and c
2

such that, for every n œ N,

cÕ
1

ÎddcLÎ
�

dn
t Æ Î(fn

)ú Cf ÎU�
Æ c

1

ÎddcLÎ
�

dn
t + c

2

”n.
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In particular, if

lim sup

næŒ

1

n
log Î(fn

)ú Cf ÎU�
> log dú

k≠1

,

then � intersects the bifurcation locus.

Notice that (fn
)ú Cf actually denotes the current on U

�

which is the pushforward by the proper
map fn

: f≠n
(U

�

) æ U
�

of the current Cf on f≠n
(U

�

).

Proof. The problem is local. We can thus assume that V = M ◊ V , where V is convex. Moreover,
there exists some open convex set ÂU such that U⁄ b ÂU b V for every ⁄ œ M .

Let us denote by ÊV and ÊM the standard Kähler forms on Ck and Cm. By abuse of notation,
we denote by ÊV + ÊM the Kähler form fiú

V ÊV + fiú
M ÊM on the product space M ◊ V . Since both

Êk+1

V and Êm+1

M are zero, by the definition of mass we have

Î(fn
)ú Cf ÎU�

=

ˆ
U�

(fn
)ú Cf · (ÊV + ÊM )

k+m≠1

=

A
k + m ≠ 1

k

Bˆ
U�

(fn
)ú Cf · Êk

V · Êm≠1

M

+

A
k + m ≠ 1

k ≠ 1

Bˆ
U�

(fn
)ú Cf · Êk≠1

V · Êm
M .

We shall bound the two integrals by means of ÎddcLÎ
�

dn
t and ”n, respectively. Let us start with the

first one. Let fl be a positive smooth function, compactly supported on V and equal to a constant
cfl on ÂU . Assume moreover that the integral of fl is equal to 1. Notice in particular that fl/cfl is
equal to 1 on ÂU and has total mass 1/cfl. Then

ˆ
U�

(fn
)ú Cf · Êk

V · Êm≠1

M Æ 1

cfl

ˆ
V�

(fn
)ú Cf ·

1
fiú

V fl · Êk
V

2
· Êm≠1

M .

Consider the smooth (k, k)-forms Sn :=

(fn

)

ú

dn

t

1
fiú

V fl · Êk
V

2
. By Theorem 1.3.5, every subsequence

of (Sn)n has a further subsequence Sn
i

converging to an equilibrium current E
(n

i

)

. On the other
hand, the bifurcation current ddcL = fiú(Cf · E

(n
i

)

) (see Definition 1.3.9) is independent from the
particular equilibrium current used to compute it. Since fúÊM = ÊM , we then have

d≠n
i

t

ˆ
V�

(fn
i

)ú Cf ·
1
fiú

V fl · Êk
V

2
· Êm≠1

M =

ˆ
f≠n

i

(V�)

Cf · Sn
i

· Êm≠1

M

æ
ˆ

V�

Cf · E
(n

i

)

· Êm≠1

M = ÎddcLÎ
�

,

where the convergence follows from Corollary 1.3.11 (by means of a partition of unity on �).
Since the limit is independent from the subsequence, the convergence above happens without the
need of extraction (see also Lemma 1.3.10). In particular we have

ˆ
V�

(fn
)ú Cf ·

1
fiú

V fl · Êk
V

2
· Êm≠1

M Æ Âc
1

ÎddcLÎ
�

dn
t
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for some positive constant Âc
1

and the desired bound from above follows. The bound from below is
completely analogous, by means of a function fl equal to 1 on a neighbourhood of fi⁄{⁄} ◊ K⁄.

Let us then estimate the second integral. We claim that
ˆ

�◊ÂU
(fn

)ú Cf · Êk≠1

V · Êm
M =

ˆ
�

Î(fn
⁄ )ú Cf

⁄

ÎÂU Êm
M . (2.13)

where Cf
⁄

is the integration current (with multiplicity) on the critical set of f⁄. The assertion then
follows since, by Lemma 2.2.7, the right hand side in (2.13) is bounded by Âc

2

”n, for some positive
Âc

2

.
Let us thus prove (2.13). By Lemmas A.1.7 and A.1.8, the slice È(fn

)ú Cf , fi, ⁄Í of (fn
)ú Cf exists

for almost every ⁄ œ � and is given by

È(fn
)ú Cf , fi, ⁄Í = (fn

⁄ )ú ÈCf , fi, ⁄Í = (fn
⁄ )ú Cf

⁄

.

Since Êk≠1

V is smooth, this implies that the slice of (fn
)ú Cf · Êk≠1

V exists for almost every ⁄
and is equal to the measure

!
(fn

⁄ )ú Cf
⁄

"
· Êk≠1

V . The claim then follows from Theorem A.1.6 by
integrating a partition of unity.

Once we have proved the desired relation between the masses of ddcL and of the critical
orbit, we need a way to bound from below a subsequence of

1
Î(fn

)ú Cf ÎU�

2

n
in presence of a

Misiurewicz parameter. The main tool to achieve this goal is given by the next proposition.

Proposition 2.2.9. Let f : U æ V = D◊V be a holomorphic family of polynomial-like maps of large
topological degree dt. Fix a ball B b V such that B fl J(f

0

) ”= ÿ and let ” be such that 0 < ” < dt.
There exists a ball A

0

µ B, a N > 0 and a ÷ > 0 such that fN admits at least ”N inverse branches
defined on the cylinder D÷ ◊ A

0

, with image contained in D÷ ◊ A
0

.

In the proof of the above proposition we shall first need to construct a ball A µ B with the
required number of inverse branches for f

0

. This is done by means of the following general lemma.
Fix any polynomial-like map g : U æ V of large topological degree. Given any A µ V , n œ N and
fl > 0, denote by Cn(A,fl ) the set

Cn(A,fl ) :=

I

h

-----
h is an inverse branch of gn defined on A
and such that h(A) µ A and Lip h|A Æ fl

J

. (2.14)

The following result, which is just a local version of [BD14b, Proposition 3.8], is essentially due to
Briend-Duval (see [BD99]).

Lemma 2.2.10. Let g be a polynomial-like map of large topological degree dt. Let B be a ball
intersecting J and fl a positive number. There exists a ball A contained in B and a – > 0 such that
#Cn(A,fl ) Ø –dn

t , for every n sufficently large.

Proof. This is a standard argument. We follow the proof in [BD14b], just localizing the construc-
tion of the ball. The main tool is the following result, proved by Briend-Duval in the case of
endomorphisms of Pk, which extends to polynomial-like maps of large topological degree (see
also [DS03, DS10]). We denote by ‚X the natural extension of X := V \ GO(Cg), i.e., the set of
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sequences ‚x = (xn)nœZ µ V Z such that xn = g(xn≠1

) and xn does not belong to the grand orbit of
the critical set for every n. Let g≠n

‚x be the inverse branch sending x
0

to x≠n (which is defined on
some neighbourhood of x

0

). Let p
0

be the projection ‚x ‘æ x
0

and ‚µ be the lift of the equilibrium
measure µ. Notice that ‚µ is mixing since µ is mixing. We denote by ⁄

1

> 0 the smallest Lyapounov
exponent of g.

Theorem 2.2.11. For every Á
0

sufficiently small there exists a subset ‚Y of ‚X and two measurable
functions ÷ :

‚Y æ [0, 1] and C :

‚Y æ R such that ‚µ(Y ) = 1 and, for every point ‚y œ ‚Y and n Ø n
0

:

• g≠n
‚y is defined on B(y

0

, ÷(

‚y));

• Lip g≠n
‚y Æ C(

‚y)e≠n⁄1+nÁ0/2 on B(y
0

, ÷(

‚y)).

Let ‚Y , Á
0

, ÷ and C be given by Theorem 2.2.11. Fix a ball B
0

b B intersecting J , and a
positive ” < µ(B

0

)/3. There exists a subset ‚Y 1

” of ‚Y of measure Ø 1 ≠ ” such that, for every
‚y œ ‚Y 1

” , the function ÷ is larger than some ÷
0

. Moreover, there exists a subset ‚Y 2

” of ‚Y , of
measure Ø 1 ≠ ” such that, for every ‚y œ ‚Y 2

” , the function C is smaller than some C
0

. This
implies that Lip g≠n

‚y Æ e≠n⁄1+nÁ0 on B(y
0

, ÷(

‚y)), up to taking n
0

larger. Set ‚Y” :=

‚Y 1

” fl ‚Y 2

” and let
‚B

0

= p≠1

0

(B
0

). Since ‚Y” has measure ‚µ(

‚Y”) Ø 1 ≠ 2” > 1 ≠ µ(B
0

) = 1 ≠ ‚µ(

‚B
0

), the intersection
‚Y” fl ‚B

0

has positive measure. Cover B
0

with (finite) balls Bi b B and of radii ÷i Æ ÷
0

/4. Take one
such ball Bi0 such that ‚Bi0 fl ‚Y” has positive measure, where ‚Bi0 = p≠1

0

(Bi0). We claim that B“
i0 ,

the concentric ball of Bi0 with radius ÷i0 + “ Æ ÷
0

/4 + “ < ÷
0

/2, can be taken as A. Let us see
why. For every n, let C Õ

n be the collection of inverse branches g≠n
‚y , with ‚y œ ‚Y” fl ‚B“

i0 and such that
g≠n
‚y (B“

i0) fl Bi0 ”= ÿ. The estimate on the Lipschitz constant of the inverse branches corresponding

to elements in ‚Y” implies that C Õ
n µ Cn(B“

i0 , fl), for every n sufficiently large. It is thus enough to
prove that C Õ

n contains at least –dn
t elements, with – independent from n. In order to do this, we

exploit the mixing property of ‚µ. Since the lift of g to ‚X is the shift s by 1, we have

‚µ
1
s≠n

1
‚Y” fl ‚B“

i0

2
fl ‚Bi0

2
æ ‚µ

1
‚Y” fl ‚B“

i0

2
‚µ(

‚Bi0)

for n æ Œ. So, for n large enough, we have (recalling that gúµ = dtµ)

--C Õ
n

-- µ(B“
i0)d≠n

t Ø µ
1
fiCÕ

n

g≠n
‚y (B“

i0)

2

Ø ‚µ
1
s≠n

1
‚Y” fl ‚B“

i0

2
fl ‚Bi0

2
Ø ‚µ

1
‚Y” fl ‚B“

i0

2
‚µ(

‚Bi0)/2 > 0

which gives the assertion.

Proof of Proposition 2.2.9. Let A µ B be a ball given by an application of Lemma 2.2.10 to the
map f

0

, with fl = 1/4. There thus exists a – such that, for every sufficiently large n, the set
Cn(A, 1/4) defined as in (2.14) has at least –dn

t elements. Fix N sufficiently large such that
”N < – dNt . Denote by hi the elements of CN (A, 1/4) and by Ai the images Ai := hi(A) µ A. By
definition of inverse branches, the Ai’s are all disjoint and fN

0

induces a biholomorphism from
every Ai to A.

Take as A
0

any open ball relatively compact in A and such that fiiAi b A
0

. Such an A
0

exists
since fiiAi b A. In particular, on A

0

the hi’s are well defined, with images (compactly) contained



2.2. Equivalent characterizations 33

in the Ai’s. To conclude, it suffices to find a ÷ such that these inverse branches for fN
0

extend to
inverse branches for fN on D÷ ◊ A

0

, with images contained in D÷ ◊ A
0

.
Define the sets AÁ

i by
AÁ

i := { z œ Ai : d(z, Ac
i ) > Á } .

Since the Ai’s are finite and fN
0

(Ai) = A, there exists a Á
0

such that, for every i, A
0

b fN
0

(AÁ0
i ).

This implies, since f is continuous and every f⁄ is an open map, that A
0

b fN
⁄ (AÁ0

i ) for every ⁄
sufficiently small. Indeed, notice that fN

⁄ (AÁ0
i ) is open and meets A

0

(for small ⁄). We need then
to show that ˆfN

⁄ (AÁ0
i ) fl A

0

= ÿ. Since fN
⁄ is open, we have ˆfN

⁄ (AÁ0
i ) µ fN

⁄ (ˆAÁ0
i ), and the right

term is close to fN
0

(ˆAÁ0
i ) for small ⁄, by continuity. But fN

0

(ˆAÁ0
i ) is equal to ˆfN

0

(AÁ0
i ) since fN

0

is a biholomorphism on Ai, and thus does not meet A
0

.

We can thus consider, for D÷ sufficiently small, the open sets ÂAi :=

31
fN

2

|D
÷

◊A
Á0
i

4≠1

(D÷ ◊
A

0

) b D÷ ◊AÁ0
i . By the argument above, for every ⁄ œ D÷ the function fN

⁄ is a proper holomorphic

map from ÂA⁄,i :=

31
fN

⁄

2

|AÁ0
i

4≠1

(A
0

) to A
0

. In order to conclude, we only need to check that,

for ⁄ in a neighbourhood of 0, the degree of fN
⁄ :

ÂA⁄,i æ A
0

is equal to 1. Since ÂA⁄,i b AÁ0
i , it

is enough to find ÷ such that the critical set of fN does not intersect D÷ ◊ AÁ0
i , for every i. The

existence of such ÷ follows from the Lipschitz estimate of the inverses hi. Indeed, the fact that

Lip hi < 1/4 on A implies that
....
1
dfN

0

2≠1

....
≠1

Ø 4 on fiiAi. It follows that
....
1
dfN

⁄

2≠1

....
≠1

Ø 3 on a

neighbourhood of { 0 } ◊ fiiA
Á0
i of the form D÷ ◊ fiiA

Á0
i . In particular, the critical set of fN cannot

intersect this neighbourhood, and the assertion follows.

We can now prove the main result of this section.

Theorem 2.2.12. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree. Assume that ⁄

0

is a Misiurewicz parameter. Then, ⁄
0

œ Supp ddcL.

Proof. We shall prove that the existence of a Misiurewicz parameter implies that the mass of
(fn

)ú Cf is asymptotically larger than ”n (up to considering a subsequence), for some ” > dú
k≠1

.
The conclusion will then follow from Theorem 2.2.8.

Before starting proving the assertion, we make a few simplifications to the problem. Let ‡(⁄)

denote the repelling periodic point intersecting (but not being contained in) some component of
fn0

(C) at ⁄ = 0 and such that ‡(0) œ J
0

.

• We can suppose that M = D = D
1

and that ⁄
0

= 0. Doing this, we actually prove a stronger
statement, i.e., that ddcL ”= 0 on every complex disc passing through ⁄

0

such that ‡(⁄) is
not contained in fn0

⁄ (C) for every ⁄ is the selected disc. Moreover, we shall assume that
V = D ◊ V .

• Without loss of generality, we can assume that ‡(⁄) stays repelling for every ⁄ œ D. Up to
considering an iterate of f , we can suppose that ‡(⁄) is a repelling fixed point. Indeed, we
can replace n

0

with n
0

+ r, for some 0 Æ r < n(‡), where n(‡) is the period of ‡, to ensure
that now the new n

0

is a multiple of n(‡).

• Using a local biholomorphism (change of coordinates), we can suppose that ‡(⁄) is a
constant in V , and we can assume that this constant is 0.
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• After possibly further rescaling, we can assume that fn0
(C) intersects { z = 0 } only at ⁄ = 0.

• We denote by B a small ball in V centered at 0. By taking this ball sufficiently small (and up
to rescaling the parameter space), we can assume that there exists some b > 1 such that, for
every ⁄ œ D = M and for every z, zÕ œ B,

dist
!
f⁄(z), f⁄(zÕ

)

"
Ø b · dist(z, zÕ

). (2.15)

Fix a ” such that dú
k≠1

< ” < dt. Proposition 2.2.9 gives the existence of a ball A
0

µ B and a ÷
such that the cylinder T

0

:= D÷ ◊ A
0

admits at least ”N inverse branches hi for fN , with images
contained in T

0

. We notice that the images of T
0

under these inverse branches must be disjoint.
Up to rescaling we can still assume that ÷ = 1.

The cylinder T
0

is naturally foliated by the “horizontal” holomorphic graphs �›
z

’s, where
›z(⁄) © z, for z œ A

0

. By construction, T
0

has at least ”Nn inverse branches for fNn, with images
contained in T

0

. We denote these preimages by Tn,i, and we notice that every Tn,i is biholomorphic
to T

0

, by the map fNn. In particular, fNn induces a foliation on every Tn,i, given by the preimages
of the �›

z

’s by fNn.
The following lemma shows that there exists some nÕ

0

such that some component ÂC of fn0+nÕ
0
(C)

intersects the graph of every holomorphic map “ : D æ B, and in particular every element of the
induced foliation on Tn,i. This is a consequence of the expansivity of f on D ◊ B and the fact that
fn0

(C) fl { z = 0 } = (0, 0).

Lemma 2.2.13. Denote by G the set of holomorphic maps “ : D æ B. There exists an nÕ
0

such that
(at least) one irreducible component ÂC of fn0+nÕ

0
(C) passing through (0, 0) intersects the graph of

every element of G.

Proof. Let ÂC
0

be an irreducible component of fn0
(C) fl (D ◊ B) passing through (0, 0) and define

by induction the set ÂCn as an irreducible component passing through (0, 0) of f(

ÂCn≠1

) fl (D ◊ B).
We claim that there exists some nÕ

0

such that ÂCnÕ
0

µ D
1/2

◊ B. Indeed, if this were not the case,
for every n there would exist a continuous path ”n µ ÂCn connecting (0, 0) and some point in1
D \ D

1/2

2
◊ B. By the definition of the ÂCn’s, this would give the existence of a continuous path

”Õ
n contained in ÂC

0

and connecting (0, 0) to some point in
1
D \ D

1/2

2
◊ B. Moreover, by the

expansivity of f on D◊ B and the fact that f⁄(0) = 0 for every ⁄, we would have ”Õ
n µ

1
D ◊ 1

bn

B
2

.

Since ÂC
0

is closed in D◊B, this would give the existence of points in fn0
(C)fl

11
D \ D

1/2

2
◊ { 0 }

2
,

which is excluded by the preliminary simplifications.
Let us then prove that the graph of every element in G must intersect ÂCnÕ

0
. Notice that G is path

connected (actually star-shaped at the element ›
0

© 0). We shall prove that the subset G
0

µ G of
elements whose graph intersects ÂCnÕ

0
is open and closed in G for the topology of the local uniform

convergence.
Take some sequence of elements “n œ G converging to some “

0

œ G. If all the �“
n

’s intersect
ÂCnÕ

0
at parameters ⁄n (necessarily contained in D

1/2

), then also �“0 must intersect ÂCnÕ
0

at any limit
value ⁄

0

œ D
1/2

µ D for the sequence ⁄n. This proves that G
0

is closed in G.
On the other hand, assume that �“0 intersects ÂCnÕ

0
for some “

0

œ G. By Hurwitz Theorem, this
implies that all �“ ’s must intersect ÂCnÕ

0
, when “ is sufficently close to “

0

. This proves that G
0

is
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Ck

A
0

D÷

fn0+nÕ
0
(C)

ÂC

Tn,i

Bn,i

fn

Figure 2.2.: estimating the postcritical mass

also open in G, and proves the assertion.

Let nÕ
0

and ÂC be given by Lemma 2.2.13. In particular, ÂC intersects every element of the induced
foliations on the Tn,i’s. Let Bn,i denote the intersection Tn,i fl ÂC and set Dn,i := fNn

(Bn,i) µ T
0

.
The Dn,i’s are non-empty analytic subsets of T

0

(since fNn
: Tn,i æ T

0

is a biholomorphism).
Moreover, the graphs of the ›z ’s intersect every Dn,i, since their preimages in Tn,i intersect every
Bn,i. In particular, the projection of every Dn,i on V is equal to A

0

.

Let us finally estimate the mass of
1
fn0+nÕ

0+Nn
2

ú
[C] on UD. First of all, notice that

1
fn0+nÕ

0
2

ú
Cf Ø

f
n0+nÕ

0ú [C] Ø [fn0+nÕ
0
(C)] Ø [

ÂC] as positive currents on UD. This implies that
...f

Nn+n0+nÕ
0ú Cf

...
UD

Ø
...fNn

ú

Ë
fn0+nÕ

0
(C)

È...
UD

Ø
...fNn

ú

Ë
ÂC

È...
UD

Ø
...fNn

ú

Ë
ÂC

È...
T0

.

Now, since fNn gives a biholomorphism from every Tn,i to T
0

and all the Tn,i’s are disjoint, we
have

...fNn
ú

Ë
ÂC

È...
T0

Ø
.....fNn

ú

A
ÿ

i

[Bn,i]

B.....
T0

=

ÿ

i

...fNn
ú [Bn,i]

... =

ÿ

i

Î[Dn,i]Î .

By Wirtinger formula, for every n and i the volume of Dn,i is larger than the volume of its
projection A

0

on V . Since by construction the last sum has at least ”Nn terms, we have
...f

n0+nÕ
0+Nn

ú Cf

...
UD

Ø volume(A
0

) · ”Nn > volume(A
0

) ·
!
dú

k≠1

"Nn

and the assertion follows from Theorem 2.2.8.
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2.2.4. Local existence of a good graph: I.3 ∆ I.4

In this section we complete the proof of Theorem 2.2.2, by establishing the following result. This
gives the last missing implication I.3 ∆ I.4.

Theorem 2.2.14. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree dt Ø 2, such that the parameter space M does not contain any Misiurewicz parameter. Then,
for every ⁄

0

œ M , there exists a neighbourhood M
0

µ M and a holomorphic map “ : M
0

æ Ck such
that the graph �“ does not intersect the postcritical set of f .

The proof that we give follows the main line of the one in the case of endomorphisms of Pk

in [BD14b]. In the proof on Pk, one needs to ensure that an hyperbolic set of sufficiently high
entropy (see Section A.2) cannot be contained in the postcritical set and must, on the other hand,
be contained in the Julia set. In our setting, the analogue of the first propery is given in Lemma
A.2.9, while we will adress the second problem differently, by means of the following Lemma.

Lemma 2.2.15. Let f : U æ V be a holomorphic family of polynomial-like maps with parameter
space M . Let E

0

be an hyperbolic set for f
0

contained in J
0

, such that repelling periodic points are
dense in E

0

and
...(df⁄)

≠1

...
≠1

> K > 3 on a neigbourhood of (E
0

)· in the product space. Let h be
a continuous holomorphic motion of E⁄0 as an hyperbolic set on some ball B µ M , preserving the
repelling cycles. Then h⁄ (E

0

) is contained in J⁄, for ⁄ sufficiently close to ⁄
0

.

Proof. We denote by “z the motion of a point z œ E
0

as part of the given holomorphic motion of
the hyperbolic set.

First of all, notice that repelling points must be dense in E⁄ for every ⁄, by the continuity of the
motion and the fact that they are preserved by it. Moreover, by Lemma 2.1.1, every repelling cycle
stays in J⁄ for ⁄ in a neighbourhood of 0. It is thus enough to ensure that this neighbourhood can
be taken uniform for all the cycles, and the assertion then follows from the density of the repelling
points in E⁄.

Since
...df≠1

⁄

...
≠1

> 3 on a neighbourhood (E
0

)· of E
0

in the product space, we can restrict

ourselves to ⁄ œ B(0, ·) and so assume that
...df≠1

⁄

...
≠1

> 3 on a · neighbourhood of every z œ E⁄,
for every ⁄. Moreover, since the set of motions “z of points in E

0

is compact (by continuity), we
can assume that “z(⁄) œ B(z, ·/10) for every z œ E

0

and ⁄. Finally, by the lower semicontinuity
of the Julia set, up to shrinking again the parameter space we can assume that J

0

µ (J⁄)·/10

for
every ⁄. These two assumptions imply that, for every ⁄ and every z œ E⁄, there exists at least
a point of J⁄ in the ball B(z, ·/2). Consider now any n-periodic repelling point p

0

in E⁄ for f⁄,
and let { pi } = { f i

⁄(p
0

) } be its cycle (and thus with p
0

= pn). Fix a point z
0

œ J⁄ fl B(p
0

, ·). By
hyperbolicity (and since without loss of generality we can assume that · Æ

!
1 + supB

·

Îf⁄ÎC2
"≠1),

every ball B(pi, ·) has an inverse branch for f⁄ defined on it, with image strictly contained in the
ball B(pi≠1

, ·) and strictly contracting. This implies that there exists an inverse branch g
0

for fn
⁄

of B(p
0

, ·), strictly contracting and with image strictly contained in B(p
0

, ·) (and containing p
0

).
So, a sequence of inverse images of z

0

for f⁄ must converge to p
0

, and so p
0

œ J⁄. The assertion is
proved.

In the following theorem, we assume that the parameter space is the unit ball B µ Cm.
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Theorem 2.2.16. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree dt. Then there exists an integer N , a compact hyperbolic set E

0

µ J
0

for fN
0

and a continuous
holomorphic motion h : Br ◊ E

0

æ Ck (defined on some small ball Br of radius r and centered at 0)
such that:

1. the repelling periodic points of fN
0

are dense in E
0

and E
0

is not contained in the postcritical
set of fN

0

;

2. h⁄(E
0

) œ J⁄ for every ⁄ œ Br;

3. if z is periodic repelling for fN
0

then h⁄(z) is periodic and repelling for fN
⁄ .

The proof will follow the same lines as the one for endomorphisms of Pk. The only differences
will be the use of Lemma A.2.9 to get the first property and of Lemma 2.2.15 for the second one.
In order to produce the hyperbolic set, we shall use Lemma 2.2.10.

Proof of Theorem 2.2.16. First of all, we need the hyperbolic set E
0

. By Lemma 2.2.10, we can
take a closed ball A, a constant fl > 0 and a sufficiently large N such that the cardinality N Õ of

CN (A,fl ) (see (2.14)) satisfies N Õ Ø
1
dú

k≠1

2N
(since by assumption dú

k≠1

< dt). We then consider
the set E

0

given by the intersection E
0

= flkØ0

Ek, where Ek is given by

Ek := { gi1 ¶ · · · ¶ gi
k

(A) : (i
1

, . . . , ik) œ { 1, . . . , N Õ }k }

where the gi’s are the elements of CN (A,fl ). The set E
0

is then hyperbolic, and contained in J
0

(since A fl J ”= ÿ, every point in E
0

is accumulated by points in the Julia set). Moreover, repelling
cycles (for fN

0

) are dense in E
0

.
Let � : { 1, . . . , N Õ }N

ú
and fix a point z œ E

0

. Notice that the map Ê : � æ E
0

given by

Ê(i
1

, i
2

, . . . ) = lim

kæŒ
gi1 ¶ · · · ¶ gi

k

(z)

satisfies the relation fN ¶ Ê = Ê ¶ s, where s denotes the left shift

(i
1

, . . . , ik, . . . )

sæ (i
2

, . . . , ik+1

, . . . ).

We can thus pushforward with Ê the uniform product measure on �. Since this is a s-invariant
ergodic measure, its pushforward ‹ is an fN -invariant ergodic measure on E

0

µ J
0

. By Lemma

A.2.5, the metric entropy of ‹ satisfies h‹ Ø log N Õ Ø log

1
dú

k≠1

2N
, and this implies (by Lemma

A.2.9) that ‹ gives no mass to analytic subsets. In particular, E
0

is not contained in the postcritical
set of f

0

.
We need to prove the points 2 and 3. It is a classical result (see, e.g., [Jon98]) that E

0

admits
a continuous holomorphic motion that preserves the repelling cycles, and thus 3 follows. The
second point then follows from Lemma 2.2.15 (and the density of the repelling cycles in E

0

).

Once we have established the existence of a hyperbolic set as in Theorem 2.2.16, we can prove
Theorem 2.2.14, in the same way this is done on Pk.



38 First notions of stability

Proof of Theorem 2.2.14. This is a consequence of Theorem 2.2.16, exactly as in the case of
endomorphisms of Pk. Let h : Br ◊ E

0

æ Ck and N be as provided there. First of all, without loss
of generality we can assume that N = 1, since f and fN have the same postcritical set. We then
fix z œ E

0

and outside the postcritical set of f
0

(which exists by the first property of the motion h).
Setting “(⁄) := h⁄(z), we are going to prove that this graph does not intersect the postcritical set
of f on all Br, thus proving the assertion.

Assume that “(⁄
0

) œ fn0
⁄0

(Cf
⁄0

), for some n
0

and ⁄
0

œ Br (necessarily different from 0). This
implies the existence of Misiurewicz parameters in Br. Indeed, by the first property of the motion,
we have a sequence zn of repelling periodic points contained in E

0

such that zn æ z. Since
z /œ fn0

0

(Cf0), we can assume that the same is true for all the zn’s. By the second and the third
properties of the motion in Theorem 2.2.16, the maps ⁄ ‘æ h⁄(zn) are holomorphic motions
of repelling points, contained in the Julia set at every parameter. Since they converge (locally
uniformy) to “ as n æ Œ, by Hurwitz theorem they must intersect fn0

(Cf ) for n Ø n
0

. Since at
the parameter 0 they are disjoint from it, we get the existence of Misiurewicz parameters in Br,
and the theorem is proved.
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Holomorphic motions

In this chapter we prove the main result of this work: the holomorphic motion of the J -repelling
cycles implies the holomorphic motion of almost every point of the Julia sets (with respect to the
equilibrium measures). We also recover a partial converse of this implication: on every compact
subset of the parameter space, asymptotically all the repelling cycles move holomrophically when
the other equivalent conditions for the stability are satisfied.

3.1. Definitions and statements
In order to state our main theorem, we have to give some preliminary definitions. First of all, we
define our higher-dimensional analogous of the holomorphic motion of the Julia set.

Definition 3.1.1. An equilibrium lamination is a subset L of J such that

1. F(L) = L,

2. �“ fl �“Õ
= ÿ for every distinct “,“ Õ œ L,

3. µ⁄ ({“(⁄), “ œ L}) = 1 for every ⁄ œ M ,

4. �“ does not meet the grand orbit of the critical set of f for every “ œ L,

5. the map F : L æ L is dk to 1.

The second and the third conditions ensure that we have a holomorphic motion of a full-measure
subset of the Julia set. The other conditions say that F induces a covering, of degree dt, on L. In
particular, conditions 4 and 5 allow us (by means of Proposition 2.1.5) to construct equilibrium
webs by taking the preimages of any element in L. So, even if equilibrium webs do not appear in
the definition of an equilibrium lamination, the existence of this latter implies the existence of
these measures.

39
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To construct equilibrium laminations, it will be crucial to deal with equilibrium webs giving no
mass to the subset Js of J whose elements have a graph intersecting the grand orbit of the critical
set of f (i.e., the elements that we want to avoid to recover the fourth condition).

Definition 3.1.2. An equilibrium web is acritical if M(Js) = 0, where

Js := { “ œ J : �“ fl

Q

a
€

m,nØ0

f≠m
(fn

(Cf ))

R

b ”= ÿ } .

Notice that (on a simply connected parameter space) every element in J \Js has dt well-defined
preimages. So, an acritical web M has the property that, in this setting, M-almost every “ œ J
has the maximal number of preimages.

Finally, we define a weaker (with respect to Definition 2.1.6) notion of holomorphic motion for
the J -repelling points. We shall prove that this is enough to recover the existence of an equilibrium
lamination, and on the other hand, this weak motion always exists in presence of an equilibrium
web. We shall see in the next chapter how to recover the motion of all repelling cycles, by adding
some assumption on the family.

Definition 3.1.3. We say that asymptotically all J-cycles move holomorphically if there exists a
subset P = finPn µ J such that

1. ˘Pn = dn
+ o(dn

);

2. every “ œ Pn is n-periodic; and

3. for every M Õ b M , asymptotically every element of P is repelling, i.e.,

˘ { repelling cycles in Pn}
˘Pn

æ 1.

The main result of this chapter is then the following.

Theorem 3.1.4. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree dt Ø 2. Assume that the parameter space is simply connected. Then the following are
equivalent:

II.1 asymptotically all J -cycles move holomorphically;

II.2 there exists an acritical equilibrium web M;

II.3 there exists an equilibrium lamination for f .

Moreover, if the previous conditions hold, the system admits a unique equilibrium web, which is
ergodic and mixing.

The assumption of M being simply connected, as anticipated above, is to ensure the existence
of the inverses of the graphs in J \ Js.

After proving Theorem 3.1.4, we will relate these notions of stability with the ones given by
Theorem 2.2.2. This is done in the following theorem.
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Theorem 3.1.5. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree dt Ø 2. Assume that the parameter space is simply connected. Then conditions I.1 – I.4 of
Theorem 2.2.2 and II.1 – II.3 of Theorem 3.1.4 are all equivalent.

This chapter is devoted to the proof of the two Theorems 3.1.4 and 3.1.5. In Section 3.2 we
study ergodicity properties of webs that will be used in the sequel. In particular, we show that,
any time that we can contruct an equilibrium web, it is not restrictive to assume that we have
an ergodic one. The same applies in particular for acritical webs. In the subsequent sections, we
prove the implications of Theorem 3.1.4. Finally, in Section 3.6, we show Theorem 3.1.5.

We explicitely notice that the proof of Theorem 3.1.4 heavily relies on results on the previous
chapter. Indeed, as a general idea, the property of an equilibrium web of being acritical will follow
from the absence of Misiurewicz parameters (see Definition 2.2.1) combined with the fact that the
equilibrium measure of a polynomial-like map of large topological degree gives no mass to the
postcritical set (see Theorem 1.2.16). More details on this will be given in Section 3.3.

3.2. Ergodic and acritical equilibrium webs

Assume that a holomorphic family of polynomial-like maps f admits an equilibrium web M. The
goal of this section is to prove that, under this assumption, there exist equilibrium webs that are
ergodic.

We consider the space Pinv (J ) of invariant probability measures on J . It is clearly convex and,
since we assume the existence of an equilibrium web, non empty. We consider on it the weak-*
topology (with respect to the topology of the uniform convergence of continuous functions on
J ). This topology is metrizable (since the space of continuous functions on J is separable), and
this turns Pinv (J ) into a metric space. Moreover, since J is compact, an application of Riesz
representation theorem gives that also Pinv (J ) is compact.

The first thing we do is to notice that the subspace Pweb (J ) µ Pinv (J ) of the equilibrium webs
is closed in Pinv (J ), and hence is a compact metric space, too. This follows from the continuity of
(p⁄)ú, recalling that webs are characterized (among the invariant probability measures on J ) by
the property that (p⁄)ú (M) = µ⁄ for every ⁄. Indeed, if Mn are webs converging to M œ Pinv (J ),
then (p⁄)ú M = limnæŒ (p⁄)ú Mn = limnæŒ µ⁄ = µ⁄, and the assertion is proved.

The following elementary lemma gives a semi-extremality property of the equilibrium webs.

Lemma 3.2.1. Let M œ Pweb(J ) be an equilibrium web such that M =

N1
2

+

N2
2

, with N
1

and N
2

invariant probability measures. Then, also N
1

and N
2

are equilibrium webs.

Proof. Since (p⁄)ú is linear, for every ⁄ we have µ⁄ = (p⁄)ú M =

(p
⁄

)úN1
2

+

(p
⁄

)úN2
2

. Since
(p⁄) ¶ F = f⁄ ¶ p⁄, we get the invariance of (p⁄)ú N

1

and (p⁄)ú N
2

by f⁄ and so, by the ergodicity
of µ⁄, we get (p⁄)ú Ni = µ⁄. Thus, the Ni’s are webs.

Remark that, since Pweb (J ) is compact and convex, we can find extremal elements (by Krein-
Milman Theorem). From Lemma 3.2.1 we deduce that an extremal element in Pweb (J ) is also
extremal in Pinv (J ), i.e., it is an ergodic measure. In particular, we deduce the existence of
ergodic webs.



42 Holomorphic motions

Corollary 3.2.2. An extremal element in Pweb (J ) is extremal also in Pinv (J ). In particular, if there
exists an equilibrium web there exists also an ergodic one.

Proof. Let M be an extremal element in Pweb (J ) and let N
1

and N
2

be two invariant measures
such that M =

N1
2

+

N2
2

. First, from Lemma 3.2.1 it follows that both N
1

and N
2

are webs. Then
the assertion follows from the extremality of M in Pweb (J ).

Equilibrium webs which are both acritical and ergodic will play a crucial role in the sequel. This
motivates the following result.

Proposition 3.2.3. Let f : U æ V be a holomorphic family of polynomial-like maps. Assume there
exists an acritical equilibrium web M. Then there exists an equilibrium web which is both acritical
and ergodic.

Proof. Since Pweb (J ) is a compact metric space, we can decompose M by means of Choquet
Theorem, i.e, we can find a measure ‹ on the subset Ex(Pweb (J )) of extremal elements of Pweb (J )

(which coincides with the subset of ergodic equilibrium webs, by Corollary 3.2.2) such that

M =

ˆ
Ex(P

web

(J ))

‹(E).

This means that, for every element in the dual space of Pweb (J ) (and in particular for every
continuous function Ï on J ), we have

ÈM, ÏÍ =

ˆ
Ex(P

web

(J ))

ÈE , ÏÍ ‹(E).

Remark that Js can be decomposed as a countable union finJ n
s of compact subsets of J . In fact,

for any M Õ b M and every component of the critical grand orbit, the set of graphs intersecting
that given component over M Õ is compact.

We are going to prove that, for every J n
s , the set of ergodic equilibrium webs E such that

E(J n
s ) = 0 has full ‹-measure. Then, intersecting over n, it will follow that, for ‹-almost every

ergodic equilibrium webs E , we have E(Js) = 0. The assertion then follows.
So, let J n

s be one such compact. Since M (J n
s ) = 0, it suffices to prove that

M(J n
s ) =

ˆ
Ex(P

web

(J ))

E(J n
s )‹(E). (3.1)

Since J n
s is a compact set in a metric space, we can find positive continuous functions flj decreasing

to 1J n

s

. For every such flj we have

ÈM, fljÍ =

ˆ
Ex(P

web

(J ))

ÈE , fljÍ ‹(E)
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and so, repeatedly applying the Lebesgue dominated convergence Theorem, we get

M(J n
s ) = lim

j
ÈM, fljÍ = lim

j

ˆ
Ex(P

web

(J ))

ÈE , fljÍ ‹(E)

=

ˆ
Ex(P

web

(J ))

lim

j
ÈE , fljÍ ‹(E)

=

ˆ
Ex(P

web

(J ))

E(J n
s )‹(E),

and (3.1) is proved.

3.3. Building an acritical web: II.1 or II.3 ∆ II.2

In this section we prove both the implications II.1 ∆ II.2 and II.3 ∆ II.2 in Theorem 3.1.4.
The strategy is the same in both situations, and the idea is to prove that the equilibrium web
constructed by using either Proposition 2.1.7 (for the first implication) or (a suitable modification
of) Proposition 2.1.5 (for the second one) is actually acritical. In both situations, we shall
use Theorem 2.2.2 to exclude the presence of intersections between graphs of elements of the
equilibrium web and graphs of the ones in the singular set Js. The following lemma will be useful
in the proof.

Lemma 3.3.1. Let f : U æ V be a holomorphic family of polynomial-like maps of large topological
degree. Let M be an equilibrium web. Then, for every ⁄

0

œ M ,

M
1
{“ œ J : (⁄

0

, “(⁄
0

)) œ
1
fikØ0

fk
(Cf )

2
}
2

= 0.

Proof. The quantity to estimate is equal to µ⁄0

1
fikØ0

fk
⁄0(Cf

⁄0
)

2
, by definition of equilibrium web.

The assertion is then an immediate consequence of the fact that µ⁄0 does not charge pluripolar
sets, since f⁄0 is of large topological degree (see Section 1.2.4).

Proposition 3.3.2. Let f : U æ V be a holomorphic family of polynomial-like maps of large topolog-
ical degree dt Ø 2. Assume that asymptotically all repelling J-cycles move holomorphically. Then f
admits an acritical and ergodic equilibrium web.

Proof. By assumption, for every n Ø 1 we have subsets Pn := {fln,j : 1 Æ j Æ Nn} of J
such that the fln,j(⁄) are n-periodic points of f⁄ for every ⁄ œ M . Note that limn d≠n

t Nn =

1. We define a sequence (Mn)n of F -invariant discrete probability measures on J by setting
Mn :=

1

N
n

qN
n

j=1

”fl
n,j

(⁄)

. The same proof of Proposition 2.1.7 gives that (Mn)n converges to an
equilibrium web M after taking a subsequence. Let us prove that M (Js) = 0. By Theorem
2.2.3 we have ddcL = 0 (since this is a local property, we can assume that the cycles are actually
repelling on all the parameter space) and then Theorem 2.2.12 implies that M does not contain
Misiurewicz parameters. We can now see that for every k œ N and every “ œ Supp M one has:

�“ fl fk
(Cf ) ”= ÿ ∆ �“ µ fk

(Cf ).
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Indeed, if this were not the case, by Hurwitz theorem, we could find some “Õ œ fin Supp Mn such
that �“ fl fk

(Cf ) ”= ÿ and �“ is not contained in fk
(Cf ). When k = 0 this is clearly impossible

since “Õ
(⁄) is a repelling cycle of f⁄ and when k Ø 1, this is impossible because M does not contain

Misiurewicz parameter. So, fixing any ⁄
0

œ M , we get

M
1
{“ œ J : �“ fl

1
fikØ0

fk
(Cf )

2
”= ÿ}

2
= M

1
{“ œ J : �“ µ

1
fikØ0

fk
(Cf )

2
}
2

Æ M
1
{“ œ J : (⁄

0

, “(⁄
0

)) œ
1
fikØ0

fk
(Cf )

2
}
2

= 0

where the last equality follows from Lemma 3.3.1. The estimate M (Js) = 0 follows from the
F -invariance of M. Finally, Proposition 3.2.3 shows that there exists an ergodic equilibrium web
M

0

such that M
0

(Js) = 0.

Proposition 3.3.3. Let f : U æ V be a holomorphic family of polynomial-like maps of large topolog-
ical degree dt Ø 2, with parameter space M simply connected. Assume that there exists a holomorphic
map “ œ O(M,Ck, V) such that �“ does not intersect the postcritical set of f . Then, f admits an
acritical and ergodic equilibrium web.

Proof. First of all, we apply Proposition 2.1.5 and thus find an equilibrium web M for f as a limit
of the iterated preimages of �“ . We have to check that this web is acritical. By invariance of M, it
is enough to prove that

’Â“ œ Supp M : �Â“ fl fikØ0

fk
(Cf ) = ÿ.

Assume on the contrary that we have �Â“ fl fn0
(Cf ) ”= ÿ, for some Â“ œ Supp M and n Ø n

0

.
By definition of M, we have a sequence of maps “i such that Fn

i

(“i) = “ and “i æ Â“. By
Hurwitz theorem (since �“ is not contained in fikØ0

fk
(Cf )) we thus have that, for sufficiently

large i, �“
i

fl fn0
(Cf ) ”= ÿ. But this would imply that �“ fl fn0+n

i

(Cf ) ”= ÿ, which contradicts the
assumption on “.

3.4. Building the equilibrium lamination: II.2 ∆ II.3

Our goal here is to establish the implication II.2 ∆ II.3 in Theorem 3.1.4, the uniqueness of the
equilibrium web and its mixing property. We actually prove the following more precise result.

Theorem 3.4.1. Let M be a simply connected complex manifold and f : U æ V be a holomorphic
family of polynomial-like maps of large topological degree dt Ø 2. If f admits an acritical and ergodic
equilibrium web then there exists an equilibrium lamination L for f . Moreover, f admits a unique
equilibrium web M (which is ergodic and mixing) and M (L

1

�L
2

) = 0 for any pair of equilibrium
laminations L

1

, L
2

of f .

Given an acritical and ergodic equilibrium web M of f , our strategy will consist in first proving
that the iterated inverse branches in (J , F , M) are exponentially contracting and then exploit this
property to extract an equilibrium lamination from the support of M. We notice that, by totally
different methods, Berger and Dujardin ([BD14a]) have recently build measurable holomorphic
motions in the context of polynomial automorphisms of C2.
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3.4.1. On the rate of contraction of iterated inverse branches in (J , F , M)
We explain here how certain stochastic properties of the system (J , F , M) allow to control the
rate of contraction of the iterated inverse branches of F (see Proposition 3.4.2). We adapt to the
context of (J , F , M) the tools which have been first introduced in [BD99] by Briend-Duval for the
case of a single holomorphic endomorphism of Pk, and generalized by Dinh-Sibony [DS03, DS10]
in the setting of polynomial-like maps of large topological degree. Let us stress however that new
arguments will be introduced in the next subsections.

Since all our statements here are local we may assume that the parameter space M is a simply
connected open subset of Cm which we endow with the euclidean norm.

To study the inverse branches of the map F , it is convenient to transform the system (J , F , M)

into an injective one. This is possible using a classical construction called the natural extension
which we now describe (we refer to [CFS82] page 240 for more details).

Recall that J is a compact metric space and that M (Js) = 0. Setting X := J \ Js, it is
not difficult to check that the map F : X æ X is onto. We may therefore construct the natural
extension

1
‚X , ‚F , „M

2
of the system (X , F , M) in the following way. An element of ‚X is a bi-infinite

sequence ‚“ := (· · · , “≠j , “≠j+1

, · · · , “≠1

, “
0

, “
1

, · · · ) of elements “j œ X such that F(“≠j) = “≠j+1

and one defines the map ‚F :

‚X æ ‚X by setting

‚F(

‚“) := (· · · F(“≠j), F(“≠j+1

) · · · ).

The map ‚F corresponds to the shift operator and is clearly bijective. There exists a unique
measure „M on ‚X such that

(fij)ı

1
„M

2
= M

for any projection fij :

‚X æ ‚X given by fij(

‚“) = “j . The ergodicity of M implies the ergodicity of
„M. We have thus obtained an invertible and ergodic dynamical system

1
‚X , ‚F , „M

2
.

For every “ œ J whose graph �“ does not meet the critical set of f , we denote by f“ the injective
map which is induced by f on some neighbourhood of �“ and by f≠1

“ the inverse branch of f“

which is defined on some neighbourhood of �F(“)

. Thus, given ‚“ œ ‚X and n œ N we may define
the iterated inverse branch f≠n

‚“ of f along ‚“ and of depth n by

f≠n
‚“ := f≠1

“≠n

¶ · · · ¶ f≠1

“≠2 ¶ f≠1

“≠1 .

Let us stress that f≠n
‚“ is defined on a neighbourhood of �“0 with values in a neighbourhood

of �“≠n

. Moreover, since only a finite number of components of the grand critical orbit of f
are involved for defining f≠n

‚“ , we may always shrink the parameter space M to some � b M

so that the domain of definition of f≠n
‚“ for fixed n and ‚“ contains a tubular neighbourhood of

�“0 fl
1
� ◊ Ck

2
of the form

T
�

(“
0

, ÷) := {(⁄, z) œ � ◊ Ck
: d(z,“

0

(⁄)) < ÷}.

Our goal is to get a uniform ÷, independent from n, and to control the size of f≠n
‚“ (TU0(“

0

, ‚÷p(

‚“)))

for suitable ‚÷p(

‚“) > 0 and U
0

µ M . We will now explain how this boils down to estimating some



46 Holomorphic motions

kind of Lyapounov exponent.
Let us denote by

F“(⁄)

(z) := f“ (⁄, z + “(⁄)) ≠ f“(⁄,“ (⁄)). (3.2)

This just amounts to a change of coordinates in order to have the origin sent to the origin for the
restriction at every ⁄. We shall denote by F n

“(⁄)

(z) the composition FFn≠1“(⁄)

¶ · · · ¶ F“(⁄)

(z).
As F n

“(⁄)

is locally invertible at the origin when “ /œ Js, we may now define functions un on
X ◊ W

0

by setting
un(“,⁄) := log Î(DF n

“(⁄)

(0))

≠1Î.

Let us stress that (DF n
“(⁄)

(0))

≠1 depends holomorphically on ⁄ œ W
0

.

From now on we consider three open balls U
0

b V
0

b W
0

centered at ⁄
0

in M . Let us introduce
the function rn on X and ‚un on ‚X by setting

rn(“) := e≠2 sup

⁄œU0 u
n

(“,⁄) and ‚un(

‚“) := sup

⁄œU0
un(“

0

, ⁄) = ≠1

2

log rn(“
0

). (3.3)

We may now state the announced result.

Proposition 3.4.2. Let f : U æ V be a holomorphic family of polynomial-like maps over M of large
topological degree d Ø 2 which admits an acritical and ergodic equilibrium web M. Assume that the
functions ‚un are „M-integrable and that

lim

n

1

n

ˆ
‚‰

‚un d „M = L for some L0. (3.4)

Then there exist p Ø 1, a Borel subset ‚Y µ ‚X such that „M(

‚Y) = 1, a measurable function
‚÷p :

‚Y æ]0, 1] and a constant A > 0 which satisfy the following properties.
For every ‚“ œ ‚Y and every n œ pNı the iterated inverse branch f≠n

‚“ is defined on the tubular
neighbourhood TU0(“

0

, ‚÷p(

‚“)) of �“0 fl (U
0

◊ Ck
) and

f≠n
‚“ (TU0(“

0

, ‚÷p(

‚“))) µ TU0(“≠n, e≠nA
).

Moreover, the map f≠n
‚“ is Lipschitz with Lip f≠n

‚“ Æ ‚lp(

‚“)e≠nA where ‚lp(

‚“) Ø 1.

The proof of Proposition 3.4.2 follows a strategy due to Briend-Duval [BD99]. We start recalling
a technical lemma that we shall need later. A proof can be found in [Dup02, Lemma 1.1.30].

Lemma 3.4.3. Let A be a metric space. Let Ï, (Ân)nØ0

measurable and strictly positive functions on
A. Suppose that

’x œ A, lim

næŒ
1

n
log Ân(x) = 0.

Then, for every Á > 0, there exist two measurable functions –,— : A æ Rú
+

such that – Æ Ï Æ — and

’n Ø 0, ’x œ A,– (x)e≠nÁ Æ Ân(x) Æ —(x)enÁ.

The following is a classical quantitative version of the inverse mapping theorem (see [Dup02]).
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Ck

M

F

�“

T (F≠n“, e≠nA
)

�F≠1“

�F≠j“

T (“,÷ (“))

Fn

�F≠n“

...

...

Figure 3.1.: the backward contraction

Lemma 3.4.4. Let g : U æ V a polynomial-like map. There exists Á
0

> 0 and, for every Á œ]0, Á
0

], a
positive constant c(g,Á ) such that, for every x œ Jg \ Cg, the following are satisfied:

1. g is injective on B
1
x, 2c(g,Á )

..Dg≠1

x

..≠1

2
;

2. B
1
g(x), c(g,Á )

..Dg≠1

x

..≠2

2
µ g

1
B

1
x, 2c(g,Á )

..Dg≠1

x

..≠1

22
. So, on B

1
g(x), c(g,Á )

..Dg≠1

x

..≠2

2

there is a well defined inverse branch for g, that we denote with g≠1

x ;

3. Lip g≠1

x Æ eÁ/3

..Dg≠1

x

.. on B
1
g(x), c(g,Á )

..Dg≠1

x

..≠2

2
.

Consider now a holomorphic family of polynomial like-maps. Remark that, in Lemma 3.4.4,
if g depends continuously from some parameter, also the constant c(g,Á ) depends continuously
from that parameter (c(g,Á ) =

1≠eÁ/3
ÎgÎ

C

2
, see [BD99]). Let p Ø 1 and rp(“) be defined as in (3.3).

The next lemma shows that rp measures the size of tubular neighbourhoods of �“ on which fp is
invertible and contracting.

Lemma 3.4.5. For every small Á > 0 there exists Cp(Á) > 0 such that for any “ œ X the map fp

admits an inverse branch (fp
)

≠1

“ on the tube TU0(Fp
(“), Cp(Á)rp(“)) which maps �Fp

(“)

fl (U
0

◊Ck
)

to �“ fl (U
0

◊ Ck
) and satisfy Lip(fp

)

≠1

“ Æ eÁ/3rp(“)

≠1/2 .

Proof. We use the quantitative version of the inverse mapping theorem given in Lemma 3.4.4.
Let M := sup⁄œU0,“œX ÎF p

“(⁄)

ÎC2,B(0,R
p

)

and let ”p(Á) := Rp(1 ≠ e≠Á/3

)/M . Then for every (“,⁄) œ
X ◊ U

0

:

· (F p
“(⁄)

)

≠1 is defined on BCk

1
0, Cp(Á)Î(DF p

“(⁄)

(0))

≠1Î≠2

2
,

· Lip(F p
“(⁄)

)

≠1 Æ e
Á

3 Î(DF p
“(⁄)

(0))

≠1Î

and the Lemma in proved.

We can now prove Proposition 3.4.2.
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Proof of Proposition 3.4.2. Recall that ‚up(

‚“) = ≠1

2

log rp(“
0

). By assumption limn
1

n

´
‚X „un d „M =

L with L Æ ≠ log d
2

. Let p Ø 1 such that 1

p

´
‚X ‚up d „M =: LÕ Æ L + Á. By applying Birkhoff Ergodic

Theorem there exists ‚Y µ ‚X such that „M(

‚Y) = 1 and

’‚“ œ ‚Y , lim

n

1

n

nÿ

j=1

‚up

1
‚F≠j

(

‚“)

2
=

ˆ
‚X

‚up d „M = pLÕ. (3.5)

Since ‚up(

‚F≠n
(

‚“)) = ≠1

2

log rp(“≠n) we deduce from (3.5) that limn
1

n log rp(“≠n) = 0. In particu-
lar there exists a measurable function ‚rp :

‚Y æ]0, 1] such that

Cp(Á)rp(“≠n) Ø ‚rp(

‚“)e≠(n≠1)Á/2.

We also deduce from (3.5) that there exists ‚lp :

‚Y æ [1, +Œ[ such that

nŸ

j=1

(rp(“≠j))

≠1/2 Æ ‚lp(

‚“)enpLÕ
+nÁ/6.

Now, setting ‚÷p :=

‚rp/‚lp, one can verify by induction that:

· (fp
)

≠n
‚“ is defined on TU0(“

0

, ‚÷p(

‚“)),

· Lip(fp
)

≠n
‚“ Æ ‚lp(

‚“)en(pLÕ
+·+Á/2),

· (fp
)

≠n
‚“ [TU0(“

0

, ‚÷p(

‚“))] µ TU0(“≠n, Cp(Á)rp(“≠(n+1)

)).

This completes the proof of Proposition 3.4.2.

3.4.2. Estimating a Lyapounov exponent

In this subsection we prove that the assumption (3.4) of Proposition 3.4.2 is satisfied when f
admits an acritical and ergodic equilibrium web M. The statement is as follows.

Proposition 3.4.6. Let f : U æ V be a holomorphic family of polynomial-like maps of large
topological degree dt Ø 2. which admits an acritical and ergodic equilibrium web M. Then the
functions ‚un are „M-integrable, there exists a constant L Æ ≠1

2

log

1
d

t

d
k≠1

2
< 0 such that

lim

n

1

n

ˆ
‚X

‚un d „M = L

and limn
1

n
‚un(

‚“) = L for „M-almost every ‚“ œ X .

Note that the constant L may be considered as a bound for a Lyapounov exponent of the
system (J , F , M), and the estimate is precisely the (opposite of the) one in Theorem 1.2.21
for the smallest Lyapounov exponent for a polynomial-like map of large topological degre. The
combination of Propositions 3.4.2 and 3.4.6 will allow us to prove Theorem 3.4.1 (see Section
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3.4.3).

We keep here the assumptions and the notations introduced in the previous subsections. In the
next lemma, we list some basic properties of the functions un and ‚un.

Lemma 3.4.7. Let W
0

be an open ball centered at ⁄
0

in M . Let ‰
1

(⁄) be the smallest Lyapounov
exponent of the system (J⁄, f⁄, µ⁄). The functions un and ‚un satisfy the following properties.

1) un(“, ·) is continuous and psh on W
0

for every “ œ X .

2) The sequence (

‚un)n is subadditive on ‚X , i.e., ‚um+n Æ ‚un +

‚um ¶ ‚Fn.

3) For any fixed ⁄ œ W
0

, we have limn
1

nun(“,⁄) = ≠‰
1

(⁄) for M-almost every “ œ X .

4) For M-almost every “ œ X we have limn
1

nun(“,⁄) = ≠‰
1

(⁄) for Lebesgue-almost every
⁄ œ W

0

.

Proof. 1) When “ œ X is fixed the function un(“, ·) is clearly continuous on W
0

and un(“,⁄) =

supÎeÎ=1

log Î(DF n
“(⁄)

(0))

≠1 · eÎ. To see that un(“, ·) is psh it thus suffices to notice that ⁄ ‘æ
log Î(DF n

“(⁄)

(0))

≠1 · eÎ is psh for each unit vector e œ Ck.
2) Let “ œ X and m, n Ø 1. It follows immediately from the definition of F“ (3.2) that

1
DF m+n

“(⁄)

(0)

2≠1

=

1
DF n

“(⁄)

(0)

2≠1

¶
1
DF m

Fn

(“)(⁄)

(0)

2≠1

’⁄ œ W
0

. (3.6)

Thus, if ‚“ œ ‚X we have ‚um+n(

‚“) Æ log sup⁄œU0(Î(DF n
“0(⁄)

(0))

≠1Î Î(DF m
Fn

(“0)(⁄)

(0))

≠1Î)

Æ log sup⁄œU0 Î(DF n
“0(⁄)

(0))

≠1Î + log sup⁄œU0 Î(DF m
Fn

(“0)(⁄)

(0))

≠1Î =

‚un(

‚“) +

‚um(

‚Fn
(

‚“)).

3) By Oseledets Theorem (see 1.2.12), the subset J⁄,1 of J⁄ defined by

J⁄,1 := {x œ J⁄ : limn
1

n log Î(Dfn
⁄ )

≠1

x Î = ≠‰
1

(⁄, )}

has full µ⁄ measure. As p⁄ı (M) = µ⁄, this implies that “(⁄) œ J⁄,1 for M-almost every “ in X .
The assertion follows.

4) Let us denote by L the Lebesgue measure on M . Let E be the subset of X ◊ W
0

given by

E := {(“,⁄) œ X ◊ W
0

: lim

n

1

n
un(“,⁄) = ≠‰

1

(⁄)}.

Notice that E is measurable, since 1E is the indicatrix of the set
;

lim inf

næŒ
un(“,⁄)

n
= lim sup

næŒ

un(“,⁄)

n

<
,

and the un(⁄,“ )’s are continuous.
For every ⁄ œ W

0

and every “ œ X we set

E⁄
:= {“ œ X : (“,⁄) œ E} and E“ := {⁄ œ W

0

: (“,⁄) œ E}.
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We have to show that L (E“) = L (W
0

) for M-almost every “ œ X . This immediately follows
from Tonelli’s theorem:ˆ

X
L (E“) dM(“) =

ˆ
W0

M(E⁄
) dL (⁄) = L (W

0

)

since, according to the above third assertion, M(E⁄
) = 1 for every ⁄ œ W

0

.

Our strategy will be to transfer the estimates known for a fixed system (J⁄0 , f⁄0 , µ⁄0) to the
system (X , F , M). This will be possible because the graphs �“ for “ œ X cannot approach the
critical set Cf in a non uniform way, a phenomenon which simply relies on the compactness of the
closure of X and the following basic property (see Lemma 2.2.6 for the proof).

Fact There exist 0 < – Æ 1 such that supV0 |Ï| Æ |Ï(⁄)|– for every ⁄ œ V
0

and every holomorphic
function Ï : W

0

æ C such that 0 < |Ï| < 1.

More specifically, the key uniformity property we need is given by the next lemma. In our proofs,
we shall denote the smallest singular value of an invertible linear map L of Ck by ”(L). Let us
recall that ”(L) = ÎL≠1Î≠1 and that ”(L)

k Æ |detL| Æ ”(L)ÎLÎk≠1.

Lemma 3.4.8. Let U
0

b V
0

b W
0

be open balls centered at ⁄
0

in M . Then there exist – > 0

and c > 0 such that 1

nun(“,⁄) Æ k
–

1

nun(“,⁄ Õ
0

) + log c for every n Ø 1, every “ œ X and every
(⁄Õ

0

, ⁄) œ V
0

◊ V
0

.

Proof. By the compactness of X and V
0

, we get c
1

:= sup“œX ,⁄œV0 ÎDF“(⁄)

(0)Îk≠1 < +Œ and thus
|det(DF 1

“(⁄)

(0))| Æ c
1

”(DF“(⁄)

(0)) for every ⁄ œ V
0

and every “ œ X .
Then, as detDF n

“(⁄)

(0) =

rn≠1

j=0

detDFFj

(“)

(0) and
rn≠1

j=0

”(DFFj

(“)

(0)) Æ ”(DF n
“(⁄)

(0)) we get

|detDF n
“(⁄)

(0)| Æ cn
1

”(DF n
“(⁄)

(0)); ’“ œ X , ’⁄ œ V
0

. (3.7)

Let us set c
2

:= sup⁄œW0,“œX |detDF“(⁄)

(0)|. When “ œ X , the holomorphic function Ï(⁄) :=

1

cn

2
detDF n

“(⁄)

(0) is non vanishing and its modulus is bounded by 1 on W
0

. Applying Lemma 2.2.6
to Ï, we get 0 < – Æ 1 (which only depends on V

0

and W
0

) such that:

sup

⁄ÕœV0
|detDF n

“(⁄Õ
)

(0)| Æ cn(1≠–)

2

|detDF n
“(⁄)

(0)|–; ’n Ø 1, ’“ œ X , ’⁄ œ V
0

. (3.8)

Using successively (3.8) and (3.7) we get for any ⁄,⁄ Õ
0

œ V
0

Ë
”(DF n

“(⁄Õ
0)

(0))

Èk
Æ |detDF n

“(⁄Õ
0)

(0))| Æ cn(1≠–)

2

|detDF n
“(⁄)

(0)|–

Æ cn(1≠–)

2

cn–
1

Ë
”(DF n

“(⁄)

(0))

È–
.

Then, applying log and multiplying by ≠1

n we get

k
1

n
un(“,⁄ Õ

0

) Ø –
1

n
un(“,⁄) ≠ –

3
log c

1

+

1 ≠ –

–
log c

2

4
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which is the desired estimate with c := c
1

c(1≠–)/–
2

.

The next Lemma gathers the properties of (un)n which will be crucial to end the proof.

Lemma 3.4.9. Let U
0

,V
0

,W
0

be as in Lemma 3.4.8. Then the following properties occur.

1) The sequence (

1

nun)n is uniformly bounded from below on X ◊ V
0

.

2) The sequence
1

1

nun(“, ·)
2

n
is uniformly bounded on V

0

for M-almost every “ œ X .

3) The functions ‚un are „M-integrable.

Proof. 1) Using the properties of the smallest singular value we have

1

n
un(“,⁄) = ≠ 1

n
log ”

1
DF n

“(⁄)

(0)

2
Ø ≠ 1

nk
log

---det
1
DF n

“(⁄)

(0)

2---

= ≠1

k

Q

a 1

n

n≠1ÿ

j=0

log |detDF
(Fj“)(⁄)

(0)|

R

b

and the assertion follows immediately from the definition and the continuity of F“(⁄)

.

2) We have just seen that 1

nun(“, ·) is uniformly bounded from below on V
0

. By the fourth asser-
tion of Lemma 3.4.7, for M-almost every “ œ X there exists ⁄“ œ V

0

such that limn
1

nun(“,⁄“) =

≠‰
1

(⁄“). On the other hand, by Lemma 3.4.8, we have 1

nun(“,⁄) Æ k
–

1

nun(“,⁄“) + log c for every
n œ N and every ⁄ œ V

0

and thus 1

nun(“, ·) is uniformly bounded from above on V
0

.

3) By the above first assertion, we know that ‚un is bounded from below. It thus suffices to show
that

´
‚un(

‚“) d „M(

‚“) < +Œ. By Lemma 3.4.8 we have
ˆ

‚un(

‚“) d „M(

‚“) Æ n log c +

k

–

ˆ
un(fi

0

(

‚“), ⁄
0

) d „M(

‚“)

= n log c +

k

–

ˆ
un(“,⁄

0

) dM(“)

= n log c +

k

–

ˆ
log Î(DF n

“(⁄0)

(0))

≠1Î dM(“)

= n log c ≠ k

–

ˆ
log ”(DF n

“(⁄0)

(0)) dM(“).

Using (3.7), we thus get
ˆ

‚un(

‚“) d „M(

‚“) Æ ≠ k

–

ˆ
log |det(DF n

“(⁄0)

(0))| dM(“) +

kn

–
log c

1

+ n log c

= ≠ k

–

ˆ
log |det(Dfn

⁄0)“(⁄0)

| dM(“) + Cn

= ≠ k

–

ˆ
log |det(Dfn

⁄0)x| (dp⁄0ıM)(x) + Cn,
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and the conclusion follows because, since f⁄0 is of large topological degree, the psh function
log |det(Dfn

⁄0)x| is integrable with respect to p⁄0ıM = µ⁄0 (Theorem 1.2.16).

We are now ready to establish Proposition 3.4.6. We shall make use of the following subadditive
ergodic theorem due to Kingman (see [Arn98]).

Theorem 3.4.10 (Kingman subadditive Theorem). Let A be a metric space, g an automorphism of
A (i.e. an invertible and bimeasurable map) and ‹ an ergodic measure. Let (Ïn)nœN be measurable
functions, Ïn : A æ R fi{ ≠Œ}. Assume that max{Ï

1

, 0} œ L1

(‹) and that the sequence {Ïn} is
subadditive, i.e., it satisfies

Ïm+n(x) Æ Ïm(x) + Ïn ¶ gm
(x)

for ‹-almost every x œ A. Then, there exists a constant c such that

1. for ‹-almost every x œ A, limnæŒ
1

nÏn(x) = c;

2. limnæŒ
1

n

´
A Ïnd‹ = infnœN

1

n

´
A Ïnd‹ = c‹(A).

Proof of Proposition 3.4.6. We will apply Kingman subadditive ergodic theorem 3.4.10 to the
sequence (

‚un)n. This is possible since the system (

‚X , ‚F , „M) is ergodic, the sequence (

‚un)n is
subadditive (second assertion of Lemma 3.4.7) and ‚u

1

œ L1

(

„M) (last assertion of Lemma 3.4.9).
According to this theorem, there exists L œ R such that limn

1

n
‚un(

‚“) = L for „M-almost every
‚“ œ ‚X and limn

1

n

´
‚X „un d „M = L. It remains to show that L Æ ≠1

2

log

1
d

t

d
k≠1

2
.

Taking into account the fourth assertion of Lemma 3.4.7 and the second assertion of Lemma
3.4.9, we may thus pick ‚“ œ ‚‰ such that:

i) limn
1

n
‚un(

‚“) = L,

ii) 1

nun(“
0

, ·) is uniformly bounded on V
0

,

iii) limn
1

nun(“
0

, ⁄) = ≠‰
1

(⁄) for Lebesgue-almost every ⁄ œ V
0

.

We are going to prove that L Æ ≠1

2

log

1
d

t

d
k≠1

2
. Recalling that ‚un(

‚“) = sup⁄œU0 un(“
0

, ⁄),

there exist ⁄n œ U
0

such that limn
u

n

(“0,⁄
n

)

n = L. Up to a subsequence, we may assume that
⁄n æ ⁄Õ

0

œ U
0

. Pick r > 0 such that B(⁄n, r) µ V
0

for all n œ N. By the subharmonicity of un(“
0

, ·)
on V

0

(first assertion of Lemma 3.4.7), we have, for every n œ N,

un(“
0

, ⁄n)

n
Æ 1

|B(⁄n, r)|

ˆ
B(⁄

n

,r)

un(“
0

, ⁄)

n
.

Taking a limit in n, the left hand side converges to L, while the right hand side (by Lebesgue
convergence Theorem, ii) and iii)), converges to 1

|B(⁄Õ
0,r)|
´

B(⁄Õ
0,r)

≠‰
1

(⁄). The assertion follows

since ‰
1

(⁄) Ø 1

2

log

1
d

t

d
k≠1

2
for every ⁄ (by Theorem 1.2.21).
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3.4.3. Proof of Theorem 3.4.1

Let M
0

be an ergodic acritical equilibrium web for f . The proof is based on the following key
property.

M
0

1
{“ œ J : ÷k œ N, ÷“Õ œ J s.t. �Fk

(“)

fl �“Õ ”= ÿ and Fk
(“) ”= “Õ}

2
= 0. (3.9)

To prove (3.9), it is sufficient to show that for any fixed k œ N and any ⁄
0

œ M there exists a
neighbourhood U

1

of ⁄
0

such that

M
0

1
{“ œ K

0

: ÷“Õ œ KÕ
0

s.t. �Fk

(“)

fl �“Õ fl
1
U

1

◊ Ck
2

”= ÿ and Fk
(“) ”= “Õ}

2
= 0. (3.10)

To this purpose, we shall work with the natural extension
1

‚X , ‚F , ‰M
0

2
of the system (X , F , M

0

)

and apply Proposition 3.4.2. We recall that, according to Proposition 3.4.6, all the assumptions
of Proposition 3.4.2 are satisfied. Let U

0

be a neighbourhood of ⁄
0

, we may assume that U
0

is simply connected and that U
1

b U
0

b M . Let p be the integer and ‚÷p :

‚Y æ]0, 1] be the
measurable function defined on the full ‰M

0

-measure set ‚Y given by Proposition 3.4.2. We recall
that X = J \ Js and by assumption M

0

(Js) = 0.

For any B µ U
0

, we define the ramification function RB by setting

RB(“) := sup

“ÕœJ :�

“

Õ|Bfl�

“|B ”=ÿ
sup

B
d

!
“(⁄), “Õ

(⁄)

"
, ’“ œ J .

Let ‚YÁ := {‚“ œ ‚Y : RU0(“k) > Á}, it then suffices to prove that ‰M
0

1
‚YÁ

2
= 0 for every Á > 0 as it

follows from the following observation:

M
0

1
{“ œ J : ÷“Õ œ J s.t. �Fk

(“)

fl �“Õ fl
1
U

0

◊ Ck
2

”= ÿ and Fk
(“) ”= “Õ}

2

= M
0

1
{“ œ J : RU0(Fk

(“)) > 0}
2

= M
0

1
{“ œ X : RU0(Fk

(“)) > 0}
2

=

‰M
0

1
{‚“ œ ‚Y : RU0(“k) > 0}

2
=

‰M
0

1
fisœNú ‚Y 1

s

2
.

Let us proceed by contradiction and assume that ‰M
0

1
‚YÁ

2
> 0 for some Á > 0. Then, after

reducing Á > 0, we may assume that ‰M
0

1
{‚“ œ ‚YÁ :

‚÷p(

‚Fk
(

‚“)) > Á}
2

> 0. In the sequel we shall

denote ‚“k :=

‚Fk
(

‚“). Owing to the equicontinuity of X we may cover U
1

with finitely many open
sets Bi µ U

0

, say with 1 Æ i Æ N , such that

’(“,“ Õ
) œ X ◊ J , ’⁄

1

œ Bi : “(⁄
1

) = “Õ
(⁄

1

) ∆ sup

⁄œB
i

dCk

!
“(⁄), “Õ

(⁄)

"
< Á . (3.11)

As RU1(“) = 0 when max

1ÆiÆN RB
i

(“) = 0 (by analyticity we have “ = “Õ on U
1

if “ = “Õ on some
Bi), there exist 1 Æ j Æ N and – > 0 such that:

‰M
0

1
{‚“ œ ‚YÁ :

‚÷p(

‚“k) > Á and RB
j

(“k) > –}
2

> 0.
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Let us set ‚YÁ,j,– := {‚“ œ ‚YÁ :

‚÷p(

‚“k) > Á and RB
j

(“k) > –}. Applying Poincaré recurrence
theorem to ‚F≠p, we find ‚“ œ ‚YÁ,j,– and an increasing sequence of integers (nq)q with nq œ pN
such that ‚F≠n

q

(

‚“) œ ‚YÁ,j,– for every q œ N. In particular ‚“ œ ‚YÁ,j,– and RB
j

(“k≠n
q

) > – for every
q œ N. We will reach a contradiction by establishing that

lim

mæ+Œ
RB

j

(“k≠mp) = 0, ’‚“ œ ‚YÁ,j,–. (3.12)

To this purpose we shall use Proposition 3.4.2 to show that RB
j

(“k≠n) Æ e≠nA when n œ pN and
‚“ œ ‚YÁ,j,–. Let “Õ œ J such that “Õ

(⁄
1

) = “k≠n(⁄
1

) for some ⁄
1

œ Bj . Then (Fn“Õ
)(⁄

1

) = “k(⁄
1

)

and thus, according to (3.11), sup⁄œB
j

d ((Fn“Õ
)(⁄), “k(⁄)) < Á < ‚÷p(

‚“k). This means that

�Fn“Õ fl
1
Bj ◊ Ck

2
µ TB

j

(“k, ‚÷p(

‚“k)) . (3.13)

Now, by Proposition 3.4.2, the inverse branch f≠n
‚“

k

of fn is defined on the tube TU0 (“k, ‚÷p(

‚“k))

and maps it biholomorphically into TU0

1
“k≠n, e≠nA

2
. As Bj µ U

0

, this yields:

f≠n
‚“

k

1
TB

j

(“k, ‚÷p(

‚“k))

2
µ TB

j

1
“k≠n, e≠nA

2
. (3.14)

By construction, we have f≠n
‚“

k

(�“
k

) = �“
k≠n

and therefore f≠n
‚“

k

((Fn“Õ
)(⁄

1

)) = f≠n
‚“

k

(“k(⁄
1

)) =

“k≠n(⁄
1

) = “Õ
(⁄

1

). This implies that f≠n
‚“

k

!
�Fn“Õ

"
= �“Õ which in turns, by (3.13) and (3.14),

implies that sup⁄œB
j

d(“Õ
(⁄), “k≠n(⁄)) Æ e≠nA. Then (3.12) follows and thus (3.9) and (3.10) are

proved.

Let us now establish the existence of an equilibrium lamination L
0

. Consider the set

L+

0

:= {“ œ J \ Js : ’“Õ œ J , ’k œ N, �Fk

(“)

fl �“Õ ”= ÿ ∆ Fk
(“) = “Õ}.

By (3.9), we have M
0

1
L+

0

2
= 1 and, by construction, L+

0

satisfies the following properties:

1) L+

0

µ J \ Js,

2) F
1
L+

0

2
µ L+

0

,

3) ’“,“ Õ œ L+

0

: �“ fl �“Õ ”= ÿ ∆ “ = “Õ.

The set L
0

:= fimØ0

F≠m
(L

+

) also satisfies the properties (1), (2) and (3). Moreover F : L
0

æ
L

0

is dk-to-1.

Let us prove the uniqueness assertions. Let MÕ
0

be an equilibrium web for f (or, more generally, a
compactly supported probability measure on J such that p⁄0ıMÕ

0

= µ⁄0 for some ⁄
0

œ M). Let K
0

and KÕ
0

be the supports of M
0

and MÕ
0

. Let us fix ⁄
0

œ M and recall that µ⁄0 = p⁄0ıMÕ
0

= p⁄0ıM
0

.
Then, for any Borel subset A of J , we have µ⁄0 (p⁄0(KÕ

0

fl A)) = MÕ
0

1
p≠1

⁄0
(p⁄0(KÕ

0

fl A))

2
Ø



3.5. Motions of cycles (II.2 + II.3 ∆ II.1) 55

MÕ
0

(KÕ
0

fl A) = MÕ
0

(A) and thus

M
0

!
{“ œ K

0

: ÷“Õ œ KÕ
0

fl A s.t. “(⁄
0

) = “Õ
(⁄

0

)}
"

= M
0

1
p≠1

⁄0

!
p⁄0(KÕ

0

fl A)

"2

= µ⁄0

!
p⁄0(KÕ

0

fl A)

"
Ø MÕ

0

(A) .

But, according to (3.9) we have

M
0

!
{“ œ K

0

: ÷“Õ œ KÕ
0

fl A s.t. “(⁄
0

) = “Õ
(⁄

0

)}
"

= M
0

!
KÕ

0

fl K
0

fl A
"

= M
0

!
KÕ

0

fl A
"

and therefore M
0

(KÕ
0

fl A) Ø MÕ
0

(A). This implies that M
0

(KÕ
0

) = 1 and that M
0

Ø MÕ
0

. As
both M

0

and MÕ
0

are probability measures, we have proved that M
0

= MÕ
0

.

Let LÕ be an arbitrary equilibrium lamination for f . Let us pick ⁄
0

œ M and set LÕ
⁄0 := p⁄0 (LÕ

).
Using M

0

(L
0

) = 1, µ⁄0 = p⁄0ıM
0

and µ⁄0

1
LÕ

⁄0

2
= 1 yields M

0

1
{“ œ L

0

: “(⁄
0

) œ LÕ
⁄0}

2
= 1.

On the other hand, (3.9) implies that M
0

1
{“ œ L

0

: “(⁄
0

) œ LÕ
⁄0}

2
= M

0

(L
0

fl LÕ
). This shows

that M
0

(L
0

�LÕ
) = 0.

Finally, we establish the mixing property of the (unique) equilibrium web. Let M and L be the
acritical web and an equilibrium lamination. Given A, B µ J , we want to prove that, as n æ Œ,

M
!
F≠n

(A) fl B
"

æ M(A)M(B).

Without loss of generality, we can assume that both A and B are subsets of L (since M(L) = 1).
So, given any ⁄

0

œ M , we have M(A) = µ⁄0(p⁄0(A)). Analogously, M(B) = µ⁄0(p⁄0(B)) and
M (F≠n

(A) fl B) = µ⁄0 (p⁄0 (F≠n
(A) fl B)) = µ⁄0

1
f≠n

⁄0
p⁄0(A) fl p⁄0B

2
. The assertion follows

from the mixing property of µ⁄0 .

3.5. Motions of cycles (II.2 + II.3 ∆ II.1)

In this section we prove how, starting with an acritical equilibrium web (whose existence is
equivalent to that of an equilibrium lamination, by the previous sections) we can recover the weak
notion of holomorphic motion for the repelling J-cycles given in Definition 3.1.3. We stress here
that, in order to do this, we do not need to make any further assumption on the family we are
considering. In Chapter 4, we shall see how we can recover an actual holomorphic motion for all
J -repelling cycles in a family of two-dimensional polynomial-like maps.

We start noticing that just the existence of any equilibrium web implies the existence of a
set P µ J satisfying all the properties required by Definition 3.1.3 but the last one. This is an
immediate consequence of Lemma 2.1.3.

Lemma 3.5.1. Let f be a holomorphic family of polynomial-like maps of large topological degree
dt. Assume that there exists an equilibrium web M for f . Then there exists a subset P = finPn µ J
such that

1. ˘Pn = dn
t + o(dn

t );
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2. every element in Pn is n-periodic;

3. we have ÿ

“œP
n

”“ æ MÕ.

where MÕ is a (possibly different) equilibrium web.

Notice that, if the equilibrium web M in the statement is acritical, by the uniqueness proved in
Section 3.4.3 we have M = MÕ.

Proof. Let us fix ⁄
0

in the parameter space. Since f⁄0 has large topological degree, Theorem
1.2.19 gives dn

t + o(dn
t ) repelling periodic points for f⁄0 contained in the Julia set J⁄0 . By Lemma

2.1.3(2), for every such point p of period n there exists an element “p œ J such that “p(⁄
0

) = p
and Fn

(“p) = “p. This gives the first two assertions of the statement. The last one follows by
Theorem 2.1.4, without the need of taking the Cesaro average (as in Proposition 2.1.7). We just
need to ensure that, for every ⁄, we have d≠n

t

q
“

p

œP
n

”p(⁄) æ µ⁄. This follows from Theorem
1.2.19, since (at every fixed ⁄), the number of n-periodic point is dn

t , and thus only o(dn
t ) of the

“p(⁄)’s can be non-repelling.

In order to recover the asymptotic motion of the repelling cycles as in Definition 3.1.3, we thus
just need to prove that, on any M Õ b M , asymptotically all “p œ Pn given by Lemma 3.5.1 are
repelling. This will be done by means of the following general lemma, which allows us to recover
the existence of repelling points for a dynamical system from the information about backward
contraction of balls along negative orbits. This can be seen as a generalization of a classical
strategy [BD99] (see also [Ber10]).

We keep the notations introduced in Section 3.4.1 regarding the natural extension of a dynamical
system and the inverse branches along negative orbits.

Lemma 3.5.2. Let K be a compact metric space and F : K æ K be a continuous map. Assume
that, for every n, the number of periodic repelling points of period dividing n is less than dn

+ o(dn
)

for some integer d Ø 2. Let ‹ be a probability measure on K which is invariant and mixing for
F and of constant Jacobian d (i.e., for every borelian set A µ K on which F is injective we have
d‹(A) = ‹(F(A))). Suppose that there exists an F -invariant subset L µ K such that ‹(L) = 1 and
F : L æ L is a covering of degree d. Let

1
‚L, ‚F , ‚‹

2
be the natural extension of the induced system

(L, F , ‹) and suppose that for every ‚x œ ‚L, the inverse branch F≠n
‚x is defined and Lipschitz on the

open ball B(x
0

, ÷(

‚x)), with Lip

1
F≠n

‚x
2

Æ l(‚x)e≠nL, for some positive measurable functions ÷ and l

and some positive constant L. Moreover, assume that

’x
0

œ L, ’N : the preimages F≠n
‚x

1
B(x

0

, 1/N)

2

with fi
0

(

‚x) = x
0

, ÷(

‚x) > 1

N are disjoint for n large enough.
(3.15)

Then,
‡n :=

1

dn

ÿ

pœR
n

”p æ ‹

where Rn is the set of all repelling periodic points of period (dividing) n.
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By repelling periodic point here we mean the following: a point x
0

such that, for some n,
Fn

(x
0

) = x
0

and there exists a local inverse branch H for Fn sending x
0

to x
0

and such that
Lip H < 1.

Proof. We let Â‡ be any limit value of the sequence ‡n. Remark that

Â‡(K) Æ lim sup

næŒ
‡n(K) Æ lim

næŒ
dn

+ o(dn
)

dn
= 1. (3.16)

For every N œ N, let ‚LN µ ‚L be defined as

‚LN =

;
‚x : ÷(

‚x) >
1

N
and l(‚x) Æ N

<

and set ‚‹N := 1‚L
N

‚‹ and ‹N = (fi
0

)ú ‚‹N . We also set LN := fi
0

1
‚LN

2
. We are going to prove that

Â‡(A) Ø ‹N (A) for every borelian A ’N œ N. (3.17)

As by hypothesis ‹N (A) æ ‹(A) as N æ Œ, the assertion will then follow from (3.16) and (3.17).
So we turn to prove (3.17). In order to do this, it suffices to prove the following:

’N œ N, ’‚a œ ‚LN , ’ closed C µ B
3

a
0

,
1

2N

4
:

Â‡(C) Ø ‹N (C). (3.18)

Indeed, given any Borelian subset A µ K, since K is compact we can find a partition of A fl LN

into finite borelian sets Ai, each of which contained in an open ball B
1
ai

0

, 1

3N

2
, with ‚ai œ LN .

The assertion thus follows from (3.18) since, for every Ai, the values Â‡(Ai) and ‹N (Ai) are the
suprema of the respective measures on closed subsets of Ai (which by construction are contained
in B(ai

0

, 1

2N )).
In the following we thus fix a closed subset C µ B(a

0

, 1

2N ). We shall denote by C” the closed
”-neighbourhood of C (in K).

Take some ” such that ” < 1

2N and notice that, since ‚a œ ‚LN , we have C” µ B(a
0

, 1

N ) µ
B(a

0

, ÷(

‚a)). We can thus define the set:

‚R”
n = { ‚x œ ‚C” fl ‚LN : x

0

= a
0

and F≠n
‚x (C”) fl C ”= ÿ }

and denote by S”
n the set of preimages of C” of the form F≠n

‚x (C”), with ‚x œ ‚R”
n. By the assumption

(3.15), the elements of S”
n are mutually disjoint for n Ø Ân

0

(and of course ˘S”
n Æ dn). We claim

that ˘S”
n satisfies the following two estimates:

1. 1

dn

˘S”
n Æ ‡n(C”), for n Ø n

0

Ø Ân
0

, where n
0

depends only on C and ”;

2. 1

dn

˘S”
n ‹(C”) Ø ‚‹

1
‚F≠n

1
‚C” fl ‚KN

2
fl ‚C

2
.

We first show how (3.18) follows from the estimates 1 and 2 and then prove the two inequalities.
Combining the two we get

‚‹
1

‚F≠n
1

‚C” fl ‚KN

2
fl ‚C

2
Æ ‹(C”)‡n(C”)
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and, since ‚‹ is mixing, letting n æ Œ on a subsequence such that ‡n
i

æ Â‡ we find

‚‹
1

‚C” fl ‚KN

2
‚‹

1
‚C

2
Æ ‹(C”)

Â‡(C”).

Since the left hand side is equal to ‹N (C”) ‹ (C) (and C is closed), (3.18) follows letting ” æ 0.
We are thus left to proving the inequalities 1 and 2 above. We shall see that the first follows

from the Lipschitz estimate on F≠n
‚x , while the second is a consequence of the fact that ‹ is of

constant Jacobian.
We start with 1. In order to prove this, we have to find a n

0

such that, for n Ø n
0

, the
neighbourhood C” contains al least ˘S”

n repelling periodic points for F . Take any ‚x œ ‚R”
n. By

definition, ÷(

‚x) Ø 1

N and l(‚x) Æ N . This means that F≠n
‚x is well defined on C” µ B(a

0

, 1

N ) and
that Diam F≠n

‚x (C”) Æ 1

N Lip F≠n
‚x Æ 1

N Ne≠nL
= e≠nL. Since, by definition of ‚R”

n, we have that
F≠n

‚x (C”) intersects C µ C”, taking n
0

such that 3e≠n0L < ” (which in particular also implies that
Lip F≠n

‚x < 1 for n Ø n
0

) it follows that F≠n
‚x (C”) µ C” for every ‚x œ ‚R”

n, with n Ø n
0

. So, since
C” is itself a compact metric space and F≠n

‚x is stricly contracting on it, we find a (unique) fixed
point for it in C”. Since the elements of S”

n are disjoint, we have found at least ˘S”
n periodic points

(whose period divides n) for F in C”, which must be repelling by the Lipschitz estimate of the
local inverse, and so 1 is proved.

For the second inequality, we have

‚‹
1

‚F≠n
1

‚C” fl ‚KN

2
fl ‚C

2
= ‹

1
fi

1
‚F≠n

1
‚C” fl ‚KN

2
fl ‚C

22

Æ ‹

Q

ca
€

‚xœ‚R”

n

1
F≠n

‚x (C”)

2
fl C

R

db

Æ ‹

Q

ca
€

‚xœ‚R”

n

1
F≠n

‚x (C”)

2
R

db

=

ÿ

‚xœ‚R”

n

‹
1
F≠n

‚x (C”)

2

=

ÿ

‚xœ‚R”

n

1

dn
‹(C”) =

1

dn
˘S”

n‹(C”)

where the last line follows from the fact that ‹ is of constant Jacobian.

We can now show how conditions II.2 and II.3 (which we recall are equivalent by the results of
Sections 3.3 and 3.4) imply condition II.1 in Theorem 3.1.4.

Theorem 3.5.3. Let f : U æ V be a holomorphic family of polynomial-like maps, of degree dt Ø 2.
Assume that there exist an acritical equilibrium web M and an equilibrum lamination L for f . Then,
there exists a subset P = finPn µ J , such that

1. ˘Pn = dn
t + o(dn

t );

2. every “ œ Pn is n-periodic; and
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3. ’M Õ b M , asymptotically every element of P is repelling: ˘{repelling cycles in P
n

}
˘P

n

æ 1.

Moreover
1

dn
t

ÿ

P
n

”“ æ M.

The need to restrict to compact subsets of M is essentially due to the fact that Propositions 3.4.2
and 3.4.6 ensure that the assumptions of Lemma 3.5.2 are satisfied on relatively compact subsets
of M .

Proof. We consider the set P = finPn µ J given by Lemma 3.5.1. We just need to prove the
third assertion. We thus fix M Õ b M and consider the compact metric space O(M Õ, U ,Ck

). By
Propositions 3.4.2 and 3.4.6 and Theorem 3.4.1 all the assumptions of Lemma 3.5.2 are satisfied
by the system (O(M Õ, U ,Ck

), F , M), with L any equilibrium lamination for the system. The
assumption (3.15) is verified since this is true at any fixed parameter. The statement follows from
the following two assertions:

1. for every repelling periodic “ œ Rn given by Lemma 3.5.2, the point “(⁄) is repelling for
every ⁄ œ M Õ; and

2. asymptotically all elements of Rn coincide with elements of Pn.

The first point is a consequence of the Lipschitz estimate of the local inverse of Fn at the points of
Rn (since the Lipschitz constant of F≠n dominates the Lipschitz constant of f≠n

⁄ , for every ⁄), the
second of the fact that both Pn and Rn have cardinality dn

t + o(dn
t ) and, at every ⁄, the number of

n-periodic points is dn
t .

3.6. Equivalence with the previous notions of stability

In this section we show that the conditions stated in the Theorems 2.2.2 and 3.1.4 are all equivalent.
It is immediate to see, by the definition of an equilibrium lamination, that condition II.3 (the
existence of a lamination) implies condition I.4 (existence of a graph avoiding the postcritical
set), since any element in the lamination satisfies the desired property. Viceversa, by Proposition
3.3.3, we see that condition I.4 directly implies a local version of Theorem 2.2.2. Using the
uniqueness of the equilibrium lamination, we can nevertheless recover that the conditions in
Theorem 2.2.2 imply the ones in Theorem 3.1.4 on all the parameter space. This is done in the
following proposition.

Proposition 3.6.1. Let f : U æ V be a holomorphic family of polynomial-like maps of large
topological degree dt Ø 2. Assume that the parameter space M is simply connected and that every
point ⁄

0

œ M has a neighbourhood where the system admits an equilibrium lamination. Then f
admits an equilibrium lamination on all the parameter space.

In particular, if condition I.4 holds, the assumptions of Proposition 3.6.1 are satisfied (by
Proposition 3.3.3 and Theorem 3.4.1) and thus condition II.3 holds, too. This completes the proof
of Theorem 3.1.5.
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Proof. Consider a countable cover {Bn} by open balls of the parameter space M , with the property
that on every Bn the system admits an equilibrium lamination Ln. In particular, on every Bn

the restricted system admits an acritical web. Consider two intersecting balls B
1

and B
2

. By
the uniqueness of the equilibrium web on the intersection (which is simply connected), both
the corresponding webs induce the same one on B

1

fl B
2

. By analytic continuation, and up to
removing a zero-measure (for the web on the intersection) subset of graphs from the laminations
L

1

and L
2

(and all their images and preimages, which are always of measure zero), we obtain a
set of holomorphic graphs, defined on all of B

1

fi B
2

, that satisfy all the properties required in
Definition 3.1.1, thus giving an equilibrium lamination there. The assertion follows repeating
the argument, since the cover is countable and M is simply connected (and thus we do not have
holonomy problems when glueing the laminations).



4
Bifurcations, continuity, and Siegel disks

In this chapter we investigate the relation between Siegel discs, as defined below, and the existence
of equilibrium webs for a holomorphic family of polynomial-like maps. This allows us to recover,
in dimension 2, the equivalence between the notions of stability studied in the previous two
chapters and the holomorphic motion of all repelling cycles in the Julia set. Since this is just an
immediate adaptation of work done by Berteloot and Dupont for endomorphisms of P2, we will
not give all the details of the proof. We then briefly discuss the relation between Siegel discs and
the Hausdorff continuity of the Julia set. We end the chapter with an example of a Siegel disc
contained in the Julia set, motivated by the results of the previous sections.

4.1. Definitions

Siegel points and discs in dimension two are defined as follows. We refer to [BD14b] for the
definition in the general case.

Definition 4.1.1. Let g : U æ V b C2 be polynomial-like map. A point z
0

œ U is a Siegel fixed
point for g if

1. g is holomorphically linearizable at z
0

;

2. the differential of g at z
0

has eigenvalues a and ei◊, where |a| > 1 and fi and ◊ are linearly
independent over Q.

The above definition means that there exists a local change of coordinate Â : D ◊ D æ U such
that

1. Â ((0, 0)) = z
0

, and

2. Â≠1 ¶ g ¶ Â(x, y) = (ax, ei◊y).

61
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Definition 4.1.2. A Siegel disk at a Siegel fixed point z
0

is any set of the form Â ({ 0 } ◊ Dr), where
Â is the linearizing chart as above.

Periodic Siegel points (and the associated Siegel disks) are defined analogously. Notice that we
do not require any maximality property in the above definition of Siegel disk.

In the sequel we shall need the following Theorem by Brjuno [Brj71], giving sufficient conditions
for the linearability of a holomorphic germ. We state it just in the two-dimensional setting that we
need. Let G be (a germ of) holomorphic endomorphism of C2, fixing a point p. Let w

1

and w
2

denote the two eigenvalues of the differential of G at p. For every n œ N, define the value Ên to be

Ên := min

2Æm1+m2Æn,m
i

œN,jœ{ 1,2 }
|wm1

1

wm2
2

≠ wj |

and the associated Brjuno sum

B :=

Œÿ

n=0

1

2

n
log Ê

2

n+1 .

Brjuno Theorem then reads as follows.

Theorem 4.1.3 (Brjuno [Brj71]). Let G be a (germ) of endomorphism of C2 and p a fixed point for
G. Let w

1

and w
2

be the two eigenvalues of the differential of G at p. Then, if

1. DGp is diagonalizable, and

2. the Brjuno sum at p satisfies B > ≠Œ,

the endomorphism G is locally linearizable at p.

We shall denote by S the set

S := { ◊ œ R : ei◊z + z2 has a Siegel disk at 0 } . (4.1)

Recall that ([Yoc95]) if the polynomial ei◊z + z2 is linearizable at 0, the same is true for every
polynomial of the form ei◊z + z2g(z), where g is any polynomial. Moreover, by Brjuno-Yoccoz
Theorem ◊ œ S if and only if

Œÿ

n=0

1

2

n
log min

2ÆjÆn

---ei◊j ≠ ei◊
--- > ≠Œ. (4.2)

The following immediate corollary then ensures that a fixed point at which the differential have
eigenvalues a and ei◊, with |a| > 1 and ◊ œ S is a Siegel point (and thus admits a Siegel disc
through it).

Corollary 4.1.4. Let G be an endomorphism of C2 and p a fixed point for G. Let w
1

and w
2

be the
two eigenvalues of the differential of G at p. Assume that |w

1

| = 1, that the argument of w
1

belongs
to S and that |w

2

| > 1. Then, the endomorphism G is locally linearizible at p.

Proof. Since the two eigenvalues of DGp have distinct modulus, this differential is diagonalizable.
We thus only need to show that B > ≠Œ.
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Since the sequence { wn
1

} is dense in S1, there exists some N such that
---wN

1

≠ w
1

--- < |w
2

| ≠ 1.
We claim that, for n Ø N , the term Ên is of the form

Ên = min

2ÆmÆn
|wm

1

≠ w
1

| ,

i.e., the minimum is attained without using the second eigenvalue. The fact that B > ≠Œ
then immediately follows from the assumption that the argument of w

1

belongs to S (by the
characterization (4.2)).

Let us thus prove the claim. Let us start considering a term of the form |wm1
1

wm2
2

≠ w
1

| and
prove that it is greater than or equal to min

2ÆmÆm1+m2 |wm
1

≠ w
1

|. We can assume that m
2

Ø 1.
We have

|wm1
1

wm2
2

≠ w
1

| Ø |wm2
2

| ≠ 1 > |w
2

| ≠ 1 >
---wN

1

≠ w
1

--- Ø min

2ÆmÆm1+m2
|wm

1

≠ w
1

|

and in this situation the claim is proved.
It remains to consider a term of the form |wm1

1

wm2
2

≠ w
2

|. Assume that m
2

Ø 1. Then, arguing
as above (and recalling that |w

2

| > 1), we see that

|wm1
1

wm2
2

≠ w
2

| Ø
---wm1+1

1

wm2≠1

2

≠ w
1

--- Ø min

2ÆmÆm1+m2
|wm

1

≠ w
1

|

and we are done. The only missing case is a term of the form |wm1
1

≠ w
2

|. But this term is clearly
greater than or equal to |w

2

| ≠ 1 and the conclusion follows as in the other cases.

Let us now consider a holomorphic family f of polynomial-like maps in dimension 2 and let z
0

be a Siegel fixed point for some f⁄0 in the family. By the implicit function theorem, it is possible
to holomorphically follow the point z

0

with ⁄ (at least on some small neighbourhood) as a fixed
point z(⁄) for f⁄. It is then meaningful to distinguish between persistent Siegel points (i.e., Siegel
points such that z(⁄) is still a Siegel point for ⁄ close to ⁄

0

), and, on the other hand, the ones
which disappear after a small perturbation of the parameter. We shall be mostly interested in this
second type.

Definition 4.1.5. Let f : U æ V be a holomorphic family of polynomial-like maps in dimension
2. A Siegel fixed point for the map f⁄0 is said virtually repelling if there exists an arbitrary small
perturbation ⁄

1

of ⁄
0

such that the holomorphic motion z(⁄) of z
0

as a fixed point is repelling at ⁄
1

.

The above definition is clearly equivalent to ask that, for an arbitrary small perturbation ⁄
2

of
⁄

0

, the fixed point z(⁄) is of saddle type.
In this chapter we prove that (virtually repelling) Siegel points are an obstruction to stability

(Proposition 4.2.1). As a consequence, we shall deduce that, for a family of polynomial-like maps
in dimension 2, the existence of an equilibrium web implies that the J-repelling points move
holomorphically (Theorem 4.2.2). We then briefly discuss the relation between Siegel discs and
(dis)continuity of the Julia set and give an example of a map admitting a Siegel disk contained in
its Julia set.
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4.2. Siegel disks and holomorphic motion of repelling points
Here we prove that Siegel discs are an obstruction to the existence of equilibrium webs. The
following result is the core of the proof of the assertion.

Proposition 4.2.1. Let f : U æ V µ M ◊C2 be a family of polynomial-like maps of large topological
degree dt Ø 2. Let z

0

be a virtually repelling Siegel point for f⁄0 . If f admits an equilibrium web,
then every Siegel disk centered at z

0

is disjoint from the Julia set J⁄0 . In particular, if f admits an
equilibrium web, then no f⁄ can have a virtually repelling Siegel point in its Julia set.

Proof. We can assume that the periodic Siegel point is actually fixed. We start proving that the
punctured Siegel disk (i.e., the image by the linearizing chart of the pointed disk {0} ◊ Dú) is
outside the Julia set J⁄0 . Assume by contradiction that a point of the form z

1

= Â(0, w) belongs to
J⁄0 . By Lemma 2.1.3, there exists an element “ œ Supp M such that “(⁄

0

) = z
1

. Denote by ‡ the
holomorphic motion of z

0

, on some small neighbourhood of ⁄
0

, as a fixed point of f⁄. Since z
0

is
virtually repelling, there exist arbitrary small perturbations ⁄m æ ⁄

0

such that ‡(⁄m) is repelling.
In particular this implies that, for m sufficiently large, f≠1

⁄
m

(“(⁄)) æ ‡(⁄m) (where f≠1

⁄
m

denotes
the local inverse of f⁄

m

sending ‡(⁄m) to itself). This gives a contradiction with the fact that, at
⁄

0

, the backward local preimages of z
1

stay bounded away from z
0

.
Once we have established that the punctured Siegel disk is outside the Julia set, we need to

prove that also the Siegel point is outside J⁄0 . This is done in the following way. Notice that
every point in the image of the linearizing chart (with the exception of the unstable manifold of
the Siegel point z

0

) accumulates, by the local inverse iteration, a subset of the punctured Siegel
disk. This implies that all these point are outside the Julia set. To conclude, we need only to show
that also the unstable manifold is outside J⁄0 . But this immediateley follows from the fact that
the equilibrium measure µ⁄0 does not charge the analytic subsets since f⁄0 has large topological
degree, see Section 1.2.4.

Theorem 4.2.2. Let f : U æ V µ M ◊ C2 be a holomorphic family of polynomial-like maps of large
topological degree dt Ø 2. Assume that there exists an equilibrium web for f . Then the J-repelling
cycles move holomorphically.

Proof. The proof follows the one given in [BD14b, Proposition 6.3 and Lemma 6.4]. Consider a
point (⁄

0

, z
0

) œ M ◊ J⁄0 which is n-periodic and repelling for f⁄0 . We can clearly assume that
n = 1. Since f admits an equilibrium web, Lemma 2.1.3 implies that there exists an element
“ œ Supp M such that “(⁄) is n-periodic for f⁄, for every ⁄ œ M (and by definition contained in
J⁄). Since the subset Mr := { ⁄ œ M : “(⁄) is repelling } is open in M , we only have to prove that
it is also closed. Assume by contradiction that there exists a parameter ⁄

1

on the boundary of Mr

(and thus not in Mr).
First of all notice that, although one of the two eigenvalues of the differential of f⁄ stops to be

greater than 1 in modulus there, up to slightly perturbing ⁄
1

we can assume that the other one
remains bigger than 1. Indeed, assume that both eigenvalues at ⁄

1

are of modulus one. Since the
locus where one of the two eigenvalues is of modulus one is the union of two analytic curves (one
corresponding to each eigenvalue), we only have to ensure that these two curves do not coincide
(and thus get the claim by slightly perturbing ⁄

1

, as allowed). But if this were the case, we could
otherwise perturb ⁄

1

to a new parameter ⁄Õ
1

(outside Mr) which would then be attracting. But
this contradicts the fact that “(⁄Õ

1

) œ J⁄Õ
1

(for a detailed proof see [BD14b, Lemma 6.4]).
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Once we have established that “(⁄
1

) has one repelling eigenvalue and one neutral one ei◊, we
can then perturb it to a new ⁄

2

to ensure that ◊ is in S as in (4.1) (since S is dense in R). This
gives a virtually repelling n-periodic Siegel point “(⁄

2

) at ⁄
2

. Since by construction this point is
contained in J⁄2 , we get a contradiction with Proposition 4.2.1 and the Theorem is proved.

We note that obtaining this Siegel point would be the main difficulty when working in higher
dimension, since the validity of the Brjuno condition is in general far less easy to ensure.

4.3. Continuity of Julia sets

In this section we briefly discuss the relation between holomorphic stability and continuity of the
Julia set for the Hausdorff topology. First of all, we notice that the existence of an equilibrium web
implies the continuity of the Julia set. Since the arguments are the same as on Pk (see [BD14b]),
we just sketch the proof of this statement.

Proposition 4.3.1. Let f : U æ V µ M ◊ C2 be a holomorphic family of polynomial-like maps of
large topological degree. Assume that f admits an equilibrium web. Then the Julia set depends
continuously on the parameter ⁄.

Proof. By Corollary 1.3.15, the Julia sets always depends lower semicontinuously on the parameter.
We thus just need to prove that the existence of an equilibrium web M forces the dependence to
be upper semicontinuous. We associate to M the equilibrium current WM as in (2.1). By [Dou94,
Proposition 2.1], the intersection S⁄ of the support of WM with the vertical fiber at ⁄ depends
upper semicontinuously on ⁄. Moreover, it is immediate to see that J⁄ µ S⁄ for every ⁄ œ M . We
thus just need to prove the reverse inclusion S⁄ µ J⁄. To do this we show that, if z

0

/œ J⁄0 , there
exist Á, r

0

> 0 such that M ({“ œ J : �“ fl (B(⁄
0

, Á) ◊ B(z
0

, r
0

)) ”= ÿ}) = 0. This is a consequence
of the compactedness of the support of M. Indeed, take r

0

such that B(z
0

, 2r
0

) fl J⁄0 = ÿ.
There exists some Á such that, for every “ œ Supp M, if �“ fl (B(⁄

0

, Á) ◊ B(z
0

, r
0

)) ”= ÿ then
“(⁄

0

) œ B(z
0

, 2r
0

). Since this ball is disjoint from J⁄0 , the assertion follows.

We now study the converse implication. The following statement says that the continuity forces
Siegel discs centered at point of the Julia set to be contained in it.

Proposition 4.3.2. Let f : U æ V µ M ◊ C2 be a holomorphic family of polynomial-like maps of
large topological degree. Let z

0

be a virtually repelling Siegel fixed point for f⁄0 . If the set valued
function ⁄ ‘æ J⁄ is continuous for the Hausdorff topology and z

0

œ J⁄0 , then any local Siegel disc
centered at z

0

is contained in J⁄0 .

Proof. We have to prove that every point of the form Â(0, w) is contained in the Julia set of
f⁄0 , where Â is the holomorphic change of coordinates given by the definition of Siegel disk. By
hypothesis, we know that this is true for w = 0. Let us thus take w ”= 0 and assume by contradiction
that Â(0, w) /œ J⁄0 . We shall reach a contradiction by proving that this forces Â(0, 0) = z

0

to be
outside J⁄0 , too. We will use in a crucial way the assumption that f⁄0 is of large topological degree,
and thus that equilibrium measure gives no mass to analytic subsets (Theorem 1.2.16).

Let so Â(0, w) be a point on the Siegel disc and not in J⁄0 . First of all, by invariance, this implies
that a neighbourhood of Â({ 0 } ◊ |w| · S1

) is outside J⁄0 . Moreover, by using the linearizing
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coordinate and again by the total invariance of J⁄0 , we see that a subset of the form B =

Â (D ◊ { r
1

< |w| < r
2

}) is outside J⁄0 .
Since ⁄ æ J⁄ is continuous, up to shrinking this neighbourhood, we can suppose that it remains

outside the Julia set J⁄ also for parameters ⁄ sufficiently close to ⁄
0

. But, since z
0

is virtually
repelling, there exists such a small perturbations of ⁄

0

for which the holomorphic motion as a
fixed point z(⁄) of z

0

becomes a saddle. For any such ⁄ sufficiently small, the dynamics is now
contracting in the direction of the (disappeared) Siegel disk. So, the f⁄-orbit of any point in a
neighbourhood of z(⁄) which is not in the unstable manifold of this z(⁄) must pass through the set
B (see [BD14b, Lemma 5.9 (2)] for a detailed proof of this fact). By invariance of J⁄, this implies
that a set of the form Â (D ◊ Dú

) (up to possibly reducing the linearization domain) is outside J⁄.
Since µ⁄ does not charge analytic sets, the same must be true for all the image of Â, for a sequence
of parameters ⁄ converging to ⁄

0

. Since z
0

œ J⁄0 , this contradicts the continuity of J⁄ at ⁄
0

.

We can deduce from Proposition 4.3.2 that, if Siegel discs are outside the Julia set, the continuity
of the Julia set implies all the equivalent characterizations of stability given in Theorems 2.2.2
and 3.1.4, at least for family of skew products extandable to P2. These are defined as follows.

Definition 4.3.3. A polynomial skew-product is an endomorphism of C2 of the form F (z, w) =

(p(z), q(z, w)), where p and q are polynomials of respectively one and two complex variables, that
extends to a holomorphic map of P2.

By [Jon99, Corollary 4.4], the Julia set of the skew product F (z, w) = (p(z), qz(w)) is given by

J(F ) = fizœJ
p

{ z } ◊ Jz. (4.3)

Here Jz is the boundary (in the plane { z } ◊ C) of the set Kz := { Gz = 0 }, where the function
Gz is defined by

Gz(w) := G(z, w) ≠ Gp(z),

where the functions G and Gp are the Green functions of F and p respectively. It is immediate to
see that, if z œ Kp, then

w œ Kz … the sequence Qn
z (w) := qpn≠1

(z)

¶ · · · ¶ qp(z)

¶ qz(w) is bounded. (4.4)

For a skew-product, all repelling points are contained in the Julia set. There is thus no difference
in considering repelling or J -repelling points.

Corollary 4.3.4. Let f : U æ V µ M ◊ C2 be a holomorphic family of skew-products polynomials.
Assume that any Siegel disc for any f⁄ is outside J⁄. Then, the continuity of the Julia set is equivalent
to the holomorphic motion of repelling points.

Proof. Let f⁄(z, w) = (p⁄(z), q⁄(z, w)) be the family in the statement, and assume that some
repelling point (z

0

(⁄), w
0

(⁄)) does not move holomorphically at ⁄
0

. We are going to prove that J⁄

is discontinuous at ⁄
0

. We have two possibilities: at ⁄
0

, one or both eigenvalues for the differential
of f⁄ at (z

0

(⁄), w
0

(⁄)) have modulus one. If we are in the first situation, up to a small perturbation,
we can assume that (z

0

(⁄
0

), w
0

(⁄
0

)) is a Siegel point. Since by assumption every Siegel disk
centered there is outside the Julia set J⁄0 , Proposition 4.3.2 gives the desired discontinuity of J⁄.
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We thus only have to consider the case when both eigenvalues become of modulus 1. In this
case, the polynomial p⁄0 must have (up to slightly perturbing again) a Siegel point at z

0

(⁄
0

) and
thus a Siegel disc � there. By (4.3), this implies that all the column � ◊ C is outside the Julia set.
But by construction there exists ⁄ arbitrarily close to ⁄

0

such that (z
0

(⁄), w
0

(⁄)) is repelling. Since
for a skew product map all repelling points are contained in the Julia set, this gives the desired
discontinuity of J⁄.

The following diagram summerizes the results presented in this chapter so far.

motion of repelling cycles existence of web continuity of J

no Siegel disks in J Siegel disks centered
on J belong to J

dimension 2 skew products + no Siegel disks in J

4.4. A Siegel disk in a Julia set
It is clear that there are examples of endomorphisms of P2 with a Siegel disk disjoint from the
Julia set. Consider by instance a product map on C2 of the form

F

A
z
w

B

=

A
p(z)

q(w)

B

where p and q are polynomials on C of the same degree (so that F extends to an endomorphism
of P2) and such that 0 is a fixed repelling point for p and a Siegel fixed point for q (i.e., q has a
Siegel disk such that the image of the center of the disk by the linearizing coordinate is the origin).
Since, for such a product map, the Julia set is the product of the Julia sets of the components, we
see that the Siegel disk is outside the Julia set. The aim of this section is to prove that this is not
true in general: there exist endomorphisms of P2 admitting a Siegel disk which is contained in the
Julia set. Our statement is as follows.

Theorem 4.4.1. Let ◊ œ S and p and Âq be two polynomials such that d = deg p = deg

Âq + 1 and
satisfying the following assumptions:

1. p has two fixed repelling points, that will be denoted by z
0

and z
1

;

2. 0 is a repelling fixed point for Âq, with multiplier ÂqÕ
(0) =: a

0

;

3. Âq is hyperbolic, and its Julia set is path-connected.

Then, for Á > 0 small enough, the endomorphism of P2 induced by the endomorphism F of C2 given
by

F

A
z
w

B

=

A
p(z)

qz(w)

B

=

A
p(z)

Áwd
+

1
1 +

1
ei◊

a0
≠ 1

2
z≠z1
z0≠z1

2
Âq(w)

B

(4.5)

has the following properties:
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1. the point (z
0

, 0) is a Siegel fixed point for F , contained in the Julia set J(F );

2. there exists a Siegel disk for (z
0

, 0) contained in the Julia set J(F ).

Since the polynomials p(z) = z3 and Âq(w) = (w + 1)

2 ≠ 1 = w2

+ 2w satisfy the assumpions of
Theorem 4.4.1 (notice that the Julia set of Âq is the unit circle of center ≠1), the existence of Siegel
disks contained in the Julia set follows.

Proof. First of all, we notice that the point (z
0

, 0) is a Siegel fixed point, by the assumption on z
0

and the form of F . This is an immediate consequence of Brjuno Theorem 4.1.3 and Corollary
4.1.4. Then, notice that any associated Siegel disk is contained in the vertical fiber { z

0

} ◊ C. We
are going to prove that a neighbourhood of 0 in { z

0

} ◊ C is contained in the Julia set F , thus
proving the assertion. We divide the proof of the statement in the following three steps.

The inclusion { z
1

} ◊ J
1
Áwd

+

Âq(w)

2
µ J(F ) holds. Since by hypothesis z

1

is a fixed point
for p contained in its Julia set Jp and by construction we have that qz1(w) = Áwd

+

Âq(w), by the
characterization (4.4) of Kz it follows that Kz1 = Kq

z1 = K
1
Áwd

+

Âq(w)

2
. The desired inclusion

thus follows.

There exists Âz arbitrarily close to z
0

such that J(F ) fl ({ Âz } ◊ C) contains a continuous path
connecting (

Âz, 0) to (

Âz, Âw), with | Âw| =:

Âr > 0. Here we use a (weak) equidistribution property
of the Julia set of a polynomial: the set of all the backward preimages of any point in the Julia set
is dense in the Julia set.

Applying this to the point z
1

, we can thus find preimages of this point by p arbitrarily close to z
0

.
So, since the line { w = 0 } is invariant by F , this implies the existence of some point of the form
(

Âz, 0) (that we can assume to be as close to z
0

as we like) such that F N
((

Âz, 0)) = (z
1

, 0) for some
N . Since the Julia set of Âq is path-connected, this implies the existence, for every Á small enough,
of a continuous (non trivial) path in J(Áwd

+

Âq(w)) containing 0. Indeed, for Á sufficiently small,
the maps gÁ(w) := Áwd

+

Âq(w) give a family of polynomial-like maps, of degree d ≠ 1 = deg

Âq, on
a neighbourhood of the filled Julia set of Âq = g

0

. The claim follows considering a holomorphic
motion (as part of the motion of the Julia set of g

0

as a hyperbolic set, which is contained in the
Julia set of gÁ, see Lemma 2.2.15) of a non trivial path in J(g

0

) = J(

Âq) containing 0.
There thus exists a continuous path joining 0 and an other point 0 ”= Âw œ JÂz. Indeed, the map

QN
Âz is (locally near 0) topologically conjugated to some z ‘æ zn, with n Æ dN . The existence of

the desired continuous path thus follows pulling back the path in the fiber at z
1

by this map.

J(F ) contains a Siegel disk centered at (z
0

, 0). Since, by the previous point, we can suppose
that Âz is as close to z

0

as we like, we can assume that the point (

Âz, 0) belongs to the image of
the linearizing chart for the Siegel point (z

0

, 0). Moreover, the line { y = 0 } in the linearizing
coordinate corresponds to the line { w = 0 } in the dynamical plane, since they are the unstable
local manifolds associated to the fixed points. This means that the second coordinate of the
representative of (

Âz, 0) in the linearizing chart is 0.
By the local description of the dynamics near the Siegel point and the invariance of the Siegel

disk by F we deduce that every sufficiently small Siegel disk at (z
0

, 0) is contained in the Julia set
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of F , since it is accumulated by backward iterates of the continuous path from (

Âz, 0) and (

Âz, Âw)

built in the previous point, and the Theorem is proved.

Notice that we did not assume that the natural vertical foliation near the Siegel point coincides
with the foliation induced by the linearizing chart. On the contrary, it was important to have the
correspondence between the horizontal lines, to be able to accumulate a disk around 0 in the
Siegel disk and not only an annulus.

An attracting 1-disk in the Julia set Once we have established the result above, it is easy to
construct an example of an endomorphism of P2 having a fixed point of saddle type, where the
system is linearizable, and whose stable manifold is contained in the Julia set.

Corollary 4.4.2. There exists an endomorphisms of P2 admitting a saddle-type fixed point z
0

such
that a neighbourhood of z

0

in its stable manifold (and thus all the stable manifold) is contained in
the Julia set.

Proof. Just assume that a
0

is real in (4.5) and replace ei◊ with flei◊, with fl < 1. In this way, the
Siegel point now becomes a linearizable saddle point, and the same argument as before proves
that a neighbourhood of this point in the stable manifold is accumulated by backward preimages
of a continuous path in the Julia set. Notice that we still need to use an argument of Siegel type
for the attracting eigenvalue, in order to accumulate a full neighbourhood of the fixed point.





5
Parabolic implosion in dimension 2

This chapter is about the extension of parabolic implosion techniques from dimension 1 to 2.
Consider the family fÁ(z) = z + z2

+ Á2 of polynomials in C. For Á = 0 the point 0 is a parabolic
fixed point. The fundamental result of Lavaurs is the following: if Áj æ 0 and nj æ Œ are
sequences such that nj ≠ fi

Á
j

æ –, then limjæŒ f
n

j

Á
j

= L–. The Lavaurs map L– is defined on the
parabolic basin of the origin and is given by Â ¶ t– ¶ Ï. Here Ï and Â are respectively the Fatou
coordinate and parametrization and t– is the translation by – on C. This allows one to study the
limit shape of Julia sets, as Á æ 0. In particular, it is possible to prove that the maps Á ‘æ J(fÁ) are
Á ‘æ K(fÁ) are discontinuous at Á = 0.

Bedford-Smillie-Ueda recently generalized this results to systems, in two complex variables,
admitting a fixed point having an eigenvalue equal to 1 and the second of norm strictly smaller.
Their delicate arguments exploit the contracting direction in order to somehow reduce the problem
to the one-dimensional situation.

In this chapter we give a partial generalization of the above Theorems in the case of maps
tangent to the identity. This allows us to get an estimate of the discontinuity of the large Julia set
(Theorem 5.5.5) as well as to prove the discontinuity of the filled Julia set for such perturbations
of regular polynomials (Theorem 5.5.8 and Corollary 5.5.9).

Notation

The symbol O(x) will stand for some element in the ideal generated by x. More generally, given
any f , O(f) will stand for some element in the ideal generated by f . Analogously, O(f

1

, . . . , fk)

will stand for some element in the ideal generated by f
1

, . . . , fk.
The notation O

2

(x, y) will be a shortcut for O(x2, xy, y2

). Given a point p œ C2, we shall denote
its components as x(p) and y(p).

71
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5.1. Preliminaries and Fatou coordinates

Following the work of Hakim [Hak97] (see also [AR14]), we start giving a description of the local
dynamics near the origin for F

0

by recalling some classical notions in this setting. Let � be a germ
of transformation tangent to the identity at the origin of C2. We can locally write it near the origin
as

�

A
x
y

B

=

A
x + P (x, y) + . . .
y + Q(x, y) + . . .

B

,

where P and Q are homogeneous polynomials of degree 2. In the following, we shall always
assume that P (x, y) is not identically zero. A characteristic direction is a direction V = [x : y] œ
P1

(C) such that the complex line through the origin in the direction [x : y] is invariant for (P, Q).
The direction is degenerate if the restriction of (P, Q) is zero on it, non degenerate otherwise.

Consider now a non degenerate characteristic direction V and take coordinates such that
V = [1 : u

0

]. Notice that the fact that [1 : u
0

] is a characteristic direction is equivalent to u
0

being
a zero of r(u) := Q(1, u) ≠ uP (1, u). The director of the characteristic direction [1 : u

0

] is thus
defined as

rÕ
(u

0

)

P (1, u
0

)

(see [Aba15, Definition 2.4] for a more intrinsec – and equivalent – definition). Given a germ �

and a non degenerate characteristic direction V for � we can assume, without loss of generality,
that V = [1 : 0] and that the coefficient of x2 in P (x, y) is 1 (notice that Hakim has the opposite
normalization, i.e., with the term ≠x2). The following result by Hakim ([Hak97, Proposition 2.6])
gives an explicit description of an invariant subdomain of B. In all this work, we will restrict
ourselves to points belonging to such an invariant domain.

Proposition 5.1.1 (Hakim). Let � be a germ of transformation of C2 tangent to the identity (nor-
malized as above), such that V = [1 : 0] is a nondegenerate characteristic direction with director
” whose real part is greater than some 0 < – œ R. Then, if “, s and R are small enough positive
constants, every point of the set

ÂC
0

(“, R, s) := { (x, y) œ C2

: |Im x| Æ ≠“ Re x, |x| Æ R, |y| Æ s |x| }

is attracted to the origin in the direction V and x(�

n
(x, y)) ≥ ≠ 1

n . Moreover we have |xn| Æ 2

n and

|y(�

n
(x, y))| |x(�

n
(x, y))|≠–≠1 Æ |y| |x|≠–≠1 . (5.1)

Notice that, for a “
1

slightly smaller than “, we have F
0

(

ÂC
0

(“, R, s)) ™ ÂC
0

(“, R, s).
Let us now consider F

0

as in (3), i.e., given by

F
0

A
x
y

B

=

A
x + x2

(1 + (q + 1)x + ry + O(x2, xy, y2

))

y(1 + flx + O(x2, xy, y2

))

B

. (5.2)

where fl is real and larger than 1 and q, r œ C. It is immediate to see that [1 : 0] is a non-degenerate
characteristic direction, with director equal to fl ≠ 1. This is the reason we made the assumption
that fl > 1. It will be even clearer later (Lemma 5.4.1) that this a crucial assumption.
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An important feature of our setting is that the (local) inverse of a map tangent to the identity
shares a lot of properties with the original map (this does not happen for instance in the semi-
parabolic situation). In fact, it is immediate to see that the local inverse of an endomorphism
tangent to the identity is still tangent to the identity, with the same characteristic directions and
moreover the same Hakim directors. In our situation, (0, 0) is still a double fixed point for the
local inverse G

0

, which has the following form (see for example the explicit description of the
coefficients of the inverse of an endomorphism tangent to the identity given in [AR13]),

G
0

A
x
y

B

=

A
x ≠ x2

(1 + (q ≠ 1)x + ry + O
2

(x, y))

y(1 ≠ flx + O
2

(x, y))

B

and the stated properties are readily verified.
In the following, we will fix a neighbourhood U of the origin where F

0

is invertible, and consider
an invariant domain ÂC

0

as in Proposition 5.1.1 for F
0

such that ≠ ÂC
0

satisfies the same property
for G

0

and both ÂC
0

and ≠ ÂC
0

are contained in U .
We now briefly recall how to construct a (one dimensional) Fatou coordinate ÊÏÿ on ÂC

0

semi-
conjugating F

0

to a translation by 1. We notice here that it is actually possible to construct a
two-dimensional Fatou coordinate, on a subset of ÂC

0

, with values in C2 and semiconjugating the
system to the translation by (1, 0). Since we will not use it, we do not detail the construction here,
but we refer the interested reader to [Hak97].

The first step of the construction of ÊÏÿ is to consider the map

Âwÿ
0

(x, y) := ≠ 1

x
≠ q log(≠x). (5.3)

Notice that, in the chart Âwÿ
0

, the map F
0

already looks like a translation by 1. Indeed, by (5.2), we
have

wÿ
0

(F
0

(x, y)) = ≠ 1

x(F
0

(x, y))

≠ q log(≠x(F
0

(x, y)))

= ≠ 1

x
≠ q log(≠x) + 1 + ry + O

2

(x, y)

=

Âwÿ
0

(x, y) + 1 + ry + O
2

(x, y).

(5.4)

In order to get an actual Fatou coordinate, we consider the functions

ÊÏÿ
0,n :=

Âwÿ
(F n

0

(x, y)) ≠ n. (5.5)

The following Lemma proves that the ÊÏÿ
0,n’s converge to an actual Fatou coordinate ÊÏÿ as n æ Œ.

Lemma 5.1.2. The functions ÊÏÿ
0,n converge, locally uniformly on ÂC

0

, to an analytic function ÊÏÿ
:

ÂC
0

æ C satisfying
ÊÏÿ

(F
0

(p)) =

ÊÏÿ
(p) + 1.

Proof. Set A
0

(x, y) :=

Âwÿ
0

(F
0

(x, y)) ≠ Âwÿ
0

(x, y) ≠ 1 =

ÊÏÿ
0,1(x, y) ≠ ÊÏÿ

0,0(x, y) and notice that
A

0

(F n
0

(x, y)) =

ÊÏÿ
0,n+1

(x, y) ≠ ÊÏÿ
0,n(x, y). In order to ensure the convergence of the ÊÏÿ

0,n’s we
can prove that the series of the A

0

(F n
0

(x, y))’s converges normally on ÂC
0

. It follows from (5.4)
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that
A

0

(F n
0

(x, y)) = ry(F n
0

(x, y)) + O
2

(x(F n
0

(x, y)), y(F n
0

(x, y))).

By Proposition 5.1.1, we have |x(F n
0

(x, y))| Æ 2/n and |y(F n
0

(x, y))| Æ 1/n–+1, for some – > 0.
This implies that the series

qŒ
n=0

|A
0

(F n
(x, y))| converges normally to

ÊÏÿ
(x, y) :=

ÊÏÿ
0

(x, y) +

Œÿ

n=0

A
0

(F n
0

(x, y)).

The functional relation is also easily verified, since |A
0

(F n
(x, y))| æ 0.

In the repelling basin the situation is completely analogous. Setting Âwo
0

:= ≠ 1

x ≠ q log(x) on
≠ ÂC

0

and ÊÏo
0,n :=

Âwo
0

(F ≠n
0

(x, y)) + n, we have ÊÏo
0,n æ ÊÏo locally uniformly on ≠ ÂC

0

, where
ÊÏo

:

ÂC
0

æ C satisfies the functional relation ÊÏo ¶ F
0

(p) =

ÊÏo
(p) + 1.

We notice that the Fatou coordinates are not unique. For instance, we can add any constant to
them and still have a coordinate satisfying the desired functional relation. In the following (and in
Theorem F), we shall use as coordinate the one obtained in Lemma 5.1.2 above.

5.2. The perturbed Fatou coordinates

We consider now the perturbation

FÁ

A
x
y

B

=

A
x + (x2

+ Á2

)–Á(x, y)

y(1 + flx + —Á(x, y))

B

=

A
x + (x2

+ Á2

)(1 + (q + 1)x + ry + O
2

(x, y) + O(Á2

))

y(1 + flx + O
2

(x, y) + O(Á2

))

B (5.6)

of the system F
0

as in (5.2). The goal of this section is modify the Fatou coordinate ÊÏÿ built in
Section 5.1 to an approximate coordinate for FÁ. More precisely, we are going to construct some
coordinates ÊÏÿ

Á (with values in C) that, on suitable subsets of ÂC
0

:

1. almost conjugate FÁ to a translation by 1, in the sense that the error that we have in
considering FÁ as a translation in this new chart will be bounded and explicitly estimated;
and

2. tend to the one-dimensional Fatou coordinates ÊÏÿ for F
0

as Á æ 0.

We shall be only be concerned with Á small and satisfying
I

Re Á > 0

|Im Á| < c
--Á2

-- .
(5.7)

Notice that this means that Á is contained in the region, in a neighbouhood of the origin, of the
points with positive real part and bounded by two circles of the same radius centered on the
imaginary axis and tangent one to the other at the origin. Notice in particular that, by definition,
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every sequence Á‹ associated to an – sequence (Á‹ , n‹) satisfies the above property. We recall here
the definition for convenience of the reader.

Definition 5.2.1. Given – œ C, an –-sequence is a sequence (Á‹ , n‹)‹œN œ (C ◊ N)

N such that
n‹ æ Œ and n‹ ≠ fi

Á
‹

æ – as ‹ æ Œ.

First of all, we fix a small neighbourhood U of the origin, such that FÁ is invertible in U ,
for Á sufficiently small. In this section, we shall only be concerned with this local situation.
Then, fix sufficiently small “ < “Õ, R and s such that Proposition 5.1.1 holds on ÂC

0

(“, R, s) and
ÂC

0

(“Õ, R, s) for both F
0

and H
0

:= ≠F ≠1

0

. By taking “ and “Õ sufficiently close, we can assume
that F

0

(

ÂC
0

(“Õ, R, s)) and H
0

(

ÂC
0

(“Õ, R, s)) are contained in ÂC
0

. Denote by ÂC
0

, ÂC Õ
0

µ U (dropping
for simplicity the dependence on the parameters) these sets and by C

0

, C Õ
0

their projections on the
x-plane. We shall assume that Rfl π 1, and so that ÂC

0

µ ÂC Õ
0

b U .
We consider the classical 1-variable change of coordinates on x (and depending on Á) given by

uÁ(x) =

1

Á
arctan

3
x

Á

4
=

1

2iÁ
log

3
iÁ ≠ x

iÁ + x

4
. (5.8)

The geometric idea behind this map is the following: for Á small as in (5.7), uÁ sends iÁ to the
“infinity above" and ≠iÁ to the “infinity below". Circular arcs connecting these two points are sent
to parallel (and almost vertical) lines. In particular, the image of the map uÁ is contained in the
strip

Ó
≠ fi

2|Á| < Re

1
Á

|Á|w
2

< fi
2|Á|

Ô
and the image of the disc of radius Á centered at the origin is the

strip
Ó

≠ fi
4|Á| < Re

1
Á

|Á|w
2

< fi
4|Á|

Ô
. Notice the inverse of this function on

Ó
≠ fi

2|Á| < Re

1
Á

|Á|w
2

< fi
2|Á|

Ô

is given by w ‘æ Á tan (Áw). We gather in the next Lemma the main properties of uÁ that we shall
need in the sequel.

Lemma 5.2.2. Let uÁ be given by (5.8). Then the following hold.

1. For every compact subset C µ C
0

there exist two positive constants M≠
(C) and M+

(C) such
that, for every x œ C, we have

≠ fi

2 |Á| + M≠ < Re

3
Á

|Á|uÁ(x)

4
< ≠ fi

2 |Á| + M+ (5.9)

for every Á sufficiently small.

2. If ≠ fi
2|Á| < Re

1
Á

|Á|uÁ(x)

2
< ≠ fi

4|Á| , then |x| Æ 1

fi

2|Á| +Re(

Á

|Á| u
Á

(x))

.

Proof. For the first assertion the main point is to notice that, by the compactness of C, we have

uÁ(x) +

fi

2Á
æ ≠ 1

x

uniformly on C, as Á æ 0. From this we deduce the existence of constants M≠, M+ such that (5.9)
holds for every x œ C.

For the second one, we exploit the inverse of uÁ on {≠ fi
2|Á| < Re

1
Á

|Á|w
2

< fi
2|Á|}, which is given

by w ‘æ Á tan(Áw). We have

fi

4

< |Re w| <
fi

2

∆ |tan w| Æ tan |Re w| <
1

fi
2

≠ |Re w|
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and the assertion follows putting w = ÁuÁ(x)

We define now, by means of the functions uÁ, different regions in the dynamical plane. In order
to do this, we have to define some constants (independent on Á) that we shall repeatedly use in
the sequel.

First of all, fix some 1 < flÕ < fl. Then, fix some 1 < flÕÕ < 5/4 such that
----

4fi(flÕÕ ≠ 1)

tan (4fi(flÕÕ ≠ 1))

---- >
1

flÕ .

This is possible since flÕ > 1. In particular, flÕÕ may be very close to 1. Finally, set

K := 2fi(flÕÕ ≠ 1) and · :=

----tan

3
≠fi

2

+

K

2

4---- . (5.10)

Without loss of generality, we can take flÕÕ small enough to ensure that K Æ fi/4. Moreover, we
shall assume that “Õ and s are small enough such that

Y
]

[
flÕ < fl 1≠“ÕÔ

1+“Õ2 ,

4·s < 1.
(5.11)

Denote by DÁ the subset of C given by

x œ DÁ … ≠ fi

2 |Á| +

K

|Á| < Re

3
Á

|Á|uÁ(x)

4
<

fi

2 |Á| ≠ K

2 |Á| . (5.12)

Notice the asymmetry in the definition of DÁ. This will be explained in Lemma 5.5.2.
Let us now move to C2. Let ÂDÁ be the product DÁ ◊ D

2e4fifl· |Á| µ C2 (the constant e4fifl· will be
explained in Proposition 5.3.7). By definition, since K Æ fi/4, we have

D|Á| ◊ D
2e4fifl· |Á| µ ÂDÁ µ D· |Á| ◊ D

2e4fifl· |Á|. (5.13)

Notice in particular that the ratios · and 2e4fifl· are independent of Á.
Set CÁ :=

Á
|Á|C0

\ DÁ and ÂCÁ :=

1
Á

|Á| , 1

2
· ÂC

0

\ ÂDÁ the rotations of C
0

and ÂC
0

of Á
|Á| around the

y plane. Notice that ÂCÁ æ ÂC
0

and ÂCÁ fi ÂDÁ æ ÂC
0

as Á æ 0. Morevover, we have ÂCÁ µ ÂC Õ
0

for Á
sufficiently small (and satisfying (5.7)) The following Lemma will be very useful in the sequel.

Lemma 5.2.3. For Á sufficiently small, we have FÁ(

ÂCÁ) µ ÂCÁ fi ÂDÁ.

Proof. By the choice of ÂC
0

and ÂC Õ
0

, we have F
0

(

ÂC Õ
0

) µ ÂC
0

. Moreover, FÁ = F
0

+ O(Á2

) and FÁ

uniformly converges to F
0

on compact subsets of ÂC Õ
0

. The assertion then follows from the the first
inclusion in (5.13).

The first step in the construction of the almost Fatou coordinates consists in considering the
functions ÂuÁ given by

ÂuÁ(x, y) := uÁ(x).
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The following lemma gives the fundamental estimate on ÂuÁ: in this chart, the map FÁ(x, y)

approximately acts as a translation by 1 on the first coordinate. Here and in the following, it will
be useful to consider the expression

“Á(x, y) :=

–Á(x, y)

1 + x–Á(x, y)

.

It is immediate to see that “Á(x, y) = 1 + qx + ry + O
2

(x, y) + O(Á2

).

Lemma 5.2.4. Take p = (x, y) œ ÂCÁ fi ÂDÁ. Then

ÂuÁ(FÁ(p)) ≠ ÂuÁ(p) = 1 + qx + ry + O
2

(x, y) + O(Á2

).

In particular, when “, R, s and Á(“, R, s) are small enough, for p = (x, y) œ ÂCÁ fi ÂDÁ we have

|ÂuÁ(FÁ(p)) ≠ ÂuÁ(p) ≠ 1| < flÕÕ ≠ 1 and
----

Á

|Á| (

ÂuÁ(FÁ(p)) ≠ ÂuÁ(p)) ≠ 1

---- < flÕÕ ≠ 1.

Proof. Since x(FÁ(x, y)) = x + (x2

+ Á2

)–Á(x, y), it follows that

iÁ ≠ x(FÁ(x, y))

iÁ + x(FÁ(x, y))

=

(iÁ ≠ x) (1 + (x + iÁ)–Á(x, y))

(iÁ + x) (1 + (x ≠ iÁ)–Á(x, y))

and so
iÁ + x

iÁ ≠ x

iÁ ≠ x(FÁ(x, y))

iÁ + x(FÁ(x, y))

=

1 + iÁ“Á(x, y)

1 ≠ iÁ“Á(x, y)

.

The desired difference is then equal to

ÂuÁ(FÁ(p)) ≠ ÂuÁ(p) =

1

2iÁ
log

1 + iÁ“Á(x, y)

1 ≠ iÁ“Á(x, y)

=

1

iÁ

5
iÁ“Á(x, y) +

1

3

(iÁ“Á(x, y))

3

+ O(Á4

)

6

= “Á(x, y) + O(Á2

)

= 1 + qx + ry + O
2

(x, y) + O(Á2

)

and the assertion is proved.

The next step is to slightly modify our coordinate ÂuÁ to a coordinate Âwÿ
Á satisfying the following

two properties:

1. Âwÿ
Á æ Âwÿ

0

(with Âwÿ
0

as in (5.3)) as Á æ 0, and

2. Âwÿ
Á(F n

Á (p)) ≠ n æ ÊÏÿ when Á æ 0 and n æ Œ satisfying some relation to be determined later.

We also look for functions Âwo
Á satisfying analogous properties on ≠ ÂC

0

. Recall that the functions
Âwÿ

0

(x, y) and Âwo
0

(x, y) almost semiconjugates the (first coordinate of the) system F
0

to a translation
by 1 (by (5.4)).
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We set

ÂwÁ(x, y) :=

ÂuÁ(x, y) ≠ q

2

log(Á2

+ x2

) =

1

2iÁ
log

3
iÁ ≠ x

iÁ + x

4
≠ q

2

log(Á2

+ x2

).

and consider their incoming and outgoing normalizations Âwÿ
Á and Âwo

Á given by

Âwÿ
Á(x, y) :=

1

2iÁ
log

3
iÁ ≠ x

iÁ + x

4
≠ q

2

log(Á2

+ x2

) +

fi

2Á
,

Âwo
Á(x, y) :=

1

2iÁ
log

3
iÁ ≠ x

iÁ + x

4
≠ q

2

log(Á2

+ x2

) ≠ fi

2Á
.

It is immediate to check that the first request is satisfied, i.e., that Âwÿ
Á(x, y) æ Âwÿ

0

on ÂC
0

(and
Âwo

Á(x, y) æ Âwo
0

on ≠ ÂC
0

) as Á æ 0. In the next proposition we estimate the distance between the
reading of FÁ in this new chart ÂwÁ and the translation by 1. We want to prove, in particular, that
now the error has no linear terms in the x variable. Indeed, notice that also for the system F

0

we had to remove this term (see Lemma 5.1.2) to ensure the convergence of the series of the
A

0

(F n
0

(p))’s, by the harmonic behaviour of x(F n
0

(p)). For convenience of notation, we denote this
error by

AÁ(x, y) :=

ÂwÁ(FÁ(x, y)) ≠ Âw(x, y) ≠ 1.

We then have the following estimate.

Proposition 5.2.5. AÁ(x, y) = ry + O
2

(x, y) + O(Á2

).

Notice that, differently from [BSU12], here the error is still linear in y. The reason is that we do
not add any correction term in y in the expression of ÂwÁ. On the other hand, by our assumptions
we do not have any linear dipendence in Á.

Proof. The computation is analogous to the one in [BSU12]. By the definition of ÂwÁ and the
analogous property of ÂuÁ (Lemma 5.2.4) we have

ÂwÁ(FÁ(x, y)) ≠ ÊwÁ(x, y) =

ÂuÁ(FÁ(x, y)) ≠ ÊuÁ(x, y)

≠ q

2

log(Á2

+ x(FÁ(x, y))

2

) +

q

2

log(Á2

+ x2

)

= 1 + qx + ry + O
2

(x, y) + O(Á2

)

≠ q

2

log

Á2

+ x(FÁ(x, y))

2

Á2

+ x2

.

It is thus sufficient to prove that

Á2

+ x(FÁ(x, y))

2

Á2

+ x2

= 1 + 2x + O
2

(x, y) + O(Á2

).

But
Á2

+ x(FÁ(x, y))

2

= Á2

+ x2

+ (x2

+ Á2

)

2–2

Á(x, y) + 2x(x2

+ Á2

)–Á(x, y)

= (x2

+ Á2

)(1 + 2x–Á(x, y) + O(x2, Á2

))

= (x2

+ Á2

)(1 + 2x + O
2

(x, y) + O(Á2

))
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and the assertion follows.

Let us finally introduce the incoming almost Fatou coordinate, by means of the Âwÿ
Á, as it was done

for the map F
0

in (5.5). Set

ÊÏÿ
Á,n(p) :=

Âwÿ
Á(F n

Á (p)) ≠ n =

Âwÿ
Á(p) +

n≠1ÿ

j=0

AÁ(F j
Á (p)). (5.14)

We shall be particularly interested in the following relation between the parameter Á and the
number of iterations.

Definition 5.2.6. A sequence (Á‹ , m‹) µ (C ◊ N)

N such that Á‹ æ 0 will be said of bounded type if
fi

2Á
‹

≠ m‹ is bounded in ‹.

Notice that, given an –-sequence (Á‹ , n‹), the sequence (Á‹ , n‹/2) is of bounded type.
The following result in particular proves that the coordinates Âwÿ

Á satisfy the second request. This
convergence will be crucial in order to prove Theorem F. Here ÊÏÿ denotes the Fatou coordinate on
ÂC

0

given by Lemma 5.1.2.

Theorem 5.2.7. Let (Á‹ , m‹)‹œN be a sequence of bounded type. Then

ÊÏÿ
Á

‹

,m
‹

æ ÊÏÿ

locally uniformly on ÂC
0

.

We can also define the outgoing almost Fatou coordinates on ≠ ÂC
0

as

ÊÏo
Á,n(p) :=

Âwo
(F ≠n

Á (p)) + n

(recall that by assumption ≠ ÂC
0

is contained in a neighbourhood U of the origin where FÁ is
invertible, for Á sufficiently small). The following convergence is then an immediate consequence
of Theorem 5.2.7 applied to the inverse system.

Corollary 5.2.8. Let (Á‹ , m‹) be a sequence of bounded type. Then

ÊÏo
Á

‹

,m
‹

æ ÊÏo

locally uniformly on ≠ ÂC
0

.

To prove Theorem 5.2.7, we need to estimate the series of the errors in (5.14). In particular,
we need to bound the modulus of the two coordinates of the orbit F j

Á (p), for p œ ÂC
0

and j up to
(approximately) fi/2 |Á|. This is the content of the next section. The proof of Theorem 5.2.7 will
be then given in Section 5.4.

In our study, we will need to carefully compare the behaviour of FÁ in ÂC
0

and the one of F ≠1

Á

on ≠ ÂC
0

. Notice that F ≠1

Á is given by

F ≠1

Á

A
x
y

B

=

A
x ≠ (x2

+ Á2

)(1 + (q ≠ 1)x + ry + +O(Á2

) + O
2

(x, y))

y(1 ≠ flx + O(Á2

) + O
2

(x, y))

B

.
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In order to compare the behaviour of the orbits for F ≠1

Á with the ones for FÁ, it will be useful to
consider the change of coordinate (x, y) ‘æ (≠x, y) and thus study the maps

HÁ

A
x
y

B

=

A
x + (x2

+ Á2

)(1 + (≠q + 1)x + ry + +O(Á2

) + O
2

(x, y))

y(1 + flx + O(Á2

) + O
2

(x, y))

B

=

A
x + (x2

+ Á2

)–H
Á (x, y)

y(1 + flx + —H
Á (x, y))

B

.

(5.15)

In this way, we can study both FÁ and HÁ in the same region of space. Notice that the main
difference between FÁ and HÁ is that the coefficient q has changed sign.

5.3. The estimates for the points in the orbit

In this section we are going to study the orbit of a point p œ ÂC
0

under the iteration of FÁ. In
particular, since the main application we have in mind is the study of F n

‹

Á
‹

when (Á‹ , n‹) is an
–-sequence, we shall be primarily interested in the study of orbit up to an order of fi/ |Á| iterations.

Recall that the set ÂC
0

is given by Proposition 5.1.1 and in particular consists of points that
converge to the origin under F

0

tangentially to the (negative) real axis of the complex direction
[1 : 0]. We shall still assume (by taking R π 1 small enough) that ÂC

0

is contained in a small
neighbourhood U of the origin where F

0

and FÁ are invertible, for Á sufficiently small.
By Lemma 5.2.2, for every compact C µ ÂC

0

there exist two constants M≠
(C) and M+

(C) such
that

≠ fi

2 |Á| + M≠
(C) Æ Re

3
Á

|Á| ÂuÁ(p)

4
Æ ≠ fi

2 |Á| + M+

(C) ’p œ C, ’Á Æ Á
0

. (5.16)

Without loss of generality, we will assume that M≠ and M+ are integers and ∫ 1 (since R π 1).
We shall divide the estimates of the coordinates of F j

Á (p) according to its position with respect
to the set ÂDÁ, i.e., according to the position of x(F j

Á (p)) with respect to DÁ as in (5.12). The
following notation will be consistently used through all our study.

Definition 5.3.1. Given p œ ÂC
0

and Á such that p œ ÂCÁ, we define the entry time np(Á) and the exit
time nÕ

p(Á) by
np(Á) := min { j œ N : F j

Á (p) œ ÂDÁ }
nÕ

p(Á) := min { j œ N : F j
Á /œ ÂCÁ fi ÂDÁ }

(5.17)

The next Proposition gives the bounds on np(Á) that we shall need in the sequel.

Proposition 5.3.2. Let C µ ÂC
0

be a compact subset and M≠, M+ be as in (5.16). Then, for every
p = (x, y) œ C and Á sufficiently small,

K

flÕÕ |Á| ≠ M+

flÕÕ Æ np(Á) Æ K

(2 ≠ flÕÕ
) |Á| ≠ M≠

2 ≠ flÕÕ .

In particular, F j
Á (p) œ ÂCÁ for 0 Æ j < K

flÕÕ|Á| ≠ M+
flÕÕ .
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Proof. Notice that, since FÁ(

ÂCÁ) µ ÂCÁ fi ÂDÁ (by Lemma 5.2.3), we only have to study the first
coordinate of the orbit. Since ÂCÁ æ ÂC

0

, we have that C µ ÂCÁ for Á sufficiently small. From Lemma
5.2.4 it follows that

2 ≠ flÕÕ < Re

3
Á

|Á| ÂuÁ(FÁ(p))

4
≠ Re

3
Á

|Á| ÂuÁ(p)

4
< flÕÕ.

Thus, we deduce that

≠ fi

2 |Á| + M≠
+ (2 ≠ flÕÕ

)j < Re

3
Á

|Á| ÂuÁ(F j
Á (q))

4
< ≠ fi

2 |Á| + M+

+ flÕÕj (5.18)

and the assertion follows from the definition of DÁ (see (5.12)).

5.3.1. Up to np(Á)

Given p in some compact subset C œ ÂC
0

, here we study the modulus of the two coordinates of the
points in the orbit for FÁ of p until they fall in ÂDÁ, i.e., for a number of iteration up to np(Á). We
start estimating the first coordinate. Here we shall make use of the definition of K (see (5.10)).

Lemma 5.3.3. Let C µ ÂC
0

be a compact subset and M≠ be as in (5.16). Then
---x(F j

Á (p))

--- Æ 2

j + M≠

for every p œ C, for Á small enough and j Æ np(Á).

Proof. The statement follows from Lemma 5.2.2 (2) and the (first) inequality in (5.18). Indeed,
we have (recall that 3/4 < 2 ≠ flÕÕ < 1)

---x(F j
Á (p))

--- <
1

fi
2|Á| + Re(

Á
|Á| ÂuÁ(F j

Á (p)))

Æ 1

fi
2|Á| ≠ fi

2|Á| + (2 ≠ flÕÕ
)j + M≠ Æ 1

2 ≠ flÕÕ
1

j + M≠ Æ 2

j + M≠ .

and the inequality is proved.

We now come to the second coordinate. Estimating this is the main difference between our
setting and the semiparabolic one. Notice that, by (5.6), in order to bound the terms

--y(F j
Á (p))

--,
we will need to get an estimate from below of the first coordinate. This will be done by means of
the following lemma.

Lemma 5.3.4. Let C µ ÂC
0

be a compact subset and M≠ be as in (5.16). Let p, q œ C and set
qj := Á (tan Á(

ÂuÁ(q) + j)) and Âqj := Á (tan Á(

ÂuÁ(q) + |Á| j/Á)). Then, for some positive constants C
depending on C and CÁ depending on C and Á, and going to zero as Re Á æ 0,

---x(F j
Á (p)) ≠ qj

--- < C
1 + log(M≠

+ j)

(M≠
+ j)

2

(5.19)
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and ---x(F j
Á (p)) ≠ Âqj

--- < C
1 + log(M≠

+ j)

(M≠
+ j)

2

+ CÁ
1

M+

+ j
(5.20)

for every 0 Æ j Æ np(Á).

Notice in particular that the two estimates reduce to the same for Á real.

Proof. The idea is to first estimate the distance between the two sequences ÂuÁ(F j
Á (p)) and ÂuÁ(q)+ j

(and between ÂuÁ(F j
Á (p)) and ÂuÁ(q) + |Á| j/Á) and then to see how this distance is transformed

by the application of the inverse of uÁ. Notice that, since j Æ np(Á), by definition of ÂDÁ (see
(5.12)) we have Re

1
Á

|Á| ÂuÁ(F j
Á (p))

2
< ≠ fi

4|Á| for the points in the orbit under consideration (since
K Æ fi/4).

We first prove that
---ÂuÁ(F j

Á (p)) ≠ ÂuÁ(q) ≠ j
--- Æ C

1

!
1 + log(M≠

+ j)

"
. (5.21)

Notice that this is an improvement with respect to the estimate obtained in Lemma 5.2.4, but that
we shall need both that estimate and the bound from above obtained in Lemma 5.3.3 in order to
get this one.

By the definition of M≠, we have that |x(p)| and |x(q)| are bounded above by 2/M≠. Recalling
that |y| Æ s |x| for every (x, y) œ ÂCÁ, Lemma 5.2.4 gives

---ÂuÁ(F j
Á (p)) ≠ ÂuÁ(p) ≠ j

--- Æ c
1

ÿ

i<j

---x(F i
Á(p))

--- + c
2

ÿ

i<j

3---x(F i
Á(p))

---
2

+ |Á|2
4

.

Since by Lemma 5.3.3 we have
--x(F j

Á (p))

-- Æ 2/(j + M≠
) and the maximal number of iterations

np(Á) is bounded by a constant times 1/ |Á|, this gives
---ÂuÁ(F j

Á (p)) ≠ ÂuÁ(p) ≠ j
--- Æ C

2

!
1 + log(M≠

+ j)

"

for some positive C
2

, and the estimate (5.21) follows since the two sequences (

ÂuÁ(p) + j)j and
(

ÂuÁ(q) + j)j obviously stay at constant distance.
We then consider the sequence Âqj . Using (5.21), it is immediate to see that

---ÂuÁ(F j
Á (p)) ≠ ÂuÁ(q) ≠ |Á| j/Á

--- Æ C
1

!
1 + log(M≠

+ j)

"
+ |arg(Á)| j, (5.22)

since the distance between the two sequences ÂuÁ(q) + j and ÂuÁ(q) + |Á| j/Á. is bounded by the last
term.

We now need to estimate how the errors in (5.21) and (5.22) are transformed when passing to
the dynamical space, and in particular recover the quadratic denominator in (5.19). By (5.22) we
have

Re

3
Á

|Á| ÂuÁ(F j
Á (p))

4
Ø ≠ fi

2 |Á| + M≠
+ j ≠ C

1

!
1 + log(M≠

+ j)

"
≠ |arg Á| j

> ≠ fi

2 |Á| + C
3

(M≠
+ j)
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for Á sufficiently small (as in (5.7)), j Æ np(Á) and some C
3

> 0. So, given L > 0, it is
enough to bound from above the modulus of the derivative of the inverse of uÁ on the stripÓ

≠ fi
2|Á| + L Æ Re

1
Á

|Á|w
2

< ≠ fi
4|Á|

Ô
by (a constant times) 1/ |L|2. This can be done with a straight-

forward computation. Recall that uÁ(z) =

1

Á arctan

!
z
Á

"
, so that its inverse is given by Á tan(Áw). The

derivative of this inverse at a point ≠fi/2Á+w is thus given by ÂÁ(w) = Á2

(cos (Áw))

≠2. On the strip
in consideration, ÂÁ takes its maximum at w = ≠ fi

2Á +L, where we have ÂÁ(≠ fi
2Á +L) = Á2/ sin

2

(ÁL).
The estimate then follows since x Æ 2 sin(x) on [0, fi /4].

Proposition 5.3.5. Let C µ ÂC
0

be a compact subset, M≠, M+ be as in (5.16) and C, CÁ as in Lemma
5.3.4. Then

3
1

flÕ ≠ CÁ

4
1

M+

+ j
≠ C

1 + log(M≠
+ j)

(M≠
+ j)

2

Æ
---x(F j

Á (p))

--- Æ 2

j + M≠

for every p œ C, for Á small enough and j Æ np(Á).

Proof. The second inequality is the content of Lemma 5.3.3. Let us then prove the lower bound.
By Lemma 5.3.4, it is enough to get the bound

1

flÕ
(M+

+ j)

Æ |Âqj |

where Âqj := Á tan (Á(Re(

ÂuÁ(p)) + |Á| j/Á)) as in Lemma 5.3.4. Notice that we arranged the points
Á

|Á| ÂuÁ(

Âqj) to be on the real axis. Since we have Re

Á
|Á| ÂuÁ(q

0

) < ≠ fi
2|Á| + M+ (and thus Re

Á
|Á|uÁ (

Âqj) Æ
≠ fi

2|Á| + M+

+ j), it follows that

|Âqj | Ø |Á|
----tan

3
Á

3
≠ fi

2 |Á| + (M+

+ j)

|Á|
Á

44---- =

|Á|
tan (M+ |Á| + j |Á|) .

We thus have to prove that, for Á sufficiently small and j Æ np(Á),

|Á| M+

+ |Á| j

tan (M+ |Á| + j |Á|) >
1

flÕ .

The left hand side is decreasing in j, so we can evaluate it at j = np(Á), which is less or equal than
K

(2≠flÕÕ
)|Á| by Proposition 5.3.2. We thus need to prove that, for Á sufficiently small,

|Á| M+

+

K
2≠flÕÕ---tan

1
M+ |Á| +

K
2≠flÕÕ

2---
>

1

flÕ .

This follows since |Á| M+

+

K
2≠flÕÕ < 2K for |Á| π 1 and, by assumption, K satisfies

--- 2K
tan(2K)

--- > 1

flÕ .
This concludes the proof.

We can now give the estimate for the second coordinate.
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Proposition 5.3.6. Let C µ ÂC
0

be a compact subset and M+ be as in (5.16). There exists a positive
constant c

1

, depending on C, such that for p œ C and J Æ np(Á),

---y(F J
Á (p))

--- Æ c
1

|y(p)|
M+

+J≠1Ÿ

l=M+

3
1 ≠ Âfl

l

4

for some 1 < Âfl < fl
flÕ

1≠“ÕÔ
1+“Õ2 .

Notice that 1 < fl
flÕ

1≠“ÕÔ
1+“Õ2 by the assumption (5.11).

Proof. We shall make use of both estimates obtained in Proposition 5.3.5. Since the part of orbit
which we are considering is in ÂCÁ (at least) up to J ≠ 1, we have

--y(F j
Á (p))

-- Æ s
--x(F j

Á (p))

-- and--x(F j
Á (p))

-- > |Á|, for j Æ J ≠ 1. So, by the expression of y(FÁ(p)) in (5.6), we get

---y(F J
Á (p))

--- Æ |y(p)|
J≠1Ÿ

j=0

---1 + flx(F j
Á (p)) + O(x2

(F j
Á (p))

---

Æ |y(p)|
J≠1Ÿ

j=0

1---1 + flx(F j
Á (p))

--- +

Âc
1

---x2

(F j
Á (p))

---
2

for some positive Âc
1

. For Á sufficiently small, we have ÂCÁ µ ÂC Õ
0

=

ÂC
0

(“Õ, R, s) (see Proposition
5.1.1). This implies that

--
Im

!
x(F j

Á (p))

"-- < “Õ --
Re

!
x(F j

Á (p))

"-- for every j < np(Á). Thus
---1 + flx(F j

Á (p))

--- Æ 1 ≠ fl
---Re

1
x(F j

Á (p))

2--- + fl
---Im

1
x(F j

Á (p))

2---

Æ 1 ≠ fl(1 ≠ “Õ
)

---Re

1
x(F j

Á (p))

2---

Æ 1 ≠ fl
1 ≠ “Õ


1 + “Õ2

---x(F j
Á (p))

---

and thus, by the estimates on x(F j
Á (p)) in Proposition 5.3.5 we deduce that (for Á sufficiently

small)

---y(F J
Á (p))

--- Æ |y(p)|
J≠1Ÿ

j=0

A

1 ≠ fl
1 ≠ “Õ


1 + “Õ2

3
1

flÕ ≠ CÁ

4
1

M+

+ j
+

ÂcÕ
1

1 + log(M≠
+ j)

(M≠
+ j)

2

B

Æ c
1

|y(p)|
J≠1Ÿ

j=0

3
1 ≠ Âfl

1

M+

+ j

4

where Âfl is some constant such that 1 < Âfl < fl
flÕ

1≠“ÕÔ
1+“Õ2 , and the assertion follows.

5.3.2. From np(Á) to nÕ
p(Á)

Notice that ÂDÁ needs not to be FÁ-invariant. In this section we estimate the second coordinate for
points in an orbit entering ÂDÁ (and in particular explain the constant e4fifl· in the definition of ÂDÁ).
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Our goal is prove a lower bound on nÕ
p(Á) (and moreover to prove that the orbit cannot come back

to ÂCÁ). This will in particular give an estimate for the coordinates of the point in the orbit for j up
to the lower bound of nÕ

p(Á) (since in ÂDÁ both |x| and |y| are bounded by (a constant times) |Á|).

Proposition 5.3.7. Let C µ ÂC
0

be a compact subset. Then, for every p œ C, and np(Á) < j Æ nÕ
p(Á),

we have ---y(F j
Á (p))

--- Æ e4fifl·
---y(F n

p

(Á)

Á (p))

--- Æ e4fifl· |Á|

Proof. Recall that · = tan

1
≠fi

2

+

K
2

2
and that by the assumption (5.11) we have 4s·< 1. Since

the part of orbit under consideration is contained in ÂDÁ (and thus
--x(F j

Á (p))

-- Æ · |Á|, by (5.13)),
we have

---y(F j
Á (p))

--- Æ
---y(F n

p

(Á)

Á (p))

---
j≠1Ÿ

i=n
p

(Á)

(1 + 2fl· |Á|)

Æ
---y(F n

p

(Á)

Á (p))

---

Â fi≠K/2
(2≠fl

ÕÕ)|Á| Ê
Ÿ

i=n
p

(Á)

(1 + 2fl· |Á|) .

The product is bounded by (1+2fl· |Á|)2fi/|Á| Æ e4fifl· as Á æ 0. Moreover, we have
---y(F

n
p

(Á)

Á (p))

--- Æ
---y(F

n
p

(Á)≠1

Á (p))

---
---1 + flx(F

n
p

(Á)≠1

Á )

--- Æ 4s· |Á| < |Á|. This gives the assertion.

We can now give the estimate on nÕ
p(Á).

Proposition 5.3.8. Let C µ ÂC
0

be a compact subset and M≠, M+ be as in (5.16). Then, for every
p œ C,

fi ≠ K/2

flÕÕ |Á| ≠ M+

flÕÕ Æ nÕ
p(Á) Æ fi ≠ K/2

(2 ≠ flÕÕ
) |Á| ≠ M≠

2 ≠ flÕÕ .

Moreover, we have
--y(F j

Á (p))

-- Æ e4fifl· |Á| for np(Á) Æ j < nÕ
p(Á) and

Re

3
Á

|Á| ÂuÁ

3
F

nÕ
p

(Á)

Á

44
Ø fi ≠ K

2 |Á| .

In particular, once entered in ÂDÁ, the orbit cannot come back to ÂCÁ.

Proof. By Proposition 5.3.7, the modulus of the second coordinate of the points of the orbit is
bounded by e4flfi· |Á| for np(Á) < j Æ nÕ

p(Á). Since for j Æ np(Á) it is bounded by s
--x(F j

Á (p))

--, the
assertion follows from Equation (5.18).

5.3.3. After nÕ
p(Á)

In order to study the behaviour of FÁ after ÂDÁ, we shall make use of the family HÁ introduced in
(5.15). The following proposition is an immediate consequence of the analogous results for FÁ

(first assertion of Lemma 5.3.4). We denote by nH
p (Á) the entry time for H (see Definition 5.3.1).
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Lemma 5.3.9. Let C µ ÂC
0

be a compact subset and M≠ be as in (5.16). Let p, q be contained in
some compact subset C µ ÂC

0

. Then, for Á sufficiently small,

---x(F j
Á (p)) ≠ x(Hj

Á (q))

--- < C
1 + log(M≠

+ j)

(M≠
+ j)

2

for every 0 Æ j Æ min(np(Á), nH
q (Á)), for some positive constant C.

We will get the estimates on the second coordinate in this part of the orbit directly in Section
5.5.1, when proving Theorem F, by applying Proposition 5.3.6 to both FÁ and HÁ.

5.4. A preliminary convergence: proof of Theorem 5.2.7

In this section we prove Theorem 5.2.7. Namely, given a sequence (Á‹ , m‹) of bounded type (see
Definition 5.2.6), we prove that ÊÏÿ

Á
‹

,m
‹

æ ÊÏÿ and ÊÏo
Á

‹

,m
‹

æ ÊÏo, locally uniformly on ÂC
0

and
≠ ÂC

0

, where ÊÏÿ and ÊÏo are the Fatou coordinates for F
0

given by Lemma 5.1.2. Recall that by
assumption these two sets are contained in a neighbourhood U of the origin where FÁ is invertible,
for Á sufficiently small, ans thus in particular where ÊÏo is well defined. We shall need the following
elementary Lemma.

Lemma 5.4.1. Let a œ R, be strictly greater than 1. Then, for every j
0

Ø l
0

Ø 1 such that
0 < 1 ≠ a

l < 1 for every l Ø l
0

, the series

Œÿ

j=j0

jŸ

l=l0

(1 ≠ a

l
)

converges.

Notice that the Lemma is false when a = 1, since the series reduces to an harmonic one. In our
applications a will essentially be fl, which we assume by hyphotesis to be greater than 1.

Proof. As in [Wei98, Lemma 4], let us set Pj :=

rj
l=l0

(1 ≠ a
l ) and notice that the Pj ’s admit an

explicit expression as

Pj = c
�(j + 1 ≠ a)

�(j + 1)

for some constant c = c(l
0

), where � is the Euler Gamma function. Since �(j + 1 ≠ a) ≥ 1

ja

j! as
j æ Œ, we deduce that Pj ≥ c 1

ja

, and so
q

j Pj converges.

We can now prove Theorem 5.2.7. The proof follows the main ideas of the one of [BSU12,
Theorem 2.6]. The major issue (and the main difference with respect to [BSU12]) will be to take
into account the errors due the O(y)-terms in the estimates. This will be done by means of the
following Lemma, which relies on Propositions 5.3.6 and 5.3.7.

Lemma 5.4.2. Let p œ ÂC
0

and np(Á) be as in (5.17). Let n(Á) be such that np(Á) Æ n(Á) Æ 3fi
5|Á| .

Then the following hold:
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1. the function Á ‘æ qn(Á)

j=1

1--y
!
F j

Á (p)

"--
+

---y
1
F j

0

(p)

2---
2

is bounded, locally uniformly on p, for Á

sufficiently small;

2. limÁæ0

qn(Á)

j=n
p

(Á)+1

--y(F j
Á (p))

--
= 0, locally uniformly on p.

Notice that, by Proposition 5.3.8, nÕ
p(Á) Ø fi≠K/2

flÕÕ|Á| ≠ M+
flÕÕ Ø 7fi

8

5

4|Á| ≠ M+
flÕÕ Ø 3fi

5|Á| for Á sufficiently
small. So, in particular, the orbit up to time n(Á) is contained in ÂCÁ fi ÂDÁ. On the other hand,
we have np(Á) +

M≠

2≠flÕÕ Æ K
(2≠flÕÕ

)|Á| Æ fi/4

(2≠5/4)|Á| ≠ M≠

2≠flÕÕ Æ fi
3|Á| . So, in particular, the assumption of

Lemma 5.4.2 is satisfied when (Á‹ , n(Á‹)) is of bounded type.

Proof. We start with the first point. The convergence of the second part of the series is immediate
from Proposition 5.1.1, by the harmonic behaviour of x(F j

0

(p)) and the estimate (5.1). Let us thus
consider the first part. Here we split this series in a first part, with the indices up to np(Á) and in
the remaining part starting from np(Á) + 1. The sum is thus given by

n
p

(Á)ÿ

j=1

---y
1
F j

Á (p)

2--- +

n(Á)ÿ

j=n
p

(Á)+1

---y
1
F j

Á (p)

2---

and, by Propositions 5.3.6 and 5.3.7, this is bounded by (a constant times)

n
p

(Á)ÿ

j=1

M+
+j≠1Ÿ

l=M+

3
1 ≠ Âfl

l

4
+

Q

a
n

p

(Á)≠1+M+
Ÿ

j=M+

3
1 ≠ Âfl

j

4R

b ·
n(Á)ÿ

j=n
p

(Á)

e4fifl·

where M+ is as in (5.16) and Âfl is (as in Proposition 5.3.6) a constant greater than 1. By the lower
estimates on np(Á) in Proposition 5.3.2 and the asymptotic behaviour proved in Lemma 5.4.1, the
last expression is bounded by

Œÿ

j=1

j≠1+M+Ÿ

l=M+

3
1 ≠ Âfl

l

4
+

3fi

5 |Á| · e4fifl· ·

Q

a 1

K
flÕÕ|Á| ≠ M+

flÕÕ ≠ 1 + M+

R

b
Âfl

.

The first term is bounded, again by Lemma 5.4.1, and the second one (which, up to a constant, is
in particular a majorant for the sum in the second point in the statement) goes to zero as Á æ 0

(since Âfl > 1). This proves both statements.

Proof of Theorem 5.2.7. First of all, recall that by Lemma 5.1.2 the sequence ÊÏÿ
0,m

‹

=

Âwÿ
0

+

qm
‹

≠1

j=0

A
0

(F j
0

(p)) converges to a (1-dimensional) Fatou coordinate ÊÏÿ (for this we just need that
m‹ æ Œ). It is then enough to show that the difference ÊÏÿ

Á
‹

,m
‹

≠ ÊÏÿ
0,m

‹

goes to zero as ‹ æ Œ.
Here we shall make use of the hypothesis that the sequence (Á‹ , m‹) is of bounded type. The
difference is equal to

ÊÏÿ
Á

‹

,m
‹

(p) ≠ ÊÏÿ
0,m

‹

(p) =

Âwÿ
Á

‹

(p) ≠ Âwÿ
0

(p) +

m
‹

≠1ÿ

j=0

1
AÁ

‹

(F j
Á

‹

(p)) ≠ A
0

(F j
0

(p))

2
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and we see that the first difference goes to zero as ‹ æ Œ. We thus only have to estimate the
second part, whose modulus is bounded by

ÿ

I

+

ÿ

II

:=

m
‹

≠1ÿ

j=0

---A
0

(F j
Á

‹

(p)) ≠ A
0

(F j
0

(p))

---

+

m
‹

≠1ÿ

j=0

---AÁ
‹

(F j
Á

‹

(p)) ≠ A
0

(F j
Á

‹

(p))

--- .

Let us consider the first sum. First of all, we prove that the majorant
qm

‹

≠1

j=1

1--A
0

(F j
Á

‹

(p))

--
+

---A
0

(F j
0

(p))

---
2

converges. This follows from the fact that A
0

(p) = O(x2, y) by Proposition 5.2.5, the estimates
on

---x(F j
0

(p))

--- and
--x(F j

Á
‹

(p))

-- in Propositions 5.1.1 and 5.3.5 and from Lemma 5.4.2 (1). Indeed,
with M+ as in (5.16), we have (for some positive constant K

0

),

ÿ

I

Æ
m

‹

≠1ÿ

j=1

1---A
0

(F j
Á

‹

(p))

--- +

---A
0

(F j
0

(p))

---
2

Æ K
0

m
‹

≠1ÿ

j=1

3---x(F j
Á

‹

(p))

---
2

+

---x(F j
0

(p))

---
2

4
+ K

0

m
‹

≠1ÿ

j=1

1---y(F j
Á

‹

(p))

--- +

---y(F j
0

(p))

---
2

Æ K
0

m
‹

≠1ÿ

j=1

3
8

(j + M+

)

2

+ |Á‹ |2
4

+ K
0

m
‹

≠1ÿ

j=1

1---y(F j
Á

‹

(p))

--- +

---y(F j
0

(p))

---
2

Æ B

where in the last passage we used the assumption that the sequence (Á‹ , m‹) is of bounded type
to estimate the sum of the |Á‹ |2’s and in order to apply Lemma 5.4.2 (1) for the second sum.

We now prove that
q

I goes to zero, as ‹ æ Œ. Given any small ÷, we look for a sufficiently
large J such that the sum

m
‹

≠1ÿ

j=J

---A
0

(F j
Á

‹

(p)) ≠ A
0

(F j
0

(p))

---

is less than ÷ for |Á‹ | smaller than some Á
0

. The convergence to 0 of
q

I will then follow from the
fact that A

0

(F j
Á

‹

(p)) ≠ A
0

(F j
0

(p)) æ 0 as ‹ æ Œ, for every fixed j. As above, this sum is bounded
by

m
‹

≠1ÿ

j=J

3
8

(j + M+

)

2

+ |Á‹ |2
4

+

m
‹

≠1ÿ

j=J

---y(F j
Á

‹

(p))

--- +

m
‹

≠1ÿ

j=J

---y(F j
0

(p))

--- . (5.23)

For J sufficiently large, the first sum is smaller than ÷/3 (uniformly in Á), since (Á‹ , m‹) is of
bounded type. The same is true for the third one, by the harmonic behavior of x(F j

0

(p)) and the
estimate (5.1). We are thus left with the second sum of (5.23). We split it as in Lemma 5.4.2:

m
‹

≠1ÿ

j=J

---y(F j
Á

‹

(p))

--- Æ
n

p

(Á
‹

)ÿ

j=J

---y(F j
Á

‹

(p))

--- +

m
‹

≠1ÿ

j=n
p

(Á
‹

)+1

---y(F j
Á

‹

(p))

--- . (5.24)

Lemma 5.4.2 (2) implies that the second sum of the right hand side goes to zero as Á‹ æ 0. We
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are thus left with the first sum in the right hand side of (5.24). We estimate it by applying twice
Proposition 5.3.6 and Lemma 5.4.1:

n
p

(Á
‹

)ÿ

j=J

---y(F j
Á

‹

(p))

--- Æ c
1

n
p

(Á
‹

)ÿ

j=J

---y(F J
Á

‹

(p))

---
j≠1+M+Ÿ

l=J+M+

3
1 ≠ Âfl

l

4

Æ c
1

---y(F J
Á

‹

(p))

---
Œÿ

j=J

j≠1+M+Ÿ

l=J+M+

3
1 ≠ Âfl

l

4

Æ C
1

---y(F J
Á

‹

(p))

---

Æ C
2

|y(p)|
J≠1+M+Ÿ

l=M+

3
1 ≠ Âfl

l

4
.

We can then take J large enough (and independent from Á) so that the last term is smaller than ÷
6

.
Notice in particular the independence of J from Á (for Á sufficiently small).

So, until now we have proved that
q

I goes to zero as ‹ æ Œ. It is immediate to check that the
same holds for

q
II . Indeed,

ÿ

II

Æ
m

‹

≠1ÿ

j=0

---AÁ
‹

(F j
Á

‹

(p)) ≠ A
0

(F j
Á

‹

(p))

--- Æ
m

‹

≠1ÿ

j=0

K
1

|Á‹ |2

for some positive constant K
1

. The assertion then follows since (Á‹ , m‹) is of bounded type.

5.5. Proofs of the main results

5.5.1. The convergence to the Lavaurs map

In this section we prove Theorem F. We shall exploit the 1-dimensional Theorem 15, i.e., the
convergence of the restriction of F n

‹

Á
‹

on C
0

=

ÂC
0

fl { y = 0 } to the 1-dimensional Lavaurs map
L–.

Lemma 5.5.1. Let p
0

œ ÂC
0

fl{ y = 0 } and (Á‹ , n‹) an –-sequence. Assume that q
0

:= L–(p
0

) belongs
to ≠ ÂC

0

fl { y = 0 }. Then for every ” there exists ÷ such that (after possibly shrinking ÂC
0

)

ÊÏo

3
≠ ÂC

0

fl F n
‹

Á
‹

3
ÂC

0

fl
1

ÊÏÿ
2≠1

1
D(

ÊÏÿ
(p

0

), ÷)

244
µ D(

ÊÏo
(q

0

), ”)

for every ‹ sufficiently large.

The need of shrinking ÂC
0

is just due to the fact that Theorem 5.2.7 and Corollary 5.2.8 give the
convergence on compact subsets of ÂC

0

(and ≠ ÂC
0

).

Proof. Let mo
‹ and mÿ

‹ be sequences of bounded type such that mÿ
‹ + mo

‹ = n‹ . By definition of
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ÊÏÿ
Á,n and ÊÏo

Á,n we have

ÊÏo
Á

‹

,mo

‹

¶ F n
‹

Á
‹

(p) =

ÂwÁ
‹

1
F ≠mo

Á
‹

(F n
‹

Á
‹

(p))

2
≠ fi

2Á‹
+ mo

‹

=

ÂwÁ
‹

1
F

mÿ

Á

‹

Á
‹

(p)

2
≠ fi

2Á‹
≠ mÿ

‹ + n‹

=

ÊÏÿ
Á

‹

,mo

‹

(p) + n‹ ≠ fi

Á‹

(5.25)

whenever F n
‹

Á
‹

(p) œ ≠ ÂC
0

. The assertion follows from Theorem 5.2.7 and Corollary 5.2.8.

Lemma 5.5.2. Let p
0

œ ÂC
0

fl { y = 0 } and (Á‹ , n‹) be a –-sequence. Assume that q
0

:= L–(p
0

)

belongs to ≠ ÂC
0

fl { y = 0 }. Then, for every polydisc �q0 centered at q
0

and contained in ≠ ÂC
0

there
exists a polydisc �p0 centered at p

0

and contained in ÂC
0

such that F n
‹

Á
‹

(�p0) µ �q0 for ‹ sufficiently
large.

Proof. Set �q0 = D1

q0 ◊ D2

q0 and analogously �p0 = D1

p0 ◊ D2

p0 . By Lemma 5.5.1 it is enough to
prove that, if �p0 is sufficiently small, for every ‹ sufficiently large we have

max

D1
p0 ◊ˆD2

p0

---y(F mÿ

‹

Á
‹

)

--- Æ 1

2

min

D1
q0 ◊ˆD2

q0

---y(F ≠mo

‹

Á
‹

)

--- .

We shall use the estimates collected in Section 5.3. First of all, notice that, by Proposition 5.3.7, it
is enough to prove that

max

pœD1
p0 ◊ˆD2

p0

---y(F n
p

(Á
‹

)

Á
‹

)

--- Æ c min

qœ≠D1
q0 ◊ˆD2

q0

----y(H
n

‹

≠nÕ
p

(Á
‹

)

Á
‹

)

----

for some constant c, where HÁ is as in (5.15). Geometrically, we want to ensure that the vertical
expansion in the third part of the orbit (i.e., after nÕ

p(Á)) is balanced by a suitable contraction
during the first part (i.e., up to np(Á)).

This means proving that
------

n
p

(Á)Ÿ

j=0

1
1 + flx(F j

Á
‹

(p)) + —Á
‹

(x(F j
Á

‹

(p)), y(F j
Á

‹

(p)))

2
------
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------

n
‹

≠nÕ
p

(Á
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j=0

1
1 + flx(Hj

Á
‹

(p)) + —H
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‹

(x(Hj
Á

‹

(p)), y(F j
Á

‹

(p)))

2
------

(5.26)

for some positive cÕ. First of all, we claim that there exists a constant K
1

(independent from
‹) such that K

1

+ np(Á‹) Ø n‹ ≠ nÕ
p(Á‹), i.e., the number of points in the orbit for FÁ before

entering in ÂDÁ
‹

(and thus in the contracting part) is at least the same (up to the constant) of the
number of points in the expanding part. Indeed, recalling that the definition (5.10) of K, we have
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K
flÕÕ|Á

‹

| Ø fi
|Á

‹

| ≠ fi≠K/2

flÕÕ|Á
‹

| . So, by Propositions 5.3.2 and 5.3.8 we have, with M+ as in (5.16),

1 + |–| +

M+

flÕÕ + np(Á‹) Ø 1 + |–| +

M+

flÕÕ +

K

flÕÕ |Á‹ | ≠ M+

flÕÕ

Ø n‹ ≠ fi

|Á‹ | +

fi

|Á‹ | ≠ fi ≠ K/2

flÕÕ |Á‹ | Ø n‹ ≠ nÕ
p(Á‹)

for ‹ sufficiently large, and the desired inequality is proved. The inequality (5.26) now follows
from Lemma 5.3.9 (and Proposition 5.3.5), and the assertion follows.

We can now prove Theorem F.

Proof of Theorem F. First of all, we can assume that p
0

belongs to C
0

= { y = 0 } fl ÂC
0

. Indeed,
there exists some N

0

such that F N0
0

(p
0

) œ ÂC
0

. So, we can prove the Theorem for the (– ≠ N
0

)-
sequence (Á‹ , n‹ ≠N

0

) and the base point F N0
0

(p
0

) and the assertion then follows since F N0
Á

‹

æ F N0
0

.
For the same reason, we can assume that q

0

:= L–(p
0

) belongs to ≠ ÂC
0

.
By Lemma 5.5.2, there exists a polydisc �p0 centered at p

0

such that the sequence F n
‹

Á
‹

is
bounded on �p0 . In particular, up to a subsequence, this sequence converges to a limit map
T–, defined in �p0 with values in ≠ ÂC

0

. Notice that the limit must be open, since the same
arguments apply to the inverse system. The relation (5) then follows from (5.25) and the assertion
follows.

In the following, given a subset U µ ÂC
0

, we denote by T–(U) the set

T–(U) := { T : U æ C2

: ÷(Á‹ , n‹)– ≠ sequence such that F n
‹

Á
‹

æ T on U } .

We denote by T– the union of all the T–(U)’s, where U µ ÂC
0

, and call the elements of T–

Lavaurs maps. Theorem F can then be restated as follows: every compact subset C
0

µ C
0

has a
neighbouhhood UC0 µ ÂC

0

such that every T–(UC0) is not empty.

Remark 5.5.3. Computer experiments suggest that given any –-sequence (Á‹ , n‹) there is a neigh-
bourhood of C

0

in ÂC
0

such that the sequence F n
‹

Á
‹

converges to a (unique) limit map T–, without the
need of extracting a subsequence.

5.5.2. The discontinuity of the large Julia set

In this section, by means of the Lavaurs maps T–, we first define a 2-dimensional analogue of the
Julia-Lavaurs set J1

(F
0

, T–), and use this set to estimate the discontinuity of the Julia set at Á = 0.

Definition 5.5.4. Let U µ ÂC
0

and T– œ T–(U). The Julia-Lavaurs set J1

(F
0

, –) is the set

J1

(F
0

, T–) := { z œ P2|÷m œ N : T m
– (z) œ J1

(F
0

) }.

The condition T m
– (z) œ J1

(F
0

) means that we require T i
–(z) to be defined, for i = 0, . . . m. In

particular, we have z, . . . , T m≠1

– (z) œ U .
From the definition it follows that J1

(F
0

) ™ J1

(F
0

, T–), for every T– œ T–. The following result
gives the key estimate for the lower-semicontinuity of the large Julia sets at Á = 0. The proof is
analogous to the 1-dimensional case, exploiting the fact that the maps T– are open.
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Theorem 5.5.5. Let T– œ T– be defined on U µ ÂC
0

and (n‹ , Á‹) be a –-sequence such that F n
‹

Á
‹

æ T–

on U . Then
lim inf J1

(FÁ
‹

) ´ J1

(F
0

, T–).

Proof. The key ingredients are the lower semicontinuity of J1

(FÁ) and Theorem F. By definition,
the set of all z’s admitting an m such that T m

– (z) œ J1

(F
0

) is dense in J1

(F
0

, T–). Thus, given z
0

and m satisfying the previous condition, we only need to find a sequence of points z‹ œ J1

(FÁ
‹

)

such that z‹ æ z
0

, for some sequence Á‹ æ 0.
Set p

0

:= T m
– (z

0

). By the lower semicontinuity of Á ‘æ J1

(FÁ) we can find a sequence of points
p‹ œ J1

(FÁ
‹

) such that p‹ æ p
0

. By Theorem F we have F mn
‹

Á
‹

æ T m
– uniformly near z

0

, and this
(since T– is open) gives a sequence z‹ converging to z

0

such that F mn
‹

Á
‹

(z‹) = p‹ œ J1

(FÁ
‹

). This
implies that z‹ œ J1

(FÁ
‹

), and the assertion follows.

Notice the function Á ‘æ J1

(FÁ) is discontinuous at Á = 0 since, by means of just the one-
dimensional Lavaurs Theorem 15, we can create points in ÂC

0

fl { y = 0 } (which is contained in
the Fatou set) satisfying L–(p) œ J1

(F
0

). Indeed, the following property holds:

’p œ ÂC
0

fl { y = 0 } there exists – such that p œ J1

((F
0

)|y=0

, L–). (5.27)

where L– is the 1-dimensional Lavaurs map on the invariant line { y = 0 } associated to –. Indeed,
since ˆB ™ J1

(F
0

) and B intersects the repelling basin R, we can find q œ J1

(F
0

) fl { y = 0 } in
the image of the Fatou parametrization Âo for (F

0

)|{ y=0 }. The assertion follows considering –
such that L–(p) = q.

In our context, given any p œ C
0

and q œ ≠C
0

as above, by means of Theorem F we can
consider a neighbourhood of p where a sequence F n

‹

Á
‹

converges to a Lavaurs map T– (necessarily
coinciding with L– on the line { y = 0 }). Since T– is open, we have that T ≠1

– (J1

(F
0

)) is contained
in the liminf of the Julia sets J1

(fÁ
‹

). This gives a two-dimensional estimate of the discontinuity.

5.5.3. The discontinuity of the filled Julia set

For regular polynomial endomorphism of C2 (which in particular are polynomial-like maps) it is
meaningful to consider the filled Julia set, whose definition we recall here for convenience.

Definition 5.5.6. Given a regular polynomial endomorphism F of C2, the filled Julia set K(F ) is
the set of points whose orbit is bounded.

Equivalently, given any sufficently large ball BR, such that BR b F (BR), the filled Julia set is
equal to

K(F ) := flnØ0

F ≠n
(BR).

In this section we shall prove that, if the family (5.6) is induced by regular polynomials, then
the set-valued function Á æ K(FÁ) is discontinuous at Á = 0.

Recall that the function Á æ K(FÁ) is always upper semicontinuous (see [Dou94]). Here the key
definition will be the following analogous of the filled Lavaurs-Julia set in dimension 1 ([Lav89]).

Definition 5.5.7. Given U µ ÂC
0

and T– œ T–(U), the filled Lavaurs-Julia set K(F
0

, T–) is the
complement of the points p such that there exists m Ø 0 such that T m

– (p) is defined and is not in
K(F

0

).
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Notice in particular that K(F
0

, T–) ™ K(F
0

) and coincides with K(F
0

) outside U . Moreover,
notice that K(F

0

, T–) is closed.

Theorem 5.5.8. Let T– œ T– be defined on some U µ ÂC
0

. and let (Á‹ , n‹) be an –-sequence such
that F n

‹

Á
‹

æ T– on U . Then
K(F

0

, T–) ´ lim sup K(FÁ
‹

).

Proof. Since the set-valued function Á ‘æ KÁ is upper-semicontinuous, there exists a large ball B
such that, for ‹ Ø ‹

0

, we have fi‹K(FÁ
‹

) µ B. Without loss of generality we can assume that
‹

0

= 1. Let us consider the space

P := { { 0 } fi
€

‹

{Á‹} } ◊ B

and its subset X given by

X := { (0, z) : x œ K(F
0

, T–) } fi
€

‹

{ (Á‹ , z) : z œ K(FÁ
‹

) } .

By [Dou94, Proposition 2.1] and the fact that P is compact, it is enough to prove that X is closed
in P . This follows from Theorem F. Indeed, let z be in the complement of K(F

0

, T–). Since this
set is closed, a small ball Bz around z is outside K(F

0

, T–), too. By definition, this means that, for
some m, we have T m

(Bz) µ K(F
0

)

c. Theorem F implies that, up to shrinking the ball Bz, we have
F n

‹

Á
‹

(Bz) µ K(F
0

)

c for ‹ sufficiently large. The upper semicontinuity of Á ‘æ K(FÁ) then implies
that F n

‹

Á
‹

(Bz) µ K(FÁ
‹

)

c, for ‹ large enough. So, Bz µ K(FÁ
‹

)

c and this gives the assertion.

Corollary 5.5.9. Let FÁ be a holomorphic family of regular polynomials of C2 as in (5.6). Then the
set-valued function Á ‘æ K(FÁ) is discontinuous at Á = 0.

Proof. The argument is the same used to prove the discontinuity of J1

(FÁ) in Section 5.5.2. If
the function Á æ K(FÁ) were continuous, Theorem 5.5.8 and the fact that K(F

0

, T–) ™ K(F
0

)

for every – would imply that all the K(F
0

, T–)’s were equal to K(F
0

). Since ÂC
0

™ K(F
0

), it is
enough to find p œ ÂC

0

and – such that p /œ K(F
0

, T–). To do this, it is enough to take any point
q in { y = 0 } not contained in K(F

0

) (recall that K(F
0

) is compact) and then consider a point
p œ ÂC

0

fl { y = 0 } and – such that L–(p) = q. The existence of such points is a consequence of the
property (5.27). Then, consider a neighbourhood U of p such that some sequence F n

‹

Á
‹

converges
to a Lavaurs map T– on U . The assertion follows since T– is open and coincides with L– on the
intersection with the invariant line { y = 0 }.





A
Slicing and entropy

A.1. Horizontal currents and slicing

The aim of this appendix is introduce and study the operation of slicing on currents on a product
space. This is the generalization to currents of the standard restriction of smooth forms to the
fibers of a product space. We shall first give the main ideas in the general setting, and then focus
on the situation we are more interested in. We refer to [Fed96] (see also [HS74]) for the details
that we shall omit.

In the sequel, M and V will be two connected open relatively compact subsets of, respectively,
Cm and Ck. We shall always denote by fi the standard projection fi : M ◊ V æ M and by L the
Lebesgue measure on M . Since all the arguments needed can be reduced to local ones, we assume
from the beginning that M is in fact the unit ball of Cm.

Recall that a locally flat current is a current R that can locally be written as R = S + dT , where
the coefficients of S and T are L1

loc functions. The following lemma (see e.g. [Fed96, 4.1.18] or
[Siu74, p.120]) ensures that positive closed currents satisfy this assumption.

Lemma A.1.1. Every current R such that both R and dR have measure coefficients is locally flat. In
particular, every positive closed current is locally flat.

Let fl be a smooth positive function on Cm, compactly supported in M and such that
´

M fl L = 1.
Then, for every point ⁄

0

œ M µ Cm, the sequence of smooth functions fl⁄0,Á(⁄) =

1

Á2m

fl
1

⁄≠⁄0
Á

2

approximate ”⁄0 in the distributional sense, i.e., for every smooth function Ï on M , we have
ˆ

M
fl⁄0,Á(⁄)Ï(⁄)dL (⁄) ≠æ

Áæ0

ˆ
M

”⁄0(⁄)Ï(⁄)dL (⁄) = Ï(⁄
0

). (A.1)

The following Theorem by Lebesgue ensures that the same is true, up to a negligible set, for
functions on M which are just L1

loc.

95
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Theorem A.1.2 (Lebesgue). Let Ï œ L1

loc(M). There exists a set L(Ï) µ M of full measure such
that, for every ⁄

0

œ M ,

lim

Áæ0

Á≠2m

ˆ
B(⁄0,Á)

|Ï ≠ Ï(⁄
0

)| = 0

and thus
lim

Áæ0

ˆ
fl⁄0,ÁÏL = Ï(⁄

0

)

for every ⁄
0

œ L(Ï) and every fl⁄0,Á smooth approximation of ”⁄0 .

The slice of a (p, p)-current on the product M ◊ V is then defined in the following way.

Definition A.1.3. Let R be a (p, p)-current on M ◊ V , and let fi denote the standard projection
M ◊ V æ M . Let ⁄

0

œ M and fl⁄0,Á be a smooth approximation of ”⁄0 . The slice of R at ⁄
0

with
respect to fi (and fl⁄0,Á) is the limit (if it exists) for Á æ 0 of the currents R · fiú

(fl⁄0,ÁL ), where L
denotes the standard Lebesgue measure on M . We shall denote the slice of R at ⁄

0

with ÈR, fi, ⁄
0

Í.

Remark A.1.4. We can also define the slice in the same way for fi a submersion from a space ÂV to
M . The theory is the same. We shall restrict to the product situation for simplicity.

By Definition A.1.3, the slice ÈR, fi, ⁄
0

Í (if it exists) is a (p, p) current on M ◊ V , supported on
fi≠1

(⁄
0

). So, we can think of it as a (p, p) current on fi≠1

(⁄
0

) (actually, we shall primarily think of
slices in this way). If R is closed and positive, its slices are closed and positive, too.

Remark that, even when the slice exists, a priori it may depend on the function fl chosen to
approximate ”⁄0 . The following theorem ensures that, for almost every ⁄

0

œ M , the slice measure
of a locally flat (p, p)-current exists and does not depend on the particular approximation of the ”
chosen. The main ingredients are Theorem A.1.2 and the following basic Lemma (see e.g. [Dem,
p. 17]).

Lemma A.1.5. Let R be a locally flat current on M ◊ V such that fi| Supp R is proper. Then, the
pushforward fiú(R) is a locally flat current on M .

Theorem A.1.6 (Theorem 4.3.2 in [Fed96]). Let R be a positive closed (p, p)-current on a product
space M ◊ V , with p Æ k = dim V . Then the slice ÈR, fi, ⁄Í exists for L -almost every ⁄ œ M and

ˆ
M

ÈR, fi, ⁄Í (Â(⁄, ·)) L = ÈR· fiúL , ÂÍ (A.2)

for every smooth (k ≠ p, k ≠ p)-form Â compactly supported on M ◊ V .

Sketch of proof. Fix some smooth (k ≠ p, k ≠ p)-form Â
0

compactly supported on M ◊ V . We start
proving the assertion using a fixed approximation flÁ of ”

0

, giving approximations fl⁄0,Á for every
”⁄0 by translation.

By Lemma A.1.5, the pushforward fiú(Â
0

· R) is given by a L1

loc function gÂ0 . By Theorem A.1.2
we thus have

lim

Áæ0

ÈR· fiú
(fl⁄0,ÁL , Â

0

)Í = lim

Áæ0

ˆ
fl⁄0,ÁgÂ0L = gÂ0(⁄

0

)

for every ⁄
0

œ L(g), i.e., for almost every ⁄
0

. By a density argument (on the space of smooth
(k ≠ p, k ≠ p)-forms Â compactly supported on M ◊ V ), we deduce that the limit above exists for
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every Â as in the statement, on a full measure subset M (independent from Â). This allows us to
define the slice of R with respect to the approximation flÁ. Denoting this slice by ÈR, fi, ⁄Ífl, we
have ˆ

M
ÈR, fi, ⁄Ífl ÂL =

ˆ
M

gÂ0 = ÈR· fiú
�L

�

, ÂÍ

and thus Equation A.2 is proved, with respect to this fixed approximation fl.
The last step is to prove the independence from fl. This follows from another density argument

and the fact that slices ÈR, fi, ⁄Ífl and ÈR, fi, ⁄ÍflÕ obtained with different approximations must
agree on a full measure subset of M .

The following result (see e.g. [Siu74, p. 124]) shows that, for analytic subsets of M ◊ V , the
operation of slice coincides with the restriction to the vertical fibers. This result is used in Section
2.2.3.

Lemma A.1.7. Let X be an hypersurface on M ◊ V such that fi|X has rank m = dim M . Then, for
every ⁄ œ M , the slice È[X], fi, ⁄Í exists and is equal to [X fl fi≠1

(⁄)].

The operation of slicing commutes with d,ˆ and ˆ. The same holds with the pushforward by
proper maps. We state this property only in the situation needed in Section 2.2.3. The Definition
of a holomorphic family of polynomial-like map is given in 1.3.1.

Lemma A.1.8 (Lemma 1.19 in [HS74], Theorem 4.3.2(7) in [Fed96]). Let f : U æ V = M ◊ V
be a family of polynomial-like maps. Let R be a positive closed (p, p)-current on M ◊ V , with
p Æ k = dim V . Then, for every ⁄ such that the slice ÈR, fi, ⁄Í exists, the slice of fúR exists and

ÈfúR, fi, ⁄Í = (f⁄)ú ÈR, fi, ⁄Í .

Proof. Since f : f≠1

(M ◊ V ) æ M ◊ V is proper, we have ([Dem, Theorem 2.14, p. 17])

fú (R · fú–) = (fúR) · –

for every smooth form – compactly supported in M ◊ V . Given any smooth approximation flÁ of
”⁄ (and since fi ¶ f = fi), we thus have

(fúR) · fiú
(flÁ · L ) = fú (R · fúfiú

(flÁ · L )) = fú (R · fiú
(flÁ · L ))

and the assertion follows by taking the limit Á æ 0.

In the remaining part of this section we focus of a particular kind of positive closed currents on
the product space, defined as follows.

Definition A.1.9. A horizontal current on the product space M ◊ V is a current whose support is
contained in M ◊ K, for some compact subset K of V .

For horizontal positive closed currents, Theorem A.1.6 can be improved: the slice exists for
every ⁄ œ M , and moreover the mass is independent of the slice. This is the content of the next
theorem, due to Dinh and Sibony. The proof relies on two main ingredients. The first is the fact
that for psh functions Theorem A.1.2 holds for every ⁄ œ M (i.e., the Lebesgue set L(Ï) of a psh
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function is the total space). This means that, for Ï psh, property (A.1) holds for every ⁄
0

œ M .
The second is the following representation property (see [Hör07, Theorem 3.2.11]).

Lemma A.1.10. Let M be an open subset of Cm. Let v be a distribution on M , such that ddcv Ø 0.
Then there exists a plurisubharmonic function u on M that represents v.

Theorem A.1.11 (Theorem 2.1 in [DS06] ). Let R be a horizontal positive closed (k, k)-current on
M ◊ V and let fi : M ◊ V æ M denote the standard projection. For every ⁄ œ M the slice ÈR, fi, ⁄Í
is well defined (and independent from the particular approximation of ”⁄ used) and is a positive
measure, whose mass is independent on ⁄. Moreover, for every continuous psh function Â on M ◊ V ,
the function uÂ on M given by

⁄ ‘æ ÈR, fi, ⁄Í (Â|fi≠1
(⁄)

) (A.3)

is psh and coincides with fiú (ÂR) as a distribution on M .

Proof. Let Â be a continuous psh function on M ◊ V and consider the product RÕ
= ÂR. Its

support is contained in the support of R, hence it is a horizontal current. It is then meaningful to
consider its pushforward fiúRÕ by the projection fi, which is a (0, 0)-current (i.e., a distribution) on
M . Since R is closed, we have

ddc !
fiúRÕ"

= fiú (ddcÂR) = fiú (ddcÂ · R) .

By Lemma A.1.10, the distribution fiú (ÂR) is then represented by a plurisubharmonic function gÂ.
It follows that, for any ⁄

0

œ M and any approximation fl⁄0,Á of ”⁄0 , (A.1) holds with Ï = gÂ.
Take now any smooth test function ÂÂ on M ◊ V . It can be written as the difference of two

continuous psh functions, ÂÂ = Â
1

≠ Â
2

. This implies that for any ⁄
0

œ M , and any approximation
fl⁄0,Á of ”⁄0 , we have

e
R · fiú

(fl⁄0,ÁLM ), ÂÂ
f

= ÈR· fiú
(fl⁄0,ÁLM ), Â

1

≠ Â
2

Í
= Èfiú (Â

1

R) , fl⁄0,ÁLM Í ≠ Èfiú (Â
2

R) , fl⁄0,ÁLM Í

=

ˆ
M

gÂ1fl⁄0,ÁLM ≠
ˆ

M
gÂ2fl⁄0,ÁLM

æ gÂ1(⁄
0

) ≠ gÂ2(⁄
0

) as Á æ 0.

It is immediate to see that the last difference does not depend from the particular decomposition
ÂÂ = Â

1

≠ Â
2

chosen. So, the limit in Definition A.1.3 exists and is equal to gÂ1 ≠ gÂ2 (and in
particular it is independent on the particular fl used). When the function Â is already psh (but
obviously not compactly supported), the function uÂ of the statement coincides with the function
gÂ constructed above, and so the last assertion is proved.

We are thus only left to prove that the slice mass is independent on ⁄
0

. Take a test function ÂÂ
which is equal to 1 in a neighbourhood U

0

◊V
0

of
!
fi≠1

(⁄
0

)

"
flSupp R, so that gÂÂ(⁄) = fiú

1
ÂÂR

2
(⁄

0

)

is now the mass of the slice measure of R, for ⁄ in the neighbourhood U
0

of ⁄
0

. Since ÂÂR = R
on fi≠1

(U
0

), the current ÂÂR is closed on fi≠1

(U
0

). So, gÂÂ = fiú(ÂR) is closed on U
0

, which means
that it is (represented by a) locally constant function near ⁄

0

. This proves the assertion.
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The second part of Theorem A.1.11 holds even if Â is not continuous (but still psh), as noted in
[Pha05].

Corollary A.1.12 ([Pha05], Proposition A.1). Let R be a horizontal positive closed (k, k)-current on
M ◊ V and Â a psh function on a neighbourhood of the support of R. Then, the function uÂ on M
defined as in (A.3) is psh, or identically equal to ≠Œ.

Proof. Let Ân be a sequence of smooth psh function decreasing to Â. For each Ân, the corresponding
uÂ

n

given by Theorem A.1.11 is psh and, by their very definition, we have that the uÂ
n

’s decrease
to uÂ (since R and its slices are positive). So, uÂ is a decreasing limit of smooth psh functions,
and is thus psh (or identically equal to ≠Œ).

From Theorem A.1.11 we can deduce the following very useful formula, which can also be seen
as a characterization of the slice measures. It will play a central role in all our study.

Proposition A.1.13 ([DS06]). Let R be a horizontal positive closed (k, k)-current on M ◊ V , �

a continuous form of maximal degree compactly supported on M and Â a continuous function on
M ◊ V . Then ˆ

M
ÈR, fi, ⁄Í(Â)�(⁄) = ÈR· fiú

(�), ÂÍ. (A.4)

Proof. First of all, the slices ÈR, fi, ⁄Í of R exist at every ⁄ œ M by Theorem A.1.11. Since R is
horizontal and � has compact support in M , we can assume that the support of Â is compact.
Moreover, we can suppose that Â is smooth, and the general case will follow by approximation.
Now, every smooth function with compact support is the difference of two smooth psh function,
so we can suppose that Â is smooth and psh (but not compactly supported). The result is then just
a reformulation of the last statement of Theorem A.1.11.

We will see later (A.1.18) that (A.4) still holds when Â is a psh function, even if not continous.
In order to prove this, we must first ensure that the product ÂR is still well-defined. This has been
proved in [Pha05]. We give here a more detailed proof of this statement. Thanks to this result, it
will then be possible to get the desired extension of (A.4).

Theorem A.1.14 ([Pha05]). Let R be a horizontal positive closed (k, k)-current and u be a psh
function on M ◊ V . Assume that there exists a ⁄

0

œ M such that ÈR, fi, ⁄
0

Í(u) ”= ≠Œ. Then the
current uR is well defined on M ◊ V . In particular, the current ddcu · R is well defined, positive and
closed.

We will use here the mass on (order 0) currents given by ÎTÎ =

q |TIJ |, where TIJ are the
distributional coeffients of the current T . Proving that T is well defined means proving that every
|TIJ | is (locally) finite. In our situation, after proving that the mass of uR is locally bounded,
it will be possible to define ÈuR, ÂÍ for a test (m, m)-form Â (where m is the dimension of M),
smooth and compactly supported in M ◊ V , by

ÈuR, ÂÍ := ÈÂR, uÍ

since, by the local boundedness of the mass of uR, the function u is integrable with respect to the
measure ÂR.
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Proof. We can assume that M is an open subset of Cm. We shall denote as usual with ⁄ =

(⁄
1

, . . . , ⁄m) the variable(s) on M and with z = (z
1

, . . . , zk) the ones on V , and with Ê⁄ and Êz

the standard Kähler forms on Cm and Ck, respectively.
Consider a compact subset of M ◊ V , of the form M

0

◊ V
0

b C ◊ Ck, such that ⁄
0

œ M
0

and R
is still a horizontal (positive closed) current on M

0

◊ V
0

. We are going to prove that the product
uR has finite mass on M

0

◊ V
0

. By the remarks above, this will prove that the product uR is well
defined there. The idea is to exploit the formula (A.4) to prove that it is possible to define the
duality coupling between uR and some vertical forms of the type Âfiú

(�), where the Âfi’s will be
suitable projections of M

0

◊ V
0

on M (and the �’s some smooth form on M). We shall prove that
we can do this for enough projections, in the sense that (Ê⁄ + Êz)

m can be written as a linear
combination of forms of the type ÂfiúÊ⁄ (see Lemma A.1.17), for which we have the estimate on
the mass.

The projections M
0

◊ V
0

æ M that we are going to consider are of the form fiA(⁄, z) = ⁄ + Az,
with A a linear map from Ck to C, i.e., a 1 ◊ k matrix with complex coefficients. We can think
at A as a point in Ck. Note that, for sufficiently small A’s, we can still think at R as a horizontal
current on the space M ◊ V

0

endowed with the new projection fiA. We are going to precise this
in a moment. The important think is to remark that what we are going to do now is, instead of
thinking of the various (M, V

0

, R, fiA) as horizontal currents of different spaces, to collect them
in a single object, with the parameter space given by the elements (A,⁄ ). This is done in the
following way. Consider the affine map H : Ck ◊ C ◊ Ck æ C ◊ Ck given by

H(A, ⁄, z) := (⁄ ≠ Az, z).

The fact that R “remains horizontal for small A’s” can now be made precise in the following
way: there exists a r œ R such that, if A œ B(0, r) µ Ck, the current R := Hú

(R) (which exists
since H is a submersion) is a horizontal positive current on ÊM ◊ V

0

, where we have denoted by
ÊM the product B(0, r) ◊ M

0

. We shall denote by fi ÂM the canonical projection of ÊM ◊ V
0

on ÊM .
Remark the following: H sends vertical copies of V to the fibers of fiA. This means that, given

a point (A,⁄ ) œ ÊM , the map H precisely sends the fiber fi≠1

ÂM (A,⁄ ) in ÊM ◊ V
0

to the fiber fi≠1

A (⁄)

in M ◊ V
0

. By the definition of R, we have that the slice measure of R on fi≠1

ÂM (A,⁄ ) is precisely
induced by the slice measure of R on fi≠1

A (⁄), that is

ÈR, fi ÂM , (A,⁄ )Í =

3
H|fi≠1

ÂM (A,⁄)

4ú
ÈR, fiA, ⁄Í. (A.5)

This can be seen as follows. Let (

ÂA, Â⁄) be a fixed point in ÊM and let H ÂA :

ÊM ◊ V æ M ◊ V be
given by

H ÂA(A, ⁄, z) = (⁄ ≠ ÂAz, z).

The idea behind the function H ÂA is the following: while H sends the vertical copy of V over (A,⁄ )

to the fiber of ⁄ for the projection fiA, the function H ÂA sends all these vertical copies always to the
fibers of ⁄ for the same projection fi ÂA.

Define the horizontal positive closed current RÂA on ÊM ◊ V as RÂA :=

1
H ÂA

2ú
R. In particular,

RÂA does not depend on A. Since the slices measures of both R and RÂA exist, (A.5) follows from
the following two identities.
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1. for every (

ÂA, Â⁄) œ ÊM , we have
e
R, Âfi ÂM , (

ÂA, Â⁄)

f
=

e
RÂA, Âfi ÂM , (

ÂA, Â⁄)

f
;

2. ÈRÂA, fi ÂM , (

ÂA, Â⁄)Í =

A1
H ÂA

2

|fi≠1
ÂM (

ÂA,Â⁄)

Bú

ÈR, fi ÂA, Â⁄Í.

In the following two lemmas we prove the two identities above.

Lemma A.1.15. With the notations as above, we have

ÈR, fi ÂM , (

ÂA, Â⁄)Í = ÈRÂA, fi ÂM , (

ÂA, Â⁄)Í.

Proof. This follows from the fact that, for every smooth test form Â on ÊM ◊V , the value of the slice
measure of a horizontal positive current depends only on the value of Â on the fiber considered.

More precisely, here let flÁ be a smooth approximation of ”
(

ÂA,Â⁄)

. We want to prove that

lim

Áæ0

e1
R ≠ RÂA

2
· Âfiú

(flÁL ÂM ), Â
f

= lim

Áæ0

e1
HúR ≠ Hú

ÂAR
2

· Âfiú
(flÁL ÂM ), Â

f
= 0

for every test function Â compactly supported in the product space ÊM ◊ V . So, it suffices to prove
that

Hú
1
ÂÂfiú

(flÁL ÂM )

2
≠

1
H ÂA

2

ú

1
ÂÂfiú

(flÁL ÂM )

2
æ 0

as Á æ 0. But, by definition of H and H ÂA, both this two terms tend to

Ï · [fi≠1

ÂA (

Â⁄)]

where Ï is the function on [fi≠1

ÂA (

Â⁄)] given by Ï(⁄, z) = Â(

ÂA, Â⁄+

ÂA, z). So the limit of the differences
goes to zero and the assertion is proved.

Lemma A.1.16. With the notations as above, we have

ÈRÂA, fi ÂM , (

ÂA, Â⁄)Í =

3
H |fi≠1

ÂM (A,⁄)

4ú
ÈR, fi ÂA, Â⁄Í.

Proof. Let Ï be any test function compactly supported on ÊM ◊ V . We have to prove that

ÈRÂA, fi ÂM , (

ÂA, Â⁄)Í(Ï(

ÂA, Â⁄, ·)) = ÈR, fi ÂA, Â⁄Í (HúÏ) = ÈR, fi ÂA, Â⁄Í
1
Ï(

ÂA, Â⁄ +

ÂA·, ·)
2

(A.6)

where the second equality comes form the definition of H (and Hú).
Consider a smooth approximation flÁ of ” ÂA,Â⁄ of the form flÁ(A,⁄ ) = flA

Á (A) · fl⁄
Á (⁄). Then, the left

hand side of (A.6) is equal to

lim

Áæ0

e
RÂA · Âfiú

1
fl⁄

Á flA
Á LM Õ

2
, Ï

f
.

Since this limit must only depend on the values of Ï on Âfi≠1

(

ÂA, Â⁄), we can assume that Ï does not
depend on A (at least on a neighbourhood of Âfi≠1

(

ÂA, Â⁄) containing the support of Âfiú
1
fl⁄

Á flA
Á LM Õ

2
,
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for Á sufficiently small). So, since also RÂA and fl⁄ are independent from A, we can start integrating
on the variable A, for each Á thus getting

lim

Áæ0

e
RÂA · Âfiú

1
fl⁄

Á flA
Á LM Õ

2
, Ï

f
= lim

Áæ0

=1
RÂA

2

|{ A=

ÂA }
· Âfiú

1
fl⁄

Á LM

2
, Ï|A=

ÂA

>

= lim

Áæ0

e1
H{ A=

ÂA }

2ú
R · Âfiú

1
fl⁄

Á LM

2
, Ï|A=

ÂA
f

= lim

Áæ0

e
R,

1
H{ A=

ÂA }

2

ú

1
Âfiú

1
fl⁄

Á LM

2
Ï|A=

ÂA
2f

.

Since H is invertible on {A =

ÂA}, we get

lim

Áæ0

e
RÂA · Âfiú

1
fl⁄

Á flA
Á LM Õ

2
, Ï

f
= lim

Áæ0

e
R,

1
H{ A=

ÂA }

2

ú

1
Âfiú

1
fl⁄

Á LM

22
·
1
H{ A=

ÂA }

2

ú
Ï|A=

ÂA
f

=

e
R, fiú

ÂA
1
fl⁄

Á LM

2
· Ï

1
ÂA,⁄ +

ÂA·, ·
2f

=

e
R, fi ÂA, Â⁄

f 1
Ï

1
ÂA,⁄ +

ÂA·, ·
22

.

and the assertion follows.

The next step consists in exploiting the fact that the integral of a psh function on the product
space against the slice measures of a horizontal current is a a psh function on the parameter space
(or is identically ≠Œ), see Theorem A.1.11 and Corollary A.1.12. In this case, we consider the psh
function Âu on ÊM ◊ V

0

given by Âu := Hú
(u), i.e., Âu(A, ⁄, z) := u(⁄ ≠ Az, z). Integrating it against

the slice measures of R we get a function v :

ÊM æ R fi{ ≠Œ} given by

v(A,⁄ ) := ÈR, fi ÂM , (A,⁄ )ÍÂu(A, ⁄, ·) (A.7)

which, by what we have just recalled, is psh on ÊM or identically ≠Œ. But this last possibility
cannot happen, since (by hypothesis and because of (A.5)) we know that

v(0, ⁄
0

) =

ˆ
fi≠1

ÂM (0,⁄0)

ÈR, fi ÂM , (0, ⁄
0

)ÍÂu(0, ⁄
0

, ·)

=

ˆ
fi≠1

M

(⁄0)

ÈR, fiM , (⁄
0

)Íu(⁄
0

, ·) ”= ≠Œ.

So, we have found that v(A,⁄ ) is an actual psh function. This means that all the restrictions of
v at fixed A (i.e., the functions ⁄ ‘æ v(A,⁄ )) are psh or identically ≠Œ. We want to prove that, for
A outside a pluripolar set of B(0, r), we have that ⁄ ‘æ v(A,⁄ ) is a psh function (not identically
≠Œ). To do this, we call P the set of the A’s such that ⁄ ‘æ v(A,⁄ ) is identically ≠Œ and we
prove that it is contained in a pluripolar subset of B(0, r). We can characterize P in the following
way: P is the intersection, over ⁄ œ M

0

, of the pluripolar set of the slices A æ v(A,⁄ ) with ⁄
fixed. We get the assertion if we prove that for at least one value Â⁄ the restriction A ‘æ v(A, Â⁄) is
not identically ≠Œ. But, by hypothesis, this is true with Â⁄ = ⁄

0

, since v(0, ⁄) ”= ≠Œ. So at least
one of the terms of the intersection defining P is pluripolar, which means that P is contained in a
pluripolar subset of B(0, r), that we denote with P. Notice in particular that 0 /œ P.

We can now proceed with the conclusion of the proof. From (A.5) and the definition of Âu as
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Hú
(u), and recalling the definition (A.7) of v, we get

ÈR, fiA, ⁄Í(u) = v(A,⁄ ) (A.8)

for every ⁄ œ M
0

. So, it follows that, for A /œ P, the function ⁄ æ È R, fiA, ⁄Í(u) is psh, not
identically ≠Œ. This implies that this function ⁄ æ È R, fiA, ⁄Í(u) is integrable on M

0

, which
means that there exists a positive constant CA such that

ˆ
M0

ÈR, fiA, ⁄Í (u(⁄, ·)) dLM > ≠CA. (A.9)

Suppose now to be able to apply formula (A.4) with Â = u, i.e., with a psh function instead of a
continuous one. Equation (A.9) would then precisely give a minoration on the modulus of the left
hand side, thus giving an estimate of the form

ÎuR · fiú
A(Êm

⁄ )ÎK < Œ

for every compact K µ M
0

◊ V
0

and every A œ B(0, r) /œ P. Since, by Lemma A.1.17 below,
it is possible to write (Ê⁄ + Êz)

m as a linear combination of forms of the type fiú
A(Êm

⁄ ), with
A œ B(0, r) /œ P, the assertion would follow. The problem is that we are not allowed not only to
use, but even to write formula (A.4) directly with u, since the uR which appears in the right hand
side is not even defined yet (defining this object is precisely what we are doing!). So, we are going
to proceed in a slightly different way. Let un be smooth negative (recall that u < 0) psh functions
decreasing to u. We are going to prove that for each of these un’s we have an estimate, uniform in
n, of the form

|ÈunR, ÂÍ| < CÂ (A.10)

for every smooth test form Â. If we can prove this, then we can write

ÈuR, ÂÍ = ÈR, u ÂÍ = ÈR, lim

næŒ
unÂÍ.

Now, by monotone convergence (decomposing Â in its positive and negative part) we can switch
the integral and the limit in the last term, thus obtaining

ÈuR, ÂÍ = lim

næŒ
ÈR, unÂÍ.

Since now the terms in the limit in right hand side are uniformly bounded, we get that also uR
has locally bounded mass, and so it is well defined.

We can assume that u is negative, and that the same holds for the un’s. In order to prove (A.10),
by Lemma A.1.17, it suffices to prove that, for every A /œ P , there exists a constant C Õ

A, uniform in
n, such that

|ÈunR, fiú
A(Êm

⁄ )Í| < C Õ
A

for every n. Using (A.4) we are left to prove that
ˆ

M0
ÈR, fiA, ⁄Í (un(⁄, ·)) dLM > ≠C Õ

A
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and, since un Ø u, from (A.9) it follows that we can use C Õ
A = CA, and we are done.

Lemma A.1.17. Let x
1

, . . . , xk
x

, y
1

, . . . yk
y

be coordinates on Ck
x

+k
y . Let Êx and Êy be the standard

Kähler forms on Ck
x and Ck

y , respectively. For A a ky ◊ kx-matrix let fiA : Ck
x

+k
y be given by

fiA(x, y) = y + Ax. Then, for every p Æ ky, (Êx + Êy)

p is a sum of terms of type fiú
A(Êy), whose

number is polynomial in k
1

. The A’s involved can be taken (as elements of Ck
x

k
y ) arbitrarily small

and outside a given pluripolar set not containing lines through the origin.

Proof. It is enough to prove that, for every p Æ k
2

, any form of type

idxi1 · dxi1 · . . . · idxi
p

· dxi
p

(A.11)

is a sum of terms of type fiú
A(Êy), whose number is polynomial in k

1

, with the required conditions
on A. The assertion follows since (Êx + Êy)

p is a sum of terms

idw
1

· dw
1

· · · · · idwp · dwp,

where each wj is either a xl or a yl, whose number is polynomial in k
2

.
We thus develop (A.11). Without loss of generality, we can assume that ij = j. Notice that, for

every complex numbers r ”= 0, 1 and w ”= 0, we have

idzi · dzi =

r

ww

5
idyi · dyi +

1

r ≠ 1

id(yi + wzi) · d(yi + wzi)

≠ r

r ≠ 1

id(yi +

w

r
zi) · d(yi +

w

r
zi)

6 (A.12)

The assertion follows by taking the wedge product of the different terms (notice that we use
a different yi for every term idxi · dxi). Thus, we need the fact that p Æ k

2

, since we need p
different yj ’s to build the combinations.

We can now prove the desired generalization of Equation (A.4).

Proposition A.1.18. Let R be a horizontal positive closed (k, k)-current on M ◊ V , � a continuous
form of maximal degree compactly supported on M and u a plurisubharmonic function on a neigh-
bourhood of the support of R such that there exists a ⁄

0

such that ÈR, fi, ⁄
0

Í (u) > ≠Œ. Then, (A.4)
holds.

Proof. Since R · fiú
� has compact support, we can assume that u is negative. Moreover, writing �

as a difference of two positive measures allows us to assume that � is a positive measure.
Take a sequence of negative smooth psh functions un decreasing to u. For each of them, (A.4)

holds with Â = un. Moreover, both terms in (A.4) are well defined with Â = u, by Theorem A.1.14.
We thus need to prove that

ˆ
M

ÈR, fi, ⁄Í(un)�(⁄) æ
ˆ

M
ÈR, fi, ⁄Í(u)�(⁄) (A.13)

and
ÈR· fiú

(�), unÍ æ ÈR · fiú
(�), uÍ
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as n æ Œ. Both convergences follow from the monotone convergence theorem, since � and
R · fiú

� are positive measures on M and M ◊ V , respectively.

A.2. Entropy dimensions

In this section we define the topological entropy and the metric entropy of a dynamical system, and
discuss the relation between the two. We bound the topological entropy of a polynomial-like map
on analytic subsets and deduce the fact, needed in Section 2.2.4, that measures of sufficiently
large metric entropy cannot charge analytic subsets.

Given a metric space X (or actually even with less assumptions, but we shall restrict us to this
setting for simplicity), there is a natural way to associate a dimension to a subset Z: we cover it by
balls of a given diameter and, letting this diameter go to zero, we compute the exponential rate of
growth of the number of balls we need in the cover. Letting NZ(Á) be the minimal cardinality of a
cover with open sets of diameter less or equal than Á, we would like to define the dimension of Z
as

dimZ = lim

Áæ0

Á log NZ(Á)

Roughly speaking, this would mean that the required number of balls grows as edim

Z

/Á. More
formally, a possible way to proceed, essentially due to Caratheodory (see [Pes08]), is the following.

Let (X, d) be a metric space. Consider a family F of open subsets and two real functions ÷ and
Â satisfying the following properties:

1. ÷(ÿ) = Â(ÿ) = 0;

2. ÷(U) > 0 and Â(U) > 0 for every U ”= ÿ;

3. ’” > 0÷Á such that ÷(U) Æ ” for every U œ T with Â(U) Æ Á.

4. ’Á there exists a countable subfamily G of F such that Â(U) Æ Á for all U œ G.

Then, given any Z µ X, define

M(Z, –,Á ) := inf

U

Óÿ
÷(U)

–
Ô

where the infimum is taken over subfamilies of F covering Z such that Â(U) Æ Á for every U œ U .
Since MC(Z, –,Á ) is non-decreasing as Á æ 0, we can consider the limit

m(Z,– ) = lim

Áæ0

M(Z, –,Á ).

This set-valued function satisfies some natural properties: m(ÿ, –) = 0 for – > 0, it is increasing
with respect to inclusion and is subadditive on countable unions. Actually, m(·, –) is almost always
0 or infinity. Indeed, for every Z there exists a critical –Z such that m(Z,– ) = Œ for – < –Z and
m(Z,– ) = 0 for – > –Z . This critical –Z is called the Caratheodory dimension dimC(Z) of Z (with
respect to ÷,Â ). It thus satisfies the following:

dimC(Z) = inf {– : m(Z,– ) = 0} = sup {– : m(Z,– ) = Œ} .
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A first example of Caratheodory dimension is the Hausdoff dimension. This is constructed by
taking all the open sets as F and ÷(U) = Â(U) = diam U for every open set U œ F . Given a
dynamical system, we will now introduce its topological entropy as a Caratheodory dimension.

Let (X, d) be a compact metric space and T : X æ X be a continuous map. Consider the Bowen
distance on X, defined as follows:

dB
n (x, y) := max

0ÆiÆn≠1

d(T i
(x), T i

(y)).

Notice that the ball Bn(x,” ) or radius ” at a point x with respect to this distance consists of
the points that we cannot distinguish from x, if observing the system for n iteration and with a
resolution of ”. Consider the family F given by all the balls Bn(x,” ), with n œ N and x œ X and
the functions on F given by given by

÷(Bn(x,” )) = e≠n and Â(Bn(x,” )) =

1

n

(we assume for simplicity that Bn(x,” ) ”= Bm(x,” ) for n ”= m). The ”-topological entropy of a
subset Z is thus the Caratheodory dimension associated to F , ÷ and Â as above. The topological
entropy is thus defined as

ht(Z) := lim sup

”æ0

ht(Z,” ).

This definition of topological entropy coincides with the classical one given by means of (n,Á )-
separated sets. Two points x, y œ X are said (n,Á )-separated if dB

n (x, y) > Á. Given any compact
subset Z µ X, we denote by N(Z, n,Á ) the maximal cardinality of a subset of Z of pairwise
(n,Á )-separated points. We then have

ht(Z) = sup

Á>0

lim sup

næŒ

1

n
log N(K, n,Á ).

We now introduce the metric entropy. We first define it following the classical approach due
to Kolmogorov-Sinai, by means of coverings, and then give an equivalent definition in the spirit
of the Caratheodory dimension. From this second it will be even clearer the relation with the
topological entropy introduced above.

Let ‹ be an invariant measure for the dynamical system X and U = { U
1

, . . . , Um } be any
measurable partition of X. The entropy of the partition U is defined as

HU := ≠
ÿ

‹(Ui) log ‹(Ui).

Let now T : X æ X be any measurable map. We can consider the partition U (n) given by the sets
Ui1 fl . . . T ≠1

(Ui2) fl · · · fl T ≠(n≠1)

(Ui
n≠1). Then the limit

h‹(T, U ) := lim

næŒ
1

n
H

1
U (n)

2

exists and the metric entropy of an invariant measure ‹ can be defined as

h‹(T ) := sup

U
h‹(T, U ).
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An alternative definition of the metric entropy, by means of the Caratheodory dimensional
approach, is the following. Given F , ÷, Â as above defining a Caratheorory dimension, we let

dimC(‹) = inf {dimC Z : ‹(Z) = 1} = lim inf

”æ0

{dim Z : ‹(Z) Ø 1 ≠ ”} .

When applied with F , ÷, Â defining the topological entropy, the dimension of the measure ‹ is
precisely the metric entropy h‹(T ). Thus, both the topological and the metric entropy are indeed
dimensions, of a set and of a measure, respectively. Moreover, notice that the definition of metric
entropy by the Caratheodory approach does not requires that ‹ is invariant (but we will only
consider this situation in the sequel). The following theorem (due to Dinaburg [Din70], Goodman
[Goo71] and Goodwyn [Goo69, Goo72]) relates the topological entropy of a compact metric space
and the metric entropies of the invariant measures on it.

Theorem A.2.1 (Variational principle). Let X be a compact metric space and T : X æ X a continuous
map. Then sup h‹(T ) = ht(T ), where the sup is over all invariant probability measures ‹.

This results gives an effective way to bound the topological entropy from below. On the other
hand, it motivates the question, given a dynamical system, of the existence of a measure of
maximal entropy. For polynomial-like maps, such a measure is given in Section 1.2.2.

The relation between the two entropies is highlighted also by the following important theorem,
due to Brin-Katok.

Theorem A.2.2 (Brin-Katok [BK83]). Let X be a compact metric space and T : X æ X be a
continuous map. Let ‹ be an invariant measure of finite entropy. Then for ‹-almost every x œ X, the
two limits

lim

Áæ0

lim sup

næŒ

1

n
log ‹ (Bn(x,Á )) and lim

Áæ0

lim inf

næŒ
1

n
log ‹ (Bn(x,Á ))

exist and are equal. If ‹ is ergodic, both limits are equal to h‹(T ).

From this theorem, we get the following relative version of the variational principle.

Lemma A.2.3. Let X be a compact metric space and g : X æ X be a continuous map. Let ‹ be an
invariant measure of finite entropy and Y a Borel subset such that ‹(Y ) > 0. Then

ht(g, Y ) Ø h‹(g).

Proof. First of all there exists a subset Y Õ µ Y of positive ‹-measure such that, for every positive
H, x œ Y Õ, Á < Á

0

(H) and n Ø n
0

(H) we have

h‹(g) ≠ H Æ ≠ 1

n
log ‹ (Bg

n(x,Á )) ,

which is equivalent to say that

‹ (Bg
n(x,” )) Æ e≠n(h

‹

(g)≠H).

This follows from two applications of Egorov Theorem to the family of functions 1

n log ‹ (Bg
n(x,Á )),

since limÁæ0

limnæŒ infmØn
1

m log ‹ (Bg
m(x,Á )) = h‹(g) for almost every x œ X, by Brin-Katok

Theorem.
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It follows that, by the definition of the topological entropy

ht(g, Y ) Ø lim sup

næŒ

1

n
log N(Y Õ, n, Á) Ø lim sup

næŒ

1

n
log

A
‹(Y Õ

)

supxœXÕ ‹ (Bg
n(x,Á ))

B

Ø lim sup

næŒ
≠ 1

n
log

1
en(h

‹

(g)≠H)

2

Ø h‹(g) ≠ H.

The assertion follows since H can be taken arbitrary small.

The following two results are very useful in order to compute the metric entropy. The first one is
minoration of the metric entropy of a measure in terms of the integral of its Jacobian. Recall that
the Jacobian JT (‹) of a measure ‹ with respect to the map T is the Radon-Nikodym derivative
(when this exists) of T ú‹ with respect to ‹, i.e., T ú‹ = JT (‹)‹.

Theorem A.2.4 (Parry [Par69]). Let T : X æ X be a measurable map and ‹ an invariant measure
such that the Jacobian JT (‹) of ‹ with respect to T exists. Then h‹(T ) Ø log JT (‹)‹.

This result is used in Section 1.2.1 to deduce that the entropy of the equilibrium measure is (at
least) log dt. The following Lemma is used in Section 2.2.4.

Lemma A.2.5. Let (X, T,‹ ) and (X Õ, T Õ, ‹ Õ
) be two invariant dynamical systems. Assume there

exists a measurable invertible map fi : X æ X Õ such that fi ¶ T = T Õ ¶ fi and fiú(‹) = ‹ Õ. Then
h‹(T ) = h‹Õ

(T Õ
).

We now adress the problem of estimating the entropy on analytic subsets for a polynomial-like
map. This is needed in Section 2.2.4 to ensure that an hyperbolic set with sufficiently large entropy
cannot be contained in the postcritical set. This will follow from the relative variational principle
stated above.

Lemma A.2.6. Let f : U æ V be a polynomial like map of topological degree dt. Let K be the filled
Julia set, X an analytic subset of V of dimension p, and ”n be such that Îfn

ú [X]ÎU Æ ”n. Then

ht(f, U fl X) = ht(f, K fl X) Æ lim sup

næŒ

1

n
log ”n Æ dú

p.

We will closely follow the strategy used by Gromov [Gro03] to estimate the topological entropy
of endomorphisms of Pk, and adapted by Dinh and Sibony to the polynomial-like setting. We will
need the following Lemma in order to get the crucial volume estimate.

Lemma A.2.7. Let V be an open subset of Ck, U a relatively compact subset of V and L be a compact
subset of C. Let X be an analytic subset of V of pure dimension p and � an analytic subset of pure
dimension p of Cm ◊ V , contained in Lm ◊ V . Let fi denote the canonical projection fi : Cm ◊ V æ V
and assume that fi(�) = X and fi : � æ X is a ramified covering of degree d

�

. Then there exist
constants c, s > 0 (independent from X, � and m) such that

volume(� fl (Cm ◊ U)) Æ c · volume(X) · msd
�

.
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Proof. The proof is essentially the same as that of [DS10, Lemma 2.5], which gives the case X = V .
The idea is the following. Denote by xi the coordinates on Cm and by yi the ones on Ck. Let Êk

denote the standard Kähler form on Ck and Êm the one on Cm. We have to bound the integral
ˆ

�flfi≠1
(U)

(Êk + Êm)

p
=

ˆ
�flfi≠1

(U)

ÿ

0ÆjÆp

A
p

j

B

Êj
k · Êp≠j

m .

Notice that, since fi : � æ X is a covering of degree d
�

, we have
´

�flfi≠1
(U)

fiúÊp
k Æ volume(X) · d

�

.
Moreover, the same is true replacing fi with a sufficiently small perturbation fiA given by fiA(x, y) =

y + Ax (where A is a k ◊ m matrix with sufficiently small coefficients). So, for A sufficiently
small, we have

´
�flfi≠1

A

(U)

fiú
A

!
Êp

k

"
Æ volume(X) · d

�

. The idea is then to bound every term´
�flfi≠1

(U)

Êj
k · Êp≠j

k by suitable combinations of integrals involving only fiú
A(Êp

k). This in turns

reduces to bound the form Êj
k · Êp≠j

m with combinations (with Æ ms terms) of wedge products of
suitable forms of type fiú

A(Êk) (which can be done by means of Lemma A.1.17). The details of the
proof are as follows. We divide the proof in three steps.

Step 1: simplifications Since this is a local problem, we can assume that V µ Ck is the unit
ball, U is the concentric ball of radius 1/2, and L is the unit disc. Denoting by fiA the projection
fiA(x, y) = y+Ax, we will always assume that the entries of the matrix A are bounded by 1/8mk in
modulus. Finally, set �A :=� fl { (x, y) : ÎfiA(x, y)Î < 3/4 } and �ú :=� fl (Lm ◊ U) = � fl fi≠1

0

(U).
With these notations, notice that we want to prove that

ˆ
�ú

(Êk + Êm)

p Æ c · volume(X) · msd
�

.

Step 2: the integral with fiA Here we get the desired estimate by replacing the integrated form
by fiú

A(Êp
k), i.e., we shall prove that

ˆ
�ú

fiú
A(Êp

k) Æ cÕ · volume(X) · d
�

.

First of all, notice that �ú µ �A (by the choice of A). Then, we have that for every a such that
ÎaÎ Æ 3/4 (still by the choice of A), fi≠1

A (a)fl� contains exactly d
�

points, counting the multiplicity.
Indeed, for every t œ [0, 1] and every a and A as above the set fi≠1

tA (a) fl � is contained in the
compact set �fl{ (x, y) : Îfi(x, y)Î Æ 7/8 } µ Lm ◊{ÎyÎ Æ 7/8 }, and thus #

1
fi≠1

tA (a) fl �

2
(which

is equal to d
�

for t = 0) is independent from t. This gives the desired inequality
ˆ

�ú

fiú
A(Êp

k) Æ
ˆ

�

A

fiú
A(Êp

k) =

+
(fiA)ú [�A], Êp

k

,
Æ volume(X) · d

�

.

Step 3: the combination of the forms To conclude the proof, it suffices to bound (Êk + Êm)

p

by a linear combination of forms (whose number is polynomial in m) of type fiú
A(Êp

k) with
coefficients of order ƒ ms1 and then use the previous estimates. Recall that Êk = ddc ÎyÎ2

=
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ddc
1
|y

1

|2 + · · · + |yk|2
2

and Êm = ddc ÎxÎ2

= ddc
1
|x

1

|2 + · · · + |xm|2
2

are the standard Kähler
forms on Ck and Cm, respectively. This follows from Lemma A.1.17, and the Lemma in proved.

Proof of Lemma A.2.6. The inequality lim supnæŒ
1

n log ”n Æ dú
p follows by the definition of dú

p.
Moreover, we have ht(f, K

0

) = 0 for every compact subset K
0

such that K fl K
0

= ÿ. So,
we just need to prove that ht(f, K fl X) Æ lim supnæŒ

1

n log ”n. Let �

X
n denote the subset of

V n µ (Ck
)

n≠1 ◊ V given by

�

X
n := {

1
z, f(z), . . . , fn≠1

(z)

2
: z œ X fl f≠n

(V ) } .

Notice that �

X
n is an analytic subset of pure dimension p in Un≠1 ◊ V µ V n µ (Ck

)

n≠1 ◊ V . Let fi
be the canonical projection (Ck

)

n≠1 ◊ V æ V . Since f : U æ V is a polynomial-like map, we have
that fi : �

X
n æ fn

(X) µ V is a union of ramified coverings of certain degrees ”i
n. More precisely,

for every component Yi of fn
(X) we have that fi : �

X
n fl fi≠1

(Yi) æ Yi is a ramified covering of a
certain degree ”i

n. Setting

lov(f) := lim sup

næŒ

1

n
log volume

1
�

X
n fl fi≠1

(U)

2

we shall prove the two inequalities

ht(f, K fl X) Æ lov (f) Æ lim sup

næŒ

1

n
log ”n.

The second one follows from Lemma A.2.7 above. Indeed, we have (since fi : �

X
n fl fi≠1

(Yi) æ Yi

is a covering of degree ”i
n and �

X
n µ Un≠1 ◊ V )

volume
1
�

X
n fl fi≠1

(U)

2
Æ c(kn)

s
ÿ

i

volume(Yi) · ”i
n

and the inequality follows since the sum
q

i volume(Yi) · ”i
n is precisely equal to the mass of fn

ú [X],
which is less than ”n by hypothesis.

Let us thus prove that ht(f, K fl X) Æ lov (f). This topological entropy is equal to

ht(f, K fl X) := sup

Á>0

lim sup

næŒ

1

n
log N(K fl X, n,Á )

where N(K fl X, n,Á ) is the maximal cardinality of an (n,Á )-separated set Sn,Á, i.e., a subset of
K fl X such that

sup

0ÆiÆn≠1

d(f i
(x), f i

(y)) > Á

for every x ”= y œ Sn,Á. Notice that N(K fl X, n,Á ) increases as Á æ 0. It is thus enough to prove
that, for every Á > 0 sufficiently small, we have

1

n
log N(K fl X, n,Á ) Æ 1

n
log

1
volume �

X
n fl fi≠1

(U)

2
+ O

3
1

n

4
. (A.14)

This is a standard argument, using the following classical estimate by Lelong.
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Lemma A.2.8. Let A be an analytic subset of dimension p in a ball B of radius r in CN . Assume
that the center of the ball belongs to A. Then the 2p-dimensional volume of A is at least equal to the
volume of a ball of radius r in Cp. In particular, we have

volume(A) Ø cpr2p

where cp > 0 is a constant independent from N and r.

Fix any Á such that d(K, U c
) > Á and let Sn,Á denote an (n,Á )-separeted subset of X fl K.

For a œ Sn,Á, denote by a(n) the point (a, f(a), . . . , fn≠1

(a)) œ �n. Let Ba,n the Euclidean ball
in V n centered at a(n) and of radius Á/2. All the balls Ba,n are pairwise disjoint (since Sn,Á

is (n,Á )-separeted), and the volume of
!
�n fl fi≠1

(U)

"
fl (Ba,n) is Ø cpÁ2p for some constant cp

(independend on n and Á, by Lemma A.2.8), since every B(f i
(a), Á /2) µ U and so Ba,n µ Un.

This implies that the cardinality of Sn,Á is bounded from above by volume(�

X
n fl fi≠1

(U))Á≠2p/cp,
and (A.14) follows.

The following Lemma, needed in Section 2.2.4, is now an immediate consequence of Lemmas
A.2.3 and A.2.6.

Lemma A.2.9. Let g be a polynomial-like map of large topological degree. Let ‹ be an ergodic
invariant probability measure for g whose metric entropy h‹ satisfies h‹ > log dú

p. Then, ‹ gives no
mass to analytic subsets of dimension Æ p.
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