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Abstract

Large scalecommunication networksare everywhere, ranging from data centers with
millions of servers to social networks with billions of users. This thesis is devoted to
the �ne-grained complexity analysis of combinatorial problems on these networks.

In the �rst part, we focus on the embeddability of communication networks to
tree topologies. This property has been shown to be crucial in the understanding
of some aspects of network tra�c (such as congestion). More precisely, we study
the computational complexity of Gromov hyperbolicity and of tree decomposition
parameters in graphs � including treelength and treebreadth. On the way, we give
new bounds on these parameters in several graph classes of interest, some of them
being used in the design of data center interconnection networks. The main result
in this part is a relationship between treelength andtreewidth: another well-studied
graph parameter, that gives a unifying view of treelikeness in graphs and has algo-
rithmic applications. This part borrows from graph theory and recent techniques in
complexity theory.

The second part of the thesis is on the modeling of two privacy concerns with
social networking services. We aim at analysing information �ows in these networks,
represented as dynamical processes on graphs. First, a coloring game on graphs is
studied as a solution concept for the dynamic of online communities. We give a
�ne-grained complexity analysis for computing Nash and strong Nash equilibria in
this game, thereby answering open questions from the literature. On the way, we
propose new directions in algorithmic game theory and parallel complexity, using
coloring games as a case example. Finally, we introduce a new learning problem
that is motivated by the need for users to uncover any misuse of their personal data
online. We give positive and negative results on the tractability of this problem.

Keywords: Graph; Algorithms; Complexity in P; Gromov Hyperbolicity;
Treelength; Treebreadth; Treewidth; Coloring games; Nash equilibrium;
Boolean function learning.





Résumé

Les grandsréseaux de communicationsont partout, des centres de données avec des
millions de serveurs jusqu'aux réseaux sociaux avec plusieurs milliards d'utilisateurs.
Cette thèse est dédiée à l'étude �ne de la complexité de di�érents problèmes com-
binatoires sur ces réseaux.

Dans la première partie, nous nous intéressons aux propriétés des plongements
des réseaux de communication dans les arbres. Ces propriétés aident à mieux com-
prendre divers aspects du tra�c dans les réseaux (tels que la congestion). Plus
précisément, nous étudions la complexité du calcul de l'hyperbolicité au sens de
Gromov et de paramètres des décompositions arborescentes dans les graphes. Ces
paramètres incluent la longueur arborescente (treelength) et l'épaisseur arborescente
(treebreadth). Au passage, nous démontrons de nouvelles bornes sur ces paramètres
dans de nombreuses classes de graphes, certaines d'entre elles ayant été utilisées
dans la conception de réseaux d'interconnexion des centres de données. Le résultat
principal dans cette partie est une relation entre longueur et largeur arborescentes
(treewidth), qui est un autre paramètre très étudié des graphes. De ce résultat, nous
obtenons une vision uni�ée de la ressemblance des graphes avec un arbre, ainsi que
di�érentes applications algorithmiques. Nous utilisons dans cette partie divers outils
de la théorie des graphes et des techniques récentes de la théorie de la complexité.

La seconde partie de cette thèse est consacrée à la modélisation de deux prob-
lèmes motivés par le respect de la vie privée sur les réseaux sociaux. Notre objectif
est d'analyser les �ux d'information dans ces réseaux, représentés par des processus
dynamiques sur des graphes. Tout d'abord, nous étudions un jeu de coloration sur
les graphes, en tant que concept de solution pour la dynamique des communautés en
ligne. Nous donnons une analyse �ne de la complexité du calcul d'équilibres de Nash
dans ce jeu, ce qui nous permet de répondre à des questions ouvertes de la littéra-
ture. De plus, nous proposons de nouvelles directions en théorie algorithmique des
jeux et en théorie de la complexité parallèle, que nous illustrons à l'aide des jeux de
coloration. Finalement, nous proposons un tout nouveau problème d'apprentissage,
motivé par le besoin des utilisateurs en ligne d'identi�er les mauvais usages de leurs
données personnelles. Nous donnons des résultats, positifs comme négatifs, sur la
faisabilité de ce problème.

Mots clés: Graphe; Algorithmes; Complexité dans P; Hyperbolicité; Tree-
length; Treebreadth; Treewidth; Jeux de coloration; Équilibre de Nash; Ap-
prentissage de fonction Booléenne.
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1.1 Context

Information sharing online has been gaining momentum over the last decades. As
examples, as of 2015 there have been 205 billion emails sent on a daily basis [Ema];
Twitter reports on 500 million messages exchanged a day on its social platform [Twi];
more generally, the global Internet tra�c has been observed to grow from 100 GB per
day in 1992 to 20,235 GBps in 2015 [Cisa]. Accordingly, the volume of data stored
also has increased, and it is now expected to exceed 40 zettabytes by 2020 [IDC].

As we now enter into this �zettabyte era� [Cisb], information technologists are
confronted to several issues that are regularly covered by the media. Two of them
are addressed in this thesis.

� Scalability � is de�ned in [Ten16] as the requirement for the algorithms to run
in quasi-linear time in the size of the network. Put in less restrictive terms, there
is a need for e�cient algorithms in order to process the communication networks.
Higher demands for such algorithms emerge from numerous domains, includ-
ing telecommunications, social networks, bio informatics, computer vision, and
economics. However, the rapid expansion of information sharing and data col-
lection has lead these networks to scale up, with now millions of servers in some
data centers [DCM], billions of users in social networks [FBN], etc. Textbook
methods do not scale well with networks of these sizes, thereby increasing the
gap between what we aim at computing and what can be achieved in practice.
Hence, there is a need for revisiting what e�cient/scalable computation means
in this context.

We will propose advances in this direction based on tools from (algorithmic)
graph theory and complexity theory.
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� Privacy � is de�ned in [EDP] as �a right which prevents public authorities [or
any other organization or individual] from measures which are [invasive for the
respect of private life], unless certain conditions have been met.� In particular,
the agressive collection of data by online companies has started raising alarms
as now reports on potential abuses are surfacing on a regular basis [Gou14,
Mat12, VDSVS12, The14]. Therefore, there is a need for predictive models in
order to detect, on an individual level, when these violations occur, or even
better to identify them.

Our main tools in this task will be computational learning theory and algorith-
mic game theory.

Before summarizing our contributions in Section 1.2, let us sketch our approach
for the thesis. Roughly, this work concentrates on a collection of combinatorial prob-
lems on graphs, whose study is motivated by these above two issues in information
technology. Since the proposed solutions are aimed at scaling up with large net-
works, we are particularly interested in obtaining a�ne-grained complexity analysis
for these problems.

In particular, our study in Part I puts the focus on some graph invariants which
have been shown in previous works [NS11] to be related with these above two is-
sues in information technology. Studying properties of the �complex networks� and
their applications is not new, and this area has been proved successful in �nding
relevant parameters and properties to study, such as: clustering [LLDM09], power-
law degree distribution [BAJ00], navigability [BKC09], (ultra) small world phe-
nomenon [WS98], structural decomposition into a core and peripheries [DGM06],
etc. In this work, we emphasize on themetric tree-likeness in graphs: a topic that
has been receiving growing attention over the last decades and that summarizes at
measuring how close the distance distribution of a graph is to a tree metric [Gro87].

We argue that studying the properties of the distance distribution is a natural
choice when considering information propagation in the graph. Furthermore, we
will detail more in Part I how the advantages and disadvantages of trees (with nice
algorithmic applications on the one hand, but vulnerabilities on the other hand) can
be translated to the graphs that are (metrically) �tree-like�.

This main line of study will be completed with the complexity analysis of two
dynamical processes on graphs in Part II, that both cover some aspects of privacy
in communication networks. Simply put, the aim of this side line of the thesis is to
design scalable tools in order to enforce privacy in these networks.

1.2 Contributions

Our work is presented in two separate parts which can be read independently. We
present their content in Sections 1.2.1 and 1.2.2, respectively.

Full papers can be found in the appendix. Indeed, we made the choice not to
include all proofs in the body of the chapters, partly for ease of readability as some
of them are very long (dozens of pages). We will only give the proofs that, in our



1.2. Contributions 3

opinion, are the best illustrations of our techniques. Sketches of the longest proofs
will be also provided.

1.2.1 Part I: Metric tree-likeness in graphs

A main objective of Part I is to obtain a �ner-grained analysis for the complexity
of computing (metric) tree-likeness parameters and decompositions of graphs. Es-
pecially, can these properties be computed on large-scale graphs, with sometimes
millions of nodes and billions of edges ? On the way, our analysis will conduce
to study the relationships between metric tree-likeness in graphs and other graph
properties (structural, topological, algebraic, etc.).

1.2.1.1 Chapter 2: A survey on graph hyperbolicity

This chapter introduces the notion of graph hyperbolicity, that gives lower and
upper bounds on the best possible distortion of the distances in a graph when it is
embedded into a tree.

First, we show positive and negative results on the complexity of computing
this parameter. In particular, on the positive side we propose a preprocessing
method for decreasing the size of the input graph by using the well-known clique-
decomposition [BPS10], of which we give a �ne-grained analysis. However, on a
more negative side, we prove that the recognition of graphs with small hyperbolicity
(at most 1=2) is computationally equivalent to the detection of induced squares in a
graph. The latter result implies a conditional cubic lower-bound on the complexity
of computing graph hyperbolicity. This is joint work with Nathann Cohen, David
Coudert and Aurélien Lancin [CD14, CCDL17].

Then, we establish new bounds on this parameter in some graph classes that
are used in the design of data center interconnection networks. In practice, these
bounds can be used in order to sharply estimate the hyperbolicity in these classes of
graphs. We complement these results with a �ne-grained analysis of the variations
of hyperbolicity that may be caused by various graph operations such as line graph,
clique graph, etc. This analysis is particularly interesting in some cases where the
operation can be e�ciently reversed (e.g., the root of a line graph can be computed
in linear time [Whi92]), as then it leads to new preprocessing methods for the
computation of graph hyperbolicity. This is joint work with David Coudert [CD16a,
CD16b].

1.2.1.2 Chapter 3: Tree decompositions with metric constraints on the
bags

New results are presented on the complexity of computingtree decompositions(de-
compositions of a graph in a tree-like manner) with metric constraints on their bags
(a.k.a., subgraphs resulting from the decomposition).

A �ner-grained analysis of the complexity of computing the clique-decomposition
is �rst presented. This problem is proved to be computationally equivalent, under
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standard complexity assumptions, to the detection of triangles in graphs and the
multiplication of two square matrices. On a more positive side, we show that it can
be solved in quasi-linear time on some classes of graph where the maximum size of
a clique is bounded. This is joint work with David Coudert [DC17].

Second, we answer open questions in the literature on the complexity of com-
puting treebreadth, pathbreadth and pathlength: that are tree-likeness parameters
all related to the notion of graph hyperbolicity. Namely, computing any of these
parameters is an NP-hard problem. In particular, recognizing the graphs with tree-
breadth at most one is NP-complete. However, we prove that the latter problem
can be solved in polynomial-time for bipartite graphs and planar graphs. This is
joint work with Sylvain Legay and Nicolas Nisse [DLN16a].

Finally, we investigate the relationships between another metric tree-likeness
parameter, called treelength, and a well-known structural tree-likeness parameter
that is called treewidth. Roughly, we establish upper and lower bounds on the
treewidth with linear dependency on the treelength in the classes of graph with
bounded-length isometric cycle (i.e., with no shortcut) and bounded genus (i.e.,
that can be drawn with no edge-crossing in a surface of bounded Euler genus). On
the scalability point of view, algorithmic applications of these results will be further
discussed. This is joint work with David Coudert and Nicolas Nisse [CDN16].

1.2.2 Part II: Privacy at large scale in social graphs

Two problems on privacy are discussed and studied in this part. Our objective is to
obtain a �ner-grained analysis for the complexity of these two problems.

1.2.2.1 Chapter 4: The computation of equilibria in coloring games

We consider a coloring game played on a graph. This game has been proposed
in [KL13] as a solution concept for the dynamics of communities' formation in social
networks. Earlier applications of the game have been suggested in [CKPS10] for
securing group communications.

We present some new results on the complexity for computing equilibria in this
game. More precisely, better-response dynamics can be used in order to compute a
stronger notion of Nash equilibrium: that is robust to every coalition of agents of
size at most a�xed k. On the positive side, we establish the exact convergence time
of the dynamic for coalitions of size at most two. However, on the negative side,
we prove that this convergence time issuperpolynomialfor coalitions of size at least
four, thereby answering negatively to open questions from [EGM12, KL13]. This is
joint work with Dorian Mazauric and Augustin Chaintreau [DMC13a, DMC17].

The latter results are complemented with a re�ned analysis for the complexity
of computing a Nash equilibrium in this game (robust to coalitions of size one).
This problem will be shown to be PTIME-hard under parallel reductions (and in
particular, to logspace reductions), which is strong evidence that it is inherently
sequential [Duc16].
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Then, the remaining of the chapter is devoted to a natural generalization of
coloring games on edge-weighted graphs. We give su�cient conditions for the ex-
istence of equilibria in these games depending on the structure of the underlying
graph. We also propose surprising constructions of games that do not admit such
equilibria. Last, we prove that the recognition of generalized coloring games that
admit such equilibria is NP-complete. Extensions of all these results to broader
classes of games will be discussed. This is joint work with Dorian Mazauric and
Augustin Chaintreau [DMC12, DMC13a, DMC17].

1.2.2.2 Chapter 5: Learning formulas in a noisy model

We next focus on a learning problem whose context can be roughly described as
follows. Suppose we are given a �xed ground-setD (representing keywords) and a
graph where each node is labeled with a subset ofD (i.e., a collection of keywords).
The nodes are assigned a Boolean under some (black-box) random process, that is
correlated with an unknown Boolean function over the labels. Then, the objective
is to learn this function. We aim at modeling with this problem the detection of
any (mis)use of individual data by online advertisers.

First, we propose an algorithm for learning the function in the simpler case
where it depends on at most one input. The latter algorithm will be the cornerstone
of more sophisticated methods in order to learn any function � but under more
restrictive hypotheses. Additional constraints are proved to be necessary in the
general case, as otherwise the function cannot be learnt already if it depends on
two inputs. This is joint work with Mathias Lécuyer, Francis Lan, Max Tucker,
Riley Sphan, Andrei Papancea, Theo�los Petsios, Augustin Chaintreau and Roxana
Geambasu [LDL+ 14, DLCG15, DTC17, CD17].

1.3 Preliminaries and notations

We borrow from the graph terminology of [BM08, Die10]. All graphs considered
will be �nite, undirected, unweighted, simple (hence, with neither loops nor multiple
edges) and connected. In this situation, for every graphG = ( V; E) we can de�ne
the distance between every two verticesu; v 2 V as the minimum number of edges
onto a uv-path of G. This distance is denoted by dG(u; v) in what follows, or simply
d(u; v) when there is no ambiguity on the graphG. Our proofs will make use of
the notions of subgraphs, induced subgraphs and isometric subgraphs, the latter
denoting a subgraphH of a graph G such that the distance between every two
vertices in H is the same inH as in G.

Let us introduce additional distance notations. The eccentricity of a vertex
v 2 V , denoted byecc(v) = max u2 V dG(u; v) is the maximum distance inG between
v and another vertex. Thediameter of G, denoted bydiam(G) = max v2 V ecc(v), is
the maximum eccentricity of a vertex of G. Furthermore, let BG(v; r ) = f u 2 V j
d(u; v) � r g be the ball of radius r centered on vertexv. The radius of G, denoted
by rad(G) = min v2 V ecc(v), is the least r such that BG(v; r ) = V for some vertex
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v. Finally, let NG[v] = BG(v; 1) be the closed neighbourhood of a vertex. The open
neighbourhood ofv is de�ned as NG(v) = NG[v] n v. By extension, let us de�ne
for every subsetS � V its open neighbourhoodNG(S) =

� S
v2 S NG(v)

�
n S and its

closed neighbourhoodNG[S] = NG(S) [ S. We will remove the subscript when no
ambiguity occurs.
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The purpose of the next two chapters is to study geometric and topological prop-
erties of graphs. They have been shown to be directly related to some important
aspects of communications in large-scale data networks, such ase.g., their perfor-
mances, reliability and security [NS11]. Hence the need for better understanding
and computing these graph properties, in order to better analyse and improve upon
these aspects of network communications.

� Chapter 2 is a survey ongraph hyperbolicity : a parameter that somewhat
represents the �curvature� of the network. We are particularly interested in
characterizing the graph classes where this parameter is either bounded or un-
bounded (respectively called hyperbolic and non hyperbolic graph classes), and
to improve upon its computation in large-scale graphs.

� Chapter 3 presents new results ontree decompositions in graphs. Namely,
positive and negative results are obtained on the complexity for computing tree
decompositions that are de�ned via metric constraints on their bags. On the
way, a �ner-grained study of the relationships between structural and metric
graph properties is proposed, that culminates with new relationships between
the two graph parameters calledtreewidth and treelength.





Chapter 2

A survey on graph hyperbolicity

Summary

This chapter summarizes my work on graph hyperbolicity. It will be presented as a
survey. The initial motivation for this work was to improve the practical computa-
tion of hyperbolicity on large graphs. In particular, I focused on the following general
question: among the graph transformations that can be e�ciently computed, which
ones do not a�ect the value of hyperbolicity by more than a moderate term (multi-
plicative or, preferably, additive) ? I proved it was the case for clique-decomposition
(Section 2.6.2.2) and the line graph operation (Section 2.4.3). Furthermore, my work
on clique-decomposition has been successfully applied on large co-authorship graphs
in order to compute their hyperbolicity [CCDL17].

I also proved new lower-bounds on graph hyperbolicity (using graph endomor-
phisms) that may further help reducing the complexity for computing the hyper-
bolicity in some graph classes (Section 2.5.2.4). By doing so, I answered an open
question from researchers at the University of Girona (private communication) who
aimed at sharply estimating the hyperbolicity of very large underlying topologies
that are used for data center interconnection networks. Indeed, these graphs have
more than one million nodes each, that overrule the current limitations of the exist-
ing algorithms for computing this parameter. By using my lower-bound techniques, I
was able to give the exact value of the hyperbolicity for most topologies, and to prove
close lower and upper bounds for the hyperbolicity of many other ones [CD16a].

I complemented these results with a conditional lower-bound on the complexity
of recognizing graphs with hyperbolicity at most 1=2 (Section 2.6.3). It suggests
that there does not exist any truly subcubic combinatorial algorithm for computing
hyperbolicity on general graphs.

All my papers on graph hyperbolicity [CCDL17, CD16a, CD16b, CD14] are
collected in the appendix.
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2.1 Introduction

In this chapter we survey the study on Gromov hyperbolicity in graphs [Gro87,
Ben13]. Roughly, it is a parameter which measures how close a given metric space is
to a metric tree [Ban90, Bun74] (formal de�nitions are postponed to Section 2.3). In
particular, it gives sharp bounds on the least distortion of the distances in a (�nite)
metric space when its elements are mapped to the nodes of an edge-weighted tree.
Trees and bounded diameter graphs (embeddable into any shortest-path tree with
constant distortion of their distances) will be shown to be trivially hyperbolic.

Gromov hyperbolicity is a broad concept that can be de�ned for any metric
space. In fact, it has been �rst investigated for word metric spaces on groups [Gro87].
This notion of hyperbolicity in groups is now regarded as a powerful tool that can be
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used in order to capture broad classes of groups with precise and important struc-
tural properties [GdLH90]. In particular, it has applications in the study of auto-
matic groups [Gro87, EPC+ 92], where informally speaking, elements of the groups
are the vertices of some (Cayley) graph and it can be checked with �nite-state au-
tomata whether two words represent either a same vertex or two adjacent vertices.
Automatic groups have nice algorithmic applications. For instance the word prob-
lem can be solved in quadratic time for these groups [EPC+ 92]. These applications
transpose to groups with �nite hyperbolicity, that are a particular case of automatic
groups.

There is now a rich literature on the hyperbolicity of groups as metric
spaces [ABC+ 91, BH11, GdLH90]. In this chapter, built as a survey, we emphasize
on some results that are more speci�c, and relevant, to graph theory.

I will present my contributions on this topic in this chapter. They will be
highlighted at various places in what follows. I hope that the organization of this
chapter will help the reader to have a good overview of the positioning of my work
in the growing literature on graph hyperbolicity.

Foreword

Let us start motivating the study of graph hyperbolicity in computer science. These
aspects will be further developed in Sections 2.2 and 2.7.

In what follows, hyperbolicity should be understood as a graph parameter which
gives bounds on the least distortion of the distances in a graph when its vertices
are mapped to points in some �tree-like� metric space. Namely, such spaces com-
prise (weighted) trees, Hyperbolic spaces, and more generally speaking spaces with
negative curvature. In general, embedding a graph into one of those spaces with
minimum distortion is NP-hard [ABF + 98]. As we shall see in this chapter, one inter-
est of hyperbolicity is that it provides sharp bounds on this distortion in polynomial
time (we will come back to this aspect in Section 2.7.1).

A rough description of hyperbolicity in graphs can be found at the beginning
of Section 2.2. It should be noted, however, that there exists a bewildering zoo of
�equivalent� de�nitions for this concept, whose formal presentation is postponed to
Section 2.3.

Why studying hyperbolicity ? Depending on its order of magnitude, the value
of hyperbolicity has some implications on network properties which, to my mind, mo-
tivate the study of this parameter in graphs. Indeed, studies on it have found appli-
cations in the analysis of congestion [CDV16], routing schemes [AGCFV, CDE+ 12,
GL05], network security [JL04], bioinformatics [DMT96, MS99] and even in adver-
tising allocation in social networks [MGHB15] � to name a few. I shall detail more
about the above in Section 2.2. Most of these applications follow from, and can
be better explained by, the close relationship between hyperbolicity and the best
possible stretch (or distortion) of the distances in a graph when it is embedded into
a Hyperbolic space (see [BS11, VS14]).
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Hyperbolicity in graphs has strong geometric interpretations. It allows to ex-
tend the mathematical concept of curvature to discrete combinatorial structures
such as graphs. Further, it can be used to characterize the so-called �underlying
hidden geometry� of complex networks [KPK+ 10]. In this aspect, graph hyperbol-
icity adds up to other classi�cation critera for networks such as (ultra) small world
phenomenon [WS98], power law degree distribution [BAJ00], navigability [BKC09],
high clustering coe�cients [LLDM09], existence of a core [DGM06], etc. Relation-
ships between hyperbolicity and these more classical features have been investigated,
e.g., in [CFHM13, JLB08, DX09, ASM13].

On the algorithmic side, another interest of hyperbolicity is that it helps analyz-
ing, and designing, some graph heuristics on large-scale networks. For instance, the
2-sweepheuristic for computing the diameter is well-known to provide very good
results in practice [MLH08], and such good results can be explained assuming a
bounded hyperbolicity [CDE+ 08]. I shall come back to the algorithmic applications
of hyperbolicity in Section 2.7.

We next introduce two general objectives in the study of graph hyperbolicity,
that will be the backbone of the main technical sections of this chapter. On the
way, the personal contributions in this chapter are summarized and classi�ed with
respect to these two general objectives.

Namely, what we aim at obtaining through this study on hyperbolicity is: a bet-
ter characterization of hyperbolic and non hyperbolic graph classes (Section 2.1.1),
and a �ner-grained analysis of the complexity of computing this parameter (Sec-
tion 2.1.2). The outline of the chapter will be detailed in Section 2.1.3.

2.1.1 First objective: characterizing �hyperbolic� and �non hyper-
bolic� graph classes

The �rst objective is to derive lower and upper bound techniques for graph hyper-
bolicity. Indeed, it has become a growing line of research to characterize the classes
of �hyperbolic� graphs, a.k.a. graphs with �small� hyperbolicity. � We shall make
more precise what a hyperbolic graph is in Section 2.3.3 �. Partial results on that
topic have been obtained in [BRSV13, HPR14] and the papers cited therein. They
often derive from upper and lower bounds on the hyperbolicity of a given graph
w.r.t. some other graph parameters and properties.

In Sections 2.4 and 2.5, I shall revisit the known bounds on the hyperbolicity of
a given graph. Equipped with these bounds, I shall detail their application to some
graph classes.

My main contributions in this area, found in collaboration with David Coudert,
are twofold.

2.1.1.1 New lower bounds on the hyperbolicity of graphs

First, based on a game-theoretic de�nition of hyperbolicity, we provide some new
lower-bound techniques on the hyperbolicity of graphs. Altogether combined with
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the existence of certain type ofsymmetries(graph endomorphisms), these techniques
are used in order to estimate the correct order of magnitude for the hyperbolicity
in various graph classes. In particular, it follows directly from this work that many
classical topologies that are used for the design of the data center interconnection
networks [AK89] have their hyperbolicity that is proportional to their diameter.

This part of the contributions has been published in [CD16a]. I will describe
these lower-bound techniques in Section 2.5.2, with some new results that are yet
to be published.

2.1.1.2 A framework to bound the variations of hyperbolicity

Second, I present a simple framework in order to lower and upper bound the vari-
ations of hyperbolicity that may be caused by various graph operations. This
framework applies to the line graph [Whi92], clique graph [Ham68] and biclique
graph [GS10] operations, among some others, and the bounds so obtained are either
new or improving upon the existing ones. Furthermore, the framework is mainly
based on a new property of the hyperbolicity of bipartite graphs, that is of indepen-
dent interest.

This part of the results has been published in [CD16b]. I will expand on it in
Section 2.4.

2.1.2 Second objective: computing the hyperbolicity of large
graphs

Then, as the second main technical part of this chapter, we will consider the com-
plexity of computing the hyperbolicity of a given graph. That is, we will review
the best-known algorithms for computing this parameter (exact and approximate),
heuristics, and conditional lower-bounds on the best possible complexity for doing
so. We note that an e�cient computation of hyperbolicity can help characteriz-
ing which graph classes are hyperbolic. Furthermore, computing the hyperbolicity
is a prerequesite for some of the above-mentioned applications to network prob-
lems [KL06, VS14] (see also Section 2.7).

There is a trivial algorithm to compute the hyperbolicity of a given n-vertex
graph in O(n4)-time and O(n2)-space. Therefore, the problem is polynomial-
time solvable (complexity class P). The latter is often regarded as a synonym for
�tractable� [Reu16]. However, with the growing size of real-life networks, ranging
from thousands to millions of nodes and billions of edges, we need to revisit the
time and space complexity of polynomial problems. This �ner-grained complexity
of polynomial problems has become a boiling topic of research [Wil16]. In this as-
pect, we note that it is also of independent interest to study on the complexity of
computing the hyperbolicity so as to obtain a better understanding of the hardness
in P.

I will present in Section 2.6 the state-of-the-art algorithms for computing the
hyperbolicity. I will also present some conditional lower-bounds on the time com-
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plexity for this problem.

My main contributions in the area can be summarized as follows:

2.1.2.1 A preprocessing method for the computation of hyperbolicity

On the positive side, relationships between hyperbolicity andclique-minimal decom-
position [BPS10] are proved and exploited for algorithmic purposes. This is joint
work with Nathann Cohen, David Coudert and Aurélien Lancin. See also the PHD
thesis of Aurélien Lancin [Lan14] for complementary information on this work.

Precisely, we prove that the hyperbolicity of a graph is at most one unit o� from
the maximum hyperbolicity from its atoms � a.k.a. the subgraphs resulting from
its decomposition by clique minimal separators. Then, we base on this result in
order to design a preprocessing algorithm for the computation of hyperbolicity. It
substitutes to a given graph a collection of supergraphs of its atoms.

As a byproduct, we obtain a linear-time algorithm for computing the hyperbol-
icity of a given outerplanar graph.

These results [CCDL17] are to be submitted for publication in a journal. They
will be detailed in Section 2.6.2.

2.1.2.2 Conditional lower-bound on the recognition of graphs with small
hyperbolicity

Finally, a computational equivalence is proven between the recognition of graphs
with hyperbolicity at most 1=2 and the detection of induced cycles of length at most
four in graphs. It can be derived from this result a conditional lower-bound on the
complexity of computing hyperbolicity, as well as a theoretically better algorithm
for the recognition of 1=2-hyperbolic graphs.

These results, found in collaboration with David Coudert, have been published
in [CD14]. I shall come back to them in Section 2.6.3.

2.1.3 Outline of the chapter

We start providing concrete applications of hyperbolicity in di�erent �elds of com-
puter science (Section 2.2). In our opinion, these applications should better motivate
the study of this parameter in graphs, and especially in network analysis. A rough
de�nition of hyperbolicity is also given in Section 2.2, whose only role is to make
the applications of this parameter more intuitive.

Then, formal de�nitions and preliminary results will be given in Section 2.3
(restating properly the informal de�nition of Section 2.2 with details). This section
is the most technical one of the chapter, as it goes deeper in the relationships between
hyperbolicity and many other �equivalent� graph properties.

Sections 2.4 and 2.5 are devoted to our �rst main objective: to �nd upper and
lower bounds on graph hyperbolicity, with the two sections being devoted respec-
tively to upper and lower bound techniques.
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�

Figure 2.1: a geodesic triangle�( u; v; w).

Finally, the two last technical Sections 2.6 and 2.7 cover the algorithmic aspects
of this parameter. In particular, the computational aspects of hyperbolicity are
covered in Section 2.6, that is the second main objective in our study.

In Section 2.7 we detail algorithmic applications of hyperbolicity to various graph
problems, that can be seen as a technical prolongation of Section 2.2. This section
is placed on purpose after all the other sections, so as to give the reader a better
overview of the (�hyperbolic�) graph classes to which these algorithmic results can
be applied. On the way, we mention several interesting open problems that are left
for future work.

We �nally conclude the chapter in Section 2.8.

2.2 Motivation

In this section, we will outline �elds in computer science where the study of graph
hyperbolicity plays a role. Our goal in doing so is to motivate the study of this
parameter for computer scientists. Before introducing these applications of hyper-
bolicity, though, we will need to sketch a few graph properties that are related to
this notion. They will be used in what follows in order to better intuit the role
played by graph hyperbolicity in some applications.

Let us start giving an intuitive de�nition of hyperbolicity, that is sometimes
named Rips condition in the literature [Gro87].

Consider any three verticesu; v; w in a given connected graphG = ( V; E). By the
triangular inequality, we have dG(u; v) � dG(u; w) + dG(w; v), with d G(u; v) being
the distance (minimum number of edges onto auv-path) between u and v in G. We
can represent this situation with a geodesic triangle�( u; v; w) = Puv [ P uw [ P vw

with its three respective sides being a �xed shortestuv-path Puv , a �xed shortest
uw-path Puw and a �xed shortest vw-path Pvw (cf. Figure 2.1).

Then, one may wonder how far a detour by vertexw can make us go from the
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shortest uv-path. The graph G is said to have� -slim triangles if for every geodesic
triangle �( u; v; w), any vertex onto the shortestuv-path Puv is at distance at most
� from Puw [P vw . The hyperbolicity of G is � up to a constant-factor � the smallest
� such that it has � -slim triangles.

As an example, ifG is a tree then since there exists a uniqueuv-path, any vertex
of �( u; v; w) must lie on two sides of the triangle, and so, the triangles inG are
0-slim. We shall come back to formal de�nitions of hyperbolicity in Section 2.3. For
now, let us describe informally a few properties of graphs with� -slim triangles.

Property 1: Almost shortest-paths stay close from each other. We �rst
sketch a relationship between the value of hyperbolicity and the distance between
(almost) shortest-paths in a graph. Let � � 1 and " 2 R be �xed constants. An
(�; " )-almost shortest-path betweenu and v is any uv-path with length at most
� � dG(u; v) + " . The length of this path thus di�ers by at most a �xed constant
(multiplicatively or additively) from the length of a shortest uv-path. In particular,
a shortest-path is an(1; 0)-almost shortest-path. In Figure 2.2, the path drawn with
thicker edges is an(2; 1)-almost shortest-path.

u v

Figure 2.2: a (2; 1)-almost shortest uv-path.

Graph hyperbolicity measures the closeness of almost shortest-paths, in the fol-
lowing sense. Two pathsP; Q are at Haussdorf distance [RW09] at mostd if every
x 2 P is at distance dG(x; Q) � d from the path Q, and in the same way every vertex
y 2 Q is at distance dG(y; P) � d from the path P. A key property of graphs with
bounded hyperbolicity is that any two almost shortest-paths with same endpoints
stay close from each other. That is, their Haussdorf distance is upper-bounded by
a linear function of the hyperbolicity of G [Shc13a]

As an instructive example, consider the particular case of two shortestuv-paths.
They can be seen as a ��at triangle� �( u; v; u). In particular, in a graph with � -
slim triangles, any two vertices on these shortest-paths that are at same distance
from u (or equivalently, to v) in the graph are at distance at most 2� (e.g., see
Figure 2.3). This property is sometimes called thek-fellow traveler property (here,
for k = 2 � ) [NS95]. The more general Property1 that almost shortest-paths stay
close to each other is sometimes called geodesic stability [Fin15].

Property 2: Existence of a core. The second property that I want to point out
can be summarized as a property of concentration for the almost shortest-paths in
a graph. Let us �x two arbitrary constants � and " . We call a subsetS of vertices
an � -core if for some fraction� of all possible pairs of vertices in the graph, every
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u v� 2�

Figure 2.3: Shortest paths stay close in a� -hyperbolic graph.

(�; " )-almost shortest-path with its two ends among these pairs is intersected byS.
As an example, the whole vertex-set is trivially a1-core, and the neighbourhood
of a single vertex is ann� 1

(n
2)

= 2=n-core (it intersects all paths between this vertex

and the other n � 1 vertices). As shown with Figure 2.4, the root of a complete
binary rooted tree is an 1=2-core. More generally, every tree has a vertex being an
1=2-core, that is sometimes called acentroid [Gol71].

Recall that the hyperbolicity measures the closeness of a graph from a metric
tree. The second key property of graphs with bounded hyperbolicity that we focus
on in this section is that there exists a ball of small radius that is an12-core. Precisely,
the radius of the ball is upper-bounded by a linear function of the hyperbolicity of
the graph G [CDV16].

r

Figure 2.4: all shortest-paths between a vertex in the left subtree and a vertex in
the right subtree go through the root.

Altogether, in any graph with bounded hyperbolicity, almost shortest-paths be-
tween any pair of vertices stay close to each other and there exists a ball with small
radius intersecting almost all of these paths.

Equipped with these two intuitive properties, we will motivate the study of graph
hyperbolicity next.
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2.2.1 Implications/applications of hyperbolicity

We now list applications and implications of graph hyperbolicity in di�erent �elds of
computer science. They encompass most of the work on the hyperbolicity in real-life
graphs over the last decades. In what follows, these applications are more or less
presented from the earliest ones to the newest ones.

Biology

One of the earliest applications of graph hyperbolicity that we are aware of is in
biology, where there is a need to obtain some trees re�ecting the similarity between
a collection of species,a.k.a. phylogenetic trees [DMT96, MS99]. Known similarities
between the species can be encoded as a graph, whose vertices are the species and
whose edge-set corresponds to the pairs of species that are closely similar. Then,
the problem summarizes as embedding the species into the leaves of some rooted
tree so that the distance between any two species in the tree corresponds to their
similarity. However, the available data is biased, and so, such a tree may not always
exist. Since, hyperbolicity is a measure of the closeness of a graph to a metric tree,
it has been proposed as a natural estimate for the bias of the data. Thus, standard
results on graphs with small hyperbolicity (summarized in the later sections) can be
applied on the data in order to �nd an approximate distance-preserving phylogenetic
tree [DHH+ 05].

Geometric routings

Hyperbolicity comes into play in the study of certain geometric routing schemes.
More precisely, we recall that the hyperbolicity is a measure of the closeness of a
graph to a tree. As we shall explain, graph hyperbolicity was shown to provide
(lower and upper) bounds on the stretch of the paths obtained with geometric
routing schemes in some �tree-like� spaces [AGCFV, VS14].

Roughly, a routing schemeis a mapping of each pair of verticesu; v to a uv-path,
that is to be followed in order to transit a message betweenu and v. Usually, we
evaluate the quality of a routing scheme on the amount of information that needs
to be stored locally at each node in order to retrieve the paths, and on the length
of the paths that are used for the transit. That is, on the distributed computing
point of view, the aim of compact routing schemes is to achieve a good compromise
between minimizing the local information to be stored and keeping close to optimal
the length of the paths that are used for the mapping.

A geometric routing scheme is one that embeds a given graph into a �simpler�
metric space. Then, the paths of the routings are constructed greedily, starting
from the source, with each vertex choosing as its successor on the path any of its
neighbours that is strictly closer � w.r.t. their coordinates in the metric space � to
the destination. In general, routing this way may not allow to reach all possible
destinations. For instance, it may lead to in�nite loops, and so, additional features
are required in order to prevent loss of packet [PR05].
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However, in his seminal paper [Kle07], Kleinberg has proved that foreverygraph,
there exist embeddings into theHyperbolic space(i.e., canonical space with nega-
tive curvature, where the classical Euclidean geometry is replaced by hyperbolic
geometry) such that greedy routing is always successful ! This paves the way to
an in-depth study of greedy routings in the Hyperbolic space [BPK10, ST08], as
well as in other �tree-like� metric spaces such as the word metric space of the free
group [CPFV14]. In particular, in some classes of graphs with bounded hyper-
bolicity, we obtain compact routings with this greedy approach. We also refer
to [DDGY07, GL05, KLNS15] for more examples of compact routing schemes in
some classes of graphs with bounded hyperbolicity.

Furthermore, it is worth pointing out that embeddings with coordinates of poly-
logarithmic size in the number of vertices can be computed for those above spaces.
In contrast to this positive result, there are graphs for whichgreedy routing is al-
ways successfulin a given space but that cannot be embedded into the space with
coordinates of sublinear size [BL05].

Network congestion

Of importance is also the implications of hyperbolicity on congestion in networks
for all-to-all communications. Precisely, consider a unit tra�c between each pair of
vertices in a network, with the unit �ow between any two vertices u; v being equally
split among the shortest uv-paths. The load of a given vertex is the amount of
�ow which transits by this vertex. In more graph-theoretic terms, it corresponds
to the betweenness centralityof the vertex [Bra01]. It is well-known and easy to
observe that in trees, there is a a vertex withquadratic load �( n2). What has been
observed experimentally in [NS11] is that, more generally, for every graph with small
hyperbolicity there is a ball of small radius such that the sum of the loads of the
vertices in the ball is also quadratic.

Basing on the above observations, the authors in [JLBB11] have conjectured the
existence in hyperbolic graphs of a ball of small radius through which it transits a
constant proportion of tra�c paths. The existence of a 1=2-core with small radius
in graphs with bounded hyperbolicity (i.e., Property 2) was shown in order to prove
the above conjecture [CDV16]. See also [BT12, LT15, Yan15] for more implications
of hyperbolicity on network congestion that take into account di�erent tra�c rates
on the communications.

Network security

In their survey [JL04] and the papers cited therein, Jonckheere and Lohsoonthorn
also have demonstrated the implication of �geometric� graph properties on some
aspects of network security. On the way, they classi�ed these geometric properties
according to three levels of granularity (small, medium and large scale). At large
scale, when considering graphs with a growing diameter, going to in�nity (topologies
in expansion such as the Internet Service Provider graph), the authors claim the
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hyperbolicity to be the relevant parameter to study for a better understanding of
the geometric aspects of network security.

They support their claim through a case-study of various security attacks. For
instance, consider an attempt of �eavesdropping� or �packet sni�ng� on the network
� unauthorized packet interception along a given link. Due to the limited abilities
to reorder the packets with TCP, they are often sent along near-optimal routes,i.e.,
almost shortest-paths. Hence, since almost shortest-paths stay close to each other
in hyperbolic graphs (Property 1), a small hyperbolicity might be detrimental in
Information Warfare, causing the routes of the packets to be too close by security
standards.

Other attacks and defense strategies where the value of hyperbolicity plays a
role are Distributed Denial of Service (DDoS) attacks, and Worm Propagation, to
name a few [JL04].

Democracy in complex networks

More recently, a new implication of hyperbolicity was suggested in [BCC15], as
a measure of democracy in complex networks, on which we now emphasize. The
latter is usually measured throughassortativity, i.e., the likeliness of vertices that
are �similar� in some ways to be adjacent [New02] (see also [ALPT16, Lot15] for
other recent approaches). In contrast with this more classical approach, the authors
in [BCC15] (see also [ADM14]) consider a set of vertices to be �in�uencial� if it
intersects the (almost shortest) paths between a large number of vertices. With
respect to their interpretation, the graph is all the more democratic that it has no
in�uential set of small size.

From this classi�cation, it follows that graphs with small hyperbolicity are �aris-
tocratic� (non democratic). Indeed, we recall that a small hyperbolicity implies the
existence of a core with small radius (Property2), which combined with some prop-
erties of real-life graphs (sparse, power-law, etc.) can be shown to be an in�uential
set of small size. Let us point out that it has been experimentally shown that social
networks have small hyperbolicity [AAD16]. Therefore, I think that this new notion
of �in�uential set� and its relationships with hyperbolicity could and should be used
in the study of elites in these networks � i.e., relatively small subsets of vertices that
are well-connected and highly connected to the other vertices [ALNP15, ALP11].

The above listing, which of course may be not exhaustive, shows the implica-
tions and applications of graph hyperbolicity in various areas. We expect more
applications of hyperbolicity to be found.

2.3 De�nitions of hyperbolicity

The purpose of this section is to present the formal de�nitions of graph hyperbolicity
and related concepts. The standard de�nitions for this parameter will be introduced
in Section 2.3.1. Then, the focus of Section 2.3.2 will be on �reformulations� of
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hyperbolicity , i.e., other geometric graph parameters than can be lower and upper
bounded by functions of the hyperbolicity. We will end discussing on what should be
understood as a �hyperbolic� graph in the remaining of this chapter (Section 2.3.3).

2.3.1 � -hyperbolic graphs

Let us start introducing the standard de�nition for graph hyperbolicity. It can be
written in two equivalent ways, that will be presented and explained next.

2.3.1.1 Four-point Condition

In what follows, the classical de�nition of hyperbolicity and its interpretation in
relation to tree embeddings are given. In the line of many papers [BKM01, BC03,
KM02], we de�ne hyperbolicity via the following, rather abstract, four-point condi-
tion.

De�nition 1 (4-points Condition, [AJ13, Gro87] ). Let G = ( V; E) be a con-
nected graph.

For every 4-tuple u; v; x; y of V , let � (u; v; x; y) be de�ned as half of the di�erence
between the two largest sums amongst:

S1 = dG(u; v) + dG(x; y), S2 = dG(u; x) + dG(v; y), and S3 = dG(u; y) + dG(v; x):

The graph hyperbolicity, denoted by � (G), is equal to maxu;v;x;y 2 V � (u; v; x; y).
Moreover, we say thatG is � -hyperbolic for every � � � (G).

u

x

y

v

(a) Every vertex on the central path is a
centroid of the 4-tuple.

u

x

y

v

(b) The central vertex is the unique centroid
of the 4-tuple.

Figure 2.5: Possible4-tuples in a tree. Each edge represents a path in the tree.

De�nition 1 generalizes a well-known four-point characterization ofmetric trees.
Indeed, a discrete metric space (and in particular, a graph), can be isometri-
cally embedded into the nodes of an edge-weighted tree if and only if it is0-
hyperbolic [Bun74]. We show one part of this equivalence with Figure 2.5. Indeed,
for every 4-tuple u; v; x; y in a tree, it can always be found a centroid such that there
is no more than two nodes amongu; v; x; y in each branch. Then, it can be checked
by the calculation that any such 4-tuple has null hyperbolicity.

Furthermore, for general graphsG (not necessarily metric trees), hyperbolicity
can also be interpreted in terms of tree embedding. In order to show that, let us �x
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any four vertices u; v; x; y of G. Suppose we aim at embeddingu; v; x; y in a tree T
such that dG(s; t) � dT (s; t) for every s; t 2 f u; v; x; yg (non contractive embedding)
and the additive distortion � (u; v; x; y) = min T maxs;t2f u;v;x;y g dT (s; t) � dG(s; t)
is minimized. We claim that � (u; v; x; y) = � (u; v; x; y), i.e., the least possible
distortion is given by the hyperbolicity of the 4-tuple.

On the one direction, let us �x T minimizing the distortion, and let us write:

S0
1 = dT (u; v) + dT (x; y), S0

2 = dT (u; x) + dT (v; y), and S0
3 = dT (u; y) + dT (v; x):

In this situation, for every i we have Si � S0
i � Si + 2 � (u; v; x; y), since by the

hypothesis dG(s; t) � dT (s; t) � dG(s; t) + � (u; v; x; y) for every s; t 2 f u; v; x; yg.
Two cases need to be distinguished. IfS0

1 < maxf S0
2; S0

3g then we haveS1 � S0
1 <

maxf S0
2; S0

3g � S2 +2 � (u; v; x; y). In this situation, since S1 = S2 +2 � (u; v; x; y), we
get � (u; v; x; y) < � (u; v; x; y). Otherwise, S0

1 � maxf S0
2; S0

3g. In particular, the two
largest sums amongstS0

1; S0
2; S0

3 must di�er by at least 2(� (u; v; x; y) � � (u; v; x; y)) .
SinceT is a tree, and so, it is0-hyperbolic, it follows that � (u; v; x; y) � � (u; v; x; y)
also in this case.

u

x

y

v
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(a) Canonical realization of the 4-tuple. Dis-
tances in the realization are exactly the dis-
tances in the graph.
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� �

(b) Non contractive tree embedding with
distortion � that is obtained from the re-
alization.

Figure 2.6: A 4-tuple so that S1 = d(u; v) + d(x; y) � S2 = d(u; y) + d(v; x) � S3 =
d(u; x) + d(v; y). We denote by � = ( S1 � S2)=2 and 
 = ( S1 � S3)=2.

On the other direction, consider in Figure 2.6a the so-called �canonical realiza-
tion� of the metric space (f u; v; x; yg; dG) with four elements. Using this represen-
tation, it is not di�cult to see that u; v; x; y can be mapped to the four leaves of an
edge-weighted tree with6 nodes so that the embedding is non contractive and with
distortion � (u; v; x; y). Altogether combined, � (u; v; x; y) = � (u; v; x; y), and so, the
hyperbolicity � (G) is the least value� such that for every 4-tuple of G, there exists
a non contractive embedding into a tree with distortion at most � .

In particular, we point out that since distances in an unweighted graph are
integer-valued, the hyperbolicity is always a half-integer. This observation is some-
times useful in order to re�ne the bounds on the hyperbolicity, and in order to
simplify some arguments in the proofs.

2.3.1.2 Toy examples

In order to give a better intuition of what this parameter represents, let us give the
hyperbolicity of a few simple graphs.
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Trees. In a tree, it is trivial that every 4-tuple can be embedded into a tree with
null distortion. Therefore, every tree is 0-hyperbolic.

Intuitively, similar arguments should apply to the graphs that are �metrically�
tree-like, i.e., embeddable into a tree with constant distortion of their distances. This
will be further discussed in Section 2.4.1 (upper-bounds on graph hyperbolicity).

Complete graphs. Perhaps more surprisingly, complete graphs are another ex-
ample of 0-hyperbolic graphs. Indeed, as shown with Figure 2.7, a complete graph
K n with n vertices can be isometrically embedded into a star withn + 1 nodes and
all its edges weighted1=2.

(a) A complete graph K 5 with �ve vertices.

1=2

1=2
1=2

1=2

1=2

(b) An isometric embedding of K 5 to the
leaves of an edge-weighted star.

Figure 2.7: Complete graphs are0-hyperbolic.

Cycles. In spite of their simple structure, the cycles are the classical examples
of graphs with large hyperbolicity. For instance, let C4n = ( v0; v1; : : : ; v4n� 1; v0)
be a cycle with 4n vertices. Then, it follows from the four-point condition that
� (v0; vn ; v2n ; v3n ) = n (see also Figure 2.8). Therefore, the hyperbolicity of a cycle
grows linearly with its length. More generally, for everyn � 1 and " 2 f 0; 1; 2; 3g,
we have� (C4n+ " ) = n � 1=2 if " = 1 and � (C4n+ " ) = n otherwise [WZ11].

Grids. Last, consider a rectangular grid with n columns andm rows. By taking
the four corners of the grid, it comes from the4-point Condition that the hyperbolic-
ity of the grid is at least minf n; mg � 1, that turns out to be its exact value [WZ11].
We refer to Figure 2.9 for an illustration.

It might help to observe that for grids and cycles, the shortest paths between the
two vertices of any diametral pair do not stay close from each other. In contrast, we
mentioned in previous Section 2.2 that in every graph with constant hyperbolicity,
almost shortest paths stay close from each other (Property2).

Furthermore, let us call a subgraphH of a graph G isometric if for every two
vertices in H , their distance in this subgraph is exactly their distance inG. Since
cycles and grids have unbounded hyperbolicity, any graph that contains a large cycle
or a large grid as an isometric subgraph also has a large hyperbolicity, that directly
follows from De�nition 1. This point will be further discussed in Section 2.5.2.1
(lower-bounds on graph hyperbolicity).
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v0

v2 v6

v4

Figure 2.8: A cycle with eight vertices.

Figure 2.9: A square grid with side length four.

2.3.1.3 Gromov product, Farris transform and ultrametrics

In his seminal paper [Gro87], Gromov de�nes hyperbolicity via a di�erent (but
equivalent) formulation than De�nition 1. In what follows, this formulation and its
interpretation in terms of ultrametric embedding are stated. Before this, we need
to introduce additional notions and terminology that are of independent interest.

De�nition 2. Let G = ( V; E) be a graph. For everyu; v; w 2 V the Gromov
product of u and v with base vertex w is de�ned ashu; vi w = ( dG(u; w)+ dG(w; v) �
dG(u; v))=2.

This notion of Gromov product naturally arises in the above canonical realization
of 4-tuples (Figure 2.6a). Indeed, by the calculation we have that the length of the
edge between vertexu and the central rectangle in the realization is exactlyhx; yi u .

Note that hu; vi w � 0 by the triangular inequality. In particular, hu; vi w = 0 if
and only if w lies onto a shortestuv-path. Thus, the Gromov product hu; vi w can
be seen as a measure of how closew is from a shortestuv-path.

In order to have a better insight of what this product represents, let us consider
the particular case whereG is a tree rooted at w. Let r be the lowest common
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ancestor ofu and v. In this situation, hu; vi w = ( d(u; w) + d(v; w) � d(u; v))=2 =
((d(u; r ) + d(r; w )) + ( d(v; r ) + d(r; w )) � (d(u; r ) + d(r; v ))) =2 = d(r; w ): Therefore,
in a tree rooted at w, the Gromov product hu; vi w is equal to the depth of the lowest
common ancestor ofu and v.

Let us also point out that hu; wi v + hw; vi u = dG(u; v). In order to exemplify
this equality, let us again consider the particular case whereG is a tree. Then,
hu; wi v = d(r; v ) and hv; wi u = d(r; u ), with r being the lowest common ancestor ofu
and v when the tree is rooted atw. As a result, hu; wi v + hw; vi u = d(r; v )+ d(r; u ) =
d(u; v), as desired.

Finally, let D � diam(G) be any upper-bound on the distances inG. We �x
any base vertexx and de�ne:

d(x) (u; v) =

(
2D � h u; vi x if u 6= v

0 otherwise.

Then, it can be checked that d(x) is a distance function, that is sometimes called a
Farris transform [Far72]. Furthermore, an interesting property of the Farris trans-
form is that for a 0-hyperbolic G, the distance function d(x) is an ultrametric . That
is, d(x) (u; v) � maxf d(x) (u; y); d(x) (y; v)g for every three verticesu; v; y [Ban90].
Put in simpler terms, the above property just says that in a tree rooted atx, if we
denote by r s;t the lowest common ancestor betweens and t, then for every u; v; y
we have that d(x; r uv ) � minf d(x; r uy ); d(x; r vy )g.

Hyperbolicity of a graph can be seen as a measure of the closeness of its Farris
transform to an ultrametric. We can formalize it as follows.

De�nition 3 ( [Gro87]). A connected graphG = ( V; E) is � -hyperbolic if and only
if for every 4-tuple u; v; x; y 2 V , we havehu; vi x � minfhu; yi x ; hv; yi xg � � .

A proof of the equivalence between De�nitions 1 and 3 can be found,e.g.,
in [AJ13]. The two of them use a characterization of metric trees, and they de-
�ne � -hyperbolic graphs by relaxing these characterizations. The same can be done
with other characterizations of metric trees, but then the corresponding values so
obtained may not equal the hyperbolicity of the graph. Nonetheless, as seen in the
following Section 2.3.2, they can only di�er from the hyperbolicity by a constant-
factor.

2.3.2 Reformulation of hyperbolicity

In what follows, we will complete the picture by presenting some of the alternative
de�nitions for graph hyperbolicity. They are useful in order to prove some properties
of � -hyperbolic graphs. On the way, we will report on known relationships between
these de�nitions (Table 2.1). We deem it as an important task. Indeed, the use of
multiple de�nitions quickly lead to large constant-factors in the proofs, with negative
consequences on the analysis of some graph algorithms [CCPP14].
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Note that except for Section 2.3.2.2, we will not use these alternative de�nitions
in what follows. Therefore, this part can be read independently from the remaining
of the chapter. In what follows, some of the reformulations of hyperbolicity will be
grouped together when they can be de�ned in a similar fashion.

2.3.2.1 De�nitions with triangles

Let us start from the de�nition given in previous Section 2.2. First, we recall that a
geodesic triangle�( u; v; w) is the union of three shortest-pathsPuv ; Pvw ; Pwu with
respective endsu and v, v and w, w and u. The above shortest-paths are called the
sides of the triangle.

De�nition 4 (Rips condition, [Gro87, BH11]). A connected graphG = ( V; E) has
� 0-slim triangles if and only if for every geodesic triangle�( u; v; w), for every vertex
x 2 P uv , we have that dG(x; Pvw [ P wu ) � � 0.

In order to see the relationship between De�nitions 1 and 4, the following con-
struction was proposed in [SG11].

u

y

x

v
w

Figure 2.10: Split of a 4-tuple in two triangles. The vertex w is chosen so that
d(x; w) = d(v; x) � bh x; yi vc, and so, d(y; w) = d(v; y) � dh x; yi ve.

Let u; v; x; y be any 4-tuple satisfying d(u; v) + d(x; y) � d(u; x) + d(v; y) �
d(u; y) + d(v; x). We �x a shortest path between every two pairs of vertices in
the 4-tuple, and then we use these paths in order to construct the two geodesic
triangles �( u; x; y) and �( v; x; y). The gist of the construction is to show that the
hyperbolicity of the 4-tuple depends linearly on the slimness of these two triangles.
To show that, we choose a vertexw 2 P xy such that � (u; v; x; y) � � (u; w; x; y) +
� (w; v; x; y) + 1 =2 (see Figure 2.10 for an illustration). Finally, a clever analysis
from [SG11] shows that when the triangles�( u; x; y) and �( v; x; y) are � -slim, it
implies � (u; w; x; y) � � , and in the same way� (w; v; x; y) � � . Therefore, if G has
� -slim triangles then it is (2� + 1=2)-hyperbolic and the bound is sharp, as shown
in [SG11].

We refer to [BH11] for a proof that conversely, every� -hyperbolic graph has
3� -slim triangles.

Other de�nitions of hyperbolicity than De�nition 4 can be stated in terms of
geodesic triangles. We summarize some of them below.

In order to get a better intuition of the following de�nitions, we recall that
hyperbolicity measures the closeness of a graph to a metric tree. Let us �x any
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geodesic triangle�( u; v; w). The three verticesu; v; w can be isometrically embed-
ded into a tree as follows. We map them to the three leavesu0; v0; w0 of a star with
center nodes =2 V so that the edgesf s; u0g; f s; v0g; f s; w0g have respective length
hv; wi u ; hu; wi v ; hu; vi w . We refer to Figure 2.11 for an illustration.

u0

v0 w0

s

hv; wi u

hu; vi w

hu; wi v

Figure 2.11: Isometric embedding of a3-tuple to the leaves of a star (a.k.a., tripod).
We recall that hv; wi u + hu; wi v = d(u; v).

Then, by an appropriate subdivision of the three edges of the star, it can be
obtained a tree T so that the shortest path Puv (resp., Pvw , resp., Pwu ) can be
isometrically embedded to the uniqueu0v0-path in T (resp., v0w0-path, resp., w0u0-
path). However, by doing so, some vertices in di�erent sides of the triangle are
mapped to the same node ofT, and so, we aim at keeping small the distance inG
between any two such vertices.

De�nition 5 ( [ABC + 91, BH11, Gro87, GdLH90]). For every graph G = ( V; E)
(with hyperbolicity � (G)), the following properties hold true:

� There exists � 1(G) = �( � (G)) such that G has � 1(G)-thin triangles: for every
triangle �( u; v; w) and for everyx 2 P uv ; y 2 P uw such that d(u; x) = d(u; y) �
hv; wi u , we have that d(x; y) � � 1(G).

� There exists � 2(G) = �( � (G)) such that G has triangles with insize at most
� 2(G): for every triangle �( u; v; w) and for every x 2 P uv ; y 2 P uw such that
d(u; x) = d(u; y) = bhv; wi uc1, we have that d(x; y) � � 2(G).

� There exists � 3(G) = �( � (G)) such that G has triangles with girth at most
� 3(G): for every triangle �( u; v; w), there exist x 2 P uv ; y 2 P uw ; z 2 P vw such
that maxf d(x; y); d(x; z); d(y; z)g � � 3(G).

� There exists � 4(G) = �( � (G)) such that: for every triangle �( u; v; w), there is
some vertexm 2 V such that maxf d(m; Puv ); d(m; Puw ); d(m; Pvw )g � � 4(G).

Further geometric interpretation of the above de�nitions of hyperbolicity can be
found, e.g., in [BH11]. Interestingly, not all geodesic triangles need to be considered.
In fact, we can constrain ourselves to ��at� triangles, a.k.a. bigons, and de�ne
hyperbolicity as follows:

1The ceiling ensures the distances to be integer values.
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De�nition 6. A graph G = ( V; E) has "-thin bigons if for every u; v; x; y 2 V such
that all of the following hold:

d(u; v) = d(u; x) + d(x; v) = d(u; y) + d(y; v) and d(u; x) = d(u; y)

we have d(x; y) � " .

u v

x

y

� "

Figure 2.12: An "-thin bigon.

We refer to Figure 2.12 for an illustration. Notice that when we takeu; v; x; y as
in the above De�nition 6 then we obtain by the calculation � (u; v; x; y) = d(x; y)=2 �
"=2. Therefore, a � -hyperbolic graph has2� -thin bigons (see also Figure 2.3 and
Property 1 in Section 2.2). Surprisingly, a converse relationship holds: if we subdi-
vide once every edge in a graphG and the subdivided graph has"-thin bigons, then
G is f (" )-hyperbolic for some (doubly exponential) function f [Pap95]. It is open
whether f can be chosen as a linear function.

2.3.2.2 Cop and Robber games with di�erent speeds

More recently, a game-theoretic characterization of hyperbolicity was proved.
A Cop and Robber gameis a well-known two-player game that is played on a

graph G = ( V; E). Classically, the two players are named the Cop and the Robber.
At �rst, the Cop chooses any vertex v0 2 V as her position in the graph, then
the Robber also chooses her initial positionu0 2 V . Then, the two players move
sequentially, with the Cop playing �rst. At each turn t � 1, a player can either stay
on her current position or move on an adjacent vertex.

The graph G is calledCop-win if whatever the Robber does, the Cop can end up
on the same position as the Robber within a �nite number of moves. Cop-win graphs
have been characterized early in [NW83, Qui83]. Since then, several extensions of
Cop and Robber games have been studied [Nis14]. One of them has a relationship
with hyperbolicity.

Precisely, in this variant the Cop and the Robber move at di�erent speedss0

(for the Cop) and s (for the Robber), with s0 � s, where the speed of a player
denotes the maximum distance in the graph between any two of its consecutive
positions [CCNV11]. The graphG is called (s; s0)-Cop-win if it is Cop-win in this
variant. In particular, Cop-win graphs in the classical Cop and Robber game are
exactly the (1; 1)-Cop-win graphs. Perhaps surprisingly, the values ofs and s0 for
which a given graphG is (s; s0)-Cop-win are related with its hyperbolicity. We �rst
need to introduce the following dismantling orderings. We recall that throughout
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this thesis, we will denote byBG(v; r ) the ball of radius r centered on the vertexv
in a given graph G.

De�nition 7. An (s; s0) � -dismantling ordering of G = ( V; E) is a total ordering
(v1; v2; : : : ; vn ) of V such that for every i < n , we haveBG(vi ; s)\f vi ; vi +1 ; : : : ; vng �
BG(vj ; s0) for somej > i .

It can be shown that every graph with an (s; s0) � -dismantling ordering is (s; s0)-
Cop-win. Conversely, if a graph is(s; s0)-Cop-win, for somes0 < s , then it has an
(s; s � 1)� -dismantling ordering [CCPP14].

Lemma 8 ( [CCPP14]). Let G = ( V; E) be a graph.
If G is � -hyperbolic then it has a(2r; r + 2 � ) � -dismantling ordering for every

positive integer r � 2� .
Conversely, if G has a(s; s0) � -dismantling ordering, for somes0 < s , then it has

hyperbolicity at most 16(s + s0)
l

s+ s0

s� s0

m
+ 1=2.

One important byproduct of Lemma 8 is that every � -hyperbolic graphG admits
a (4�; 4� ) � -dismantling ordering, that is a classical dismantling ordering for itsgraph
powerG4� � obtained from G by adding an edge between every two distinct vertices
that are at distance no more than 4� in G. Simply put, if G is � -hyperbolic then
G4� is Cop-win. As we will show in Section 2.5.2, this original characterization of
hyperbolicity is helpful in order to obtain new lower-bounds on this parameter.

2.3.2.3 Other de�nitions

In an attempt to make this part as exhaustive as possible, some other reformulations
for graph hyperbolicity are now mentioned. These alternative de�nitions are not
detailed, as it would require to introduce new technical notions that I feel to be
unnecessary for the understanding of what follows. Below, the interested reader will
be referred to some papers that are related with these alternative de�nitions.

De�nition 9. The hyperbolicity of a graph G can be de�ned via the smallest
parameters de�ning:

� its asymptotic upper curvature, denoted by� (curvature) and c (an adjustment
variable) [BF06];

� or a divergence function on its shortest-paths that is superlinear, denoted by
e(0) (initial value) and � (rate of divergence) [BH11] ;

� or a linear isoperimetric inequality, denoted byN (�lling) and K [CCPP14].

Reformulations of hyperbolicity and their relationships with the standard de�-
nition are summarized in Table 2.1. In what follows, we name� the hyperbolicity
of the graph (w.r.t. De�nition 1). The symbols that are used for each reformulation
correspond to the ones that are given in the above de�nitions.
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Table 2.1: Comparison between the de�nitions of hyperbolicity. The �rst column is
for the upper-bounds that are implied by � for each reformulation. Conversely, the
second column is for the upper-bounds on� that are implied by each reformulation.
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2.3.3 What is a �hyperbolic� graph ?

In the seminal work of Gromov [Gro87], hyperbolic graphs simply refer to the graphs
with �nite hyperbolicity. This de�nition makes sense since he studies on the hyper-
bolicity of Cayley graphs of �nitely generated groups, that may and will be in�nite.
However according to the above de�nition, �nite graphs are trivially hyperbolic in
the sense that for every graphG, there exists a �nite � such that G is � -hyperbolic.
Thus, we shoud call the cycleCn �hyperbolic� whereas it has hyperbolicity 
( n) !

In order to override this limitation, we can transpose the notion of hyperbolicity
to graph classes. As a �rst attempt, let us de�ne the hyperbolicity of a given graph
class G as � (G) = sup G2G � (G). Then, we call G hyperbolic if � (G) < + 1 . As
expected, we have that the class of trees is hyperbolic, but the class of cycles is non
hyperbolic. By abuse of notation, we refer by �hyperbolic graphs� for the graphs in
a hyperbolic graph class.

In the literature [Ben98], a broader concept of hyperbolic graph class is pre-
ferred. It is based on the property that the hyperbolicity of a given graph is
upper-bounded by its diameter (we shall come back to this relationship later on
in Section 2.4) [WZ11]. The latter means that any graphG with diameter DG

is trivially DG-hyperbolic, that does not really look satisfying. Indeed, we would
prefer to call it hyperbolic only if � (G) � DG.

Formally, let G be any class of graphs and letGn = f Gn 2 G j diam(Gn ) = ng.
Since graphs inGn are trivially n-hyperbolic, the hyperbolicity � (Gn ) is �nite (by
convention, � (; ) = 0 ). Then, the graph classG is called hyperbolic if and only if

lim
n! + 1

� (Gn )
n = 0 .

Further re�nements of the concept have been suggested,e.g., in [CFHM13].
They are listed in what follows.

De�nition 10 ( [CFHM13]) . A given graph classG is called:

� constantly hyperbolicif � (Gn ) = O(1) (that corresponds to the case where� (G)
is �nite);

� (poly)logarithmically hyperbolic if � (Gn ) = O(log n) or � (Gn ) = log O(1) n;

� weakly hyperbolicif � (Gn ) = o(n);

� and non hyperbolicotherwise.

A shorter classi�cation is adopted in [AD15]. Namely, a graph class is called hy-
perbolic in [AD15] only if it is logarithmically hyperbolic (w.r.t. De�nition 10), and
non hyperbolic otherwise. Furthermore, a graph class is calledstrongly hyperbolic
in [AD15] if � (Gn ) = O(log logn).

Finally, we note that in [DKMY15], the authors consider a graph class to be
hyperbolic only if it has the additional requirement that the graphs in the class
have their maximum degree� that is constantly upper-bounded. By doing so, since
the diameter of ann-vertex graph must be
(log n= log �) , there can be no constant
upper-bound on the diameter in an in�nite graph class, and so, we can dismiss all



36 Chapter 2. A survey on graph hyperbolicity

the classes of bounded diameter graphs (that are trivially hyperbolic). As we will
discuss next in Section 2.7, this choice presents algorithmic advantages.

2.4 Hyperbolic graph classes

The next two sections are devoted to the �rst objective in this study of hyperbol-
icity, i.e., the characterization of hyperbolic and non hyperbolic graph classes. In
particular, this section covers known upper-bound techniques on graph hyperbol-
icity. We list su�cient conditions for a graph class to be constantly hyperbolic.
Examples of (hyperbolic) graph classes for which these conditions hold are given.
We also provide examples of hyperbolic graphs that donot satisfy these conditions.
The latter will show the limitations of these upper-bound techniques.

Outline of the section. In Section 2.4.1, we present upper-bounds depending on
the best distortion of the distances in a graph when it is embedded in a tree. We also
discuss about relationships between hyperbolicity and tree decompositions. Then in
Section 2.4.2, we present two more upper-bounds on the hyperbolicity depending on
the diameter and the chordality properties of the graph. We end up in Section 2.4.3
on personal contributions, showing upper and lower bounds on the variations of
hyperbolicity that may be caused by various graph operations. The latter result is
joint work with David Coudert.

2.4.1 Tree-likeness in graphs and hyperbolicity

We start presenting upper-bounds on the hyperbolicity that depend on the best
possible distortion of the distances in a graph when it is embedded into a tree.

Indeed, we recall that hyperbolicity measures how close a given graph is to a met-
ric tree. Unsurprisingly, there exists a strong relationship between this parameter
and the (NP-hard) problem of embedding a given graph into a tree with minimum
distortion (additive or multiplicative). In particular, as we showed in Section 2.3
the hyperbolicity � (G) of a given graph G is the minimum possible � such that
every 4-tuple of vertices in G can be (non contractively) embedded into a tree with
additive distortion at most � . Therefore, � (G) is a lower boundon the parameters:

� tree-distortion (minimum multiplicative distortion in a tree embedding);

� and tree-stretch(minimum t such that G admits a tree t-spanner, i.e., a spanning
tree with multiplicative distortion at most t).

These above relationships are described in the survey [AAD16] and the papers cited
therein. Summarizing, we get the following upper-bounds on hyperbolicity:

Theorem 11 ([AAD16]) . Every graph with tree-distortion at mostd is d-hyperbolic.
Similarly, for every t � 1, every graph with a treet-spanner is t-hyperbolic.
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2.4.1.1 Application: hyperbolic graph classes

Below, we give examples of graph classes that are (metrically) �tree-like�, and so,
hyperbolic.

Graphs with a tree t-spanner. By Theorem 11, for any �xed t � 1, the class of
graphs with a treet-spanner is constantly hyperbolic. The latter includes well-known
classes such as: trees (trivially), interval graphs [LB62], split graphs [FH76], convex
bipartite graphs [Glo67] and chordal bipartite graphs (a.k.a., bipartite graphs with
no induced cycle of length at least six) [GG78], etc.

Graphs with bounded tree distortion. Similarly, by Theorem 11 any class
of graphs with bounded tree distortion is constantly hyperbolic. In particular, the
classes of chordal graphs (graphs with no induced cycles of length at least four)
and dually chordal graphs (a.k.a., (2; 1)-Cop win graphs, see Section 2.3.2.2) are
constantly hyperbolic [Dir61, BDCV98]. It can be intuited (and, with slightly more
work, formally proved) from the existence of their respective tree-representations,
sometimes called the clique-tree (for chordal graphs) [Gav74] and the compatible
tree (for dually chordal graphs) [DCG14].

2.4.1.2 Examples of hyperbolic graphs that are not �tree-like�

However, a converse of Theorem 11 does not hold : not all hyperbolic graphs have a
constant tree-distortion or tree-stretch. In fact, these two parameters can di�er from
� (G) by at most a logarithmic or polylogarithmic factor [AAD16], and this is sharp.
We illustrate this fact with the following construction in Figure 2.13, sometimes
called a ringed tree [CFHM13].

The ringed tree RT (k) is obtained from a rooted complete binary tree withk
levels by connecting the vertices at the same level with a circle, that is constructed
under rules that we now detail. Formally, we start from a complete binary tree,
then we label the vertices as follows. The root is labeled0, and the two children of
a vertex labeledi are labeled2i + 1 and 2i + 2 . Finally, at each level l � 0, nodes
are labeled from2l � 1 to 2l+1 � 2, and we add edges in order to obtain the cycle
(2l � 1; 2l + 1 ; : : : ; 2l + i; : : : ; 2l+1 � 2).

As a side contribution of this thesis (not published elsewhere), we improve upon
the best-known upper-bound on the hyperbolicity of ringed trees:

Lemma 12. � (RT (k)) � 3.

Proof. For every vertex v, let `(v) be its level in the underlying rooted tree (its
distance to the root). Suppose for the sake of contradiction that� (RT (k)) > 3. Let
u; v; x; y be such that � (u; v; x; y) > 3 and `(u) + `(v) + `(x) + `(y) is minimized.
W.l.o.g., vertex u is on the lowest level,i.e., `(u) � maxf `(v); `(x); `(y)g. As proved
in [CFHM13], it implies that for every vertex w in a upper level `(w) � `(u), there
exists a shortestuw-path which �rst goes up for some time, then stays on the same
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Figure 2.13: a ringed treeRT (3).

level for at most three hops, and �nally goes down. Indeed, this construction can
be intuited by noticing that the two ends s and t of a �horizontal� st-path of length
p � 4, staying on the same level̀ (s) = `(t), can be connected via a path of length
� 2+ dp=2e � p which �rst goes up for one hop, then stays at the same level̀(s) � 1
and �nally goes down for one hop. We call it a canonical shortest path.

Let us use the above property in order to prove the existence of some vertex of
v; x; y that is at distance at most three from u. Indeed, let u0 be the parent node of
u in the underlying rooted tree. Since`(u0) = `(u) � 1, we have by the minimality
of `(u) + `(v) + `(x) + `(y) that � (u0; v; x; y) � 3. In this situation, we note that if it
were the case that for any ofv; x; y, there is a shortest path between this vertex and
u passing byu0, then it would follow from the 4-point Condition (De�nition 1) that
� (u; v; x; y) = � (u0; v; x; y) � 3, that is a contradiction. So, let us assume w.l.o.g.
that u0 does not lie on any shortestuv-path. In particular, the canonical shortest
uv-path does not go up, and so,̀ (v) = `(u). Furthermore, since this path stays at
most three hops on the same level, we get d(u; v) � 3.

However, in this situation � (u; v; x; y) � d(u; v) � 3 [SG11], that is a contra-
diction. Indeed, the upper-bound � (u; v; x; y) � d(u; v) can be seen as follows. As
we observed earlier (Figure 2.11), the three verticesu; x; y can be embedded to the
three leavesu0; x0; y0 of an edge-weighted starS with null distortion. If we add a
new leaf nodev0 that we make adjacent to u0 in S, then by weighting d(u; v) the
edgef u0; v0g, one obtains a tree embedding of the4-tuple with distortion at most
d(u; v), and so,� (u; v; x; y) � d(u; v).

Altogether, � (RT (k)) � 3.

Lemma 12 improves on [CFHM13], where they proved that� (RT (k)) � 40. It
proves that we have a constant upper-bound on the hyperbolicity of any ringed tree.
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In contrast, the following lemma shows that the tree distortion of a ringed tree can
be arbitrarily large.

Lemma 13 ( [Yan15]). Any tree embedding ofRT (k) has distortion 
( k).

To have a better intuition of Lemma 13, we �rst observe that the underlying
rooted tree of RT (k) is a shortest-path tree. In a rooted treeT, the path between
two vertices at same distance from the rootr must pass by their lowest common
ancestor, that is strictly closer from r . In contrast, all vertices at the same layer` in
RT (k) can be connected via a circle, with only vertices at same distancèfrom the
root. Intuitively, it implies that in a (non expansive) tree embedding of RT (k), the
circles in each layer should be contracted to a single node2. Hence, the distortion
of any tree embedding ofRT (k) should be at least the maximum distance between
any two vertices at the same level, that is
( k) for the lowest level.

2.4.1.3 Relationship with tree decompositions

We complement Section 2.4.1 with relationships between hyperbolicity and tree
decompositions [RS86], that are a more common way to measure tree-likeness in
graphs. Formally, a tree decomposition(T; X ) of G is a pair consisting of a tree
T and of a family X = ( X t )t2 V (T ) of subsets ofV indexed by the nodes ofT and
satisfying:

�
S

t2 V (T ) X t = V ;

� for any edgee = f u; vg 2 E, there exists t 2 V (T) such that u; v 2 X t ;

� for any v 2 V , f t 2 V (T) j v 2 X t g induces a subtree, denoted byTv , of T.

The setsX t are calledthe bagsof the decomposition. As an example, we give a tree
decomposition of a cycle in Figure 2.14b.

A graph has treewidth at most k if it has a tree decompositions with bags of size
at most k + 1 . As an example, trees are exactly the graphs with treewidth1.

Treewidth is a well-studied parameter [Bod06], and is generally accepted as a
good measure of the structural tree-likeness in graph. In contrast, hyperbolicity is
a measure of the metric tree-likeness in graphs, and as such it is uncomparable with
treewidth. Indeed, as shown with Figure 2.14b, cycles have treewidth at most2,
whereas we proved in Section 2.3.1.2 that the hyperbolicity of cycles grows linearly
with their size. Conversely, it is well-known that the complete graph K n with n
vertices has treewidthn � 1, whereas we proved in Section 2.3.1.2 that it has null
hyperbolicity.

On the other hand, we can compare graph hyperbolicity withtreelength[DG07]
and treebreadth[DK14], that can also be de�ned in terms of tree decompositions. A
graph has treelength at mostl if it has a tree decomposition where the distance in
the graph between any two vertices in a same bag is at mostl . It has treebreadth

2This intuition can be formalized through the notion of layering tree [CD00], that will be further
discussed in the next Section 2.7.
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(b) Tree-decomposition of C12 of width two and
length four.

Figure 2.14: Cycles have treewidth two and treelengthdn=3e.

at most r if it has a tree decomposition whose every bag is contained in a ball of
radius at most r (the center of the ball may not be in the bag). Treelength and
treebreadth di�er from tree distortion by at most a constant-factor, and so, they
can be compared with hyperbolicity the same way [AAD16].

I will expand more on treelength and treebreadth in the next chapter on tree
decompositions. In particular, I will show that in some cases where there is no large
clique-minor and no long isometric cycle in the graph, treewidth can be compared
with treelength (and so, with hyperbolicity) [CDN16].

2.4.2 Classical upper-bounds on hyperbolicity

In this subsection, we now survey two classical techniques in order to upper-bound
graph hyperbolicity. Section 2.4.2.1 is devoted to the relationship between diam-
eter and hyperbolicity. In Section 2.4.2.2, relationships between hyperbolicity and
chordality properties of the graph are presented.

2.4.2.1 Diameter

As stated earlier, there is a standard upper-bound of graph hyperbolicity using the
diameter of the graph.

Lemma 14 ( [KM02, MP14, WZ11]). For every graphG = ( V; E), we have� (G) �
bdiam(G)=2c.

A simple proof of Lemma 14 can be easily derived from the4-point condition
(De�nition 1). Furthermore, we point out that since any graph G can be embedded
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in a shortest-path tree with distortion O(diam(G)) , Lemma 14 is not that surprising.
Of course, the converse of the lemma holds false, as easily seen with any path.

It follows that any class of graphs with constant upper-bound on the diame-
ter is (trivially) constantly hyperbolic. Since the domination number and other
domination-like parameters are themselves upper-bounds on the diameter, the au-
thors in [HPR14] notice that the class of graphs with bounded domination number
is also constantly hyperbolic.

We note that in [BCCM15, CCL15], it can be found variations of Lemma 14
(some of them using the eccentricity of the vertices,i.e., the maximum distance in
the graph between a given vertex and any other vertex).

2.4.2.2 Chordality

Much stronger upper-bounds on the hyperbolicity can be derived from thechordality
of the graph. Namely, ak-chordal graph is a graph with no induced cycle of length
at least k + 1 [Ueh99]. In particular, 3-chordal graphs are exactly the usual chordal
graphs. We recall that the class of chordal graphs is constantly hyperbolic [BKM01].
The result extends to the class ofk-chordal graphs:

Theorem 15 ( [CD00, WZ11]). For every k � 4, every k-chordal graph G is
bk=2c=2-hyperbolic, and the bound is sharp.

The converse of Theorem 15 holds false. As an example, consider a wheelWn

(obtained from the cycle Cn with n vertices by adding a universal vertex). On the
one hand, it has diameter at most two and so, it has hyperbolicity at most1 by
Lemma 14. On the other hand, it isn-chordal.

Application: even more hyperbolic graph classes. By Theorem 15, the class
of k-chordal graphs is constantly hyperbolic for every �xedk � 4. The latter encom-
pass well-studied graph classes such as: chordal graphs (trivially), with well-known
subclasses such as strongly chordal graphs [Far83]; weakly chordal graphs [Hay85];
AT-free graphs [COS97], and so, cocomparability graphs [GMT84] and permutation
graphs [EPL72]; distance-hereditary graphs [BM86] and cographs [Sei74].

More recently, a result of the same �avour as Theorem 15 was proved in [MP15]
with a di�erent (and more technical) notion of chordality. Given G = ( V; E) and
a cycle C in G, a bridge (or shortcut) of C is any shortest uv-path between two
vertices u; v 2 C such that dC (u; v) > dG(u; v). The bridge is called strict when it
intersects the cycleC only in its two endvertices. Let Dm (C) � V (C) contain the
ends of all strict bridges ofC of length at most m.

Then, a graph G is called"-densely(k; m)-path chordal if for every cycleC with
length at least k, every vertex in C is at distance at most" from a vertex in Dm (C)
(see Figure 2.15 for an example). In particular,k-chordal graphs arebk=2c-densely
(k; bk=2c)-path chordal [MP15].

Theorem 16 ([MP15]). Every "-densely (k; m)-path chordal graph has
(maxf k=4; " + mg)-slim triangles.
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Figure 2.15: The uniform subdivision of the wheel is3-densely(9; 3)-path chordal.

I confess that the impact of this result, compared to Theorem 15, is unclear to
me.

2.4.3 Contribution: Graph operations and hyperbolicity

Finally, a generic framework is presented in order to prove that some graph oper-
ations preserve the hyperbolicity up to an additive term. In particular, this can
be used in order to construct new hyperbolic graph classes from existing ones. Al-
though we concentrate more on how to use this framework in order to prove that
some graph classes are hyperbolic, it gives precise information on the variations of
hyperbolicity that can be useful in a broader context (e.g., in preprocessing and
approximation algorithms for computing this parameter).

More precisely, new classes of hyperbolic graphs can be obtained from classes
already known to be hyperbolic, by applying some graph operations such as line
graphs [Whi92], clique graphs [Ham68], etc. In [CD16b], we designed a unifying
framework in order to prove that these graph operations preserve hyperbolicity up
to an additive term. The purpose of this work was to make simpler the computation
of the sharp distortion of the hyperbolicity constant under these operations. It is
based on two ingredients. The �rst is that the hyperbolicity of a given bipartite
graphcan be closely approximated (up to an additive term) by considering only one
side of its bipartition.

Lemma 17. Let B = ( V0 [ V1; E ) be a bipartite graph. For everyi 2 f 0; 1g, let
Gi = ( Vi ; ff u; vg j dB (u; v) = 2 g).

Then, 2� (Gi ) � � (B ) � 2� (Gi ) + 2 and the bounds are sharp.

It can be observed that sinceVi is a dominating set of the bipartite graph G,
we can relate every4-tuple in G with a 4-tuple in Gi by substituting every vertex
in V1� i of the 4-tuple with any one of its neighbours. By doing so, we can use
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the 4-point Condition directly (De�nition 1) in order to prove a weaker version of
Lemma 17. This weaker relationship between dominating set and hyperbolicity was
already known and used in some algorithms for computing this parameter [CCL15].
In the case of bipartite graphs, the main technical di�culty was to obtain the sharp
upper-bound on the distortion of hyperbolicity, which has required us a �ner-grained
analysis of the4-tuples with maximum hyperbolicity in G.

The second property used in the framework is that for everyG = ( V; E), since
the distances in its j th graph power are roughly divided byj , the hyperbolicity of
this power is roughly � (G)=j .

Lemma 18. For every graphG = ( V; E) and j � 1, we have � (G)+1
j � 1 � � (Gj ) �

� (G)� 1
j + 1 and the bounds are sharp.

Finally, we recall that an intersection graph over a ground-setS has for vertices a
family of subsets inS together with an edge between every two intersecting subsets.
It can be naturally represented as a bipartite graph, with vertices of the graph on
one side and the elements ofS on the other side. Combining the two above lemmas,
we obtain our main result in [CD16b]:

Theorem 19. For every graphG = ( V; E) and j � 1, let S = f S1; S2; : : : ; Skg be
a clique edge cover ofGj (a collection of cliques ofGj covering all its edges). Then
the intersection graphI S, constructed from the subsets inS satis�es:

� (G) + 1
j

� 2 � � (I S) �
� (G) � 1

j
+ 2 :

Proof. We recall that every Si 2 S is a subset ofV . Let BS be the bipartite graph
with sides V and S, and with edge-set ff v; Si g j v 2 Si g. By construction, two
subsetsSi ; Sj 2 S are at distance two in BS if and only if they intersect, that is if
and only if f Si ; Sj g is an edge ofI S. Furthermore, since by the hypothesisS is a
clique edge cover ofGj , two vertices u; v 2 V are at distance two in BS if and only
if f u; vg is an edge ofGj . It follows by applying twice Lemma 17:

2� (I S) � � (BS) � 2� (I S) + 2 ;

2� (Gj ) � � (BS) � 2� (Gj ) + 2 :

By mixing up the two chains of inequalities, one obtains� (Gj ) � 1 � � (I S) �
� (Gj ) + 1 . Then, by Lemma 18, it implies � (G)+1

j � 2 � � (I S) � � (G)� 1
j + 2 , as

desired.

The line graph and the clique graph ofG = ( V; E), respectively denoted byL(G)
and K (G), are respectively the intersection graph of its edges and of its maximal
cliques. Therefore, Theorem 19 applies to these two typical graph operations by
taking j = 1 , which gives� (G) � 1 � � (L (G)) � � (G)+1 and � (G) � 1 � � (K (G)) �
� (G) + 1 for every graph G. These bounds are proved to be sharp in [CD16b]. In
fact, we show in [CD16b] that for every possiblei 2 f� 1; � 1=2; 0; 1=2; 1g, there are
graphsGi and H i such that � (L (Gi )) � � (Gi ) = i and similarly, � (K (H i )) � � (H i ) = i .
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Other graph operations to which the theorem applies are: thek-edge graph
(intersection graph of the cliques of sizek and the maximal cliques of size at most
k� 1 [Pri94]) with j = 1 , the middle graph (intersection graph of the cliques of size at
most two [Pri95]) with j = 1 , the biclique graph (intersection graph of the maximal
induced complete bipartite subgraphs [GS10]) withj = 2 , etc. Furthermore, for all
these above operations (except for line graph) these are the �rst bounds proved on
the variations for hyperbolicity.

2.4.3.1 New classes of hyperbolic graphs

Finally, some new graph classes are proved to be constantly hyperbolic by using The-
orem 19. Aclique-chordal graphis a graph whose clique graph is chordal [BDCV98].
Since chordal graphs are1-hyperbolic [BKM01], by Theorem 19 clique-chordal
graphs are2-hyperbolic.

Another example is the class ofn-convergentgraphs: G = ( V; E) is n-convergent
if its nth iterated clique-graph is a complete graph [LdMS98]. By iterating Theo-
rem 19, we obtain that if G is n-convergent then� (G) � � (K jV j)+ n = n. Therefore,
every n-convergent graph isn-hyperbolic.

2.4.4 Conclusion and open perspectives

Some classical graph parameters are shown to give upper-bounds on hyperbolicity
in Sections 2.4.1 and 2.4.2. It would be very interesting to enrich this list. Similarly,
it is now a growing topic to provide bounds on the variations for hyperbolicity that
may be caused by various graph operations [MRSV10, CRS15]. In this aspect, it
would be interesting to prove some new results in the spirit of Theorem 19.

2.5 Obstructions to hyperbolicity

In the continuity of Section 2.4, we now cover some known lower-bound techniques
on graph hyperbolicity. The latter results will complete our �rst objective in the
study of this parameter by giving characterizations for non hyperbolic graph classes,
or equivalently necessaryconditions for a graph to be hyperbolic. Like we did in
Section 2.4, we will also provide examples of non hyperbolic graph classes that donot
satisfy these characterizations, thereby showing the limitations of the lower-bound
techniques.

Outline of the section. The rest of the section is divided as follows. First, I sur-
vey some results on the hyperbolicity of random graphs in Section 2.5.1. They show
that, in some sense, most graphs are non hyperbolic. Then I present in Section 2.5.2
the typical obstructions that are used to show that a given graph class is non hy-
perbolic. These tools comprise: forbidden isometric subgraphs (Section 2.5.2.1),
quasi-cycles (Section 2.5.2.2) and graph powers with some given properties (Sec-
tion 2.5.2.4). Finally, some open problems are mentioned in Section 2.5.3.
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My personal contributions: two new techniques using graph powers in order to
lower-bound hyperbolicity, are presented in Section 2.5.2.4. This is joint work with
David Coudert. Furthermore, as a side contribution of this thesis, I answer an open
question from [VS14] on the relationship between hyperbolicity and quasi-cycles
(Section 2.5.2.2).

2.5.1 Related work: random graphs are non hyperbolic

It is natural to ask for hyperbolicity, as for any graph parameter, what its typical
value is on graphs. Put in other terms, the question is whether classes of random
graphs are hyperbolic. The tendency is that, for a large spectrum of random graph
models [CFHM13, NST15, Sha11, Sha12, Sha13, FGL+ 15, Tuc13, MP14, BHO+ 11],
the graphs so obtained are non hyperbolic. The following results could be used in
probabilistic methods in order to give lower-bounds on graph hyperbolicity.

In Sections 2.5.1.1 and 2.5.1.2, we emphasize on the results obtained on the
hyperbolicity of the (classical) Erdös-Rény random graphs and the random regular
graphs. We brie�y mention the techniques used in the proofs of these results, that
will be further detailed in Section 2.5.2. Then, Section 2.5.1.3 covers the known
results on the hyperbolicity for other types of random graphs, and some open ques-
tions.

2.5.1.1 Erdös-Rényi random graphs

In particular, the most common model of random graphs is the Erdös-Rényi model
Gn;p , sometimes called the binomial random graph model. In a binomial random
graph Gn 2 Gn;p , each possible edge exists with probabilityp. Note that p may, and
usually does, depend on the numbern of vertices in the graph.

It turns out that, for most regimes of p, the binomial random graphs arenon
hyperbolic with high probability. Precisely, the authors in [NST15] proved that in
the sparse casep = O(1=n), binomial random graphs are non constantly hyperbolic.
The latter result follows from the existence of arbitrarily long isometric cycles with
positive probability (see Section 2.5.2.1). In a denser case wherep = 1 � ! (1=n2),
Mitsche and Hell proved in [MP14] that binomial random graphs are non hyperbolic
in the strong sense,i.e., diameter-hyperbolic.

2.5.1.2 Random d-regular graphs

Similar results are obtained in [BHO+ 11, Tuc13] for the classGn;d of random d-
regular graphs with the uniform probability distribution, that are proved to be non
hyperbolic in the strong sense (diameter-hyperbolic). In order to prove that these
random graphs are non hyperbolic, the authors in [BHO+ 11] show the existence
with high probability of large quasi-cycles. I shall come back in details on the notion
of quasi-cycles when I present the known lower-bounds on graph hyperbolicity in
Section 2.5.2.2.
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2.5.1.3 Other random models of complex networks

Finally, since the above-mentioned models do not re�ect well the structure of real-life
graphs [BAJ00], it is interesting to ask whether random models of complex networks
exhibit the same behaviour. Unfortunately, that seems to be the case.

In particular, it is proved in [CFHM13] that in most regimes, the random graphs
that are obtained with the small-world model of Kleinberg are either non hyper-
bolic or non polylogarithmically hyperbolic. Some range of random graphs that
are obtained with the Chung-Lu model are proved to be non constantly hyperbolic
in [Sha13].

Perspectives. Surprisingly, we are not aware of any lower-bound on the hyperbol-
icity of Barabási-Albert random graphs (this problem has been studied only through
experimentations [JLB08]). Furthermore, to �nd a pertinent class of random graphs
that is hyperbolic � re�ecting the properties of real-life networks such as the graph of
the Autonomous of the Internet, that has a small hyperbolicity [CCL15, dMSV11] �
is to my mind an important open question. In particular, the HOT model [FKP02]
may be worth studying since it has been �rst de�ned to generate random trees.

2.5.2 Lower-bounds on the hyperbolicity

The remaining of the section will be devoted to a detailed presentation of the known
lower-bound techniques on graph hyperbolicity, some of them have been brie�y
mentioned in our survey on the hyperbolicity of random graphs in Section 2.5.1. In
Section 2.5.2.1, we present a basic technique in order to lower-bound hyperbolicity
using isometric subgraphs. Next, we introduce quasi-cyclicity in Section 2.5.2.2, and
as a side contribution of this thesis, we answer an open question from [VS14] on its
relationship with graph hyperbolicity. Other personal lower-bound techniques, that
are based on a game-theoretic characterization of hyperbolicity in [CCNV11], are
�nally presented in Section 2.5.2.4. The results in this last section are joint work
with David Coudert.

2.5.2.1 Forbidden isometric subgraphs

We say that a graph parameter� is closed under taking subgraphs if for every graph
G and for every subgraphH of G, �( H ) � �( G). We now discuss on the stability
of hyperbolicity under taking subgraphs.

Unlike many graph properties, hyperbolicity is not closed under taking sub-
graphs. That can be easily seen with the complete graphK n , that is 0-hyperbolic
and contains all possiblen-vertex graphs as a subgraph. It is not closed under tak-
ing induced subgraphs either. Indeed, every graphG is the induced subgraph of a
1-hyperbolic graph G0 with diameter two, obtained from G by adding a universal
vertex u (the shortest-path tree of G0 rooted at u is a star with additive distor-
tion of the distances in G0 at most one). However, we recall that a subgraphH
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of G = ( V; E) is called isometric if it is distance-preserving, i.e., the distance be-
tween every two vertices inH is the same inH as in G. By the 4-point Condition
(De�nition 1), it implies that � (H ) � � (G) for any isometric subgraph H of G.
Hence, a classical technique in order to lower-bound the hyperbolicity is to exhibit
an isometric subgraph from a well-known non hyperbolic graph class, such ase.g.,
cycles and grids.

As an example, recall that the girth of a given graph G, denoted by g(G) in
what follows, is a well-known parameter that is the minimum length of a cycle in
G. By minimality of its length, any cycle with length g(G) is isometric, and so, the
hyperbolicity can be lower-bounded using the girth:

Lemma 20 ( [WZ11]). For every G = ( V; E), we have� (G) � b g(G)=4c � 1=2 if
g(G) � 1 mod 4, and � (G) � b g(G)=4c otherwise.

It follows that in order for a graph class to be constantly hyperbolic, the graphs
must have a girth that is constantly upper-bounded. Actually, the length of any
isometric cycle in the graphs must be constantly upper-bounded. This is a strictly
stronger condition since there are graphs with bounded girth and arbitrarily large
isometric cycles. I illustrate this fact with the construction of Figure 2.16, that is a
side contribution of this thesis. Namely, the construction shows examples of planar
graphs G` that are (1; 1)-dismantlable(see Section 2.3.2.2), and so, with girth tree,
but with an isometric cycle of length `.

(a) G3. (b) G4. (c) G5.

(d) G6. (e) G7.

Figure 2.16: Examples of plane cop-win graphsG` such that their outerface is an
isometric cycle of length`. The graph G` is obtained from two copies ofG2b̀ =2c� 1 by
identifying a path on their respective outerface (drawn in thick blue), then adding a
new dominated vertex on its outerface and additional edges (drawn in dashed red).

The graph G` of the construction satis�es a stronger property, that is, it admits
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a planar embedding where the outerface is an isometric cycle of length`. For every
i � 2, G2i and G2i +1 are obtained from two copies ofG2i � 1 as follows. We start
identifying a path Pi on their outerface with length i � 1 (for the even casè = 2 i )
or i � 2 (for the odd case` = 2 i + 1 ). Then, let us �x one end vi of Pi . In each
of the two copies ofG2i � 1, vi has one neighbour on the outerface that is not part
of Pi . We add a new vertex of degree three that is made adjacent tovi and to
its two neighbours ui ; u0

i =2 P i on the outerface in each copy. Note that the closed
neighbourhood of this new vertex is dominated byvi by construction. Furthermore,
in doing so, we obtain in the even casè = 2 i an outerface which is an isometric
cycle of length 2(2i � 1) � 2jP i j + 1 = 2 i = `. Finally, in order to complete the
construction in the odd case` = 2 i + 1 , we consider the second end ofPi and we
make adjacent its two neighboursx i ; x0

i =2 P i on the outerface in each copy.

Note that on the other hand, not every graph with bounded-length isometric
cycle has small hyperbolicity. For instance, the hexagonal grid withn columns and
m rows (cf. Figure 2.17) is abridged graph� i.e., with no isometric cycle of length
at least four � yet it is (minf n; mg � 1)=2-hyperbolic [CD16a].

Figure 2.17: Hexagonal grid.

2.5.2.2 Quasi-cycles

We now describe quasi-cyclicity and its relationship with hyperbolicity. A lower
bound technique is derived from the relationship, that is successful in some cases
where we fail exhibiting an isometric cycle (e.g., grid-like graphs). Namely, in [VS14],
Verbeek and Suri relax the notion of isometric cycles to the one of (weak) quasi-
cycles. GivenG = ( V; E), a cycleC of length n is an (�; � )-quasi-cycle if for every
u; v 2 C such that dC (u; v) � �n we have that dG(u; v) � � dC (u; v). Verbeek and
Suri have proved in [VS14] that every graphG has an(�; 1=3)-quasi-cycle of length

( � (G)) , for some constant� independent from � (G). Therefore, the existence of
large quasi-cycles is a necessary condition for a graph to have a large hyperbolicity.

They proved the condition to be su�cient when � > 1=2. Indeed, an easy
application of the 4-point Condition (De�nition 1) shows that in this situation, the
graph has hyperbolicity at least 
(( � � 1=2)n) [VS14].
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Answering an open question from [VS14], we now prove more cases where the
existence of large quasi-cycles implies a large hyperbolicity. The latter result is a
side contribution of this thesis that has not been published elsewhere.

Lemma 21. For every � � 1; � � 1=3, if G = ( V; E) has an (�; � )-quasi-cycle of
length n then � (G) = 


�
� 2n

�
.

Proof. We give an illustration of the proof with Figure 2.18. For simplicity, we will
ignore the ceilings in the proof.

u

v P

Q m

Figure 2.18: Proof of Lemma 21.

Let C be an (�; � )-quasi-cycle of lengthn, which exists by the hypothesis. Let
us pick u; v 2 C such that dC (u; v) = n=3. We can partition the cycle C into two uv-
paths P; Q of respective lengthn=3 and 2n=3. In this situation, since C is assumed to
be an(�; � )-quasi-cycle and� � 1=3, we have dG(u; v) � �n= 3, and so,P and Q are
( 2

� ; 0)-almost shortest uv-paths. Then, let m 2 Q be a middle-vertex, i.e., chosen
such that dC (m; u) = jQj =2. By the choice of m, dC (m; P) = dC (m; u) = n=3.
Furthermore, since � � 1=3, it implies dG(m; P) � �n= 3. However, recall that
in a hyperbolic graph, almost shortest-paths stay close to each other. Precisely,
the Hausdor� distance betweenP and Q is an O (� (G)=� ) [Shc13b, GdLH90]. In
particular, we have �n= 3 � dC (m; P) = O (� (G)=� ). Altogether, � (G) = 


�
� 2n

�
.

2.5.2.3 Graph expansion

Other lower-bounds can be deduced from the existence of a core in graphs with small
hyperbolicity 3. Namely, we now present lower-bound techniques for hyperbolicity
that are based on graph expansion (de�ned below). Lower-bounds are more complex
to derive with this technique than with isometric subgraphs and quasi-cycles.

3The following result can also be intuited with another property of hyperbolic graphs, that is
called the exponential divergence of shortest-paths [BH11].
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The expansion ofG = ( V; E), sometimes called the Cheeger constant, is the
largest h such that for every subsetS with at most jV j=2 vertices, there are at least
hjSj edges ofG with one end in S and the other end in V nS. The graphs in a class
G are expanderif there exist constants h; � such that every G 2 G has maximum
degree at most� and expansion at leasth [HLW06]. The authors in [Ben98, Mal15]
proved that expander graphs are non hyperbolic.

Theorem 22 ([Mal15]). For every h; � , there exists a constantC� ;h such that
every G = ( V; E) with maximum degree at most� and expansion at leasth has
hyperbolicity at leastC� ;h � log(jV j).

Intuitively, Theorem 22 can be explained as follows. In an expander graph with
diameter D , since the number of vertices is exponential inD , removing a ball of
radius �( D ) will only remove a sublinear number of vertices, that does not a�ect
too much the expansion. In particular, the order of magnitude of the diameter stays
�( D ), and so, the removal of the ball can only increase the distances by at most a
constant-factor. In contrast, in a � -hyperbolic graph there must be a core,i.e., a
ball of radius O(� ) intersecting the (almost) shortest-paths between half of the pairs
of vertices [CDV16]. By removing a core, one could increase the distances by more
than any �xed constant-factor. This forces the core to have radius
( D ), and so,
the hyperbolicity of a given expander graph must scale with its diameter.

2.5.2.4 Contribution: Using dismantlable graph powers

Finally, we show how to use the game-theoretic characterization for hyperbolicity
that has been proved in [CCPP14] in order to obtain new non-trivial lower-bounds on
this parameter. New examples of non hyperbolic graph classes will be derived from
these techniques. The results in what follows are joint work with David Coudert.

We refer to Section 2.3.2.2 for the game-theoretic characterization of hyperbol-
icity. Recall that for every j � 1, the j th power of G = ( V; E) is the graph Gj that
is obtained from G by adding an edge between every two distinct verticesu; v such
that d G(u; v) � j . If G is � -hyperbolic for some� > 0, then by Lemma 8 G has a
(4�; 4� )-dismantlable ordering [CCNV11]. The latter is a (classical) dismantling or-
dering for its power G4� , henceG4� is a Cop-win graph. Conversely, disproving that
Gj is Cop-win, for some range ofj , will give lower-bounds on� (G). This approach
is used in [CD16a] in order to prove that most underlying graphs of the data center
interconnection networks are non hyperbolic.

We start this section with additional properties of Cop-win graphs. They will
be used in what follows.

Required background. Let us recall that an endomorphism ofG = ( V; E) is an
edge-preserving mapping� : V ! V .

Lemma 23 ( [AF84]) . If G = ( V; E) is a connected dismantlable graph that is
regular then G is a complete graph.



2.5. Obstructions to hyperbolicity 51

Lemma 24 ( [BCF94]). If G = ( V; E) is a connected dismantlable graph then it has
the clique invariant property: for every endomorphism� of G, there is a nonempty
clique C of G such that � (C) = C.

Next, we present our lower-bound techniques.

New lower-bound techniques. Our contributions are summarized in Proposi-
tions 26 and 25. Given an endomorphism� of G = ( V; E), let the mobility of �
be de�ned asminv dG(v; � (v)) . Then, generalizing the terminology of [DRB99], the
weak mobilityof G is the largest l such that G has an endomorphism with mobility
l . Note that by Lemma 24, any tree (and more generally, any Cop-win graph) sat-
is�es the clique-invariant property. Since a clique has diameter one, it follows that
any tree (and more generally, any Cop-win graph) has weak mobility at most one.
Based on this observation, we prove in [CD16a] that a large weak mobility implies
a large hyperbolicity. Indeed, a weak mobility at leastl can be shown to imply that
no graph powerGl0, for l0 = O(l), can satisfy the clique-invariant property. As a
result, no such power can be a Cop-win graph by Lemma 24, and so, sinceG4� (G)

must be Cop-win by Lemma 8, the latter implies that G must have hyperbolicity
� (G) = 
( l ). Below, we formalize this intuition.

Proposition 25. If G = ( V; E) has weak mobilityl � 2 then � (G) � d l=2e=2.

Proof. We prove that Gl0 is not dismantlable for every 1 � l0 � l � 1. It implies
by Lemma 8 that G is not � -hyperbolic for any � < l= 4, and so, since� (G) is
a half-integer, � (G) � d l=2e=2. Indeed, sinceG has weak mobility l and every
endomorphism ofG is also an endomorphism ofGl0, the graph powerGl0 has weak
mobility at least dl=l0e � 2. Therefore, Gl0 falsi�es the clique invariant property,
hence it is not dismantlable by Lemma 24.

Then, we recall that in a tree, there exists a leaf̀ , i.e., a vertex of degree one. In
this situation, let p be its unique neighbour. Clearly, every node at distanced > 1
from ` is at distance d � 1 from p. The latter means that for every tree T with
diameter D > 1, its powersT j are not regular for everyj < D (because for anỳ on
a diametral path, its parent p has at least one more neighbour thaǹ ). Following
this intuition, if a given graph G with diameter D has small hyperbolicity � then
there should exist a small constantj 0 = O(� ) such that: for every j 0 � j � D � 1, its
graph powerGj is not regular. We formalize this intuition below, using Lemma 23.

Proposition 26. Let G = ( V; E) and 2 � r � diam(G) be such thatGr � 1 is a
regular graph. Then, � (G) � d r=2e=2.

Proof. Suppose for the sake of contradiction that4� (G) < r . In particular, G
is b(r � 1)=2c=2-hyperbolic, and so, by Lemma 8, it has a(2 d(r � 1)=2e; r � 1)� -
dismantling ordering. The latter ordering is also a(r � 1; r � 1)� -dismantling ordering,
henceGr � 1 is Cop-win. However, sinceGr � 1 is assumed to be regular, it must be a
complete graph by Lemma 23. The latter contradicts that r � 1 < diam (G). As a
result, 4� (G) � r , as desired.
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Figure 2.19: Relationships of inclusion between some graph classes. The rectangles
for non hyperbolic graph classes (in red) are drawn thicker.

Application: non hyperbolic graph classes. We �nally present some graph
classes that can be proved to be non hyperbolic by using Propositions 26 and 25.
To the best of our knowledge, these results are new, except for vertex-transitive
graphs (de�ned below), of which we give a simpler proof they are non hyperbolic
than in [BS12]. Furthermore, relationships of inclusion between the following graph
classes are presented in Figure 2.19.

� We recall that an automorphism is a one-to-one endomorphism, andG = ( V; E)
is vertex-transitive if for every u; v 2 V , there is an automorphism mappingu
to v.

Note that most underlying graphs of data center interconnection networks that
are proposed in the literature are vertex-transitive [AK89].

� A graph G is said to be distance-regular if it is a regular graph such that for
every i; j; k � 0, there is some constantci;j;k with the property that for every
two vertices u and v at distance i in G, the number of vertices that are simulta-
neously at distancej from u and distancek from v in G is exactly ci;j;k [BH12].

� Moore graphs[Dam73] are a particular case of distance-regular graphs: namely,
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an n-vertex d-regular graph is a Moore graph ifn = 1 + d �
P D � 1

k=0 (d � 1)k , with
D being the diameter of the graph.

Theorem 27. If a graph is vertex-transitive, distance-regular or Moore then it is
non hyperbolic.

Proof. Let G be a vertex-transitive graph. Since an endomorphism ofG is also an
endomorphism for every of its powers, it implies that ifG is vertex-transitive then
so are all its powers. Hence all the powers ofG are regular graphs. Altogether, by
Proposition 26 the hyperbolicity of G is constantly proportional to its diameter.

Similar arguments apply to distance-regular graphs and Moore graphs. Indeed,
if a graph belongs to these classes then all its powers are regular [BH12]. Therefore,
its hyperbolicity is constantly proportional to its diameter.

A bitransitive graph is a bipartite graph such that for every two verticesu; v that
are in the same side of the bipartition, there exists an automorphism mappingu to v.
In the spirit of what is done for the framework presented in Section 2.4.3 (Lemma 17),
let us pick one side of the bipartition and add an edge between every two vertices in
this side that are at distance two. Then, the graph so obtained is vertex-transitive.
This observation allows to prove that the class of bitransitive graphs, and so, the
related classes of edge-transitive and nonedge-transitive graphs [GR13] are also non
hyperbolic.

Re�nements of Proposition 26 can lead to sharper lower-bounds on the hyper-
bolicity (but under stronger assomptions). In Table 2.2, we report on some results
obtained with our lower-bound techniques (detailed in [CD16a]). For every graph
in the table, the values of the diameter and the hyperbolicity are compared, with
the two values only di�ering by at most a constant-factor in most cases. All these
results are mainly obtained with Propositions 25 and 26, or some of their variations
that are proved in [CD16a]. However, we also report on the hyperbolicity of grid-like
graphs, on which these lower-bound techniques do not apply. We managed to obtain
the exact value for the hyperbolicity of these graphs through a deeper analysis of
their shortest-path distribution.

2.5.3 Open problems

So far, there are few reported lower-bounds on graph hyperbolicity. Finding new
lower-bounds is an important open problem, that would improve our understanding
of this parameter and could also help improving its computation. A related open
problem is to prove some new lower-bounds on the hyperbolicity of random graph
classes, such as Barabási-Albert random graphs and random geometric graphs in
the Hyperbolic plane [KPK+ 10]4.

4Note that there exist duality results between these two random models [FCM14].
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Table 2.2: Bounds and exact value of the hyperbolicity of some graph
classes [CD16a].
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2.6 On computing the hyperbolicity of graphs

The remaining of this chapter is devoted to algorithmic and complexity problems.
In particular, computational aspects of hyperbolicity will be covered in this section,
thereby ful�lling our second main objective in the study of this parameter.

Motivations for an e�cient computation of hyperbolicity are: to help charac-
terizing the hyperbolic graph classes, or to measure the quality of approximations
obtained with some graph heuristics (the latter will be further dicussed in Sec-
tion 2.7) [VS14, CDE+ 08, CE07, EKS16, KL06, DKMY15].

By using the 4-point Condition (De�nition 1), it is easy to see that the hyper-
bolicity of a given n-vertex graph can be computed in�( n4)-time. However, this
too simple approach is prohibitive on large graphs, even when we use massively
parallelization [ASHM13]. In what follows, improved algorithms for computing or
approximating graph hyperbolicity will be sketched, with an emphasis on my per-
sonal contribution in this topic.

Note that we will only consider �nite graphs in this section. Computing the
hyperbolicity of in�nite graphs is highly nontrivial. However, surprisingly, there
exists a simple (approximation) partial algorithm for computing the hyperbolicity
of the graph representations of �nitely generated groups [Pap96].

Outline of the section. The best known algorithms for computing graph hyper-
bolicity are collected in Section 2.6.1. We sketch their basic principles and their
limitations. Then, the next two Sections 2.6.2 and 2.6.3 are mostly centered on the
contributions of this thesis.

In particular, the design and the analysis of some preprocessing methods for the
computation of hyperbolicity are presented in Section 2.6.2. This part is largely
devoted to personal contributions on the study of the relationships between the
hyperbolicity of a graph and the maximum hyperbolicity from its atoms� a.k.a., the
subgraphs resulting from its decomposition by clique-minimal separators [BPS10]
(Section 2.6.2.2). As a side contribution, I will also present a short analysis of
the heuristic from [KNS13] (Section 2.6.2.1). Finally, conditional lower-bounds on
the time complexity for computing graph hyperbolicity will be also mentioned in
Section 2.6.3, including one of my own invention.

This is joint work with Nathann Cohen, David Coudert and Aurélien Lancin.

2.6.1 Related work

In this subsection, a state of the art on exact and approximate algorithms for com-
puting the hyperbolicity of a graph is presented. We also comment on the limitations
of these algorithms. In what follows, exact algorithms will be presented �rst (Sec-
tion 2.6.1.1), then the approximation algorithms will be introduced by increasing
approximation factor (Section 2.6.1.2).
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2.6.1.1 Exact algorithms

Best known algorithm. The best known algorithm for computing the hyperbol-
icity runs in O(n3:69)-time [FIV15]. It relates the computation of graph hyperbolicity
with a variation of matrix multiplication.

Indeed, recall (De�nition 3) that G = ( V; E) is � -hyperbolic if and only if we
have for everyu; v; x; y that hu; vi x � minfhu; yi x ; hy; vi xg � � , whereh�; �i x denotes
the Gromov product with base vertex x. In particular, let M x be the n � n matrix
such that M x [u; v] = hu; vi x for every u; v 2 V . The (max; min) -product of M x with
itself is an n � n matrix denoted by M x 
 M x such that for every u; v 2 V ,

(M x 
 M x )[u; v] = max
y2 V

minf M x [u; y]; M x [y; v]g = max
y2 V

minfhu; yi x ; hy; vi xg:

By De�nition 3, G is � -hyperbolic if and only if for every x 2 V , all entries in
M x 
 M x � M x are lower than or equal to� . Therefore, � (G) can be computed with
n computations of (max; min) -products.

Combinatorial algorithms. One drawback of the above algorithm is that it uses
as a subroutine the best known algorithm for computing the (classical) matrix mul-
tiplication [DP09]. This algorithm requires quadratic-space and its time complexity
O(n2:3729) hides a large constant-factor [LG14]. So, in order to compute hyperbol-
icity in practice on real-life graphs, combinatorial algorithms should be preferred.

In [CCL15], Cohen et al. base on the following simple, but elegant observation.

Lemma 28 ( [CCL15]). Let G = ( V; E) and u; v; x; y 2 V be such that
d(u; v) + d(x; y) � maxf d(u; x) + d(v; y); d(u; y) + d(v; x)g. Then, � (u; v; x; y) �
minf d(u; v); d(x; y)g=2.

The latter lemma gives a simple �cut-rule� in order to avoid considering all
possible4-tuples. Indeed, let us consider the4-tuples u; v; x; y of G = ( V; E) by non
increasing value of d(u; v) + d(x; y). A lower-bound � � on the hyperbolicity � (G) is
maintained. By Lemma 28, every time the lower-bound improves, all4-tuples such
that minf d(u; v); d(x; y)g � 2� � can be discarded. While this algorithm still runs in
O(n4)-time, experiments have shown that it is much faster in practice.

Since then, additional cut-rules have been introduced in [BCCM15], which fur-
ther speed-up the practical computation of hyperbolicity. So far, the hyperbolicity
of graphs with tens of thousands of nodes can be computed within a reasonable
amount of time. The true limitation of the algorithm comes from the storage in
quadratic space of the distance matrix.

2.6.1.2 Approximation algorithms

Then, we report on the few existing approximation algorithms for computing hyper-
bolicity. The main message here is that these algorithms either have a large approx-
imation factor (sometimes non constant) or they require the challenging best-known
algorithm for computing matrix multiplication as a subroutine.
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Using (max; min)-product. The simplest of these approximation algorithms re-
duces to the problem Hyperbolicity with fixed Base vertex : given G =
(V; E) and x 2 V , compute � x (G) = max u;v;y 2 V (minfhu; yi x ; hy; vi xg � h u; vi x ).
Note that � (G) = max x2 V � x (G). Furthermore, it can be proved using the trian-
gular inequality that for every �xed x 2 V , we have� x (G) � � (G)=2 [Gro87]. As
a result, solving the problemHyperbolicity with fixed Base vertex gives a
2-approximation for computing hyperbolicity, and it can be done in O(n2:69)-time
by using the above-mentioned relationship with(max; min)-product [FIV15].

More recently, Duan has proved that the(max; min)-product can be computed
faster when all entries in the matrices are bounded. Based on this result, he has
described(1 + ")-approximation algorithms for computing graph hyperbolicity, for
every " � 0 [Dua14].

Using Cop and Robber games. Another constant-factor approximation algo-
rithm for computing this parameter was proposed in [CCPP14]. Roughly, given the
distance-matrix of the graph (it can be precomputed inO(minf nm; n 2:3729g)-time)
this algorithm computes in O(n2)-time the smallest r such that the input graph
has a(4r; 3r ) � -dismantling ordering. Altogether combined with the game-theoretic
de�nition of hyperbolicity (De�nition 7), the value gotten for r di�ers from the
hyperbolicity by at most an (unfortunately large) constant-factor.

Using Tree embeddings. Finally, another approach for approximating the hy-
perbolicity is based on the relationships between this parameter and tree embed-
dings. Precisely, every� -hyperbolic graph can be embedded into a tree with additive
distortion of the distances at most 2� logn [Gro87] (that will be further discussed
in Section 2.7). In [FIV15], Fournier et al. notice that computing this tree embed-
ding does not require the knowledge of the hyperbolicity. Therefore, anO(log n)-
approximation algorithm for computing the hyperbolicity of a graph can be obtained
in ~O(n2)-time by computing this tree embedding, and then the resulting distortion
of the distances in the tree5.

2.6.2 Contribution of this thesis: Preprocessing

In order to overcome the current limitations for computing graph hyperbolicity
(sketched above), it looks natural to seek forpreprocessing methods, that aim at
decreasing the size of the input and, possibly, at simplifying its structure. My main
contribution in the �eld is the design and the analysis of some of these methods. I
will �rst sketch a short analysis of the heuristic from [KNS13], before presenting my
work on graph decompositions.

5The time complexity of this algorithm was proved in [FIV15]. However, the authors in [FIV15]
assume that the distance matrix is given as input. We explain in [CD14] how to obtain the same
time complexity for graphs encoded as adjacency lists.
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2.6.2.1 Reducing the size of the graph by contracting matchings

In order to make tractable the approximate computation of hyperbolicity on large
graphs, the authors in [KNS13] present a simple renormalization process. Put in
more graph-theoretic terms, their process pick a maximal matching of the graph
and then contract its edges. By doing so, the number of vertices is decreased by
half. They repeat the process until the size of the graph is judged small enough in
order to compute its hyperbolicity.

In what follows, we analyze the quality of this above heuristic for computing
hyperbolicity. In order to do so, the hyperbolicity of a given graph G is compared
with the hyperbolicity of its contraction minors (graphs obtained by contracting
some edges ofG), that is a study of independent interest.

Contraction minors and hyperbolicity. Although the distances in a graph
cannot increase when we contract an edge, it turns out that, surprisingly, the hy-
perbolicity can do so. For instance, a cycleC5 of length �ve is 1=2-hyperbolic,
but contracting any one of its edges results in a cycleC4 of length four, that is an
1-hyperbolic graph.

More generally, the following result is a side contribution of this thesis.

Lemma 29. For every � -hyperbolic n-vertex graphG, every contraction minor of
G is O(� logn)-hyperbolic and this upper-bound is sharp.

Proof. The upper-bound can be established by using the relationships between hy-
perbolicity and another tree-likeness parameter calledtreelength(see Section 2.4.1).
Indeed, if G is a � -hyperbolic n-vertex graph then it has treelength at least � and
at most 2� logn + 1 [AAD16]. The treelength is a contraction closed parameter.
Therefore, every contraction minor of G must have hyperbolicity O(� logn). The
main di�culty is to prove the sharpness of the upper-bound.

In Figure 2.20, we illustrate this worst-case scenario with a ringed treeRT (k)
(previously introduced in Section 2.4.1). Note that this graph hasn = 2 O(k) vertices,
and in addition we have� (RT (k)) � 3 by Lemma 126. So, every contraction minor of
this ringed tree isO(k)-hyperbolic. We aim at proving the existence of a contraction
minor of RT (k) with hyperbolicity 
( k). the gist of the construction is to show
that RT (k) has a contraction minor H with a large induced (cylindrical) grid of
dimensions
( k) � 
( k). It can be constructed by �xing some level ` = �( k) and
then contracting on the cycles in each lower level the consecutive nodes with a
common ancestor at level̀ (i.e., see Figure 2.20). Furthermore, since the graph
is planar, it can be obtained anisometric (square) grid of comparable dimensions

( k) � 
( k) by removing one third of the rows and one third of the columns on
the borders. We recall that a grid of dimensions
( k) � 
( k) has hyperbolicity

( k) [WZ11]. Altogether combined, this contraction minor H has hyperbolicity

( k), as desired.

6This value of the hyperbolicity can be increased to some constant �( � ) for every � > 0 by
taking a uniform subdivision of RT (k).
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Figure 2.20: Construction of a cylindrical grid in RT (k). We �x some level ` = �( k)
and then we contract on each lower level the nodes with a common ancestor at level
`. Paths contracted to a single node are delimited with thicker nodes.

Variations of hyperbolicity under one renormalization. The edge contrac-
tions in the renormalization process of [KNS13] are more controlled. Indeed, they
must induce a matching. In this situation, let ' : V (G) ! V (Ĝ) map every vertex
of G to the corresponding vertex to which it has been contracted in the renor-
malized graph Ĝ. We have that bdG(u; v)=2c � dĜ(' (u); ' (v)) � dG(u; v) for
every u; v 2 V (G). So, it follows from the preservation of hyperbolicity under
quasi-isometry [Shc13b, GdLH90] that� (Ĝ) = �( � (G)) . The above � notation
hides a large constant-factor that may be improved with a more in-depth analysis.
Nonetheless, what can be shown is that there exist in�nitely many graphsG such
that � (G) � 4� (Ĝ). We illustrate this fact with Figure 2.21.

To summarize, it is my opinion that the con�dence interval that is provided by
the renormalization process is too large to give good estimates of graph hyperbolicity.

2.6.2.2 Relationship between clique-decomposition and hyperbolicity

Contrary to Section 2.6.2.1, the approach in this part rather consists in bounding
the hyperbolicity of a given graph from the computation of the hyperbolicity of
some of its subgraphs. Equivalently, given a decomposition ofG = ( V; E) into some
of its subgraphs, it is studied whether we can upper and lower bound� (G) by using
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(a) The square grid with side length n is
(n � 1)-hyperbolic.

(b) The renormalized square grid is (n �
1)=4-hyperbolic.

Figure 2.21: Renormalization process on a Square grid. The edges contracted are
drawn in thick red. Roughly, it gives a Hexagonal grid with twice less columns. Since
the hyperbolicity of a Rectangular grid is twice larger than the hyperbolicity of a
Hexagonal grid with same dimensions [CD16a], it shows that the renormalization
process divides the hyperbolicity of a square grid by four.

the maximum hyperbolicity from the subgraphs. Let us motivate this approach and
present existing results.

On the one hand, whenG is �prime� (undecomposable w.r.t. the decomposition
process), the input cannot be split, and so, we don't decrease the size of the input
either. On the other hand, it happens that many interesting classes of real-life graphs
are not prime. Furthermore, in all cases we gain more insights on the structure of
the input.

Let us outline interesting byproducts of this decomposition approach:

� when every graph in a given class can be decomposed in �trivial� subgraphs, the
class is proved to be constantly hyperbolic;

� for some other graph classes, the decomposition is a �rst step toward an e�cient
computation of the hyperbolicity in this class of graphs.

Related work. Of course, we need some structure on the graph decomposition
in order to be able to prove something. Soto [SG11] has proved that two well-
known graph decompositions can be used as a preprocessing step for computing
graph hyperbolicity. Namely, these are the modular decomposition [Gal67] and its
generalization the split-decomposition [Cun82] where informally, the graph is dis-
connected by using some edge-cutsets inducing a complete bipartite subgraph. More
precisely, the hyperbolicity of a given graph is equal to the maximum hyperbolicity
taken from the subgraphs output by these decompositions.
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Figure 2.22: Clique-decomposition of a graph in �ve atoms. A4-tuple with hyper-
bolicity 1 is drawn in bold.

Our main result. In a joint work with Nathann Cohen, David Coudert
and Aurélien Lancin [CCDL17], we have proved similar results for the clique-
decomposition [BPS10]. GivenG = ( V; E), an atom of G is any subsetA � V
such that there is no clique-separator inG[A] and A is inclusion wise maximal w.r.t.
this property. The clique-decomposition of G is the collection of its atoms. See
Figure 2.22 for an example. It can be computed inO(jV jjE j)-time.

Theorem 30. Given G = ( V; E), let A1; : : : ; Ak be its atoms. Then,
maxi � (G[A i ]) � � (G) � maxi � (G[A i ]) + 1 and the bounds are sharp.

Below, we detail further the proof of Theorem 30. It is based on two ingredients.
The �rst is that disconnecting the graph with a separator of small diameter D can
change the value of the hyperbolicity by at most an additive termD=2. This part
requires a tedious analysis of the di�erent types of4-tuples in the graph in order to
be proved.

Lemma 31 ([SG11]). Given G = ( V; E), let X � V be such thatG[X ] is isometric
and has diameter at mostD . Then, let C1; : : : ; Ck be the connected components of
G n X , we have:

max
1� i � k

� (G[Ci [ X ]) � � (G) � maxf D=2; max
1� i � k

� (G[Ci [ X ])g + D=2:

In [CCDL17], we give a proof of this result in the case of clique-separator (D � 1).
Note that G[X ] must be isometric in order to ensure that the resulting subgraphs
G[Ci [ X ] are also isometric. Indeed, we recall that the hyperbolicity is not stable
under taking induced subgraphs. However, we observe that whenX is a clique-
separator, the requirement forG[X ] to be isometric is always satis�ed.

By Lemma 31, if we disconnect the graph with a small diameter separator then
we can approximate the hyperbolicity up to an additive term. Unfortunately, these
additive errors can add up when we further decompose the graph. We prove it is the
case even for separators of diameter at most two [CCDL17]. However, in the special
case of clique-separators, we can bound the �nal additive error with the following
lemma.
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Lemma 32. Given G = ( V; E), let u; v; x; y 2 V satisfy � (u; v; x; y) � 3=2. There
exists an atomA0 intersecting all the paths between any two vertices of the4-tuple.

Proof. Let (T; X ) be a tree decomposition ofG whose bags are the atoms ofG.
Such a tree decomposition was proved to exist in [BPS14]. In order to prove the
lemma, it su�ces to �nd an atom A0 such that there is no more than one vertex of
the 4-tuple u; v; x; y in each component ofG n A0. We shall �nd an atom A0 with
the weaker property that no more than two vertices amongf u; v; x; yg nA0 are in
the same connected component ofG n A0. Then, we will prove that in fact, there
is no more than one vertex of the4-tuple in each component, by elaborating on the
property that � (u; v; x; y) � 3=2. First, in order to �nd the desired atom, we will
weight the bags ofX (we will then choose the atomA0 in the weighted centroidof
T).

Precisely, for every ofu; v; x; y we pick an atom which contains it and we de�ne
the weight of an atom as the number of times it has been picked. In particular, an
atom has weight between0 and 4, and the sum of weight of the atoms is equal to
W = 4 . It is well-known that for any node-weighted tree with sum of weightsW,
there is a node whose removal splits the tree into connected components where the
sum of weight of the nodes is at mostW=2 [Gol71]. So, let A0 be an atom of G
such that no component ofT n f A0g has the sum of weight of its bags greater than
2. We claim that 8s 2 f u; v; x; ygnA0, there is a clique-separatorX s � A0 which
separatess from f u; v; x; yg n fsg, that will prove the lemma.

Indeed, let s 2 f u; v; x; ygnA0 be arbitrary. By the properties of a tree decom-
position, Ts (induced by the atoms containings) is the subtree of a componentCs

of T n f A0g. Let Vs � V be the subset of vertices that are contained in an atom
in Cs, and let As 2 Cs be the atom that is adjacent to A0 in T. SinceAs and A0

are atoms ofG, their intersection, denoted by X s = As \ A0, is a clique [BPS10].
Furthermore, by the properties of a tree decomposition,X s is a is a separator of
G that disconnects Vs from V n Vs. Therefore, we are left to prove that no vertex
of f u; v; x; yg n fsg is in Vs, for the latter will prove that X s is a clique-separator
which separatess from f u; v; x; yg n fsg. Assume for the sake of contradiction the
existence of a vertext 2 f u; v; x; yg n fsg that is contained in Vs. We distinguish
between two cases.

� Suppose thatt =2 X s. In this situation, Ts; Tt are subtrees ofCs. It implies that
the sum of weight of the atoms inCs is at least 2, and so, by the choice of atom
A0, it is equal to 2. In particular, s and t are the only two vertices of the4-tuple
that are in Vs nX s (else, the sum of weight of the atoms inCs should be at least
3). However, we prove in [CCDL17] that in this situation, � (u; v; x; y) � 1, that
contradicts the hypothesis that � (u; v; x; y) � 3=2. This part of the analysis
makes use of our proof of Lemma 31 for the case of clique-separators.

� Else, t 2 X s and we can assume w.l.o.g. that no vertex off u; v; x; yg n fsg is in
Vs nX s (else, we go back to the previous case). However, we prove in [CCDL17],
as before, that in this situation, � (u; v; x; y) � 1, that again contradicts the
hypothesis that � (u; v; x; y) � 3=2.
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As a result, no vertex of f u; v; x; yg n fsg is in Vs, and so,X s is a clique-separator
which separatess from f u; v; x; yg n fsg. SinceX s � A0, the latter proves the claim
on A0, hence the lemma.

The gist of Lemma 32 is that the atoms ofG = ( V; E) are the bags of a tree
decomposition ofG (this will be further discussed in the next chapter on tree de-
compositions). We use it in [CCDL17] in order to prove that the hyperbolicity of
any 4-tuple with large hyperbolicity is at most one unit o� from the hyperbolicity
of a given atom, and so, Theorem 30 holds.

Further applications of clique-decompositions. On the way to prove Theo-
rem 30, we were able to (partly) characterize the cases where the hyperbolicity of a
graph cannot be deduced from its clique-decomposition directly. We leverage from
this characterization the following result:

Theorem 33. Given G = ( V; E), let A1; A2; : : : Ak be its atoms. InO(jV jjE j)-time,
we can computeG�

1; : : : ; G�
k such that:

� eachG�
i is obtained from G[A i ] by adding simplicial vertices;

� and if � (G) � 1 then � (G) = max f 1g [ f � (G�
i ) j 1 � i � kg.

The above preprocessing method has been successfully applied on large co-
authorship graph in order to compute their hyperbolicity. On a more theoretical
side, we have used it in order to improve the computation of hyperbolicity for out-
erplanar graphs,a.k.a. the graphs whose atoms are cycles [Sys79]:

Theorem 34. If G = ( V; E) is outerplanar then � (G) can be computed inO(jV j)-
time.

In order to prove Theorem 34, we have established a simple characterization of
outerplanar graphs with hyperbolicity strictly less than one. More precisely, this
characterization is based on the property that every induced cycle in an outerplanar
graph is isometric [Sys79]. In particular, since every cycle of length at least six
has hyperbolicity at least one [WZ11], every outerplanar1=2-hyperbolic graph is
5-chordal. So, we obtain our characterization of outerplanar1=2-hyperbolic graphs
as a particular case of the characterization in [WZ11] of1=2-hyperbolic 5-chordal
graphs.

Then, for outerplanar graphs with hyperbolicity at least one, we have re�ned
the results of Theorem 33. In particular, since the atoms of outerplanar graphs
are cycles, the graphsG�

1; : : : ; G�
k output by the preprocessing method have a very

simple structure (they are obtained from a cycle by adding, for every edgee in the
cycle, at most one simplicial vertex that is adjacent to the two ends ofe). So, their
hyperbolicity can be derived from the hyperbolicity of cycles and additional parity
conditions. Details can be found in our report [CCDL17].
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Final remark: combining many decompositions. It may be the case that
the atoms can be further split or reduced, using another graph decomposition. For
instance, a graph is EPT if it is the edge intersection graph of paths in a tree [GJ85].
The atoms of an EPT graph are line graphs [Tar85]. So, we can replace each atom
with its root (the graph of which it is the line graph), and we have by Theorem 19
that it does not a�ect their hyperbolicity by more than an additive term. Further-
more, computing the root of each atom can be done in linear time [Leh74].

Then, the roots of the atoms may be further decomposable using modular, split
or clique decomposition, etc. If the root is prime under all these decompositions
but it is a bipartite graph, we may still decrease its size by half as follows. We take
the smaller side of its bipartition and we add an edge between every two vertices
at distance two in the root. By Lemma 17, the hyperbolicity of the gotten graph is
roughly half of the hyperbolicity of the root.

2.6.3 Hardness results

In the previous Section 2.6.2, we show that the computation of hyperbolicity (exact
or approximate) can be sped up on certain graph classes by using graph decompo-
sitions. This approach does not extend to general graphs. So, a complementary
approach is to prove, or show strong evidence of, lower-bounds on the complex-
ity of computing this parameter. In this section, conditional lower-bounds on this
complexity are presented, with an emphasis on a reduction from theQuadrangle
Detection problem, that is part of my contributions.

2.6.3.1 Related work

As a warm-up, we recall that the problemHyperbolicity with fixed Base ver-
tex can be reduced in quadratic-time to the computation of a(max; min) -product
between two matrices. In [FIV15], the authors prove that a converse reduction
also holds true: if Hyperbolicity with fixed Base vertex can be solved in
O(n� )-time on n-vertex graphs then the (max; min)-product of two n � n matri-
ces can be computed inO(n2+ �= 3 logn)-time. In particular, any O(n2:05)-time
algorithm for solving Hyperbolicity with fixed Base vertex would imme-
diately improve the best-known algorithms for (max; min)-product. These relation-
ships suggest a strong equivalence between the computation of hyperbolicity and
the (max; min)-product, that resembles the existing ones between all-pairs-shortest-
paths and (min; +) -product [FM71].

SETH-hardness. More recently, several authors have proved conditional lower-
bounds on the complexity of polynomial-time problems on graphs under the Strong
Exponential Time Hypothesis (SETH) [Wil16]. Roughly, the hypothesis says that
SAT cannot be solved in2(1� " )n -time for any " > 0 [IPZ98]. Under SETH it has been
proved that computing the diameter of a graph cannot be done in truly subquadratic-
time, even on sparse graphs; that is, it cannot be computed inO(n2� " )-time for any
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" > 0 [BCH16]. The authors in [BCH16] have used this result in order to prove
conditional lower-bounds on the complexity of computing the hyperbolicity of a
graph:

Theorem 35 ( [BCH16]). Under SETH, none of the following problems can be
solved in truly subquadratic time, even on sparse graphs:

� computing the hyperbolicity of a given graph;

� deciding whether a given graph has hyperbolicity at most one.

A similar but weaker result was proved by Fang in [Fan11].

2.6.3.2 Contribution of this thesis: Truly subcubic reduction to Quad-
rangle Detection

The concept of q-reduction was introduced by Williams and Vassilevska Williams
in [VWW10]. Informally, if there is a q-reduction from a problem A to a problem
B , and B can be solved in ~O(nq� � )-time7 for some� > 0, then problem A can be
solved in ~O(nq� " )-time for some other " > 0. More formally, a Turing reduction
from a problem A to a problem B is an algorithm to solveA using an oracle to solve
B as a soubroutine. It is called aq-reduction if for every � > 0 there exists " such
that the following holds for every input of size n:

� the reduction runs in ~O(nq� " )-time;

� and if the oracle to solve problemB is called on instances with respective sizes
n1; n2; : : : ; nk then

P k
i =1

~O(nq� �
i ) = ~O(nq� " ).

This concept formalizes prior work from,e.g., [GO95, KS06a].
Two problems are called subcubic equivalent if every of the two problems can

be 3-reduced to the other. In this situation, either both problems are solvable in
truly subcubic time, or none of them is. My main contribution in [CD14], found
with David Coudert, can be stated as follows.

Theorem 36. The two following problems are subcubic equivalent:

� deciding whether a graph has hyperbolicity equal to1=2;

� deciding whether a graph contains an induced cycle of length four.

Furthermore, both problems can be solved in deterministicO(n3:26)-time and in ran-
domized ~O(n2:3729)-time.

Theorem 36 shows a surprising gap in the complexity of recognizing graphs with
small hyperbolicity. Indeed, it has been proved in [How79] that the0-hyperbolic
graphs can be recognized in linear time. In contrast, recognizing1=2-hyperbolic
graphs in (deterministic) truly subcubic time seems to be a much harder task.

A reduction from Quadrangle detection to the recognition of 1=2-hyperbolic
graphs has been sketched in earlier papers [KM02, WZ11]. So, the main di�-
culty was to show the converse reduction. Our proof for Theorem 36 makes use

7The ~O notation suppresses the polylog factors.
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of a (non algorithmic) characterization of 1=2-hyperbolic graphs from Bandelt and
Chepoi [BC03]. On the way to prove our result, we have established the following
simpler characterization for these graphs. We recall that for everyG = ( V; E) and
j � 1, the graph powerGj is obtained from G by adding an edge between every two
distinct vertices that are at distance at most j in G.

De�nition 37. For every G = ( V; E), the graph G[2] = ( V [2]; E [2]) is de�ned as
follows:

� V [2] ' V � f 0; 1g;

� G[V � f 0g] ' G;

� G[V � f 1g] ' G3;

� and for every u; v 2 V , the vertices (u; 0) and (v; 1) are adjacent in G[2] if and
only if dG(u; v) � 2. In particular, for every u 2 V , there is an edge between
(u; 0) and (u; 1) in G[2].

G G3

Edges ofG2 + pseudo-
loops f (u; 0); (u; 1)g

Figure 2.23: The graphG[2].

We refer to Figure 2.23 for an illustration. Intuitively, the graph G[2] can be
seen as an intermediate power between the square and the cube ofG. Our charac-
terization of 1=2-hyperbolic graphs can now be stated as follows.

Theorem 38. G = ( V; E) is 1=2-hyperbolic if and only if none of the graphsGj ; j �
1 and G[2] contain an induced cycle of length four.

By Theorem 38, it can be decided whetherG = ( V; E) is 1=2-hyperbolic with
diam(G) calls to an oracle solvingQuadrangle detection � given as inputs
G[2] and G; G2; G3; : : : ; Gdiam (G)� 1. If we precompute, in truly subcubic time, a
polylogarithmic-factor approximation for hyperbolicity then this number of calls
can be reduced tologO(1) (jV j + jE j) (because some powers ofG can be discarded),
and we so obtain a subcubic reduction from the recognition of1=2-hyperbolic graphs
to Quadrangle detection .
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Discussion. As said earlier in this subsection, the authors in [BCH16] show that
under SETH, graph hyperbolicity cannot be computed in truly subquadratic time.
In contrast, it is proved with Theorem 36 that the weaker task of recognizing1=2-
hyperbolic graphs is equivalent to theQuadrangle Detection problem. The
latter problem can be solved inO(m2)-time on m-edge graphs, and so, in quadratic
time on sparse graphs. However, no truly subquadraticdeterministic algorithm is
known to exist, even for sparse graphs. In [VWWWY15], Vassilevska Williams et
al. describe anO(m1:41)-time randomizedalgorithm for Quadrangle Detection ,
but it is not combinatorial ( i.e., it calls matrix multiplication as a subroutine). In
order to reinforce this view, we note that there is a linear time reduction from
Triangle Detection to Quadrangle Detection [FKLL15], and so, to the
problem of computing graph hyperbolicity. It is conjectured that there does not
exist any truly subcubic combinatorial algorithm for Triangle Detection on
general graphs [Wil16].

2.7 Algorithmic applications

Finally, this section covers more technical applications of hyperbolicity, in the �eld of
graph algorithms. The previous sections can help the reader to have better insights
on the (hyperbolic) graph classes on which these algorithmic results apply, and the
(non hyperbolic) graph classes on which they do not apply. Note that this section
is not part of the contributions of this thesis. However, I will highlight on the way
some open questions on which I am interested to work.

The hyperbolicity has been used recently for the analysis of graph algorithms.
Indeed, it is the idea that when the hyperbolicity is small, there are some hard prob-
lems on graphs that can be e�ciently approximated. In what follows, we outline
some interesting algorithmic properties that are enjoyed by constantly hyperbolic
graphs. Note that in some cases, the algorithms that are presented in this section
keep some interest even for more general hyperbolic graph classes (say, polyloga-
rithmically hyperbolic).

Outline of the section. The �rst parts of this section (Sections 2.7.1 and 2.7.2)
cover distance-related problems in graphs. In Section 2.7.1, we survey applications
of hyperbolicity in the analysis of approximate distance oracles. These results are
mainly based on the relationships between hyperbolicity and the best possible distor-
tion of the distances in a graph when it is embedded into a �tree-like� metric space.
Perspectives for improving upon these relationships, and for re�ning the proposed
constructions, will be discussed. Then, in the continuity of Section 2.7.1, we will
cover in Section 2.7.2 some applications of hyperbolicity to graph clustering prob-
lems. The techniques presented leave space for promising extensions to a broader
family of graph problems, that will be further examined. Finally, we will end the
section with algorithmic applications of hyperbolicity to some problems in structural
graph theory (Sections 2.7.3 and 2.7.4). Section 2.7.3 is devoted to a PTAS for the
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Traveling Salesman Problem in hyperbolic graphs with bounded degree. This
algorithm is based on new separability results in hyperbolic graphs, that I think
could be useful in other graph problems. Last, constructive relationships between
hyperbolicity and vertex expansion are presented in Section 2.7.4. I think that these
relationships can be helpful in the design of approximation algorithms for computing
the treewidth in hyperbolic graphs with bounded degree.

2.7.1 Distance approximations

This section surveys the known results on the relationship between hyperbolicity
and the best-possible stretch for the distances in a graph when it is embedded in
a �tree-like" space. Indeed, the basic use of hyperbolicity is for the analysis of
approximate distance oracles. Computing the all-pairs-shortest-paths in a graph
can be done in polynomial time and space, but in practice this is often too costly
on large graphs and there is a need for subquadratic approximations. Some of
them consist in embedding the graph into a �simpler� combinatorial or geometrical
structure. When the structure is a �tree-like� metric space, the hyperbolicity of the
graph comes into play in the distortion.

Note that these results have useful applications in compact routing [GL05].

2.7.1.1 Hyperbolic embedding

As an example, Verbeek and Suri proved in [VS14] that for any embedding of
G = ( V; E) into a hyperbolic space the multiplicative distortion of the distances
is 
( � (G)=log � (G)) , and if G has bounded degree then there exists a linear-time
computable embedding ofG in a Hyperbolic space with additive distortion O(� (G)) .

As noted in [ACHK16], every G = ( V; E) with maximum degree � can be
embedded into a graphG0 with maximum degree three, up to a multiplicative dis-
tortion of the distances O(log �) . In this situation, � (G0) = O(� (G) log �) (we refer
to [Shc13b, GdLH90] for a proof of the preservation of hyperbolicity under quasi-
isometry). Therefore, everyG = ( V; E) can be embedded into a Hyperbolic space
in linear-time with multiplicative distortion O(� (G) log �) .

2.7.1.2 Tree embedding

In what follows, we survey the relationships between hyperbolicity and the distor-
tions of the distances in a graph that are obtained with di�erent algorithms for
embedding a graph into a tree. Some interesting open questions will be also men-
tioned. Most notably, Gromov has proved the following result on tree embeddings:

Theorem 39 ([Gro87]). Every G = ( V; E) can be embedded into a tree in quadratic-
time, up to an additive distortion of the distances at most2� (G) log jV j.

In order to prove Theorem 39, the main contribution of Gromov was to exhibit
a pseudo-distance on graphs, and then to upper-bound the additive distortion re-
sulting from the pseudo-distance by2� (G) log(jV j). By construction, every graph
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equipped with the Gromov pseudo-distance is0-hyperbolic, and there exist e�cient
constructions in order to embed0-hyperbolic spaces into a tree with null distortion.
One of them is due to Buneman, and it can be implemented to run in quadratic-
time [Bun74, Gro87].

u

(a) Graph G (b) Layering tree LC(u).

Figure 2.24: Example of a layering tree.

Relationship with other constructions. Recently, Yancey [Yan15] has proved
a close relationship between the construction of Gromov and the so-calledlayering
trees [CD00]. Given G = ( V; E) and u 2 V , the layering tree LCG(u) is obtained
from the shortest-path tree rooted at u as follows: we merge into one node all
vertices v; w such that d(u; v) = d(u; w) and there exists avw-path P such that
d(u; x) � d(u; v) for every x 2 P (see Figure 2.24 for an illustration).

It was already proved that embedding G into one of its layering trees causes
a distortion of the distances O(� (G) log(jV j)) [CDE+ 08]. However, what Yancey
proves is that the Gromov distance approximating tree is essentially a layering tree
with Steiner points (additional nodes in the tree such that all the edges incident to
that node have weight zero). On the algorithmic side, since a layering tree can be
computed in linear time [CD00], it gives a simpler and more e�cient construction
for Theorem 39.

The Gromov distance approximating tree is also equivalent to another construc-
tion in the litterature, that is called an Anchored Buneman tree [BFÖ+ 03].

Perspectives. There exists a �re�ned Buneman tree� [BFÖ+ 03], that has been
observed to give a lower distortion of the distances in a graph than an Anchored
Buneman tree. It can be computed in cubic time. I think that it would be interesting
to analyse the distortion caused by an embedding into this tree (w.r.t. graph hy-
perbolicity), and to improve on its computation (possibly, by using the relationship
between Anchored Buneman trees and layering trees).

Another interesting question on tree embeddings was asked by the authors
in [ASM16]. Indeed, they notice that for real-life graphs with diameterO(log(jV j)) ,
a shortest-path tree is enough in order to approximate the distances up to an ad-
ditive term O(log(jV j)) . Therefore, the tree embedding of Theorem 39 does not
look that appealing in that case. Under which conditions can a� -hyperbolic graph
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with diameter D be embedded into a tree with distortionO(� logD) ? Let us point
out that by Lemma 13 the ringed tree RT (k) (de�ned in Section 2.4.1) has diam-
eter �( k) and hyperbolicity 3 but cannot be embedded into a tree width additive
distortion o(k).

2.7.1.3 Approximate extremal distances.

Finally, before concluding this subsection, we point out that if we relax our goal
and we only want to approximate the extremal distancesin G = ( V; E) (i.e., the
eccentricities, where the eccentricity of a vertex is de�ned as its largest distance to
another vertex in G), then it can be done up to a better additive term O(� (G)) . In
particular, there is a simple algorithm in order to approximate the diameter, that is
namedTwo-Sweep in the literature [MLH08]. Suppose that we compute a breadth-
�rst search from any vertex of the graph G = ( V; E), and that it ends on some vertex
v. Then, we compute a second breadth-�rst search fromv, and it can be proved
that v has eccentricity at leastdiam(G) � 2� . The latter generalizes an algorithm of
Jordan in order to compute the diameter of trees in linear time [Jor69]. The radius
of the graph can be approximated in a similar fashion. We refer to [CDE+ 08] for
details.

2.7.2 p-centers

Next, we present a more re�ned algorithmic application of hyperbolic graphs to
graph clustering problems, that was proposed in [CE07]. This application requires
prior results on the relationships between hyperbolicity and tree embeddings (The-
orem 39). Precisely, thep-radius of G = ( V; E) is the smallest radiusrp(G) such
that V =

S
v2 S BG(v; rp(G)) for some subsetS � V with jSj � p vertices. In par-

ticular, the 1-radius of G is simply its radius, a.k.a., the minimum eccentricity of a
vertex in G. A dual invariant is the p-diameter of G = ( V; E), that is the largest
dp(G) so that there are at leastp vertices ofG that are pairwise at distance at least
dp(G). In particular, the 2-diameter of G is simply its diameter, a.k.a., the largest
distance between two vertices inG. Furthermore, any subset minimizing rp(G),
resp. maximizing dp(G), is called ap-center, resp. ap-packing.

Shier has proved that for any treeT, we havedp+1 (T)=2 � rp(T) � dp+1 (T)=2+
1 [Shi77]. In [CE07], Chepoi and Estellon propose the following generalization to
� -hyperbolic graphs:

Lemma 40 ( [CE07]). For every G = ( V; E), it holds dp+1 (G)=2 � rp(G) �
dp+1 (G)=2 + 4� (G) + 1 .

From Lemma 40, they obtain anO(n3)-algorithm for computing an approximate
p-center of graphs [CE07]. It gives an approximation algorithm for computing thep-
radius of a given� -hyperbolic graph up to an additive term O(� ). This was recently
improved in [EKS16], where Edwards et al. detail an algorithm with the same
performances as above, running inO(p� (n + m) log n)-time on � -hyperbolic graphs.
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The gist of these algorithms is to compute an approximate(p+1) -packing and then
to elaborate on it. It can be done by embedding the graph into a tree with additive
distortion of the distances O(� logn), then to compute an optimal packing for this
tree.

Perspectives. Proper generalizations of Lemma 40 to the transversal and the
packing numbers of given set families in � -hyperbolic graphs can be found
in [CDV16]. These results are obtained from a primal-dual approach using a lin-
ear programming formulation of these parameters. Can it be derived from the
relationships in [CDV16] e�cient (quasi-linear time) approximation algorithms for
computing transversals of these set families ? In particular, can the techniques
applied in [EKS16] be useful in the design of such algorithms ?

2.7.3 Traveling Salesman Problem

So far, the problems mentioned in Sections 2.7.1 and 2.7.2 were purely metric.
The two last applications (Sections 2.7.3 and 2.7.4) combine some metric aspects
of graphs (distances) with structural properties. In particular, we present in this
part results on �balanced� separators in hyperbolic graphs, with applications to the
Traveling Salesman Problem .

In [KL06], Krauthgamer and Lee initiated a more general study of approximate
algorithms on negatively curved spaces. Their algorithms apply to constantly hy-
perbolic graphs with bounded maximum degree. Their main technical tools are
separability properties of hyperbolic graphs, that extend those of trees. As an ex-
ample, in a rooted tree T with maximum degree � , there exists a nodez whose
subtree comprises betweenjT j=(2�) � 1 and jT j=2 nodes. It can be extended to
hyperbolic graphs as follows:

Lemma 41 ( [KL06]) . Let G = ( V; E) be a� -hyperbolic graph with maximum degree
� and let w 2 V . For every v 2 V and t � 0, let us de�ne X t

v = f u 2 V j hu; vi w �
dG(u; w) � tg. Then, for every S � V such that the vertices inS are pairwise at
distance at least20� , there existsc 2 V such that:

jSj=� O(� 2 ) � j S \ X �
c j � j S \ X 3�

c j � j Sj=2:

Using Lemma 41, Krauthgamer and Lee are able to design a hierarchical data
structure for approximate nearest neighbour search [KL06] [KL06].

Their second contribution is a randomized polynomial-time approximation
scheme (PTAS) for the well-known Traveling Salesman Problem (TSP). It
is based on the existence, for bounded degree hyperbolic graphs, of somepadded
probabilistic decompositions. Roughly, the graph can be decomposed into small di-
ameter subsets in a way that every ball with small radius is contained in one of the
subsets with high probability. Assuming the graph has bounded maximum degree,
it is the idea that hard problems such as TSP can be solved by brute-force on the
subsets (or at least sharply approximated). Then, a global solution for the graph
can be computed from the partial solutions by using dynamic programming.
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Open questions. Lemma 41 extends a separability property of trees to hyperbolic
graphs. What other separability properties of trees can be generalized to hyperbolic
graphs in a similar fashion ? Can we use such properties in order to design ap-
proximation algorithms on hyperbolic graphs with bounded maximum degree, using
dynamic programming, for other problems such asMaximum Clique or Maximum
Independent Set ?

2.7.4 Cut problems

We end the section with some algorithmic consequences on the relationships between
hyperbolicity and graph expansion (Section 2.5.2.3). Unlike the other problems
mentioned in the section, the following algorithms also apply to non constantly
hyperbolic graph classes. More precisely, although the above algorithmic work on
hyperbolicity can sometimes apply to non constantly hyperbolic graph, the authors
in [DKMY15] have been the �rst, to the best of my knowledge, to design algorithms
for more general hyperbolic graphs (with non constant hyperbolicity).

We recall the results in [Ben98, Mal15] where they prove that expander graphs
are non hyperbolic. In [DKMY15], the authors give constructive proofs on the re-
lationship between graph expansion, maximum degree and hyperbolicity. Precisely,
they obtain improved algorithms for the following graph problems. Given ann-
vertex graph with maximum degree � and hyperbolicity at most � , the following
can be computed in polynomial-time:

� Upper-bounds on the vertex-expansion depending on� and � . The algorithm
also outputs a large family of subsets satisfying these bounds, with limited
overlap;

� Large st-cuts with � O(� ) edges.

The authors also propose an improved algorithm for minimizing the number of
bottleneck edges that arises in network design applications. It works in the case
where � = o(log n= log �) ;

Finally, the authors in [DKMY15] have considered the small-set expansion
problem on hyperbolic graphs, that is a promise problem de�ned as follows: given
a graph G = ( V; E) and two constants c and � , distinguish whether (i) there
exists a subset ofV with size c � jV j and vertex-expansion at most� , or (ii) every
such a subset has vertex-expansion at least1 � � [RS10]. It is conjectured that
for every �xed � , there exists some constantc such that the correspondingsmall-
set expansion problem is NP-complete for general graphs [RS10]. In contrast,
the authors in [DKMY15] proved that for every constants � and c the small-set
expansion problem can be solved in polynomial time forn-vertex graphs with
bounded maximum degree and hyperbolicity� = o(log n).

Conclusion and open perspectives. The small-set expansion problem im-
plies the Unique Game conjecture, that is related to the complexity of a label
assignment problem on graphs and that has been shown to imply tight inapproxima-
bility results for many classic graph problems [Kho02]. Furthermore, thesmall-set
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expansion problem also implies the nonexistence of constant-factor approximations
for treewidth [APW12].

Therefore, the result of [DKMY15] raises the following open problem: can the
treewidth of hyperbolic graphs with bounded degree be approximated up to a
constant-factor ? Note that computing the treewidth is NP-hard on bounded-degree
graphs and on hyperbolic graphs [BT97].

2.8 Conclusion

In Sections 2.4 and 2.5, we presented bounds on graph hyperbolicity. Enriching
these results with new lower and upper bound techniques is an important open
problem, with potential implications for a faster computation of this parameter in
practice. In particular, I believe that new results in the spirit of Section 2.4.3:
on the preservation of hyperbolicity under some graph operations, would give a
better insight on the structure of hyperbolic graphs. Similarly, new lower-bounds
could help the computer scientists in better distinguishing complex networks that
are hyperbolic or strongly hyperbolic (e.g., biological and social networks) from
those that are non hyperbolic (such as road networks). We refer to [AAD16, AD15,
BCCM15, CCL15, ASM13, KNS13] for experiments on the hyperbolicity in complex
networks.

On the complexity point of view, it is proved in Section 2.6.3 that the recognition
of 1=2-hyperbolic graphs is subcubic equivalent to the detection of induced cycles
of length four in graphs, and so, that no truly subcubic combinatorial algorithm
for computing the hyperbolicity is likely to exist. It is worth pointing out that in
practice, hard instances for the above problem are indeed graphs with small hyper-
bolicity. I thus conjecture that graphs with large hyperbolicity (say, proportional
to their size) can be recognized more e�ciently. Results of this fashion have been
proved recently for the related problem of computing graph diameter [Dam16].

Open perspectives

As pointed out in Section 2.2, it can be inferred interesting network properties when
the graph is � -hyperbolic. Before we �nish this chapter, it is worth mentioning that
some other geometric graph parameters have been explored with the same goal in
mind as above. Most of them are close in spirit from hyperbolicity, and they can
often be de�ned via a suitable variation of the 4-point Condition (De�nition 1)
or another reformulation of hyperbolicity. We refer, e.g., to [ABK + 07, ADM14,
JLB08, LT15, Yan15] for partial relationship between these properties and graph
hyperbolicity.

Let us put a focus on two of these competitors to graph hyperbolicity. The �rst
one is the average hyperbolicity, de�ned as 1

(n
4)

P
u;v;x;y 2 V � (u; v; x; y) [ADM14]. The

second one is the notion of(p; � )-hyperbolic graphs, that are graphs with at least
a fraction p of their geodesic triangles that are� -slim [LT15]. I think that both
concepts should deserve more attention in the future, given that the maximum
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value for the hyperbolicity is reached by an extremely small fraction of4-tuples in
real-life graphs (e.g., less than3% in social graphs [AAD16]).

Finally, let us point out that in some cases, complex networks have a meaningful
orientation on the edges, i.e., they are directed graph. So far, graph hyperbol-
icity has been de�ned and studied only in the undirected case. Thus, it would
be very interesting to extend the notion of hyperbolicity (and of Gromov prod-
uct, see De�nition 2) to digraphs. Partial attempts in this direction can be found
in [GK14, PRST13]. I let this topic as a future work.



Chapter 3

Tree decompositions with metric
constraints on the bags

Summary

We make a complexity study for computing tree decompositions in graphs. The
tree decompositions considered are de�ned via metric constraints on their bags. We
aim at obtaining a �ner-grained complexity for computing these decompositions in
general graphs and in some graph classes with structural properties. To do so, we
will prove conditional lower-bounds through reductions.

In Section 3.3, we prove thatTriangle Detection reduces in quadratic time
to the computation of clique-decomposition. This is a hint that there does not exist
any truly subcubic combinatorial algorithm for this problem. Furthermore, we prove
that computing the clique-decomposition can be reduced toMatrix Multiplica-
tion , which combined with the relationships betweenMatrix Multiplication
and Triangle Detection , suggests a computational equivalence between these
two problems and computing the clique-decomposition. On the parameterized point
of view, we conjecture that clique-decomposition can be computed in quasi-linear
time on graphs with boundedclique-number, that is formally proved for triangle-free
graphs and other special graph classes.

Then, in Section 3.4 we answer open questions of Dragan et al. on the complexity
of computing treebreadth, pathlength and pathbreadth in graphs. Namely, we prove
that all these problems are NP-hard. More precisely, we prove that the recognition
of graphs with treebreadth one is already NP-complete, and the same holds true for
the recognition of graphs with pathbreadth one and the recognition of graphs with
pathlength at most two. On a more positive side, we prove that deciding whether
a bipartite or planar graph has treebreadth one is polynomial-time solvable. The
algorithm for planar graphs and its analysis are surprisingly intricate.

Finally, we prove in Section 3.5 new relationships between treelength and
treewidth. Precisely, we prove a nontrivial upper-bound on the diameter of minimal
separators in a graph by using an algebraic tool called thecycle basis. We deduce
from this result that the treelength is linearly upper-bounded by the treewidth in
the class of graphs with bounded-length isometric cycles. Conversely, we prove
that the treewidth is linearly upper-bounded by the treelength in the class ofapex-
minor free graphs, thereby generalizing a result from Dieng and Gavoille on planar
graphs [DG09].

All my papers on tree decompositions [CDN16, DLN16a, DC17] are collected in
the appendix.



76 Chapter 3. Tree decompositions with metric constraints on the bags

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.2 General objective: e�cient computation of tree decompositions 77

3.2 Some basics on tree decompositions . . . . . . . . . . . . . . 79
3.2.1 Tree-likeness parameters . . . . . . . . . . . . . . . . . . . . . 80
3.2.2 Relationship with triangulations . . . . . . . . . . . . . . . . 83
3.2.3 Tree decompositions with constrained adhesion sets . . . . . 84

3.3 Computational aspects of clique-decomposition . . . . . . . 86
3.3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.3 Summarizing the proofs . . . . . . . . . . . . . . . . . . . . . 88

3.4 On the complexity of computing treebreadth and its relatives 91
3.4.1 Summarize of our contributions . . . . . . . . . . . . . . . . . 92
3.4.2 Approach and the techniques used in the proofs . . . . . . . . 93
3.4.3 Open problems and future work . . . . . . . . . . . . . . . . 102

3.5 Treewidth versus treelength! . . . . . . . . . . . . . . . . . . . 103
3.5.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.2 Contributions: upper and lower bounds for treewidth by using

treelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5.3 Proving the bounds . . . . . . . . . . . . . . . . . . . . . . . 105

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.1 Introduction

In the previous chapter, we studied on graph hyperbolicity and its algorithmic ap-
plications. Hyperbolicity is a measure of the closeness of a graph metric to a tree
metric. Yet, it is not related to a structural decomposition of a graph directly1.
On the algorithmic point of view, graph decompositions can be useful in order to
design divide-and-conquer algorithms on large graphs. In particular, tree decom-
positions [RS86] aim at decomposing graphs into pieces, calledbags, organized in a
tree-like manner (formal de�nitions are postponed to Section 3.2). They have been
proved to be useful in order to extend some e�cient algorithms on trees to larger
classes of graphs.

The purpose of this chapter is to describe my work on these decompositions.

3.1.1 Context

The general idea is that when the bags have a �simple enough� structure, there
are hard problems on general graphs which can be solved e�ciently by using dy-
namic programming on the tree decomposition. There is now a rich literature on

1There does exist a relationship between graph hyperbolicity and some decompositions of graphs
with dismantling orderings (De�nition 7).
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tree decompositions with algorithmic applications, such ase.g., algorithmic meta-
theorems (for solving hard problems on graphs with a speci�ed tree decomposi-
tion) [Cou90, DH08, FG01], and the well-known biconnected decomposition [Tar72],
triconnected decomposition [HT73], clique-decomposition [BPS10], etc.

Furthermore, with the growing size of real-life graphs, tree decompositions have
been found useful in order to identify the key aspects of the structure of complex
networks, such ase.g., core and periphery [ASM16].

Treewidth is a classical measure for studying tree decompositions. Roughly, the
width of a tree-decomposition is the maximum size of its bags. The treewidth of
a graph is the minimum width among all its tree-decompositions. A lot of work
has been dedicated to compute tree-decompositions with small width since such
decompositions can be e�ciently exploited for algorithmic purposes [Bod06]. How-
ever, computing the treewidth of a graph is NP-hard [ACP87] and no constant-
approximation algorithm is likely to exist [WAPL14]. Furthermore, real-life net-
works generally have a large treewidth [dMSV11]. These drawbacks motivated the
study of other optimization criteria for tree-decompositions [DG07, KLNS15, Sey16].

Metric tree-likeness in graphs. In this chapter, we mainly focus on optimizing
the metric properties of the bags. One �rst example is anatom tree [BPS10], where
the bags are maximal subgraphs with no clique-separators. The bags in an atom tree
are isometric subgraphs. An atom tree has already nice algorithmic applications,
however it may be sometimes more interesting to further decompose the graph.
Roughly, the length and the breadth of a tree-decomposition are the maximum di-
ameter and radius of its bags respectively. The corresponding graph parameters are
the treelength[DG07] and the treebreadth[DK14] respectively. As I mentioned it in
Section 2.4.1 (p. 36), these two parameters are closely related to hyperbolicity, and
to the best possible distortion of the distances in a graph when it is embedded into a
tree. Algorithmic applications of hyperbolic graphs (Section 2.7, p. 67) thus trans-
pose to bounded treelength graphs. See also [DDGY07] for some other applications
of treelength in graph algorithms. We point out that recent studies suggest that
some classes of real-life networks � including biological networks and social networks
� have bounded treelength and treebreadth [AAD16].

3.1.2 General objective: e�cient computation of tree decomposi-
tions

In the continuity of my work on computing graph hyperbolicity (Section 2.6), I
have been interested in computing e�ciently tree decompositions with bags of small
diameter or radius. To a lesser extent, my results also apply to the computation of
other tree-likeness parameters such as,e.g., treewidth.

In what follows, I shall introduce my main contributions to the �eld.
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3.1.2.1 Finer-grained complexity of clique-decomposition

The decomposition of a graph by its clique-separators is sometimes called �clique-
decomposition� in the litterature [BPS10]. Its output is an atom tree (mentioned
above), that is a tree decomposition whose bags induce subgraphs with no clique-
separators,a.k.a. atoms. One interest of clique-decomposition is that it can be used
for preprocessing the graph in the computation of many other parameters (exact or
approximate). In particular, the treewidth of a graph is the maximum treewidth of
its atoms, and the same holds true for treelength and treebreadth. In Section 2.6.2,
I also detailed a novel application of clique-decomposition for computing the hyper-
bolicity of large graphs.

My purpose in Section 3.3 is to improve our understanding of the complex-
ity of computing this decomposition. Clique-decomposition can be computed in
polynomial-time [Tar85]. However, the best-known algorithms for the problem run
in O(nm)-time on n-vertex m-edge graphs, that is prohibitive for large graphs.

In [DC17], we show how to reduce thetriangle detection problem to clique-
decomposition, that is strong evidence that the state-of-the-art algorithm for clique-
decomposition is essentially optimal. Furthermore, we describe an improved algo-
rithm for computing the clique-separators of a graph, that suggests an interesting
relationship between the complexity of computing clique-decomposition and the
clique-numberof a graph (size of a maximum clique).

These results are in revision forSIAM Journal of Discrete Mathematics. They
are joint work with my supervisor David Coudert. I will detail them in Section 3.3.

3.1.2.2 The (NP-)hardness of computing treebreadth

The remaining of this chapter (Sections 3.4 and 3.5) is devoted to the length and
the breadth of tree decompositions. On the complexity point of view, it has been
proved by Lokshtanov in [Lok10] that deciding whether a graph has treelength at
most k is NP-complete for every �xed k � 2. However, this was left open for
treebreadth [DK14].

We answer to this open problem in [DLN16a]. Precisely, it is proved in the paper
that deciding whether a graph has treebreadth at mostk is NP-complete for every
�xed k � 1. Similar results are obtained for the �path counterparts� of treelength
and treebreadth, that are named pathlength and pathbreadth [DKL14].

On a more positive side, we initiate the study of the complexity of computing
treebreadth on certain graph classes. This approach has been well explored for
treewidth [BKK95, KK95, Klo96, BKKM98, BM93]. However it has been so far
underexplored for treelength and treebreadth. Precisely, it is proved in [DLN16a]
that bipartite graphs and planar graphs of treebreadth one can be recognized in
polynomial time.

I will expand on this joint work with Nicolas Nisse and Sylvain Legay in Sec-
tion 3.4.
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3.1.2.3 Relationships between treewidth and treelength

Finally, the last Section 3.5 is devoted to new relationships between treelength and
treewidth. We obtain this way a unifying view of tree-likeness in graphs. Further
motivations to �nd such relationships are to derive improved algorithms for solving
hard problems on certain classes of bounded-treelength graphs, improved approxi-
mation algorithms for computing the treewidth on certain graph classes, etc.

In order to better depict the results in this section, found in collaboration with
David Coudert and Nicolas Nisse, let it be said that complete graphs are the classical
example of graphs with large treewidth but bounded treelength, whereas on the other
hand the cycles have bounded treewidth but unbounded treelength [DG07]. These
two graph families thus can be used in order to show that treewidth and treelength
cannot be compared on general graphs. We prove in [CDN16] that removing these
obstructions allows one to upper and lower bound treewidth with functions of the
treelength. More formally, what we prove in [CDN16] is that on apex-minor free
graphs with bounded-length isometric cycles, treelength and treewidth can only
di�er by at most a constant-factor (full de�nition for this class of graphs is postponed
to Section 3.5).

De�nitions and preliminary results are presented in Section 3.2. The technical
sections are structured as follows. We start with a short summary of the topic, then,
we list our main contributions and we discuss about their implications. We end the
sections with sketch proofs of the main results.

3.2 Some basics on tree decompositions

The notion of tree decomposition was brie�y introduced in the previous chapter
(Section 2.4.1). We restate the de�nition here for convenience of the reader. Atree
decomposition(T; X ) of G = ( V; E) is a pair consisting of a treeT and of a family
X = ( X t )t2 V (T ) of subsets ofV indexed by the nodes ofT and satisfying:

�
S

t2 V (T ) X t = V ;

� for any edgee = f u; vg 2 E, there exists t 2 V (T) such that u; v 2 X t ;

� for any v 2 V , the set of nodesf t 2 V (T) j v 2 X t g induces a subtree, denoted
by Tv , of T.

The sets X t are called the bagsof the decomposition. Its adhesion setsare the
intersectionsX t \ X t0 for every edgef t; t 0g 2 E(T). As an example, we show a tree
decomposition of the wheel in Figure 3.1. In this case, the treeT is a path, so, we
call it a path decomposition.

We point out that any graph admits a tree decomposition, resp. a path de-
composition. Indeed, the single node tree with bagV satis�es the three above
conditions. However, this trivial tree decomposition is not that interesting, so, we
aim at imposing additional constraints on the bags or on the adhesion sets.
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Figure 3.1: A path decomposition of the wheelW6.

3.2.1 Tree-likeness parameters

Treewidth

The width of a tree decomposition is the size of a largest bag minus one. The
treewidth, resp. the pathwidth of a graph G is the least possible width over its tree
decompositions, resp. over its path decompositions. In what follows, we denote
these two parameters bytw(G) and pw(G), respectively.

Example: graphs with small treewidth. Graphs with treewidth one are ex-
actly the trees (hence, the minus one in the de�nition).

Furthermore, cycles have treewidth two. It can be shown as follows. When we
remove any vertex from a cycle, that will leave a path. This path is a tree, so, it
has a tree decomposition of unit width. Then, by adding in every bag the removed
vertex, we obtain a tree decomposition of the cycle of width two.

Examples of graphs with large treewidth are the complete graphs and the
grids.

Precisely, a complete graphK n with n vertices has treewidthn � 1. This well-
known result derives from the Helly property: every collection of pairwise intersect-
ing subtrees in a tree have a nonempty intersection. We detail this a bit more below
as it is a useful technique in the study of tree decompositions.

Let us �x (T; X ) a tree decomposition ofK n . We have for everyu; v 2 V (K n )
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that since u and v are adjacent they must be contained in a common bag. As a
result, the subtreesTv ; v 2 V (K n ) are pairwise intersecting. By the Helly property,
it implies that there must be a bag of (T; X ) with all the n vertices in K n , hence
tw(K n ) � n � 1. The bound is reached by the trivial tree decomposition with one
node.

Observe that more generally, we have with the same proof as above that for
every G, and every tree decomposition(T; X ) of G, every clique ofG must be fully
contained in one bag of(T; X ) [Bod06]. Therefore, the treewidth is lower-bounded
by the clique-number (size of a largest clique).

. . .

Figure 3.2: Bags in a path decomposition of the grid with side length four (partial
view).

Last, given a grid with dimensionsm and n, with n � m, it is not di�cult to
construct a tree decomposition of width n (see Figure 3.2). This construction is
optimal [Die10] but it is technically challenging to prove it.

I will study treewidth in Section 3.5.

3.2.1.1 Treelength and treebreadth

The length of a tree decomposition is the maximum distance in the graph between
every two vertices in a same bag. Thetreelength, resp. the pathlengthof a graph
G is the least possible length over its tree decompositions, resp. over its path
decompositions. In what follows, we denote these two parameters bytl (G) and
pl(G), respectively. Note that they are trivially upper-bounded by the diameter
diam(G) (that is the length of the trivial tree decomposition with one node).

Close to its length, the breadth of a tree decomposition is the minimumr such
that every bag is contained in a ball of radiusr in the graph (the center of the
ball may not be in the bag). The treebreadth, resp. the pathbreadth of a graph
G is the least possible breadth over its tree decompositions, resp. over its path
decompositions. In what follows, we denote these two parameters bytb(G) and
pb(G), respectively. As an example, the wheel in Figure 3.1 has treebreadth one
and treelength two.

Treelength and treebreadth can be seen as a particular case of acyclic(R; D )-
clustering, a.k.a. tree decompositions with breadth at mostR and length at most
D [DL07]. The two parameters are closely related. Precisely,tb(G) � tl (G) �
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2�tb(G) and the bounds are sharp [DK14]. The same relationship holds true between
pathlength and pathbreadth.

Examples of graphs with small treelength. It turns out that many interesting
graph classes with unbounded treewidth have small treelength. As an example,
the chordal graphs are a strict generalization of complete graphs. They can be
characterized as those graphs admitting aclique-tree, that is a tree decompositions
whose bags are cliques [Gav74]. Thus, chordal graphs are exactly the graphs with
unit treelength. More generally, everyk-chordal graph (graph with no induced cycle
of length at least k + 1 ) has treelength at mostbk=2c [DG07].

Related to chordal graphs, thedually chordal graphsare the clique-graphs (i.e.,
intersection graphs of the maximal cliques) of chordal graphs [BDCV98]. We claim
that dually chordal graphs have treebreadth one, and so, treelength at most two.
Indeed, for every dually chordal graphG, there exists a one-to-one mapping' from
the maximal cliques of some chordal graphH to the vertices of G. Let (T; X ) be a
clique-tree ofH . Since bags of this tree decomposition are maximal cliques ofH , we
can de�ne, for every nodet 2 V (T), Yt = NG[' (X t )]. Then, it can be checked that
(T0; Y) = ( T; (Yt )t2 V (T ) ) is a tree decomposition ofG of breadth one. In particular,
for every vertex v 2 V(G) we have that T0

v =
S

u2 ' � 1 (v)
Tu . It follows, as claimed,

that dually chordal graphs have treebreadth one, but this inclusion is proper. To see
that, it su�ces to notice that every chordal graph also has treebreadth one, while
not all chordal graphs are dually chordal [BDCV98].

Another interesting fact is that every graph with diameter at most D also has
treelength at most D (trivially). In particular, adding a universal vertex to any
graph G with treewidth k will result in a graph G0 with tw(G0) = k +1 and tl (G0) �
diam(G0) � 2. This simple observation will be useful in order to better intuit our
results in Section 3.5.

On the other way around, examples of graphs with large treelength include
cycles and grids [DG07]. Intuitively, this can be explained by the Balanced separa-
tion property in tree decompositions: in any tree decomposition(T; X ) of G, there
must exist a bagB 2 X so that every component ofG n B contains no more than
jV j=2 vertices (it generalizes the existence of a centroid in a tree [Gol71]). It is not
hard to see that on a cycleCn with n vertices, any balanced separator has diameter

( n) (see also Fig. 2.14b). Similar arguments apply to the case of grids.

Finally, it should be noticed that complete graphs have unbounded treewidth
and unit treelength, whereasn-vertex cycles have treewidth two and unbounded
treelength dn=3e [DG07]. Altogether combined, it shows that treewidth and tree-
length are uncomparable on general graphs. We shall discuss when they can be
compared in Section 3.5.
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3.2.2 Relationship with triangulations

Tree decompositions can be de�ned equivalently in terms of graph triangulations.
As we will show throughout this chapter, this reformulation is very convenient to
use in the proofs.

A triangulation of G = ( V; E), sometimes called a �ll-in of G, is any chordal
supergraphH = ( V; E[ F ) of G. Recall that chordal graphs are exactly those graphs
with a clique tree, a.k.a. tree decomposition whose bags are cliques [Gav74]. IfH is
a triangulation of G, then any of its clique tree is clearly a tree decomposition forG.
Conversely, given a tree decomposition(T; X ) of G, we can de�ne a triangulation
of G by adding an edge between every two vertices that are in a same bag of the
decomposition (e.g., see Figure 3.3 for an illustration).
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(a) A tree decomposition of W6
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(b) The corresponding triangulation.

Figure 3.3: Triangulation of the wheel W6.

Altogether combined, the tree decompositions ofG can be de�ned as the clique
trees of its triangulations H . In particular:

� tw(G) � k if and only if there exists a triangulation H of G with no clique of
size greater thank + 1 (sometimes called ak-tree) [Bod06];

� tl (G) � l if and only if there exists a triangulation H of G so that E(H ) �
E (Gl ), where Gl = ( V;ff u; vg j 0 < dG(u; v) � lg) is the l th power of
G [Lok10]2.

2 I am not aware of any �natural� reformulation of treebreadth in terms of triangulation. It is
my opinion that the hypergraph terminology from [BDCV98] would be best suited to reach the
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Minimal triangulation and minimal separators. Let G = ( V; E) be a graph.
A triangulation H = ( V; E [ F ) of G is minimal if for every strict subset F 0 � F , we
have that H 0 = ( V; E [ F 0) is not chordal. Similarly, a minimal tree decomposition
of G is a clique tree of some minimal triangulation ofG.

Every triangulation H = ( V; E [ F ) of G can be transformed into a minimal
one by removing a subset of edgesF 0 � F . Note that it does not make increase
the width, length and breadth of the corresponding tree decompositions ofG. As
a result, it can always be found a minimal tree decomposition of minimum width,
resp. of minimum length or of minimum breadth. This observation has motivated
an in-depth study of minimal triangulations and their characterizations [Heg06].

In particular, the following characterization is due to Parra and Sche�er [PS97].
Before we can state it properly, we need to introduce standard notions on graph
separators.

A separator of G = ( V; E) is any subsetS � V satisfying that G n S is discon-
nected. If a; b are two vertices in di�erent components of G n S then we call S an
ab-separator. A minimal separator is an inclusion wise minimalab-separator S for
some pair of verticesa; b 2 V n S. Equivalently, a separator S is called minimal if
there exist two componentsA; B of G n S such that N (A) = N (B ) = S. We note
that inclusion wise minimal separators are also minimal separators, but the converse
holds false.

Two minimal separators S1; S2 of G cross if S1 intersects two connected compo-
nents of G n S2 (this is an equivalence relation on minimal separators [PS97]). If
S1; S2 do not cross then they are calledparallel.

Theorem 42 ( [PS97]). H is a minimal triangulation of a graph G if and only if
it is obtained by transforming into cliques all sets in a maximal family of pairwise
parallel minimal separators ofG.

3.2.3 Tree decompositions with constrained adhesion sets

The dominant approach in the study of tree decompositions is to try to optimize
some properties on the bags. This is the approach presented in Section 3.2.1. An-
other approach is to impose more structures on the adhesion sets (intersections of
adjacent bags). Many graph decompositions can be de�ned this way. We present
some of them below, with an emphasis on clique-decomposition.

First examples. The biconnected decompositionof G = ( V; E) is the collection
of its maximal sets of vertices with no separator of size one (also called cut-vertex).
These sets are called biconnected components. It is well-known that the biconnected
components are the bags of a tree decomposition ofG, sometimes called ablock-cut

goal. Namely, de�ne for every graph G the hypergraphs C(G) and N (G) whose hyperedges are,
respectively, the maximal cliques and the closed neighbourhoods in G. Furthermore, given two
hypergraphs H 1 and H 2 with same vertex-set, let us write H 1 � H 2 if every hyperedge of H 1 is a
subhyperedge ofH 2 . Then, tb(G) � j if and only if there exists a chordal supergraph H of G such
that C(G) � C (H ) � N (Gj )
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tree [Tar72]. In particular, we observe that the adhesion sets of a block-cut-tree are
exactly the cut-vertices of G.

Similarly, the so-called triconnected components[HT73] are the bags of a tree
decomposition ofG, sometimes called aSPQR-tree [GM00]. The adhesion sets of a
SPQR-tree are pairwise parallel minimal separators of size two. Generalizations to
tree decompositions with adhesion sets of size at mostk are discussed in [CDHH16,
Gro16].

3.2.3.1 Clique-decomposition

Instead of bounding the size of the adhesion sets, we can bound their diameter. A
clique-minimal separator of G = ( V; E) is a minimal separator inducing a clique
of G. The atoms of G are the maximal sets of vertices with no clique separator.
Finally, the clique-decompositionof G is the collection of its atoms (see Figure 3.4
for an illustration).
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(b) The clique-decomposition ofG.

Figure 3.4: Example of clique-decomposition.

In the same way as above, the atoms ofG are the bags of a tree decomposition,
sometimes called anatom tree [BPS14]. The atom trees ofG are exactly the clique-
trees of some triangulation H + of G [BPS10]. In general,H + is not a minimal
triangulation of G. However, we have that H + is a supergraph ofany minimal
triangulation of G. More precisely:

Proposition 43 ( [BPS10]). For every minimal triangulation H of G = ( V; E), the
clique-minimal separators ofG are exactly the minimal separators ofH that induce
a clique ofG.

What Proposition 43 implies is that in order to compute a minimal triangulation
of G, it su�ces to do so for each atom separately [Tar85]. In particular, it follows
that treewidth, treelength and treebreadth can be computed on each atom sepa-
rately (we obtain their value for G by taking the maximum value over the atoms).
This motivates us to study the complexity of computing clique-decomposition in
Section 3.3.
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3.3 Computational aspects of clique-decomposition

This section is devoted to my work on the time complexity for computing clique-
decomposition. We refer the reader to [DC17] for the full version.

3.3.1 State of the art

The clique-decomposition is well-known to be computable in polynomialO(nm)-
time on n-vertex m-edge graphs [Lei93, Tar85]. For dense graphs, it can be im-
proved to O(n2:69) [KS06b], but the algorithm is non combinatorial (i.e., it uses
matrix multiplication as a routine). Faster combinatorial algorithms have been
proposed on certain graph classes such as subclasses of hole-free graphs and claw-
free graphs [BBGM15, BW12]. Still, the best-known combinatorial algorithms have
O(nm)-time complexity, that is cubic for dense graphs and quadratic for sparse
graphs.

As shown with Proposition 43, clique-decomposition is strongly related with min-
imal triangulations. However, Kratsch and Spinrad proved in [KS06a] that �nding
a clique-separator is at least as hard as �nding a simplicial vertex,even if a minimal
triangulation is given as part of the input. The latter result implies that computing a
minimal triangulation is not the only complexity bottleneck of clique-decomposition
algorithms.

K ! � 1

v1

v2

v3

. . .

vn� !

vn� ! +1

Figure 3.5: An n-vertex split graph with clique-number ! . The vertices are biparti-
tioned in a clique K ! � 1 with ! � 1 vertices and an independent set withn � ! + 1
vertices. Furthermore, each vertex in the independent set is adjacent to all ver-
tices in the clique. The atoms of the graph are exactly the closed neighbourhoods
N [vi ]; 1 � i � n � ! + 1 . Therefore, there are! (! � 1)(n � ! + 1) =2 edges in total
in the subgraphs induced by the atoms.

Overview. Our results � presented below � suggest that another di�culty comes
from the clique-numberof the graph (size of a largest clique). In order to support
our claim, we illustrate with Figure 3.5 that there are n-vertex graphs with clique-
number ! such that the total number of edges cumulated on the subgraphs that
are induced by their atoms is
( ! 2n). It implies that when a clique-decomposition
algorithm not only computes the atoms, but also the subgraphs that are induced by
them, its time complexity must be 
( ! 2n).
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3.3.2 Contributions

The following is joint work with my supervisor David Coudert.

3.3.2.1 Time complexity lower bound

In the spirit of what has been presented for graph hyperbolicity (Section 2.6.3,
p. 64), it is proved in this section aconditional lower-boundon the time complexity
for computing clique-decomposition. Precisely, computing the clique-decomposition
is at least as hard as detecting a triangle in a graph.

We prove the following result in our paper [DC17].

Theorem 44. The problem of detecting a triangle in ann-vertex graph reduces in
quadratic time to the problem of computing the clique-decomposition of a graph with
3n + 2 vertices.

It is conjectured that no combinatorial truly subcubic algorithm for triangle
detection exists [Wil16]. So, altogether combined, this is hint that the O(nm)-
time state-of-the-art algorithm for computing clique-decomposition is essentially
optimal.

3.3.2.2 Matching upper bound

In order to better understand the hardness of computing clique-decomposition, we
next turn our attention on the non combinatorial algorithms. On a more theoretical
side, it is proved in our paper [DC17] that clique-decomposition can be computed
in O(n� logn) = O(n2:3729 logn)-time by using fast matrix multiplication.

Theorem 45. For every n-vertex graphG = ( V; E), its clique-decomposition can
be computed inO(n2:3729 logn)-time.

Under well-established complexity hypotheses, the latter result matches the
lower-bound obtained with triangle detection for the non combinatorial al-
gorithms. Indeed, we refer to [VWW10] for computational equivalences between
triangle detection and matrix multiplication 3. Hence, these results are
hint that (up to logarithmic factors), the time complexity for computing clique
decomposition is in ~O(n2:3729).

3.3.2.3 The role of clique-number

Finally, we consider the seemingly simpler problem of computing the clique-
decomposition when a minimal triangulation is given as part of the input. Let
us call it the clique-decomposition with minimal triangulation problem.

3More explicitly, if Matrix Multiplication can be solved in O(M (n)) -time then Triangle
Detection can be solved inO(M (n)) -time, and conversely if Triangle Detection can be solved
in O(T(n)) -time then Matrix Multiplication can be solved in ~O(n2 � T (n1=3)) -time.
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We shall seek for e�cient parameterizedalgorithms for the problem, where the pa-
rameter is the clique-number of the graph.

A new paradigm has emerged in Fixed-Parameter Tractability, sometimes called
P-FPT (polynomial FPT), where the dependency in the �xed parameter k is re-
quired to be polynomial. There have been recent revisitings of polynomial-time
graph problems in this polynomial parameterized setting [AVWW16, FLP+ 15,
GMN15]. Our result, that can be found in our paper [DC17], is that clique-
decomposition with minimal triangulation can be solved in linear time when
the clique-number of the graph is assumed to be a constant.

Theorem 46. For every G = ( V; E) with clique-number ! , and H = ( V; E [ F )
any minimal triangulation of G with f = jF j �ll edges, the clique-decomposition
with minimal triangulation problem can be solved in timeO(m + f + ! 2n).

It is open whether more generally, the clique-decomposition can be computed
in quasi-linear time on graphs with bounded clique-number. I conjecture that it is
the case and this is left as an interesting open question. Furthermore, in order to
support my conjecture, I will prove at the end of this section that it holds true for
triangle-free graphs (! = 2 ).

3.3.3 Summarizing the proofs

3.3.3.1 Reduction from a counting problem

The proof for the lower bound is based on the following result on counting the
number of simplicial vertices in a graph.

Lemma 47 ( [KS06a]). Counting the number of simplicial vertices in a graph with
3n + 2 vertices is at least as hard as detecting a triangle in ann-vertex graph.

I prove that a vertex is simplicial if and only if it is contained in a unique atom
and this atom is a clique [DC17]. Based on this characterization, it can be shown
that counting the number of simplicial vertices can be done in linear time if the
clique-decomposition is given. Theorem 44 follows from this result directly.

Proof of Theorem 44. Let G = ( V; E) be any graph with 3n +2 vertices. In order to
prove the theorem, by Lemma 47 it is su�cient to prove that counting the number
of simplicial vertices in G can be done inO(n + m)-time if the clique-decomposition
of G is given.

We claim that for every simplicial vertex v 2 V , its closed neighbourhoodN [v]
is an atom, and in particular it is the unique atom containing v. Indeed, suppose for
the sake of contradiction that there existsu =2 N [v] such that u and v lie on a same
atom A. Then, N (v) \ A is an uv-separator in the subgraphG[A]. SinceN (v) \ A is
a clique, the latter contradicts that G[A] has no clique-separator. Therefore, every
atom containing v is a subset ofN [v]. Finally, since G[N [v]] is complete, we have
that G[N [v]] has no clique-separator, and so, by inclusion wise maximality of the
atoms, N [v] is the unique atom containingv, that proves the claim.
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In particular, it follows from this above claim that a vertex is simplicial if and
only if it is contained in a unique atom and this atom is a clique. Indeed, if a vertex
is simplicial then by the above claim it satis�es the desired property. Conversely, if
a vertex v is uniquely contained in an atomA and A is a clique thenv is trivially
simplicial with its neighbourhood being equal toN [v] = A.

Let us take advantage of this above characterization of simplicial vertices in
order to count them in G. Let A1; A2; : : : ; Ak be the atoms ofG. We will use in the
following analysis that

P k
i =1 jA i j = O(n + m) [BPS10].

We �rst compute an atom tree of G. In order to do so, we recall that adual
hypertreeis a hypergraph whose hyperegdes are the maximal cliques of some chordal
graph (obtained by adding an edge between every two vertices that are contained
in a same hyperedge). Tarjan et al. prove in [TY84] that dual hypertrees can
be recognized in linear-time, and that for every dual hypertree, a clique-tree of
its underlying chordal graph can be computed within the same amount of time.
Therefore, we can use this algorithm from [TY84] in order to compute an atom tree
in O(

P k
i =1 jA i j) = O(n + m)-time.

Then, let A i be any leaf-bag in the atom tree (a bag whose corresponding
node in the tree has degree at most one). Since the intersection of two atoms is
a clique [BPS10], we have thatA i is a clique if and only if every vertex that is
uniquely contained in A i has degreejA i j � 1. Furthermore, by removing the set
Ci of vertices that are uniquely contained inA i then discarding A i from the atom
tree, one obtains an atom tree ofG n Ci . Therefore, we can repeat the above pro-
cess in order to list all the atoms ofG that are cliques. Overall, it takes time
O(

P
v2 V jN (v)j +

P k
i =1 jA i j) = O(n + m).

Finally, let A i 1 ; : : : ; A i l be the atoms ofG that are cliques. We can count all the
vertices that are only contained in A i j , for some1 � j � l , simply by scanning all
the atoms in O(

P k
i =1 jA i j) = O(n + m)-time. Since we proved that these are exactly

the simplicial vertices of G, the latter achieves proving that counting the number of
simplicial vertices can be done inO(n + m)-time if the atoms are given.

3.3.3.2 Computing the clique-minimal separators

Berry et al. have proved the following result in [BPS14]. Given ann-vertex m-edge
graph G = ( V; E), suppose we are givenH = ( V; E [ F ) a minimal triangulation of
G with f = jF j �ll edges, and the collection of the clique-minimal separatorsof G.
Then, the clique-decomposition ofG can be computed in timeO(m + f ). So, we
focused on the problem of computing the clique-minimal separators, givenG and H
as inputs.

Outline of the method. The gist of the approach for doing so is to use Propo-
sition 43. Indeed, sinceH is chordal, its minimal separators can be computed in
linear O(m + f )-time [Gav72]. In order to extract from these the clique-minimal
separators ofG, by Proposition 43 it su�ces to decide which are cliques ofG.
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� We prove in [DC17] that it can be done by using the incidence matrix ofG
and fast matrix multiplication. More precisely, we compute the clique-matrix
of the triangulation H , where the minimal separators ofH are listed, and then
we multiply this matrix with the incidence matrix of G in order to determine
which of those are cliques ofG. Since in addition, a minimal triangulation H
of G can be computed inO(n� logn)-time [HTV05], Theorem 45 follows.

� In order to do the same in a combinatorial way, we propose the following algo-
rithm. Let us consider the vertices in G sequentially. At each stepi , and for
every minimal separatorS of H which contains the current vertex vi , we check
whether vi is adjacent to all the previous verticesvj 2 S with j < i . When that
is not the case,S cannot be a clique ofG and so, we can discard it from the
collection of (potential) clique-minimal separators ofG. The central idea of the
analysis is that sinceG has clique-number! , we shall detect whether a minimal
separatorS of H is not a clique ofG by considering no more than! +1 vertices
in S. � Note that we needn't compute ! for the algorithm. � Theorem 46
now follows.

Discussion. The reason why we don't have an algorithm in time! O(1) (n + m)
for computing the clique-decomposition is that we don't know how to compute a
minimal triangulation within these time bounds. However, there exist quasi-linear
time algorithms for computing a minimal triangulation in some classes such as,
e.g., planar graphs [Dah98], bounded degree graphs [Dah02] and bounded-treewidth
graphs [FLP+ 15]. Furthermore, we prove that in the special case of triangle-free
graphs (! = 2 ), a minimal triangulation is not needed in order to compute the
clique-decomposition. The latter result generalizes a remark from [BPS11], where
Berry et al. notice without giving too much details that computing the clique-
decomposition of a given bipartite graph can be done in linear time.

Lemma 48. If G = ( V; E) is triangle-free then an atom tree ofG can be computed
in O(jV j + jE j)-time.

Proof. First, we compute a block-cut-tree ofG (a.k.a. a tree decomposition whose
bags are exactly the biconnected components ofG, see Section 3.2). It can be done
in linear time [Tar72]. We observe that since a cut-vertex is a clique-separator, the
atoms of G are exactly the atoms of its biconnected components. In particular, an
atom tree of G can be obtained by substituting each biconnected componentGi ,
in the block-cut-tree, by an atom tree of Gi . So, we can process the biconnected
components separately and we now assume thatG is biconnected for the remaining
of the proof.

Then, we compute the SPQR-tree ofG, that can also be done in linear
time [GM00]. In [GM00] Gutwenger and Mutzel prove the following result using
a di�erent terminology than Parra and Sche�er. We have that up to further split-
ting the cycles among the triconnected components (using nonedge separators), the
collection F2 of the adhesion sets in the SPQR-tree is a maximal family of pairwise
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parallel minimal 2-separators ofG. In this situation, we observe that since the two
ends of an edge cannot be disconnected by any separator ofG, an edge-separator
is trivially parallel with any other minimal 2-separator of G, and so, it must be
contained in F2. In particular, we can compute all the edge-separators ofG by
computing F2 \ E , that can be done inO(jE j + jF 2j) = O(jV j + jE j)-time.

Finally, since G is assumed to be biconnected and triangle-free, its edge-
separators are exactly its clique-minimal separators. Therefore, we can compute
the atoms of G as follows. We compute the maximal subtreesTi of T so that for
every f t; t 0g 2 E(Ti ), the minimal 2-separator X t \ X t0 is not an edge. It can be
done in O(

P
t2 V (T ) jX t j) = O(jV j + jE j)-time. Then, the atoms of G are exactly

the unions of bags in the subtrees,i.e.,
S

t2 V (Ti ) X t for every i .

Finally, it would be interesting to determine whether more generally, a graph can
be decomposed by its clique-minimal separators of size at mostk in kO(1) (n + m)-
time. By Lemma 48, it is the case if k � 2. Furthermore, a positive answer for
every k would directly imply that computing the clique-decomposition can be done
in ! O(1) (n + m)-time � given the clique-number ! as part of the input.

3.4 On the complexity of computing treebreadth and its
relatives

Computing an atom tree is a �rst step toward computing more interesting tree
decompositions,e.g. with optimal width, length or breadth. In this section, we now
answer open questions from [DK14] and [DKL14] on the complexity of computing
treebreadth, pathlength and pathbreadth. Full results are presented in [DLN16a,
DLN16b].

3.4.0.3 Motivations and related work

Treelength and treebreadth. The complexity of computing treelengthon gen-
eral graphs is now well understood. Graphs with unit treelength are exactly the
chordal graphs [DG07], and they can be recognized in linear time. In contrast, recog-
nizing graphs with treelength at mostk is NP-complete for every �xedk � 2 [Lok10].
However on a more positive side, there exist3-approximation algorithms for com-
puting this parameter [DG07].

In [Lok10], the reduction used for treelength goes through edge-weighted graphs,
and then goes back to unweighted graphs using rather elegant gadgets. It is not clear
how to adapt this proof for treebreadth. Since the value for this parameter is a2-
approximation for treelength [DK14], any polynomial-time algorithm for computing
treebreadth, or even an� -approximation algorithm for some� < 3=2, would improve
the best-known approximation algorithms for treelength. Our results (presented
below) suggest that no such algorithm is likely to exist.
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Pathlength and pathbreadth. As for pathlength (resp., pathbreadth), a 2-
approximation (resp., a 3-approximation) algorithm is given for computing this pa-
rameter but the computational complexity of both problems is left open in [DKL14].
In the same paper, pathlength and pathbreadth have been shown to be useful in the
design of approximation algorithms for bandwidth and line-distortion.

We note that recently, the minimum eccentricity shortest-path problem
has been proved NP-hard [DL15]. The latter is a minimization problem where given
a graph G = ( V; E), it is aimed at computing a shortest-path P with minimum
eccentricity maxv2 V dG(v; P). Furthermore, it has been proved in [DKL14] that
the minimum eccentricity of a shortest-path in G is an �( pl(G)) with pl(G) being
the pathlength of G. Let us point out that for every �xed k, it can be decided
in polynomial time whether a graph admits a shortest-path with eccentricity at
most k [DL15]. The following results will show that the situation is di�erent for
pathlength and pathbreadth.

3.4.1 Summarize of our contributions

The main contributions in this section are to answer the open questions from [DK14,
DKL14] on the complexity of computing treebreadth, pathlength and pathbreadth.
Namely, the main results in our paper [DLN16a] can be stated as follows.

Theorem 49. Recognizing the graphs with pathbreadth at most one is NP-complete.

Theorem 50. Recognizing the graphs with pathlength at most two is NP-complete.

Theorem 51. Recognizing the graphs with treebreadth at mostk is NP-complete for
every �xed k � 1.

It is likely that recognizing graphs with pathbreadth at most k, resp. pathlength
at most k + 1 , is NP-complete for every �xed k � 1. This is left open in [DLN16a].

3.4.1.1 Graphs with treebreadth one

We now concentrate on the recognition of graphs with treebreadth at most one.
This class of graphs already encompasses well-studied subclasses such as chordal
graphs and dually chordal graphs. As it is stated in Theorem 51, recognizing graphs
with treebreadth one is NP-complete. However, we prove in [DLN16a] that it can
be done in polynomial time for bipartite graphs and planar graphs.

Case of bipartite graphs. Precisely, we obtain in our paper [DLN16a] a simple
characterization of bipartite graphs with treebreadth one. Let us call a bipartite
graph tree-convexif it admits a tree decomposition whose bags are exactly the closed
neighbourhoods of the vertices in one side of its bipartition [WLJX12]. We refer to
Figure 3.6 for an illustration.

Theorem 52. A bipartite graph has treebreadth at most one if and only if every of
its atoms is tree-convex. It can be veri�ed in linear time.
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(b) A star-decomposition of G.

Figure 3.6: Tree-convex graphs have treebreadth one.

In contrast, recognizing bipartite graphs with treebreadth at most two is NP-
complete. We observe that bipartite graphs with treebreadth one already encom-
pass well-known graph classes such as convex bipartite graphs and chordal bipartite
graphs (a.k.a., bipartite graphs with no induced cycle of length at least six).

Case of planar graphs. We don't have a full characterization of planar graphs
with treebreadth one. As proved in [DLN16a], a planar graph has treebreadth one
only if it has treewidth at most four (more general relationships between treebreadth
and treewidth will be discussed in the next Section 3.5). However, this condition
is not su�cient, since any cycle of length at most �ve has treewidth two but tree-
breadth greater than one. Nonetheless, we have designed an algorithm in order to
recognize planar graphs with treebreadth one in polynomial time.

Theorem 53. Recognizing planar graphs with treebreadth one can be done in
quadratic time. Furthermore, given a planar graph with treebreadth one, a tree de-
composition with breadth one can be computed in cubic time.

The algorithm for planar graphs is rather involved and it will be only sketched
in what follows. We refer to our research report [DLN16b] for full details.

This part of my contributions is joint work with Nicolas Nisse and Sylvain Legay.

3.4.2 Approach and the techniques used in the proofs

3.4.2.1 A central lemma for graphs of treebreadth one

We start with a structural lemma that is used throughout all the proofs. We name
star-decompositiona tree decomposition such that for every nodet 2 V (T), there
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exists a vertexu 2 X t such that X t � N [u]. That is, star-decompositions are similar
to decompositions of breadth one, but the dominator of each bag has to belong to
the bag itself. We prove with the following Lemma 54 that a graph has treebreadth
one if and only if it has a star-decomposition.

In what follows, a tree decomposition is calledreducedif no bag is included in
another one. Starting from any tree decomposition, a reduced tree decomposition
can be obtained in polynomial time by contracting any two adjacent bags with
one contained in the other until it is no more possible to do that. Note that such a
process does not modify the width, the length nor the breadth of the decomposition.

Lemma 54. For any graph G with tb(G) � 1, every reducedtree decomposition of
G of breadth one is a star-decomposition.

The proof of Lemma 54 is an application of the Helly property: ifB is a bag of
a tree decomposition(T; X ) of G and there exists a vertexu dominating this bag,
then by the properties of a tree decomposition, the subtreesTu and Tv ; v 2 B ,
are pairwise intersecting, and so, by the Helly property there must be a bag with
B [ f ug. If the tree decomposition is reduced then it implies thatu 2 B .

3.4.2.2 Hardness of treebreadth, pathlength and pathbreadth

On the complexity point of view, the main result in [DLN16a] is the NP-completeness
of deciding whethertb(G) � k, for every �xed k � 1. We �rst prove that the problem
is NP-complete fork = 1 , that will be our focus in this section. Then, we show that
the problem of computing the treebreadth of a graph is polynomially equivalent to
the problem of recognizing graphs with treebreadth one. Using similar techniques,
we can prove that computing pathlength, resp., pathbreadth, is NP-hard [DLN16b].

Theorem 51 is proved by reducing a variation of theChordal Sandwich prob-
lem to the recognition of graphs with treebreadth one. TheChordal Sandwich
problem takes as input two graphsG1 = ( V; E1); G2 = ( V; E2) with E1 � E2, and it
asks whether there exists a chordal graphH = ( V; E) such that E1 � E � E2. This
problem is NP-complete [GKS95]. In [Lok10], the author also proposed a reduction
from Chordal Sandwich in order to prove that computing treelength is NP-hard.
However, we need di�erent gadgets than in [Lok10], and the arguments to prove
correctness of the reduction are completely di�erent.

Let us give a �avour of our reduction with Figure 3.7. Suppose we are given
an instancehG1; G2i of Chordal Sandwich . We aim at computing a supergraph
G of G1 such that in any tree decomposition ofG of breadth one, there can be
no two nonadjacent vertices inG2 that are in the same bag. This way, any tree
decomposition ofG of breadth one can be transformed into a clique-tree for a chordal
sandwich betweenG1 and G2. In order to reach this goal, for every nonedgef u; vg =2
E(G2) we add a copy of the gadget in Figure 3.7 and we make bothu and v adjacent
to both suv ; tuv . By construction, the four vertices (u; suv ; v; tuv ) induce a cycle of
length four. If we were studying treelength, then this would not give us that much
information; indeed, in a tree decomposition of length at least two, all four vertices
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cuv
suv tuv

wuv

xuv

yuv zuv

Figure 3.7: Gadget graphFuv . The two vertices xuv ; wuv are on disjoint suv tuv -
paths. Since they have no common neighbour, it ensures thatsuv ; tuv must be
contained in a same bag in any star-decomposition ofFuv .

could be placed in a same bag without violating any constraint. However, this
is no more the case for a tree decomposition with unitbreadth. Indeed, since no
vertex dominates the four vertices of the cycle, they cannot be part of a common
bag. Hence, the gist of the construction is to ensure thatsuv ; tuv must be in a
common bag inany tree decomposition ofG of breadth one. Then, one can prove
by elaborating on the Helly property that it implies that u and v cannot be in a
same bag in any tree decomposition ofG of breadth one.

On the technical point of view, the most di�cult part of the reduction is to
ensure that conversely, ifhG1; G2i is a yes-instance ofChordal Sandwich then
the resulting graph G has treebreadth one. Ideally, we would like to transform
some tree decomposition ofG1, with all vertices in a same bag being adjacent in
G2, to a star-decomposition of G. We tried to do so by adapting a technique
from Lokshtanov [Lok10] that consists in adding a dominating clique in the graph.
However, vertices from the gadgets in Figure 3.7 need to be inserted in the bags as
well, thereby complicating the picture. In order to overcome the di�culties that are
posed by these gadgets, we aim at better controlling in which bags their vertices
need to be inserted, but then we need to impose additional constraints on the tree
decomposition ofG1. In general, we are not able to prove that a tree decomposition
with the desired constraints always exists. That is why we need to consider a
variation of Chordal Sandwich where we impose more structure on the input.

Theorem 55. The problem of deciding whether a graph has treebreadth one is NP-
complete.

Proof. The problem is in NP. To prove the NP-hardness, we will reduce from a vari-
ation of Chordal Sandwich that we name Chordal Sandwich with nK 2. In
this variation, we constrain ourselves to the instanceshG1; G2i so that the comple-
mentary �G2 of G2 induces a perfect matching. The problemChordal Sandwich
with nK 2 is NP-complete [BFW92, GKS95]. Furthermore, perhaps surprisingly,
the restriction on the structure of �G2 will be shown to be a key element in our
reduction.

Let hG1; G2i be any instance ofChordal Sandwich with nK 2. Let G0 be
the graph constructed fromG1 as follows. First, a cliqueV 0 of 2n = jV j vertices is
added to G1. Vertices v 2 V are in one-to-one correspondance with verticesv0 2 V 0.
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Then, for every f u; vg =2 E2, u and v are respectively made adjacent to all vertices in
V 0nv0 and V 0nu0. Finally, we add a copy of the gadgetFuv , depicted in Figure 3.8a,
and the verticessuv and tuv are made adjacent to the four verticesu; v; u0; v0.

We will prove that tb(G0) = 1 if and only if hG1; G2i is a yes-instance of
Chordal Sandwich with nK 2.

In one direction, assumetb(G0) = 1 , let (T; X ) be a star-decomposition ofG0

(which exists by Lemma 54). We prove that the triangulation of G1 obtained from
this star-decomposition is the desired chordal sandwich. LetH = ( V;ff u; vg j Tu \
Tv 6= ;g ). H is a chordal graph such thatE1 � E (H ). To prove that hG1; G2i is a
yes-instance ofChordal Sandwich with nK 2, it su�ces to prove that Tu \ Tv = ;
for every f u; vg =2 E2. We claim that it is implied by Tsuv \ Ttuv 6= ; . Indeed, assume
Tsuv \ Ttuv 6= ; and Tu \ Tv 6= ; . Since suv ; tuv 2 N (u) \ N (v), Tu ; Tv ; Tsuv ; Ttuv

pairwise intersect, there is a bag withu; v; suv ; tuv by the Helly property. The latter
contradicts that (T; X ) is a star-decomposition because no vertex dominates the
four vertices. Hence the claim is proved. So, let us prove thatTsuv \ Ttuv 6= ; . By
contradiction, if Tsuv \ Ttuv = ; then every bagB onto the path betweenTsuv and
Ttuv must contain cuv ; xuv . SinceN [cuv ] \ N [xuv ] = f suv ; tuv g and (T; X ) is a star-
decomposition, it implies eithersuv 2 B and B � N [suv ] or tuv 2 B and B � N [tuv ].
So, there are two adjacent bagsBs 2 Tsuv ; B t 2 Ttuv such that Bs � N [suv ] and
B t � N [tuv ]. In particular, Bs \ B t must intersect the path (yuv ; wuv ; zuv ) because
yuv 2 N (suv ) and zuv 2 N (tuv ). However, N [suv ] \ N [tuv ] \ f yuv ; wuv ; zuv g = ; ,
that is a contradiction. As a result, Tsuv \ Ttuv 6= ; and so, Tu \ Tv = ; for any
f u; vg =2 E2.

Conversely, assume thathG1; G2i is a yes-instance ofChordal Sandwich
with nK 2. Let H be any chordal supergraph ofG1 such that E(H ) � E (G2)
and H is edge-maximal w.r.t. this property. We prove in [DLN16b] that every
clique-tree ofH is a tree decomposition(T; X ) of G1 with jX j = jV j=2+1 bags such
that for every f u; vg =2 E2, Tu \ Tv = ; and there are two adjacent bagsBu 2 Tu

and Bv 2 Tv such that Bu n u = Bv n v. The latter is proved by elaborating on the
hypothesis that �G2 is a perfect matching.

In what follows, we will modify (T; X ) in order to obtain a star-decomposition
of G0. To do so, we will use the fact that there arejV j=2 = n edges inE(T) and
that for every f u; vg =2 E2, there are two adjacent bagsBu 2 Tu and Bv 2 Tv

such that Bu n u = Bv n v. Indeed, this implies that there is a one-to-one mapping
� : E (T) ! E ( �G2) between the edges ofT and the non-edges ofG2. Precisely, for
any edgee = f t; sg 2 E(T), let � (e) = f u; vg 2 E( �G2) be the non-edge ofG2 such
that u 2 X t ; v 2 X s and X t n u = X s n v.

Intuitively, the star-decomposition (T0; X 0) of G0 is obtained as follows. For any
t 2 V (T) with incident edgese1; � � � ; ed, we �rst replace X t by a path decomposition
(Yt;e1 ; � � � ; Yt;ed ). Then, for any edgee = f t; sg 2 E(T), an edge is added between
Yt;e and Ys;e. Finally, the center-bag of some star-decomposition of the gadgetF� (e)

is made adjacent toYt;e (see Figure 3.8b for an illustration).
More formally, let t 2 V (T) and e 2 E(T) incident to t, and let f u; vg = � (e).
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(a) Gadget Fuv (top) with a star-
decomposition ofFuv (bottom).

(b) A subtree of the star-decomposition ofG0

(bottom) obtained from an internal bag with
degree four of (T; X ) (top). Subtrees Ti are
star-decompositions of the gadgetsFu i v i .

Figure 3.8

Let Yt;e = V 0[ X t [f suv ; tuv g (note that Yt;e is dominated byu0 2 V 0). Let e1; � � � ; ed

be the edges incident tot in T, in any order. For 1 � i < d , add an edge between
Yt;e i and Yt;e i +1 . For any edgee = f t; sg 2 E(T), add an edge betweenYt;e and
Ys;e. Finally, add the star-decomposition (Te; X e) for the gadget F� (e) as depicted
in Figure 3.8a and add an edge between its center andYt;e .

The resulting (T0; X 0) is a star-decomposition ofG0, so, tb(G0) = 1 .

3.4.2.3 Polynomial cases

Our polynomial-time algorithms are based on a divide and conquer approach. We
recall that a separator S of G is minimal if there exist two connected components
A; B of G n S such that N (A) = N (B ) = S. Furthermore, A and B are calledfull
componentsfor S, and a blockis the union of a minimal separator with one of its full
components. A remarkable property of graphs with treebreadth one, whose proof
is deferred to our research report [DLN16b], is that they are stable under taking
blocks.

Lemma 56. Let G = ( V; E), S be a separator andW be the union of some connected
components ofG n S. If tb(G) = 1 and W contains a full component for S, then
tb(G[W [ S]) = 1 .

Proof. Let (T; X ) be a star-decomposition ofG. We remove vertices inV n(W [ S)
from bags inX , that yields a tree decomposition(T; X 0) of G[W [ S]. We will prove
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u v

u v

u v

Figure 3.9: The2-separatorf u; vg disconnects the graphG (left) in two blocks with
treebreadth one (right). However, tb(G) = 2 .

that (T; X 0) has breadth one (but is not necessarily a star-decomposition). Indeed,
let X 0

t 2 X 0. By construction, X 0
t � X t with X t 2 X . Let v 2 X t satisfy X t � NG[v].

If v 2 X 0
t , then we are done. Else, since for allx =2 S [ W; N (x) \ (S [ W ) � S

(becauseS is a separator by the hypothesis), we must have thatX t � S. Let A � W
be a full component forS, that exists by the hypothesis, let TA be induced by the
bags intersectingA. Since TA and the subtreesTx ; x 2 X t pairwise intersect �
because for allx 2 X t , x 2 S and so,x has a neighbour inA �, then by the Helly
property there is a bag in X containing X t and intersecting A. Furthermore, any
u 2 V dominating this bag must be either in S or in A, so, in particular there is
u 2 A [ S such that X t � N [u].

The converse of Lemma 56 does not hold in general (see Fig. 3.9), yet there
are interesting cases where it does. In fact, all our algorithms in what follows are
based on particular cases where the converse of Lemma 56 also holds true. One of
them is the case whereS is a clique-minimal separator. In particular, a graph has
treebreadth one if and only if every of its atoms have treebreadth one [DLN16a],
and so, we may further constrain our studies to graphs without a clique-separator,
a.k.a. prime graphs.

Case of bipartite graphs. For prime bipartite graphs, it is almost immediate
that in any star-decomposition (tree decomposition with a dominator in each bag,
see Sec. 3.4.2.1), every two adjacent bags must be dominated by vertices that are on
the same side of the bipartition. Indeed, otherwise the adhesion set between these
two bags would be either a cut-vertex or an edge-separator. The latter implies that
a prime bipartite graph must be tree-convex and so, Theorem 52 follows.

Now, given a bipartite graph G, we can check whether it has treebreadth one
as follows. We compute its atoms, that can be done in linear time by Lemma 48.
Then, we check whether each of its atoms is tree-convex, that can also be done in
linear time4 [WLJX12]. Finally, by Theorem 52 we output tb(G) = 1 if and only if

4This problem can be reduced to dual hypertree recognition. See the proof of Theorem 44 for
similar techniques.
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all its atoms are tree-convex.

Case of planar graphs. Much more work was needed for the recognition of planar
graphs with treebreadth one. Perhaps surprisingly, this part was arguably the most
di�cult one in our work on treebreadth.

The algorithm for planar graphs is recursive. GivenG = ( V; E), we search for
a speci�c vertex, called aleaf-vertex, whose closed neighborhood must be a leaf-bag
of a star-decomposition iftb(G) = 1 (bag whose corresponding node in the tree has
degree at most one). Basing on Lemma 56 and a delicate case-by-case analysis of
the structure of star-decompositions, we de�ne three types of leaf-vertices (e.g., see
Figure 3.10). A vertex v is a leaf-vertex if one of the following conditions hold.

Type 1. N (v) induces anavbv-path for some av ; bv 2 V n f vg, denoted by � v , of
length at least 3 and there is dv 2 V n f vg such that N (v) � N (dv).

Type 2. N (v) induces a path, denoted by� v = ( av ; bv ; cv), of length 2.

Type 3. N (v) consists of two non adjacent verticesav and cv , and there is bv 2
(N (av) \ N (cv)) n f vg.

Figure 3.10: The three types of leaf vertices.

Ideally, we would like to removev from G and apply recursively our algorithm
on G n v. However, in some casetb(G n v) = 1 while tb(G) > 1 (see Fig. 3.9).
So, we must also add edges between vertices that must be in a common bag of a
star-decomposition ofG if tb(G) = 1 5. The choice of the edges to add is made more
di�cult by the need for the resulting graph G0 to stay prime and planar in order to
apply our algorithm recursively on G0. To show that tb(G) = 1 if and only if the
resulting graph has treebreadth one also requires tedious lemmas.

Sketch Proof of Theorem 53. Let G = ( V; E) be a prime planar graph. We can
assumejV j � 8 and G has no star-decomposition with two bags (both cases are
treated separately by exhaustive search). In such case,tb(G) = 1 implies there
exists a leaf-vertexv, that can be found in linear time.

We �rst consider the case whereG n v is prime. In this situation, we aim at
removing v and applying the algorithm recursively on G n v (e.g., see Figures 3.11a

5We aim at turning the separator N (v) into a clique. However, we cannot do that directly since
it would break the distances in G, and the graph needs to stay planar.
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Figure 3.11: Cases whereG n v is prime. In every subcase, we apply the algorithm
recursively on the graph to the right, that is either smaller or denser thanG.

and 3.11b). However, we can do that only if it can be ensured that whentb(Gnv) = 1 ,
there is a star-decomposition of the subgraph that can be transformed into a star-
decomposition ofG. Precisely, if v is of Type 1 then we seek for a star-decomposition
(T0; X 0) of G n v such that all the vertices in N (v) are contained into a bag. If v
is of Type 2 or 3 then we seek for a star-decomposition(T0; X 0) of G n v such that
either T0

av
\ T0

cv
6= ; , or there are two adjacent bagsB 0

av
2 Tav ; B 0

cv
2 T0

cv
that are

respectively dominated byav and cv . What we prove is that if tb(G n v) = 1 and
G n v is prime, then a star-decomposition as above always exists, unless we fall in
the special case wherev is of Type 2 or 3 and j(N (av) \ N (cv)) n vj � 2. We do so
by proving that it were not the case, there would exist aK 5-minor or a K 3;3-minor
of G. By Kuratowski theorem, it would contradict our assumption that G is planar.

Furthermore, we prove for the latter subcase thatav ; cv must have two common
neighboursuv ; bv in Gnv (else,tb(G) > 1). In this situation, the graph G0, obtained
from G by adding the edgesf v; uvg; f v; bvg, is planar and prime, and it satis�es
tb(G) = 1 if and only if tb(G0) = 1 . See Figures 3.11e and 3.11f for an illustration.
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So, we call the algorithm either onG0 or on G n v6. We refer to Figure 3.11 for an
illustration.

We note that it is conceivable this �rst part of the analysis could apply to larger
classes ofH -minor free graphs. This is less clear for what follows.

Indeed, the most di�cult situation is when G n v contains a clique-separator.
Roughly, in this case we need to test the leaf-vertexv for certain properties. If it
satis�es some of them then we can either remove vertices or add new edges in the
graph and we call the algorithm recursively on the resulting graphG0. However, in
some situations the leaf-vertexv does not satisfyany of the desired properties, and
then we need to �nd a better leaf-vertex in its neighbourhood.

First, based on a �ne-grained analysis of clique-separators in the subgraphGnv,
this case is reduced to the one where:

� v is of Type 2;
� there is an edge-separator(bv ; uv) of G n v;
� and f av ; uvg =2 E.

In this situation, our �rst idea was to add an edge betweenav and cv in order to
force these two vertices to be contained in a common bag inany star-decomposition
of G0, obtained from G n v by adding the edgef av ; cvg. Then, we aim at applying
the algorithm recursively on G0. However, tb(G0) = 1 does not imply tb(G) = 1 in
general. We prove it is the case ifuv ; cv are nonadjacent orN (uv) \ N (av) does not
disconnectav from uv in G n (cv ; v).

Else, we compute a plane embedding ofG, and a vertex x 2 N (av) \ N (uv)
such that: v; cv and all other common neighbours ofav ; uv are in a same region
R, bounded by (av ; x; uv ; bv). As illustrated with Figure 3.12, we wish to create an
avuv-path in V nR by adding edges inN (bv) \ N (x). In doing so, we go back to the
previous subcase as nowN (av) \ N (uv) is no more aavuv-separator ofG n (cv ; v).
However, we have to ensure that it is possible to add such a path inV n R, and that
its addition does not a�ect the value of treebreadth for the graph. We prove it is the
case unlessV � R (in which case we apply the algorithm recursively onG0, obtained
from G by identifying bv with x), or if there is a leaf-vertex ` 2 N (bv) \ N (x).
Furthermore, in the latter case we replacev with ` in the above analysis,i.e., `
becomes the actual leaf-vertex to be considered. It can be shown thatGn` is prime,
so, we can prove that the algorithm always terminates.

Finally, we observe that in the above algorithm, we delete a vertex or add an
edge before each recursive call. Moreover, the number of edges removed at each
step can be linearly upper-bounded by the number of deleted vertices. Since planar
graphs are sparse, we can elaborate on this property in order to upper-bound the
number of recursive calls onn-vertex m-edge planar graphs by a linear function
�( n) � m = �( n). Each step of the algorithm can be done in linear time, so,
altogether combined, it shows that the algorithm runs in quadratic time.

6When v is of Type 1 we call the algorithm on G0, obtained from G n v by contracting the
internal nodes of � v to an edge, in order to obtain a quadratic complexity. We refer to Figures 3.11c
and 3.11f for an illustration of that case.
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av uv

bv

x

v cv

Figure 3.12: Addition of an avuv-path in V nR. Each ball is a connected component
of G[V n R]. The edges that are added in order to obtain theavuv-path are drawn
in dashed red.

3.4.3 Open problems and future work

We conclude this complexity study by some questions that remain open. First, it
would be interesting to know the complexity of computing the treebreadth and the
treelength of planar graphs. We did a �rst step in this direction with Theorem 53.
Note that the complexity of computing the treewidth of planar graphs is still open.
Second, all the reductions presented in this paper rely on constructions contain-
ing large clique or clique-minor. We left open the problem of recognizing graphs
with treebreadth one in the class of graphs with bounded treewidth or bounded
clique-number. More generally, is the problem of computing the treebreadth Fixed-
Parameter Tractable when it is parameterized by the treewidth or by the size of a
largest clique-minor? It is part of my ongoing work to answer these questions.

Last, I point out that in this work on star-decompositions, one important tool
has been �breadth-maximal� triangulations. Precisely, for anyG with tb(G) = 1 , we
call a triangulation H of G breadth-maximal if it has a clique-tree that is a star-
decomposition ofG and H is edge-maximal w.r.t. this property. Breadth-maximal
triangulations have many nice properties which greatly simplify the analysis for the
hardness reduction and the polynomial-time algorithms. So, I think this notion of
�maximal� triangulation is worth being more investigated in the future, as well as
for treebreadth as for treelength, treewidth, etc. The reader may refer to [BK06,
BHV06] for related work, where they give su�cient conditions for edges to be always
present in a triangulation of minimum width.
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3.5 Treewidth versus treelength!

Finally, I present in this section new relationships between treewidth and treelength,
that were obtained in collaboration with David Coudert and Nicolas Nisse. On the
algorithmic side, we aim at �nding such relationships in order to combine the best
of both worlds (structural and metric tree-likeness in graphs).

That is, on the one hand treelength and treewidth are both NP-hard to com-
pute [ACP87, Lok10], however treelength is much easier to approximate than
treewidth. In particular, there exists a 3-approximation algorithm for computing
treelength that only relies on a few breadth-�rst search [DG07]. In contrast, under
the Small Set Expansion Hypothesis (that implies the Unique Games Con-
jecture ) there does not exist a constant-factor polynomial-time approximation
algorithm for treewidth [APW12]. On the other hand, there are more algorithmic
applications for treewidth than for treelength [Cou90], which comes from the fact
that several hard problems on graphs remain so even on bounded diameter graphs,
thereby preventing the design of dynamic programming algorithms on tree decompo-
sitions with bounded length. Thus, by using relationships between treelength and
treewidth, we wish to extend the algorithmic applications for bounded treewidth
graphs to a large class of bounded treelength graphs. Furthermore, we also wish
to compute e�ciently (and practically) tree decompositions with bounded width on
certain graph classes.

3.5.1 State of the art

As said earlier (e.g., Sec. 3.2.1) the two parameters treewidth and treelength are un-
comparable on general graphs. This fact prevents us from expecting simple relations
between them.

On the one direction, the cycles have bounded treewidth but unbounded tree-
length. This suggests that having a large treelength relies on the existence of long
cycles in the graph. The authors in [DG07] supported this intuition, proving that
the treelength of a graphG is upper-bounded by half of the maximum length of a
chordless cycle inG (the latter generalizes a similar Theorem 15 on the relationship
between chordality and hyperbolicity). However, not all bounded treelength graphs
have bounded chordality, as seen with the case of the wheelWn which contains an
induced Cn while it has treelength � 2. Therefore, it is natural to constrain our-
selves to the subcase ofisometric cycles in graphs. We remind that a subgraphH
of G is isometric if for any two vertices ofH , the distance between them is the same
in H as in G. Unfortunately, there are graphs such as grids with bounded-length
isometric cycles and arbitrarily large treelength. As shown below, our results imply
that in such a case, we always have thattl (G) = O(tw(G)) .

On the other direction, the complete graphs have unbounded treewidth but
bounded treelength. Another interesting example is the graphH obtained by adding
a universal vertex to a square-grid withn2 vertices, for which it holds tw(H ) = n+1
and tl (H ) = 2 . We observed in Section 3.2.1 that more generally, adding a universal
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vertex to a graph G with arbitrarily large treewidth k will result in a graph G0 with
large treewidth k +1 and treelength at most two. One common trait of these graphs
is that they have a largegenus(they cannot be drawn with no edge-crossings onto a
surface with small oriented Euler genus). That is, they are in a sense arbitrarily far
from planar graphs. In contrast, it has been proved in [DG09] thattw(G) < 12�tl (G)
for planar graphs. Consequently, it is quite natural to ask whether a treewidth
arbitrarily larger than treelength requires a large genus. In what follows, we will
prove it is the case,i.e., tw(G) = O(tl (G)) for bounded-genus graphs.

Finally, and independently from this work, Belmonte et al. [BFGR15] proved that
tw(G) = O(� tl (G) ) for any graph G with maximum degree� . On the algorithmic
point of view, the authors in [BFGR15] built upon their relation in order to design
a �xed-parameter-tractable algorithm to compute the metric dimension on bounded
treelength graphs.

This upper-bound shows that in a way, our pathological construction which
adds a universal vertex in the graph is the only one that prevents from compar-
ing treewidth with treelength. However, it has to be noted that on the converse
direction, treelength cannot be upper-bounded by any functionf (tw(G); �) of the
treewidth and the maximum degree, as it can be observed with cycles.

In this section, I will use di�erent techniques in order to upper-bound the
treewidth with linear dependency on the treelength.

3.5.2 Contributions: upper and lower bounds for treewidth by us-
ing treelength

3.5.2.1 Lower bound

The �rst result in this section is that treewidth can be lower-bounded by treelength
on certain graph classes.

In what follows, a distance-preserving elimination orderingof G = ( V; E) is a
total ordering of its vertex-set V such that every su�x induces an isometric subgraph
of G. In particular, it is a dismantlable ordering if for every su�x, the closed
neighbourhood of the starting vertex is dominated in the subgraph that is induced
by this su�x. The latter type of ordering has been introduced in the previous
chapter (De�nition 7, p. 33). We also refer to the previous chapter for a de�nition
of hyperbolicity, and especially De�nition 1 (p. 25).

Theorem 57 ( [CDN16]). For every G = ( V; E) we havetl (G) � c � tw(G) where:

� c � b `(G)=2c if G has no isometric cycle of length greater thaǹ(G);

� c � 2� (G) + 1 with � (G) being the hyperbolicity ofG;

� c � 2 if G admits a distance-preserving elimination ordering.

� c � 1 if G admits a dismantlable ordering.

Sharper estimates of the constantc will be discussed in what follows. One
interesting consequence of this result is that every bounded-treewidth graphG can
be embedded into a tree with additive distortion �( � (G)) . Furthermore, it tells
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us that the hyperbolicity is upper-bounded by the treewidth on graph classes with
a dismantlable ordering. These remarks complement Section 2.4.1 in the previous
chapter on graph hyperbolicity.

3.5.2.2 Upper bound

On the other hand, treewidth can be upper-bounded by treelength on certain topo-
logical graph classes.

Let us introduce the terminology for those classes. We refer to [MT01] for details.
We recall that a planar graph is a graph that can be drawn in the Euclidean plane
so that edges may only intersect at their endpoints. More generally, a graph has
genusat most g if it can be drawn in an oriented surface with Euler genusg so
that edges may only intersect at their endpoints. Planar graphs are exactly the
null-genus graphs. Anapex graphis obtained from a planar graph by adding a new
vertex with arbitrary neighbourhood. Finally, a class of graphs isapex-minor freeif
there is no graph in the class with aH -minor for some �xed apex graphH . Planar
graphs and bounded-genus graphs are apex-minor free.

Theorem 58 ( [CDN16]). Let H be an apex graph. There exists a constantcH

that only depends onH and such that for everyH -minor free graph G, we have
tw(G) � cH � tl (G).

In particular if G has genus at mostg then tw(G) � 72
p

2(g+1) 3=2�tl (G)+ O(g2).

One unexpected consequence of this above result is that on some cases where
the treewidth can be e�ciently approximated, nontrivial bounds on the genus of the
graph can be computed. The exact and approximate computation of graph genus
are notoriously hard problems [Tho89, CKK97, KS15].

Our study paves the way to a better understanding on the relationship between
structural and metric tree-likeness in graphs, and on its algorithmic consequences.
Unfortunately, similar relationships for path-likenessin graphs look more challenging
to obtain, even for trees. In particular, there are n-node trees with pathlength

( n) [DG07] whereas the pathwidth of ann-node tree isO(log n) [Sch92].

So far, the main drawback of Theorem 58 is that it is nonconstructive. That
is, when we compute a tree decomposition with bounded lengthO(tl (G)) , we ob-
tain a bound on the treewidth tw(G) = O(tl (G)) , but we do not obtain a tree
decomposition with boundedwidth O(tl (G)) . It is part of my ongoing work to make
Theorem 58 constructive, possibly by using the graph minor decomposition from
Robertson and Seymour [GKR13, DH04].

3.5.3 Proving the bounds

3.5.3.1 A detour through the diameter of minimal separators in graphs

We recall that there always exists a minimal tree decomposition (clique-tree of some
minimal triangulation) with optimal width. See Section 3.2.2. Our results in what
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follows provide a relationship between the width and the length in any minimal tree
decomposition.

More precisely, by Theorem 42, a corresponding minimal triangulation results
from the completion of all sets in a maximal family of pairwise parallel minimal
separators of the graphG. In this situation, we observe that for every edge in the
triangulation, either it is an edge of G or its two ends are in a same separator in
the family. Note that in the latter case, the distance in G between the two ends
is at most the maximum diameter in the graph over the separators in the family.
Therefore, we observe that the length of the tree decomposition (� tl (G)) is exactly
the maximum diameter in the graph over the separators in the family. Furthermore,
since each minimal separator of the family induces a clique in the triangulation, it
has size upper-bounded by the width of the tree decomposition � that is tw(G) for
a minimal tree decomposition with optimal width.

As a result, we are left to upper-bound the diameter of minimal separators in
graphs as a function of their size.

Connectivity properties of the minimal separators. Before going into the
details of the proof, let us describe the main intuition behind it and the di�culties
we had to face on. Let us consider a minimal separatorS for G. If it is connected,
then it has diameter O(jSj), and so, we are done. Hence, we may assume thatS
consists of several connected components. The idea is to �nd a set of isometric
cycles, each of length at most̀ (G) (by de�nition of `(G)), such that any of these
cycles intersects two components and the subgraph induced byS and these cycles
is connected.

For this purpose, let us consider a minimum-length cycle crossing two compo-
nents of S (such a cycle surely exists because there are at least two full components
in G n S). If this cycle is isometric, then we are done. Otherwise, it means that
there is a shortcut between two nodes of the cycle. However, this shortcut could
intersect S more than once which does not help our purpose.

The key point is that, using the shortcut, the initial cycle can be viewed as the
sum (symmetric di�erence) of two smaller cycles. This kind of local view can be
generalized to a global one using our main tool, namely the cycle basis (de�ned
below). Indeed, the initial cycle is actually the symmetric di�erence of a set of
isometric cycles [Hor87]. Using this set, we can then prove our upper bound on the
diameter of minimal separators in graphs.

The set C(G) of Eulerian subgraphs ofG is called thecycle spaceof G. It is well-
known that every Eulerian subgraph can be obtained from the symmetric di�erence
(on the edges) of cycles inG. In fact, the set C(G) with the symmetric di�erence
is a vector space of dimensionm � n + 1 if G is connected [Die10, Theorem 1.9.6].
We will call the symmetric di�erence of two subgraphs H1; H2, denoted H1 � H2,
the sum of H1 with H2. A cycle basis is an inclusion wise minimal set of cycles
generating the whole cycle space
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. . .s1 s2 s3 s4 sk� 3 sk� 2 sk� 1 sk

Figure 3.13: A minimal k-separator S for G 2 G` with diameter b̀ =2c � (k � 1).
Vertices in S are ordered so that any two consecutive verticessi and si +1 are dia-
metrically opposed in an isometric cycle of length̀ . Furthermore, the removal of S
disconnectsG in two parts, respectively containing the upper and lower sections of
these cycles.

The use of the cycle space. For every ` � 3, a graph G belongs to the classG̀
if any of its cycles can be obtained from the symmetric di�erence on the edges of
cycles of length at most`. More formally, its cycle space admits a cycle basis with
only cycles of length at most`. As an example, by Mac Lane's Theorem the inner
faces of a plane graph generate its cycle space, and so, a planar graph with inner
faces of length at most̀ is in G̀ . Furthermore, trees are a trivial example of graphs
in G3 (they have no cycle). Chordal graphs are also inG3. More generally, every
`-chordal graph is in the classG̀ . Indeed, every chord in a cycleC can be used in
order to write C as the sum of two smaller cycles, thereby proving that the induced
cycles in a graph can generate its cycle space.

In [CDN16], we prove that G̀ is stable under edge-contraction and addition of
an edge between two vertices that are at distance at mostb̀ =2c. The dimension of
the cycle space plays an important role in these proofs, as it often provides elegant
shortenings of our technical reasonings. In order to illustrate the techniques we
used, we prove below the stability ofG̀ under edge-contractions.

Lemma 59. Let ` � 3, the classG̀ is stable under edge-contraction.

Proof. Let G 2 G` with n vertices and m edges. W.l.o.g.,G is connected. The
dimensiondim(C(G)) of the cycle spaceC(G) is s = m� n+1 [Die10, Theorem 1.9.6].
Let e 2 E(G) such that e lies on k � 0 triangles in G. By contracting e, we loose
one vertex andk +1 edges, the edgee and for each triangle which containse we have
to remove one of the resulting multi-edges. Hence,dim(C(G=e)) = dim(C(G)) � k.
Let f C1 � � � ; Csg be a basis ofC(G) such that each Ci has length at most `. Let
f C0

1; � � � ; C0
t g be the set of cycles inG=ewhich are obtained by contractinge on each

Ci and by removing triangles that contain e from the list. Then, t � dim(C(G=e)) =
s � k (since at mostk triangles have been removed) and eachC0

i has length at most
`. We show that C0

1; � � � ; C0
t are linearly independent in C(G=e), which proves that

they form a basis of C(G=e). For purpose of contradiction, let us assume that
C0

i 1
� � � � � C0

i r
= 0 G=e for 1 � i 1 < � � � < i r � s and r > 0, with 0G=e being the

trivial Eulerian subgraph of G=e with no edges (a.k.a., the neutral element of the
cycle space). ThenCi 1 � � � � � Ci r is either 0G or e, with 0G being the trivial Eulerian
subgraph ofG with no edges. Therefore, the sum equalse since theCi j 's are linearly
independent in C(G). This is a contradiction as (V (G); f eg) is not Eulerian. Hence,
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since all cycles in the basisf C0
1; � � � ; C0

t g have length at most `, it implies that
G=e2 G` .

Furthermore, by combining these two above properties (stability under contrac-
tion or addition of some edges), we obtain in our paper [CDN16] the following
lemma:

Lemma 60. For every G 2 G` , any minimal separator S for G induces a connected
subset in its powerGb̀ =2c. In particular, the diameter of S in G is at most b̀ =2c �
(jSj � 1).

Proof. By contradiction, let G 2 G` , and let S be a minimal separator in G that
does not satisfy the property. We �rst make adjacent every two vertices inS that
are at distance at mostb̀ =2c in G. We claim that the resulting graph still belongs
to G̀ . Indeed, we proved in [CDN16] that G̀ is stable under addition of an edge
between two vertices that are at distance at mostb̀ =2c. Furthermore, adding an
edge cannot make the distances increase in the graph, so, we can use this stability
result for every edge added by the construction. Consequently, the resulting graph is
still in G̀ . Finally, we contract each connected component of the subgraph induced
by S in a single node, thus contractingS to obtain a stable set S0, and sinceG̀ is
proved to be stable under edge-contractions in Lemma 59, the resulting graphG0

still belongs to the class. Furthermore, the stable setS0 is a minimal separator in
G0 by construction. SinceS does not satisfy the property of the theorem, we have
that all nodes in S0 are pairwise at distance at leastbl=2c + 1 in G0. However, we
proved in [CDN16, Lemma 3.3] that for every graph inG̀ , minimal separators are
either cut-vertices or they contain two distinct vertices at distance at most b̀ =2c.
In particular, since the vertices in S0 are pairwise at distance at leastbl=2c + 1 in
G0 by construction, it contradicts that G0 2 G` .

The above result improves upon [ASM16] and [DM15]. It is sharp, in the sense
that for every sizek and for every` � 3, there exists a graphG 2 G` with a minimal
separator of sizek and diameter b̀ =2c � (k � 1) (e.g., see Figure 3.13).

Finally, Theorem 57 follows from our additional proofs in [CDN16] that all
graphs with isometric cycles of length at most` belong to the classG̀ , and in
the same way all � -hyperbolic graphs belong toG4� +3 , all graphs with a distance-
preserving ordering (resp., with a dismantling ordering) belong toG4 (resp., to G3).

Discussion. The main idea in this section is that for everyG, tl (G) � j � tw(G),
with j being the minimum index such that all minimal separators for G induce
connected subsets in its powerGj . This index satis�es j � b `=2c for the graphs
in G̀ . In particular, the minimal separators for a graph G 2 G3 induce connected
subsets ofG, but not all graphs with this property belong to G3 [DLVM86]. The
latter result raises the following open question: does there exist a universal constant
` such that the classG̀ contains all graphs with connected minimal separators ?
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3.5.3.2 Using the bidimensionality theory

For the upper bound, we sketch our approach and its limitations. First we observe
that treelength and treewidth are stable under edge-contractions. Thebidimension-
ality theory [DH08] o�ers meta-theorems which, for maximization problems whose
solutions cannot increase under edge-contractions7, are the cornerstone of FPT algo-
rithms with subexponential dependencyon the treewidth. On the theoretical point
of view, these meta-theorems are based on the property that a graph with large
treewidth can be edge-contracted to either a large complete graph or a large grid-
like minor. The latter result is a re�nement of the well-known Excluded Grid Minor
Theorem from Robertson and Seymour [RST94].

We will use the same tools for proving our result on the relationship between
treelength and treewidth on bounded genus graphs. Precisely, we seek for a subclass
of graphs where this large obstruction to treewidth can also be shown to have a large
treelength, that will imply the desired upper-bound.

Discarding complete graphs. Complete graphs are the classical examples of
graphs with unbounded treewidth but bounded treelength. So, in order to get rid
of this �rst obstruction, it is natural to constrain ourselves to H -minor free graphs,
for some �xed graph H . Unfortunately, this is still not enough. Indeed, Fomin et
al. proved in [FGT11] that for every �xed H , an H -minor free graph with large
treewidth can be contracted either to some canonical partial triangulation of a large
square grid8, or to the same graph augmented with a universal vertex. We illustrate
these two cases with Figure 3.14. In the latter case, the obstruction has unbounded
treewidth and bounded treelength, which does not help our purposes.

Discarding grid-like obstructions with a universal vertex. The key observa-
tion is that this augmented partial triangulation of the grid (Figure 3.14b) is an apex
graph. We recall that every planar graph is the minor of a grid with large enough
dimensions [RS84]. Therefore, in the special case whereH is a �xed apex-graph,
Fomin et al. were able to re�ne their results. Precisely, they proved in [FGT11] that
every apex-minor free graph with large treewidth can be contracted to the partial
planar triangulation of a large grid, that is depicted in Figure 3.14a.

Our contributions in [CDN16] is to prove that any such a partial triangulation
must have a large treelength. We do so by adapting some of the lower-bound
techniques for the treelength of grids in [DG07].

Lemma 61 ( [CDN16]). Let G be a partially triangulated(r � r )-grid, then tl (G) �
br=3c � 1.

Proof. The result holds if r � 3 because in such a casetl (G) � 1 � b r=3c � 1.
Else, let G0 be the (r � r )-grid from which G is obtained by planar triangulation.

7Some results also have been obtained under di�erent stability assumptions.
8A triangulation of a planar graph is a planar supergraph where all the faces are triangles.

Despite they share the same terminology, planar triangulations should not be confused with the
triangulations from Section 3.2.2 (chordal supergraphs).



110Chapter 3. Tree decompositions with metric constraints on the bags

(a) Canonical partial triangulation of a grid.
(b) Triangulation augmented with one uni-
versal vertex.

Figure 3.14: Contraction obstructions to bounded treewidth.

Let V 0 be the set of vertices that are at distance at least
� r � 1

3

�
from the external

face ofG0. The vertices of V 0 induce a partially triangulated (r 0 � r 0)-grid F in G,
r = 2

� r � 1
3

�
+ r 0, such that the external face has not been triangulated. Moreover,

F is isometric in G. Hence,tl (G) � tl (F ). We show that tl (F ) � b r=3c � 1.
Our proof adapts from the lower-bound techniques in [DG07, Sec.2:3]. Let

(T; X ) be any tree-decomposition ofF . Consider the two subsets of verticesA; B
that contain the �rst and the last row of F respectively. SinceA induces a connected
subgraph ofF , by the properties of tree decompositions the bags inX that intersect
A form a subtreeTA of T. Similarly, the bags in X that intersect B form a subtreeTB

of T. Furthermore, either TA \ TB 6= ; (in which case, the diameter of every bag in
TA \ TB is at least r 0� 1), or by [DG07, Lemma 5] there exists a bag which intersects
all paths betweenA and B in F . In the latter case, such bag must intersect the �rst
and last column of F , and so, it has diameter at leastr 0� 1. Therefore, (T; X ) has
length at least r 0� 1 in both cases, that proves thattl (F ) � r 0� 1 � b r=3c � 1.

Theorem 58 now follows.

We note that in [Epp00], Eppstein has proved that the apex-minor free graphs
are exactly the minor-closed families of graphs with treewidth upper-bounded by a
function of their diameter. Since treelength is upper-bounded by the diameter, our
result can be seen as a strict generalization of his.
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3.6 Conclusion

I have been mainly interested in characterizing the complexity of computing tree
decompositions with metric constraints on their bags. On the parameterized point
of view, my results suggest that the hard instances for this family of problems are
graphs with a large clique-number or a large Hadwiger number (size of a largest
clique-minor). I insisted on this aspect when I discussed on the complexity of com-
puting the clique-decomposition in Section 3.3. Other examples from metric graph
properties studied in the literature support this observation. As an example, under
the Strong Exponential Time Hypothesis the diameter of a graph cannot be
computed in truly subquadratic time (see also Section 2.6.3). Hard instances for the
diameter computation problem aresplit graphs, a.k.a. graphs who vertex-set can be
bipartitioned into a clique and an independent set [BCH16].

Intuitively, the existence of a large clique makes the diameter lower in the graph,
with a shortest-path between most pairs of vertices passing by the clique. In a way,
it thus forces the distance distribution in the graph to be very simple. But at the
same time, it gives a larger degree of freedom on the adjacency relations for the
vertices out of the clique, in the sense that the edges incident to these vertices
shall not a�ect too much the distances in the graph. Since tree decompositions
must span the edge-set of the graph, it may be the case that complicated adjacency
relationships for the peripheral vertices render their computation intractable.

This above intuition has guided the hardness reductions in [DLN16a, DC17].
Hence, all the graphs resulting from the hardness reductions for treebreadth, path-
length and pathbreadth have a large clique-number or Hadwiger number. The
graphs resulting from the hardness reduction for treelength also satisfy this prop-
erty [Lok10]. What remains to explore in more details is whether large cliques and
clique-minors represent the only obstructions for an e�cient computation of these
above parameters. Throughout my work, partial results have been obtained in this
direction. In particular, planar graphs and bipartite graphs with treebreadth one
can be recognized in polynomial time. I conjecture that more generally, graphs of
treebreadth one with boundedclique-numbercan be recognized in polynomial time.

However, the above example of bipartite graphs shows that a similar conjecture
does not hold true for the more general problem of computing the treebreadth.
Indeed, we prove in [DLN16a] that the NP-complete problem of recognizing general
graphs with treebreadth one can be reduced to the problem of recognizing bipartite
graphs with treebreadth at most two. The latter result suggests that the existence
of a large clique-minor su�ces to render the problem intractable.

Planar graphs areK 5-minor free, and we are currently exploring whether com-
puting the treelength is �xed-parameter-tractable on this class of graphs. Precisely,
we are investigating whether we can adapt the algorithm from Bodlaender and
Kloks [BK96] to our needs. This work has been started recently during the intern-
ship of Simon Nivelle with Nicolas Nisse. I conjecture that computing the treelength
of a graph G is FPT when it is parameterized by tl (G) + tw(G). Moreover, it is
my opinion that we may be helped in proving this with the relationships between
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treelength and treewidth in Section 3.5. Similar ideas can be found in [DFG11].
However, I conjecture that the problem of computing the treelength remains NP-
complete on planar graphs. This conjecture is motivated by a hardness result on
the problem of deciding on the existence of treet-spanners in these graphs [FK01].
Proving or disproving this conjecture would make advance our understanding on the
structure of bounded treelength graphs.
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Privacy at large scale in social
graphs
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Unlike the previous part, the focus in the next two chapters is ondynamic
processes on networks. The rules of these dynamics cause certain paths between the
vertices to appear or to disappear, hence they impact on the information propagation
in the graph. Our general purpose is to predict the outcome of these dynamics.

� Chapter 4 presents new results on the computation of equilibria for a large
family of graphical games, that are exempli�ed bycoloring games . Note that
equilibria for these games have been proposed in [KL13] as a solution concept
for the dynamics of communities in social graphs.

� Chapter 5 introduces a new model in order to detect thetargeting of (poten-
tially sensitive) data by an online advertiser, and to learn which data causes
the reception of a given ad. Targeting can be regarded as a dynamic process
on an �adgraph� [AMM10]: built from the data inputs and the ad allocation
protocols.





Chapter 4

The computation of equilibria in
coloring games

Summary

We establish new complexity results for computingk-strong Nash equilibria in col-
oring games. These results are partly generalized to some other graphical games.

In Section 4.3, we prove that for every �xed k � 1, it can be computed a k-
strong Nash equilibrium for every coloring game with a better-response dynamic.
We give the exact worst-case (polynomial) time of convergence fork � 2, that we
prove through an original connection between the executions of the better-response
dynamics and the chains (directed paths) in a DAG called theDominance lattice.
However, for every k � 4, we prove that the better-response dynamic converges
in superpolynomialtime in the worst-case. The latter result disproves a conjecture
from [KL13, EGM12] that for every k � 1, this dynamic converges in polynomial
time.

Then, in Section 4.4, we establish new results on the parallel and space complex-
ity of computing a Nash equilibrium in coloring games. Precisely, we prove that this
problem (that is polynomial-time solvable) is PTIME-hard under NC-reductions.
This is hint that computing a Nash equilibrium in these games is a problem in-
herently sequential, that cannot be solved within limited (logarithmic) workspace,
neither with an �e�cient� distributed algorithm: with low local computational time
and communication complexity.

In Section 4.5, we put the focus on a generalization of coloring games to edge-
weighted graphs, sometimes called the additively separable symmetric Hedonic
games. We give su�cient conditions for these games to admit ak-strong Nash
equilibrium. Then, we prove that for every k � 2, and for every �xed set of edge-
weights W, the following dichotomy results holds true: either all the games played
on a graph with edge-weights inW admit a k-strong Nash equilibrium, or the cor-
responding decision problem is NP-complete.

Finally, a broader set of graphical games, generalizing coloring games in their
own way, is introduced in Section 4.6. For each of those, we discuss on the extent
to which our results for coloring games still apply.

My papers on coloring games and their generalizations [DMC12, DMC13a,
DMC17, Duc16] are collected in the appendix.
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4.1 Introduction

In this chapter, we aim at better understanding how the rules of the dynamics a�ect
the privacy of the users'information in social graphs, that is de�ned in [EDP] as �a
right which prevents public authorities from measures which are [invasive for the
respect of private life], unless certain conditions have been met.� Formal de�nitions
of this notion of privacy, in game-theoretic terms, can be found,e.g., in [Dwo08].
Note that if we consider a communication network such as a social graph, private
information �ows through the edges of the graphs. Hence, one important aspect in
the study of privacy in these networks can be informally summarized at detecting
where the information can be accessed to in the graph over time. As a partial answer
to this question, we will study coloring gameson graphs in this chapter.

Precisely, our aim is to compute equilibria for those games, that have been pro-
posed in [KL13] as a solution concept for the outcome of the communities formation
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process in social networks. Coloring games and some basic de�nitions for this chap-
ter will be presented in Section 4.1.1. Then, the content of this chapter will be
described in Section 4.1.2. In particular, in what follows, full de�nitions are given
in Section 4.2, while the technical sections range from Sections 4.3 to 4.6.

4.1.1 Presentation of coloring games

A coloring game is played on an undirected graph with each vertex being an agent
(formal de�nitions will be restated with details in Section 4.2). Agents must choose
a color in order to construct a proper coloring of the graph, and the individual
goal of each agent is to maximize the number of agents with the same color as
hers. On a more theoretical side, coloring games have been introduced in [PS08] as
a game-theoretic setting for studying the chromatic number in graphs. Precisely,
the authors in [PS08] have shown that for every coloring game, there exists a Nash
equilibrium where the number of colors is exactly the chromatic number of the graph.
Since then, these games have been rediscovered many times, attracting attention on
the way in the study of information sharing and propagation in graphs [CKPS10,
EGM12, KL13].

4.1.1.1 Some applications of coloring games

Distributed coloring in graphs. In particular, the authors in [CKPS10] base on
coloring games in order to design distributed algorithms for coloring a graph, with
applications to the frequency assignment problem and the design of sleep/awake
protocols in Wireless Sensor Networks. The latter protocols are the cornerstone
of energy saving methods in these networks, and they also serve as a routine for
securing group communications.

Later on, in part motivated by the above applications, the authors in [MW13]
presented a unifying framework for the so-called �distributed� welfare games. The
goal with these games is to encode the solutions of a distributed resource allocation
problem as the Nash equilibria of a given graph game. They are speci�ed by as-
signing each agent an admissible utility function to optimize. Coloring games have
been shown to �t in this generic framework.

Modeling of community formation in social networks. More recently, col-
oring games have been proposed in order to model community formation in social
networks [KL13]. Indeed, let us assume that each community results from a group
of users sharing about some information topic. Let us also assume for simplicity
that each user shares about a given topic in only one community1. Therefore, given
a �xed topic, communities partition the users. The dynamics of these communities
is modeled with a coloring game, that is played on a �con�ict graph� where each
edge represents a con�icting opinion between two users.

1Note that by doing so, existing correlations between communities that are related to di�erent
topics are neglected [KBSP16].
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This representation may be confusing because the communities are densely con-
nected subsets in the social graph, whereas here in the coloring game they correspond
to color classes, and so, to independent sets of the con�ict graph. In this context,
it may be more natural to de�ne the game on thecomplementof the con�ict graph:
agents must construct a clique partition of this graph, and the individual goal of
each agent is to maximize the size of her clique (see Figure 4.1 for an illustration).

0

1 2

2 1

(a) A coloring game played on a graph
G. Agent are labeled with their colour.

0

1 2

2 1

(b) The corresponding clique partition
in the complement of G.

Figure 4.1: Dual representations for coloring games.

Generalizations of coloring games have been proposed in the literature [ABK+ 16,
BZ03, MW13]. In this chapter, we are particularly interested in a subclass of He-
donic games [Bal04], sometimes called the additively separable symmetric Hedonic
games [BZ03]. We will call them generalized coloring gamesbecause, as shown
below, they are a proper extension of the classical coloring games. A generalized
coloring game is played on anedge-weightedgraph, with each vertex being an agent.
As before agents must choose a color, and the individual goal of each agent is now
to maximize the sum of the weights of the edges that are incident to herself and to
another agent with the same color as her.

Formally, let G = ( V; E; w) be an edge-weighted graph withw : E ! Q [ f�1g
be its weight function. A coloring c : V ! N of G is a partition of its vertex-set with
each class (or group) being assigned a distinct integer, and for every vertexv 2 V
we denote byc(v) the integer corresponding to her group, also known as her color.
Then, in the generalized coloring game that is played onG, the vertices of G are
the agents of the game, and the strategy of an agent is her color. Every agentv 2 V
aims at maximizing her utility function

P

u2 NG (v)jc(u)= c(v)
wuv . We refer to Figure 4.2

for an illustration.
Note that every coloring game that is played on an unweighted graphG� can be

transformed into a generalized coloring game, by creating an edge-weighted complete
graph with vertex-set V (G� ) where the edges ofG� have weight �1 and the
nonedges ofG� have unit weight.

=) From now on, we will assume the classical coloring games to be de�ned this
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way, and all the de�nitions will be directly given for generalized coloring games.

4.1.2 Contributions

Our main purpose is to characterize the complexity of computing stable partitions
for generalized coloring games. Those are con�gurations where no small subset of
agents have an incentive to change their current strategy for the same new color.
On a social network point of view, stable partitions ensure that no small coalition
of users have an incentive to leave their current community for another one, thus
preventing information leakage from a community to another.

More precisely, we carefully control the maximum sizek of such a subset, and
we aim at computing k-stable partitions, a.k.a. con�gurations of the game where no
k-subset of agents have an incentive to deviate from their current strategy (e.g., see
Figure 4.3 for an illustration). Note that 1-stable partitions are exactly the Nash
equilibria of the game.

Formally, for any G = ( V; E; w) and c : V ! N, a k-deviation w.r.t. c is any
subsetS � V with jSj � k that satis�es the following property: there exists some
color i 2 N so that, for every v 2 S, we havec(v) 6= i and:

X

u2 NG (v)jc(u)= c(v)

wuv <
X

u2 NG (v)ju2 S

wuv +
X

u2 NG (v)jc(u)= i

wuv :

The coloring c represents ak-stable partition if there is no k-deviation w.r.t. c2.

We now describe our contributions in more details. Positive and negative results
are obtained on the complexity of computingk-stable partitions for the classical (non
generalized) coloring games with better-response dynamics (Section 4.1.2.1) and
parallel or space e�cient algorithms (Section 4.1.2.2). Our results on the existence of
k-stable partitions in generalized coloring games are summarized in Section 4.1.2.3.
Extensions of all these results to broader classes of games are �nally announced in
Section 4.1.2.4.

4.1.2.1 Convergence of better-response dynamics for coloring games

The �rst two technical sections (Sections 4.3 and 4.4) are devoted to (non gener-
alized) coloring games. In particular, Section 4.3 is devoted to the computation of
k-stable partitions for these games.

In [KL13], Kleinberg and Ligett prove that every coloring game with n agents
admits a partition that is k-stable for everyk � n, but that it is NP-hard to compute
one (this result was also proved independently by Esco�er et al. [EGM12]). Indeed,
a largest group in such a partition must be a maximum independent set of the
underlying graph. In contrast, it can be computed ak-stable partition in polynomial

2There is a more general notion of k-deviations where the agents deviating from their current
strategies are not imposed to choose the same colori . However, as shown in [EGM12] for any (non
generalized) coloring game, there exists such ak-deviation if and only there is one where the at
most k agents deviating choose the same colori .
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time for every �xed k � 3, by using simplebetter-response dynamics[PS08, EGM12,
KL13] that we will describe next. The latter results question the role of the value
of k in the complexity of computing stable partitions.

Formally, a better-response dynamic proceeds as follows. We start from a trivial
coloring of the graph where all the vertices have a di�erent color and then, as long
as there exists ak-deviation w.r.t. the current coloring, we pick any one of these
k-deviations S and we assign a same new colori to all the vertices in S so that they
strictly increase their respective utility function.

We prove in Section 4.3 that better-response dynamics can be used for comput-
ing a k-stable partition for every �xed k � 1 (but not necessarily in polynomial
time). It shows already that for every �xed k � 1, the problem of computing a
k-stable partition is in the complexity class PLS (Polynomial Local Search), that is
conjectured to lie strictly between P and NP [JPY88].

Then, we relate the time of convergence of better-response dynamics with a
combinatorial object that is called the Dominance lattice [Bry73], thereby obtain-
ing a closed formula for the worst-case time of convergence of the better-response
dynamics for k � 2. Finally, we will show how lower-bounds on the time of conver-
gence for the better-response dynamics can be obtained for larger values ofk. These
bounds are obtained with a new representation of the Dominance lattice, that I will
brie�y sketch. In particular, the main result in this section is that for every �xed
k � 4, better-response dynamics converge insuperpolynomial time
( n�(log n) ) in the
worst-case. The latter result disproves conjectures of Kleinberg and Ligett [KL13]
and Esco�er et al. [EGM12] that better-response dynamics always converge in poly-
nomial time for every �xed k.

This is joint work with Dorian Mazauric and Augustin Chaintreau.

4.1.2.2 The parallel complexity of coloring games

The negative results of Section 4.3 do not preclude the possibility that ak-stable
partition can be computed in polynomial time for every �xed k � 4. For instance,
this could be achieved by using a di�erent dynamic. In order to better understand
the complexity of this problem, I gave a closer look at the simpler (polynomial-time
solvable) problem of computing a Nash equilibrium in coloring games.

More precisely, I investigate in Section 4.4 on the parallel and space complexity
of computing a Nash equilibrium in these games. This aspect is also important
when considering the applications of coloring games: to serve as a basis for dis-
tributed algorithms or to model the social behaviour of users with limited memory
and computing power.

I prove in Section 4.4 that the problem of computing a Nash equilibrium in
coloring games is PTIME-hard under logspace reductions. The latter result sug-
gests that this problem is inherently sequential, and that it cannot be solved within
limited (logarithmic) workspace under the well-established complexity assumption
PT IME 6= LOGSPACE .
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4.1.2.3 Existence of stable partitions for generalized coloring games

We also study in Section 4.5 the existence ofk-stable partitions in generalized color-
ing games, and on the complexity of the related decision problem. So far, it has been
proved in [BZ03] that every generalized coloring game admits a Nash equilibrium.
However, computing one is a PLS-complete problem. This complexity comes from
the fact that edge-weights may be arbitrary. In Section 4.5, we �x in advance a set
of admissible edge-weightsW. We investigate on how the choice ofW impacts on
the existence of stable partitions.

The main result in this section, found in collaboration with Dorian Mazauric
and Augustin Chaintreau, is that for every �xed W, there exists a sharp threshold
k(W) (possibly, k(W) = + 1 ) such that the following dichotomy result holds true:

� every coloring game that is played on a graph with edge-weights inW admits
a k-stable partition for every �xed k � k(W);

� however, for every �xed k > k (W), deciding on the existence of ak-stable
partition for these games is an NP-complete problem.

This sharp threshold is explicitly given for most setsW. We complement this result
with preliminary relationships between the existence of stable partitions and the
structure of the underlying graph on which the game is played.

4.1.2.4 Generalization to other games

Finally, in Section 4.6 we discuss on more general games that also extend the coloring
games, some of them have been already de�ned and studied in the literature with
a slightly di�erent terminology [KL13, DP94, BZ03]. We show that most of our
results from the two previous Sections 4.3 and 4.5 can be extended to those games.

The results that are presented in Sections 4.3, 4.5 and 4.6 are grouped in a
paper [DMC17] that has been submitted toSIAM Journal of Discrete Mathemat-
ics (see also [DMC13a, DMC13b]). Results summarized in Section 4.4 have been
published independently in [Duc16].

4.2 De�nitions

We refer to [OR94, Mye13] for the basics of game theory. In what follows, we restate
the formal notions given in the introduction with more details.

Let G = ( V; E; w) be an edge-weighted graph, withw : E ! Q [ f�1g be its
weight function. We may assume thatG is a clique by replacing the nonedges with
null-weight edges, and so, we will writeG = ( V; w) in what follows. An arbitrary
partition of the vertices in G is named acoloring. Each group of the partition de�nes
a color.

Every graph G de�nes a generalized coloring gamewhose agents are its vertices.
Con�gurations of this game are the colorings ofG. In particular, the strategy of
an agent is her color. Furthermore, given a con�guration of the game, every agent
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Figure 4.2: A bicoloring of a graph G = ( V; w). Agents that are represented by
a circle (resp., by a square) have the same color. Red dashed edges have negative
weight �1 , while green continuous edges are labeled with their (positive) weight.
Furthermore, each agent is labeled with her payo�.

v 2 V (G) receives payo�
P

u2 V nvjc(u)= c(v)
wuv , with c(u) being the color ofu. We refer

to Figure 4.2 for an illustration.

Let us point out that classically, the non generalized coloring games are de�ned
on an unweightedgraph that is obtained from G by removing all edges with positive
weight. We shall come back to this point later on in the section.

4.2.1 Stable partitions and better-response dynamics

Let us �x a con�guration of the (generalized) coloring game that is played onG. A
subset S � V (G) with jSj � k is a k-deviation if it can be assigned a same color
to all the agents in S (di�erent from their current color) so that their respective
payo� is increased. Examples of2-deviations are provided with Figure 4.3. When
no k-deviation exists, we call the con�guration a k-stable partition. The k-stable
partitions correspond to the notion of k-strong Nash equilibria. In particular, 1-
stable partitions correspond to the classical notion of Nash equilibria. Note that a
k-stable partition might fail to exist, as shown with Figure 4.3.

The following better response dynamicsare a classical approach in order to com-
pute stable partitions. They are used in [KL13] in order to model the social choices
of users in the community formation process.

Let k � 1 be �xed. We start from a trivial con�guration where each agent has a
di�erent color. Then, as long as there exists ak-deviation, we pick any existing k-
deviation S and we assign a same colorc to all the agents in S so that they increase
their respective payo�. Let us point out that c can be either a new colour (we make
of S a new color class) or a color already assigned to some other agents not inS
(we make the agents inS part of an existing color class). Furthermore, if this above
dynamic converges then it stops on ak-stable partition.
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Figure 4.3: A graph G = ( V; w) with set of edge-weightsW = f�1 ; 2; 3; 4g. The
coloring game played onG does not admit any 2-stable partition. Indeed, we here
represent its 1-stable partitions, none of which is a2-stable partition.

4.2.2 Friendship and con�ict graphs

Finally, given an edge-weighted graphG, we de�ne two unweighted graphs whose
properties will be shown to be related to the properties of the generalized coloring
game that is played onG.

� The friendship graphG+ has for vertex-setV (G) and for edge-set the edges of
G with positive weight;

� Similarly, the con�ict graph G� has for vertex-setV (G) and for edge-set the
edges ofG with negative weight.

As an example, givenG = ( V; w) in Figure 4.2, the friendship graph G+ is a
disjoint union of two triangles, and the con�ict graph G� is a complete bipartite
graph K 3;3.

Let us consider the particular case where the edges ofG have weight either1 or
�1 . In this situation, stable partitions for the coloring game that is played on G
are proper coloringsof the con�ict graph G� , a.k.a. colorings where no two adjacent
vertices are assigned the same color. This justi�es the terminology of coloring games.

4.3 Unweighted games: the time of convergence for
better-response dynamics

The next two sections are devoted to the particular case of (non generalized) coloring
games, i.e., when the edge-weights of the underlying graph belong tof�1 ; 1g.
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Classically [PS08, CKPS10, KL13, EGM12], these games are assumed to be played
on the con�ict graph G� that is induced by the edges weighted�1 . In particular,
the goal of each agent is to construct a proper coloring ofG� while maximizing
the number of agents with the same color as herself. Since the con�ict graph is
unweighted, we will sometimes call these games the unweighted coloring games in
what follows.

Our purpose in this section is to (partly) characterize the complexity of comput-
ing a k-stable partition for these games, for every �xedk. Indeed, Kleinberg and
Ligett [KL13] proved that for every k, every unweighted game admits ak-stable
partition. However, �nding a coloring that is a k-stable partition for every k is an
NP-hard problem. In what follows, we will subdivide our contributions in three
parts. Each part is devoted to the proofs of upper and lower bounds on the time of
convergence for better-response dynamics.

� We �rst prove in Section 4.3.1 that for every �xed k � 1, better-response dy-
namics always converge to ak-stable partition. We discuss on the consequences
of this result on the complexity of computing k-stable partitions.

� Then, we obtain in Section 4.3.2 theexact worst-case time of convergence for
k � 2.

� Finally, we prove in Section 4.3.3 that better-response dynamics converge in
superpolynomial timeas soon ask � 4. The latter result answers negatively to
an open question from [KL13, EGM12].

4.3.1 A �ner-grained complexity for the problem of computing k-
stable partitions

First, we prove that when applied to unweighted games, better-response dynamics
always converge. Then, we discuss about the implications of this result on the
complexity of computing a k-stable partition.

The following proof makes use of apartition vector , �rst introduced in [CKPS10].

De�nition 62. Given a proper coloring ofG� , let � i be the number of colorsci so
that exactly i agents are colored byci . We denote by

�!
� = ( � n ; : : : ; � 1) the partition

vector of the coloring.

As an example, suppose thatG� is a complete bipartite graph with two sides
of respective sizen1 and n2, and we color all vertices on a same side with the
same color. If n1 = n2 then � n1 = 2 and for every i 6= n1, � i = 0 . Otherwise,
� n1 = � n2 = 1 , and for every i =2 f n1; n2g, � i = 0 .

Lemma 63. For any (con�ict) graph G� , let us consider the unweighted game that
is played onG� . Then, for every k � 1, the better-response dynamic applied to this
game converges to ak-stable partition.

Proof. At each time we modify the current coloring of G� , we also modify the
corresponding partition vector

�!
� . So, in order to prove that the better-response
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dynamic converges, it su�ces to prove that
�!
� 0, obtained after the coloring has

changed, is lexicographically greater than
�!
� . Let us prove this by �xing a k-

deviation S (w.r.t. the current coloring). After the coloring has been changed
� with respect to S �, all vertices in S have strictly increased their payo�. For
unweighted games, this is equivalent to have all vertices inS increase the number of
agents with the same color as theirs. In particular, letc be the color assigned to all
the agents inS, and let j be the number of agents coloredc before the coloring has
been changed. By the hypothesis, the change of coloring results inj + jSj vertices

coloredc. So, we get
�!
� 0�

�!
� = (0 ; : : : ; 0; � 0

j + jSj � � j + jSj = 1 ; : : :), and so,
�!
� < Lex

�!
� 0.

Finally, as the number of possible vectors is �nite, we obtain the convergence of the
better-response dynamic.

Next, we discuss on the consequences of Lemma 63 on the complexity of comput-
ing k-stable partitions for unweighted games. Informally, an optimization problem
is in PLS (Polynomial Local Search) if an optimal solution can be computed with
a local-search algorithm, i.e., an algorithm converging to an optimal solution by
repeatedly improving a current solution with a slight pertubation of it 3. Lemma 63
proves that for every �xed k, the problem of computing a k-stable partition for
unweighted games is in PLS. This complexity class is strictly included in NP unless
NP=coNP [JPY88].

Hence, to summarize this subsection, we have improved the best-known results
on the complexity of computing a k-stable for unweighted games, for every �xedk.

4.3.2 Closed formula for the worst-case time of convergence of
better-response dynamics ( k � 2)

Polynomial-time solvable problems are conjectured to be strictly contained in
PLS [JPY88]. In this section, we are interested in characterizing for which val-
ues ofk the problem of computing ak-stable partition is in P. As a partial answer
to this question, we aim at characterizing for which values ofk the corresponding
better-response dynamic converges within a polynomial number of steps.

It was proved in various papers [PS08, KL13, EGM12] that better-response dy-
namics converge in polynomial-time for every �xed k � 3. The proofs in these
papers rely on a potential function argument. We now give an alternative proof of
this result for the casek � 2. It is based on a more combinatorial argument and it
allows us to obtain the exact worst-case time of convergence.

Theorem 64. Let G� be an n-vertex con�ict graph. We consider the unweighted
game that is played onG� . Let m and r be the unique non negative integers such
that n = m(m+1)

2 + r , and 0 � r � m.
Then, for every k � 2, the better-response dynamic applied to this above game

converges to ak-stable partition within no more than 2
� m+1

3

�
+ mr � 2

p
2

3 n
p

n steps.

3Each step of the algorithm takes polynomial time, but the number of steps may be superpoly-
nomial.
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Moreover this worst-case upper-bound is reached if the con�ict graphG� has no
edges.

The remaining of this subsection is devoted to the proof of Theorem 64.

At �rst glance, it might look counter intuitive that the worst-case convergence
time of the dynamic is reached for the edgeless con�ict graph. Indeed, when the
con�ict graph has no edges there is a unique stable partition, with all agents having
the same color. However, this can be better understood by noticing that every
proper coloring of a con�ict graph G� is also a proper coloring of the edgeless
con�ict graph G; with same vertices. In particular, if we color accordinglyG� and
G; then a k-deviation for G� is also ak-deviation for G; . It directly follows from
this observation that the worst-case convergence time for better-response dynamics
is always reached withG; .

The proof of Theorem 64 also makes use of partition vectors. As for Lemma 63,
we show that every time the coloring is changed by using a1-deviation (resp.,
a 2-deviation), the corresponding partition vector increases with respect to some
ordering. However, in order to prove a polynomial upper-bound for the time of
convergence, we cannot use anymore the lexicographical ordering, since it is atotal
ordering and the number of partition vectors is superpolynomial [HW79]. Instead,
we will use a partial ordering that was introduced by Brylawski in [Bry73], in a
somewhat di�erent context.

Integer partitions. We �rst observe that when the game is played on ann-vertex
con�ict graph, each partition vector of its colorings de�nes a unique way to write n
as a sum of positive integers. The latter means that partition vectors are in bijective
correspondance with the nonincreasing sequences ofn nonnegative integers whose
terms sum up to n. More precisely, every vector

�!
� is related to the nonincreasing

sequenceQ(
�!
� ) , with its n �

P n
i =1 � i lowest terms equal to zero, and exactly� i

terms equal to i for every 1 � i � n. These sequences are called integer partitions
in the literature [Bry73, HW79].

Dominance ordering. Brylawski has de�ned an ordering over the integer parti-
tions, sometimes called the dominance ordering [Bry73]. Namely, given two parti-
tions, one is greater than the other if and only if for every1 � i � n, the sum of
its i largest terms is greater than or equal to the sum of thei largest terms of the
other. The latter ordering is a direct application of the theory of majorization to
integer partitions [OM16].

For instance, let us consider two trivial colorings ofG; : one with every agent
having a di�erent color, and another with every agent having the same color. In
the �rst case, the partition vector is

�!
� = (0 ; : : : ; 0; n) so that � 1 = n and � i = 0

for every i > 1; in the second case, the partition vector is
�!
� 0 = (1 ; 0; : : : ; 0) so

that � 0
n = 1 and � 0

i = 0 for every i < n . The corresponding integer partitions

are Q(
�!
� ) = (1 ; 1; 1; : : : ; 1) and Q(

�!
� 0) = ( n; 0; 0; : : : ; 0). In particular, the i largest
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terms of Q(
�!
� 0) always equaln, whereas thei largest terms of Q(

�!
� ) equal i � n.

Hence,
�!
� 0 is greater than

�!
� w.r.t. the dominance ordering.

Relationship with 2-deviations. The dominance ordering gives rise to a lattice
on the integer partitions. Furthermore, it has been proved in [GK86] that a longest
chain in this lattice has length 2

� m+1
3

�
+ mr , with m and r being the unique non

negative integers such thatn = m(m+1)
2 + r , and 0 � r � m. Therefore, in order to

prove Theorem 64 we have been left to prove a correspondance between the valid
sequences of2-deviations in G; and the chains of integer partitions in the Dominance
lattice. Note that this correspondance holds true only for the edgeless con�ict graph
G; . Below, we �rst prove this correspondance in the case of1-deviations.

Lemma 65. Assuming G� = G; is edgeless, letQ; Q0 be two integer partitions of
n = jV j.

Then, Q0 dominates Q if and only if there exist two coloringsc; c0 of G� with
respective partition vectors

�!
� and

�!
� 0 such that: Q(

�!
� ) = Q, Q(

�!
� 0) = Q0, and there

is a valid sequence of1-deviations from c to c0.

Proof. () ) Suppose thatQ0 dominatesQ. We may assume w.l.o.g. that there is no
intermediate integer partition Q00such that Q0 dominatesQ00and Q00dominatesQ.
Indeed, then we can prove the result in general by induction on the length of a longest
chain from Q to Q0. In this situation, we say that Q0 coversQ. Brylawski [Bry73]
has proposed a combinatorial characterization of the covering relation. Precisely,Q0

coversQ if and only if there exist indices j; k satisfying:

� k = j + 1 or qj = qk ;

� q0
j = qj + 1 , q0

k = qk � 1, and for all i such that i =2 f j; k g, q0
i = qi .

In particular, since k = j + 1 or qj = qk , we get qj � qk .
Let c be any coloring with partition vector

�!
� , so that Q(

�!
� ) = Q. We order

the color classes by nonincreasing size, namingL i the i th largest class, in a way so
that jL i j = qi . Then, we pick any v 2 L k , that exists since jL k j = qk > 0. Since
by construction there are jL j j = qj � qk agents with color j , and there is no edge
incident to v and to another agent with color j by the hypothesis, therefore, we can
increase the payo� of v by changing her color forj . By doing so, we obtain a new
coloring c0 with partition vector

�!
� 0 such that Q(

�!
� 0) = Q0.

Conversely, (( ) let c and c0 be two colorings with respective partition vectors
�!
� and

�!
� 0 such that Q(

�!
� ) = Q and Q(

�!
� 0) = Q0. Assume that c0 can be obtained

from c after a 1-deviation. In particular, let v change her color. We can order the
color classes by nonincreasing size, namingL i the i th largest class, in a way so that:

� v changes her colorc(v) = k for c0(v) = j , with j � k;

� every color classL i ; i < j , has sizejL i j > jL j j;

� every color classL i ; i > k , has sizejL i j < jL k j.

Note that Q = ( jL 1j; jL 2j; : : : ; jL j j; : : : ; jL k j; : : : ; jL n j) by construction. In particular,
Q0 is such that q0

i = qi = jL i j if i =2 f j; k g, and q0
j = jL j j + 1 ; q0

k = jL k j � 1. As a
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consequence, we have thatQ0 dominatesQ by the hypothesis. Note that this second
part of the proof holds for any con�ict graph G� .

To complete the proof of Theorem 64, we need to show that2-deviations cannot
make the time of convergence of the dynamic increase. We prove this below with a
�ner-grained analysis of the partition vectors that are obtained after 2-deviations.

Lemma 66. Assuming G� = G; is edgeless, letQ; Q0 be two integer partitions of
n = jV j. Suppose that there exist two coloringsc; c0 of G� with respective partition

vectors
�!
� and

�!
� 0 such that: Q(

�!
� ) = Q, Q(

�!
� 0) = Q0, and c0 is obtained from c

after a 2-deviation. Then, Q0 dominatesQ.

Proof. Let S = f u; vg be a 2-deviation w.r.t. c so that c0 is obtained from c by
assigning a same colorj to u and v. Furthermore, let i = c(u) and let i 0 = c(v).
In what follows, we denote by L i ; L i 0; L j the color classes ofc that correspond,
respectively, to the colorsi; i 0 and j .

We note that if jL j j � j L i j then u can increase her payo� by changing her current
color i for j . In this situation, c0 can be obtained fromc after a sequence of two
1-deviations, with u followed by v changing their respective colors forj sequentially.
Therefore, Q0 dominates Q by Lemma 65. Similarly, if jL j j � j L i 0j then c0 can be
obtained from c by changing the respective colors ofv then u for color j sequentially.
Therefore, we also have in this case thatQ0 dominates Q by Lemma 65. From now
on, let us assume that jL j j = jL i j � 1 = jL i 0j � 1. There are two cases to be
considered:

� Suppose that i = i 0. Then the numbers of agents colored byi and j in c0 are
respectively jL i n f u; vgj = jL i j � 2 and jL j [ f u; vgj = jL j j + 2 = jL i j + 1 .
In particular, another coloring c00can be obtained fromc with a 1-deviation
as follows. We pick any agentuj 2 L j and we make her payo� increase from
jL j j � 1 = jL i j � 2 to jL i j = jL j j + 1 by changing her current color j for i .
By doing so, the coloring c00so obtained has the same partition vector asc0.
Therefore, sincec00is obtained from c after a 1-deviation, Q0 dominates Q by
Lemma 65.

� Otherwise, i 6= i 0. Then the numbers of agents colored byi; i 0 and j in c0

are respectively jL i n f ugj = jL i j � 1, jL i 0 n f vgj = jL i 0j � 1 = jL i j � 1 and
jL j [ f u; vgj = jL j j + 2 = jL i j + 1 . Again, another coloring c00with the same
partition vector as c0 can be obtained from c after a 1-deviation, this time
by modifying the color of v from i 0 to i . Since c00 is obtained from c after a
1-deviation, Q0 dominates Q by Lemma 65.

By Lemma 66, the maximum number of consecutive2-deviations in better-
response dynamics is upper-bounded by the length of a longest chain in the Dom-
inance lattice. Since Lemma 65 proves that it can be obtained a sequence of1-
deviations with exactly this length, Theorem 64 follows.
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Perspectives. In [PS08], Panagopoulou and Spirakis proved that for every con�ict
graph G� with independent number � (G� ), the better-response dynamic converges
to a Nash equilibrium within O(n � � (G� )) steps. This improves upon the upper-
bound of Theorem 64 for the graphs with independent set� (G� ) = o(

p
n). I con-

jecture that the worst-case time of convergence of the dynamic is anO(n �
p

� (G� )) ,
that would be the best possible.

4.3.3 Lower-bounds for the worst-case time of convergence of
better-response dynamics ( k � 4)

Finally, on the negative side we lower-bound the worst-case running-time of better-
response dynamics fork = 4 . It has been conjectured in [EGM12] that in the case
of unweighted games, better-response dynamics always converge in polynomial time
for every �xed k. Our results for k = 4 disprove this conjecture.

Theorem 67. Let G; be an edgeless con�ict graph withn vertices. We consider the
unweighted game played onG; .

Then, for every k � 4, better-response dynamics applied to this above game
converge in
( n�(log n) ) steps in the worst-case.

Due to its high level of technicality, the proof of Theorem 67 will be only sketched
in what follows. The full proof can be found in [DMC17].

4.3.3.1 Cascade sequences: overview

In order to give a �avor of the method, let us consider some coloring ofG; , with
partition vector

�!
� so that � p � 4 and � p� 3 � 1 for somep. We take a subsetS

of four agents, each with a distinct color and receiving payo�p � 1. Such a subset
surely exists since� p � 4. Then, since � p� 3 � 1, there exists some colorc that is
assigned to exactlyp � 3 agents. Assigning colorc to the four agents in S would
increase their respective payo� fromp � 1 to p, so, S is a 4-deviation. This case
is interesting because after the4-deviation, the length of a longest chain, in the
Dominance lattice, from the current coloring to the unique stable partition of G;

(where all the agents have the same color) has been increased. Hence, we aim at
using this type of 4-deviations in order to maximize the number of steps for the
better-response dynamic.

With that goal in mind, we now de�ne cascade sequences. Indeed, suppose now
that for some p, we have as before� p � 4 and � p� 3 � 1, but also � i � 1 for
every i � p � 4. As it is described above, we modify the current coloring with a
4-deviation, thereby obtaining as the new partition vector

�!
� 0 so that:

8
>>>>>>><

>>>>>>>:

� 0
p+1 = � p+1 + 1

� 0
p = � p � 4

� 0
p� 1 = � p� 1 + 4

� 0
p� 3 = � p� 3 � 1

� 0
i = � i otherwise.
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Then, since � 0
p� 1 � 4 and � 0

p� 4 = � p� 4 � 1, we can modify the new coloring with
another 4-deviation, and so on. As an example, the following is a cascade sequence
of size four. Each con�guration is represented with an integer partition:

Q0 = (7 ; 7; 7; 7; 4; 3; 2; 1);

Q1 = (8 ; 6; 6; 6; 6; 3; 2; 1);

Q2 = (8 ; 7; 5; 5; 5; 5; 2; 1);

Q3 = (8 ; 7; 6; 4; 4; 4; 4; 1);

Q4 = (8 ; 7; 6; 5; 3; 3; 3; 3):

In order to lower-bound the time of convergence in the worst-case, we aim at
maximizing the size and the number of cascade sequences during the steps of the dy-
namic. The latter is achieved through a complex recursive procedure, where we de-
�ne larger and larger cascades (but in fewer and fewer number) by inserting complex
sequences of �adaptive�1-deviations in-between. In the following Section 4.3.3.2, we
will introduce new technical notions that we use in [DMC17] in order to formally
de�ne this procedure.

Figure 4.4: A recursive procedure in order to increase the size of cascade sequences
(sketch).

4.3.3.2 Representing long sequences of 4-deviations with vectors

Our construction can be best de�ned by using a vectorial representation of4-
deviations. More precisely, when we change a coloring with partition vector

�!
�

for another coloring with partition vector
�!
� 0, the deviation corresponding to that

change can be represented with the di�erence vector
�!
� 0�

�!
� . As an example, if after

a 1-deviation some agent increases her payo� fromp � 1 to p + 1 then she leaves a
group of sizep for some other group of sizep + 1 . In particular, her former color
class has sizep � 1 after her departure, and her new color class has sizep + 2 after
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her arrival. Therefore, the corresponding di�erence vector
�!
� =

�!
� 0 �

�!
� satis�es:

8
>>>>>>><

>>>>>>>:

� p+2 = 1

� p+1 = � 1

� p = � 1

� p� 1 = 1

� i = 0 otherwise.

Symmetric property. Our recursive cascades are easier to represent this way,
i.e., as a vectorial sequence satisfying some �symmetric properties�, that we de�ne
next.

De�nition 68. The minimum-size sub-vector that contains all non-zero entries
of a vector is called thesupport of the vector. We say a vector has thesymmetric
property if, and only if, the coordinates of its support are invariant under the reverse
permutation (in which case, it is said �symmetric�).

On the one hand, we show in [DMC17] that except for a few pathological cases,
every 1-deviation yields an elementary vector that has the symmetric property. But
the property does not hold in general fork-deviations wheneverk � 3. This might
give a hint of what changes in the nature of the problem when larger deviations are
allowed.

On the other hand, the use of this above vectorial representation might lead
to de�ne vectorial sequences that do not truly represent sequences of4-deviations.
Thus, we need to de�ne additional constraints in order to prevent that case from
happening, which unfortunately level up the technicality of the proof. We give a
�avour of it by introducing the notion of balanced sequences .

De�nition 69. Given any integer h > 0, let �! ' 1; �! ' 2; : : : ; �! ' t be vectors. We call
this sequenceh-balanced if, for any1 � i � t, the sum of the i �rst vectors, namelyP i

j =1
�! ' j , has all its entries greater than or equal to� h.

As an example, since agents in ak-deviation can be in no more thank distinct
color classes, the vector gotten after anyk-deviation is alwaysk-balanced.

Given a h-balanced sequence(�! ' 1; �! ' 2; : : : ; �! ' t ) of k-deviations, let
�!
� =P t

i =1
�! ' i be the sum of all deviations. In what follows, we will say that

�!
� represents

the sequence. Letpmax be the largest indexj that satis�es
�!
� j 6= 0 . Equivalently,

pmax is the largest size of a group modi�ed (hence created) after some deviation in
the sequence happens (i.e., 8l; 8p > pmax ; ' l

p = 0 ). Then, one can observe that a
su�cient condition so that the sequence is valid is that it starts from a coloring with
at least h color classes of each sizej , for 1 � j � pmax .

The following claim will be used in our sketch proof for Theorem 67.
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Claim 70. Suppose that
�!
� 1 and

�!
� 2 respectively represent ah1-balanced sequence and

a h2-balanced sequence. Then,
�!
� =

�!
� 1 +

�!
� 2 represents a

�
maxf h1; h2 � min i � 1

i g
�
-

balanced sequence, that is the concatenation of the two sequences represented by
�!
� 1

and
�!
� 2.

Proof. Clearly,
�!
� represents the sequence obtained by the concatenation of the

two sequences that are respectively represented by
�!
� 1 and

�!
� 2. In particular, the

subsequence represented by
�!
� 1 is h1-balanced by the hypothesis. The remaining

subsequence is represented by
�!
� 2, that is h2-balanced by the hypothesis. Since it

follows the �rst subsequence, and all the entries of
�!
� 1 are greater than or equal to

min i � 1
i , therefore, this second subsequence is(h2 � min i � 1

i )-balanced. �

Sketch of the construction. Our proof for Theorem 67 relies on a �shift� oper-
ator: given a vector �! ' whose support ranges between indicespmin ; pmax , the vector
tr (i ) �! ' , i < p min , is a vector of the same sizeand the same supportas �! ' , but
whose support ranges between indicespmax � i; pmin � i . For instance, we have
tr (1) (0; 1; � 2; 1; 0; 0; 0) = (0 ; 0; 1; � 2; 1; 0; 0). In particular, if �! ' represents ak-
deviation, then tr (i ) �! ' represents the samek-deviation, up to a decrease byi of the
size of all color classes involved.

One can extend the operator and its meaning to sequences ofk-deviations as
well. Formally, let �! ' 1; : : : ; �! ' t be a sequence ofk-deviations, and let

�!
� =

P t
l=1

�! ' l

represent this sequence. Then, if no group of size less thani + 1 is modi�ed nor
created by the sequence (i.e., 8l; 8p � i; ' l

p = 0 ), we obtain by linearity of the

operator that tr (i ) �!
� =

P t
l=1

tr (i ) �! ' l .

Let us prove two important properties of the so-called �shift operator�:

Claim 71. Let
�!
� be any vector that has a support of sizes = pmax � pmin + 1 , and

with the symmetric property. For any positive integersr and d such that1+( r � 1)d �
pmin , the vector

�!
� 0 =

P r � 1
h=0

tr (hd) �!
� also has the symmetric property.

Proof. The support of vector
�!
� 0 has sizes0 = ( r � 1)d + s. In the following, we will

assume up to padding the vector
�!
� with additional null entries that it is unbounded

i.e., it is indexed by Z. By the hypothesis the vector
�!
� has the symmetric property

and so,81 � j � pmax + pmin � 1; � j = � pmin + pmax � j . Let 0 � j � s0=2� 1. We have
that:

� 0
pmax � j =

r � 1X

h=0

� pmax � j + hd =
r � 1X

h=0

� pmax + pmin � (pmax � j + hd)

=
r � 1X

h=0

� pmin + j � (r � 1� h)d =
r � 1X

h=0

� pmin � (r � 1)d+ j + hd = � 0
pmin � (r � 1)d+ j :

Thus,
�!
� 0 also has the symmetric property. �
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Claim 72. For any positive integers r and d, if
�!
� represents ah-balanced se-

quence then
�!
� 0 =

P r � 1
j =0

tr (jd ) �!
� represents a (h + e� )-balanced sequence, with

e� = � min i 1 � i 2

P i 2
j = i 1

� j .

Proof. We prove the claim by induction on r . If r = 0 then
�!
� 0 =

�!
� and

so the claim holds vacuously in this base case. Otherwise, let us write
�!
� 0 =� P r � 2

j =0
tr (jd ) �!

�
�

+ tr (( r � 1)d) �!
� =

�!
� 00+ tr (( r � 1)d) �!

� . Note that tr (( r � 1)d) �!
� represents

a h-balanced sequence, and by the induction hypothesis
�!
� 00represents a(h + e� )-

balanced sequence. Since all entries of
�!
� 00are greater than or equal to� e� , therefore,

�!
� represents a(h + e� )-balanced sequence by Claim 70. �

Finally, in order to prove Theorem 67, we construct vectors
�!
� i that represent

sequences of deviations. The construction is recursive. To construct the vector
�!
� i +1 from

�!
� i , we follow a particular construction that we will show valid and

that is illustrated in Figure 4.4. The construction is composed of a repetition of
the sequence de�ned by

�!
� i a certain number of times (linear in some parameter

t = �(log n)) shifting the "starting point" of each sequence by the same value. The
construction then adds1-deviations in order to get a technical generalization of the
symmetric property, called Good property (see [DMC17]).

Claim 73. There exists a sequence of vectors
�!
� i such that the following hold true

for every i :

� There exist two positive integers denoted byai ; t i
1, and there exists a sequence

of 1-deviations represented by
�!
� i +1 so that:

�!
� i +1 =

aiX

j =0

tr (jt i
1 ) �!

� i +
�!
� i +1 :

� If
�!
� i represents ahi -balanced sequence then

�!
� i +1 represents a(hi +1) -balanced

sequence.

� Furthermore, si � si +1 < 3
2si where si and si +1 denote the respective sizes

of the support of
�!
� i and

�!
� i +1 , and

�!
� i +1 represents a sequence of at least

( si
2i +2 � 5)-times more deviations than in the sequence represented by

�!
� i .

Sketch Proof of Claim 73. Our constructions will ensure that every
�!
� i satis�es a

so-calledGood Property, namely:

�
�!
� i has the symmetric property, with its nonzero entries being equal to
1; � 1; � 1; 1 and (by symmetry) 1; � 1; � 1; 1;

� it has a support
�����!
supp(� i ) of even sizesi with its two middle entries being equal

to 1;

� last, the two least entries of
�����!
supp(� i ) that are valued � 1 are indexed byt i

1; t i
2

with 1 < t i
1 < t i

2 < 2t i
1, and t i

2 � 2i +1 .
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Before entering in the details of the construction, let us sketch how we use this
Good property in what follows. Let hi be the least integer such that the vector

�!
� i

represents ahi -balanced sequence. Our main objective is to maximize the size of
this sequence while minimizinghi .

- In particular, if
�!
� i satis�es the Good property then its nonzero entries are

constrained to 1; � 1; � 1; 1; 1; � 1; � 1; 1, and so,
�!
� i is hi -balanced implies thatP ai

j =0
tr (jt i

1 ) �!
� i is (hi + 2) -balanced by Claim 72. We will ensure in addition that

�!
� i +1 represents a1-balanced sequence of1-deviations, so, altogether combined this
will show that

�!
� i +1 =

P ai
j =0

tr (jt i
1 ) �!

� i +
�!
� i +1 is (hi + 2) -balanced by Claim 70 (a

little more work is needed in order to prove that
�!
� i +1 is (hi + 1) -balanced).

- Moreover, we note that since
�!
� i +1 =

P ai
j =0

tr (jt i
1 ) �!

� i +
�!
� i +1 , it represents a

sequence of at leastai -times more deviations than
�!
� i . We will chooseai (used for

the shiftings) to be the largest even integerj such that jt i
1+ t i

2 < s i =2+1. The latter

choice implies that ai � si � 4� 2t i
2

2t i
1

. Then, since1 < t i
1 < t i

2 < 2t i
1, and t i

2 � 2i +1 , we

obtain that si � 4� 2t i
2

2t i
1

> si
2i +2 � 1

2i � 1, and so,ai �
� si

2i +2 � 1
2i � 1

�
� 2 � si

2i +2 � 5, as
desired.

As a result, the Good property is a su�cient condition for the two requirements
of the claim. Let us now sketch the construction of the vectors

�!
� i .

Base case. Let L = �(
p

n) and t = �(log n). We initiate the sequence with
a cascade of4-deviations. This cascade has sizet2 and it starts with four agents
in di�erent color classes of sizeL � 1 leaving for a new color class of sizeL � 4
(until four agents in di�erent classes of sizeL � t2 leave for a new color class of size
L � 3 � t2). Then, in order to satisfy some technical requirements we complete the
cascade with a small sequence of1-deviations. Let

�!
� 1 represent this subsequence.

By the calculation, all its entries are equal to zero except for: � 1
L = � 1

L � 5 =
� 1

L � t2 � 1 = � 1
L � t2 � 6 = 1 , and � 1

L � 1 = � 1
L � 2 = � 1

L � t2 � 4 = � 1
L � t2 � 5 = � 1. Note that

this intermediate sequence does not satisfy the Good property.

We �nally construct
�!
� 1 by repeating

�!
� 1 many times, namely fromP t2 � 5

i =0
tr (i ) �!

� 1, and then ending with �adjusting� sequences of1-deviations.
To better understand the role played by the latter sequences, letp; q; h be three

nonnegative integers such thatp > q + 2h. Let us consider the sequence where an
agent leaves a group of sizeq+ 1 for a group of sizep� 1, then another agent leaves
a group of sizeq + 2 for a group of sizep � 2, and so on util a �nal agent leaves a
group of sizeq+ h for a group of sizep� h. This sequence is represented by a vector
�!
� such that: � p = � q = 1 , and � p� h = � q+ h = � 1. We use this type of sequence

so as to position the nonzero entries of
�!
� 1 as desired in order to satisfy the Good

property.

Inductive step. It turns out that all the main ideas for the construction are
already present in the base case. Indeed, suppose the vector

�!
� i to be constructed

in order to satisfy the Good property. As already stated, we chooseai to be the
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largest even integerj such that jt i
1+ t i

2 < s i =2+1. Then, let
�!
� i +1 =

P ai
j =0

tr (jt i
1 ) �!

� i ,
that is a vector with the symmetric property by Claim 71. By construction, this
vector has a support of sizesi +1 = si + ai t1

i < 3
2si , that is even becausesi and ai

are even, and that will also be the size of the support of
�!
� i +1 .

In fact,
�!
� i +1 �almost� satis�es the Good property, but is has more nonzero

entries than what is required. So, we set to zero this surplus of nonzero entries
using four sequences of1-deviations, thereby obtaining

�!
� i +1 .

It can be proved by induction on i that the above-de�ned sequence
�!
� i is O(i )-

balanced and with support of sizeo
� � 3

2

� i
�

. In particular, this sequence is valid if

we start from a coloring with O(i ) color classes of sizes for every 1 � s � o
� � 3

2

� i
�

� in which case, we must ensure n � O
�

i �
� 3

2

� i
�

. Hence, we can construct the

sequence
�!
� i for some polynomial i = 
( n1=6=logn). Altogether combined with

the lower-bound on the size of the sequence that is represented by
�!
� i , the latter

achieves proving Theorem 67. We refer to [DMC17] for the full calculation.

Discussion and open questions. To sum up this section, we have by Theorem 64
that better-response dynamics cannot be used in order to compute4-stable parti-
tions in polynomial time. As a byproduct of our vectorial approach, we also get an

( n2) lower-bound on the convergence time of the dynamic fork = 3 (see [DMC17]).
We conjecture that the worst-case convergence time of the dynamic in this case is
indeed O(n2), that would improve upon the known O(n3) upper-bound.

Finally, it is open whether the problem of computing a4-stable partition can be
solved in polynomial time. In particular, is this problem complete for the complexity
class PLS ?

4.4 The parallel complexity of coloring games

In the line of prior Section 4.3, we keep studying the complexity of computing
stable partitions for unweighted games. However, the present section is focused on
the complexity of computing Nash equilibria (1-stable partitions).

By Theorem 64, for every unweighted game, the better-response dynamic con-
verges to a Nash equilibrium in polynomial time. However, we know by Theorem 67
that the same does not hold fork-stable partitions, with k � 4. Therefore, it might
be desirable to have a better understanding of the complexity of computing Nash
equilibria for these games.

4.4.1 Overall approach and main result

I shall investigate on the belonging of the problem � the computation of a Nash
equilibrium in coloring games � to some complexity classes that are related to par-
allel and space complexity. The goal in doing so is to bring more insights on the
complexity of the problem.
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Complexity classes. In what follows, computations are performed on a parallel
random-access machine (PRAM, see [GHR95]) with an unlimited amount of (num-
bered) processors. We will handle with read/write con�icts between processors with
the strategy CREW-PRAM (concurrent read, exclusive write).

Let PTIME contain the decision problems that can be solved in sequential
polynomial-time, that is with a single processor. Problem A reduces to problem
B if given an oracle to solve B, then A can be solved in polylogarithmic-time with
a polynomial number of processors. In particular, a problem B is PTIME-hard if
every problem in PTIME reduces to B (this is formally de�ned as quasi-PTIME-
hardness in [GHR95]). Such reductions are �ner-grained than the more standard
logspace reductions.

On the applicative point of view, we recall that coloring games have been pro-
posed in order to design distributed algorithms on graphs, and to model the be-
haviour of social network users with limited memory and computing power. We
note that any distributed algorithm on graphs can be simulated on a parallel ma-
chine with one processor per edge and per vertex. Furthermore, there are strong and
well-known relationships between space and parallel complexity [Pap03]. Hence, the
following result also brings more insights on the feasability of the proposed applica-
tions for coloring games in the literature.

The main result in this section can be stated as follows.

Theorem 74. Computing a Nash equilibrium for coloring games is PTIME-hard.

This theorem paves the way to a deepening of the complexity of computing Nash
equilibria in graph games. I think that similar investigations should be pursued for
other games where it can be computed a Nash equilibrium in polynomial time.

The reduction for proving Theorem 74 is from the standardMonotone Cir-
cuit Value problem. However, the gadgets needed are technically challenging, and
we will need to leverage nontrivial properties of coloring games in order to prove its
correctness. I detail this reduction in what follows.

4.4.2 The reduction

4.4.2.1 The Monotone Circuit Value problem

In order to prove Theorem 74, we will reduce from a variation of the well-known
Monotone Circuit Value problem, de�ned as follows.
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Problem 1 (Monotone Circuit Value ).

Input: A boolean circuit C with m gates andn entries, a wordw 2 f 0; 1gn such
that:

� the gates are either AND-gates or OR-gates;

� every gate has exactly two entries (in-degree two);

� a topological ordering of the gates is given, with themth gate being
the output gate.

Question: Does C output 1 when it takesw as input ?

This variation of Monotone Circuit Value is proved to be PTIME-complete
in [GHR95]. On the technical point of view, it requires a topological ordering of
the gates as part of the input. This non standard add up will be shown to be a key
element in the reduction to coloring games.

In what follows, let hC; wi be any instance ofMonotone Circuit Value . We
will reduce it to a coloring game as follows. LetG := ( g1; g2; : : : ; gm ) be the gates
of the circuit, that are topologically ordered.

4.4.2.2 Construction of the gate-gadgets

For every 1 � j � m, the j th gate will be simulated by a subgraphGj = ( Vj ; E j )
with 12(n + j ) � 9 vertices. We refer to Figure 4.5 for an illustration.

Let us give some intuition for the following construction of Gj . We aim at
simulating the computation of the (binary) output of all the gates in C when it
takes w as input. To do that, we will construct a supergraph G� of Gj (to be
de�ned later), then we will consider the unweighted game that is played onG� .
The goal of the construction will be to ensure that given a �xed Nash equilibrium
for this game, we can guess the output of thej th gate from the subcoloring ofGj .
More precisely, the subcoloring will encode a �local certi�cate� that indicates which
values on the two entries ofgj cause the output.

Observe that to certify that an OR-gate outputs 1, it su�ces to show that it
receives1 on any of its two entries, whereas for an AND-gate it requires to show
that it receives 1 on its two entries. Since by de Morgan's laws [DM47], the negation
of an AND-gate can be transformed into an OR-gate and vice-versa, therefore, we
need to distinguish between three cases in order to certify the output of the gate.
So, the vertices in Vj are partitioned in three subsets of equal size4(n + j ) � 3,
denoted by V 1

j ; V 2
j ; V 3

j . Furthermore, for every 1 � t � 3, every vertex in V t
j is

adjacent to every vertex in Vj n V t
j .

Let us now describe the structure of the three (isomorphic) subgraphsGj [V t
j ] =

(V t
j ; E t

j ) with 1 � t � 3. Informally, we will need this internal structure in order
to ensure that every of the three subsetsV t

j will behave as a �truthful� certi�cate
to decide on the output of the gate; i.e., only a few vertices ofVj will be used to
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Figure 4.5: Gadget subgraphGj representing the j th gate. An edge between two
subsets of vertices (delimited by an ellipse) denotes the existence of a complete
bipartite subgraph.

certify the output of the j th gate, while all others will be divided into arti�cial
aggregates that we name �private groups� whose role is to ensure �truthfulness� of
the certi�cate (this will be made clearer in the following). There are two nonadjacent
vertices at

j ; bt
j 2 V t

j playing a special role. The other vertices inV t
j n f at

j ; bt
j g are

partitioned in two subsets A t
j ; B t

j of respective size2(n + j ) � 3 and 2(n + j ) � 2.
The setsA t

j ; B t
j are called theprivate groupsof at

j ; bt
j . Furthermore, every vertex in

A t
j is adjacent to every vertex in V t

j n (A t
j [ f at

j g), similarly every vertex in B t
j is

adjacent to every vertex in V t
j n (B t

j [ f bt
j g).

Computation. Since all edges are de�ned above independently the one from the
other, the graph Gj [V 1

j ] = ( V 1
j ; E 1

j ) (encoded by its adjacency lists) can be con-
structed with jV 1

j j + jE 1
j j = 4( n + j )2 � 2(n + j ) � 2 processors simply by assigning

the construction of each vertex and each edge to a di�erent processor. Note that
each processor can decide on the vertex, resp. the edge, it needs to compute from its
number. Overall, it takes O(log(n+ j )) -time in order to construct Gj [V 1

j ] in parallel.
The latter can be easily generalized in order to constructGj in O(log(n + j )) -time
with jVj j+ jE j j processors. Therefore, the graphsG1; G2; : : : ; Gm can be constructed
in parallel in O(log(n + m))-time with

P m
j =1 (jVj j + jE j j) processors, that is (huge!)

polynomial in n + m.

4.4.2.3 Construction of the graph

Let X = f x1; x0
1; : : : ; x i ; x0

i ; : : : ; xn ; x0
ng contain 2n nonadjacent vertices, that are

two vertices per letter in the binary word w. The (con�ict) graph G� = ( V; E)

for the reduction has vertex-setV = X [
� S m

j =1 Vj

�
. In particular, it has 2n �

9m + 6m(m + 2n + 1) vertices. Furthermore, G� [Vj ] is isomorphic to Gj for every
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1 � j � m. In order to complete our reduction, let us now describe how our gadgets
are connected the one with the other.

For technical reasons, we will need to make adjacent every vertex in the private
group A t

j (resp. B t
j ), with 1 � j � m and 1 � t � 3, to every vertex in V n Vj .

By doing so, note that every vertex in V n (A t
j [ f at

j g) is adjacent to every vertex
in A t

j (resp., every vertex in V n (B t
j [ f bt

j g) is adjacent to every vertex in B t
j ).

Furthermore, each edge is de�ned independently the one from the other. Hence,
similarly as above,

P m
j =1

P 3
t=1 (jA t

j j + jB t
j j)jV nVj j processors are su�cient in order

to construct these edges inO(log(n + m))-time, that is polynomial in n + m.
Finally, we recall that for every j , there are three cases to distinguish in order

to decide on the output of the j th gate, with each case being represented with some
subset V t

j . The union of subsets representing apositive certi�cate (output 1) is
named Yj , while the union of those representing anegative certi�cate (output 0)
is namedN j . In particular, if the j th gate is an OR-gate, letYj := f a1

j ; b1
j ; a2

j ; b2
j g

and N j := f a3
j ; b3

j g (it su�ces to receive 1 on one input). Else, the j th gate is an
AND-gate, so, let Yj := f a1

j ; b1
j g and N j := f a2

j ; b2
j ; a3

j ; b3
j g.

Figure 4.6: Edges inG� to simulate the two connections of an AND-gate in the
circuit.

Suppose thej th gate is an OR-gate (the case where it is an AND-gate follows
by symmetry, up to interverting Yj with N j , see also Figure 4.6). Let us consider
the �rst entry of the gate. There are two cases.

� Suppose that it is the i th entry of the circuit, for some 1 � i � n.
If wi = 0 then we make bothx i ; x0

i adjacent to both a1
j ; b1

j .
Else, wi = 1 , we make bothx i ; x0

i adjacent to both a3
j ; b3

j .
� Otherwise, the entry is some other gate of the circuit, and so, since gates are

topologically ordered, it is the kth gate for somek < j . We make every vertex
in Nk adjacent to both a1

j ; b1
j , and we make every vertex inYk adjacent to both

a3
j ; b3

j .
The second entry of the gate is similarly considered, up to replacing above the two
vertices a1

j ; b1
j with a2

j ; b2
j . We refer to Figure 4.6 for an illustration.
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Let us point out that the graph G� , obtained with our reduction, is undirected,
whereas the original circuitC is a DAG (directed acyclic graph). However, since the
sizes of private groups are proportional to the positions of the gates in the topological
ordering of the circuit, this orientation of the edges can be easily retrieved, from the
certi�cates with smaller privates groups to those with larger ones. Therefore, we do
not lose any information.

Computation. Observe that there is only a constant number of edges that are
added at this step for each gate. Furthermore, the construction of these new edges
only requires to read the two in-neighbours of the gate in the circuitC. As a result,
the last step can be done in parallel inO(log(n + m))-time with m processors.

4.4.3 Proof of the main result

4.4.3.1 Structure of a Nash equilibrium

The (con�ict) graph G� = ( V; E) of the reduction de�nes an unweighted coloring
game. Let us �x any Nash equilibrium for this game (that exists by Theorem 64).
We will show that it is su�cient to know the color of every vertex in Ym [ Nm in
order to decide on the output of the circuit C (recall that the mth gate is the output
gate). To prove it, we will need the following technical claims in order to gain more
insights on the structure of the equilibrium.

More precisely, we will prove that there are exactly6m +1 color classes, that are
one color class per private groupA t

j or B t
j and one additional color for the vertices

in X . The intuition is that there are 2(n + m) vertices in one special color class
(including X ) that simulates the computation of the output of C, whereas all other
vertices are �trapped� with the vertices in their respective private group. We refer
to Figure 4.7 for an illustration.

Figure 4.7: A boolean circuit (left) with a Nash equilibrium of the coloring game
from our reduction (right). For ease of reading, edges of the graph are not depicted.
Each color class is represented with an ellipse. Intuitively, vertices in the central
color class simulate the computation of the output. Other color classes contain a
private group and they are �inactive�.
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Full proofs of the claims are delayed to my publication [Duc16]. In what follows,
we will denote by L c � V the subset of agents colored byc.

Claim 1. For every j , any color class does not contain more than two vertices in
every Yj [ N j . Furthermore, if it contains exactly two vertices in Yj [ N j then these
are at

j ; bt
j for some 1 � t � 3.

Proof. A Nash equilibrium is a proper coloring of G� . Therefore, since any two
vertices in di�erent subsets amongV 1

j ; V 2
j ; V 3

j are adjacent by construction, they
cannot have the same color. SinceYj [ N j = f a1

j ; b1
j ; a2

j ; b2
j ; a3

j ; b3
j g and at

j ; bt
j 2 V t

j
for every 1 � t � 3, the claim follows directly. �

Claim 2. Any two vertices that are in a same private group have the same color.
Similarly, x i and x0

i have the same color for every1 � i � n.

Proof. Let S be either a private group (S = A t
j or S = B t

j for some1 � j � m
and 1 � t � 3), or a pair representing the same letter of wordw (i.e., S = f x i ; x0

i g
for some1 � i � n). Let v 2 S maximize her payo� and let c be her color. Note
that v receives payo� jL cj � 1 with L c being the color class composed of all the
vertices with color c. Furthermore, every u 2 S receives payo� lower than or equal
to jL cj � 1 by the choice ofv. In such case, everyu 2 S must be coloredc, or else,
since the adjacency and the nonadjacency relations are the same foru and v (they
are twins), furthermore u; v are nonadjacent, the agentu would increase her payo�
to jL cj by choosingc as her new color, thus contradicting the hypothesis that we
are in a Nash equilibrium. �

The argument we use in Claim 2 is that twin vertices,i.e., nonadjacent agents
with the same neighbourhood, must have the same color. In order to prove the
following Claim 3, we had to use the same argument under di�erent disguises.

More precisely, consider a unionU � V of color classes. Then,G� n U de�nes
a coloring subgame, and the constriction of the coloring to the subgraph must be
a Nash equilibrium for this subgame. it follows that twin vertices in G� n U must
have the same color, that was the key observation for proving Claim 3.

Claim 3. Let 1 � j � m and 1 � t � 3. Either A t
j or A t

j [ f at
j g is a color class,

and in the same way eitherB t
j or B t

j [ f bt
j g is a color class. Furthermore, either

B t
j [ f bt

j g is a color class, orat
j and bt

j have the same color.

We recall that we aim at simulating the computation of the output of all the
gates inC. To do that, we will prove the existence of a special color class containing
X and some pair of vertices inYj [ N j for every j (Claim 5). Intuitively, the two
vertices of Yj [ N j are used to certify the output of the j th gate. However, this
certi�cate is �local� in the sense that it assumes the output of thej � 1 smaller gates
to be already certi�ed. Therefore, we need to prove that there can be no �missing
gate�, i.e., every gate is represented in the special color class. This is where the
topological ordering over the gates comes into play. In what follows, we recall that
L c denotes the subset of agents colored byc.
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Claim 4. Let c be a color such thatL c 6� X and L c does not intersect any private
group (A t

j or B t
j for any 1 � j � m and 1 � t � 3).

Then, X � L c and there exists an indexj 0 such that the following holds true:
jL c \ (Yj [ N j )j = 2 for every 1 � j � j 0, and L c \ (Yj [ N j ) = ; for every
j 0 + 1 � j � m.

Proof. By the hypothesis L c 6� X and L c does not intersect any private group, so,
there is at least one vertex of

S m
j =1 (Yj [ N j ) with color c. Let j 0 be the largest index

j such that there is a vertex in Yj [ N j with color c. Since by Claim 1, there can
be no more than two vertices ofYj [ N j that are in L c for every j , therefore, by
maximality of j 0 we get jL cj � j X j + 2 j 0 = 2( n + j 0). In particular, observe that if
jL cj = 2( n + j 0) then X � L c and for every1 � j � j 0 there are exactly two vertices
in Yj [ N j with color c. So, let us prove that jL cj = 2( n + j 0), that will prove the
claim.

By the choice of j 0, there is some1 � t � 3 such that at
j 0

2 L c or bt
j 0

2 L c.
In particular, jL cj � minfj A t

j 0
j; jB t

j 0
jg + 1 = 2( n + j 0) � 2 or else, every vertex

vt
j 0

2 L c \ f at
j 0

; bt
j 0

g would increase her payo� by choosing the color of the vertices in
her private group (that is a color class by Claim 3), thus contradicting the hypothesis
that we are in a Nash equilibrium.

We prove as an intermediate subclaim that for any1 � j � j 0 � 1 such that
L c \ (Yj [ N j ) 6= ; , there is some1 � t0 � 3 such that at0

j ; bt0

j 2 L c. Indeed, in this
situation, there is somet0 such that at0

j 2 L c or bt0

j 2 L c. If bt0

j 2 L c then we are done
as by Claim 3, at0

j 2 L c. Otherwise, bt0

j =2 L c and we prove this case cannot happen.
First observe that at0

j 2 L c in this case. Furthermore, sinceat0

j and bt0

j do not have
the same color we have by Claim 3 thatB t0

j [ f bt0

j g is a color class. In this situation,
bt0

j receives payo� 2(n + j ) � 2 � 2(n + j 0 � 1) � 2 < jL cj. Since in addition at0

j and
bt0

j are twins in G n(A t0

j [ B t0

j ), vertex bt0

j could increase her payo� by choosing color
c, thus contradicting that we are in a Nash equilibrium. This proves at0

j ; bt0

j 2 L c,
and so, the subclaim.

By the subclaim, there is an even number2k of vertices in
S j 0 � 1

j =1 (Yj [ N j ) with
color c, for somek � j 0 � 1. Similarly, since by Claim 2 the verticesx i ; x0

i have the
same color for every1 � i � n, jX \ L cj = 2n0 for somen0 � n. Now there are two
cases to be considered.

� Suppose that bt
j 0

2 L c. Then, by Claim 3 at
j 0

2 L c. Furthermore jL cj �
2(n + j 0) � 1 or else, vertexbt

j 0
would increase her payo� by choosing the color

of the vertices in B t
j 0

(that is a color class by Claim 3), thus contradicting the
hypothesis that we are in a Nash equilibrium. As a result,jL cj = 2( n0+ k +1) �
2(n + j 0) � 1, that implies n0+ k � n + j 0 � 1, and so, jL cj � 2(n + j 0), as
desired.

� Else,bt
j 0

=2 L c and we prove this case cannot happen. First observe thatat
j 0

2 L c.
Furthermore, jL cj = 2( n0+ k)+1 � 2(n+ j 0) � 2, that implies n0+ k � n+ j 0 � 1,
and so, jL cj � 2(n + j 0) � 1. However, sinceat

j 0
and bt

j 0
do not have the same

color, B t
j 0

[ f bt
j 0

g is a color class by Claim 3. In particular,bt
j 0

receives payo�
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2(n + j 0) � 2 < jL cj. Sinceat
j 0

; bt
j 0

are twins in G n(A t
j 0

[ B t
j 0

), vertex bt
j 0

could
increase her payo� by choosing colorc, thus contradicting that we are in a Nash
equilibrium.

Altogether, jL cj � 2(n + j 0), that proves the claim. �

We point out that by combining Claim 1 with Claim 4, one obtains that for
every 1 � j � m, there are either zero or two vertices inYj [ N j in each color
class not containing a private group, and in case there are two vertices then these
are at

j ; bt
j for some1 � t � 3. We elaborate on this property in order to prove the

following Claim 5.

Claim 5. Any two vertices in X have the same color. Furthermore, for every
1 � j � m, every vertex inYj [ N j either has the same color as vertices inX or as
vertices in her private group.

Finally, we will need a �truthfulness� property to prove correctness of our reduc-
tion. Namely, the value of the output of any gate in the circuit must be correctly
guessed from the agents with the same color as vertices inX . We prove this, as for
Claim 1, by elaborating on the property that every Nash equilibrium is a proper
coloring of G� . In this situation, the edges added at the last step of the reduction
ensure that the agents of two �uncompatible certi�cates� cannot be assigned the
same color.

Claim 6. Let 1 � j 0 � m such that for every1 � j � j 0, there is at least one vertex
in Yj [ N j with the same colorc0 as all vertices in X . Then for every 1 � j � j 0,
L c0 \ Yj 6= ; if and only if the output of the j th gate is 1.

4.4.3.2 Proof of Theorem 74

Proof of Theorem 74. Let hC; wi be any instance ofMonotone Circuit Value .
Let G� = ( V; E) be the con�ict graph obtained with our reduction. It can be
constructed in polylogarithmic-time with a polynomial number of processors. The
graph G� de�nes an unweighted coloring game. We �x any Nash equilibrium for
this game, that exists by Theorem 64. By Claim 5, any two vertices inX have the
same colorc0. We will prove that there is at least one vertex in Ym with color c0

if and only if the circuit C outputs 1 when it takes w as input. SinceMonotone
Circuit Value is PTIME-complete [GHR95], the latter will prove that computing
a Nash equilibrium for coloring games is PTIME-hard.

By Claim 6, we only need to prove that for every1 � j � m, there is at least
one vertex in Yj [ N j with color c0. To prove it by contradiction, let j 0 be the
smallest index j such that no vertex in Yj [ N j has color c0. By Claim 5, every
vertex in Yj 0 [ N j 0 has the same color as her private group. In particular, the three
of a1

j 0
; a2

j 0
; a3

j 0
receive payo� 2(n + j 0) � 3. We will prove that one of these three

agents could increase her payo� by choosingc0 as her new color, thus contradicting
that we are in a Nash equilibrium.
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Indeed, by the minimality of j 0, it follows by Claim 4 that for any 1 � j � j 0 � 1,
there are exactly two vertices ofYj [ N j with color c0, while for every j 0 � j � m
there is no vertex in Yj [ N j with color c0. As a result, jL c0 j = 2( n + j 0) � 2. In
particular, any agent amonga1

j 0
; a2

j 0
; a3

j 0
could increase her payo� by choosingc0 as

her new color � provided she is nonadjacent to every vertex in L c0 . We will show
it is the case for at least one of the three vertices, that will conclude the proof of
the theorem. Assume w.l.o.g. that thej th

0 gate is an OR-gate (indeed, since by de
Morgan's laws, the negation of an AND-gate can be transformed into an OR-gate
and vice-versa, both cases are symmetrical). There are two cases.

� Suppose that the output of the j th
0 gate is 1. In such case, there must be an

entry of the gate such that: it is the i th entry of the circuit, for some 1 � i � n,
and wi = 1 ; or it is the kth gate of the circuit for somek < j 0 and the output
of that gate is 1. In the latter case, we have by Claim 6 that the two vertices
of Yk [ Nk with color c0 are in the set Yk .
Assume w.l.o.g. that the above-mentioned entry is the �rst entry of the gate.
By construction, the two vertices a1

j 0
; b1

j 0
are nonadjacent to every vertex inL c0 .

� Else, the output of the j th
0 gate is 0. Therefore, for every entry of the gate:

either it is the i th entry of the circuit, for some 1 � i � n, and wi = 0 ; or it is
the kth gate of the circuit for somek < j 0 and the output of that gate is 0. In
the latter case, we have by Claim 6 that the two vertices ofYk [ Nk with color
c0 are in the set Nk . By construction, the two vertices a3

j 0
; b3

j 0
are nonadjacent

to every vertex in L c0 .

In both cases, it contradicts our assumption that we are in a Nash equilibrium.

Conclusion. Theorem 74 proves that computing a Nash equilibrium for coloring
games is PTIME-hard. This may be hint that these games are a too powerful
computational mechanism design for �lightweight� distributed applications. In this
respect, an interesting open problem would be to determine the classes of con�ict
graphs for which this hardness result holds.

Furthermore, we recall that computing a Nash equilibrium for generalized col-
oring games is PLS-complete [BZ03]. Hence, this result reinforces the view that for
many PLS-hard �weighted� games, the corresponding �unweighted� game is PTIME-
hard [Sch91].

4.5 Weighted games: existence of equilibria

Next, we go back to generalized (weighted) coloring games in this section. Every
generalized coloring game admits a Nash equilibrium [BZ03]. So, we are more
interested in the existence ofk-stable partition, for k � 2. However, as shown
with Figure 4.3, not all generalized coloring games admit a2-stable partition. Since
in contrast, unweighted games admit ak-stable partition for every �xed k, it looks
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natural to investigate on the impact of a �xed set of edge-weightsW on the existence
of stable partitions.

We are particularly interested in the special case where all edge-weights of the
underlying graph G are comprised inW = f�1 ; 0; 1g. Roughly, in this modest
extension of the unweighted games, we now allowindi�erence relationships between
some agents. More formally, the goal of the agents is now to construct a proper
coloring of the con�ict graph G� while maximizing their number of neighbours in
the friendship graph G+ with the same color as theirs. Perhaps surprisingly, we
shall prove that even in this slight extension, the existence of stable partitions is
much more constrained than it is for the unweighted games.

This is joint work with Dorian Mazauric and Augustin Chaintreau.

4.5.1 Positive results

On the one hand, we relate some structural properties of the underlying graphG
with the existence of stable partitions. In particular, we relate the existence of stable
partitions with the girth (size of a smallest cycle) in the friendship graph:

Theorem 75. Let G = ( V; w) have all its edge-weights inf�1 ; 0; 1g [ � N. If the
friendship graphG+ has girth at leastk + 1 then the generalized coloring game that
is played onG admits a k-stable partition.

Furthermore, the better-response dynamic applied to this above game converges
to a k-stable partition within a quadratic number of steps.

Theorem 75 follows from a potential function argument. More precisely, let us
de�ne the global utility of a given coloring as the sum of the individual payo� of
every agent. See Figure 4.8 for an example. We prove that it is a potential function
which increases after anyk-deviation.

In order to see the di�culty, we emphasize that even for unweighted games, this
above potential function might decrease after ak-deviation (e.g., see the example of
4-deviation that is given in Section 4.3.3 and the related illustration of Figure 4.8).
In fact, if j denotes the color assigned to all the agents in thek-deviation then
the global utility increases only if all the agents deviating increase their respective
payo� in large part due to the agents already coloredj . This may not be the case
if there are many agents of thisk-subset that are pairwise connected by an edge
with positive weight. However, if we now assume that the friendship graphG+ has
a large girth then we can upper-bound the number of edges with positive weights
among any small subset of agents (because such small subsets must induce a forest
in G+ ), thereby preventing that case from happening.

In particular, since any friendship graph has girth at least three, we obtain the
following corollary:

Corollary 76. Let G = ( V; w) have all its edge-weights inf�1 ; 0; 1g [ � N. Then,
the generalized coloring game that is played onG admits a 2-stable partition.

Furthermore, the better-response dynamic applied to this above game converges
to a 2-stable partition within a quadratic number of steps.
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Figure 4.8: Change of con�guration for an unweighted game after a4-deviation. For
ease of readability, only the edges of the friendship graph are represented. Agents
are labeled with their payo�.

Perspectives. It is open whether similar results can be obtained for a larger family
of sets W. In particular, can it be obtained similar results for someW with two
distinct positive weights ?

4.5.2 The hardness of recognizing games with k-stable partitions

We �nally present a more complex construction of weighted games with nok-stable
partition for some small value of k. Furthermore, we will explain how the mere
existence of a single counter example impacts on the complexity of the recognition
of games withk-stable partitions.

On the one hand, as shown with Figure 4.3, there are generalized coloring games
that do not admit a 2-stable partition. On the other hand, we proved with Corol-
lary 76 that by constraining the set W of admissible edge-weights, one obtains a
large class of weighted games that admit a2-stable partition. Surprisingly, this
latter result cannot be improved already for W = f�1 ; 0; 1g. Precisely, we give in
Figure 4.9 an example of a graphG with weights in W = f�1 ; 0; 1g so that the
coloring game that is played onG does not admit a3-stable partition!

The construction in Figure 4.9 borrows from the one of Figure 4.3 (i.e., the
nonexistence of2-stable partitions in generalized coloring games). Roughly, we
impose the friendship graph and the con�ict graph to be highly symmetric, that
ensures that2-stable partitions for the game are isomorphic. Then, we show that
the isomorphism between two distinct2-stable partitions translates to a 3-deviation
from one to the other.
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Proposition 77. There is a graphG = ( V; w) whose edge-weights are constrained
to W = f�1 ; 0; 1g and such that there does not exist a3-stable partition for the
coloring game de�ned onG.

Figure 4.9: A graphG = ( V; w) with edge-weights inW = f�1 ; 0; 1g. The coloring
game played onG does not admit a3-stable partition. To keep the graph readable,
we use conventions. (1) Some sets of nodes are grouped within a circle; an edge
from another node to that circle denotes an edge toall elements of this set. (2)
Edges of the con�ict graph are not represented. In particular, all nodes that are not
connected by an edge on the �gure are connected by an edge with negative weight
�1 . (3) Green solid edges represent edges with weight1, whereas blue dashed edges
represent edges with weight0.

Proof. The set of vertices consists of four setsA i , 0 � i � 3, each of equal size
h � 2 and with a special vertexai , plus four verticesbi , 0 � i � 3, and two vertices
c0 and c1. In what follows, indices are taken modulo2 for cj , j 2 f 0; 1g, and they
are taken modulo4 everywhere else. Figure 4.9 represents the example withh = 3 .
The friendship graph G+ here consists of all the edges with weight1; it contains:

1. all the edges between nodes inA i (0 � i � 3);

2. edges betweenbi and A i (0 � i � 3);

3. edges betweenbi and A i +1 n f ai +1 g (0 � i � 3);

4. edges betweenbi and bi � 1 and bi +1 (0 � i � 3);

5. edges betweenc0 and all the bi , and edges betweenc1 and all the bi ;

6. edges betweenc0 and A0 [ A2, and edges betweenc1 and A1 [ A3.
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Moreover, there are four edges with weight0, namely the edgesf bi ; ai +1 g. All the
other pairs of agents represent �enemies� (they are pairwise connected by an edge
with negative weight �1 ). That is two nodes in di�erent A i ; A i 0 are enemies; a user
bi is enemy ofbi +2 and of the nodes inA i +2 and A i +3 ; c0 and c1 are enemies;c0 is
enemy of the nodes inA1 and A3, and c1 is enemy of the nodes inA0 and A2. We
now assume by contradiction there exists a3-stable partition for the coloring game
de�ned on G = ( V; w).

Full proofs for the following claims are postponed to our paper [DMC17].

Claim 78. Every agent in A i picks the same color.

Our key instrument for proving this claim is a generalization of false twins to
weighted graphs. We recall that given anunweighted gamethat is played on the
con�ict graph G� , for any Nash equilibrium for this game, false twins inG� must
have the same color (see Claim 2).

Now, given an edge-weighted graphG = ( V; w), we say that u and u0 are quasi-
twins if wuu0 > 0 and for all nodesv 2 V n f u; u0g, wuv = wu0v except maybe for
one v0 for which jwuv0 � wu0v0 j = 1 . We can observe that for unweighted games,
quasi-twins are exactly the false twins in the con�ict graph. In [DMC17], we prove
that for any Nash equilibrium of the coloring game that is played onG, quasi-twins
must have the same color. Since in the above construction for Proposition 77, the
agents in A i are pairwise quasi-twins, Claim 78 follows from this result directly.

Claim 79. bi picks the same color as the agents inA i or the agents inA i +1 .

Claim 80. There is an i such that agents inA i ; bi and bi � 1 pick the same color.

It follows by Claim 80 that there is an i such that the agents inA i ; bi ; bi � 1; ci all
pick the same color. Moreover, such a color class is unique in the3-stable partition
due to the con�ict graph in G (induced by the con�ict edges). In what follows, let
L i 0 be the color class ofa0 in the 3-stable partition. By symmetry, we will assume
L i 0 = f b0; b3; c0g [ A0.

Case1: the agentsa2; b1; b2 all have the same color. In particular, by Claims 78
and 79 their color class isA2 [ f b1; b2g.

Then, there are two subcases. Suppose thata1 and c1 have the same color,
in which case their color class isA1 [ f c1g. In this situation, the agent b1 would
increase her payo� from 1 + ( jA2j � 1) = jA2j = h to 1 + jA1j = h + 1 by choosing
the same color asa1 and c1. So, there is a1-deviation. Otherwise, a1 and c1 do
not have the same color, so, their respective color classes areA1 and either f c1g or
A3 [ f c1g. Then, the agentsb1 and c1 would increase their respective payo� from
1 + ( jA2j � 1) = jA2j = h and � j A3j = h to 1 + jA1j = h + 1 by choosing the same
color asa1. So, there is a2-deviation.

Case2: both agentsa2 and b2 have the same color, butb1 has a di�erent color.
In particular, by Claims 78 and 79 their respective color classes areA2 [ f b2g and
either A1 [ f b1g or A1 [ f b1; c1g.
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Then, there are two subcases. Suppose that the agentsa3 and c1 have the same
color, in which case their color class isA3 [ f c1g. Then, both b2 and b3 would
increase their respective payo� fromjA2j = h and 2 + ( jA0j � 1) = 1 + jA0j = h + 1
to 2 + ( jA3j � 1) = jA3j + 1 = h + 1 and 2 + jA3j = h + 2 by choosing the color ofa3.
Otherwise, a3 and c1 do not have the same color, in which case the color class ofc1

is either f c1g or A1 [ f b1; c1g. But then the three of b2; b3; c1 would increase their
respective payo� from jA2j = h; 2+( jA0j � 1) = 1+ jA0j = h +1 ; and � 1+ jA1j =
h + 1 to 2 + ( jA3j � 1) = 1 + jA3j = h + 1 ; 2 + jA3j = h + 2 ; and 2 + jA3j = h + 2
by choosing the same color asa3.

Case 3: both agents a2 and b1 have the same color, butb2 has a di�erent
color, in which case their respective color classes areA2 [ f b1g and either A3 [ f b2g
or A3 [ f b2; c1g by Claim 79. In that case, b1 would increase her payo� from
jA2j � 1 = h � 1 to jA1j = h by choosing the color ofa1, so, there is a1-deviation.

Case4: the agent a2 has a di�erent color than b1 and b2. In this case, their
respective color classes are:A2, either A1 [ f b1g or A1 [ f b1; c1g, either A3 [ f b2g
or A3 [ f b2; c1g. In particular, b2 and a3 have the same color.

Then, there are two subcases. Suppose thatc1 and a3 have the same color. In
this situation, their color class is A3 [ f b2; c1g. So, the agentb3 would increase her
payo� from 2+( jA0j � 1) = h +1 to 2+ jA3j = h+2 by choosing this color, so, there
is a 1-deviation. Otherwise, c1 and a3 do not have the same color, in which situation
their respective color classes are: eitherf c1g or A1 [ f b1; c1g, and A3 [ f b2g. But
then both b3 and c1 would increase their respective payo� from� h + 1 to h + 2 by
choosing the color ofa3.

Finally, since in all cases there is a3-deviation, there does not exist a3-stable
partition for the coloring game de�ned on G.

Let us de�ne, for every �xed set W, k(W) to be the largest k such that every
coloring game which is played on a graph with edge-weights inW admits a k-
stable partition. As an example, for the special case of unweighted games, we have
by [KL13] that k(f�1 ; 1g) = + 1 . In contrast, we have by the combination of
Corollary 76 and Proposition 77 that k(f�1 ; 0; 1g) = 2 . In Table 4.1, we report on
the value of k(W) for most setsW.

W k(W)

f�1 ; ag; a > 0 1
f�1 ; 0; ag; a > 0 2

f�1 ; a; bg; b > a > 0 1
f� a; bg; a > 0; b > 0 � 2 � da+1

b e+ 1

Table 4.1: Values ofk(W) for di�erent W.

Surprisingly, this above thresholdk(W) fully characterizes the complexity of rec-
ognizing coloring games with ak-stable partition. More precisely, we have obtained
the following dichotomy result for generalized coloring games:
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Theorem 81. Let W contain �1 and k � 1 be �xed. Then, the problem of deciding
whether a given coloring game, played on a graph with edge-weights inW, admits a
k-stable partition is either:

� trivial if k � k(W);

� or NP-complete if k > k (W).

In order to get a better intuition for the above Theorem 81, let us consider a
minimum-size counter-exampleG0 = ( V0; w0) such that the coloring game played
on G0 does not admit a k-stable partition. Our reduction constructs, from any
unweighted graphG = ( V; E), an edge-weighted supergraph ofG0 (that is illustrated
with Figure 4.10).

Figure 4.10: Reduction fromMaximum independent set . The graph G0 repre-
sents a minimum-size counter-example. Con�ict edges with negative weight�1 are
drawn in dashed red whereas all edges drawn in bold green have the same positive
weight.

For this graph to have ak-stable partition, one needs a way to force some special
agent x0 2 V0 to pick a di�erent color than the other agents in V0 n x0. Then, by
minimality of the counter-example, the coloring subgame that is played onG0 n x0

admits a k-stable partition and we are able to extend this subcoloring to ak-stable
partition for the game played on the supergraph. Altogether combined, this game
played on the supergraph admits ak-stable partition if and only if some agent x0
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can be forced to take a di�erent colour than all other agents inV0 n x0. Finally, we
prove that x0 indeed takes a di�erent color than the agents ofV0 nx0 if and only if it
is part of a large clique in the friendship graph. The latter is shown to correspond to
a large independent set in the unweighted graphG that we use for the reduction. As
a result, since theMaximum independent set problem is NP-complete [Dai80],
this achieves proving that the problem of recognizing coloring games with ak-stable
partition is NP-hard.

4.6 Extensions of coloring games

This section �nally covers other games that encompass more aspects of coalition and
group formation. We discuss on the extent to which our results for coloring games
can be applied to this broader setting. In particular, we intend the following to be
a high level description, and so, we made the choice to postpone the proofs of all
the results to the research report [DMC12]. These results have not been published
elsewhere.

4.6.1 Gossiping

Coloring games with gossip have been introduced by Kleinberg and Ligett in [KL13]
for their study of community formation. Such game is still played on an edge-
weighted graphG = ( V; E; w), with the vertices of G being the agents of the game.
However, two agents with distinct colors may now �gossip�, in which case both color
classes they are part of are merged. Obviously, and as before, this deviation will
only take place if it makes increase the utility of the two agents.

Formally, given G = ( V; E; w) and c : V ! N, a gossip-deviation w.r.t. c is a
2-subsetf u; vg such that c(u) 6= c(v) and:

X

xjc(x)= c(u)

wvx > 0;
X

yjc(y)= c(v)

wuy > 0:

The color c represents ak-stable partition for the coloring game with gossip if it is
a k-stable partition for the generalized coloring game played onG (without gossip)
and in addition there is no gossip deviation.

It actually turns out that unweightedcoloring games with gossip are equivalent
to the classical unweighted coloring games. Indeed, consider an unweighted game
played on the con�ict graph G� , c a proper coloring ofG� , and suppose that there
are two agentsu and v gossiping. In particular, u and v cannot be adjacent inG�

to any agent colored byc(v) or c(u) (or else, they would not bene�t from merging
the two color classesL c(u) and L c(v) ). Let us assume w.l.o.g. thatjL c(u) j � j L c(v) j.
Then, the agent v would also strictly increase her payo� by changing her current
color c(v) for c(u). As a result, if there exists a gossip deviation then there is a
1-deviation.
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However, in the more general case of weighted games, we prove that there may
not exist a 2-stable partition already when there is a unique and �xed positive weight
in W. This is in sharp contrast with Corollary 76.

4.6.2 Asymmetry

Another natural variation of coloring games is to make them play on a directed
graph. In this situation, colorings of the game and strategies and utility functions
of the agents can be de�ned similarly as before. However, it may now be the case
that wuv 6= wvu for some pairsu; v. These games are sometimes called additively
separable (asymmetric) Hedonic games [BZ03]. We refer to Figure 4.11 for an illus-
tration.

Figure 4.11: A coloring game played on a directed graph. Bidirectional arcs with
negative weight�1 are drawn in dashed red. This game can be shown not to admit
a Nash equilibrium.

Even if modest generalization of coloring games, the addition of asymmetrical
weights leads to much stronger form of intractability. This can be seen with a simple
digraph D = ( f u; vg; w) such that wuv > 0 whereaswvu < 0. Clearly, there does
not exist any Nash equilibrium for the game played onD.

On the complexity point of view, the problem of deciding whether an asymmetric
game admits a Nash equilibrium is NP-hard [SD10]. We prove that this result
holds already when there can be no more than two color classes at equilibrium (we
prove this by reducing from the well-known Partition problem). We recall that
in contrast, every generalized coloring games admits a Nash equilibrium, and that
such an equilibrium can be computed in quasi-polynomial time with better-response
dynamics.
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4.6.3 List coloring games

In [DMC12], we introduced a third variation of coloring games, where the strategy
of an agent is no more her color, but rather a list ofq colors with q � 1 being a �xed
constant. On the social network analysis point of view, our aim in doing so was to
allow every user to be part of di�erent communities in order to better represent the
community formation process.

In particular, given G = ( V; E; w), a con�guration of the q-list coloring game
played on this graph is a list coloring ofG with each vertex having a list of at most
q colors, and we name bỳ (v) the list of any agent v 2 V . Given a �xed q-list
coloring of G, the utility function of v now depends on the number of colors thatv
shares with each peer, that can be written as:

X

u2 V

h (j`(u) \ `(v)j ; wuv ) (4.1)

where h(g; w) is a function measuring the utility of sharing g colors with an agent
when it is connected tov by an edge with weightw. Note that we assume, without
loss of generality, that:

h(0; :) = 0 ; h(:; 0) = 0 and 8w 2 Q; h(1; w) = w

8g 2 N; w 7! h(g; w) is a non-decreasing function,

8w 2 Q; g 7! w � h(g; w) is a non-decreasing function.

The last property simply ensures that h(g; w) increases withg when w is positive,
and decreases withg when w is negative. In practice, most of our results are proved
in the simpler case whereh : (g; w) 7! (1 + "g)w, where " is a small constant.

On the positive side, everyq-list coloring game admits a Nash equilibrium. This
can be shown by noticing that a q-list coloring game is a potential game, with
its potential function being the global utility (sum of the utility functions of every
agent). However, for everyq > 1, we prove that there existunweightedq-list coloring
games that do not admit a 3-strong Nash equilibrium (robust to any coalition of
at most three agents). The latter result is in sharp contrast with [KL13, EGM12],
where the authors prove that every unweighted coloring game admits ak-stable
partition for every �xed k � 1.

Last, we want to emphasize, perhaps counter-intuitively, that a decrease of the
parameterq does not preserve the existence ofk-strong equilibria. Namely, for every
q, there existsGq = ( V; E; w) such that:

� the q-list coloring game played onGq does notadmit any 2-strong Nash equi-
librium;

� whereas for any otherq0 6= q, the q0-list coloring game that is played on this
same graphGq does admit a2-strong Nash equilibrium.
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4.6.4 Coloring games on hypergraphs

Finally, we brie�y consider the case where we replace the underlying graphG =
(V; E; w) by a hypergraphH = ( V; E; w), with w : E 7! Q [ f�1g being a weight
function on the hyperedges. On the social network point of view, hyperedges allow
one to account for more complex types of relationships between the users.

Formally, given H = ( V; E; w) and c : V ! N a coloring of H , the utility
function of any agent v 2 V can now be written as the sum of the weightswe, for
all hyperedge e to which v is incident and such that every vertex u 2 e satis�es
c(u) = c(v). In short, it is: X

e2 E jf vg� e� L c( v )

we;

with L c(v) = f u 2 V j c(u) = c(v)g. This game was studied by Deng and Papadim-
itriou in [DP94], but with transferable utilities 4.

On the positive side, every coloring game played on a hypergraph is a potential
game, with its potential function being the sum of the weightswe for all monocolored
hyperedgese (i.e., every two vertices in e must be assigned the same color). If the
coloring game is played on a graph then the latter function is equal to half of the
global utility. However, this is not true anymore for coloring games on hypergraphs,
because hyperedges may now be of arbitrary size.

In particular, we get that every coloring game played on a hypergraph admits
a Nash equilibrium, and that one such equilibrium can be computed in quasi-
polynomial time with better-response dynamics. We can also extend the positive
result of Theorem 75 by taking for cycles the notion of Berge cyclicity (cycles in
the incidence graph). Unfortunately, there exist hypergraphs with girth two (w.r.t.
Berge cyclicity), so, this extended Theorem 75 has weaker consequences for hyper-
graphs than it has for graphs. As an example, Corollary 76 does not hold for coloring
games on hypergraphs.

4.7 Concluding remarks

Our results in this section shed new lights on the complexity of coloring games. In
particular, our results for generalized coloring games in Section 4.5 reinforce the
relationship between these games and themaximum independent set problem in
graphs.

Furthermore, we presented in Section 4.3 an interesting relationship between
unweighted games (non generalized coloring games) and the lattice of integer par-
titions. I believe that an in-depth study of this relationship will help to better
understand the structure of stable partitions for unweighted games, and the com-

4 Informally, there are transferable utilities if arbitrary subsets of agents can share their re-
spective utility functions together, whose total sum is then reparted to these agents w.r.t. some
rules.
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plexity for computing their equilibria. In particular, the main open question in this
�eld is whether the problem of computing 4-stable partitions is PLS-complete.

My investigations on the parallel and space complexity for computing Nash
equilibria, in Section 4.4, have been �rstly motivated by this above question. Indeed,
I hope that the reduction from the Monotone Circuit Value problem to the
computation of Nash equilibria can be transformed into a reduction from FLIP � a
circuit computation problem that is the standard PLS-complete problem [JPY88] �
to the computation of 4-stable partitions.

On a more general side, an interesting question would be to determine
whether conversely, PLS-completeness for a �weighted� game implies PTIME-
completeness for some corresponding 'unweighted� game ? Relationships between
PLS-completeness and PTIME-completeness have been investigated since the origi-
nal paper [JPY88] (introducing the complexity class PLS). It was conjectured that
PLS-completeness for a search problem implies that checking for the local opti-
mality of a solution is PTIME-complete. However, this conjecture was disproved
in [Kre89]. Since for many PLS-complete problems, there exists a local-search algo-
rithm that runs in quasi polynomial time (polynomial in the size, but exponential
in the weights), any variation of these games where the weights are bounded is triv-
ially in PTIME. Thus, proving or disproving that these variations are PTIME-hard
would make advance our understanding of what makes a search problem PLS-hard.





Chapter 5

Learning formulas in a noisy
model

Summary

We introduce a new learning model in Section 5.2. This model is motivated by
some applications inWeb's transparency, that is a nascent �eld where there is a
need for uncovering data misuse online. Our objective is to learn an unknown
Boolean function that represents the (potentially sensitive) data targeted by a given
advertiser.

In Section 5.3, we describe an algorithm for learning the function in the particular
case where it depends on a single data input. The cornerstone of this algorithm is
a reduction to a Set Cover problem, that is also at the basis of our work in the
subsequent sections.

In Section 5.4, we present su�cient conditions � w.r.t. the classi�cation noise in
our model � in order to generalize this algorithm for learning everymonotonic func-
tion that only depends on a �xed number of inputs. We also propose an improved
algorithm that runs in quasi-linear time, but that can only be applied assuming
more restrictive hypotheses on the noise.

Finally, we question in Section 5.5 what can be learnt within our model. On the
positive side, we prove that if the function only depends on a �xed number of inputs,
positively or negatively, then all these inputs can be computed in quasi-polynomial
time with high probability. Under one additional assumption on the classi�cation
noise, this algorithm can be extended for learning the function. However, we prove
that in general, not all functions can be learnt within our model. Actually, it is
impossible to distinguish a conjunction from a disjunction, even if they only depend
on two inputs.

My papers on this learning problem [LDL+ 14, DLCG15, DTC17, CD17] are
collected in the appendix.



160 Chapter 5. Learning formulas in a noisy model

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.1.2 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Learning model . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2.1 PAC learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.2 Juntas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.2.3 The oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2.4 Distribution for the sampler . . . . . . . . . . . . . . . . . . . 168

5.3 Single-input targeting . . . . . . . . . . . . . . . . . . . . . . . 169
5.3.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.3.2 Reduction to Set Cover . . . . . . . . . . . . . . . . . . . . . 170
5.3.3 Concentration inequalities . . . . . . . . . . . . . . . . . . . . 171
5.3.4 Proof overview . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4 Complex targeting: the case of monotonic functions . . . . 175
5.4.1 Beyond single-input: the in�uence of the targeting lift . . . . 177
5.4.2 Faster algorithms and tradeo�s . . . . . . . . . . . . . . . . . 180
5.4.3 Conclusion and open perspectives . . . . . . . . . . . . . . . . 183

5.5 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.5.1 Identi�cation of the relevant inputs . . . . . . . . . . . . . . . 184
5.5.2 Filtering technique . . . . . . . . . . . . . . . . . . . . . . . . 186
5.5.3 Impossibility results . . . . . . . . . . . . . . . . . . . . . . . 187

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.1 Introduction

This chapter is now devoted to a learning problem on Boolean functions, that we
motivate next. Roughly, we aim at making possible for every user online to uncover
any misuse of her data. AlthoughBig Data promises important societal progress,
it exacerbates at the same time the need for algorithmic accountability as more
and more decisions a�ecting millions of users are being automated using personal
and private information. Examples of such practices have begun to surface. In
a recent incident, Google was found to have used institutional emails from ad-
free Google Apps for Education to target ads in users' personal accounts [Gou14,
Saf13]. MySpace was found to have violated its privacy policy by leaking personally
identi�able information to advertisers [KW10]. Several consumer sites, such as
Orbitz and Staples, were found to have adjusted their product pricing based on user
location [Mat12, VDSVS12]. And Facebook's 2010 ad targeting was shown to be
vulnerable to micro-targeted ads specially crafted to reveal a user's private pro�le
data [Kor11].

The recent area ofWeb's transparencyhas developed generic methods to reveal
which information item or input generates personalization and di�erentiated treat-
ments [DTD15, LDL+ 14, LSS+ 15]. Their output should not be regarded as absolute
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truth, but rather as evidence for further investigation. In this work, we aim at giving
a theoretical framework in order to analyse these methods. We also describe new
core algorithms for these methods that are formally analysed in our setting.

Our contributions in this chapter are summarized in Section 5.1.1. Then, an
outline of the chapter is provided in Section 5.1.2.

5.1.1 Our results

Simply put, we aim at describing the core algorithms for Web's transparency tools,
and to provide the theoretical framework in order to analyse these algorithms. We
detail this a bit more below.

5.1.1.1 A theory for ad targeting identi�cation

Let Ad Targeting Detection be de�ned as the problem of deciding whether
some speci�c input is targeted by a given ad. Similarly, letAd Targeting Iden-
tification be de�ned as the problem of deciding which inputs are targeted by this
ad. First, based on recent experiments [DTD15, LDL+ 14], we model the problems
of Ad Targeting Detection and Ad Targeting Identification as a learning
problem, where the hypothesis is a Boolean function that represents the (potentially
sensitive) data inputs targeted by a given advertiser1.

We report on this model and on its motivations in Section 5.2. This is joint work
with Augustin Chaintreau.

Furthermore, all the other results that are presented in this chapter are proved
in the learning model of Section 5.2.

5.1.1.2 A general approach reducing to Set Cover

In the following two Sections 5.3 and 5.4, we present algorithms for learning a
function that only depends on a constant number of inputs and that ismonotonic
(increasing the number of data inputs cannot make decrease the likelihood to receive
an ad). These algorithms are based on a reduction to a natural variation ofSet
Cover , where we seek for a minimum-size family of subsets (each representing an
input that is targeted) covering a large fraction of a given universal set (representing
all the accounts that receive a given ad).

This general approach is presented in Section 5.3, along with an algorithm for
learning a function when it depends on a single input. Then, this algorithm is
generalized in Section 5.4 for learning a monotonic function under the hypothesis
that it depends on at most k inputs, for some �xed k. However, this generalized
algorithm is proved to be correct only under a technical assumption, namely, if the
classi�cation noise of the oracle is bounded. The latter assumption implies that it

1Note that Ad Targeting Detection can be reduced to a particular case ofAd Targeting
Identification where it is asked whether the targeting can be represented by the null-function.
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is much likelier for an account within scope to receive an ad than for an account out
of scope.

This is joint work with Mathias Lécuyer, Francis Lan, Andrei Papancea, Theo�-
los Petsios, Riley Spahn, Max Tucker, Augustin Chaintreau and Roxana Geambasu.

5.1.1.3 Necessary and su�cient conditions for learnability

Finally, we give in Section 5.5 a more general algorithmic proof that any function
depending on a �xed number of inputs can be learnt � if we make additional
assumptions on the oracle. More precisely, we prove that all the relevant inputs on
which the function depends can be learnt if an upper-bound on their number is �xed
in advance. The latter can be extended to an algorithm for learning any function,
but that is proved to be correct only under an additional technical assumption (we
call it �strong positive variance� of the oracle). Roughly, we suppose that there can
be no population of accounts within scope that are signi�cantly likelier to receive a
given ad than all other accounts within scope.

Last, we prove that in general, if no additional assumption is given then only
the functions depending on asingle input can be learnt in our model.

5.1.2 Outline of the chapter

We �rst introduce a new learning model for Boolean functions in Section 5.2. In
Section 5.3, we introduce a generic method in order to design learning algorithms
in this model, and to formally analyse these algorithms. We apply this method
to the particular case where the function to be learnt only depends on a single
input. Then, in Section 5.4 we extend this approach to more general (monotonic)
functions, that requires a more in-depth analysis of our probabilistic tools. Finally,
in Section 5.5, we delineate the minimal hypotheses to incoporate in the model in
order to make any function learnable. Note that these hypotheses are not part of
the core assumptions for our learning model because they have not been con�rmed
experimentally. We then conclude this chapter in Section 5.6.

5.2 Learning model

The following presentation of our learning model is kept generic on purpose in order
to apply to a broad set of scenarii of online targeting. LetD = f D1; D2; : : : ; DN g
be a set ofN inputs representing individual information from a given user (typi-
cally, keywords extracted from emails in an account, see also [LDL+ 14]). Our main
objective is to identify how these inputs a�ect a given output of interest (say, an
ad or a recommendation). In order to achieve the goal, we here assume that each
output is a�ected through an unknown targeting function f output , that we simply
denote by f in the following. The targeting function f is a mapping from the fam-
ily of all combinations (subsets ofD) to the Boolean set f 0; 1g. By convention,
f (C) = 1 indicates that an account exactly containing the inputs in C is targeted,
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and we denotef (:) = 0 if the ad is untargeted. We aim at learning f subject to
diverse requirements, each representing one aspect of our experiments for doing so
in practice.

A generic framework from learning theory is �rst presented in Section 5.2.1.
Then, we detail how we adapt this framework to our needs in the subsequent Sec-
tions 5.2.2, 5.2.3 and 5.2.4. This model is part of our paper [CD17], that is joint
work with Augustin Chaintreau.

5.2.1 PAC learning

We refer to [Ang88] for basics of computational learning theory and query complex-
ity. A hypothesisH is a class of Boolean functions. Letf : f 0; 1gN 7! f 0; 1g be an
(unknown) function, possibly not in H . In what follows, we are given:

� a function Of : f 0; 1gN 7! f 0; 1g (possibly randomized), that is called anoracle
and whose outputs are assumed to depend on the outputs off .
Example: a call to the oracle can represent an observationwhether a given ac-
count has received the ad;

� a random generator of pairshx; Of (x)i , that is called a sampler and for which
every x 2 f 0; 1gN is picked at random w.r.t. some �xed probability distribution
� (denoted by x � � ).
Example: The sampler can represent our experimental setting.In order to learn
the targeting function, we are bound to rely on experiments � to see how it
reacts to various inputs. For instance, in [LDL+ 14] these experiments consist
in collecting the ads from Gmail accounts with di�erent subsets of emails.

Let "; � be nonnegative2. A PAC-learning algorithm for f under H hypothesis
(a.k.a., probably approximately correct learning algorithm) is given constant-time
access to the sampler, and it must compute, in time polynomial inN and 1=� ,
the representation of a function h 2 H such that Pr [h(x) 6= f (x) j x � �] � " .
The query complexityof the algorithm is its number of calls to the sampler. It is
preferrable to keep this complexity small, say, polylogarithmic inN .

In what follows, we will always assume that" = 0 , i.e., we aim at learning f
exactly.

There is a vast literature on this problem [Ang88, AR07, FGKP09, MOS04,
Val12], with di�erent choices made for: the dependencies between the oracle and
the function to be learnt, the distribution for the sampler, the representation of a
function, the hypothesis, etc. The main novelty in this work is the set of assumptions
on the oracle, and to some extent the choice for the representation of the functions.
All the choices made for this work will be presented and discussed in this section.

Outline. In Section 5.2.2, we introduce basic terminology for a speci�c class of
functions calledjuntas, that will be our hypothesis. Our choice for the representation
of a function is also discussed in this section. Then, we formally describe our set of

2Note that here, � is no longer related to graph hyperbolicity (de�ned in Chapter 2).
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assumptions on the oracle in Section 5.2.3. In particular, we brie�y report on some
experiments in Section 5.2.3.1 that have supported the choices made in this work.
The axioms on the oracle are given in Section 5.2.3.2. We end this section with our
choices made for the sampler in Section 5.2.4.

5.2.2 Juntas

Our choices for the hypothesisH and the representation of a function are presented
in this subsection. Complementary information for the case of monotonic functions
is given in Section 5.2.2.1.

The following presentation di�ers from the standard terminology in the literature
of Boolean function learning, but it is shown to be equivalent to it. This change of
terminology is motivated by our interpretation of a Boolean word w 2 f 0; 1gN as
denoting the content of an online account.

Let D = f D1; D2; : : : ; DN g be a �xed ground set. There is a natural one-to-one
mapping betweenf 0; 1gN and 2D (power-set of D), de�ned as � : w 2 f 0; 1gN 7!
f D i 2 D j wi = 1g. For simplicity, we will identify f with f � � � 1 in what follows.
Furthermore, we will call a subset ofD a combination. The function f is said to
depend onD i if there exists a combinationC � Dn D i such that f (C) 6= f (C [f D i g).

De�nition 82 ( [BL97]). For every k � 1, f is a k-junta if it depends on at most
k inputs D i 2 D .

In what follows, we will select the class ofk-juntas, for some constantk, as our
hypothesis. Note that in practice, it is recommended to advertisers to selectk in
some range between5 and 20 [Goo].

Representation of a junta. An implicant of f is a pair hCin ; Cout i of two disjoint
combinations of D with the property that f (C) = 1 for every combination C such
that Cin � C and C \ Cout 6= ; . It is a prime implicant of f if for every strict subsets
C0

in ( Cin and C0
out ( Cout , the pair hC0

in ; C0
out i is not an implicant of f . Every k-junta

has O(3k=
p

k) prime implicants [CM78].
In what follows, we choose as a representation for any functionf the set S(core)

of its prime implicants. Note that we have, for any f :

f (C) = max
hCin ;Cout i2S ( core )

0

@
Y

D i 2Cin

I f D i 2Cg

1

A �

0

@
Y

D i 2Cout

(1 � I f D i 2Cg)

1

A ;

with I f D i 2Cg being an indicator function that takes value 1 only if D i 2 C (otherwise
it is equal to 0). The latter is sometimes called the Blake canonical form off [Bla38].

5.2.2.1 Case of monotonic functions

A function f is calledmonotonic if for every combination C � D such that f (C) = 1 ,
we have that f (C0) = 1 for every supersetC0 � C . Monotonic functions naturally
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arise in some settings where negative keywords are unavailable, such as (until re-
cently) Facebook [FBE].

In this situation, we simplify the representation of f as follows. A family S of
size l is any collection of l distinct combinations. The order of the family is de�ned
as the largest order of a combination it contains. Interestingly, there is a duality
between families and monotonic functions. Indeed on the one hand, one can de�ne
for any family S a function f : C ! maxCj 2S I fC j �Cg that takes value f (C) = 1
whenever the subsetC contains at least one combination inS. In such case we say
that S explains the function. On the other hand, we now show that the converse
also holds: given a monotonic functionf , there is aunique family explaining f that
is both of minimum order and minimum size:

Lemma 83. For each monotonic function f there exists a unique familyS(core)

satisfying:
(i ) S(core) has sizel and order r and it explains f .
(ii ) No family of size l0 < l explains f .
(iii ) No family of order r 0 < r explains f .

Proof. We de�ne S(in) = fC � D j f (C) = 1 g the set of all combinations for
which f takes value1. Let

�!
D f be the digraph with vertex-set S(in) and with arc-set

f (C; C0) j C ( C0g. We have that
�!
D f is a DAG (Directed Acyclic Graph) because the

subset-containment relation de�nes a partial order. So, letS(core) be the non-empty
set of combinations with null in-degree in

�!
D f . By construction, each combination in

S(in) contains some combination ofS(core) and S(core) � S (in) , henceS(core) explains
f . Furthermore, we claim that S(core) is contained in any family S0 explaining f :
indeed, sinceS0 is required to contain a subset of any combinationC 2 S(core) , and
no combination of S(in) is strictly contained in C, then it must contain C. This
shows that S(core) satis�es all conditions of Lemma 83. Finally, since another family
explaining f needs to includeS(core) , then it will necessarily have a higher sizel ,
henceS(core) is the unique with both minimum size and order.

For every monotonic function f , the family whose existence is proved in
Lemma 83 is called itscore family and we choose this family as the representa-
tion of f .

5.2.3 The oracle

We now introduce speci�c assumptions on the oracleOf . We recall that the latter
formalizes the observations gathered from di�erent online accounts,i.e., the collec-
tion of advertisements received w.r.t. the data inputs contained in the accounts. So,
we �rst report on some experiments in Section 5.2.3.1 in order to motivate our choices
for the oracle, presented in Section 5.2.3.2. Finally, an idealized oracle (formerly used
in our papers [LDL+ 14, DLCG15, DTC17]) is discussed in Section 5.2.3.3.
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5.2.3.1 Supporting experiments

We brie�y report on some experiments whose results and interpretations have mo-
tivated our choices for the oracle.

Experiment 1: Correlation of the outcomes with the function to be learnt.
In [LDL + 14], we posted four Google AdWords campaigns targeted on very speci�c
keywords (Chaldean Poetry, Steampunk, Cosplay, and Falconry). Then, we placed
in more than 800 Gmail accounts some emails including these keywords. Overall,
the corresponding ads were received by more than97% of the accounts. The latter
shows, as expected, a positive correlation between the outcomes of the experiments
and the scope of the campaign.

Experiment 2: Limited coverage. The coverageis de�ned as the true positive
rate (i.e., the average probability for an account within the scope of some adver-
tisement campaign to receive this ad). By varying the numberN of inputs in our
experiments, we have observed that the coverage is a decreasing function in the
number of data inputs contained in the accounts. This might come from a larger
pool of advertising campaigns for which the accounts are within scope, that makes
obtaining an ad slot more competitive. In particular, the probability of receiving an
ad cannot be assumed to be a constant that is independent fromN .

Experiment 3: Cross-unit e�ects. The authors in [TDDW15] showed that
multiple browser instances running in parallel a�ect one another. They did so by
comparing the diversity of the ads received by browsers running in isolation w.r.t.
browsers running in parallel (see [TDDW15] for details). This result suggests that
the outcomes of di�erent observations are correlated.

5.2.3.2 Axiomatisation

Let us now introduce our assumptions on the oracle. Formally,Of is a member-
ship oracle with (asymmetric) classi�cation noise. That is, it outputs the Boolean
f (C) for any combination C with some probability to �ip the result. Unlike prior
work [Ang88], we do not assume the classi�cation noise to be symmetric,i.e., the
oracle may �ip the result with some propability depending on the combination.
Nonetheless, we will assume a few properties for the noise distribution. To our
best knowledge, the following assumptions that are made on this probability have
not been studied before in the literature.

Histories. Experiment 3 in Section 5.2.3.1 have evidenced that the noise distri-
bution is subject to cross-unit e�ects. So, in order to handle with these correlations,
we �nd it more suitable to generalize our oracleOf so that it can take families of
combinations as inputs. More precisely, let a family be any vector of combinations,
denoted by F = hA1; A2; : : : ; A t i . The outcome Of (F ) is simply de�ned as the
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binary vector Of (F ) = hOf (A1); Of (A2); : : : ; Of (A t )i . Furthermore, let the pair
HF = ( F ; Of (F )) be the history of F .

Let F � i = hA1; : : : ; A i � 1; A i +1 ; : : : ; A t i . We will assume that each individual
outcome Of (A i ) is correlated to the partial history HF � i . However, it may and
must be the case that some natural properties hold independently from any history,
that we now detail as follows. Let us point out that S(in) stands for the set of all
combinations C such that f (C) = 1 .

Assumption 1 (targeting lift) . There exists a universal constant' 2 ]0; 1[, called
the targeting lift and such that for any C0; C1 with f (C0) = 0 ; f (C1) = 1 :

Pr [Of (A i ) = 1 j A i = C0; HF � i ] < ' � Pr [Of (A i ) = 1 j A i = C1; HF � i ]:

This Assumption 1 is local and it simply ensures that it is more likely to receive
an ad for an account within scope than out of scope (conditioned on any �xed
history HF � i ). In particular, it implies that the targeting function f is related to
the outcome we study.

As we will show in Section 5.4, our most e�cient algorithms are proved to be
valid only if the targeting lift is bounded.

Assumption 2 (polynomial-growth) . There exist positive universal constant�; �; 

with � � 1 and such that:

P

"
tX

i =1

Of (A i ) <
�

� � jF \ S (in) j �
�

#

� e� 
 �t

In accordance with Experiment 1 in Section 5.2.3.1, we properly state with
Assumption 2 that the amount of accounts receiving an ad must be at least a
signi�cant fraction of the account population within scope , except on some small
event with low probability like, for instance, when the targeting campaign runs out
of budget.

Let us point out that if we were assuming that there is some minimumconstant
probability pin for an account within scope to be targeted, Assumption 2 could
be shown to be satis�ed for � = 1 by using standard concentration inequalities.
By considering the case� � 1, we may consider the case where this minimum
probability slowly tends to zero when N grows, say,pin � po=logO(1) (N ) where p0

is a constant. The latter case seems to be what happens in practice, as supported
by Experiment 2 in Section 5.2.3.1.

Assumption 3 (noninterference). Let the function f only depend on inputs in
V � D . Furthermore, let A0

i = A i \ V and let F 0 = hA0
1; : : : ; A0

t i .

Pr [Of (F )] = Pr [Of (F 0)]:

Finally, we formalize with Assumption 3 that none of the input that does not
a�ect the function f can impact on the outcome.
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5.2.3.3 Discussion: idealized model with independence

For simplicity, we were assuming in [LDL+ 14] an idealized learning model where
the outputs of the oracle were independent random variables and there were two
constant pin ; pout such that:

Pr [Of (C)=1 j f (C)=1]= pin > p out = Pr [Of (C0)=1 j f (C0)=0] :

Limitations. Independence in the model contradicts Experiment3 in Sec-
tion 5.2.3.1. Similarly, a constant probability pin to be targeted contradicts Ex-
periment 2 in Section 5.2.3.1. These are the reasons why we are now considering
the more general assumptions in Section 5.2.3.2 for the oracle.

Nonetheless, we will see in what follows that our former analysis in the idealized
model still holds under more general assumptions. Precisely, the approach presented
in this chapter leaves us to analyse a random counting process whose outcome can
be lower and upper-bounded by estimating the sum ofindependentrandom variables
(see Lemma 86). In particular, by choosingpin ; pout so that:

8
<

:

pin = (1 + O(1)) � �
log1=� � 1 (N )

pout < ' � pin

all the results obtained with the simpler model in [LDL+ 14, DLCG15, DTC17]
can be generalized to the more general model that is presented in this Section 5.2.

5.2.4 Distribution for the sampler

Last, we present our choices for the distribution and the sampler. The latter for-
malizes our experimental process, that consists in creating fake Gmail accounts and
�lling in them with random data.

Exchangeabilityis de�ned in [GR86] as the probability that if two accounts were
exchanging their data inputs, the probability distribution of the outcome would not
be impacted. So, in order to get exchangeability, we take a Bernouilli distribution
� = B (p; N ), i.e., for every random combination that is sampled, each inputD i 2 D
must be present independently at random with probability p.

Interestingly, our process is related with the so-called random intersection
model [KSSC99], that can be de�ned as follows. LetN; M and h be positive inte-
gers, and letp be some probability. In order to create a random intersection graph,
we �rst create a bipartite graph B randomly with two sides of respective sizeN and
M , and with each edge being present independently at random with probabilityp.
Then, a new graph is created fromB by taking as vertex-set the side of sizeM and
adding an edge between every two vertices that share at leasth common neighbours
in B , for some constanth. Random intersection graphs have been proposed as a
model for complex networks [GL06]. So, it makes sense to mimic this process in
order to create random Gmail accounts.
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5.3 Single-input targeting

This section addresses the detection and identi�cation ofsingle-input targeting, that
is when the reception of the output is caused by the presence (or the absence) of a
single input. More formally, we propose a PAC-learning algorithm with1-juntas as
hypothesis.

This is joint work with Mathias Lécuyer, Francis Lan, Andrei Papancea, The-
o�los Petsios, Riley Spahn, Augustin Chaintreau and Roxana Geambasu.

Outline. Our main result is stated in Section 5.3.1, where we also discuss on its
positioning in the nascent �eld of Web's transparency. Then, the following Sec-
tions 5.3.2 and 5.3.3 cover the main tools used in our study. The �rst tool is
algorithmic: we present in Section 5.3.2 a classical technique for learning Boolean
functions, of which we use a natural variation as the main brick basis of our algo-
rithm (presented in Section 5.3.2.1). Second, we adapt in Section 5.3.3 standard
concentration inequalities to our learning model. The latter will be our main tool in
the analysis of the algorithm. Finally, we sketch this algorithm for learning1-juntas
in Section 5.3.4.

Full proofs can be found in our paper [LDL+ 14]. The version presented in this
section also borrows from our paper [CD17] (in preparation).

Figure 5.1: Xray suggests plausible associations between the emails of a user and
the ads she receives, using the core algorithm presented in this section.

5.3.1 Our results

Below, we state our main result in this section.

Theorem 84. Let � � 1 be the polynomial-growth (Assumption 2). There is a
PAC-learning algorithm such that, for every " > 0, the targeting function can be
learnt with probability 1 � " under 1-juntas hypothesis, inO(N � log1=� (N=")) -time
and O(log1=� (N="))) queries.
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