Skip to Main content Skip to Navigation
Theses

Fast and accurate image registration. Applications to on-board satellite imaging.

Résumé : Cette thèse commence par une étude approfondie des méthodes d’estimation de décalage sous-pixeliques rapides. Une comparaison complète est effectuée prenant en compte problèmes d’estimation de décalage existant dans des applications réelles, à savoir, avec différentes conditions de SNR, différentes grandeurs de déplacement, la non préservation de la contrainte de luminosité constante, l’aliasing et, surtout, la limitation des ressources de calcul. Sur la base de cette étude, en collaboration avec le CNES (l’agence spatiale française), deux problèmes qui sont cruciaux pour l’optique numérique des satellites d’observation de la terre sont analysés. Nous étudions d’abord le problème de correction de front d’onde dans le contexte de l’optique actif. Nous proposons un algorithme pour mesurer les aberrations de front d’onde sur un senseur de type Shack-Hartmann (SHWFS en anglais) en observant la terre. Nous proposons ici une revue de l’état de l’art des méthodes pour le SHWFS utilisé sur des scènes étendues (comme la terre) et concevons une nouvelle méthode pour améliorer l’estimation de front d’onde, en utilisant une approche basée sur l’équation du flot optique. Nous proposons également deux méthodes de validation afin d’assurer une estimation correcte du front d’onde sur les scènes étendues. Tandis que la première est basée sur une adaptation numérique des bornes inférieures (théoriques) pour le recalage d’images, la seconde méthode défausse rapidement les paysages en se basant sur la distribution des gradients. La deuxième application de satellite abordée est la conception numérique d’une nouvelle génération de senseur du type Time Delay Integration (TDI). Dans ce nouveau concept, la stabilisation active en temps réel du TDI est réalisée pour étendre considérablement le temps d’intégration, et donc augmenter le RSB des images. Les lignes du TDI ne peuvent pas être fusionnées directement par addition parce que leur position est modifiée par des microvibrations. Celles-ci doivent être compensées en temps réel avec une précision sous-pixellique. Nous étudions les limites fondamentales théoriques de ce problème et proposons une solution qui s’en approche. Nous présentons un système utilisant la convolution temporelle conjointement à une estimation en ligne du bruit de capteur, à une estimation de décalage basée sur les gradients et à une méthode multiimage non conventionnelle pour mesurer les déplacements globaux. Les résultats obtenus sont concluants sur les fronts de la précision et de la complexité. Pour des modèles de transformation plus complexes, une nouvelle méthode effectuant l’estimation précise et robuste des modèles de mise en correspondance des points d’intérêt entre images est proposée. La difficulté provenant de la présence de fausses correspondances et de mesures bruitées conduit à un échec des méthodes de régression traditionnelles. En vision par ordinateur, RANSAC est certainement la méthode la plus utilisée pour surmonter ces difficultés. RANSAC est capable de discriminer les fausses correspondances en générant de façon aléatoire des hypothèses et en vérifiant leur consensus. Cependant, sa réponse est basée sur la seule itération qui a obtenu le consensus le plus large, et elle ignore toutes les autres hypothèses. Nous montrons ici que la précision peut être améliorée en agrégeant toutes les hypothèses envisagées. Nous proposons également une stratégie simple qui permet de moyenner rapidement des transformations 2D, ce qui réduit le coût supplémentaire de calcul à quantité négligeable. Nous donnons des applications réelles pour estimer les transformations projectives et les transformations homographie + distorsion. En incluant une adaptation simple de LO-RANSAC dans notre cadre, l’approche proposée bat toutes les méthodes de l’état de l’art. Une analyse complète de l’approche proposée est réalisée, et elle démontre un net progrès en précision, stabilité et polyvalence.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01485321
Contributor : Abes Star :  Contact
Submitted on : Wednesday, March 8, 2017 - 3:48:06 PM
Last modification on : Thursday, July 2, 2020 - 5:17:18 PM
Document(s) archivé(s) le : Friday, June 9, 2017 - 1:46:02 PM

File

75996_RAIS_2016_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01485321, version 1

Citation

Martin Rais. Fast and accurate image registration. Applications to on-board satellite imaging.. General Mathematics [math.GM]. Université Paris-Saclay; Universitat de les Illes Balears, 2016. English. ⟨NNT : 2016SACLN077⟩. ⟨tel-01485321⟩

Share

Metrics

Record views

2905

Files downloads

1454