Y. H. An and R. J. Friedman, Concise review of mechanisms of bacterial adhesion to biomaterial surfaces, Journal of Biomedical Materials Research, vol.156, issue.3, pp.338-348, 1998.
DOI : 10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B

P. Anthony, . Geindreau, . Christian, P. Séchet, and J. M. Martins, Biofilm growth in porous media : derivation of a macroscopic model from the physics at the pore scale vai homogeneization. Pages 171?179 ISBN, of : Proceedings of the international Congress Biotechniques for air pollution control, pp.84-9749, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00258818

M. A. Auty, G. E. Gardiner, S. J. Mcbrearty, and E. O. Sullivan, Direct In Situ Viability Assessment of Bacteria in Probiotic Dairy Products Using Viability Staining in Conjunction with Confocal Scanning Laser Microscopy, Applied and Environmental Microbiology, vol.67, issue.1, pp.420-425, 2001.
DOI : 10.1128/AEM.67.1.420-425.2001

. Bahar, . Ofir, L. D. Fuente, . La, and S. Burdman, Assessing adhesion, biofilm formation and motility of Acidovorax citrulli???using microfluidic flow chambers, FEMS Microbiology Letters, vol.312, issue.1, pp.33-39, 2010.
DOI : 10.1111/j.1574-6968.2010.02094.x

R. Bakke, M. G. Trulear, J. A. Robinson, and W. G. Characklis, Activity ofPseudomonas aeruginosa in biofilms: Steady state, Biotechnology and Bioengineering, vol.1, issue.12, pp.1418-1424, 1984.
DOI : 10.1002/bit.260261204

D. P. Bakker, A. Plaats, . Van-der, G. J. Verkerke, H. J. Busscher et al., Comparison of Velocity Profiles for Different Flow Chamber Designs Used in Studies of Microbial Adhesion to Surfaces, Applied and Environmental Microbiology, vol.69, issue.10, pp.69-6280, 2003.
DOI : 10.1128/AEM.69.10.6280-6287.2003

B. L. Bassler, How bacteria talk to each other: regulation of gene expression by quorum sensing, Current Opinion in Microbiology, vol.2, issue.6, pp.582-587, 1999.
DOI : 10.1016/S1369-5274(99)00025-9

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

H. Becker and C. Gartner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis, vol.70, issue.1, pp.12-26, 2000.
DOI : 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7

M. R. Benoit, C. G. Conant, . Ionescu-zanetti, . Cristian, . Schwartz et al., New Device for High-Throughput Viability Screening of Flow Biofilms, Applied and Environmental Microbiology, vol.76, issue.13, pp.76-4136, 2010.
DOI : 10.1128/AEM.03065-09

. Beyenal, . Haluk, . Lewandowski, . Zbigniew, and G. Harkin, Quantifying Biofilm Structure: Facts and Fiction, Biofouling, vol.29, issue.1, pp.1-23, 2004.
DOI : 10.1016/0043-1354(94)90043-4

. Beyenal, . Haluk, . Donovan, . Conrad, . Lewandowski et al., Three-dimensional biofilm structure quantification, Journal of Microbiological Methods, vol.59, issue.3, pp.395-413, 2004.
DOI : 10.1016/j.mimet.2004.08.003

A. Brovelli, F. Malaguerra, and D. A. Barry, Bioclogging in porous media: Model development and sensitivity to initial conditions, Environmental Modelling & Software, vol.24, issue.5, pp.611-626, 2009.
DOI : 10.1016/j.envsoft.2008.10.001

J. D. Bryers, Biologically Active Surfaces: Processes Governing the Formation and Persistence of Biofilms, Biotechnology Progress, vol.99, issue.1, pp.57-68, 1987.
DOI : 10.1002/btpr.5420030202

C. J. Bunthof, K. Bloemen, P. Breeuwer, F. M. Rombouts, and T. Abee, Flow Cytometric Assessment of Viability of Lactic Acid Bacteria, Applied and Environmental Microbiology, vol.67, issue.5, pp.2326-2335, 2001.
DOI : 10.1128/AEM.67.5.2326-2335.2001

R. Calvet, Le sol : propriétés et fonctions, 2003.

A. Carré, . Mittal, and L. Kash, Surface and Interfacial Aspects of Cell Adhesion, 2011.
DOI : 10.1201/b12179

C. C. Carvalho, M. Fonseca, and R. Manuela, Assessment of three-dimensional biofilm structure using an optical microscope, BioTechniques, vol.42, issue.5, pp.616-618, 2007.
DOI : 10.2144/000112403

H. Ceri, . Olson, . Merle, . Morck, . Douglas et al., [25] The MBEC assay system: Multiple equivalent biofilms for antibiotic and biocide susceptibility testing, Methods in Enzymology. Microbial Growth in Biofilms -Part B : Special Environments and Physicochemical Aspects, vol.337, 2001.
DOI : 10.1016/S0076-6879(01)37026-X

W. G. Characklis, Attached microbial growths???I. Attachment and growth, Water Research, vol.7, issue.8, pp.1113-1127, 1973.
DOI : 10.1016/0043-1354(73)90066-3

D. L. Chopp, M. J. Kirisits, B. Moran, and M. R. Parsek, A mathematical model of quorum sensing in a growing bacterial biofilm, Journal of Industrial Microbiology and Biotechnology, vol.29, issue.6, pp.29-339, 2002.
DOI : 10.1038/sj.jim.7000316

D. L. Chopp, M. J. Kirisits, B. Moran, and M. R. Parsek, The dependence of quorum sensing on the depth of a growing biofilm, Bulletin of Mathematical Biology, vol.65, issue.6, pp.65-1053, 2003.
DOI : 10.1016/S0092-8240(03)00057-0

J. W. Costerton, G. G. Geesey, and K. J. Cheng, How Bacteria Stick, Scientific American, vol.238, issue.1, pp.86-95, 1978.
DOI : 10.1038/scientificamerican0178-86

J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-scott, Microbial Biofilms, Annual Review of Microbiology, vol.49, issue.1, pp.711-745, 1995.
DOI : 10.1146/annurev.mi.49.100195.003431

. Das, . Theerthankar, . Sehar, . Shama, and M. Manefield, The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development, Environmental Microbiology Reports, vol.193, issue.6, pp.778-786, 2013.
DOI : 10.1111/1758-2229.12085

Y. Davit, G. Iltis, G. Debenest, S. Veran-tissoires, D. Wildenschild et al., Imaging biofilm in porous media using X-ray computed microtomography, Journal of Microscopy, vol.11, issue.3, pp.15-25, 2011.
DOI : 10.1111/j.1365-2818.2010.03432.x

R. M. Donlan, Biofilms: Microbial Life on Surfaces, Emerging Infectious Diseases, vol.8, issue.9, pp.881-890, 2002.
DOI : 10.3201/eid0809.020063

URL : http://doi.org/10.3201/eid0809.020063

R. Duddu, D. L. Chopp, and B. Moran, A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment, Biotechnology and Bioengineering, vol.196, issue.41-44, pp.92-104, 2009.
DOI : 10.1002/bit.22233

L. V. Evans, Biofilms : Recent Advances in their Study and Control, 2003.

H. Flemming, T. R. Neu, . Wozniak, and J. Daniel, The EPS Matrix: The "House of Biofilm Cells", Journal of Bacteriology, vol.189, issue.22, pp.7945-7947, 2007.
DOI : 10.1128/JB.00858-07

M. Givskov, . Hentzer, . Morten, B. Ersboll, . Kjaer et al., Quantification of biofilm structures by the novel computer program comstat, Microbiology, issue.10, pp.146-2395, 2000.

F. Golfier, B. D. Wood, . Orgogozo, . Laurent, . Quintard et al., Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions, Advances in Water Resources, vol.32, issue.3, pp.463-485, 2009.
DOI : 10.1016/j.advwatres.2008.11.012

J. Happel and H. Brenner, Low Reynolds number hydrodynamics : with special applications to particulate media, 1965.
DOI : 10.1007/978-94-009-8352-6

G. C. Iltis, R. T. Armstrong, D. P. Jansik, B. D. Wood, and D. Wildenschild, Imaging biofilm architecture within porous media using synchrotron-based X-ray computed microtomography, Water Resources Research, vol.39, issue.2, p.2601, 2011.
DOI : 10.1029/2010WR009410

T. Ivankovic, S. Du-roscoat, . Rolland, C. Geindreau, J. M. Martins et al., 3D Visualization and quantification of biofilm in porous media by x-ray tomography, 2015.

V. Janakiraman, . Englert, . Derek, . Jayaraman, . Arul et al., Modeling Growth and Quorum Sensing in Biofilms Grown in Microfluidic Chambers, Annals of Biomedical Engineering, vol.64, issue.6, pp.1206-1216, 2009.
DOI : 10.1007/s10439-009-9671-8

H. Jones, I. Roth, and W. Sanders, Electron Microscopic Study of a Slime Layer, Journal of Bacteriology, vol.99, pp.316-325, 1973.

S. Karrabi and . Mohsen, Couplage hydrodynamique -biofilm en milieu poreux : application aux biofiltres, 2009.

M. Katsikogianni and Y. F. Missirlis, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions, European Cells and Materials, vol.8, pp.37-57, 2004.
DOI : 10.22203/eCM.v008a05

J. Kildsgaard, . Engesgaard, and . Peter, Numerical analysis of biological clogging in two-dimensional sand box experiments, Journal of Contaminant Hydrology, vol.50, issue.3-4, pp.261-285, 2001.
DOI : 10.1016/S0169-7722(01)00109-7

M. Kuehn, . Hausner, . Martina, H. Bungartz, . Wagner et al., Automated Confocal Laser Scanning Microscopy and Semiautomated Image Processing for Analysis of Biofilms, Applied and Environmental Microbiology, issue.11, pp.64-4115, 1998.

. Lecuyer, . Sigolene, . Rusconi, . Roberto, . Shen et al., Shear Stress Increases the Residence Time of Adhesion of Pseudomonas aeruginosa, Biophysical Journal, vol.100, issue.2, pp.341-350, 2011.
DOI : 10.1016/j.bpj.2010.11.078

M. Lemos, . Mergulhão, . Filipe, . Melo, . Luís et al., The effect of shear stress on the formation and removal of Bacillus cereus biofilms. Food and Bioproducts Processing, pp.242-248, 2015.

V. Leriche, P. Sibille, and B. Carpentier, Use of an Enzyme-Linked Lectinsorbent Assay To Monitor the Shift in Polysaccharide Composition in Bacterial Biofilms, Applied and Environmental Microbiology, vol.66, issue.5, pp.1851-1856, 2000.
DOI : 10.1128/AEM.66.5.1851-1856.2000

Y. Liu, . Tay, and . Joo-hwa, The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge, Water Research, vol.36, issue.7, pp.1653-1665, 2002.
DOI : 10.1016/S0043-1354(01)00379-7

. Lopez, A. Garcia, L. Veiga, M. C. Nogueira, R. Aparicio et al., A technique using a membrane flow cell to determine average mass transfer coefficients and tortuosity factors in biofilms, Water Science and Technology, issue.5, pp.47-61, 2003.

E. E. Mann, . Wozniak, and J. Daniel, biofilm matrix composition and niche biology, FEMS Microbiology Reviews, vol.36, issue.4, pp.893-916, 2012.
DOI : 10.1111/j.1574-6976.2011.00322.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409827

P. Marmottant, Atomisation d'un jet liquide par un courant gazeux, Thése, Institut National Polytechnique de, 2001.
URL : https://hal.archives-ouvertes.fr/tel-00003054

S. Mbaye, Couplage hydrodynamique-biomasse dans les procédés de dépollution, 2011.

J. C. Mcdonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, vol.66, issue.1, pp.27-40, 2000.
DOI : 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C

L. F. Melo and T. R. Bott, Biofouling in water systems, Experimental Thermal and Fluid Science, vol.14, issue.4, pp.375-381, 1997.
DOI : 10.1016/S0894-1777(96)00139-2

A. Meyer, . Deiana, . José, and A. Bernard, Cours de microbiologie générale avecprobì emes et exercices corrigés, 2004.

M. T. Meyer, . Roy, . Varnika, W. E. Bentley, and R. Ghodssi, Development and validation of a microfluidic reactor for biofilm monitoring via optical methods, Journal of Micromechanics and Microengineering, vol.21, issue.5, p.54023, 2011.
DOI : 10.1088/0960-1317/21/5/054023

M. B. Miller, . Bassler, and L. Bonnie, Quorum Sensing in Bacteria, Annual Review of Microbiology, vol.55, issue.1, pp.165-199, 2001.
DOI : 10.1146/annurev.micro.55.1.165

. Mitik-dineva, . Natasa, . Wang, . James, V. Truong et al., Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus Attachment Patterns on Glass Surfaces with Nanoscale Roughness, Current Microbiology, vol.84, issue.3, pp.268-273, 2009.
DOI : 10.1007/s00284-008-9320-8

D. Monroe, Looking for Chinks in the Armor of Bacterial Biofilms, PLoS Biology, vol.5, issue.11, p.307, 2007.
DOI : 10.1371/journal.pbio.0050307.g002

L. Orgogozo, F. Golfier, . Bù-es, . Michel, and M. Quintard, Upscaling of transport processes in porous media with biofilms in equilibrium and non-equilibrium conditions, Applicable Analysis, vol.31, issue.10-11, pp.585-600, 2010.
DOI : 10.1029/WR025i006p01413

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1979.
DOI : 10.1109/TSMC.1979.4310076

N. J. Palleroni, Bergey's manual of systematic bacteriology, 1984.

M. T. Pardo and M. Guadalix, Zinc sorption???desorption by two Andepts: effect of pH and support medium, European Journal of Soil Science, vol.155, issue.2, pp.47-257, 1996.
DOI : 10.1071/SR9900343

. Park, . Aeri, . Jeong, . Heon-ho, . Lee et al., Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel, biofilms 3D microstructure in porous media, pp.236-241, 2011.
DOI : 10.1007/s13206-011-5307-9

. Rupprecht, . Peter, . Golé, . Laurent, . Rieu et al., A tapered channel microfluidic device for comprehensive cell adhesion analysis, using measurements of detachment kinetics and shear stress-dependent motion, Biomicrofluidics, vol.6, issue.1, p.14107, 2012.
DOI : 10.1063/1.3673802.3

R. Rusconi, . Lecuyer, . Sigolene, . Guglielmini, . Laura et al., Laminar flow around corners triggers the formation of biofilm streamers, Journal of The Royal Society Interface, vol.351, issue.16, pp.1293-1299, 2010.
DOI : 10.1056/NEJMra040181

R. Rusconi, . Lecuyer, . Sigolene, . Autrusson, . Nicolas et al., Secondary Flow as a Mechanism for the Formation of Biofilm Streamers, Biophysical Journal, vol.100, issue.6, pp.1392-1399
DOI : 10.1016/j.bpj.2011.01.065

J. C. Russ, The Image Processing Handbook, Sixth Edition, 2011.
DOI : 10.1201/b10720

M. Simões, M. O. Pereira, . Sillankorva, . Sanna, J. Azeredo et al., biofilms, Biofouling, vol.29, issue.4, pp.249-258, 2007.
DOI : 10.1099/mic.0.28165-0

P. Soille, Morphological Image Analysis : Principles and Applications, 1999.

P. S. Stewart, Diffusion in Biofilms, Journal of Bacteriology, vol.185, issue.5, pp.1485-1491, 2003.
DOI : 10.1128/JB.185.5.1485-1491.2003

P. Stoodley, . Lewandowski, . Zbigniew, J. D. Boyle, and H. M. Lappin-scott, Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology, Biotechnology and Bioengineering, vol.7, issue.1, pp.83-92, 1999.
DOI : 10.1002/(SICI)1097-0290(19991005)65:1<83::AID-BIT10>3.0.CO;2-B

S. W. Taylor, . Jaffé, and R. Peter, Biofilm growth and the related changes in the physical properties of a porous medium: 3. Dispersivity and model verification, Water Resources Research, vol.48, issue.1, pp.2171-2180, 1990.
DOI : 10.1029/WR026i009p02171

S. W. Taylor, P. C. Milly, . Jaffé, R. Peter, M. Gail et al., Biofilm growth and the related changes in the physical properties of a porous medium : 2 Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa, Applied and Environmental Microbiology, vol.69, issue.4, pp.2313-2320, 1990.

Y. Tsai, Impact of flow velocity on the dynamic behaviour of biofilm bacteria, Biofouling, vol.65, issue.5-6, pp.267-277, 2005.
DOI : 10.1016/0043-1354(89)90193-0

R. Veysseyre, Aide-mémoire de statistique et probabilités pour l'ingénieur -2` eméemé edition, 2006.

M. Vieira, . João, L. F. Melo, M. Pinheiro, and . Manuela, Biofilm formation: Hydrodynamic effects on internal diffusion and structure, Biofouling, vol.54, issue.1, pp.67-80, 1993.
DOI : 10.1080/01932699208943326

J. S. Vrouwenvelder, J. Buiter, M. Riviere, W. G. Van-der-meer, M. C. Van-loosdrecht et al., Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems, Water Research, vol.44, issue.3, pp.689-702, 2010.
DOI : 10.1016/j.watres.2009.09.054

M. Wagner, . Manz, . Bertram, . Volke, . Frank et al., Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy, Biotechnology and Bioengineering, vol.28, issue.3, pp.172-181, 2010.
DOI : 10.1002/bit.22784

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, pp.368-373, 2006.
DOI : 10.1038/nature05058

J. Wingender, T. R. Neu, . Flemming, and . Hans-curt, Microbial extracellular polymeric substances : characterization, structure, and function, 1999.
DOI : 10.1007/978-3-642-60147-7

J. B. Xavier, D. C. White, and J. S. Almeida, Automated biofilm morphology quantification from confocal laser scanning microscopy imaging, Water Science and Technology : A Journal of the International Association on Water Pollution Research, vol.47, issue.5, pp.31-37, 2003.

X. Yang, H. Beyenal, G. Harkin, and Z. Lewandowski, Quantifying biofilm structure using image analysis, Journal of Microbiological Methods, vol.39, issue.2, pp.109-119, 1999.
DOI : 10.1016/S0167-7012(99)00097-4

X. Yang, . Beyenal, . Haluk, . Harkin, . Gary et al., Evaluation of biofilm image thresholding methods, Water Research, vol.35, issue.5, pp.1149-1158, 2001.
DOI : 10.1016/S0043-1354(00)00361-4

C. E. Zobell, The Effect of Solid Surfaces upon Bacterial Activity, Journal of Bacteriology . Journal of Bacteriology, vol.46, pp.39-56, 1943.