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I remember, of all the fruits, when I was a kid, I loved the cherries. I used to put them in
a bucket full of water, look at them close up and admire them -black or red, crunchy, as

they would magnify when in the water. But as I would take them out, to my great
dissappointment, I would see them get smaller, so I crammed them, huge as they looked,

into my mouth.
This little thing reveals my perception of reality, even now in my old age. I make it

brighter, better, more fit to my own purpose. My brain shouts, explains, proves,
complains. But a voice inside me responds : “silence, brain, we want to hear the heart”.

But what heart, the escence of life, the madness, and the heart sings...
∼ Nikos Kazantzakis, Report to Greco.
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Résumé
Cette thèse comporte trois chapitres indépendants, consacrés à l’étude mathématique

de trois problèmes physiques distincts, ayant pour modèles trois équations aux dérivées
partielles différentes. Ces équations relèvent plus précisément de la méthode des surfaces
de niveau, de la théorie de l’écoulement incompressible des matériaux non newtoniens et
de la théorie cinétique des gaz raréfiés.

Le premier chapitre de la thèse porte sur la dynamique des frontières en mouvement et
contient une justification mathématique de la procédure numérique dite de ré-initialisation,
dont les applications sont nombreuses dans le contexte de la célèbre méthode des surfaces
de niveau. Nous appliquons ces résultats pour une classe d’équations issues de la méthode
des surfaces de niveau de premier ordre. Nous écrivons la procédure de ré-initialisation
comme un algorithme de décomposition et nous étudions la convergence de l’algorithme
en utilisant des techniques d’homogénéisation dans la variable temporelle. Grâce à cette
analyse rigoureuse nous introduisons également une nouvelle méthode pour l’approxima-
tion de la fonction de distance dans le contexte de la méthode des surfaces de niveau.
Dans le cas où l’on cherche seulement une fonction de l’ensemble de niveau avec un gra-
dient minoré proche du niveau zéro, nous proposons une approximation plus simple. Dans
le cas général, où le niveau zéro pourrait présenter des changements de topologie, nous
introduisons une nouvelle notion de limites relâchées.

Dans le deuxième chapitre de la thèse, nous étudions un problème de frontière libre
résultant de l’étude de l’écoulement incompressible d’un matériau non-newtonien, avec
limite d’élasticité de type Drucker-Prager, sur un plan incliné et sous l’effet de la pesanteur.
Nous obtenons une équation sous-différentielle, que nous formulons comme un problème
variationnel avec un terme à croissance linéaire de type gradient, et nous étudions le
problème dans un domaine non borné. Nous montrons que les équations sont bien posées
et satisfont certaines propriétés de régularité. Nous sommes alors capables de relier les
paramètres physiques avec le problème abstrait et de prouver des propriétés quantitatives
de la solution. En particulier, nous montrons que la solution a un support compact, la
limite de ce que nous appelons la frontière libre. Nous construisons également des solutions
explicites d’une équation différentielle ordinaire qui peut estimer la frontière libre.

Enfin, le troisième et dernier chapitre de la thèse est dédié aux solutions de l’équation
de Boltzmann homogène avec molécules maxwelliennes et énergie infinie. Nous obtenons de
nouveaux résultats d’existence de solutions éternelles pour cette equation dans un espace
de mesures de probabilité d’énergie infinie (i.e. de moment d’ordre deux infini). Elles
permettent de décrire le comportement asymptotique en temps d’autres solutions d’énergie
infinie, mais elles apparaissent aussi comme des états asymptotiques intermédiaires dans
l’étude des solutions d’énergie finie, mais arbitrairement grande. Les méthodes issues de
l’analyse harmonique sont utilisées pour étudier l’équation de Boltzmann, où la variable
de vitesse est exprimée en Fourier. Enfin, un changement d’échelle logarithmique en la
variable temporelle permet de déterminer le bon comportement asymptotique à l’infini
des solutions.
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Abstract
This thesis consists of three different and independent chapters, concerning the ma-

thematical study of three distinctive physical problems, which are modelled by three non-
linear partial differential equations. These equations concern the level set method, the
theory of incompressible flow of non-Newtonian materials and the kinetic theory of rare-
fied gases.

The first chapter of the thesis concerns the dynamics of moving interfaces and contains
a rigorous justification of a numerical procedure called re-initialization, for which there are
several applications in the context of the level set method. We apply these results for first
order level set equations. We write the re-initialization procedure as a splitting algorithm
and study the convergence of the algorithm using homogenization techniques in the time
variable. As a result of the rigorous analysis, we are also able to introduce a new method
for the approximation of the distance function in the context of the level set method. In
the case where one only looks for a level set function with gradient bounded from below
near the zero level, we propose a simpler approximation. In the general case where the
zero level might present changes of topology we introduce a new notion of relaxed limits.

In the second chapter of the thesis, we study a free boundary problem arising in
the study of the flow of an incompressible non-Newtonian material with Drucker-Prager
plasticity on an inclined plane. We derive a subdifferential equation, which we reformulate
as a variational problem containing a term with linear growth in the gradient variable, and
we study the problem in an unbounded domain. We show that the equations are well posed
and satisfy some regularity properties. We are then able to connect the physical parameters
with the abstract problem and prove some quantitative properties of the solution. In
particular, we show that the solution has compact support and the support is the free
boundary. We also construct explicit solutions of an ordinary differential equation, which
we use to estimate the free boundary.

The last chapter of the thesis is dedicated to the study of infinite energy solutions of
the homogeneous Boltzmann equation with Maxwellian molecules. We obtain new results
concerning the existence of eternal solutions in the space of probability measure with
infinite energy (i.e. the second order moment is infinite). These solutions describe the
asymptotic behaviour of other infinite energy solutions but could also be useful in the study
of intermediate asymptotic states of solutions with finite but arbitrarily large energy. We
use harmonic analysis tools to study the equation, where the velocity variable is expressed
in the Fourier space. Finally, a logarithmic scaling of the time variable allows to determine
the correct asymptotic scaling of the solutions.
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Introduction générale

Dans les trois sections qui suivent, nous allons donner une brève présentation des
résultats obtenus dans les trois chapitres qui composent cette thèse et auxquels nous
renvoyons le lecteur pour les démonstrations complètes et les références bibliographiques
précises.

1 Ré-initialisation

Nous donnons ici un aperçu général de la théorie de la ré-initialisation des interfaces
en mouvement avec une vitesse imposée, qui dépend des variables d’espace et de temps.

1.1 La méthode des surfaces de niveau

En sciences naturelles très souvent les chercheurs étudient des interfaces en mouvement.
Celles-ci peuvent être, par exemple, des vagues dans l’océan, des flammes, des interfaces
gazeuses, des bords de matériaux, etc. Suivre la trace de ces interfaces avec une méthode
lagrangienne est difficile, parce que les interfaces peuvent développer des singularités, ou
même des changements topologiques.

Ainsi, la notion de solutions à utiliser pour les équations aux dérivées partielles impli-
quées n’est pas très claire. Afin d’éviter ces problèmes, il a été introduite une méthode des
surfaces de niveau, dont nous allons brièvement donner une présentation ci-dessous. Pour
plus d’informations sur cette méthode voir par exemple [11], [15], [16].

On suppose que Γ(t) est une hypersurface fermée de dimension N − 1, qui se déplace
avec une vitesse V (x, t). L’objectif est de représenter l’ensemble de niveau zéro de la
fonction u0(x) = u(x, 0) par Γ(0). Par exemple, on peut choisir u0 = d, la distance signée
à Γ(0) définie comme dist(·,Γ(0)) pour les points à l’intérieur de Γ(0) et −dist(·,Γ(0)) pour
les points à l’extérieur. Le but est de construire une fonction u(x, t) telle que {u(·, t) =
0} = Γ(t), où également x(t) ∈ Γ(t) si et seulement si

(1.1) u(x(t), t) = 0.

La formulation de la méthode des surfaces de niveau permet de calculer directement des
quantités intrinsèques comme la normale de Γ(t), qui dans le cas de (1.1) est donnée par
n = ∇u

|∇u| . Si l’on dérive l’équation (1.1) en t on obtient

(1.2) ut +∇u(x(t), t)x′(t) = 0.

Or, puisque la vitesse normale du point x(t) est V (x(t), t) on a x′(t) · ∇u|∇u| = V (x(t), t), ce
qui nous permet donc d’écrire (1.2) comme

(1.3) ut(x, t) = −V (x, t)|∇u(x, t)|,

1



INTRODUCTION GÉNÉRALE

équation à laquelle il faut associer une valeur initiale u0. On dit que {Γt}t≥0 est régulier si
(1.4)
{(x, t) : u(x, t) > 0} = {(x, t) : u(x, t) ≥ 0} et {(x, t) : u(x, t) ≥ 0}◦ = {(x, t) : u(x, t) > 0},

où l’on note A, A◦ l’adhérence et l’intérieur d’un ensemble A.
A noter que dans (1.3) les trajectoires x(t) ont été éliminées, afin d’étudier seulement

la formulation eulérienne.

1.2 Conservation de la fonction distance

Plusieurs méthodes d’approximation de la fonction distance sont connues (voir e.g. [1]
et [12]), mais ces méthodes ne s’appliquent pas dans le cas où l’ensemble de niveau zéro
d’une fonction développe un intérieur, c’est-à-dire la relation (1.4) n’est pas satisfaite.

Voici, ce dont il s’agit. D’abord nous étudions la limite pour θ →∞ de la solution de
θ-équation

(1.5a)

(1.5b)




uθt = −V (x, t)|∇uθ|+ θβ(uθ)h(∇uθ) dans Rn × (0, T ),

uθ(x, 0) = u0(x) dans Rn,

avec u0 lipschitzienne, β(u) = u/
√
ε2

0 + u2, ε0 > 0 fixe et V continue en (x, t) et lip-
schitzienne en x et h est une fonction de pénalisation de la distance entre |∇uθ| et 1, par
exemple h(p) = 1−|p|. La théorie des solutions de viscosité garantit l’unicité de la solution
du problème (1.5). En effet nos théorèmes principaux s’appliquent pour des hamiltoniens
plus généraux que celui en (1.2) et pour des fonctions plus générales que β et h.

Si nous désignons par d la fonction de distance signée de l’ensemble de niveau zéro de
la solution de (1.2), (1.5b), nous obtenons le théorème suivant.

Théorème 1.1. (Convergence de uθ vers la fonction de distance signée)
On prend uθ la solution de (1.5), avec h(p) = 1− |p|. Alors
(i)

lim
(y,s,θ)→(x,t,∞)

s≤t

uθ(y, s) = d(x, t) pour tout (x, t) ∈ Rn × (0, T ),

(ii) uθ(·, t) converge vers d(·, t) localement de façon uniforme en x ∈ Rn si θ → +∞
pour tout t ∈ (0, T ),

(iii) si de plus d(x, t) est continue en (x, t) ∈ Rn × (0, T ), alors

uθ converge vers d localement de façon uniforme en (x, t) ∈ Rn×(0, T ) si θ → +∞.

En général la fonction de distance d n’est pas continue. Les valeurs de la fonction
de distance peuvent présenter des sauts quand une partie de l’ensemble de niveau zéro
disparaît. En effet, nous pouvons construire un exemple pour lequel on a des parties de
l’ensemble de niveau zero qui disparaissent pour presque tous les temps.

Lorsque la fonction de distance est discontinue on ne peut pas s’attendre à ce que
les fonctions continues uθ convergent vers d localement de façon uniforme. En utilisant
la propriété de la vitesse finie de propagation pour les équations telles que (1.2), nous
montrons que la fonction de distance est continue inférieurement dans le temps, ce qui
nous a guidés dans la démonstration du Théorème 1.1 (i).

Les différentes techniques de ré-initialisation permettent d’estimer le gradient de la
fonction de l’ensemble de niveau par le bas ou par le haut, afin d’obtenir des résultats

2 1. RÉ-INITIALISATION
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numériques valides. Si l’on cherche à obtenir une fonction avec une limite inférieure pour
le gradient, on peut utiliser comme terme de pénalisation dans (1.5a) la fonction h(p) =
(1− |p|)+, où nous avons noté (x)+ = max{x, 0} pour x ∈ R.

Evidemment, dans ce cas la séquence uθ ne converge pas nécessairement vers la fonction
de distance, cependant on obtient une fonction avec les mêmes ensembles de niveau zéro
comme la solution de (1.2), mais pour elle nous avons une limite inférieure pour le gradient.
Plus exactement, nous obtenons le théorème suivant.

Théorème 1.2. (Une fonction de niveau d’ensemble avec une limite inférieure
pour le gradient)
On prend u le solution de (1.3)-(1.5b), uθ le solution de (1.5) avec h(p) = (1− |p|)+. Si

ũ =





sup
θ>0

uθ dans {u > 0}

inf
θ>0

uθ dans {u ≤ 0},

On a {ũ = 0} = {u = 0} et
{
|∇ũ| ≥ 1 dans {u > 0}
−|∇ũ| ≤ −1 dans {u < 0},

dans le sens de la viscosité. En particulier, pour tout t ∈ (0, T ), la fonction ũ(·, t) est
lipschitzienne dans Rn avec |∇ũ(·, t)| ≥ 1, p.p. dans {±u > 0}.

Observons que le théorème précédent est une conséquence directe du proposition 2.12,
théorème 3.1 et la preuve du théorème 2.3 du chapitre 1.

Explication de la θ-équation L’idée de la théorie de la ré-initialisation, comme elle a
été introduite dans [17] (voir aussi [7]), consiste à arrêter l’évolution de (1.2) régulièrement
dans le temps et à trouver plutôt la solution de l’équation de correction

(1.6) ut = β(u)(1− |∇u|)

avec β comme dans (1.5a). Or, la solution de l’équation (1.6) converge asymptotiquement
vers une fonction qui satisfait |∇u| = 1, qui est une propriété caractéristique de la fonction
de distance. Comme telle, la fonction β est une version plus régulière que la fonction signe.

Ensuite, nous pouvons résoudre les équations (1.3) et (1.6) à des intervalles de temps de
longueur k1∆t et k2∆t respectivement, périodiquement, avec une période qui est terminée
à l’étape de temps de longueur ε = (k1 + k2)∆t.

On parvient à l’algorithme de décomposition suivant

(1.7) uεt =




−V (x, t

1+ k2
k1

)|∇uε| dans Rn × ((i− 1)ε, (i− 1)ε+ k1∆t]

β(uε)(1− |∇uε|) dans Rn × ((i− 1)ε+ k1∆t, iε],

pour i = 1, ..., dTε e. On note par dxe le plus petit entier qui est non inférieur à x ∈ R. Le
dimensionnement de la vitesse en temps est requis parce que certains intervalles de temps
sont réservés pour l’équation de correction.

Enfin, en utilisant les techniques de la théorie de l’homogénéisation, voir [9] et [10],
nous arrivons à prouver le théorème suivant.

1. RÉ-INITIALISATION 3
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Théorème 1.3. (Convergence de l’algorithme de décomposition)
Soit h comme dans le théorème 1.1 ou dans le théorème 1.2 et uθ la solution de (1.5), alors
la solution uε de l’algorithme de décomposition (1.7) avec donnée initiale u0, converge vers
ūθ (quand ε→ 0), localement de façon uniforme, où ūθ(x, t) = uθ

(
x, t

1+θ

)
et θ = k2/k1.

Conclusion : Les théorèmes 1.3 et 1.1 donnent une explication rigoureuse de la pro-
cédure de re-initialisation. Nous ne connaissons pas d’autres résultats, où cette méthode
est étudiée de façon précise avec la notion des solutions de viscosité. Nous prévoyons éga-
lement d’étudier une schéma numérique du problème (1.5) et voir comment les sauts de
la fonction distance interviennent dans la convergence de la solution de (1.5).

2 Matériaux non-newtoniens
Comme dans la section précédente, nous allons d’abord présenter le problème plus gé-

néral et abstrait et les résultats principaux concernant l’existence et l’unicité des solutions
associées. Ensuite, nous allons décrire le problème physiquement, donner des estimations
explicites pour les grandeurs physiques qui sont impliquées et démontrer la manière dont
les paramètres physiques changent la solution du problème.

2.1 Une équation sous-différentielle

On prend λ ≥ 0 et on étudie les solutions non-négatives u = u(y, z) d’inclusion diffé-
rentielle :

(2.1) λ ∈ −∆u− div(|z|∂|∇u|)
dans Ω = (−1, 1) × (−∞, 0). On note le sous-différentiel d’une fonction f : RN → R à ce
point y, l’ensemble

∂f(y) := {z ∈ RN : f(x)− f(y) ≥ z · (x− y) ∀x ∈ RN}.
C’est-à-dire il existe q = q(y, z) ∈ R2 avec |q| ≤ 1 et q · ∇u = |∇u| p.p. tel que div(∇u+
|z|q) = −λ. Nous supposons des conditions de Dirichlet homogènes sur le bord latéral,
c’est-à-dire, u(±1, ·) = 0. L’équation sous-différentielle (2.1) est la première variation de
la fonctionnelle

(2.2) Eλ(u) =
∫

Ω

|∇u|2
2 + |z||∇u| − λu.

Deux problèmes principaux se posent lorsque l’on étudie les minimiseurs de E : d’abord
la croissance linéaire du terme |z||∇u| ne permet pas le calcul direct et rigoureux de la
première variation de E ; ensuite, nous étudions l’énergie dans un domaine non borné Ω.
Par conséquent, l’existence d’un minimiseur par la méthode directe (et donc d’une solution
de (2.1) que nous allons découvrir) n’est plus triviale, car on ne sait pas clairement si le
terme − ∫Ω λu est semi-continu inférieurement.

Dans un premier temps, nous démontrons que la formulation variationnelle est équi-
valente à l’équation (2.1).

On définit

(2.3) X := {v ∈W 1,2
0L (Ω), z∇v ∈

(
L1(Ω)

)2
},

où
W 1,2

0L (Ω) = {v ∈W 1,2(Ω) : v(±1, ·) = 0}.
Nous avons le théorème suivant, dont l’énoncé précis est contenu dans le chapitre 2 de
cette thèse.

4 2. MATÉRIAUX NON-NEWTONIENS
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Théorème 2.1. (Existence et unicité)
Soit Eλ donnée par (2.2), alors :
(i) pour tout λ ≥ 0 il existe une unique 0 ≤ uλ ∈ X telle que

Eλ(uλ) = inf
v∈X

Eλ(v).

De plus uλ ≡ 0 si λ ∈ [0, 1] et uλ 6≡ 0 si λ ∈ (1,+∞).
(ii) uλ ∈ C0,α

loc (Ω) pour tout α ∈ (0, 1) et ∂zuλ(y, 0) = 0 pour y ∈ (−1, 1).

2.2 Lois constitutives et de conservation

Pour justifier l’interprétation physique de (2.1) nous aurons besoin d’introduire cer-
taines équations. Nous utilisons la description lagrangienne afin de suivre la position d’un
point matériel X(t, s; a) ∈ R3, en temps t, qui occupe la position a ∈ R3 en temps s. La
vitesse u(X(t, s; a), t) de la particule située à X en temps t est définie par

d

dt
X(t, s; a) = v(X(t, s; a)).

En utilisant la vitesse, on peut éliminer les trajectoires X(t, s; a) en utilisant l’opérateur
de transport parallèle

(2.4) ∂t + vj(t, x)∂xj = ∂t + v · ∇

où v = (vj)j∈{1,2,3} et nous avons utilisé la convention de sommation des indices répétés.
L’opérateur (2.4) est aussi appelé la dérivée matérielle et permet de suivre la vitesse

v(x, t) d’un point x ∈ R3 à un moment donné t au lieu de la position de la particule X.
Ceci est la description eulérienne du milieu continu. En utilisant cette description nous
allons écrire deux lois du mouvement et l’équation constitutive.

1. Conservation de la masse. Soit ρ(x, t) la densité d’un matériau qui occupe le do-
maine Ω ⊂ R3, alors par la conservation de la masse on a d

dt

∫
Ω ρ dx = 0 ; de façon

équivalente, si la vitesse v est continue donc le taux de variation de la densité dans
un volume infinitésimal, d

dtρ dx est égal au flux −ρv · ndS = −div(ρv) dx, avec dS
la mesure de surface infinitésimale et n la normale vers l’extérieur à la limite du
volume infinitésimal.
La conservation de la masse établit que

(2.5) ∂tρ = −div(ρv).

Dans le cas d’un fluide incompressible, i.e. de densité ρ constante, la conservation
de la masse (2.5) se transforme en

(2.6) div v = 0.

2. Conservation de la quantité de mouvement. Selon la conservation de la quantité de
mouvement chaque volume de la matière obéit à la deuxième loi de Newton. Soit
σ = (σij)i,j∈{1,2,3}, c’est-à-dire une matrice réelle symétrique, qui est telle que la
quantité

∫
∂Ω σijn, avec n la normale vers l’extérieur à la limite de ∂Ω, est la force

exercée sur le matériau qui est contenu dans Ω. Si nous calculons l’accélération en
fonction de la dérivée matérielle, les équations de mouvement se transforment en

(2.7) ∂tv + (v · ∇)v = divσ + f,

où f : R3 → R3 est la force extérieure.
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3. L’équation constitutive. Soit σdev := σ + pI le déviateur de tenseur des contraintes
et D(v) = (∇v + (∇v)T )/2, alors comme dans [13] et [6] nous utilisons l’équation
constitutive suivante

(2.8)




σdev = 2νD(v) + k(p) D(v)

||D(v)|| si D(v) 6= 0,
||σdev|| ≤ k(p) si D(v) = 0

où nous supposons que la viscosité ν > 0 est constante et k(p) est la limite d’élasticité,
qui dépend de la pression. L’équation précédente est le résultat d’une superposition
du terme de viscosité 2νD(v) et du terme lié aux effets de plasticité k(p) D(v)

||D(v)|| qui
est indépendant de la norme du taux de déformation ||D(v)||.
Dans le cas de limite d’élasticité k(p) constante, on retrouve le modèle de Bingham
ordinaire. Dans le deuxième chapitre de la thèse nous supposerons le critère de
plasticité de Drucker-Prager, à savoir

(2.9) k(p) = µsp,

où µs = tan δs, avec δs l’angle de la friction interne (statique).

2.3 Écoulement sur un plan incliné

Nous étudions l’écoulement quasi-statique d’un fluide non-newtonien sur un plan in-
cliné sous l’effet de la pesanteur. Alors, la force de gravité dans (2.7) est donnée par
f = (g0 sin θ, 0,−g0 cos θ), avec θ l’angle d’inclinaison du plan et g0 la constante gravita-
tionnelle. Un matériau non-newtonien se comporte comme un corps rigide dans certaines
régions et en tant que fluide dans d’autres.

Afin d’étudier la formation de la partie rigide quand on augmente l’angle d’inclinaison
θ, nous supposerons que le plan est situé à l’infini (z = −∞) pour ne pas avoir de frottement
avec le plan (voir figure 1). Nous supposons que la vitesse est de la forme v(x, y, z) =
(ũ(y, z), 0, 0) pour (x, y, z) ∈ (0,+∞)× (−l, l)× (−∞, 0) où 2l est la largeur des parois et
le niveau z = 0 est la surface sur laquelle le matériau est en contact avec l’atmosphère. La

atmosphè
re

liquid
e

soli
d

θ

z

y x

2l

Figure 1 – L’écoulement quasi-statique sur un plan incliné

vitesse v satisfait trivialement la condition d’incompressibilité (2.6). On prend les équations
de mouvement avec ∂tv = 0 et l’équation constitutive (2.8) pour aboutir à

(2.10)
{
ν div(∇ũ) + µsg0 cos θ div(|z|q) = −g0 sin θ in (−l, l)× (−∞, 0),
q ∈ ∂(| · |)(∇ũ)

Pour plus de détails voir le chapitre 2, section 1. Sur la limite latérale nous supposons que

(2.11) ũ(±l, ·) = 0.
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Sur la surface z = 0, où le matériau est en contact avec l’atmosphère, nous supposons
que le tenseur des contraintes est nul, c’est-à-dire σdev · (0, 0, 1) = 0, qui, dans notre cas
particulier se lit comme

(2.12) ∂zũ(·, 0) = 0.

Conclusion : Soit ũ la solution de (2.10)-(2.12), alors la fonction

u(y, z) = ν

µsg0 cos θ
ũ (ly, lz)

l2
, (y, z) ∈ (−1, 1)× (−∞, 0)

résout (2.1) avec λ = tan θ
µs

et des conditions aux limites (2.11), (2.12). Avec ces notations,
le théorème 2.1 (ii) implique que pour θ > Arctanµs il existe une solution de (2.10)-(2.12)
non triviale, mais pour un angle d’inclination θ ≤ Arctanµs la solution est nulle, i.e. tout
le matériau est en phase solide.

En construisant des barrières explicites nous montrons qu’en réalité la fonction u a un
support compact et est continue par le Théorème 2.1 (ii) et car u ≥ 0, ce qui nous permet
de définir le frontière libre comme la frontière commune ∂{u > 0} = ∂{u = 0}. Nous
appelons phase solide et phase liquide les ensembles {u = 0} et {u > 0}, respectivement.

En général, dans la littérature, le frontière libre est définie par ∂{∇u 6= 0}, mais le
rapprochement de cet ensemble nécessiterait des méthodes différentes et plus de régularité
de la solution. Les estimations du frontière libre dans le théorème suivant sont explicites.
Nous renvoyons le lecteur au chapitre 2 pour une présentation détaillée.

Théorème 2.2. (Propriétés principales)
Soient λ > 1 et uλ la solution de (2.1). Alors, il existe Epi`(λ) croissant en λ, i.e.
Epi`(λ1) ⊂ Epi`(λ2) pour 1 < λ1 ≤ λ2, et Epi`(λ) tel que

Epi`(λ) ⊂ suppuλ ⊂ Epi`(λ).

En fait, l’estimation ci-dessus montre que le frontière libre ∂{uλ > 0} n’atteint jamais
l’atmosphère.

3 Équation de Boltzmann
Nous présentons ici certains modèles d’équations, qui interviennent en théorie cinétique

des gaz et qui feront l’objet du troisième chapitre de la thèse et auquel nous renvoyons le
lecteur pour une présentation détaillée.

Notons f : [0, T ]×R3×R3 → R la distribution des particules d’un gaz dans R3, c’est-
à-dire, pout tout t ∈ [0, T ] la quantité f(t, x, v)dxdv est la densité des particules du gaz
dans l’élément de volume dxdv. L’intervalle de temps peut être fini, T < +∞ ou infini,
T = +∞, et la variable temporelle peut prendre aussi des valeurs négatives, t ∈ R, ce qui
correspond aux solutions dites éternelles.

On peut établir une corrélation entre la distribution f et les variables macroscopiques
(observables) : la densité ρ =

∫
f(t, x, v)dv, la vitesse ρu =

∫
f(t, x, v)vdv et la température

ρ|u|2 + 3ρT =
∫
f(t, x, v)|v|2dv. Ce sont les trois premiers moments de f .

3.1 Collisions

En l’absence de collisions entre les particules du gaz, alors la densité f est transportée
par la dérivée de matérielle, i.e.

(3.1) ∂tf + v · ∇xf = 0.
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Nous supposons que les collisions impliquées sont seulement binaires. Nous supposons
également que les collisions sont élastiques, i.e. la quantité de mouvement et l’énergie
cinétique est conservée. Alors, si v, v∗ sont les vitesses de pré-collision de deux particules
et v′, v′∗ leurs vitesses respectives, après leur collision, on a

v′ + v′∗ = v + v∗

|v′|2 + |v′∗|2 = |v|2 + |v∗|2.

Ce sont 4 équations à 6 inconnues, on peut donc obtenir une famille à 2 paramètres de
solutions, plus précisément pour σ ∈ S2 la sphère unité dans R3 on pouvons écrire

v′ = v + v∗
2 + |v − v∗|2 σ

v′∗ = v + v∗
2 − |v − v∗|2 σ.

Lorsque nous prenons en compte les collisions, le zéro sur le côté droit de (3.1) devrait
être remplacé par l’opérateur de collision Q = Q+ −Q−, qui est la différence d’un terme
de gain et un terme de perte. On suppose que les collisions sont localisées ce qui signifie
que Q±(f, f)(t, x, v) = Q±(f(t, x, ·), f(t, x, ·))(v). Alors pour v ∈ R3 le terme de perte
Q−(f, f)(v) est l’intégrale sur tous les v∗, v′, v′∗ de la probabilité que les vitesses v, v∗
passent à v′, v′∗ après une collision, que nous noterons p(v, v∗ → v′, v′∗), pondérée par la
densité des particules en commun avec des vitesses v, v∗, f2(v, v∗), i.e.

Q−(f, f)(v) =
∫

v∗

∫

v′

∫

v′∗

f2(v, v∗)p(v, v∗ → v′, v′∗)dv′∗dv′dv∗.

Nous supposons que les vitesses des particules qui sont sur le point d’entrer en collision
sont décorrélées (l’hypothèse du chaos), alors f2(v, v∗) = f(v)f(v∗). Enfin, nous supposons
que les collisions sont micro-réversibles, c’est-à-dire, pour tout v, v∗, v′, v′∗ on a p(v, v∗ →
v′, v′∗) = p(v′, v′∗ → v, v∗), alors, nous pouvons écrire le terme de gain

Q+(f, f)(v) =
∫

v∗

∫

v′

∫

v′∗

f(v′)f(v′∗)p(v, v∗ → v′, v′∗)dv′∗dv′dv∗,

et l’opérateur de collision

Q(f, f)(v) =
∫

v∗

∫

v′

∫

v′∗

(f(v′)f(v′∗)− f(v)f(v∗))p(v, v∗ → v′, v′∗)dv′∗dv′dv∗.

3.2 Section efficace

Selon le principe d’invariance galiléenne, la probabilité p(v, v∗ → v′, v′∗) ne dépend que
de |v − v∗| et du cosinus de l’angle de déviation, i.e. v−v∗

|v−v∗| · σ, ce que nous noterons par
p = B̄

(
|v − v∗|, v−v∗|v−v∗| · σ

)
.

Si cos θ = v−v∗
|v−v∗| · σ, lorsque la force interparticulaire est proportionnelle à r−1/ν , avec

r qui désigne la distance interparticulaire et ν ∈ (0, 1), nous pouvons écrire pour θ ∈ [0, π]

(3.2) B̄(|v − v∗|, cos θ) = |v − v∗|1−4νB(cos θ),

avec B une fonction régulière, sauf pour θ = 0 pour laquelle nous avons

B(cos θ) θ→0∼ C

θ2+2ν ,
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avec C > 0. A noter que puisque ν ∈ (0, 1) la singularité de B est toujours non-intégrable.
Pour ν ∈ (0, 1/2) la singularité est dite mild et si ν ∈ [1/2, 1) est dite forte.

Nous disons que B̄ est un potentiel dur si lim
|v|→+∞

B̄(v, cos θ) = +∞, un potentiel doux si

lim
|v|→+∞

B̄(v, cos θ) = 0 et un potentiel maxwellien s’il ne dépend pas de la vitesse relative,

i.e. il est de la forme B(cos θ).
Avec ces notations, l’équation de Boltzmann homogène pour les molécules maxwel-

liennes s’écrit

(3.3) ∂tf(v, t) = Q(f, f)(v, t),

où la forme bilinéaire Q correspondant à un gaz maxwellien est donnée par

(3.4) Q(g, f)(v) =
∫

R3

∫

S2
B
(
v − v∗
|v − v∗|

· σ
)

(f(v′)g(v′∗)− f(v)g(v∗) dσdv.

On notera également qu’en ce qui concerne le changement de variables σ → −σ dans (3.4),
on peut considérer la place du noyau collisionnel symétrisé

(3.5)
[
B
(
v − v∗
|v − v∗|

· σ
)

+ B
(
v∗ − v
|v − v∗|

· σ
)]

χ{(v−v∗)·σ>0},

où χ est la fonction caractéristique de l’ensemble correspondant, en d’autres termes, nous
pouvons supposer que θ ∈ [0, π/2] dans (3.2).

3.3 Solutions éternelles

L’existence d’une solution f = f(v, t), avec v ∈ R3 et t > 0, de l’équation de Boltzmann
homogène pour un gaz de molécules maxwelliennes, éqs. (3.3) – (3.4), est bien connue,
voir e.g. [19]. Cette solution satisfait les lois de conservation de la masse, la moyenne et la
température (énergie) du gaz, i.e.

(3.6)
∫

R3
f(v, t) dv = 1,

∫

R3
f(v, t)vi dv = 0 (i = 1, 2, 3),

∫

R3
f(v, t)|v|2 dv = 3,

et converge asymptotiquement en temps vers un état maxwellienM(v) = (2π)−3/2e−|v|
2/2.

Un cas particulièrement intéressant est donné lorsque l’inconnue est considérée en
fonction de la transformée de Fourier de la variable vitesse, soit ϕ(ξ, t) = f̂(ξ, t), ce qui
conduit, via les formules de Bobylev [2] (voir aussi [8]), à l’équation de Boltzmann simplifiée

(3.7) ∂tϕ(ξ, t) =
∫

S2
B
(
ξ · σ
|ξ|

) (
ϕ(ξ+, t)ϕ(ξ−, t)− ϕ(ξ, t)ϕ(0, t)

)
dσ,

avec les vecteurs ξ+ = (ξ + |ξ|σ)/2 et ξ− = (ξ − |ξ|σ)/2 qui vérifient les relations

ξ+ + ξ− = ξ et |ξ+|2 + |ξ−|2 = |ξ|2.

Suivant [18], Cannone et Karch ont introduit l’espace Kα = {ϕ : R3 → C des fonctions
caractéristiques telles que supξ∈R3 |ξ|−α|1−ϕ(ξ)| <∞} et sous certaines hypothèses assez
faibles d’intégrabilité du noyau de collision B, i.e.

(3.8) (1− y)α0/4(1 + y)α0/4B(y) ∈ L1(−1, 1) pour un certain α0 ∈ [0, 2],

ils ont montré que si la donnée initiale est dans Kα, alors le problème de Cauchy pour
l’équation (3.7) admet une unique solution classique ϕ ∈ C([0,∞),Kα0), voir [4, Théo-
rèmes 2.2 et 2.5] pour plus de détails.
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Dans cette thèse, nous prouvons de nouveaux résultats d’existence de solutions éter-
nelles de l’équation (3.7), autrement dit définies en tout temps t ∈ R.

Nous commençons par introduire la notion de moment généralisé d’ordre α, à savoir
une fonction ϕ ∈ Kα, telle que la limite limξ→0 |ξ|−α

(
1−ϕ(ξ)

)
existe. Avec cette notation,

nous pouvons annoncer un résultat de propagation des moments généralisés d’ordre α des
solutions de l’équation (3.7).

Théorème 3.1. Soit ϕ ∈ C([0,∞),Kα) avec α ∈ (0, 2) une solution de l’équation (3.7).
On suppose que limξ→0 |ξ|−α

(
1− ϕ(ξ, 0)

)
= K pour une constante K > 0. Alors

(3.9) lim
ξ→0

1− ϕ(ξ, t)
|ξ|α = Keλαt pour tout t ≥ 0,

où la constante λα ≥ 0 est définie par l’expression

(3.10) λα =
∫

S2
B
(
ξ · σ
|ξ|

)( |ξ−|α + |ξ+|α
|ξ|α − 1

)
dσ.

Dans le cas limite α = 2, on obtiendrait λα = 0 et la formule (3.9) exprime la conserva-
tion du moment d’ordre deux (conservation de l’énergie) contenue dans (3.6). Nous allons
utiliser ces moments généralisés d’ordre α pour construire des solutions éternelles de
l’équation (3.7).

Théorème 3.2. Supposons que B vérifie la condition (3.8) et fixons α ∈ [α0, 2). Pour
chaque K > 0 il existe une solution éternelle ϕ ∈ C((−∞,∞),Kα), w̄ 6≡ 1 de l’équation
(3.7).

10 3. ÉQUATION DE BOLTZMANN



Bibliographie

[1] G. Barles, H. M. Soner, and P. E. Souganidis. Front propagation and phase field
theory. SIAM J. Control Optim., 31(2) :439–469, 1993.

[2] A. V. Bobylëv, The method of the Fourier transform in the theory of the Boltzmann
equation for Maxwell molecules, Dokl. Akad. Nauk SSSR, 225 (1975), pp. 1041–1044.

[3] A. V. Bobylev and C. Cercignani, Self-similar solutions of the Boltzmann equation
and their applications, J. Statist. Phys., 106 (2002), pp. 1039–1071.

[4] M. Cannone and G. Karch, Infinite energy solutions to the homogeneous Boltzmann
equation, Comm. Pure Appl. Math., 63 (2010), pp. 747–778.

[5] M. Cannone and G. Karch, On self-similar solutions to the homogeneous Boltzmann
equation, Kinet. Relat. Models, 6 (2013), pp. 801–808.

[6] O. Cazacu and I. R. Ionescu. Compressible rigid viscoplastic fluids. Journal of the
Mechanics and Physics of Solids, 54(8) :1640 – 1667, 2006.

[7] Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher. A level set formulation of
Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys.,
124(2) :449–464, 1996.

[8] L. Desvillettes. About the use of the Fourier transform for the Boltzmann equation.
Riv. Mat. Univ. Parma (7), 2* :1–99, 2003. Summer School on “Methods and Models
of Kinetic Theory” (M&MKT 2002).

[9] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear
PDE. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, 359–375.

[10] L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential
equations. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 3-4, 245–265.

[11] Y. Giga. Surface evolution equations : A level set approach, volume 99 of Monographs
in Mathematics. Birkhäuser Verlag, Basel, 2006.

[12] Y. Goto, K. Ishii, and T. Ogawa. Method of the distance function to the Bence-
Merriman-Osher algorithm for motion by mean curvature. Commun. Pure Appl.
Anal., 4(2) :311–339, 2005.

[13] I. R. Ionescu, A. Mangeney, F. Bouchut, and O. Roche. Viscoplastic modeling of gra-
nular column collapse with pressure-dependent rheology. Journal of Non-Newtonian
Fluid Mechanics, 219 :1 – 18, 2015.

[14] Y. Morimoto and T. Yang, Smoothing effect of the homogeneous Boltzmann equation
with measure valued initial datum, Ann. Inst. H. Poincaré Anal. Non Linéaire 32
(2015), pp. 429–442.

[15] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces, volume
153 of Applied Mathematical Sciences. Springer-Verlag, New York, 2003.

11



BIBLIOGRAPHIE

[16] J. A. Sethian. Level set methods and fast marching methods, volume 3 of Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge Univer-
sity Press, Cambridge, second edition, 1999. Evolving interfaces in computational
geometry, fluid mechanics, computer vision, and materials science.

[17] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions
to incompressible two-phase flow. Journal of Computational Physics, 114(1) :146 –
159, 1994.

[18] G. Toscani and C. Villani, Probability metrics and the uniqueness of the solution to
the Boltzmann equation for a Maxwell gas, J. Stat. Phys. 94 (1999), pp. 619–637.

[19] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook
of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71–305.

12 BIBLIOGRAPHIE



Chapitre 1

A rigorous setting for the
reinitialization of first order level
set equations

This chapter is a paper [26] (accepted for publication in Interfaces and Free Boundaries)
written in collaboration with Nao Hamamuki †.

Abstract

In this paper we set up a rigorous justification for the reinitialization algorithm. Using
the theory of viscosity solutions, we propose a well-posed Hamilton-Jacobi equation with
a parameter, which is derived from homogenization for a Hamiltonian discontinuous in
time which appears in the reinitialization. We prove that, as the parameter tends to
infinity, the solution of the initial value problem converges to a signed distance function
to the evolving interfaces. A locally uniform convergence is shown when the distance
function is continuous, whereas a weaker notion of convergence is introduced to establish a
convergence result to a possibly discontinuous distance function. In terms of the geometry
of the interfaces, we give a necessary and sufficient condition for the continuity of the
distance function. We also propose another simpler equation whose solution has a gradient
bound away from zero.

1 Introduction

Setting of the problem In this paper we establish a rigorous setting for the reinitiali-
zation algorithm. In the literature “reinitialization" usually refers to the idea of stopping
the process of solving an evolution equation regularly in time and changing its solution at
the stopping time so that we obtain a function which approximates the (signed) distance
function to the zero level set of the solution. A typical example of such evolution equations
is

(1.1) ut = c(x, t)|∇u|,

where u = u(x, t) is the unknown, ut = ∂tu, ∇u = (∂x1u, . . . , ∂xnu) and | · | stands for the
standard Euclidean norm in Rn. The equation (1.1) describes a motion of an interface Γt
in Rn whose normal velocity is equal to c = c(x, t), where at each time the zero level set

†. Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido,
060-0810, Japan. e-mail : hnao@math.sci.hokudai.ac.jp
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of u(·, t) represents the interface Γt. In general, the solution of (1.1) does not preserve the
distance function, and its gradient can get very close to zero. For example, the function

u(x, t) = 1− |x|e−t

solves the problem {
ut = |x| · |ux| in R × (0, T ),
u(x, 0) = 1− |x| in R

in the viscosity sense.
Motivated by the numerical theory of reinitialization we are led to study a new equation

which approximates the distance function, namely we study the limit as θ → ∞ of the
solution of

(1.2)
{
uθt = H1(x, t,∇uθ) + θβ(uθ)h(∇uθ) in Rn × (0, T ),
uθ(x, 0) = u0(x) in Rn

with u0 Lipschitz continuous, β(u) = u/
√
ε2

0 + u2, h(p) belongs to a class of functions
which are used to penalise the distance of p from 1, see (1.5), and finally H1 = H1(x, t, p)
is assumed to be geometric (see (H2) in Subsection 2.1) and satisfy suitable continuity
conditions which guarantee the uniqueness and existence of viscosity solutions.

For the numerical study of (1.1) several simplifications can be made when the solution
is or approximates the distance function. One of the reasons is the fact that the gradient
of the distance function is always 1 and thus bounded away from 0. When the gradient
degenerates like in the above example, it becomes difficult to compute precisely the zero
level sets. The reinitialization is used to overcome such an issue. For a more detailed
discussion on the numerical profits of the reinitialization, see [32, 31].

Several reinitialization techniques have been introduced in the literature. In this paper
we focus on the one introduced by Sussman, Smereka and Osher ([36]). Their method
allows to reinitialize (1.1) without explicitly computing the signed distance function with
the advantage that the level set function of their method approximates the signed distance
at every time.

We briefly explain the main idea of the method in [36]. Consider the corrector equation

(1.3) φt = sign(φ)(1− |∇φ|),

where sign(·) is the sign function defined as

sign(r) =





r

|r| if r 6= 0,

0 else.

The solution of this equation asymptotically converges to a steady state |∇φ| = 1, which
is a characteristic property of the distance function ; see Subsection 3.3. The purpose of
the sign function in (1.3) is to control the gradient. In the region where φ is positive, the
equation is φt = 1 − |∇φ|. Thus, the monotonicity of φ is prescribed by the order of 1
and |∇φ|. This forces |∇φ| to be close to 1 as time passes. Also, the relation sign(0) = 0
guarantees that the initial zero level set is not distorted since φt = 0 on the zero level.
Roughly speaking, the idea of [36] is to stop the evolution of (1.1) periodically in time and
solve (1.3) till convergence to the signed distance function is achieved. This method was
first applied in [36] for the calculation of the interface of a fluid flow, with the disadvantage
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that the fluid flow can lose mass, because of the accumulation of numerical errors after
many periods are completed. This problem was later fixed in [35].

Up to the authors’ knowledge there is no rigorous setting for the reinitialization process
described above. In this paper we study an evolution of an interface Γt given as the zero
level set of the solution u to the initial value problem of the general Hamilton-Jacobi
equation

(1.4) ut = H1(x, t,∇u)

with a Lipschitz continuous initial datum u0 and H1 as in (1.2). As a corrector equation
we use a slight modification of (1.3), namely

(1.5) ut = β(u)h(∇u),

where ε0 > 0 is fixed and the function h can be one of the following :
(1) h(p) = 1− |p|,
(2) The positive part of (1), i.e., h(p) = (1− |p|)+.

The function β(u) is a smoother version of the sign function. Although the function h in (2)
does not preserve the distance function in the sense of [36] and in a way that will be made
rigorous later in Theorem 2.3 and Example 4.1, it does however prevent the gradient of the
solution to approach zero on the zero level set. Moreover, it provides a simple monotone
scheme for the numerical solution of the problems which we will encounter. In fact, our
result applies for corrector equations which are more general than (1.5), but for the sake
of simplicity we present, in this section, the main idea for this model equation.

The idea, as in [36], is to solve (1.4) and (1.5) periodically in time, the first for a period
of k1∆t and the second for k2∆t, where k1, k2,∆t > 0 and one period will be completed
at a time step of length ε = (k1 + k2)∆t. We are thus led to define the following combined
Hamiltonian

H12(x, t, τ, r, p) :=





H1(x, t

1+ k2
k1

, p) if (i− 1) < τ ≤ (i− 1) + k1∆t
ε ,

u√
ε20+u2h(∇u) if (i− 1) + k1∆t

ε < τ ≤ i

for i = 1, ..., dTε e. Here by dxe we denote the smallest integer which is not smaller than
x ∈ R. The rescaling of the Hamiltonian H1 in time is required since certain time inter-
vals are reserved for the corrector equation. More precisely, H1 is solved in time length
k1∆tdTε e ∼ T k1

k1+k2
= T

1+ k2
k1

. One would expect that solving the two equations infinitely

often would force the solution of the reinitialization algorithm to converge to the signed
distance function to Γt ; we denote it by d. Therefore we are led to study the limit as ε→ 0
of the solutions of

(1.6)




uεt = H12

(
x, t,

t

ε
, uε,∇uε

)
in Rn × (0, T ),

uε(x, 0) = u0(x) in Rn.

This is a homogenization problem with the Hamiltonian H12 being 1-periodic and dis-
continuous in the fast variable τ = t/ε. Since the limit above is taken for ∆t → 0 (and
consequently ε→ 0), two free parameters still remain, namely k1 and k2. In fact, we show
that the solutions of (1.6) converge, as ε → 0 and after rescaling, to the solution uθ of
(1.2). Here θ = k2/k1 is the ratio of length of the time intervals in which the equations
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(1.4) and (1.5) are solved. If we solve the corrector equation (1.5) in a larger interval than
the one we solve the original (1.4), we can expect the convergence to a steady state. For
this reason we study the limit as θ →∞ of the solutions of (1.2).

Let us consider the function h in (1) as the model case. Roughly speaking, the limit
θ → ∞ forces h(∇uθ) to be close to 0 except on the zero level of uθ, i.e., |∇uθ| ≈ 1 for
large value of θ. If we further know that the zero level set of uθ is the same as that of the
solution of (1.4) and hence is equal to Γt (we call this property a preservation of the zero
level set), then we would get a convergence of uθ to the signed distance function d, which
is known to be a solution of the eikonal equation

(1.7) |∇d| = 1

with the homogeneous Dirichlet boundary condition on the zero level. The preservation of
the zero level set for (1.2) mainly follows from [25].

To justify the convergence to d rigorously, the comparison principle for the eikonal
equation (1.7) is used to compare the distance function and a half-relaxed limit of uθ,
which is a weak notion of the limit for a sequence of functions. To do this, we need to
know that the limit of uθ also preserves the zero level set. This is not clear, despite the
fact that uθ always preserves the zero level set for every θ > 0. For the preservation of
the zero level set by the limit, continuity of the distance function plays an important
role. As is known, if we fix a time, d(·, t) is a Lipschitz continuous function, but d is not
continuous in general as a function of (x, t). Indeed, when the interface has an extinction
point (Definition 5.3), the distance function can be discontinuous near this point. For our
problem, by constructing suitable barrier functions it turns out that, when d is continuous,
the zero level set of the half-relaxed limit of uθ is the same as Γt. Consequently, we obtain
the locally uniform convergence of uθ to d ; see Theorem 2.2 (iii).

Concerning the locally uniform convergence, we further consider a condition which
guarantees the continuity of d. An important property of first order equations is the finite
speed of propagation (Subsection 5.1), which allows us to show that the only way the
distance function can be discontinuous is if points at the zero level extinct instantaneously.
More precisely, we show that the distance function is continuous at (x, t) if and only if
at least one of the nearest points of x to Γt is a non extinction point ; see Theorem 5.4
(3). Therefore, if the latter condition is satisfied for every (x, t) ∈ Rn × (0, T ), then the
solutions uθ of (1.2) converge locally uniformly to d in Rn × (0, T ) (Remark 5.5). The
converse is also true.

If the signed distance function d is discontinuous, we cannot expect that the continuous
solutions uθ of (1.2) will converge locally uniformly to d. In fact, when d is discontinuous,
the zero level sets of the half-relaxed limit of uθ are not Γt, and this prevents us to apply
the comparison principle for (1.7). We can however show (Theorem 2.2 (i)) a weaker notion
of convergence to d ; namely a convergence to d from below in time as follows :

(1.8) lim
(y,s,θ)→(x,t,∞)

s≤t

uθ(y, s) = d(x, t) for all (x, t) ∈ Rn × (0, T ).

This will be shown by introducing a notion of a half-relaxed limit from below in time and
by using the fact that d is continuous from below in time. The result (1.8) also implies a
locally uniform convergence at any fixed time, that is, uθ(·, t) converges to d(·, t) locally
uniformly in Rn as θ →∞ ; see Theorem 2.2 (ii).

In a future work we plan to introduce a numerical scheme for (1.2), where no reini-
tialization will be required. We also plan to study numerically and rigorously a similar
method for second order equations, including the mean curvature flow, of the form

ut = H1(x, t,∇u,∇2u) + θβ(u)h(∇u).
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Review of the literature In [11], Chopp used a reinitialization algorithm for the mean
curvature flow. His technique does not utilize a corrector equation, instead, at each stop-
ping time he recalculates the signed distance and starts the evolution again with this new
initial value. In [32] it is mentioned that another way to reinitialize is to compute the
signed distance at each stopping time using the fast marching method. In [35] the problem
of the movement of the zero level set which appeared in [36] is fixed by solving an extra
variational problem during the iteration of the two equations. Sethian in [32] suggests to
use, instead of the reinitialization algorithm, the method of extended velocity described
in chapter 11.

In [14] a new nonlinear equation is introduced for the evolution of open sets with thin
boundary under a given velocity field. The solution is for every time the signed distance
function to the boundary of the open set (called an oriented distance function in [14]).
Other numerical methods for preserving the signed distance are presented in [15] and [23].

In [24], the authors use the approximation of the mean curvature flow by the Allen-
Cahn equation and they prove the convergence of an equation to the signed distance
function. See also [8] for a related theory developed for anisotropic and crystalline mean
curvature flow.

Another method for approximating the distance function is presented in [4]. This me-
thod as in [24] is motivated by the phase field theory, but is also applied for first order
equations. In both papers the assumption of non-fattening of the zero level set is necessary
in order to prove convergence. Even for first order equations the zero level set can develop
interior when the velocity changes sign or depends on time, see Example 5.2 ; also in [4,
Theorem 4.1] it is proved, in fact, that a constant sign or a time independence condition of
the velocity is sufficient for the evolution not to develop an interior. We note that for our
method we do not need to assume a non-fattening condition or any additional smooth-
ness of the zero level set and we do not impose any restrictions on the sign or the time
dependence of the velocity. We also mention that another difference from our method is
that in [4] one needs to track the boundaries ∂{u > 0} and ∂{u ≥ 0}. This is why the
non-fattening condition is needed. Whereas, in our case we only track the set {u = 0}
which is preserved for all θ > 0 by solutions of (1.2), see Theorem 3.1.

Summary To sum up, the contributions of this paper are the mathematical justification
of the reinitialization procedure, the introduction of a new approximate scheme for the
distance function of evolving interfaces, i.e., solving (1.2) and taking the limit as θ →∞ ;
the formulation of a necessary and sufficient condition for the solution of the scheme
(1.2) to converge locally uniformly to the signed distance function, in terms of topological
changes of interfaces ; the discovery of a weak notion of a limit which gives the signed
distance function even if it is discontinuous.

We also mention that through the rigorous analysis of the reinitialization procedure,
we retrieve the correct rescaling in time of the equation (1.4) in order to approximate the
signed distance function, and thus we extend the reinitialization procedure to evolutions
with time depending velocity fields. Lastly, the equation in (1.2) with h satisfying (2) or
more generally (as we will see later) the assumption (2.10) admits a natural numerical
scheme with a CFL condition, see also [5] or [33]. We plan to study this last part in a
future work.

Organization of the paper In Subsection 2.1 we state the main results, and in Sub-
section 2.2 we present known results concerning a well-posedness and regularity of visco-
sity solutions. Section 3 consists of main tools which we use in order to prove our main
theorems, namely the preservation of the zero level set (Subsection 3.1), construction of
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barrier functions (Subsection 3.2) and characterization of the distance function via the
eikonal equation (Subsection 3.3). In Section 4 we prove convergence results to the signed
distance function d. The proof for continuous d and that for discontinuous d will be given
separately. Section 5 is concerned with continuity properties of the distance function, and
finally in Section 6 we prove a homogenization result.

2 Main results

2.1 Main theorems

We study the evolution of the zero level set of a function w given by the following
problem :

(2.1a)

(2.1b)




wt = H1(x, t,∇w) in Rn × (0, T ),

w(x, 0) = u0(x) in Rn.

Here u0 is a possibly unbounded Lipschitz continuous function on Rn and its Lipschitz
constant is denoted by L0. The function H1 = H1(x, t, p) : Rn× [0, T ]×Rn → R satisfies
(H1) H1 ∈ C(Rn × [0, T ]×Rn),
(H2) H1 is geometric, i.e., H1(x, t, λp) = λH1(x, t, p) for all λ > 0, x ∈ Rn, t ∈ [0, T ] and

p ∈ Rn,
(H3) There is a positive constant L1 such that

|H1(x, t, p)−H1(y, t, p)| ≤ L1|x− y|

for all x, y ∈ Rn, t ∈ [0, T ] and p ∈ Rn with |p| = 1,
(H4) There is a positive constant L2 such that

|H1(x, t, p)−H1(x, t, q)| ≤ L2|p− q|

for all x ∈ Rn, t ∈ [0, T ] and p, q ∈ Rn,
The condition (H2) is the first order version of “geometricity" which was first introduced
by Y. G. Chen, Y. Giga, and S. Goto for second order nonlinear operators [10] ; see also a
book of Y. Giga [21].

Remark 2.1. In the literature the assumption (H3) is usually given as : There are L, L̄
positive, such that

(2.2) |H(x, t, p)−H(y, t, p)| ≤ L|x− y||p|+ L̄|x− y|
for all x, y, p ∈ Rn and t ∈ [0, T ]. However, since the Hamiltonian H is geometric (the
assumption (H2)), it turns out that the conditions (H3) and (2.2) are equivalent. Indeed,
it is clear that (H3) implies (2.2) with L = L1 and L̄ = 0. Also, under (2.2) we can easily
derive (H3) with L1 = L + L̄. Here let us also show that, in fact, we can take L1 = L in
(H3) when (2.2) holds. Let x, y ∈ Rn, t ∈ [0, T ], p ∈ Rn with |p| = 1 and r > 0. Then we
have

|H(x, t, rp)−H(y, t, rp)| ≤ Lr|x− y|+ L̄|x− y|.
Dividing both sides by r and using (H2), we get

|H(x, t, p)−H(y, t, p)| ≤ L|x− y|+ L̄
|x− y|
r

.

If we now take the limit as r → +∞, we get (H3) with L1 = L.
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The assumption (H2) is natural for a geometric evolution problem, while (H3) is used
for construction of barriers in Subsection 3.2 and for the proof of Lipschitz continuity of
solutions in Appendix A. We call the constant L2 in assumption (H4) the speed of propa-
gation of the zero level set of the solutions. Existence, uniqueness and other properties of
the problem (2.1) can be found in Subsection 2.2. Since the zero level set of the solution w
of (2.1) is the main focus of this paper we will use the following notations for t ∈ [0, T ) :

(2.3)
(2.4)

D±t := {x ∈ Rn | ±w(x, t) ≥ 0},
Γt := {x ∈ Rn | w(x, t) = 0}

and
D+ :=

⋃

t∈(0,T )
(D+

t × {t}), D− :=
⋃

t∈(0,T )
(D−t × {t}).

In what follows we will always suppose that the evolution associated with w is not empty,
i.e.,

(2.5) Γt 6= ∅ for all t ∈ [0, T ).

Also for Ω ⊂ Rn the distance function dist(·,Ω) : Rn → [0,∞) is defined as

dist(x,Ω) := inf
y∈Ω
|x− y|.

It is well-known that the distance function dist(·,Ω) is 1-Lipschitz continuous in Rn, i.e.,

|dist(x,Ω)− dist(y,Ω)| ≤ |x− y| for all x, y ∈ Rn.

For a function w : Rn × [0, T ) → R, Lipx[w] stands for the Lipschitz constant of w with
respect to x, i.e.,

Lipx[w] := sup
x,y∈Rn

x 6=y

sup
t∈[0,T )

|w(x, t)− w(y, t)|
|x− y| ∈ [0,∞].

Our first result concerns an equation of the form

(2.6) uθt = H1(x, t,∇uθ) + θH2(uθ,∇uθ) in Rn × [0, T ),

where θ > 0 is a parameter, H1 is as in (2.1a) and

(2.7) H2(r, p) = β(r)h(p).

The function β is assumed to satisfy
(B) Lip[β] =: Lβ <∞ and β is non-decreasing and bounded in R with β(0) = 0, β(r) > 0

if r > 0, β(r) < 0 if r < 0,
where by Lip[f ] we denote the Lipschitz constant of a function f : Rn → R. Moreover,
h : Rn → R is such that

(2.8) there is a modulus ωh such that |h(p)− h(q)| ≤ ωh(|p− q|) for all p, q ∈ Rn.

Here a function ω : [0,∞) → [0,∞) is called a modulus if ω is non-decreasing and 0 =
ω(0) = lim

r→0
ω(r). We will also use one of the following assumptions for the function h :

(2.9a)

(2.9b)




h(p) > 0 if |p| < 1,

h(p) < 0 if |p| > 1
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or

(2.10a)

(2.10b)




h(p) > 0 if |p| < 1,

h(p) = 0 if |p| ≥ 1.

Examples of these functions are

(2.11)

(2.12)

H1(x, t, p) = c(x, t)|p|,

H2(u, p) = u2
√
ε2

0 + u2
h(p)

for

(2.13) h(p) = 1− |p|

or

(2.14) h(p) = (1− |p|)+,

where ε0 > 0, c is Lipschitz continuous with respect to x ∈ Rn uniformly in time, and for
a ∈ R we denote by

a± = max{±a, 0}
the positive and negative part of a. We see that the function h defined in (2.13) satisfies
(2.9) while (2.14) satisfies (2.10).

For a function w(x, t) defined in Rn × [0, T ), we define the signed distance function
d(x, t), from the zero level set of w, as follows :

(2.15) d(x, t) =
{

dist(x,Γt) if x ∈ D+
t ∪ Γt,

−dist(x,Γt) if x ∈ D−t .

Here D±t and Γt are defined in (2.3) and (2.4).
For later use we collect our main assumptions in the following list :

(2.16)
{
u0 is Lipschitz continuous in Rn, H1 satisfies (H1)–(H4),
H2 is of the form (2.7), β satisfies (B), h satisfies (2.8).

For the solution uθ of (2.6) and (2.1b) we have the following main theorem.

Theorem 2.2 (Convergence of uθ to the signed distance function). Assume (2.16) and
(2.9). Let uθ be the solution of (2.6) and (2.1b). Let d be the signed distance function as
in (2.15). Then
(i)

lim
(y,s,θ)→(x,t,∞)

s≤t

uθ(y, s) = d(x, t) for all (x, t) ∈ Rn × (0, T ),

(ii) uθ(·, t) converges to d(·, t) locally uniformly in Rn as θ → +∞ for all t ∈ (0, T ),
(iii) if in addition d(x, t) is continuous in Rn × (0, T ), then

uθ converges to d locally uniformly in Rn × (0, T ) as θ → +∞.
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In general, if the signed distance function d is discontinuous, we cannot expect that the
continuous functions uθ will converge to d locally uniformly. The following example shows
that the signed distance function can be discontinuous when points of the zero level set
disappear instantaneously. We will denote by Br(x) the open ball of radius r > 0 centered
at x. Its closure is Br(x). Also, 〈·, ·〉 stands for the standard Euclidean inner product.

Example 2.1 (A single discontinuity). We study (2.1) with

(2.17) H1(x, p) = c(x)|p|,

where c ∈ Lip(Rn) is bounded and non-negative. Since H1 is written as H1(x, p) =
max
a∈B1(0)

〈c(x)a, p〉, the viscosity solution w of (2.1) has a representation formula as a value

function of the associated optimal control problem ([17, Section 10]), which is of the form

(2.18) w(x, t) = sup
α∈A

u0(Xα(t)).

Here A := {α : [0, T ) → B1(0), measurable} and Xα : [0, T ) → Rn is the solution of the
state equation

(Xα)′(s) = c(Xα(s))α(s) in (0, T ), Xα(0) = x.

Each element α ∈ A is called a control.
We now consider the case where c(x) = 1. This describes a phenomenon where the

interface expands at a uniform speed 1. In this case the optimal control forces the state
Xα(·) to move towards the maximum point of u0 in Bt(x), and hence

(2.19) w(x, t) = max
|x−y|≤t

u0(y).

Take the initial datum as u0(x) = max{(1−|x− 2|)+, (1−|x+ 2|)+}. The formula (2.19)
now implies

w(x, t) = min{max{(t+ 1− |x− 2|)+, (t+ 1− |x+ 2|)+}, 1}.

To see this we notice that

max
|x−y|≤t

(1− |y ± 2|)+ = min{(t+ 1− |x± 2|)+, 1},

then using the formula (2.19) and after changing the order of the maxima, we calculate

w(x, t) = max{min{(t+ 1− |x− 2|)+, 1},min{(t+ 1− |x+ 2|)+, 1}}
= min{max{(t+ 1− |x− 2|)+, (t+ 1− |x+ 2|)+}, 1}.

Here we have used the relation max{min{a1, b}, min{a2, b}} = min{max{a1, a2}, b} for
a1, a2, b ∈ R. We therefore have

{w = 0} =
{
{|x| ≥ t+ 3} ∪ {|x| ≤ 1− t} if t ≤ 1,
{|x| ≥ t+ 3} if t > 1

and

d(x, t) =
{

max{(t+ 1− |x− 2|)+, (t+ 1− |x+ 2|)+} if t ≤ 1,
(t+ 3− |x|)+ if t > 1.

See Figure 1.1. Thus d is discontinuous on ` := {(x, 1) | − 2 < |x| < 2} ; more precisely,
d is not upper semicontinuous but lower semicontinuous on `.
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O x

d(x, t)(t > 1)

d(x, 1)

4

d(x, 0)

Figure 1.1 – The graph of d.

If h satisfies (2.10) we can still estimate from one side the limit with the distance
function. More precisely we have the following theorem.

Theorem 2.3. Assume (2.16) and (2.10) with uθ, d as in Theorem 2.2. Then

d(x, t) ≤ sup
θ>0

uθ(x, t) < +∞ for all x ∈ D+
t ,

d(x, t) ≥ inf
θ>0

uθ(x, t) > −∞ for all x ∈ D−t .

For the next result we define

(2.20) H12(x, t, τ, r, p) :=




H1(x, t

1+ k2
k1

, p) if (i− 1) < τ ≤ (i− 1) + k1∆t
ε ,

H2(r, p) if (i− 1) + k1∆t
ε < τ ≤ i

for k1, k2 > 0, ∆t > 0, ε = (k1 +k2)∆t and i = 1, ..., dTε e. By definition H12 is 1-periodic in
τ , and in general it is discontinuous in τ . In summary, we are led to the following equation :

(2.21) uεt = H12

(
x, t,

t

ε
, uε,∇uε

)
in Rn × (0, T ).

Remark 2.4. A solution of the problem (2.21), (2.1b) can be constructed by solving (2.21)
in the intervals [ε(i− 1), ε(i− 1) + k1∆t), [ε(i− 1) + k1∆t, εi), i = 1, ..., dTε e, iteratively,
using as initial condition at each interval, the final value of the solution defined in the
previous interval. We call this solution an iterative solution.

Let θ = k2/k1. We define

H̄(x, t, r, p) = 1
1 + θ

(
H1

(
x,

t

1 + θ
, p

)
+ θH2(r, p)

)

and consider the equation

(2.22) ūθt = H̄(x, t, ūθ,∇ūθ) in Rn × (0, T ).

Theorem 2.5 (Homogenization). Assume (2.16). Let ūθ and uε be, respectively, the so-
lution of (2.22), (2.1b) and the iterative solution of (2.21), (2.1b). Then uε converges to
ūθ locally uniformly in Rn × [0, T ).

Remark 2.6. If we set uθ(x, t) = ūθ(x, (1 + θ)t) in Theorem 2.5, then uθ solves the
equation (2.6) and satisfies the initial data (2.1b).
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Remark 2.7. All of our main theorems have the same assumptions on u0 and H1. For
this reason, we will assume (2.16) in the rest of the paper except Subsection 3.1, where
u0 will be generalized. For the function h in (2.7) we will differentiate the assumptions
(2.9) and (2.10). Finally we will state clearly whether or not the distance function d is
continuous.

Remark 2.8. After this work was completed the authors became aware of the article
[34]. Using the theory of the Trotter-Kato products for viscosity solutions as in [34] we
may justify the reinitialization algorithm by defining an iterative solution of a different
Hamiltonian which converges to the solution of (2.22),(2.1b), assuming additionally that
the initial data is bounded. Namely, starting with bounded initial data u0 we solve

(2.23) ut = H1(x, t,∇u), in Rn × (0, k1∆t],

using u(·, k1∆t) as new initial data we solve the corrector equation
(2.24)

ũt = H2(ũ,∇ũ), (or alternativelly ũt = H2(u(·, k1∆t),∇ũ)) in Rn × (0, k2∆t],

using ũ(·, k2∆t) as new initial data we solve again (2.23) and we iterate this argument.
We rescale the time variables t = t̄/(1 + θ), t̄ ∈ (0, ε] and t = t̃θ/(1 + θ), t̃ ∈ (0, ε], in
equations (2.23) and (2.24) respectively. Then, using [34, Theorem 4.1] and [34, Remark
4.3] it is not difficult to see that the iterative solution described above and solved in the
intervals ((i − 1)ε, iε], i = 1, 2, ..., Nε = dTε e, which form the partition {0, ε, ..., Nεε = T}
of (0, T ], converges as ε → 0 to the solution of (2.22),(2.1b), locally uniformly. In other
words, in theorem 2.5 we give a different splitting than the one given in [34] and we show
the convergence to equation (2.22) using the theory of homogenization instead of the theory
of difference schemes.

2.2 Theorems from the literature

In this subsection we will present a comparison principle for general equations of the
form

(2.25) ut = F (x, t, u,∇u) in Rn × (0, T ).

Let us introduce a notion of viscosity solutions. For this purpose, we first define semi-
continuous envelopes of functions. Let K ⊂ Rn. For a function f : K → R we denote the
upper and lower semicontinuous envelopes by f∗ and f∗ : K → R ∪ {±∞} respectively,
which are as follows :

f∗(z) := lim sup
y→z

f(y) = lim
δ→0

sup{f(y) | y ∈ Bδ(z) ∩K},

f∗(z) := lim inf
y→z

f(y) = lim
δ→0

inf{f(y) | y ∈ Bδ(z) ∩K}.

Definition 2.9 (Viscosity Solution). We say that u : Rn × [0, T ) → R is a viscosity
subsolution (resp. a supersolution) of (2.25) if u∗ < +∞(resp. u∗ > −∞) and if

φt ≤ F ∗(x0, t0, φ,∇φ) (resp. φt ≥ F∗(x0, t0, φ,∇φ)) at P0 = (x0, t0)

whenever

(2.26)
{
u∗ ≤ φ on Br0(P0)
u∗ = φ at P0

(
resp.

{
u∗ ≥ φ on Br0(P0)
u∗ = φ at P0

)

for φ ∈ C1(Rn × (0, T )), P0 ∈ Rn × (0, T ) and r > 0 such that Br(P0) ⊂ Rn × (0, T ).
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Since we already use the notation D±, we are going to use the symbol J ± for the
subdifferential respectively for the superdifferential of a function. More precisely for a
function u : Rn × (0, T ) → R we define a superdifferential J +u(z, s) of u at (z, s) ∈
Rn × (0, T ) by

(2.27) J +u(z, s) :=





(p, τ) ∈ Rn ×R

∣∣∣∣∣∣∣∣

∃φ ∈ C1(Rn × (0, T )) such that
(p, τ) = (∇φ, ∂tφ)(z, s) and
max

Rn×(0,T )
(u− φ) = (u− φ)(z, s)




.

A subdifferential J −u(z, s) is defined by replacing “max" by “min" in (2.27). Equivalently,
we say that a function u : Rn × (0, T ) → R is a viscosity subsolution (resp. viscosity
supersolution) of (2.25) if

τ ≤ F ∗(z, s, u∗(z, s), p) (resp. τ ≥ F∗(z, s, u∗(z, s), p) )

for all (z, s) ∈ Rn × (0, T ) and (p, τ) ∈ J +u∗(z, s) (resp. (p, τ) ∈ J −u∗(z, s)).
In order to guarantee the well-posedness of the problem (2.25) and (2.1b), the following

assumptions are usually imposed on the function F : Rn × [0, T ]×R ×Rn → R.

(F1) F ∈ C(Rn × [0, T ]×R ×Rn),
(F2) There is an a0 ∈ R such that r 7→ F (x, t, r, p) − a0r is non-increasing on R for all

(x, t, p) ∈ Rn × [0, T ]×Rn,
(F3) For R ≥ 0 there is a modulus ωR such that

|F (x, t, r, p)− F (x, t, r, q)| ≤ ωR(|p− q|)

for all (x, t, r, p, q) ∈ Rn × [0, T ]×R ×Rn ×Rn, with |p|, |q| ≤ R,
(F4) There is a modulus ω such that

|F (x, t, r, p)− F (y, t, r, p)| ≤ ω(|x− y|(1 + |p|))

for all (x, y, t, r, p) ∈ Rn ×Rn × [0, T ]×R ×Rn.

For the convenience of the reader we will state the comparison principle and sketch
its proof for the problem (2.25) and (2.1b) in Appendix A. For a detailed proof, see [20,
Theorem 4.1].

Proposition 2.10 (Comparison pinciple). Assume that F satisfies (F1)-(F4). Let u, v
be a viscosity subsolution and supersolution respectively of (2.25) and assume that they
satisfy
(A1) u∗(x, 0) ≤ v∗(x, 0) for all x ∈ Rn,
(A2) there is a constant K > 0 such that we have on Rn × (0, T )

u(x, t) ≤ K(1 + |x|), v(x, t) ≥ −K(1 + |x|),

(A3) there is a constant K̃ > 0 such that for x, y ∈ Rn we have

u∗(x, 0)− v∗(y, 0) ≤ K̃|x− y|.

Then
u∗ ≤ v∗ in Rn × [0, T ).

Combining Proposition 2.10 with Perron’s method we get the following theorem.
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Theorem 2.11 (Existence/Uniqueness). Assume (2.16). Then for all θ > 0, there exists
a unique solution u = uθ ∈ C(Rn × [0, T )) of the problem (2.6) and (2.1b) with

ulow ≤ u ≤ uup in Rn × [0, T ),

where uup(x, t) = u0(x) + Kt, ulow(x, t) = u0(x) − Kt, for some K > 0, are a viscosity
supersolution and subsolution respectively of the same problem.

Démonstration. We will only show that u0 ±Kt are a subsolution and a supersolution of
(2.6) for some K > 0, large enough depending on θ, since for the rest of the proof we can
use a Perron’s argument, see for example [28]. We first suppose that u0 is smooth. Then
by the Lipschitz continuity of u0 we have |∇u0| ≤ L0. By assumptions (H2) and (H4),
there is a constant C > 0 such that |H1(x, t,∇u0)| ≤ CL0. Also, since h is continuous and
β is bounded by (B), there is a constant M > 0 such that

|H2(u0,∇u0)| = θ|β(u0)h(∇u0)| ≤ θ max
|p|≤L0

|h(p)|M.

Finally, if we choose K > 0 such that K ≥ CL0 + θ max
|p|≤L0

|h(p)|M , we get the desired

result. For the case where u0 is not smooth, we use the same argument for elements of the
super- and subdifferential of u0.

In order to get a more precise estimate for the Lipschitz constant of solutions considered
in this paper, we will use instead of (H3) the following :

(H3-s) There is a function D ∈ C([0, T ]) such that

|H(x, t, p)−H(y, t, p)| ≤ D(t)|x− y|

for all x, y ∈ Rn, t ∈ [0, T ] and p ∈ Rn with |p| = 1.
Note that the assumption (H3-s) implies the assumption (H3). We define

L(t) := max{L0, 1}e
∫ t

0 D(s) ds.

The following proposition is proved in Appendix A.

Proposition 2.12 (Lipschitz continuity of solutions). Under the assumptions of Propo-
sition 2.10, with H1 satisfying assumption (H3-s) instead of (H3), the solution u of the
problem (2.6) and (2.1b) satisfies

|u(x, t)− u(y, t)| ≤ L(t)|x− y| for all x, y ∈ Rn and t ∈ [0, T ).

Remark 2.13. The Lipschitz continuity of the solution of (2.1) will be used in the next
section to show that the solution uθ of (2.6) gives the same zero level set as (2.1) and
that there exist barrier functions of uθ independent of θ. There, the Lipschitz constant is
allowed to depend on the terminal time T . It is well-known that, if H1 is coercive, i.e.,

H1(x, t, p)→∞ as |p| → ∞ uniformly in (x, t),

then the solution is Lipschitz continuous and its Lipschitz constant does not depend on T .
See, e.g., [3]. Since such independence of T is not needed for our study, we do not require
H1 to be coercive in this paper.

One important property of geometric equations (2.1a) is the invariance under the
change of dependent variables. This invariance property as well as the comparison principle
play a crucial role for the proof of uniqueness of evolutions.
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Theorem 2.14 (Invariance). Let ζ : R → R be a nondecreasing and upper semicontinuous
(resp. lower semicontinuous) function. If w is a viscosity subsolution (resp. supersolution)
of (2.1a), then ζ ◦ w is a viscosity subsolution (resp. supersolution) of (2.1a).

See [21, Theorem 4.2.1] for the proof.

Remark 2.15. As a simple consequence of the invariance property, we see that, when w
is a solution of (2.1a), the characteristic function on D+

t (see (2.3)) defined as

χD+
t

(x) =
{

1 if x ∈ D+
t ,

0 if x /∈ D+
t

is a supersolution of (2.1a) since it is written as χD+
t

(x) = χ(0,∞)(x) ◦ w. Similarly,
χD+

t ∪Γt(x) is a subsolution of (2.1a).

It is known that the evolution of the interface {Γt}t∈(0,T ) associated with (2.1a) is
independent of a choice of the initial data u0. In other words, if the zero levels of initial
data are the same, then those of the solutions are also the same. See [21, Section 4.2.3 and
4.2.4] for the detailed statement and its proof.

3 Main tools

3.1 Preservation of the zero level set

We believe that the preservation of the zero level set is by itself a useful result. For
this reason we present it in a more general framework than the one we are going to apply
it for the proof of our main results.

We study a general equation of the form

(3.1) ut = H1(x, t,∇u) + β(u)G(x,∇u) in Rn × (0, T ).

Here the second term on the right-hand side is generalized so that it depends on x-variable.
(Since we do not assume the particular properties (2.9) and (2.10), in order to distinguish
this generalized equation from (2.6), we use a new notation G(x, p).) The function H1
satisfies (H1)-(H4). For the function β we assume that (B) is true, and forG : Rn×Rn → R
we assume

(G) G satisfies (F3), (F4) and is bounded from above in Rn ×Rn.

Under these assumptions the comparison principle holds for solutions of (3.1). In-
deed, the continuity assumptions on H1, G and β imply that the function F (x, r, p) :=
H1(x, t, p)−β(r)G(x, p) satisfies (F1), (F3), (F4) while (F2) is fulfilled with γ = Lβ(supRn×Rn G).

To guarantee that solutions of (3.1) preserve the original zero level set, two kinds of
sufficient conditions on G are made in our theorem. One is boundedness of G from below,
which, unfortunately, excludes the typical case G(x, p) = 1−|p|. The other condition needs
only local boundedness of G from below near p = 0 but requires solutions of (2.1) to be
Lipschitz continuous, which is not true in general if the initial data u0 is just uniformly
continuous.

In the first author’s dissertation [25], Theorem 3.1 (i) is established but (ii) is not
given. Here we give the proof of both (i) and (ii) not only for the reader’s convenience but
also in order to show connection with the proof of (ii).
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Theorem 3.1 (Preservation of the zero level set). Let w and u be, respectively, the vis-
cosity solution of (2.1) and (3.1), (2.1b) with a uniformly continuous u0. Assume either
(i) or (ii) below :
(i) G is bounded from below in Rn ×Rn.
(ii) G is bounded from below in Rn ×Bρ(0) for some ρ ∈ (0, 1], and Lipx[w] <∞.

Then we have Γt = {u(·, t) = 0} and D±t = {±u(·, t) > 0} for all t ∈ (0, T ), where D±
and Γt are defined in (2.3) and (2.4) respectively.

Remark 3.2. Assume that G is independent of x and continuous. Then (i) is true if G
satisfies (2.10), while (ii) is true if G satisfies (2.9).

Démonstration. Assume that (i) is true.
1. Set G? = max{supRn×Rn G, 0} and G? := max{− infRn×Rn G, 0}. We define

v?(x, t) :=
{
eLβG

?tw(x, t) if w(x, t) ≥ 0,
e−LβG?tw(x, t) if w(x, t) < 0

and

v?(x, t) :=
{
e−LβG?tw(x, t) if w(x, t) ≥ 0,
eLβG

?tw(x, t) if w(x, t) < 0

for (x, t) ∈ Rn× [0, T ), where Lβ is the Lipschitz constant of β appearing in (B). We claim
that v? and v? are, respectively, a viscosity supersolution and subsolution of (3.1).

2. We shall show that v? is a supersolution. If w is smooth and w(x, t) > 0, we compute

v?t −H1(x, t,∇v?) = LβG
?v? + eLβG

?twt −H1(x, t, eLβG?t∇w)
= LβG

?v? + eLβG
?t{wt −H1(x, t,∇w)}

≥ LβG?v? + 0
≥ β(v?)G(x,∇v?),

which implies that v? is a supersolution of (3.1). In the general case where w is not
necessarily smooth, taking an element of the subdifferential of w, we see that v? is a
viscosity supersolution of (3.1). Similar arguments apply to the case when w(x, t) < 0,
so that v? is a supersolution in {w > 0} ∪ {w < 0}. It remains to prove that v? is a
supersolution of (3.1) on {w = 0}.

Let (z, s) ∈ Rn× (0, T ) be a point such that w(z, s) = 0, and take (p, τ) ∈ J −v?(z, s).
Our goal is to derive

τ ≥ H1(z, s, p)

since β(v?(z, s)) = 0. To do this, we consider a characteristic function g(x, t) = χDt(x).
We have v?(z, s) = g(z, s) = 0 and v? ≤ g near (z, s), and thus (p, τ) ∈ J −g(z, s). Since g
is a supersolution of (2.1a) by Remark 2.15, we have τ ≥ H1(z, s, p), which is the desired
inequality. Summarizing the above arguments, we conclude that v? is a supersolution of
(3.1). In the same manner we are able to prove that v? is a subsolution of (3.1).

3. Since v?(x, 0) = v?(x, 0) = u0(x) for all x ∈ Rn, the comparison principle (Proposi-
tion 2.10) yields

v?(x, t) ≤ u(x, t) ≤ v?(x, t) for all (x, t) ∈ Rn × (0, T ).

In particular, we have

{v?(·, t) > 0} ⊂ {u(·, t) > 0} ⊂ {v?(·, t) > 0}.
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Since {v?(·, t) > 0} = {v?(·, t) > 0} = D+
t by the definition of v? and v?, we conclude that

D+
t = {u(·, t) > 0}. Similarly, we obtain D−t = {u(·, t) < 0}, and hence Γt = {u(·, t) = 0}.
Assume that (ii) is true.
1. Set G?ρ := max{− infRn×Bρ(0)G, 0} and m := max{Lipx[w], 1}. Instead of v? and

v? defined in Step 1 of (i), we consider the functions

ṽ?(x, t) :=
{
eLβG

?tw(x, t) if w(x, t) ≥ 0,
(ρ/m)e−LβG?ρtw(x, t) if w(x, t) < 0

and

ṽ?(x, t) :=
{

(ρ/m)e−LβG?ρtw(x, t) if w(x, t) ≥ 0,
eLβG

?tw(x, t) if w(x, t) < 0.

Then ṽ? and ṽ? are a viscosity supersolution and subsolution of (3.1) respectively.
2. We shall prove that ṽ? is a subsolution in {w > 0}. If w is smooth, we have

|∇ṽ?| = (ρ/m)e−LβG?ρt|∇w| ≤ ρ,

which implies that G(x,∇ṽ?) ≥ −G?ρ. Similarly to Step 2 of (i), we observe

(ṽ?)t −H1(x, t,∇ṽ?) = −LβG?ρṽ? + (ρ/m)e−LβG?ρt{wt −H1(x, t,∇w)}
≤ −LβG?ρṽ? + 0
≤ β(ṽ?)G(x,∇ṽ?),

i.e., ṽ? is a subsolution. The rest of the proof runs as before.

As an immediate consequence of Theorem 3.1, it follows that the evolution which is
given as the zero level set of the solution of the non-geometric equation (3.1) does not
depend on the choice of its initial data.

3.2 Barrier functions

Throughout this subsection we will assume (2.16). Thanks to Theorem 3.1, for a general
h satisfying (2.8) and either one of the assumptions (2.9) or (2.10), the solution uθ of
(2.6) and (2.1b) gives the same zero level set as w, i.e., we have Γt = {uθ = 0} and
D±t = {±uθ > 0} for all t ∈ (0, T ). In order to study the behaviour of uθ as θ → ∞ and
a relation between Γt and the zero level set of the limit of uθ, we will construct barrier
functions independent of θ. More precisely we construct an upper barrier f? and a lower
barrier f? such that

f? ≤ uθ ≤ f?, Γt = {f? = 0} = {f? = 0},
D+ = {f? > 0} = {f? > 0},
D− = {f? < 0} = {f? < 0}.

In this subsection we often use the fact that, if u is a supersolution (resp. subsolution)
of (2.6) in D+, and if Γ = {u = 0} and D± = {±u > 0}, then u+ is a supersolution
(resp. subsolution) of (2.6) in Rn × (0, T ). This follows from Remark 2.15. Indeed, if
(p, τ) ∈ J −u+(z, s) and u+(z, s) = 0, then we have (p, τ) ∈ J −χD+(z, s) and this yields
the desired viscosity inequality since the characteristic function is a supersolution of (2.1a)
by Remark 2.15. The proof for a subsolution is similar.

We first show that the solutions uθ are monotone with respect to θ when h is non-
negative. This gives a lower barrier in D+ and an upper barrier in D− in the case of
(2.10).
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Proposition 3.3 (Monotonicity). Assume that h ≥ 0. Let 0 < θ1 < θ2 and uθ1 and uθ2
be, respectively, the viscosity solution of (2.6) with θ = θ1 and θ2. Then

(3.2)
(3.3)

uθ1(x, t) ≤ uθ2(x, t) for all x ∈ D+
t ,

uθ1(x, t) ≥ uθ2(x, t) for all x ∈ D−t .

Démonstration. In D+ we observe

uθ1t = H1(x, t,∇uθ1) + θ1β(uθ1)h(∇uθ1)
≤ H1(x, t,∇uθ1) + θ2β(uθ1)h(∇uθ1)

since h is nonnegative. This implies that uθ1 is a subsolution of (2.6) with θ = θ2 in D+.
Applying the comparison principle to a subsolution (uθ1)+ and a supersolution (uθ2)+ of
(2.6) with θ = θ2, we conclude uθ1 ≤ uθ2 in D+. By the same argument we see that
uθ2 ≤ uθ1 in D−.

We show that solutions of (2.1a) with small Lipschitz constants give rise to lower
barrier functions in D+ and upper barrier functions in D−.

Proposition 3.4. Assume that h(p) ≥ 0 if |p| ≤ 1. Let w be the solution of (2.1). Then
the viscosity solution uθ of (2.6) and (2.1b) satisfies

(3.4)
(3.5)

uθ(x, t) ≥ εw(x, t) for all x ∈ D+
t ,

uθ(x, t) ≤ εw(x, t) for all x ∈ D−t ,

where ε := min{1/Lipx[w], 1}.

Démonstration. Set w̃ := εw. Since |∇w̃| = ε|∇w| ≤ 1, by the assumption of h we observe

w̃t = H1(x, t,∇w̃) ≤ H1(x, t,∇w̃) + θβ(w̃)h(∇w̃)

if w̃ > 0. In other words, w̃ is a subsolution of (2.6) in {w̃ > 0}. Applying the comparison
principle to a subsolution (w̃)+ and a supersolution (uθ)+ of (2.6), we obtain (3.4). The
estimate (3.5) is shown in a similar way.

It remains to construct an upper barrier in D+ and a lower barrier in D−. In both the
cases (2.9) and (2.10), the solutions uθ are dominated by the signed distance function d
with large coefficient. In the proof of Proposition 3.5 below, we use the fact that d is a
viscosity supersolution of

(3.6) dt = H1(x− d∇d, t,∇d) in {d > 0}.

This assertion is more or less known (see, e.g., [16, Proof of Theorem 2.2, Step 1–3]), but
we give its proof in Remark 3.6 for the reader’s convenience.

Proposition 3.5. Assume that h(p) ≤ 0 if |p| ≥ 1. Then the viscosity solution uθ of (2.6)
and (2.1b) satisfies

(3.7)
(3.8)

uθ(x, t) ≤ leL1td(x, t) for all x ∈ D+
t ,

uθ(x, t) ≥ leL1td(x, t) for all x ∈ D−t ,

where l := max{L0, 1} and L1 is the constant in (H3).

3. MAIN TOOLS 29



CHAPITRE 1. A RIGOROUS SETTING FOR THE REINITIALIZATION OF FIRST ORDER
LEVEL SET EQUATIONS

Démonstration. Define d̃(x, t) := leL1td(x, t). If d is smooth, then

d̃t −H1(x, t,∇d̃) = lL1e
L1td+ leL1tdt −H1(x, t, leL1t∇d)

= leL1t{L1d+ dt −H1(x, t,∇d)}.
We next apply the fact that d is a supersolution of (3.6) to estimate

d̃t −H1(x, t,∇d̃) ≥ leL1t{L1d+H1(x− d∇d, t,∇d)−H1(x, t,∇d)}
≥ leL1t{L1d− L1|d∇d||∇d|}

if d > 0. Noting that |∇d| = 1, we have

d̃t −H1(x, t,∇d̃) ≥ leL1t{L1d− L1d} = 0.

Since |∇d̃| = leL1t|∇d| ≥ 1, we now have h(∇d̃) ≤ 0 by assumption. This implies that d̃
is a supersolution of (2.6) in {d > 0}. Even if d is not smooth, the same arguments above
work in the viscosity sense.

Finally, since u0 ≤ ld+(·, 0) in Rn, applying the comparison principle to a subsolution
uθ and a supersolution (d̃)+ of (2.6), we conclude (3.7). The proof of (3.8) is similar.

Remark 3.6. We shall explain why d is a supersolution of (3.6). We first note that d
is lower semicontinuous in D+ (Theorem 5.4 (1)). Let (x0, t0) ∈ Rn × (0, T ) be a point
satisfying d(x0, t0) > 0 and take any (p, τ) ∈ J −d(x0, t0). We choose a smooth function
φ ∈ C1 such that (p, τ) = (∇φ, φt)(x0, t0) and

min
Rn×(0,T )

(d− φ) = (d− φ)(x0, t0) = 0.

Set d0 := d(x0, t0). Since p ∈ J −(d|t=t0)(x0), it follows that the closest point of Γt0 to x0
is unique and that this point is given by y0 := x0 − d0p ∈ Γt0 ; for the proof, refer to [2,
Proposition II.2.14] or [7, Corollary 3.4.5 (i), (ii)]. We also remark that |p| = 1.

Define ψ(x, t) := φ(x+ d0p, t)− d0. We now assert

(3.9) min
Rn×(0,T )

(d+ − ψ) = (d+ − ψ)(y0, t0).

Since (d+ − ψ)(y0, t0) = 0 and d+ ≥ 0, we only need to show {ψ > 0} ⊂ {d > 0}. Take a
point (x, t) ∈ Rn×(0, T ) such that ψ(x, t) > 0. We then have d(x+d0p, t) ≥ φ(x+d0p, t) >
d0. Using the Lipschitz continuity of d, we compute

d(x, t) ≥ d(x+ d0p, t)− d0|p| > d0 − d0 = 0.

Thus (3.9) is proved. Let g(x, t) = χD+
t

(x). Then the relation (3.9) implies that (p, τ) ∈
J −g(y0, t0), where we applied (∇ψ,ψt)(y0, t0) = (∇φ, φt)(x0, t0) = (p, τ). Since the cha-
racteristic function g is a supersolution of (2.1a) (see Remark 2.15), we have

τ ≥ H1(y0, t0, p) = H1(x0 − d0p, t0, p),

which is the inequality we need in order to conclude that d is a supersolution of (3.6).
Remark 3.7. Another way of proving Proposition 3.5 is using the Lipschitz continuity
of solutions of (2.6) and (2.1b) from Proposition 2.12. Using assumption (H3) instead of
(H3-s) in Proposition 2.12, the Lipschitz estimate for uθ reads as follows :

(3.10) |uθ(x, t)− uθ(y, t)| ≤ leL1t|x− y| for all x, y ∈ Rn, t ∈ [0, T ),
where l = max{L0, 1} (L0 = Lip[u0]). If we take the infimum for all y ∈ Γt in (3.10) we
get

−leL1tdist(x,Γt) ≤ uθ(x, t) ≤ leL1tdist(x,Γt) for all (x, t) ∈ Rn × [0, T ),

which implies the relations (3.7) and (3.8).
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3.3 Comparison principle for eikonal equations

We investigate uniqueness of solutions of the eikonal equation |∇u| = 1 in a possibly
unbounded set. To establish a convergence to the signed distance function, we show in
the next section that the limit of the solutions uθ solves the eikonal equation. Since the
distance function is a solution of the eikonal equation, the uniqueness result presented
below guarantees that the limit is the distance function.

We consider the eikonal equation

(3.11) |∇u| = 1 in Ω

with the boundary condition

(3.12) u = 0 on ∂Ω.

Here Ω ⊂ Rn is a possibly unbounded open set. We denote by dΩ the distance function
to ∂Ω, i.e., dΩ(x) := dist(x, ∂Ω). It is well known that dΩ is a viscosity solution of (3.11) ;
see, e.g., [2, Corollary II.2.16] or [7, Corollary 3.4.5 (i), (ii) or Remark 5.6.1]. In other
words, the problem (3.11) with (3.12) admits at least one viscosity solution. Comparison
principle (and hence uniqueness) of viscosity solutions of (3.11) and (3.12) is established
in [29] when Ω is bounded. If Ω is not bounded, the uniqueness of solutions does not hold
in general ; for instance, when Ω = (0,∞) ⊂ R, all of the following functions are solutions :

dΩ(x) = x, −dΩ(x) = −x, ua(x) = min{x, a− x} (a > 0).

However, even if Ω is not bounded, it turns out that nonnegative solutions of (3.11) and
(3.12) are unique and equal to dΩ.

Lemma 3.8. Let u : Ω→ R.

(1) If u is a viscosity subsolution of (3.11) and u∗ ≤ 0 on ∂Ω, then u∗ ≤ dΩ in Ω.

(2) If u is a viscosity supersolution of (3.11) and u ≥ 0 in Ω, then dΩ ≤ u∗ in Ω.

Démonstration. (1) It is known that every subsolution of (3.11) is Lipschitz continuous
with Lipschitz constant less than or equal to one, that is, |u∗(x)− u∗(y)| ≤ |x− y| for all
x, y ∈ Ω. (For the proof see, e.g., [22, Lemma 5.6] or [30, Proof of Proposition 2.1, Step
1].) This yields the inequality u∗ ≤ dΩ.

(2) We consider a bounded set ΩR := Ω ∩ BR(0) with R > 0. Define dR(x) :=
dist(x, ∂ΩR). We first note that u∗ ≥ 0 on Ω since u ≥ 0 in Ω, and that u∗ ≥ 0 = dR on
∂ΩR. Thus, by the comparison principle in bounded sets, we see dR ≤ u∗ in ΩR. Finally,
sending R→∞, we conclude dΩ ≤ u∗ in Ω.

4 Convergence results

Throughout this section we assume (2.16). We will first prove Theorem 2.2 (iii), it will
then be easier for the reader to understand the proof of Theorem 2.2 (i), (ii).

We introduce a notion of the half-relaxed limits ([12, Section 6]), which are weak limits
of a sequence of functions and will be used in the proof of the convergence to the distance
function. We define an upper half-relaxed limit u = lim sup∗θ→∞ uθ and a lower half-relaxed
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limit u = lim inf∗θ→∞ uθ as

u(x, t) := lim sup
(y,s,θ)→(x,t,∞)

uθ(y, s)

= lim
δ→0

sup{uθ(y, s) | |x− y| < δ, |t− s| < δ, θ > 1/δ},

u(x, t) := lim inf
(y,s,θ)→(x,t,∞)

uθ(y, s)

= lim
δ→0

inf{uθ(y, s) | |x− y| < δ, |t− s| < δ, θ > 1/δ}.

Thanks to the existence of barrier functions shown in Section 3.2, we see that, in both the
cases (2.9) and (2.10), −∞ < u <∞ and −∞ < u <∞.

The following proposition is true in the general case where the distance function is not
necessarily continuous.

Proposition 4.1 (The zero level set of the relaxed limits). Assume either (2.9) or (2.10).
Then

(4.1) {u > 0} = D+, {u = 0} ⊂ Γ, {u < 0} ⊃ D−

and

(4.2) {u > 0} ⊃ D+, {u = 0} ⊂ Γ, {u < 0} = D−.

Démonstration. We only show (4.1) since a proof of (4.2) is similar. Let v := lim inf∗θ→∞(uθ)+.
Then it is easily seen that v = (u)+. From the estimates (3.4) and (3.7) of uθ by barrier
functions we derive

εw+ ≤ (uθ)+ ≤ Ld+

for some ε, L > 0. Taking the lower half-relaxed limit, we obtain

εw+ ≤ v ≤ L(d+)∗ ≤ Ld+.

Since {w+ > 0} = {d+ > 0} = D+, the above inequalities imply {v > 0} = D+, and hence
{u > 0} = D+. We similarly have

−Ld− ≤ −(uθ)− ≤ −εw−.

In this case, however, taking the lower half-relaxed limit yields only {u < 0} ⊃ {w < 0} =
D− because −d− is upper semicontinuous. The inclusion {u = 0} ⊂ Γ is now clear.

4.1 Convergence results for continuous distance function

The following general properties of the relaxed limits will be used to prove the conver-
gence of uθ :

— Assume that each uθ is a subsolution (resp. supersolution) of the equation Fθ = 0.
If Fθ converges to some F locally uniformly and u < ∞ (resp. u > −∞), then u is
a subsolution (resp. u is a supersolution) of F = 0.

— If u = u =: u and −∞ < u <∞, then uθ converges to u locally uniformly as θ →∞.
See [12, Lemma 6.1, Remark 6.4] for the proofs.

Assume that d is continuous in Rn×(0, T ), in particular, we can now use the additional
upper-semicontinuity property of d+ and d−. Proceeding in a similar way as in Proposition
4.1 we can show

(4.3) Γ = {u = 0} = {u = 0}, D± = {±u > 0} = {±u > 0}.
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Proof of Theorem 2.2 (iii). 1. For θ > 0 we define

Fθ(x, t, r, p, τ) := 1
θ
{τ −H1(x, t, p)} − β(r)h(p).

Then uθ is a viscosity solution of the equation Fθ(x, t, u,∇u, ut) = 0 in Rn × (0, T ).
Since Fθ converges to −β(r)h(p) locally uniformly as θ →∞, it follows that u and u are,
respectively, a viscosity subsolution and a viscosity supersolution of −β(u)h(∇u) = 0 in
Rn × (0, T ).

Recall that h satisfies (2.9). Since β(u) > 0 in D+ and β(u) < 0 in D− by (4.3), we
see that u is a subsolution of

(4.4) |∇u(x, t)| = 1 in D+

and

(4.5) −|∇u(x, t)| = −1 in D−

as a function of (x, t). (Note that these two equations are different in the viscosity sense.)
Similarly, u is a supersolution of both (4.4) and (4.5). Thus, for each fixed t0 ∈ (0, T ),
u|t=t0 and u|t=t0 are, respectively, a subsolution and a supersolution of

(4.6) |∇u(x)| = 1 in D+
t0

as a function of x. (See Remark 4.2 for the details.) By Lemma 3.8 we obtain

u|t=t0 ≤ d(·, t0) ≤ u|t=t0 in D+
t0

and hence
d = u = u in D+.

This implies that uθ → d locally uniformly in D+. For D− we notice that if u(·, t0)
is a subsolution of −|∇u| = −1 then −u(·, t0) is a supersolution of |∇u| = 1, hence a
comparison with −d this time gives the desired result.

Remark 4.2. We claim that, if u = u(x, t) is a subsolution of (4.4), then u|t=t0 is a
subsolution of (4.6) for a fixed t0 ∈ (0, T ). To show this, we take a test function φ ∈
C1(Rn) such that maxRn(u|t=t0 − φ) = u(x0, t0) − φ(x0) for x0 ∈ D+

t0. We may assume
that this is a strict maximum. Next define ψM (x, t) := φ(x) +M(t− t0)2. We then have

(
lim inf
M→∞

∗ψM

)
(x, t) =

{
φ(x) if t = t0,

∞ if t 6= t0,

so that u−(lim inf∗ ψM ) has a strict maximum over Rn×(0, T ) at (x0, t0). By [21, Lemma
2.2.5] there exist sequences {Mn}∞n=1 ⊂ (0,∞) and {(xn, tn)}∞n=1 ⊂ Rn × (0, T ) such that
Mn → ∞, (xn, tn) → (x0, t0) as n → ∞ and u − ψMn has a local maximum at (xn, tn).
Since u is a subsolution of (4.4), we have

1 ≥ |∇ψMn(xn, tn)| = |∇φ(xn)|.

Sending n→∞ implies |∇φ(x0)| ≤ 1 ; namely, u|t=t0 is a subsolution of (4.6).
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4.2 Convergence results for general distance functions

For the case where the distance d is not necessarily continuous we can only compare
the half-relaxed limits with the distance function in certain domains due to the fact that
only the inclusions in Proposition 4.1 are true.

Lemma 4.3 (Comparison with the distance). Assume that either (2.9) or (2.10) hold.
Then

(1)

(4.7)
(4.8)

d ≤ u in D+,

u ≤ d in D−.

(2) For every t ∈ (0, T ),

(4.9)
(4.10)

u(·, t) = 0 on ∂D+
t ,

u(·, t) = 0 on ∂D−t .

Démonstration. We give proofs of (4.7) and (4.9) since (4.8) and (4.10) can be shown in
similar ways.

(1) In the same manner as in the proof of Theorem 2.2 (iii), it follows that u(·, t) is
a viscosity supersolution of (4.6) in D+

t . Since u(·, t) > 0 in D+
t by (4.1), the comparison

principle (Lemma 3.8 (2)) implies that d(·, t) ≤ u(·, t) in D+
t .

(2) By (3.7) and (3.8) we have

(4.11) −Ld− ≤ uθ ≤ Ld+,

where L > 0 is a constant. Taking the lower half-relaxed limit at (x, t), we obtain

(4.12) −L(d−)∗(x, t) ≤ u(x, t) ≤ L(d+)∗(x, t) ≤ Ld+(x, t).

Let x ∈ ∂D+
t . Then the right-hand side of (4.12) is 0 since x ∈ Γt. We next study the limit

of d−(y, s) = dist(y,D+
s ∪Γs) on the left-hand side. Since x ∈ ∂D+

t ⊂ D+
t ⊂ int(D+

t ∪ Γt),
it is not an extinction point (Definition 5.3) by Proposition 5.6. Therefore Theorem 5.4
(3) ensures that d− is continuous at (x, t). This implies that the left-hand side of (4.12) is
0, and hence the conclusion follows.

Proof of Theorem 2.3. Since (2.10) holds, the monotonicity of uθ (Proposition 3.3) yields
the following representations :

u(x, t) = sup
θ>0

uθ(x, t) for x ∈ D+
t , u(x, t) = inf

θ>0
uθ(x, t) for x ∈ D−t .

These relations and Lemma 4.3 (1) conclude the proof.

For the equation with h satisfying (2.10), Theorem 2.3 guarantees only the one side
inequality between the supremum of uθ and the signed distance function d. However, as
the next example shows, the opposite inequality is not true in general even if the initial
datum is smaller than the distance function.
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Example 4.1. Let us consider (2.1) for the Hamiltonian of the form (2.17) with c(x) =
(1 − |x|)+ + 1. We take the initial datum u0 as u0(x) = (1 − |x|)+. The unique viscosity
solution w of this initial value problem is given as the value function (2.18). In this case
the optimal control is the one that leads to a straight trajectory with the maximal speed
before it comes to the origin and stays there after that moment. Thus direct calculations
yield the following simplified representation of w :

w(x, t) =





1 if |x| ≤ 2(1− e−t),
(2− |x|)et − 1 if 2(1− e−t) ≤ |x| ≤ 1,
et−|x|+1 − 1 if 1 ≤ |x| ≤ t+ 1,
0 if t+ 1 ≤ |x|

for t ≤ log 2,

and

w(x, t) =





1 if |x| ≤ t+ 1− log 2,
et−|x|+1 − 1 if t+ 1− log 2 ≤ |x| ≤ t+ 1,
0 if t+ 1 ≤ |x|

for t ≥ log 2.

See Figure 1.2. In particular, we have w(x, t) = 1 if |x| = t+1−log 2 ≥ 1. Also, {w = 0} =
{|x| ≥ t+ 1} and the signed distance function d to the interface is d(x, t) = (t+ 1− |x|)+.
We thus have d(x, t) = log 2 if |x| = t+ 1− log 2, and so

(4.13) d(x, t) = log 2 < 1 = w(x, t) if |x| = t+ 1− log 2 ≥ 1.

Since the solution w is non-negative, it is a viscosity subsolution of (2.6) with h ≥ 0 for
every θ > 0. Accordingly, w ≤ uθ by the comparison principle. From (4.13) it follows that

d(x, t) = log 2 < 1 ≤ uθ(x, t) if |x| = t+ 1− log 2 ≥ 1,

which implies that the inequality d ≥ supθ>0 u
θ does not hold on the whole space.

We also remark that, for γ ∈ (log 2, 1), the inequality d(x, t) < γw(x, t) holds if |x| =
t+ 1− log 2 ≥ 1 and that γw is a solution of (2.1a) with the initial datum γu0. From this
we see that uθ can be greater than d at some point even if we take an initial datum which
is strictly less than d(x, 0) in {d(·, 0) > 0}.

O x

d(x, t)

w(x, t)

t+ 1

1

u0(x)

1

Figure 1.2 – The graph of w when t ≥ log 2.

In the rest of this subsection we will assume that h satisfies the assumption (2.9). We
now introduce several notions of half-relaxed limits. Let (x, t) ∈ Rn× (0, T ). We define an
upper and a lower half-relaxed limit from below in time by, respectively,

u′(x, t) := lim sup
(y,s,θ)→(x,t,∞)

s≤t

uθ(y, s), u′(x, t) := lim inf
(y,s,θ)→(x,t,∞)

s≤t

uθ(y, s).
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An upper and a lower half-relaxed limit at a fixed time are, respectively, given as

u|t(x) := lim sup
(y,θ)→(x,∞)

uθ(y, t), u|t(x) := lim inf
(y,θ)→(x,∞)

uθ(y, t).

By definitions we have

(4.14) u(x, t) ≤ u′(x, t) ≤ u|t(x) ≤ u|t(x) ≤ u′(x, t) ≤ u(x, t)

for all (x, t) ∈ Rn × (0, T ).
The next proposition is a crucial step in proving a convergence to the signed distance

function in a weak sense.

Proposition 4.4. Assume either (2.9) or (2.10). Then the functions u′(·, t) and u′(·, t)
are, respectively, a viscosity subsolution of (4.4) in D+

t and a viscosity supersolution of
(4.5) in D−t for every t ∈ (0, T ).

Démonstration. Fix t̂ ∈ (0, T ) and let us prove that u′(·, t̂) is a viscosity subsolution of
(4.4) in D+

t̂
.

1. We first introduce an upper half-relaxed limit of uθ in Rn × (0, t̂]. For (x, t) ∈
Rn × (0, t̂] we define

v(x, t) := lim sup
(y,s,θ)→(x,t,∞)

s≤t̂

uθ(y, s),

which is an upper semicontinuous function on Rn × (0, t̂]. By definition we have

v(x, t) =
{
u(x, t) if t < t̂,

u′(x, t) if t = t̂.

2. Take z ∈ D+
t̂

and ψ ∈ C1(Rn) such that u′(·, t̂) − ψ attains a maximum at z over
Rn. As usual we may assume that this is a strict maximum, and note that, by (4.7) and
(4.14),

(4.15) 0 < d(z, t̂) ≤ u(z, t̂) ≤ u′(z, t̂).

We now define φθ(x, t) := ψ(x)−
√
θ(t− t̂) and

φ(x, t) :=
{

+∞ if t < t̂,

ψ(x) if t = t̂.

Then v − φ attains its strict maximum at (z, t̂) over Rn × (0, t̂], and uθ − φθ → v − φ
in the sense of the upper half-relaxed limit on Rn × (0, t̂]. Thus, by [21, Lemma 2.2.5]
there exist sequences {θj}∞j=1 ⊂ (0,∞) and {(xj , tj)}∞j=1 ⊂ Rn × (0, t̂] such that θj →∞,
(xj , tj)→ (z, t̂) and (uθj − φθj )(xj , tj)→ (v − φ)(z, t̂) as j →∞.

We now claim

(4.16) u′(z, t̂) = lim
j→∞

uθj (xj , tj).

Observe

uθj (xj , tj) = {(uθj − φθj )(xj , tj)− (v − φ)(z, t̂)}+ φθj (xj , tj) + (v − φ)(z, t̂)
= {(uθj − φθj )(xj , tj)− (v − φ)(z, t̂)}+ {ψ(xj)− ψ(z)}+ u′(z, t̂)−

√
θ(tj − t̂)

≥ {(uθj − φθj )(xj , tj)− (v − φ)(z, t̂)}+ {ψ(xj)− ψ(z)}+ u′(z, t̂).
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This implies lim inf
j→∞

uθj (xj , tj) ≥ u′(z, t̂). The opposite relation lim sup
j→∞

uθj (xj , tj) ≤ u′(z, t̂)
follows from the definition of u′, and therefore (4.16) is proved.

3. Since uθ is a viscosity solution of (2.6) in Rn×(0, t̂) and since the viscosity property
is extended up to the terminal time t = t̂ ([9, Section 7]), we have

φ
θj
t (xj , tj) ≤ H1(xj , tj ,∇φθj (xj , tj)) + θjβ(uθj (xj , tj))h(∇φθj (xj , tj)).

By the definition of φθ, this is equivalent to

−
√
θj ≤ H1(xj , tj ,∇ψ(xj)) + θjβ(uθj (xj , tj))h(∇ψ(xj)).

Dividing both the sides by θj and sending θj →∞, we obtain

0 ≤ β(u′(z, t̂))h(∇ψ(z)),

where we have used (4.16). Since β(u′(z, t̂)) > 0 by (4.15), using the assumption on h, we
conclude that |∇ψ(z)| ≤ 1.

As a consequence of Proposition 4.4, we obtain
Theorem 4.5. Assume (2.9). Then the following hold.
(1) u(·, t) = d(·, t) on D+

t and u(·, t) = d(·, t) on D−t for every t ∈ (0, T ).
(2) u′ = u′ = d in Rn × (0, T ), i.e.,

lim
(y,s,θ)→(x,t,∞)

s≤t

uθ(y, s) = d(x, t) for all (x, t) ∈ Rn × (0, T ).

(3) u|t = u|t = d(·, t) in Rn for every t ∈ (0, T ), i.e., uθ(·, t) converges to d(·, t) locally
uniformly in Rn for every t ∈ (0, T ).

Démonstration. 1. We first note that (4.11) yields

(4.17)
(4.18)

u′ = u′ = 0 on Γ,
u|t = u|t = 0 on Γ.

Indeed, for (x, t) ∈ Γ, taking the upper and lower half-relaxed limit from below in time
in (4.11), we see that u′(x, t) = u′(x, t) = 0 since d is continuous from below in time by
Theorem 5.4 (2). Similarly, (4.18) follows from the continuity of d(·, t). Thus (2) and (3)
were proved on Γ. The equalities in (1) on ∂D+

t or ∂D−t are consequences of Lemma 4.3
(2).

2. It remains to prove (1)–(3) in D+
t and D−t . Recall that u′(·, t) and u′(·, t) are,

respectively, a viscosity subsolution of (4.4) in D+
t and a viscosity supersolution of (4.5)

in D−t by Proposition 4.4. Since (4.17) holds, the comparison result (Lemma 3.8 (1))
implies that

(4.19)
(4.20)

u′(·, t) ≤ d(·, t) in D+
t ,

d(·, t) ≤ u′(·, t) in D−t .

Combining (4.7), (4.14) and (4.19), we obtain

0 < d(·, t) = u(·, t) = u′(·, t) = u|t = u|t = u′(·, t) in D+
t .

In the same manner, we see

0 > d(·, t) = u′(·, t) = u|t = u|t = u′(·, t) = u(·, t) in D−t .

The two relations above conclude the proof.

This concludes the proof of Theorem 2.2 (i) and (ii).
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5 Continuity of distance functions
Throughout this section we study only non-negative distance functions. Namely, we

assume D− = ∅ so that d(x, t) = dist(x,Γt) ≥ 0 for all (x, t) ∈ Rn × (0, T ). Also, we
simply write Dt = D+

t and D = D+. In the general case where d can take negative values,
we decompose d as d = d+ − d− and apply the following results to d+ and d−.

5.1 Finite Propagation

In order to study the continuity of distance functions, we first prepare a property of
finite propagation for the Hamilton-Jacobi equation (2.1). For this property, the assump-
tion (H4), the Lipschitz continuity of H1 in p plays an important role, though we omit the
details in this paper.

Let (x, t) ∈ Rn × (0, T ) and r > 0. We define a cone as

Cr(x,t) :=
⋃

0<τ<r
Br−τ (x)×

{
t+ τ

L2

}
.

Theorem 5.1 (Local comparison principle). Let (x, t) ∈ Rn × (0, T ), r > 0 and set
C := Cr(x,t). If u, v ∈ C(C) are, respectively, a viscosity sub- and supersolution of (2.1a) in
C and u(·, t) ≤ v(·, t) in Br(x), then u ≤ v in C.

See [2, Theorem III.3.12, (Exercise 3.5)] or in [1, Theorem 5.3] for the proof. As a
consequence of Theorem 5.1 we obtain

Proposition 5.2 (Finite propagation). Let (x, t) ∈ Rn × (0, T ) and r > 0.
(1) If Br(x) ⊂ Dt, then Cr(x,t) ⊂ D.

(2) If Br(x) ⊂ Γt, then Cr(x,t) ⊂ Γ.

Démonstration. Let w be the solution of (2.1).
(1) Set α := min

Br(x)×{t}
w > 0, and define u(x, t) := α, which is a constant function

satisfying u(·, t) ≤ w(·, t) in Br(x). Moreover, u is a solution of (2.1a) by the geometricity
of H1. Therefore Theorem 5.1 implies that u ≤ w in Cr(x,t). The positivity of u implies the
conclusion.

(2) The proof is similar to (1). We compare w with u(x, t) := 0 both from above and
from below to conclude that 0 = u ≤ w ≤ u = 0 in Cr(x,t).

5.2 Continuity properties

We first introduce a notion of extinction points.

Definition 5.3 (Extinction point). Let x ∈ Γt. We say that x is an extinction point if
there exist ε, δ > 0 such that Bε(x)× (t, t+ δ] ⊂ D.

For example the point 0 ∈ Γ1 in Example 2.1 is an extinction point. We remark that
x ∈ Γt is non-extinction point if and only if there exists a sequence {(xj , tj)}∞j=1 such that
(xj , tj) → (x, t) as j → ∞, xj ∈ Γtj and tj > t for all j. Define Et ⊂ Rn as the set of
all extinction points at time t ∈ (0, T ) and Nt(x) as the set of all the nearest points from
x ∈ Rn to Γt, i.e.,

Nt(x) := {z ∈ Γt | d(x, t) = |x− z|}.
Note that we always have Nt(x) 6= ∅ by (2.5).
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Theorem 5.4 (Continuity properties of the distance function). (1) d is lower semicon-
tinuous in Rn × (0, T ).

(2) d is continuous from below in time, i.e.,

d(x, t) = lim
(y,s)→(x,t)

s≤t

d(y, s) for all (x, t) ∈ Rn × (0, T ).

(3) Let (x, t) ∈ Rn× (0, T ). Then d is continuous at (x, t) if and only if Nt(x) \Et 6= ∅.

Démonstration. (1) The proof can be found in [16, Proposition 2.1].
(2) 1. Suppose by contradiction that d is not continuous at (x, t) from below in time.

Since d is lower semicontinuous by (1), we would have a sequence {(xj , tj)}∞j=1 such that
(xj , tj)→ (x, t) as j →∞, tj < t and

lim
j→∞

d(xj , tj) > d(x, t).

Set α := {limj→∞ d(xj , tj) − d(x, t)}/4 > 0. Without loss of generality we may assume
that d(xj , tj)− d(x, t) ≥ 3α and |xj − x| ≤ α for all j ≥ 1.

2. Take any z ∈ Nt(x). We claim that

(5.1) d(y, tj) ≥ α for all y ∈ Bα(z) and j ≥ 1.

Since d(·, tj) is a Lipschitz continuous function with the Lipschitz constant 1, we calculate

d(y, tj) ≥ d(xj , tj)− |xj − y|
≥ {d(x, t) + 3α} − (|xj − x|+ |x− z|+ |z − y|)
≥ {d(x, t) + 3α} − (α+ |x− z|+ α)
≥ α,

which yields (5.1). By (5.1) we have Bα(z) × {tj} ⊂ D. Thus Proposition 5.2 (1) implies
that

(5.2) Cα(z,tj) ⊂ D.

Since tj ↑ t as j → ∞, we have (z, t) ∈ Cα(z,tj) for j large, and therefore z ∈ Dt by (5.2).
However, this contradicts the fact that z ∈ Γt.

(3) 1. We first assume that d is continuous at (x, t). Take any sequence {(xj , tj)}∞j=1
such that (xj , tj)→ (x, t) as j →∞ and tj > t. By continuity we have d(xj , tj)→ d(x, t)
as j → ∞. We now take zj ∈ Ntj (xj) for each j. Then {zj} is bounded. Indeed, since
|zj | ≤ |x|+ |x− xj |+ |xj − zj | and |x− xj | → 0, |xj − zj | = d(xj , tj)→ d(x, t) as j →∞,
we see that {zj} is bounded. From this zj subsequently converges to some z̄ as j → ∞,
where we use again the index j. It is easy to see that z̄ ∈ Γt.

Let us show z̄ ∈ Nt(x) \ Et. Taking the limit in d(xj , tj) = |xj − zj |, we obtain
d(x, t) = |x − z̄|, which implies that z̄ ∈ Nt(x). Also, since zj ∈ Γtj and tj ↓ t as j → ∞,
it follows that z̄ is not an extinction point, and hence we conclude that Nt(x) \ Et 6= ∅.

2. We next assume that d is not continuous at (x, t). By (1) and (2) we have some
sequence {(xj , tj)}∞j=1 such that (xj , tj)→ (x, t) as j →∞, tj > t and

lim
j→∞

d(xj , tj) > d(x, t).
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We now argue in a similar way to the proof of (2), so that we obtain (5.2) for any z ∈ Nt(x).
Therefore

∞⋃

j=1
Cα(z,tj) ⊂ D,

and it is easily seen that there exist ε, δ > 0 such that

Bε(z)× (t, t+ δ] ⊂
∞⋃

j=1
Cα(z,tj).

We thus conclude that z is an extinction point, and hence Nt(x) \ Et = ∅.

Remark 5.5. (1) Theorem 5.4 (3) implies that if every x ∈ Γt with t ∈ (0, T ) is a non
extinction point then the distance function d is continuous in Rn× (0, T ) and hence
Theorem 2.2 (iii) holds.

(2) If d is discontinuous at times 0 < t1 < t2 < ... < tm < T (at one or more points
in Rn), we can apply Theorem 2.2 in the intervals (0, t1), (t1, t2), ..., (tm, T ). More
precisely, under the assumptions of Theorem 2.2 we can show

uθ −−→
θ→+∞

d locally uniformly in Rn × ((0, t1) ∪ (t1, t2) ∪ ... ∪ (tm, T )) .

Example 5.1 in the next subsection shows that we can construct an evolution {Γt}t∈[0,T )
for which the associated distance function has discontinuities for each t ∈ Q. The-
refore, the idea described above cannot be applied.

The next proposition gives a sufficient condition for the non-extinction condition.

Proposition 5.6. Let t ∈ (0, T ). If x ∈ int(Γt), then x 6∈ Et.

Démonstration. Let x ∈ int(Γt). Then there exists a sequence {xj}∞j=1 ⊂ int(Γt) that
converges to x as j → ∞. Set εj := dist(xj , ∂Γt), which converges to 0 as j → 0. Since
we have Bεj (xj) ⊂ Γt, Proposition 5.2 (2) implies that Cεj(xj ,t) ⊂ Γ. In particular xj ∈
Γt+(εj/L2), which is the vertex of the cone, and consequently we see that x is a non-
extinction point.

Remark 5.7. The converse of the assertion of Proposition 5.6 is not true in general. In
fact, it is easy to construct the interface such that Γt = {0} for all t ∈ (0, T ). Any x ∈ Γt
is a non-extinction point, but int(Γt) = ∅.

Remark 5.8. The opposite notion of an extinction point is an emerging point, which
is defined as follows : Let x ∈ Γt. We say that x is an emerging point if there exist
ε, δ > 0 such that Bε(x) × [t − δ, t) ⊂ D. However, the property of finite propagation
implies that there are no emerging points. Suppose that x ∈ Γt is an emerging point, i.e.,
Bε(x)× [t− δ, t) ⊂ D for some ε, δ > 0. Choose M ≥ 1 large so that x ∈ Cε(x,t−(δ/M)). This
cone is a subset of D by Proposition 5.2 (1). Thus x ∈ D, a contradiction.

5.3 Some examples

We present an example which shows that the idea presented in Remark 5.5 (2) can not
be applied, even if we restrict the evolutions to move inside a bounded domain instead of
Rn.
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Example 5.1 (A zero level set vanishing for all t ∈ Q∩(0, T )). Let Q∩(0, T ) = {t1, t2, ...}.
Case 1. In Rn.

Consider disjoint cubes with sides of length at least 2tn for n = 1, 2, .... Then inside
every each one of them, we fit a circle Btn of radius tn. The evolution of these circles
under the equation

(5.3) V = −1

where V is the normal velocity (with normal pointing to the exterior of the circles), is
given by

d

dt
R(t) = −1.

Here R(t) is the radius of the circles. Notice that the evolution of (5.3) is the same as the
zero level set of the solution u of the problem

{
ut = −|∇u| in Rn × (0, T ),
u(x, 0) = u0(x) in Rn

if u0 is for example the signed distance function to the circles Bn, with positive values in
the interior of the circles. For a proof of equivalence of the two evolutions see for example
[21, Section 4.2.3 and 4.2.4]. Then R(t) = tn − t and the extinction time of the circles is
t = tn.
Case 2. In a bounded domain.

Let Ω be a bounded open set. For every n ∈ N we can find points xn ∈ Ω and positive
numbers εn such that Bεn(xn) ⊂ Ω with Bεn(xn) ∩ Bεm(xm) = ∅ for n 6= m. Then for
an = εn/2(T + 1/2) we have Rn := tnan < εn/2 and BRn(xn) ⊂ B εn

2
(xn). We then define

cn(x) =





an in Bεn/2(xn),
2an − 2an

εn
|x− xn| in Bεn(xn) \Bεn/2(xn),

0 else

and the velocity
c(x) = sup

n
cn(x), for x ∈ Rn.

As in Case 1 we consider the problem
{
ut = −c(x)|∇u| in Rn × (0, T ),
u(x, 0) = u0(x) in Rn.

Here u0 is the signed distance function from the set
⋃
n∈N ∂BRn(xn) with positive values

in each BRn(xn). The extinction time of ∂BRn(xn) is as in the first case t = tn.
As we mentioned in the introduction the zero level set may develop an interior even

for first order equations, for an example with discontinuous initial data see [4, Proposition
4.4], but since we deal with continuous initial data we present here another example.
Example 5.2 (A zero level set with fattening). Consider the equation

{
ut = (t− 1)|ux| in R × (0,∞),
u(x, 0) = 1

2 − |x| in R

then the viscosity solution is

u(x, t) =
{

(t− 1)2/2− |x| in R × (0, 1],
min{(t− 1)2/2− |x|, 0} in R × [1,∞).

Then for t ≥ 1 the zero level set is given by B(t−1)2/2(0).
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6 Homogenization

We conclude this paper by proving Theorem 2.5. Let us consider

(6.1) ut = H1

(
x,

t

1 + θ
,∇u

)

and

(6.2) ut = H2(u,∇u),

where θ = k2/k1 is as in (2.20). By the assumptions onH1 andH2, the classical comparison
and existence results still hold for the problems (6.1), (2.1b) and (6.2), (2.1b).

To solve the problem (2.21), (2.1b) we use the notion of the iterative solution which
was introduced in Remark 2.4. By the comparison and existence results for (6.1) and (6.2),
we see that (2.21), (2.1b) admits a unique continuous iterative solution.

6.1 Hamiltonians discontinuous in time

Since the Hamiltonian H12 is now discontinuous with respect to time, we have to
be careful about the proof of our homogenization result. We do not use the notion of
viscosity solutions introduced in Definition 2.9, where the upper- and lower semicontinuous
envelopes are used for the equation, because otherwise we could not estimate the difference
between (H12)∗ and (H12)∗. Thus we first discuss removability of the upper- and lower
star of the equation as well as a connection between the iterative solution and the different
notions of viscosity solutions of (2.21).

In this section we call u a viscosity subsolution (resp. supersolution) with star if it
is a viscosity subsolution (resp. supersolution) in the sense of Definition 2.9. Also, we
say that u is a viscosity subsolution (resp. supersolution) without star if it satisfies the
viscosity inequality (2.26) with F instead of F ∗ (resp. F∗). Note that, since F∗ ≤ F ≤ F ∗,
a viscosity subsolution (resp. supersolution) without star is always a viscosity subsolution
(resp. supersolution) with star. Namely, a notion of viscosity solutions without star is
stronger than that with star.

Theorem 6.1. Let uε be the iterative solution of (2.21), (2.1b).
(1) uε is a viscosity solution of (2.21), (2.1b) without star.
(2) If v is a viscosity solution of (2.21), (2.1b) with star, then v = uε in Rn × (0, T ).

Theorem 6.1 (1) asserts that uε is a viscosity solution in Rn × (0, T ) not only in the
sense with star but also in the sense without star. In other words, existence of solutions
is established in both the cases. On the other hand, (2) is concerned with uniqueness of
solutions since it asserts that any solution should be equal to uε. In the sense with star,
Perron’s method (see Theorem 2.11) gives a viscosity solution uP of (2.21), (2.1b) which is
not necessarily continuous. By (2) we see that uP = uε, and therefore uP is also a viscosity
solution of (2.21), (2.1b) without star and an iterative solution as well.

Démonstration. (1) We apply the fact that the viscosity property is extended up to the
terminal time ([9, Section 7]). Since uε is a viscosity solution of (6.1) in Rn × (0, k1∆t),
we see that uε|Rn×(0,k1∆t] is a viscosity subsolution of (6.1) in Rn× (0, k1∆t]. This implies
that uε is a viscosity subsolution of (2.21) without star on Rn × {k1∆t}. Arguing in the
same way on Rn × {t} with t = ε, ε + k1∆t, 2ε, . . . , we conclude that uε is a viscosity
subsolution of (2.21) without star. The proof for supersolution is similar.
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(2) Since v and uε are, respectively, a viscosity subsolution and a supersolution of
(6.1) in Rn × (0, k1∆t), the comparison principle for (6.1) implies that v∗ ≤ uε in Rn ×
(0, k1∆t). If we prove v∗ ≤ uε on Rn × {k1∆t}, we then have v∗ ≤ uε in Rn × (k1∆t, ε)
by the comparison principle for (6.2). Iterating this argument, we finally obtain v∗ ≤ uε

in Rn × (0, T ). In the same manner, we derive uε ≤ v∗ in Rn × (0, T ), and hence uε = v
in Rn × (0, T ).

It remains to prove that v∗(x, k1∆t) ≤ uε(x, k1∆t) for x ∈ Rn. We now use the fact
that v∗ is left accessible ([9, Section 2, 9]), i.e., there exists a sequence {(xj , tj)}∞j=1 such
that tj < k1∆t for all j ≥ 1, (xj , tj) → (x, k1∆t) and v∗(xj , tj) → v∗(x, k1∆t) as j → ∞.
Therefore, taking the limit in v∗(xj , tj) ≤ uε(xj , tj) gives v∗(x, k1∆t) ≤ uε(x, k1∆t).

Remark 6.2. The same argument in the proof of (2) yields the comparison principle
for (2.21). Namely, if u and v are, respectively, a subsolution and a supersolution of
(2.21) with star such that u∗(·, 0) ≤ v∗(·, 0) in Rn, then u∗ ≤ v∗ in Rn × [0, T ). Also,
similar arguments allow us to prove a local version of the comparison principle. Let (x, t) ∈
Rn × (0, T ) and r > 0. If u and v are a subsolution and a supersolution of (2.21) with
star in Br(x)× (t− r, t+ r) =: C, respectively, with u∗ ≤ v∗ on ∂PC, then u∗ ≤ v∗ in C.
Here by ∂P we denote the parabolic boundary, that is, for Ω ⊂ Rn and a < b,

∂P (Ω× (a, b)) := (∂Ω× [a, b)) ∪ (Ω× {a}).

Remark 6.3. See [27, 6] for more results concerning Hamiltonians discontinuous in time.

6.2 Cell problems

We study an one-dimensional cell problem with discontinuity, whose solution and ei-
genvalue will be needed in the proof of our homogenization result. Since our problem is
periodic in time, the corresponding cell problem is one-dimensional. Consider

(6.3) v′(τ) + λ = H(τ) in T,

where T = R/Z is the one-dimensional torus, H ∈ L1(T) and λ ∈ R. Although we only
need to study piecewise continuous H for our homogenization result, we here take it as a
L1-function since the technical aspects of the proof allow us to generalize H without any
additional effort. For the special case where H is piecewise continuous, see Remark 6.5.
We define

H#(τ) := lim sup
k↓0

(1
k

∫ τ

τ−k
H(s)ds

)
, H#(τ) := lim inf

k↓0

(1
k

∫ τ

τ−k
H(s)ds

)
.

Lemma 6.4 (Solvability of the cell problem). We set

(6.4) λ :=
∫ 1

0
H(s)ds, v(τ) := v(0)− λτ +

∫ τ

0
H(s)ds.

Then v is a viscosity solution of (6.3) in the following sense : If maxT(v−φ) = (v−φ)(τ0)
(resp. minT(v − φ) = (v − φ)(τ0)) for τ0 ∈ T and φ ∈ C1(T), then

(6.5) φ′(τ0) + λ ≤ H#(τ0) (resp. φ′(τ0) + λ ≥ H#(τ0)).
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Démonstration. 1. We first note that v is a periodic function thanks to the choice of λ.
Indeed, for all τ ∈ R and m ∈ Z, we observe

v(τ +m) = v(0)− λ(τ +m) +
∫ τ+m

0
H(s)ds

= v(0)− λ(τ +m) +
(
λm+

∫ τ

0
H(s)ds

)

= v(0)− λτ +
∫ τ

0
H(s)ds

= v(τ).

Thus v is periodic.
2. Take τ0 ∈ T and φ ∈ C1(T) such that maxT(v − φ) = (v − φ)(τ0). For k > 0 we

have
φ(τ0)− φ(τ0 − k)

k
≤ v(τ0)− v(τ0 − k)

k
= −λ+ 1

k

∫ τ0

τ0−k
H(s)ds.

Taking lim infk↓0 implies the first inequality in (6.5). A similar argument shows that v is
a supersolution.

Remark 6.5. Let 0 = τ0 < τ1 < · · · < τN = 1 be a partition of [0, 1] and assume
that H ∈ L1(T) is continuous on each (τi, τi+1]. Then we have H# = H# = H, and
consequently the viscosity inequalities in (6.5) become

φ′(τ0) + λ ≤ H(τ0) (resp. φ′(τ0) + λ ≥ H(τ0)).

In other words, v given by (6.4) is a viscosity solution of (6.3) without star.

6.3 Proof of homogenization

We will give a proof of Theorem 2.5. For the proof we employ the perturb test function
method by Evans ([18, 19]). The argument is similar to [19, Section 5.2], but we give a
full proof in order to show that the method can be extended to discontinuous equations.

Proof of Theorem 2.5. 1. Let uε be the iterative solution of (2.21) and (2.1b). We denote
by u and u the upper- and lower half-relaxed limit of uε respectively, i.e., u = lim sup∗ε→0 u

ε

and u = lim inf∗ε→0 uε. Since the functions u0(x)−Kt and u0(x) +Kt with K > 0 large
are, respectively, a subsolution and a supersolution of (2.21), it follows from comparison
that u0(x)−Kt ≤ uε(x, t) ≤ u0(x) +Kt. This implies −∞ < u ≤ u < +∞ and u(x, 0) =
u(x, 0) = u0(x).

2. Let us show that u is a subsolution of (2.22). Let φ be a test function for u at (x̂, t̂)
from above, i.e,

(6.6)
(6.7)

u < φ in (BR(x̂)× (t̂−R, t̂+R)) \ {(x̂, t̂)},
u(x̂, t̂) = φ(x̂, t̂)

for some R > 0 such that 0 < t̂−R < t̂+R < T . We set

H(τ) := H12(x̂, t̂, τ, φ̂,∇φ̂),

where φ̂ = φ(x̂, t̂) and∇φ̂ = ∇φ(x̂, t̂). Then H ∈ L1(T) and H is continuous on (0, k1∆t/ε]
and (k1∆t/ε, 1]. Let v and λ be as in (6.4). By Remark 6.5 we see that v is a viscosity
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solution of (6.3) without star. Noting that θ = k2/k1, we observe
∫ 1

0
H12(x, t, τ, r, p) dτ =

∫ k1∆t
ε

0
H1

(
x,

t

1 + k2
k1

, p

)
dτ +

∫ 1

k1∆t
ε

H2(r, p) dτ

= k1
k1 + k2

H1

(
x,

t

1 + k2
k1

, p

)
+ k2
k1 + k2

H2(r, p)

= 1
1 + θ

(
H1

(
x,

t

1 + θ
, p

)
+ θH2(r, p)

)

= H̄(x, t, r, p).

This implies that

λ =
∫ 1

0
H(τ) dτ =

∫ 1

0
H12(x̂, t̂, τ, φ̂,∇φ̂) dτ = H̄(x̂, t̂, φ̂,∇φ̂).

Consequently, v solves

(6.8) v′(τ) + H̄(x̂, t̂, φ̂,∇φ̂) = H12(x̂, t̂, τ, φ̂,∇φ̂) in T.

3. We want to show that
φ̂t ≤ H̄(x̂, t̂, φ̂,∇φ̂)

with φ̂t = φt(x̂, t̂). Suppose in the contrary that there is µ > 0 such that

(6.9) φ̂t ≥ H̄(x̂, t̂, φ̂,∇φ̂) + µ.

Let us introduce a perturbed test function. Define

φε(x, t) = φ(x, t) + εv

(
t

ε

)
.

Since v is bounded, we see that φε converges to φ uniformly as ε→ 0. We will show that
φε is a supersolution of (2.21) in Br(x̂)× (t̂− r, t̂+ r) =: C, where r ∈ (0, R) is chosen to
be small so that

(6.10)

(6.11)

|φt(x, t)− φ̂t| ≤
µ

4 ,∣∣∣∣H12

(
x, t,

t0
ε
, φ(x, t),∇φ(x, t)

)
−H12

(
x̂, t̂,

t0
ε
, φ̂,∇φ̂

)∣∣∣∣ ≤
µ

8

for all (x, t) ∈ C. Although H12 = H12(x, t, τ, r, p) is discontinuous in τ , (6.11) is achieved
because we fix τ = t0/ε. More precisely, (6.11) is satisfied if

∣∣∣H1 (x, t,∇φ(x, t))−H1(x̂, t̂,∇φ̂)
∣∣∣ ≤ µ

8 ,∣∣∣H2 (φ(x, t),∇φ(x, t))−H2(φ̂,∇φ̂)
∣∣∣ ≤ µ

8
for all (x, t) ∈ C. Allowing a larger error, we are able to replace φ(x, t) on the left-hand
side of (6.11) by φε(x, t) with ε > 0 small enough. Namely, we have

(6.12)
∣∣∣∣H12

(
x, t,

t0
ε
, φε(x, t),∇φ(x, t)

)
−H12

(
x̂, t̂,

t0
ε
, φ̂,∇φ̂

)∣∣∣∣ ≤
µ

4 .

4. Let ψ be a test function for φε at (x0, t0) ∈ C from below. Then the function

τ 7→ v(τ)− 1
ε

(ψ(x0, ετ)− φ(x0, ετ))
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has a local minimum at τ0 := t0/ε. Also, from the smoothness of φε(·, t0), it follows that

(6.13) ∇φε(x0, t0) = ∇φ(x0, t0) = ∇ψ(x0, t0).

Since v is a viscosity supersolution of (6.8), we have

ψt(x0, t0)− φt(x0, t0) + H̄(x̂, t̂, φ̂,∇φ̂) ≥ H12

(
x̂, t̂,

t0
ε
, φ̂,∇φ̂

)
.

Let φε0 = φε(x0, t0), ∇φ0 = ∇φ(x0, t0) and ∇ψ0 = ∇ψ(x0, t0). Applying (6.10), (6.12) and
(6.9) to the above inequality, we compute

(6.14)

ψt(x0, t0) ≥ φt(x0, t0)− H̄(x̂, t̂, φ̂,∇φ̂) +H12

(
x̂, t̂,

t0
ε
, φ̂,∇φ̂

)

≥ φ̂t −
µ

4 − H̄(x̂, t̂, φ̂,∇φ̂) +H12

(
x0, t0,

t0
ε
, φε0,∇φ0

)
− µ

4

≥ H12

(
x0, t0,

t0
ε
, φε0,∇ψ0

)
+ µ

2 .

For the last inequality we have used (6.13). The above inequality shows that φε is a
supersolution. Moreover, since H12 = H12(x, t, τ, r, p) is continuous in the r-variable, the
estimate (6.14) implies that there is a small η0 > 0 such that φε−η is also a supersolution
of (2.21) for every η ∈ (0, η0].

5. Set
δ0 := −max

∂PC
(u− φ),

which is positive by (6.6). Also, let δ := min{δ0/2, η0}. We then have

max
∂PC

(uε − φε) ≤ −δ,

i.e., uε ≤ φε − δ on ∂PC for ε > 0 small enough. We now apply the comparison principle
for a subsolution uε and a supersolution φε−δ of (2.21) to obtain uε ≤ φε−δ in C. Taking
lim sup∗ε→0 at (x̂, t̂), we see u(x̂, t̂) ≤ φ(x̂, t̂)− δ. This is a contradiction to (6.7), and hence
u is a subsolution of (2.22).

6. Similarly we show that u is a supersolution of (2.22), and therefore u = u by
comparison. This implies the locally uniform convergence of uε to the unique viscosity
solution ūθ of (2.22) and (2.1b).

Remark 6.6. As long as the comparison principle is true, this homogenization result still
holds for more general equations with H1 and H2 which are not necessarily of the forms
H1 = H1(x, t, p) and H2 = H2(r, p).

A Lipschitz continuity of solutions
The properties of the solution of the problem (2.6) and (2.1b) might come in handy

when studying numerical results. For this reason we prove here a Lipschitz estimate for
the solution, under the assumption that the initial datum is Lipschitz continuous. We also
give an explicit representation of the Lipschitz constant in terms of the Lipschitz constant
of the initial datum and the Lipschitz constant of the Hamiltonian H1 denoted by D(t) as
in (H3-s). Although there are plenty of results in the literature concerning the Lipschitz
continuity of viscosity solutions, a Lipschitz estimate for the Hamiltonians which are being
studied in this paper does not exist up to the authors’ knowledge. Moreover we are more
concerned in a Lipschitz constant that does not depend on the parameter θ.
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Proof of Proposition 2.12. 1. Let Φ(x, y, t) = u(x, t) − u(y, t) − L(t)|x − y| for x, y ∈ Rn

and t ∈ [0, T ). We proceed by contradiction. Suppose that

M = sup
x,y∈Rn,t∈[0,T )

Φ(x, y, t) > 0.

Since u has at most linear growth (Theorem 2.11) and u0 is Lipschitz continuous with
Lipschitz constant L0, we have

(1.1)
u(x, t)− u(y, t) ≤ u0(x) +Kt− (u0(y)−Kt)

≤ CT + L0|x− y|

with CT = 2KT . We define

Φσ(x, y, t) = u(x, t)− u(y, t)− Lα(t)|x− y| − η

T − t − α(|x|2 + |y|2),

where
Lα(t) = max

{
L0, 1 + 2

√
αCT

}
e
∫ t

0 (D(s)+µ(s)) ds,

µ(t) = 2
√
αCTD(t).

Set
Mσ = sup

x,y∈Rn, t∈[0,T )
Φσ(x, y, t)

for σ = (η, α). Since u has at most linear growth, there are xσ, yσ ∈ Rn and tσ ∈ [0, T )
such that

Mσ = Φσ(xσ, yσ, tσ).

2. By the definition of M , for every δ > 0 there are xδ, yδ and tδ such that

Φ(xδ, yδ, tδ) ≥M − δ.

Since Lα(t) → L(t) = max{L0, 1}e
∫ t

0 D(s) ds uniformly in t as α → 0, there is ε > 0 small
enough, independent of δ, such that

−Lα(tδ) > −ε− L(tδ).

Then for δ = M/4 we have

Mσ ≥ Φσ(xδ, yδ, tδ)

= Φ(xδ, yδ, tδ)−
η

T − tδ
− α(|xδ|2 + |yδ|2)− ε|xδ − yδ|

≥M − δ − η

T − tδ
− α(|xδ|2 + |yδ|2)− ε|xδ − yδ|

≥ M

2 > 0

for η, α, ε small enough, since δ is fixed. From this it follows that

(1.2) Φσ(xσ, yσ, tσ) > 0.

3. We claim

(1.3) α|xσ|, α|yσ| ≤
√
αCT .
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By (1.1) we observe

u(x, t)− u(y, t)− Lα(t)|x− y| ≤ CT + (L0 − Lα(t))|x− y| ≤ CT

for all (x, y, t), and hence we can write

u(xσ, tσ)− u(yσ, tσ)− Lα(tσ)|xσ − yσ| −
η

T − tσ
− α|yσ|2 ≤ CT .

The left-hand side is equal to Φσ(xσ, yσ, tσ) + α|xσ|2. By (1.2) we get

α|xσ|2 ≤ CT .

Similarly we have α|yσ|2 ≤ CT , and these inequalities show (1.3).
4. We prove tσ > 0 and xσ 6= yσ. Suppose that tσ = 0. Then, since u0 = u(·, 0) is

Lipschitz continuous with Lipschitz constant L0 ≤ Lα(0), we have

0 < Φσ(xσ, yσ, 0) ≤ u(xσ, 0)− u(yσ, 0)− Lα(0)|xσ − yσ| ≤ 0,

a contradiction. Since Φσ(xσ, xσ, tσ) < 0, we have that xσ 6= yσ.
5. Since xσ 6= yσ, we have |x − y| > 0 in a neighbourhood of (xσ, yσ). Therefore, we

can apply [13, Lemma 2] and get, for pσ = (xσ − yσ)/|xσ − yσ|,

(1.4)

η

T 2 + L′α(tσ)|xσ − yσ|
≤ {H1(xσ, tσ, Lα(tσ)pσ + 2αxσ)−H1(yσ, tσ, Lα(tσ)pσ − 2αyσ)}

+ θ{β(u(xσ, tσ)h(Lα(tσ)pσ + 2αxσ)− β(u(yσ, tσ))h(Lα(tσ)pσ − 2αyσ)}
=: I1 + I2.

We can also rewrite I2 as

(1.5)
I2 = θ {β(u(xσ, tσ))− β(u(yσ, tσ))}h(Lα(tσ)pσ + 2αxσ)

+ θβ(u(yσ, tσ)) · {h(Lα(tσ)pσ + 2αxσ)− h(Lα(tσ)pσ − 2αyσ)}.

6. Let us give estimates of I1 and I2. Using (H3-s), the Lipschitz continuity in x of H1,
together with (H2), we get

I1 ≤ D(tσ)|xσ − yσ| · |Lα(tσ)pσ + 2αxσ|
+ {H1(yσ, tσ, Lα(tσ)pσ + 2αxσ)−H1(yσ, tσ, Lα(tσ)pσ − 2αyσ)}.

The first term on the right-hand side can be estimated by (1.3) and |pσ| = 1, while we
apply (H4), the Lipschitz continuity in p of H1, to the second term. Then

I1 ≤ D(tσ)|xσ − yσ|
(
Lα(tσ) + 2

√
αCT

)
+ 2αL2|xσ + yσ|.

By the definition of µ we have

(1.6) I1 ≤ |xσ − yσ| (D(tσ)Lα(tσ) + µ(tσ)) + 2αL2|xσ + yσ|.

We next show that the first term on the right-hand side of (1.5) is not positive. We
first note that u(xσ, tσ) ≥ u(yσ, tσ) by (1.2). Therefore, we have β(u(xσ, tσ)) ≥ β(u(yσ, tσ))
since β is increasing. As a second remark, by the definition of Lα and (1.3), we have

|Lα(tσ)pσ + 2αxσ| ≥ Lα(tσ)− 2
√
αCT ≥ 1.
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Then the assumption (2.10) and the continuity of h imply that h(Lα(tσ)pσ + 2αxσ) ≤ 0.
According to these two remarks we have

I2 ≤ θ|β(u(yσ, tσ))| · |h(Lα(tσ)pσ + 2αxσ)− h(Lα(tσ)pσ − 2αyσ)|.

Using the boundedness of β and the uniform continuity of h, (2.8), we can further estimate
the above as follows :

(1.7) I2 ≤ θMωh(2α|xσ + yσ|),

where M is an upper bound for |β|.
7. Applying (1.6) and (1.7) to (1.4), we get

(1.8) η

T 2 + L′α(tσ)|xσ − yσ| ≤ |xσ − yσ|(Lα(tσ)D(tσ) + µ(tσ)) + J,

where
J = 2αL2|xσ + yσ|+ θMωh(2α|xσ + yσ|).

Note that the function Lα has been chosen so that it solves the differential equation

L′α(t) = (D(t) + µ(t))Lα(t).

According to this, the estimate (1.8) becomes

η

T 2 ≤ µ(tσ)(1− Lα(tσ))|xσ − yσ|+ J.

Since Lα > 1, we have

η

T 2 ≤ J = 2αL2|xσ + yσ|+ θMωh(2α|xσ + yσ|).

Using (1.3), we can send α→ 0 and get a contradiction.

Proof of Proposition 2.10. Since the comparison principal is more or less classical and
similar to the proof of Proposition 2.12, we will only give a sketch of the proof.

1. We may suppose without loss of generality that u, v are upper, respectively, lower
semicontinuous. As usual we set

ũ(·, t) = e−atu(·, t), ṽ(·, t) = e−atv(·, t),

where a > a0 and a0 is given by (F2). Using the notation u, v instead of ũ, ṽ, we have that
u, v are sub- and supersolutions of the equation

ut + (a− a0)u = F̃ (x, t, u,∇u),

where F̃ (x, t, r, p) is non-increasing in r and satisfies the conditions (F1)-(F4). As before
we denote by F the new F̃ .

2. Suppose that
M = sup

(x,t)∈Rn×[0,T )
(u(x, t)− v(x, t)) > 0.

We now make the usual doubling of variables trick and define for ε, η, α > 0

Φσ(x, t, y) = u(x, t)− v(y, t)− |x− y|
2

ε
− η

T − t − α(|x|2 + |y|2)
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and
Mσ = sup

x,y∈Rn, t∈[0,T )
Φσ(x, y, t),

where σ = (ε, η, α). As usual we have 0 < Mσ < +∞. In order to proceed we need a priori
bounds on the maximum Mσ and to do that we need to be able to control the difference
u(x, t)− v(y, t) by the modulus |x− y|. One can show (using a doubling of variables trick,
see for example [20, Proposition 2.3′, p.464]) that there is a constant CT > 0 such that

u(x, t)− v(y, t) ≤ CT (1 + |x− y|).

Using this estimate we can show that there is C > 0 such that

α|x|, α|y| ≤
√
αC.

The above estimate together with (A3) enables us to find xσ, yσ ∈ Rn and tσ ∈ (0, T )
such that Φσ(xσ, yσ, tσ) = Mσ.

For the term |xσ − yσ|2/ε, we will need a more refined estimate than the classical one,
namely we need

(1.9) lim
ε→0

(
lim sup
η,α→0

|xσ − yσ|2
ε

)
= 0.

A proof of a similar estimate can be found in [20, Proposition 4.4].
3. Doubling the variables again in time or using a similar argument as in [13, Lemma

2], we have for pε = 2(xσ − yσ)/ε

η

T 2 + (a− a0)(u(xσ, tσ)−v(yσ, tσ))

≤ F (xσ, tσ, u(xσ, tσ), pε + 2αxσ)− F (yσ, tσ, v(yσ, tσ), pε − 2αyσ).

As in [20, Proposition 2.4] there is a δ > 0 independent of σ, such that u(xσ, tσ)−v(yσ, tσ) >
δ. Using properties of F , (F3) and (F4), one gets

η

T 2 + (a− a0)δ ≤ ω(|xσ − yσ|(1 + |pε + 2αxσ|)) + ωR(2α(|xσ|+ |yσ|)),

where R = o(1/
√
ε)+o(

√
α) as ε, α→ 0. Using (1.9), we can take the limit first as α, η → 0

and then as ε→ 0 to get a contradiction.
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Chapitre 2

A solution with free boundary for
non-Newtonian fluids with
Drucker-Prager plasticity criterion

This chapter is a paper [16] written in collaboration with M Regis †.

Abstract

We study a free boundary problem which is motivated by a particular case of the
flow of a non-Newtonian fluid, with a pressure depending yield stress given by a Drucker-
Prager plasticity criterion. We focus on the steady case and reformulate the equation as a
variational problem. The resulting energy has a term with linear growth while we study
the problem in an unbounded domain. We derive an Euler-Lagrange equation and prove
a comparison principle. We are then able to construct a subsolution and a supersolution
which quantify the natural and expected properties of the solution ; in particular we show
that the solution has in fact compact support, the boundary of which is the free boundary.

The model describes the flow of a non-Newtonian material on an inclined plane with
walls, driven by gravity. We show that there is a critical angle for a non-zero solution to
exist. Finally, using the sub/supersolutions we give estimates of the free boundary.

1 Introduction
Setting of the problem We study non-negative solutions u(y, z) of the equation

(1.1)
{
div(∇u+ |z|q) = −λ in (−1, 1)× (−∞, 0),
q ∈ ∂(| · |)(∇u),

with u(±1, z) = 0, q = q(y, z), λ ≥ 0 and for a function f : RN → R, N ∈ N we define the
subdifferential of f at a point y ∈ RN as

(1.2) (∂f)(y) := {z ∈ RN : f(x)− f(y) ≥ z · (x− y) ∀x ∈ RN}.

The variational formulation of (1.1) consists in minimizing the functional

(1.3) Eλ(u) =
∫

Ω

|∇u|2
2 + |z||∇u| − λu,

†. 70 rue du Javelot 75013 Paris
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in the space

(1.4) X = X (Ω) := {u ∈W 1,2
0L (Ω), z∇u ∈ L1(Ω,R2)},

with
W 1,2

0L (Ω) := {u ∈W 1,2(Ω) : u(±1, ·) = 0},
Ω = (−1, 1) × (−∞, 0). Note that by Remark 2.1 the functional Eλ is well defined in X .
Before we explain the physical interpretation of the mathematical model, we present some
of the particularities of the problem.

Since we study the equation (1.1) in an unbounded domain, the variational problem
(1.3) is no longer trivial because it is not clear if the linear term − ∫Ω λu is lower se-
micontinuous or if the minimizing sequence obtained by the direct method will have a
converging subsequence in X . Using Lemma 3.3, we show that the linear term is lower
semicontinuous and the well posedness of the problem is established in Theorem 2.2 (i).
Also, despite the fact that the energy E includes a term with linear growth (in the gra-
dient variable), a comparison principle still holds for equation (1.1). Using this comparison
principle we construct sub/supersolutions and show that in fact the solution of (1.1) is
compactly supported.

For the construction of these barriers we use the “curvature like” equation

(1.5) −div(|z|q) = λ,

which is the first variation of the energy
∫

Ω |z||∇u| − λu, with q = ∇u
|∇u| when ∇u 6= 0

and |q| ≤ 1 ; then the vector ∇u|∇u| is the normal to the level sets of u. If we suppose that
these level sets are given by −z = φ(y) we are led to study the first variation of the 1-D
functional

(1.6)
∫ 1

−1
−φ(y)

√
1 + |φ′(y)|2 + λφ.

Non-Newtonian fluids The model (1.1) is motivated by the motion of non-Newtonian
fluids. Let Ω ⊂ R3, open and v : Ω→ R3 be the velocity of the fluid, assumed incompres-
sible,

(1.7) div v = 0.

Let f : Ω→ R3 be the external force, then the relevant equation reads as

(1.8) divσ + f = (∇ · v)v + ∂tv

where σ is the stress tensor and using the usual summation convention we write (∇·v)v =
(vj∂jvi)1≤i≤3. Let σdev be the stress deviator defined by tr(σdev) = 0 and

(1.9) σdev := σ + pI,

where p is the pressure and I is the unit matrix.
We are interested in the flow of rigid visco-plastic fluids, which unlike Newtonian fluids

can sustain shear stress. The stress tensor in this case is characterized by a flow/no flow
condition, namely when the stress tensor belongs to a certain convex set the fluid behaves
like a rigid body, whereas outside this set the material flows like a regular Newtonian fluid.
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For a matrix B = (bij)1≤i,j≤3 we denote the norm ||B|| =
√√√√1

2

3∑

i,j=1
b2ij . Following [10] and

[5] we define the stress deviator as

(1.10)




σdev = 2νD(v) + k(p) D(v)

||D(v)|| if D(v) 6= 0,
||σdev|| ≤ k(p) if D(v) = 0

where we assume that the viscosity ν > 0 is constant and k(p) is the pressure-dependent
yield stress and D(v) = (∇v + (∇v)T )/2. The above constituent law is a result of a
superposition of the viscous contribution 2νD(v) and a contribution related to plasticity
effects k(p) D(v)

||D(v)|| , which is independent of the norm of the strain rate ||D(v)||. For constant
yield limit k(p) we retrieve the regular Bingham model, which is a generalized Newtonian
problem, i.e. the constituent law in this case is described by a dissipative potential, see
[6], [8, Chapter 3] and references therein. In this paper we will assume the Drucker-Prager
plasticity criterion

(1.11) k(p) = µsp,

where µs = tan δs, with δs the internal friction (static) angle. The existence of a dissipative
potential in the case of Bingham flows allows for a variational formulation and in tern the
well-posedeness of the problem ; for quasi-static Bingham flows see for example [8]. The
case of a Drucker-Prager criterion, however, falls in a wider class of constituent laws called
“µ(I)−rheology” which are known to be ill-posed, see [1] and [18]. The strong geophysical
interest in the model (1.11) supports however our study. A main result of the present work
is that for one-directional steady flows the model is well-posed.

Flow in one direction We study the well-posedeness and certain quantitative proper-
ties of quasi-static solutions of (1.7)-(1.8), (1.10)-(1.11), for a material which flows on an
inclined plane with sidewalls. We assume that the inclination angle is constant θ and the
material moves only in the direction x under the effect of gravity, see Figure 2.1. In what

atmosphere

liquid phase

soli
d pha

se

◊
y

z

x

2l

Figure 1: Steady flow on an inclined plane

By the form of v, the incompressibility condition (1.7) is trivially satisfied and equation (1.8)
with ˆtv = 0 becomes

(1.12) div‡dev = ≠f + Òp,

with ‡dev given by (1.10) and

(1.13) f = (g0 sin ◊, 0,≠g0 cos ◊),

with g0 the gravitational constant. We also assume that p = p(y, z). We calculate

(1.14) D(v) = 1
2

Q
ca

0 ˆyu ˆzu
ˆyu 0 0
ˆzu 0 0

R
db

and ||Du|| = 1
2 |Òu|, with Òu = (ˆyu, ˆzu). If we substitute (1.14) in (1.10), equations (1.12)

become, for D(v) ”= 0 or equivalently Òu ”= 0,

(1.15)

(1.16)
(1.17)

Y
_____]
_____[

‹0div(Òu) + µsdiv
A
p

Òu

|Òu|

B
= ≠g0 sin ◊

0 = ˆyp

0 = g0 cos ◊ + ˆzp

Where the divergence is taken for the coordinates (y, z). If we integrate equation (1.17)
from z to h(y) we get p(y, z) = (h(y)≠z)g0 cos ◊, but because of equation (1.16) and because
◊ œ

Ë
0, fi

2

2
we have h(y) = h © constant. For simplicity we take h = 0; then the pressure is

given by

(1.18) p(y, z) = |z|g0 cos ◊.

We are lead to study the following equation

(1.19)
Y
]
[

‹0 div(Òu) + µsg0 cos ◊ div(|z|q) = ≠g0 sin ◊ in (≠l, l) ◊ (b, 0),
q œ ˆ(| · |)(Òu)

4

Figure 2.1 – Steady flow on an inclined plane.

follows, we will assume that the velocity field is of the form v(x, y, z) = (u(y, z), 0, 0) for
(x, y, z) ∈ {(x, y, z) : 0 ≤ x, −l ≤ y ≤ l, b ≤ z ≤ h(y)} where h(y) is the interface sepa-
rating the fluid and the air and z = b is the surface of the inclined plane, the width of
which is equal to 2l. Although the well posedness of similar problems have been studied
in more generality in a bounded domain, as it will become clear later, in order to study
the interface between the solid and the liquid phase, as we increase the inclination angle,
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we will need to take b = −∞. By the form of v, the incompressibility condition (1.7) is
trivially satisfied and equation (1.8) with ∂tv = 0 becomes

(1.12) divσdev = −f +∇p,

with σdev given by (1.10) and

(1.13) f = (g0 sin θ, 0,−g0 cos θ),

with g0 the gravitational constant. We also assume that p = p(y, z). We calculate

(1.14) D(v) = 1
2




0 ∂yu ∂zu
∂yu 0 0
∂zu 0 0




and ||Du|| = 1
2 |∇u|, with ∇u = (∂yu, ∂zu). If we substitute (1.14) in (1.10), equations

(1.12) become, for D(v) 6= 0 or equivalently ∇u 6= 0,

(1.15)

(1.16)
(1.17)





νdiv(∇u) + µsdiv
(
p
∇u
|∇u|

)
= −g0 sin θ

0 = ∂yp

0 = g0 cos θ + ∂zp

Where the divergence is taken for the coordinates (y, z). If we integrate equation (1.17)
from z to h(y) we get p(y, z) = (h(y) − z)g0 cos θ, but because of equation (1.16) and
because θ ∈ [0, π2

)
we have h(y) = h ≡ constant. For simplicity we take h = 0 ; then the

pressure is given by

(1.18) p(y, z) = |z|g0 cos θ.

We are lead to study the following equation

(1.19)
{
ν div(∇u) + µsg0 cos θ div(|z|q) = −g0 sin θ in (−l, l)× (b, 0),
q ∈ ∂(| · |)(∇u)

where ∂(| · |) is the subdifferential of the absolute value. If (u, q) is such that (1.19) holds,
with q = q(y, z) = (q1(y, z), q2(y, z)), then |q| ≤ 1 and q = ∇u

|∇u| for ∇u 6= 0 and therefore
the stress deviator defined by

(1.20) σdev := ν




0 ∂yu ∂zu
∂yu 0 0
∂zu 0 0


+ µs|z|g0 cos θ




0 q1 q2
q1 0 0
q2 0 0




is of the form (1.10) with v(x, y, z) = (u(y, z), 0, 0) and solves equations (1.12) with f
given by (1.13) and p by (1.18).

Boundary conditions On the surface of the material z = 0 we assume a no stress
condition, i.e. σ ·(0, 0, 1) = 0 ; since the pressure is zero on the surface near the atmosphere,
this condition becomes σdev · (0, 0, 1) = 0. Here we assume that the stress deviator is given
by (1.20). Then the stress free condition becomes (since z = 0)

(1.21) ∂zu(y, 0) = 0.
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On the lateral boundary y = ±1 we assume the Dirichlet conditions u = 0 (no slip), while
at the bottom z = b, where the material is in contact with the inclined plane, a natural
assumption is the friction condition

{
σn− (σn · n)n = µCv

v · n = 0

where v, σ, n, µC are the velocity, stress, normal to the plane and a friction coefficient
respectively. In our case the friction condition reads as follows

(1.22) ν∂zu+ µs|b|g0(cos θ)q2 = µCu.

Variational formulation The variational formulation of equation (1.19) with boundary
conditions (1.21), (1.22) and the homogeneous Dirichlet conditions on the lateral boundary
constitutes in minimizing the energy

(1.23)
∫

(−l,l)×(b,0)
ν
|∇u|2

2 + µs|z|g0 cos θ|∇u| − (g0 sin θ)u+ µC

∫

{z=b}

|u|2
2

with zero lateral boundary conditions, i.e. u(±1, ·) = 0. Since the energy (1.23) is convex
and the domain is bounded we can easily get a non-negative minimizer via the direct
method.

We are interested in the properties of the minimizer as we increase the inclination angle
θ. We call solid and liquid phases the sets {(y, z) : u(y, z) = 0} and {(y, z) : u(y, z) > 0}
respectively (often abbreviated as {u = 0}, {u > 0} resp.), while their common boundary
we call a yield curve. We note that usually in the literature the yield curve is defined,
for our setting, as the set ∂{∇u 6= 0}, but approximating this set would require different
methods and more regularity of the solution.

For |b| small we expect that for a sufficiently large angle θ all of the material will move
due to the gravity, namely there is no solid phase, whereas, if |b| is large enough, even if
the inclination is large we expect that there will be a solid phase. In order to study the
behaviour and shape of the liquid/solid phases as we increase the inclination angle, we
fix b = −∞. However, there is still one more free boundary remaining, the yield curve,
i.e. the curve that separates the solid from the liquid phase. Since we study (1.23) in an
unbounded domain we drop the friction condition. Let ũ be a solution of (1.19)-(1.21)
with b = −∞, in order to simplify further the equation (1.19) we set

(1.24) u(y, z) = ν

µsg0 cos θ
ũ (ly, lz)

l2
, (y, z) ∈ (−1, 1)× (−∞, 0)

we also define

(1.25) λ := tan θ
µs

,

then ∂| · |(∇u(y, z)) = ∂| · |(∇ũ(ly, lz)) and therefore, u given by (1.24) solves the equation
(1.1) if and only if ũ solves (1.19)

As we will see in Theorem 2.3, the minimizer has compact support, therefore, it trivially
satisfies the friction condition (1.22) on the solid phase as long as the level of the plane is
taken far enough from the support of the minimizer.

We also show that the critical angle for an non-zero minimizer to exist is arctanµs,
namely for θ > arctanµs there exists a non-zero solution with a yield curve while for
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0 ≤ θ ≤ arctanµs the solution is zero. This angle is known in the literature by experimental
study, see for example [17]. The time dependent, one dimensional analogue of our case is
studied in [4] ; the authors prove that for θ > arctanµs there is no solution with solid
phase while in our case the solution always has a solid phase. The difference of course lies
in our two dimensional setting of the problem in which the existence of the walls where
the velocity vanishes is crucial, not just for the physical relevance of the problem. Indeed
since we study minimizers of (1.3) in an unbounded domain we will often need to apply
Poincaré’s inequality, for this reason we need that the projection of the domain in one of
the coordinate axes is bounded. In [13] the authors also prove that for θ ≤ arctanµs the
flowing material stops moving in finite time.

Review of the literature For an extensive review of non-Newtonian fluids see [6], also
[8] and references therein and [15] for evolutionary problems. The flow of a viscoplastic
material with “µ(I)−rheology” is relatively new in the literature, see for example [10].
The inviscid case, i.e. for ν = 0 is similar to another scalar model with applications in
image processing, the total variation flow, see for example [19] and [2]. Although the total
variation bears more similarities with the Bingham case, many of the tools used to study
our problem are similar. In fact the total variation is more difficult to study because of the
lack of the quadratic term in the energy which leads to lack of regularity of the solution. For
the inviscid case our energy (1.3) falls into a wider class, the “total variation functionals”
see [3, Hypothesis 4.1]. We refer to [14] for simulations of a regularized Drucker-Prager
model with application to granular collapse. Concerning the case of the inclined plane see
[11] and [17].

Organization of the paper In Section 2 we state our main results, Theorems 2.2 and
2.3. In Subsection 3.1 we study the 1-dimensional analogue of (1.3) which we use in Lemma
3.3 ; this Lemma is the crucial step in order to prove that the linear term −λ ∫Ω u is lower
semicontinuous. In Subsection 3.3 we study an approximate problem of the minimizer of
(1.3) which helps us to prove certain regularity properties of the solution ; we also note
that since the minimizer is studied in the half stripe Ω the regularity holds up to the
interface seperating the solid from the liquid phase (the support of the minimizer). Using
the approximate minimizer we can also calculate the first variation of (1.3). Finally, in
Lemma 4.4 we construct a solution of (1.5) which we use together with the comparison
principle from Subsection 4.1, in Subsections 4.3 and 4.4 in order to construct a subsolution
and supersolution respectively. The Figures 2.2-2.7 as well as the simulations in Table 2.1
have been made with Mathematica.

2 Main results
We begin with a technical remark.

Remark 2.1. We have X (Ω) ⊂ W 1,1(Ω), which justifies the choice of the space X as
natural functional space for the functional (1.3). Indeed,

∫

{|z|≥1}∩Ω
|∇u| ≤

∫

{|z|≥1}∩Ω
|z||∇u| <∞,

we also get that u ∈ L1(Ω) by Poincaré’s inequality, see [12, Theorem 12.17] ; note also
that in our case the proof of Poincaré’s inequality requires only that elements of the space
W 1,2(Ω) are zero on the lateral boundary of Ω (i.e. on {±1} × (0,∞)). In fact since the
width of the walls is 2 we have

∫
Ω |u|p ≤ 2p

p

∫
Ω |∇u|p for p = 1, 2.
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Let

(2.1) Λ := {q : q ∈ L2
loc(Ω,R2), |q| ≤ 1 a.e.}.

Let Ω̂ = (−1, 1) × R, u ∈ W 1,2
0L (Ω), we denote by û ∈ W 1,2

0L (Ω̂) the reflection of u with
respect the z = 0 axes, i.e.

(2.2) û(y, z) :=
{
u(y, z) if (y, z) ∈ Ω,
u(y,−z) if y, z) ∈ Ω̂ \ Ω.

Throughout the paper we will denote the space X (Ω) simply by X . Only in Lemma 3.4
we will use the explicit notation, this time for the space X (Ω̂). The weak formulation of
(1.1) is

(2.3)





∫

Ω
ν∇u · ∇ϕ+ |z|q · ∇ϕ = λ

∫

Ω
ϕ for all ϕ ∈ X

q · ∇u = |∇u| a.e.

for some λ ≥ 0, q ∈ Λ. We can now state our first main Theorem.

Theorem 2.2. (Existence and uniqueness of minimizers of (1.3))
Let λ ≥ 0, Eλ be given by (1.3), then the following hold
(i) there exists a unique 0 ≤ uλ ∈ X such that

(2.4) Eλ(uλ) = inf
v∈X

Eλ(v),

moreover, uλ ≡ 0 if λ ∈ [0, 1] and uλ 6≡ 0 if λ ∈ (1,+∞),
(ii) there exists q ∈ Λ such that (uλ, q) solves (2.3),
(iii) uλ ∈ C0,α

loc (Ω) for all α ∈ (0, 1), in fact ûλ ∈ W 2,2
loc (Ω̂) and ∂zuλ(y, 0) = 0 for

y ∈ (−1, 1),
(iv) if λ > 1, the pair (uλ, q) obtained in (ii) is unique in the sense that if (ūλ, q̄) ∈ X ×Λ

is another pair satisfying (2.3) then

u = ū in Ω, and q = q̄, a.e. in {∇u 6= 0}.

We set
Im := inf

v∈X
Eλ(v).

Note that by the continuity of the non-negative function uλ in Theorem 2.2 we can define
the yield curve as the common boundary ∂{uλ > 0} = ∂{uλ = 0}. Moreover, the critical
value λ = 1 in the previous Theorem is also a critical value of the physical solution by
(1.24), (1.25) and it does not depend on the viscosity constant ν or the width of the walls.

We will give some notations in order to present our second result, the motivation for
this notation will become clear in the proofs of the relevant Propositions. Let λ > 1 for
Z ∈ [ 1

λ ,
1

λ−1 ] we define

(2.5) fλ(Z) := 1
(λ2 − 1)3/2

{
Arcsin

[
(λ2 − 1)Z − λ

]
− λ

√
1− ((λ2 − 1)Z − λ)2

}
.

As we will see in the proof of Lemma 4.4, the function fλ is strictly increasing in the interval
[ 1
λ ,

1
λ−1 ], i.e. fλ(Z1) < fλ(Z2) for Z1 < Z2, with Z1, Z2 ∈ [ 1

λ ,
1

λ−1 ] ; we can therefore define
the following function

(2.6) φK(λ)(y) := K(λ)f−1
λ

(
fλ

( 1
λ− 1

)
+ |y|
K(λ)

)
y ∈ [−1, 1],
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where

(2.7) K(λ) := 1
fλ
(

1
λ

)
− fλ

(
1

λ−1

) .

Note that by the monotonicity of fλ it is K(λ) < 0. We also define the half cone

(2.8) Cλ := {(y, z) ∈ R2 : 0 < |y| < z
λ

K(λ)}

and

(2.9) Epi`(λ) := {(y, z) ∈ Ω : z > φK(λ)(y)}.

In Lemma 4.4 we show that the sets in (2.9) are increasing in λ in the sense that Epi`(λ) (
Epi`(λ̄) for λ̄ > λ, see Figure 2.3a. For λ1 > λ we set

(2.10) ϑλ,λ1 := λ1 − λ
2
(

1 +
(

λ1
K(λ1)

)2
) ,

(2.11) b(λ, λ1) := 1 +
√

λ1
2ϑλ,λ1

,

(2.12) Π(λ, λ1) := −K(λ1)
λ1 − 1 b(λ, λ1) + K(λ)

λ− 1 .

and

(2.13) Epi`(λ1) := {(y, z) ∈ Ω : z > b(λ, λ1)φK(λ1)

(
y

b(λ, λ1)

)
}.

In Lemma 4.4 we see that min
|y|≤1

φK(λ)(y) = φK(λ)(0) = K(λ)
λ− 1 for all λ > 1, and therefore,

the function Π in (2.12) is the distance of the projections on the z−axes of the epigraphs
Epi`(λ) and Ω \ Epi`(λ1). Using (2.7) we calculate

K(λ1)
λ1 − 1 =

2(λ1 + 1)
√
λ2

1 − 1

2
√
λ2

1 − 1 + π + 2Arcsin
(

1
λ1

) ,

then lim
λ1→+∞

K(λ1)
λ1 − 1 = +∞, and similarly one can see that lim

λ1→+∞

K(λ1)
λ1

= +∞ ; if we
combine the above two limits, one can check that for all λ > 1,

(2.14) lim
λ1→+∞

Π(λ, λ1) = +∞.

We also have

(2.15) lim
λ1→λ

Π(λ, λ1) = +∞.

If we combine (2.14), (2.15) and the fact that Π is continuous and we get that for every
fixed λ > 1 the function Π(λ, ·) attains a minimum for some λ?1 > λ. In fact numerical
simulations (see Figure 2.6) suggest the function Π(λ, ·) attains the minimum at a unique
λ?1 > λ, but the analytical calculations are too complicated to check.

In the following Theorem we gather the main properties of the solution obtained in
Theorem 2.2.
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Theorem 2.3. (Main properties)
Let λ > 1, X as in (1.4), (uλ, q) ∈ X × Λ be a solution of (2.3). Also let λ1 > λ,

Epi`(λ1) be as in (2.13), then then function uλ has compact support and it’s support can
be estimated as follows

(2.16) Epi`(λ) ⊂ suppuλ ⊂ Epi`(λ1).

Moreover, we can optimize estimate (2.16) by choosing λ1 = λ?1.

Remark 2.4. (Consequences of Theorem 2.3)
1. In Lemma 4.4 we show that the function φK(λ) has a strictly negative maximum,

therefore estimate (2.16) implies that the yield curve ∂{uλ > 0} never reaches the
surface of the atmosphere {z = 0}.

2. Notice that the sets Epi`(λ) and Epi`(λ1) can also estimate the support of the phy-
sical solution, by (1.24) and they are independent of the viscosity ν.

3 Existence/Uniqueness

3.1 1D-problem
Let A > 0 and for w ∈W 1,2

0 (−1, 1) we consider the energy

(3.1) εA(w) =
∫ 1

−1

(
|w′(y)|2

2 +A|w′(y)|
)
dy.

Using the direct method of calculus of variations it is not difficult to show the following
Proposition.

Proposition 3.1. (Minimizer of 1D-problem)
Let A > 0 and m > 0. Then there exists a unique function w solving

εA(w) = inf
w∈W 1,2

0 (−1,1)∫ 1
−1 w=m

εA(w).

We set

(3.2) IAm := inf
w∈W 1,2

0 (−1,1)∫ 1
−1 w=m

εA(w).

The uniqueness of the minimizer of εA in the above Proposition follows by the strict
convexity of the functional or by using similar arguments as in the proof of Step 1 of
Theorem 2.2 (i).

We define the set theoretic sign function as

sign(r) :=





{
r
|r|

}
if r 6= 0,

(−1, 1) else.

Proposition 3.2. (Characterization of the 1D minimizer)
Let A, m > 0. If λA = λA,m is the non-negative root of

(3.3) 2λ3
A − 3λ2

A(A+m) +A3 = 0,
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with λA > A+m,

(3.4) a = A

λA
< 1,

(3.5) w(y) =





A
(
−y2

2a + |y|+ 1
2a − 1

)
a < |y| < 1,

A (a−1)2

2a |y| ≤ a.

q(y) =





− y
|y| a < |y| < 1,

−y
a |y| ≤ a,

then (w, q, λA) solves the equation

(3.6) −w′′(y)−A(q(y))′ = λA, for a.e. y ∈ (−1, 1),

and
∫ 1
−1w = m. In particular w is the unique minimizer of (3.1) corresponding to the

volume constraint m.

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0
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L1

L2
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L4

Figure 2.2 – Li, i = 1, 2, 3, 4 are the graph of w for (m,A) = (0.5, 0.5), (2, 2), (3, 0.5), (4, 2)
respectively.

Proof of Theorem 3.2
Step 1. The trinomial (3.3)

First we will show that the trinomial (3.3) has a unique non-negative root λA ≥ A+m.
A simple calculation shows that the trinomial (3.3) is increasing in the interval [A+m,+∞)
with values A3

(
1− (1 + m

A

)3) ≤ 0 and +∞ for λA = A+m and λA = +∞ respectively,
hence there exist a root for λ ≥ A+m.
Step 2. The equation (3.6)

For a.e. y ∈ (−1, 1) we have

(3.7) w′′(y) =
{
−A
a a < |y| < 1,

0 |y| < a

and

(3.8) q′(y) =
{

0 a < |y| < 1,
− 1
a |y| < a.
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Using (3.7), (3.8) and (3.4) we deduce that (w, q, λA) solves (3.6).
Step 3. Volume constraint

It remains to show that
∫ 1
−1w = m. It is

∫ 1

−1
w = 2

(
A

2 (1− a)2 +
∫ 1

a
w

)

= 2
(
A

2 (1− a)2 − A

2a

∫ 1

a
(y − a)2 − (1− a)2 dy

)

= A(1− a)2

a
− A

a

∫ 1−a

0
y2 dy

= A

3a(1− a)2(2 + a),

using equation (3.4) and (3.3) we get

(3.9)
∫ 1

−1
w = A

3a(1− a)2(2 + a) = (λA −A)2(2λA +A)
3λ2

A

= m.

Step 3. Minimizer
It remains to show that w is the minimizer of εA in W 1,2

0 (−1, 1) which corresponds to
the constraint m. First we notice that q(x) ∈ sign(w′(x)) = ∂(| · |)(w′(x)) for x ∈ (−1, 1)
and the subdifferential is given by (1.2). Let v ∈W 1,2

0 (−1, 1) with
∫ 1
−1 v = m, it is

εA(v)− εA(w) ≥
∫ 1

−1
w′(v − w)′ +Aq(v − w)′

= −
∫ 1

−1
(w′′ +Aq′)(v − w) = λA

∫ 1

−1
(v − w) = 0.

�

3.2 A variational problem

The lower semicontinuity of the term − ∫Ω λu in (1.3) under the weak topology ofW 1,2

is not trivial since the integral is not evaluated in a bounded domain. The following Lemma
shows that the L1-tails of a sequence of functions will converge to zero if the respective
values of the functional Eλ are uniformly bounded.

Lemma 3.3. (Compensation of the mass)
Let {vk}k∈N ⊂ X , suppose that there exists a non-negative constant c independent of k
such that Eλ(vk) < c for all k ∈ N, then

(3.10) lim
l→+∞

(
sup
k

(∫ +∞

l

∫ 1

−1
vk(y,−A) dydA

))
= 0.

Proof of Lemma 3.3
Step 1 : An estimate for the minimum of εA

Let A > 0 and define

(3.11) mA = mk
A =

∫ 1

−1
vk(y,−A) dy
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Let εA be given by (3.1) and IAmA be the minimum of εA corresponding to the constraint
mA. Then for λA the root of the trinomial in (3.3), it is

mA = (λA −A)2(2λA +A)
3λ2

A

.

Using (3.5) we calculate

(3.12) IAmA = A2

a

(
2
3

(1− a)3

a
+ (1− a)2

)
= (λA −A)2(2λA +A)

3λA
= mAλA.

By Step 1 of the proof of Proposition 3.2 we have λA ≥ A + mA hence equation (3.12)
becomes

(3.13) IAmA ≥ mA(A+mA) ≥ AmA.

Step 2 : The tails of vk converge uniformly to 0
We argue by contradiction, suppose that

sup
k

(∫ +∞

l
mk
A dA

)
9 0 as l→ +∞

then, there are ε > 0 and a sequence lj → +∞ as j → +∞ such that

(3.14) sup
k

(∫ +∞

lj

mk
A dA

)
≥ ε

By Fubini’s Lemma we have for lj > λ

(3.15) Eλ(vk) =
∫ +∞

0

∫ 1

−1

|∇vk|2
2 +A|∇vk| − λvk dydA

≥
∫ +∞

0

∫ 1

−1

|∂yvk|2
2 +A|∂yvk| − λvk dydA

≥
∫ +∞

lj

IA
mkA
− λmk

A dA ≥
∫ +∞

lj

mk
A(lj − λ) dA,

where in the last inequality we used (3.11), (3.2) and (3.13). Taking the supremum over
k ∈ N we get, using (3.14)

c ≥ sup
k
Eλ(vk) ≥ sup

k

(∫ +∞

lj

mk
A(lj − λ) dA

)
≥ (lj − λ)ε→ +∞ as lj → +∞,

a contradiction.
�

We have the following Lemma.

Lemma 3.4. (Approximation by smooth functions)
Let v ∈ X (Ω̂). Then, there is a sequence vA ∈W 1,2

0 (Ω̂) such that

(3.16) vA → v in W 1,2(Ω̂) ∩ L1(Ω̂),

and

(3.17) lim
A→+∞

∫

Ω̂
|z||∇vA −∇v| = 0.
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Proof of Lemma 3.4
First we note that v ∈ L1(Ω̂) by Remark 2.1. Let A > 1 we define the cut off functions
ηA ∈W 1,∞

0 (R) by

ηA(z) :=





1 if |z| ≤ A,
1− 1

A(|z| −A) if A ≤ |z| ≤ 2A,
0 if 2A ≤ |z|.

Then

(3.18) |η′A(z)| ≤ 2
|z| a.e.

The functions vA(y, z) := ηA(z)v(y, z) belong to W 1,2(Ω̂), they have compact support
in Ω̂A = (−1, 1) × (−2A, 2A) and zero trace on ∂Ω̂A. Since the boundary of each Ω̂A is
Lipschitz and bounded we have by [12, Theorem 15.29] that vA ∈ W 1,2

0 (Ω̂A). It is not
difficult to see that vA → v in W 1,2(Ω̂), we will show that lim

A→+∞
|z||∇vA −∇v| = 0.

We have ∫

Ω̂
|z||∇vA −∇v| ≤

∫

Ω̂
|z|(|η′Av|+ |ηA − 1||∇v|)

≤
∫

Ω̂∩{A<|z|<2A}
2|v|+

∫

Ω̂∩{A<|z|}
|z||∇v|

then, using (3.18) and the fact that |z||∇v|, |v| ∈ L1(Ω̂) the right hand side of the above
estimate converges to zero as A→ +∞.
The convergence in L1(Ω̂) in (3.16) follows by Remark 2.1. �

For two sets U,U ′ ⊂ R2, by U ⊂⊂ U ′ we mean that U is relatively compact in U ′,
i.e. U ⊂ U ′ and U is compact. Also for a function u(y, z) we define the positive part
u+(y, z) = max{u(y, z), 0}.
Proof of Theorem 2.2 (i)
Step 1. Boundedness of Eλ from below

We focus in the cases λ > 0 since for λ = 0 the minimizer of Eλ is trivially the zero
function. We fix λ > 0, let u ∈ X , using Poincaré’s inequality in Ω (Remark 2.1) we get

Eλ(u) =
∫

Ω

|∇u|2
2 + |z||∇u| − λ

∫

Ω
u

≥
∫

Ω

|∇u|2
2 + (|z| − 2λ)|∇u|.

We split the last integral in the domains {|z| ≥ 2λ} ∩ Ω and {|z| ≤ 2λ} ∩ Ω and get

Eλ(u) ≥
∫

{|z|≤2λ}∩Ω

|∇u|2
2 − 2λ|∇u|

≥
∫

{|z|≤2λ}∩Ω
−2λ2 > −∞.

Step 2. Minimizing sequence
Let uk ∈ X with lim

k→+∞
Eλ(uk) = inf

v∈X
Eλ(v). We will denote by c a generic positive

constant which does not depend on the parameter k. There is a positive constant c such
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that sup
k∈N

Eλ(uk) ≤ c, then as in Step 1 we use Poincare’s inequality to get

c ≥
∫

{|z|≤2λ}∩Ω

|∇uk|2
2 + (|z| − 2λ)|∇uk|+

∫

{|z|≥2λ}∩Ω

|∇uk|2
2

≥
∫

{|z|≤2λ}∩Ω

|∇uk|2
2 − |∇uk|

2

4 − (|z| − 2λ)2 +
∫

{|z|≥2λ}∩Ω

|∇uk|2
2 ,

where in the second inequality we used Young’s inequality
(
|a||b| ≤ b2

4 + a2
)
. Is is easy now

to see that

(3.19)
∫

Ω
|∇uk|2 ≤ c.

Then by Poincare’s inequality and compactness there is u ∈W 1,2
0L (Ω) such that uk ⇀ u as

k → +∞.
Using similar arguments we get c ≥ ∫Ω(|z| − 2λ)|∇uk|, or if we split the integral in the

domains {|z| ≥ 4λ} ∩ Ω = {|z| − 2λ ≥ |z|/2} ∩ Ω and {|z| ≤ 4λ} ∩ Ω we get

(3.20)
1
2

∫

{|z|−2λ≥|z|/2}∩Ω
|z||∇uk| ≤

∫

{|z|≥4λ}∩Ω
(|z| − 2λ)|∇uk| ≤ c−

∫

{|z|≤2λ}∩Ω
(|z| − 2λ)|∇uk|,

since
∫
{2λ≤|z|≤4λ}∩Ω(|z| − 2λ)|∇uk| ≥ 0. We can now bound the right hand side of (3.20)

using Hölders inequality and (3.19) and get eventually that
∫
{|z|≥4λ}∩Ω |z||∇uk| ≤ c. Using

Hölders inequality and (3.19), one can also bound the quantity
∫
{|z|≤4λ}∩Ω |z||∇uk| uni-

formly in k, we can therefore conclude that

(3.21)
∫

Ω
|z||∇uk| ≤ c,

where again c is a positive constant independent of k.
Step 3. Lower semicontinuity

We will show that

(3.22)
∫

Ω

|∇u|2
2 + |z||∇u| ≤ lim inf

k→+∞

∫

Ω

|∇uk|2
2 + |z||∇uk|,

and

(3.23) −λ
∫

Ω
u ≤ lim inf

k→+∞

(
−λ

∫

Ω
uk

)
.

Equations (3.19), (3.21) and (3.22) imply that u ∈ X and then u ∈ L1(Ω) by Remark 2.1.
Whereas, equations (3.22) and (3.23) together imply that Eλ(u) ≤ lim inf

k→+∞
Eλ(uk), which

shows that u is a minimizer of Eλ in X . Since the integrand in (3.22) is non-negative
convex in the gradient variable and measurable in the z variable, the inequality (3.22)
follows from [9, Chapter I, Theorem 2.5].

For l > 0 fixed we have

(3.24)

(3.25)

∫

Ω
uk =

∫ +∞

l

∫ 1

−1
uk(y,−A) dydA+

∫ l

0

∫ 1

−1
uk(y,−A) dydA

≤ sup
k

(∫ +∞

l

∫ 1

−1
uk(y,−A) dydA

)
+
∫ l

0

∫ 1

−1
uk(y,−A) dydA.
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Since Eλ(uk) is uniformly bounded we can apply Lemma 3.3 and get that (3.10) holds
for the sequence uk. Using (3.10) and the fact that u ∈ L1(Ω), we can take the lim sup
in (3.24), as k → +∞ and then l → +∞ and get lim sup

k→+∞

∫

Ω
uk ≤

∫

Ω
u or else (3.23),

which completes the proof of the lower semi-continuity of Eλ and hence the existence of a
minimizer u ∈ X .
Step 4. Uniqueness

Let u, ũ ∈ X be two minimizers, then using similar arguments as in [6, Section 3.5.4,
p.36] one can show that

(3.26)
∫

Ω
∇u · (∇ũ−∇u) +

∫

Ω
|z||∇ũ| −

∫

Ω
|z||∇u| ≥ λ

∫

Ω
ũ− u,

(3.27)
∫

Ω
∇ũ · (∇u−∇ũ) +

∫

Ω
|z||∇u| −

∫

Ω
|z||∇ũ| ≥ λ

∫

Ω
u− ũ.

If we add equations (3.26) and (3.27) we get
∫

Ω
|∇u−∇ũ|2 ≤ 0,

hence u = ũ in Ω since they also have the same lateral boundary conditions.
Step 5. Non-negative minimizer

We have by [20, Corollary 2.1.8, page 47] that ∇u+ = (∇u) · χ{u>0}, where by χ{u>0}
we denote the characteristic function of the set {(y, z) : u(y, z) > 0}. Since also −λ ∫Ω u+ ≤
−λ ∫Ω u we have Eλ(u+) ≤ Eλ(u), hence u = u+ by the uniqueness of minimizers.
Step 6. λ ∈ [0, 1]

Our goal is to show that

(3.28) Eλ(u) ≥ 0, for all u ∈ X ,

then because 0 ∈ X and Eλ(0) = 0 we get that the unique minimizer of Eλ is the
zero function. In view of Lemma 3.4, it is enough to prove (3.28) for functions u with
û ∈W 1,2

0 (Ω̂). Let u be such a function, then as in Step 5 we have

(3.29) Eλ(u+) ≤ Eλ(u).

Suppose that the compact support of û+ is contained in [−1, 1]× (−A,A) where A is large
enough, then we have ∫

Ω
|z||∇u+| ≥

∫ 1

−1

∫ A

0
|z|
∣∣∣∣∣
∂u+

∂z

∣∣∣∣∣ dzdy

≥
∣∣∣∣∣

∫ 1

−1

∫ A

0
z
∂u+

∂z
dzdy

∣∣∣∣∣

=
∫

Ω
u+

in the last equality we used integration by parts. This estimate together with (3.29) and
the fact that λ ≤ 1 gives

Eλ(u) ≥ Eλ(u+) ≥ (1− λ)
∫

Ω
u+ ≥ 0.

Step 7. λ ∈ (1,+∞)
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Our goal is to prove that there is u ∈ X with Eλ(u) < 0. Let ϕ ∈ C∞(−1, 1), ϕ ≥ 0
with ϕ(−1) = 0 = ϕ(1) and

∫ 1
−1 ϕ = 1 (for example ϕ(y) = 3

4(1− y2)). We define

u(y, z) := k−3ekzϕ(y)

where k > 0 is large enough, to be chosen later. It is u ∈ X and

(3.30)
∫

Ω

|∇u|2
2 = 1

2

∫ 1

−1

[
k−2(ϕ′(y))2 + ϕ2(y)

]
dy

∫ 0

−∞
(k−2ekz)2 dz

= Ak
4 k−5

where we set Ak =
∫ 1
−1
[
k−2(ϕ′(y))2 + ϕ2(y)

]
dy. Also

(3.31)
∫

Ω
|z||∇u| =

∫ 1

−1

√
k−2(ϕ′(y))2 + ϕ2(y) dy

∫ 0

−∞
|z|k−2ekz dz

= Bk

∫ 0

−∞
|z|k−2ekz dz

where Bk =
∫ 1
−1
√
k−2(ϕ′(y))2 + ϕ2(y) dy. If we integrate by parts the second product

component of the right hand side of (3.31) we get
∫ 0

−∞
|z|k−2ekz dz =

∫ 0

−∞
k−3ekz =

∫ 0

−∞
k−3ekz

∫ 1

−1
ϕ =

∫

Ω
u,

then (3.31) becomes

(3.32)
∫

Ω
|z||∇u| = Bk

∫

Ω
u.

We also have
∫
Ω u = k−4, then we can write Eλ(u) using (3.30) and (3.32) as

(3.33) Eλ(u) = Ak
4 k−5 + (Bk − λ)k−4.

Next we note that Bk ≥ 1, is decreasing in k (and so is Ak) and Bk → 1 as k → +∞.
Since λ > 1 we can find k0 large enough such that Bk0 < λ, then (3.33) becomes

Eλ(u) ≤ Ak0

4 k−5 + (Bk0 − λ)k−4,

for all k ≥ k0. We can now conclude if we choose k ≥ k0 large enough, since the function
k−5 decreases faster than k−4, for example k > max{k0,

Ak0
4(λ−Bk0 )}. �

3.3 The ε-approximation

Let λ > 0, uλ be the minimizer of Eλ given by Theorem 2.2 (i). For A > 0 we define
Ω̂A = {(y, z) ∈ Ω̂ : |z| ≤ A}, ΩA = Ω ∩ Ω̂A and

HA = {v ∈W 1,2(ΩA), v = uλ, on ∂ΩA \ {z = 0}},

We are interested in approximate minimizers of (1.3), for this we study the minimizers in
HA of the approximate functional

(3.34) EAε,λ(u) =
∫

ΩA

|∇u|2
2 + |z|

√
ε2 + |∇u|2 − λu,
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where ε > 0.
Since we have mixed boundary conditions, an easy way to describe the space of test
functions for the weak formulation of the first variation of (3.34) is to use reflection in
the domain Ω̂A. We will simply write φ̂ ∈ W 1,2

0 (Ω̂A) for the test functions. We have the
following Proposition.

Proposition 3.5. (W 2,2
loc regularity of approximate problem)

Let A, ε, λ > 0, then there exists a unique minimizer uε,A ∈ HA of EAε,λ. Moreover,
ûε,A ∈W 2,2

loc (Ω̂A) and the following equation holds

(3.35)
∫

ΩA
∇uε,A · ∇ϕ+ |z| ∇uε,A · ∇ϕ√

ε2 + |∇uε,A|2
= λ

∫

ΩA
ϕ, for all ϕ̂ ∈W 1,2

0 (ΩA),

and ∂zuε,A(y, 0) = 0 for y ∈ (−1, 1).

The existence of a minimizer is a consequence of the direct method in the bounded
domain ΩA, while the regularity results are standard. We give a sketch of the Proof of
Proposition 3.5 in Appendix A.
Proof of Theorem 2.2 (ii)-(iv)
Step 1. Solutions of E-L equation are minimizers of (1.3)

First we will show that for any pair (u, q) ∈ X × Λ that satisfies equation (2.3), u is a
minimizer of Eλ. Let v ∈ X , using (2.3) and the fact that |q| ≤ 1 it is easy to check that
q ∈ ∂| · |(∇u) in Ω. By the definition of the subdifferential we have

(3.36) Eλ(v)− Eλ(u) ≥
∫

Ω
∇u · ∇(v − u) + |z|q · ∇(v − u)− λ

∫

Ω
(v − u) = 0,

where we used (2.3) with test function ϕ = v − u ∈ X .
Step 2. Approximating solutions

As usual we will focus in the case λ > 0. Let u = uλ be the minimizer of Eλ given
by Theorem 2.2 (i). For ε > 0 let uε,A be the minimizer of EAε,λ given by Proposition 3.5,
then for all A > 0 we will show that uε,A → u strongly as ε → 0, in W 1,2(ΩA) up to
a subsequence. Extending uε,A by uλ outside ΩA, we can write the following variational
inequalities as in the Step 1 of the proof of Theorem 2.2 (i)

(3.37)
∫

ΩA
∇u · (∇uε,A −∇u) +

∫

ΩA
|z||∇uε,A| −

∫

ΩA
|z||∇u| ≥ λ

∫

ΩA
uε,A − u

and
(3.38)
∫

ΩA
∇uε,A · (∇u−∇uε,A) +

∫

ΩA
|z|
√
ε2 + |∇u|2 −

∫

ΩA
|z|
√
ε2 + |∇uε,A|2 ≥ λ

∫

ΩA
u− uε,A.

Adding inequalities (3.37) and (3.38), we get
∫

ΩA
|∇uε,A −∇u|2 ≤

∫

ΩA
|z|(|∇uε,A| −

√
ε2 + |∇uε,A|2) + |z|(

√
ε2 + |∇u|2 − |∇u|)

≤
∫

ΩA
|z|(

√
ε2 + |∇u|2 − |∇u|)

=
∫

ΩA
|z| ε2
√
ε2 + |∇u|2 + |∇u| ≤ A|ΩA|ε,
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Then using also Poincare’s inequality we get for all A > 0 and up to a subsequence

(3.39) ∇uε,A → ∇u, uε,A → u a.e. in ΩA as ε→ 0.

Step 3. The function q

For qε,A = ∇uε,A√
ε2+|∇uε,A|2

, we have qε,A · ∇uε,A ≤ |∇uε,A|, then using (3.39) it is not
difficult to see that

(3.40) qε,A · ∇uε,A → |∇u| a.e. in ΩA as ε→ 0.

Since qε,A ∈ L2
loc(ΩA,R2) with |qε,A| ≤ 1, there exists qA ∈ L2

loc(ΩA,R2) with |qA| ≤ 1
and such that qε,A converges weakly to qA in L2(U,R2), as ε → 0, for every U ⊂⊂ ΩA.
Then using also (3.39) we have lim

ε→0

∫

U
qε,A · ∇uε,A =

∫

U
qA · ∇u for all U ⊂⊂ ΩA and by

(3.40) we get that qA · ∇u = |∇u| a.e. in ΩA. Extending qA by zero outside ΩA we may
wright qA ∈ L2

loc(Ω,R2) and as before we can find q ∈ L2
loc(Ω,R2), with |q| ≤ 1 and such

that qA converges weakly to q in L2(U,R2), as A → +∞, for every U ⊂⊂ ΩA, and hence
q · ∇u = |∇u| a.e.
Step 4. Passing to the limit ε→ 0, A→ +∞

Let ϕ with ϕ̂ ∈W 1,2
0 (Ω̂), then equation (3.35) with A large enough holds for this test

function and since qε,A is bounded we can pass to the limit as ε→ 0 and get
∫

Ω
∇u · ∇ϕ+ |z|qA · ∇ϕ = λ

∫

Ω
ϕ.

We can now pass to the limit as A→ +∞ and using also Lemma 3.4 we get (2.3).
Step 5. Uniqueness

Let (u, q), (ū, q̄) be two solutions of (2.3) then by Step 1 we have u = ū, since minimizers
of (1.3) in X are unique by Theorem 2.2 (i). Then in the set {∇u 6= 0} the vectors q, q̄
are parallel to ∇u and so is q − q̄, but since (q − q̄) · ∇u = 0 by (2.3) we have q = q̄ a.e.
in {∇u 6= 0}.
Step 6. Neumann condition

We denote by ∂xi , i = 1, 2 respectively the derivatives ∂y, ∂z. Let i, j ∈ {1, 2},
Û ⊂⊂ Ω̂A, by Proposition 3.5 we have that ûε,A ∈ W 2,2

loc (Û), by Lemma A.1 the se-
cond derivatives of ûε,A are uniformly bounded in L2(Û), hence for ϕ ∈W 1,2

0 (Û) we have
(up to a subsequence)

∫

Û
∂xi û∂xjϕ = lim

ε→0

∫

Û
∂xi ûε,A∂xjϕ = − lim

ε→0

∫

Û
∂xj∂xi ûε,Aϕ = −

∫

Û
gϕ,

for some function g ∈ L2(Û). We have proved that û ∈W 2,2
loc (Ω̂), then applying a Sobolev

embedding Theorem ([7, Section 5.6.3]) we get that û ∈ C0,α
loc (Ω̂) for all α ∈ (0, 1). As in

the proof of Proposition 3.5 we can now define the trace of the derivative of u on {z = 0}
and ∂zu(y, 0) = 0 for y ∈ (−1, 1). �

4 Properties of the solution

4.1 Comparison Principle

In view of Theorem 2.2 (i) we will assume that λ > 1 for the rest of the paper.
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Definition 4.1. Sub/supersolution
Let u ∈ X be non-negative and q ∈ Λ, Λ as in (2.1), we call the pair (u, q) a subsolution
(resp. a supersolution) of the equation (2.3) if

(4.1)
{∫

Ω∇u · ∇ϕ+ |z|q · ∇ϕ ≤ λ ∫Ω ϕ (resp. ≥ λ ∫Ω ϕ) for all ϕ ∈ X , ϕ ≥ 0,
q · ∇u = |∇u| a.e. in Ω.

Proposition 4.2. Comparison principle
Let u, v ∈ X , qu, qv ∈ Λ with (u, qu), (v, qv) a subsolution and a supersolution respectively
of (2.3), with 0 = u ≤ v on {−1, 1} × (−∞, 0) in the sense of traces, then

u ≤ v, in Ω.

Proof of Proposition 4.2
Let ϕ = (u − v)+, then ϕ ∈ X . If we write the inequalities (4.1) for u, v with this test
function and subtract the one from the other we get

∫

Ω
∇(u− v) · ∇(u− v)+ + |z|(qu − qv) · ∇(u− v)+ ≤ 0,

or if we use [20, Corollary 2.1.8, page 47] we can write it as

(4.2)
∫

Ω
|∇(u− v)|2χ{u−v≥0} ≤ −

∫

Ω
|z| [(qu − qv) · ∇(u− v)]χ{u−v≥0}.

Next we calculate, using the properties of qu, qv in Definition 4.1

(qu − qv) · (∇u−∇v) = |∇u| − qu · ∇v − qv · ∇u+ |∇v|
≥ |∇u| − |∇u|+ |∇v| − |∇v| = 0, a.e.

then (4.2) implies
∇(u− v) = 0, a.e. in {u− v ≥ 0}

or ∇(u−v)+ = 0 almost everywhere. Using the boundary conditions we can conclude that
(u− v)+ = 0 and hence u ≤ v a.e. in Ω. �

Remark 4.3. (Monotonicity in λ)
For uλ the minimizer of Eλ in X and m(λ) =

∫
Ω uλ the volume rate, using the com-

parison principle from Proposition 4.2 it is not difficult to see that m(λ) is increasing
in λ. Unfortunately, the physical volume rate is given, using the rescaling (1.24), by
m0 = (l2µsg0 cos θ)m, which does not allow us to directly study the monotonicity with
respect the inclination angle θ (cos θ is decreasing for θ ∈ [0, π/2) and λ(θ) is increasing
by (1.25)).

4.2 Some explicit profiles

As we explained in the introduction, we study the first variation of the functional (1.6),
i.e.

(4.3) φφ′′

(1 + |φ′|2)3/2 −
1√

1 + |φ′|2 + λ = 0, y ∈ (−1, 1).
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Lemma 4.4. (An explicit solution of 4.3)
Let λ > 1, K(λ) be given by (2.7) and φK(λ) defined in (2.6). Then the function φK(λ) ∈
C∞(−1, 1) ∩ C([−1, 1]) is non-positive and the following properties hold

(4.4) lim
y→−1

φ′K(λ)(y) = −∞, lim
y→1

φ′K(λ)(y) = +∞.

Moreover the function φK(λ) is convex with minimum φK(λ)(0) = K(λ)
λ−1 and maximum

φK(λ)(±1) = K(λ)
λ and if λ̄ > λ then φK(λ̄)(y) < φK(λ)(y), for y ∈ [−1, 1].

Proof of Lemma 4.4
Step 1. The inverse function

Let λ > 1 and Z ∈ [ 1
λ ,

1
λ−1 ], fλ(Z) be given by (2.5). Notice that fλ is smooth in

( 1
λ ,

1
λ−1) and that it has been chosen so that

(4.5) f ′λ(Z) = (λZ − 1)
√
λ2 − 1√

1− ((λ2 − 1)Z − λ)2 ,

from which we get that fλ is strictly increasing in [ 1
λ ,

1
λ−1 ]. We set

(4.6) Aλ := fλ

( 1
λ− 1

)
− fλ

( 1
λ

)
= π

2(λ2 − 1)3/2 + 1
λ2 − 1


1 +

Arcsin
(

1
λ

)

√
λ2 − 1


 ,

by the monotonicity of f we can define the positive function φ implicitly in the intervals
[−Aλ, 0] and [0, Aλ] as follows

(4.7) fλ(φ(y)) = fλ

( 1
λ− 1

)
− |y|, y ∈ [−Aλ, Aλ],

then fλ(φ(y)) = fλ(φ(−y)) for y ∈ [0, Aλ], which means that φ is an even function thanks
to the monotonicity of fλ. Also by (4.7) we have φ(0) = 1/(λ − 1) and by (4.5) we can
calculate the limit lim

Z→1/(λ−1)
f ′(Z) and get lim

y→0+
φ′(y) = 0. Since φ is even and smooth in

the intervals [−Aλ, 0) and (0, Aλ] we eventually get φ′(0) = 0. We have concluded that
φ ∈ C1(−Aλ, Aλ).

Relation (4.7) gives also for y ∈ [−Aλ, Aλ]

(4.8) 1/λ = φ(±Aλ) ≤ φ(y) ≤ φ(0) = 1/(λ− 1)

and by (4.5)

(4.9) φ′(−Aλ) = +∞, φ′(Aλ) = −∞.

Step 2. φ satisfies (4.3)
Using (4.5) we can differentiate (4.7) and taking the squares in both sides of the

equation, we get for y ∈ (−Aλ, Aλ),

|φ′|2 (λφ− 1)2(λ2 − 1)
1− ((λ2 − 1)φ− λ)2 = 1

or after a few simplifications
|φ′|2 = 1

(λ− 1
φ)2 − 1.
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Noting that φ ≥ 1/λ > 0, the above equation can be rewritten as

(4.10) φ

(
λ− 1√

1 + |φ′|2

)
= 1.

Let K0 < 0, we define

(4.11) φK0(y) := K0φ( y
K0

), y ∈ [AλK0,−AλK0],

by (4.10), the negative function φK0 satisfies

(4.12) φK0(y)


λ− 1√

1 + |φ′K0
(y)|2


 = K0, y ∈ (AλK0,−AλK0).

In particular, if K(λ) is given by (2.7), differentiating (4.12) with respect to y we get

(4.13) φ′K(λ)


 φK(λ)φ

′′
K(λ)

(1 + |φ′K(λ)|2)3/2 −
1√

1 + |φ′K(λ)|2
+ λ


 = 0, y ∈ (−1, 0) ∪ (0, 1).

Using equation (4.13) we calculate for y ∈ (−1, 0) ∪ (0, 1)

(4.14) φ′′K(λ) =
(1 + |φ′K(λ)|2)(λ

√
1 + |φ′K(λ)|2 − 1)

−φK(λ)
> 0,

here we have also used equation (4.12) in order to get the sign of the second derivative.
Since φK(λ) ∈ C1(−1, 1) we get from (4.14) that in fact φK(λ) ∈ C2((−1, 1)). Differentiating
further (4.14) and using (4.8) we get by iteration φK(λ) ∈ C∞(−1, 1).
Step 3. Extrema

By (4.8) and (4.11) we have

(4.15)





min
|y|≤1

φK(λ) = φK(λ)(0) = K(λ)
λ− 1 = 1

(λ− 1)(fλ( 1
λ)− fλ( 1

λ−1))
,

max
|y|≤1

φK(λ) = φK(λ)(−1) = φK(λ)(1) = K(λ)
λ

= 1
λ(fλ( 1

λ)− fλ( 1
λ−1))

.

It is

(4.16)

d
dλφK(λ)(1) = −

4(2λ2 + 1)Arcsin
(

1
λ

)√
λ2 − 1 + 2π(2λ2 + 1)

√
λ2 − 1 + 4(λ2 − 1)(λ2 + 2)

λ2
(
2
√
λ2 − 1 + π + 2Arcsin

(
1
λ

))2 < 0

and

(4.17)

d
dλφK(λ)(0) = −

4
(
λ− 1

2

)
(λ− 1)

√
λ2 − 1

(
π + 2Arcsin

(
1
λ

))
+ 4(λ2 − 1)

[
(λ− 1)2 + λ−1

λ

]

(λ− 1)2
(
2
√
λ2 − 1 + π + 2Arcsin

(
1
λ

))2 < 0.
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Figure 2.3b is the graph of the function φK(λ)(1) in terms of the variable λ.
Step 4. Monotonicity of the graphs in λ

Let λ̄ > λ we will show that φK(λ̄)(y) < φK(λ)(y), for y ∈ [0, 1]. Since the functions
are even and we already have the monotonicity of the boundary points by Step 3, we will
focus in the interval (0, 1). If we use equation (4.13), we get that the function w(y) =
φK(λ̄)(y)− φK(λ)(y) satisfies the elliptic equation

−a1(y)w′′(y) + a2(y)w′(y) + a3(y)w(y) = λ− λ̄,

with

a1(y) =
−φK(λ̄)(y)

(1 + |φ′
K(λ̄)(y)|2)3/2 , a3(y) =

φ′′K(λ)(y)
(1 + |φ′

K(λ̄)|2)3/2 ,

and
a2(y) =

∫ 1

0
G1(p(t, y))dt+ φ′′K(λ)(y)φK(λ)(y)

∫ 1

0
G2(p(t, y))dt,

with p(t, y) = φ′K(λ)(y)+t(φ′
K(λ̄)(y)−φ′K(λ)(y)), G1(p) = −p

(1+|p|2)3/2 and G2(p) = −3p
(1+|p|2)5/2 .

It is ai ∈ C(0, 1), i = 1, 2, 3 with a1, a3 > 0 in (0, 1) and w ∈ C2((0, 1)) ∩ C([0, 1]) with
w(0), w(1) < 0 by (4.16), (4.17). We can now conclude that w < 0 by a maximum principle.
�
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Figure 2.3

Using the function φK(λ) constructed in Lemma 4.4 we can define a diffeomorphism in
Cλ ∩ Ω, with Cλ as in (2.8). Let L ∈ (0,+∞), we define

φL(y) := LφK(λ)

(
y

L

)
, y ∈ [−L,L].

We have the following Lemma.

Lemma 4.5. (A diffeomorphism)
Let φK(λ) be as in (2.6), then for (y, z) ∈ Cλ ∩ Ω \{(0, 0)} there is a unique L = L(y, z) ∈

(0,+∞) implicitly defined by

(4.18) z = LφK(λ)

(
y

L

)
= φL(y),

and L ∈ C∞(Cλ ∩ Ω) ∩ C(Cλ ∩ Ω \ {(0, 0)}).
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Proof of Lemma 4.5
Since the family of curves {(y, φL(y))}L∈(0,+∞) are obtained as a rescaling of the function
φK(λ) we have that the mapping (y, L) 7→ (y, z) is a surjection ; it is also an injection since
the family of curves {(y, φL(y))}L∈(0,+∞) do not intersect. On the other hand the same
bijective correspondence can be established locally by the implicit function theorem since
y
Lφ
′
K(λ)

( y
L

)−φK(λ)
( y
L

)
> 0 (since φK(λ) is even and negative), from which we also get the

smoothness of L(y, z) in Cλ ∩ Ω because φK(λ) is smooth. The continuity of L up to the
boundary follows from the definition and the continuity of φK(λ). �

Using the diffeomorphism from Lemma 4.5 we can define q = qλ(y, z) ∈ C∞(Cλ ∩
Ω,R2) ∩ C(Cλ ∩ Ω \ {(0, 0)},R2) as follows

(4.19) q(y, z) :=
(−φ′L(y,z)(y), 1)
√

1 + |φ′L(y,z)(y)|2
, (y, z) ∈ Cλ ∩ Ω \ {(0, 0)},

where φ′L(y,z)(y) = φ′K(λ)

(
y

L(y,z)

)
. Note that the boundary values of q make sense because

of the boundary values of φ′K(λ) by Lemma (2.6). We have the following Lemma

Lemma 4.6. (An equation for q)
Let λ > 1, q as in (4.19) then

(4.20) −div(|z|q(y, z)) = λ, for (y, z) ∈ (Cλ ∩ Ω).

Proof of Lemma 4.6
All the equations in this proof hold for (y, z) ∈ Cλ∩Ω. Having in mind the diffeomorphism
(y, z) 7→ (ȳ, L(y, z)), with ȳ(y) = y from Lemma 4.5, we can write q = q(ȳ, L(y, z)) =
(q1(ȳ, L(y, z)), q2(ȳ, L(y, z))). Since |z| = −z in Ω, we have

(4.21) div(y,z)(|z|q) = |z|div(y,z)(q)− q2

and

(4.22) ∂yq1 = ∂ȳq1 + ∂L(q1)∂yL
∂zq2 = ∂L(q2)∂zL.

In order to simplify the notation we set ψ = φK(λ), then using (4.18) we can write q1 =
−ψ′(y/L)√
1+|ψ′(y/L)|2

and q2 = 1√
1+|ψ′(y/L)|2

, from which we can calculate

(4.23) ∂Lq1 =
ψ′′
( y
L

) ( y
L2

)

(
1 + |ψ′ ( yL

) |2)3/2
,

∂Lq2 =
ψ′′
( y
L

)
ψ′
( y
L

) ( y
L2

)

(
1 + |ψ′ ( yL

) |2)3/2
.

Differentiating (4.18) in y and z we get

(4.24) ∂zL = −1
y
Lψ
′ ( y
L

)− ψ ( yL
) ,

∂yL =
ψ′
( y
L

)
y
Lψ
′ ( y
L

)− ψ ( yL
) .
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Using (4.23), (4.24) we get ∂L(q1)∂yL+ ∂L(q2)∂zL = 0 and hence we get from (4.22)

(4.25) div(y,z)q = ∂ȳq1 = d

dȳ

−φ′L(ȳ)√
1 + |φ′L(ȳ)|2

= −φ′′L(ȳ)
(1 + |φ′L(ȳ)|2)3/2 .

Using the fact that ȳ = y, z < 0, (4.18) and (4.25), equation (4.21) becomes

−div(y,z)(|z|q) = − φL(y)φ′′L(y)
(1 + |φ′L(y)|2)3/2 + 1√

1 + |φ′L(y)|2
,

and finally using the above equation together with (4.13) and the definition of φL we
conclude

−div(y,z)(|z|q) = λ, (y, z) ∈ Cλ ∩ Ω.

�

Note also that by (4.24) and the boundary conditions of φ′K(λ) we can extend L ∈
C1(Cλ ∩ Ω \ {(0, 0)}).

Lemma 4.7. (Bound on the Laplacian)
Let L be as in (4.18), then there are positive constants C1, C2 such that if

(4.26) C = C(λ) := 1 +
(
λ− 1
K(λ)

)2

we have

(4.27)
(4.28)

(∂yL(y, z))2 + (∂zL(y, z))2 ≤ C for (y, z) ∈ Cλ ∩ Ω,
L(y, z)∆(y,z)L(y, z) ≤ C1 + C2 for (y, z) ∈ Cλ ∩ Ω,

in particular we have

(4.29) 0 ≤ ∆(y,z)(L(y, z))2 ≤ 2(C + C1 + C2), (y, z) ∈ Cλ ∩ Ω.

Proof of Lemma 4.7
As in the proof of Lemma 4.6 we simplify the notation by setting ψ = φK(λ).
Step 1. Bound on ∂zL and ∂yL

By (4.14) we have ψ′′ > 0 in (−1, 1), then, using also (4.15) we can estimate by the
maximum

(4.30) 1
yψ′(y)− ψ(y) ≤

λ− 1
−K(λ) , for y ∈ (−1, 1).

Let (y, z) ∈ Cλ ∩ Ω, by the diffeomorphism in Lemma 4.5 we have |y|
L(y,z) ≤ 1, hence using

(4.30) and the formula of ∂zL by (4.24) we have |∂zL(y, z)| ≤ λ−1
−K(λ) .

Similarly for ∂yL given by the formula (4.24), since

d

dy

(
ψ′(y)

yψ′(y)− ψ(y)

)
= −ψ(y)ψ′′(y)

(yψ′(y)− ψ)2 > 0 for y ∈ (−1, 1),

and lim
y→1

ψ′(y)
yψ′(y)− ψ(y) = 1, we have |∂yL(y, z)| ≤ 1 for (y, z) ∈ Cλ ∩ Ω. Combining the

bounds of ∂zL and ∂yL we get (4.27).
Step 2. Bound on second derivatives
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If we differentiate (4.18) twice in z and y respectively and use (4.24) we get

(4.31) L∂2
zzL =

ψ′′
( y
L

) ( y
L

)2
( y
Lψ
′ ( y
L

)− ψ ( yL
))3

and

(4.32) L∂2
yyL =

ψ′′
( y
L

)
ψ2 ( y

L

)
( y
Lψ
′ ( y
L

)− ψ ( yL
))3 .

We estimate in Cλ ∩ Ω

L∂2
zzL ≤ max



max
|y|
L
≤ 1

2

L∂2
zzL, sup

1
2<
|y|
L
<1
L∂2

zzL



 .

Using the fact that yψ′(y) ≥ 0 and the maximum of ψ by (4.15) we estimate

(4.33) max
|y|
L
≤ 1

2

L∂2
zzL ≤

1
4

(
λ

−K(λ)

)3
max
|y|≤ 1

2

ψ′′(y).

For 1/2 < |y/L| < 1 it is ψ′ 6= 0 and we can rewrite (4.31) as

(4.34) L∂2
zzL =

ψ′′
( y
L

)
∣∣ψ′
( y
L

)∣∣3 ·
( y
L

)2
(∣∣ y

L

∣∣+ −ψ( yL)
|ψ′( yL)|

)3 ,

and by equation (4.14) we calculate in the same interval

(4.35) ψ′′

|ψ′|3 =
λ
(

1
|ψ′|2 + 1

)3/2
− 1
|ψ′|3 − 1

|ψ′|

−ψ .

Substituting (4.35) in (4.34) and using properties of ψ and the monotonicity of ψ′ we get
the bound

(4.36) sup
1
2<
|y|
L
<1
L∂2

zzL ≤
2λ2

−K(λ)




1
∣∣∣ψ′
(

1
2

)∣∣∣
2 + 1




3/2

.

Finally by (4.36) and (4.33) we get sup
Cλ∩Ω

L∂2
zzL ≤ C1, with C1 a positive constant. Similarly

one can show that sup
Cλ∩Ω

L∂2
yyL ≤ C2 with

C2 = max





λ

−K(λ) max
|y|≤ 1

2

ψ′′(y), 8
(

λ

λ− 1

)2
(−K(λ))




1
∣∣∣ψ′
(

1
2

)∣∣∣
2 + 1




3/2



.

�
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4.3 A subsolution

Remark 4.8. Let σ : Ω1∪Ω2 → R2, with Ω1,Ω2 ⊂ R2, two bounded domains with Lipschitz
boundary and a common smooth boundary ∂Ω, with surface measure dS. Suppose that

σ ∈
2⋂

i=1
(C1(Ωi,R2) ∩ C(Ωi,R2)), divσ ∈ L2(Ω1) ∩ L2(Ω2), we denote by Tr |Ωi σ, i = 1, 2,

the limit value of σ from the sides Ωi respectively. Then for φ ∈ W 1,2
0 (Ω1 ∪ Ω2) with

supp(φ) ∩ ∂Ω 6= ∅ it is

(4.37)
∫

Ω1∪Ω2
σ · ∇φ = −

∫

Ω1∪Ω2
div(σ)φ+

∫

∂Ω
n · (Tr |Ω1 σ − Tr |Ω2 σ)φdS

where n is the normal to ∂Ω pointing at the direction of Ω2.

We can now construct a subsolution. In what follows we will favour intuition over
mathematical elegance, as far as the notation is concerned, and we will instead denote the
set Epi`(λ) defined in (2.9), simply by {z > φK(λ)}. Let ζ > 0, using the diffeomorfism
from Lemma 4.5 we can define the continuous function (see Figure 2.4)

(4.38) uζ,λ(y, z) :=





−ζy2 + ζ in Ω \ Cλ,
−ζL2(y, z) + ζ in Cλ ∩ {z ≥ φK(λ)},
0 in {z < φK(λ)},

and for qλ as in (4.19) we define

(4.39) dext
λ (y, z) :=





(
− y
|y| , 0

)
in Ω \ Cλ,

qλ(y, z) in Cλ ∩ Ω.

Then we have that uζ,λ ∈ X with ∂zuζ,λ(y, 0) = 0 for y ∈ (−1, 1) and dext
λ ∈ Λ. In the set

Cλ ∩ {z > φK(λ)} we have ∇uζ,λ = −2ζL(∂yL, ∂zL), then using also (4.24), (4.38), (4.39),
definition (4.19) and the properties of φK(λ) by Lemma 4.4 we have that dext

λ · ∇uζ,λ =
|∇uζ,λ| a.e. in Ω.

-1.0 -0.5 0.5 1.0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

J1J2

J3

(a) Curves with normal dext
λ (b) uζ,λ

Figure 2.4

Proposition 4.9. (Subsolution)
Let λ > 1, then there is 1 < λ0 < λ such that for 0 < ζ0 ≤ λ−λ0

2(C+C1+C2) , with C,C1, C2
given by Lemma 4.7, the pair (uζ0,λ0 , d

ext
λ0

) given by (4.38)-(4.39), is a subsolution of the
equation (2.3).
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Proof of Proposition 4.9
Step 1. The subsolution inequalities

We will first show the subsolution inequalities in the set

Ω1 ∪ Ω2 ∪ Ω3 :=
(
Ω \ Cλ0

)
∪
(
Cλ0 ∩ {z > φK(λ0)}

)
∪
(
Cλ0 \ {z ≥ φK(λ0)}

)

where the functions uζ0,λ0 , d
ext
λ0

are smooth. Using (4.20) and (4.39) we calculate

(4.40) −div(|z|dext
λ0 (y, z)) =

{
0 in Ω \ Cλ0 ,

λ0 in Cλ0 ∩ Ω.

Also

(4.41) −∆uζ0,λ0 =
{

2ζ0 in Ω \ Cλ0 ,

0 in Ω ∩ {z < φK(λ0)}.

and using Lemma 4.7 we get in Cλ0 ∩ {z > φK(λ0)}

(4.42) −∆uζ0,λ0 = ζ0∆L2 ≤ 2ζ0(C + C1 + C2)

If we now combine (4.40)-(4.42), use the fact that the positive constant 2(C + C1 + C2)
depends only on λ0, we can choose ζ0 ≤ λ−λ0

2(C+C2+C2)(< λ/2 since C + C1 + C2 > 1 by
(4.26)) and get

(4.43) −∆uζ0,λ0 − div(|z|dext
λ0 ) ≤ λ in Ω1 ∪ Ω2 ∪ Ω3.

It remains to show that inequality (4.43) holds in the rest of Ω. We will use Remark 4.8
for σ = ∇uζ0,λ0 + |z|dext

λ0
. Note that σ is not defined at (0, 0) but we still have that it is

bounded near z = 0 by Lemma 4.7.
Step 2. The Dirac masses

Note that since ∂zuζ0,λ0(y, 0) = 0 and therefore σ(y, 0) = 0, for y ∈ (−1, 1) \ {(0, 0)},
in view of (4.37), we do not need to take into account the boundary {z = 0}. We denote
by J = J1∪J2∪J3 the three parts of the boundary of Ω1∪Ω2∪Ω3 as in Figure (2.4a). We
will show the subsolution inequalities on J . We need to estimate for (i, j) ∈ {(1, 2), (2, 3)},
the terms

(4.44) nj ·
(
Tr |Ωi σ − Tr |Ωj σ

)
,

where nj is the normal of the common boundary pointing in the direction of Ωj . For J1,
the right common boundary of Ω1 and Ω2 we have n1 =

(
K(λ0)
λ0

,−1
)
, using (4.4) and

(4.19) one can see that that dext
λ is continuous in Ω, therefore using (4.38) we get

(4.45) Tr |Ω1 σ − Tr |Ω2 σ = (−2ζ0y, 0) + 2ζ0L(∂yL, ∂zL) = 0, (y, z) ∈ J1,

where we used the fact that y = L on J1 and (∂yL, ∂zL) = (1, 0) by the Neumann
conditions in (4.4). In a similar way we can write (4.44) on J2 as

(4.46) −n2 · (Tr |Ω1 σ − Tr |Ω2 σ) = 0.
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where n2 =
(
−K(λ0)
λ0

,−1
)
. On J3 we simplify the notation and set ψ = φK(λ0), then (4.44)

becomes

(4.47) n3 · (Tr |Ω2 σ − Tr |Ω3 σ) =
(

ψ′√
1 + |ψ′|2 ,

−1√
1 + |ψ′|2

)
· (−2ζ0L(∂yL, ∂zL))

= −2ζ0

√
1 + |ψ′|2
yψ′ − ψ ≤ 0,

where in the last equality we used equations (4.24) and that L = 1 on J3. We can now
conclude from estimates (4.45), (4.46) and (4.47). �

Proof of Theorem 2.3 (lower bound)
If we compare the subsolution uζ0,λ0 by Proposition 4.9 with the solution uλ of (2.3) using
Proposition 4.2, we get 0 ≤ uζ0,λ0 ≤ uλ in Ω for all λ0 ∈ (1, λ), hence by definitions (4.38)
and (2.9) we get

(4.48) {uζ0,λ0 > 0} = {z > φK(λ0)} = Epi`(λ0) ⊂ {uλ > 0}, for all λ0 ∈ (1, λ).

We set ψ(y, λ) = φK(λ)(y) for (y, λ) ∈ [0, 1]× (1,+∞). By definition (2.6) we have that ψ
satisfies the equation F (y, λ, ψ(y, λ)) = 0 with

F : {(y, λ, z) : y ∈ (0, 1), λ ∈ (1,+∞), z ∈
(
K(λ)
λ− 1 ,

K(λ)
λ

)
} → R

given by
F (y, λ, z) = K(λ)fλ

(
z

K(λ)

)
−K(λ)fλ

( 1
λ− 1

)
− y.

The using the formulas (2.5), (2.7) and (4.6) one can check that F is smooth in the domain
of it’s definition. Since f ′λ

(
ψ(y,λ)
K(λ)

)
> 0 for (y, λ) ∈ (0, 1)× (1,+∞) we have by the implicit

function theorem that ψ ∈ C∞((0, 1)× (1,+∞)). Since φK(λ) is even, we get that for fixed
y ∈ (−1, 0)∪ (0, 1) the function φK(λ)(y) is continuous in λ in (1,+∞). By the formulas of
φK(λ)(±1), φK(λ)(0) by Lemma (4.4) and the continuity of the function K(λ) we get that
lim
λ0↑λ

φK(λ0)(y) = φK(λ)(y) for all y ∈ [−1, 1]. We can now pass to the limit in (4.48) and
conclude. �

4.4 A supersolution

Let λ > 1, λ1 > λ and ϑ, b,Π given by (2.10), (2.11), (2.12) respectively. Using the
diffeomorphism from Lemma 4.5 with φK(λ1) in (4.18) we can consider sets of the form
{(y, z) ∈ Cλ ∩ Ω : 1 ≤ L(y, z) ≤ b}, where the level set {(y, z) ∈ Cλ ∩ Ω : L(y, z) = 1} is
the graph {z = φK(λ1)} ; we will simply denote by {1 ≤ L(y, z) ≤ b} these sets. We define

(4.49) uλ1
1 (y, z) := λ1

2 (1− y2), (y, z) ∈ Ω,

(4.50) uλ1,ϑ
2 (y, z) :=





+∞ in {z > φK(λ1)},
ϑ(L(y, z)− b)2 in {1 ≤ L(y, z) ≤ b},
0 in {b ≤ L(y, z)}.
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Figure 2.5 – Uλ1,ϑ

where we simply write ϑ for ϑλ,λ1 . Also, we define

(4.51) Uλ1,ϑ = min{uλ1
1 , uλ1,ϑ

2 }, in Ω.

We note that the intersection of the graphs of the functions uλ1,ϑ
2 and uλ1

1 lies in the
domain Ω ∩ {L(y, z) < b} and is given by the equation

(4.52) ϑ(L(y, z)− b)2 = λ1
2 (1− y2), (y, z) ∈ Ω ∩ {L(y, z) < b},

or else since L < b

L(y, z) = b−
√
λ1
2ϑ(1− y2) ≥ b−

√
λ1
2ϑ = 1,

by the definition of b. Also, since ∂zL < 0 in Cλ∩Ω the curve defined by the contour (4.52)
is the graph of a function which lies in fact in the set {1 ≤ L(y, z) ≤ b}, and therefore, the
function Uλ1,ϑ is continuous, see Figure 2.5. For qλ1 as in (4.19) we define for a.e. y ∈ Ω
the vector field

(4.53)

qext
λ1 (y, z) :=





(
− y

|y| , 0
)

in ({1 ≤ L(y, z) < b−
√
λ1
2ϑ(1− y2)} ∪ {z > φK(λ1)}) ∩ {y 6= 0}

qλ1(y, z) in {b−
√
λ1
2ϑ(1− y2) < L(y, z)}.

We have the following Proposition.

Proposition 4.10. (Supersolution)
Let λ > 1, then the function Uλ1,ϑ defined in (4.51) is a supersolution of (2.3).

Proof of Proposition 4.10
A straightforward calculation shows that ∇Uλ1,ϑ · qext

λ1
= |∇Uλ1,ϑ|, a.e. in Ω. We also have

∂zU
λ1,ϑ(y, 0) = ∂zu

λ1
1 (y, 0) = 0.

Step 1. Supersolution inequalities

4. PROPERTIES OF THE SOLUTION 83



CHAPITRE 2. A SOLUTION WITH FREE BOUNDARY FOR NON-NEWTONIAN FLUIDS
WITH DRUCKER-PRAGER PLASTICITY CRITERION

It is

−∆Uλ1,ϑ =





λ1 in {1 ≤ L(y, z) < b−
√
λ1
2ϑ(1− y2)} ∪ {z > φK(λ1)}

− 2ϑ((∂yL)2 + (∂zL)2)

+ 2ϑ(b− L)(∂2
yyL+ ∂2

zzL) in {b−
√
λ1
2ϑ(1− y2) < L(y, z) < b}

0 in {b < L(y, z)},

and as in (4.40) we have

−div(|z|qext
λ1 ) =





0 in ({1 ≤ L(y, z) < b−
√
λ1
2ϑ(1− y2)} ∪ {z > φK(λ1)}) ∩ {y 6= 0}

λ1 in {b−
√
λ1
2ϑ(1− y2) < L(y, z)}.

Therefore if C is as in (4.26), we have ϑ = λ1−λ
2C and

−∆Uλ1,ϑ − div(|z|qext
λ1 ) ≥ λ, in Ω \ ({L(y, z) = b−

√
λ1
2ϑ(1− y2)} ∪ {0} ×

(
K(λ1)
λ1 − 1 , 0

)
).

Note that the solution of the equation L(0, z) = 1 is z = K(λ1)
λ1−1 . We also note that by

(4.31), (4.32) and Step 2 of the proof of Lemma 4.7 we have that ∆Uθ,λ1 is bounded.
Step 2. Dirac masses

The discontinuities of the vector fields ∇Uλ1,ϑ and qext
λ1

lie on the intersection given by
the contour (4.52) and on {0}×

(
K(λ1)
λ1−1 , 0

)
. For the second set only the vector field qext

λ1
is

discontinuous and the Dirac mass it creates is

|z|(1, 0) · ((1, 0)− (−1, 0)) ≥ 0.

For the intersection, eq. (4.52), we suppress the indices λ1, ϑ and we write the Dirac mass
as

(4.54) n ·
[
(∇u1 −∇u2) + |z|

( ∇u1
|∇u1|

− ∇u2
|∇u2|

)]
,

where n is the normal to the intersection pointing at the direction of {L(y, z) > b −√
λ1
2ϑ(1− y2)}. Then the z−component of n is negative, and since Lz < 0 by (4.24) we

have
n = ∇u1 −∇u2

|∇u1 −∇u2|
.

Clearly we have n · (∇u1 −∇u2) ≥ 0. The second term of (4.54) is

|z|
|∇u1 −∇u2|

(
|∇u1|+ |∇u2| − ∇u1 · ∇u2

|∇u1|+ |∇u2|
|∇u1||∇u2|

)
≥ 0

by the Cauchy-Schwartz inequality. This concludes the proof. �

Proof of Theorem 2.3 (upper bound)
We will estimate suppu from above. By Propositions 4.10 and 4.2 we get 0 ≤ uλ ≤ Uλ1,ϑ

in Ω and since suppUλ1,ϑ = Epi`(λ1) we get the desired estimate. �
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Let λ?1 = λ?1(λ) > λ be a minimizer of Π(λ, ·) (see discussion before Theorem 2.3).
In Figure 2.6 we give the graph of Π(λ, λ?1) for different values of λ and in Table 2.1 the
corresponding minimizers and minimal values. In fact one notices that the difference λ?1−λ
increases as λ→ +∞, see Figure 2.7a.

λ = 1.2 λ?1 = 1.59451 Π = 3.20584
λ = 1.4 λ?1 = 1.84198 Π = 3.66274
λ = 1.6 λ?1 = 2.09337 Π = 4.16455
λ = 1.8 λ?1 = 2.34819 Π = 4.69225

Table 2.1 – Optimal λ?1
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Figure 2.6 – Π(λ, λ?1) for λ =
1.2, 1.4, 1.6, 1.8
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(b) Π(λ, λ?1) as λ→ +∞

Figure 2.7

A Regularity of ε-minimizers

In what follows we will denote by c a generic constant which does not depend on the
ε mentioned in Proposition 3.5.
Proof of Proposition 3.5
Step 1. Existence/Uniqueness

The uniqueness of the minimizer follows by the strict convexity of the functional or
using similar arguments as in the proof of Step 1 of Theorem 2.2 (i). The existence is also
similar, in fact the lower semicontinuity of the linear term −λ ∫ΩA u is trivial since the
domain ΩA is bounded. We set

(1.1) F (z, p) = |p|
2

2 + |z|
√
ε2 + |p|2,
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for (z, p) ∈ ΩA × R2. It is

(1.2) |ξ|2 ≤ ∂2F

∂pi∂pj
ξiξj

for ξ = (ξ1, ξ2) ∈ R2, and

(1.3)
∣∣∣∣∣
∂2F

∂pi∂pj

∣∣∣∣∣ ≤ c
(

1 + A

ε

)
, for all i, j ∈ {1, 2},

we set c2 := c
(
1 + A

ε

)
.

Step 3. Regularity
Since the proof of regularity is standard we are only going to emphasize the particu-

larities of the problem, i.e. the fact that F is only Lipschitz continuous in the z variable.
We will simply write F (z,∇u) for F (z,∇u(y, z)). Let ϕ with ϕ̂ ∈ W 1,2

0 (Ω̂A), then equa-
tion (3.35) holds as the first variation of the functional EAε,λ. Moreover, using a change of
variables one can see that the function w := ûε,A satisfies

(1.4)
∫

Ω̂A
∇w · ∇ϕ+ |z| ∇w · ∇ϕ√

ε2 + |∇w|2 = λ

∫

Ω̂A
ϕ.

We study the regularity properties of (1.4). Let |h| < dist(suppϕ, ∂Ω̂A), we define ϕk,h(y, z) :=
ϕ((y, z) − hek), k = 1, 2, with ek, k = 1, 2 the unit vectors on the axes y and z respecti-
vely. We use ϕk,h as a test function in (1.4) and estimate the derivative of the difference
quotient

(1.5) ∆k
hw(y, z) = w((y, z) + hek)− w(y, z)

h
.

Since the proof is similar we will only present the estimate for e2. Using ϕ2,h = ϕh as a
test function in (1.4) and after changing the variables in the integral we get

(1.6)
∫

Ω̂A
∂piF (z + h, (∇w)h)∂xiϕ = λ

∫

Ω̂A
ϕ,

where ∂piF = ∂F
∂pi

, (∇w)h(y, z) = ∇w(y, z + h) and ∂xiϕ, i = 1, 2 is the partial derivative
of ϕ in the directions y, z respectively. As usual subtracting (1.4) from (1.6) we get after
a few calculations
(1.7)

∫

Ω̂A

1
h

(∂piF (z + h, (∇w)h)− ∂piF (z + h,∇w))∂xiφ = −
∫

Ω̂A

1
h

(∂piF (z + h,∇w)− ∂piF (z,∇w))∂xiφ.

The right hand side of (1.7) can be estimated using the Lipschitz continuity of ∇pF in
the z variable, we have

1
|h| |∇pF (z + h,∇w)−∇pF (z,∇w)| = |∇w|√

ε2 + |∇w|2
||z + h| − |z||

|h| ≤ 1.

It is now a standard process to use (1.2) and (1.3) in order to bound the quantity
∫ |∇∆hw|2

uniformly in h, we have

(1.8)
∫

Ω′
|∇∆hw|2 ≤ 2c3(1 + 2c2)

∫

ΩA
|∇w|2,
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with c3 a constant independent of h and Ω′ ⊂⊂ Ω′′ ⊂⊂ ΩA. We then have w ∈ W 2,2(Ω′′)
by standard arguments.
Step 4. Neumann condition

Since ûε ∈ W 2,2
loc (Ω̂A) we can define ∂zuε(y, 0) for a.e. y ∈ (−1, 1) and since û is

symmetric with respect to {z = 0}, it is in fact ∂zuε(y, z) = −∂zuε(y,−z) for (y, z) ∈ Ω̂A ;
setting z = 0 we get the desired result. �

The constant c2 in the estimate (1.8) depends on ε. Using an argument similar to the
proof of [8, Theorem 3.3.4] we can show that the second derivative of uε is bounded in L2,
uniformly in ε. We have the following Lemma.

Lemma A.1. (Uniform bound on |∇2uε|)
Let A > 0, uε as in Proposition 3.5 and Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω̂A. Then there exists a positive
constant C = C(A,dist(Ω′, ∂Ω̂A)) such that

(1.9)
∫

Ω′
|∇∂xi ûε|2 ≤ C(1 +

∫

Ω̂A
|∂xi ûε|2), i = 1, 2.

Proof of Lemma A.1
Since the proof is similar to the proof of Proposition 3.5, we will only give a sketch of
it. We will only show the proof of the estimate (1.9) for |∇∂zûε| because the term with
the partial derivative in the y variable is easier to estimate, since the integrand F from
(1.1) does not depend on y. Let ϕ be a smooth function with compact support in Ω′′ ;
using ∂zϕ as a test function in (1.4) and integrating by parts we can write, using the usual
summation convention and the same notation as in the proof of Proposition 3.5

(1.10)
∫

Ω′′
∂pi∂zF (z,∇ûε)∂xiϕ = 0.

Or if we notice that ∂z (F (z,∇ûε(y, z))) = ∂z̄F (z̄,∇ûε(y, z)) |z̄=z +∂pjF (z,∇ûε(y, z))∂xj∂zûε(y, z)
and if ∂z|z| = χ(0,+∞) − χ(−∞,0), we may rewrite (1.10) as

(1.11)
∫

Ω′′
∂z|z|

∂xi ûε√
ε2 + |∇ûε|2

∂xiϕ+
∫

Ω′′

(
∂pi∂pjF (z,∇ûε)∂xj∂zûε

)
∂xiϕ = 0.

As usual we choose a function η ∈ C2
0 (Ω′′) with η = 1 in Ω′ , 0 ≤ η ≤ 1, |∇η| ≤ c

dist(Ω′,∂ΩA)
and ||∇2η|| ≤ c

(dist(Ω′,∂ΩA)2 . We set ϕ = η3∂zûε in (1.11), use the convexity property (1.2)
and the fact that

∂pi∂pjF (z,∇ûε)∂xj∂zûε = ∂xi∂zûε + |z|∂z
(

∂xi ûε√
ε2 + |∇ûε|2

)
,

we get as in the proof of Proposition 3.5

(1.12)
∫

Ω′′
η3|∇∂zûε|2 ≤ −

∫

Ω′′
∂xi∂zûε∂xi(η3)∂zûε −

∫

Ω′′
∂z|z|∂xi(η3) ∂xi ûε√

ε2 + |∇ûε|2
∂zûε

−
∫

Ω′′
∂z|z|η3 ∂xi ûε√

ε2 + |∇ûε|2
∂xi∂zûε−

∫

Ω′′
|z|∂z

(
∂xi ûε√

ε2 + |∇ûε|2

)
∂xi(η3)∂zûε.

The first three terms of the right hand side of (1.12) can be estimated as in the proof of
Proposition 3.5 using Young’s inequality, the fact that ∂z|z| ≤ 1 and |∂xi ûε|√

ε2+|∇ûε|2
≤ 1, for
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i = 1, 2 uniformly in ε. We will only show the estimate of the last term of (1.12), which
we denote by J . Integrating by parts J we get

(1.13) J =
∫

Ω′′
∂z|z|

∂xi ûε√
ε2 + |∇ûε|2

∂xi(η3)∂zûε +
∫

Ω′′
|z| ∂xi ûε√

ε2 + |∇ûε|2
∂z∂xi(η3)∂zûε

+
∫

Ω′′
|z| ∂xi ûε√

ε2 + |∇ûε|2
∂z(η3)∂z∂zûε.

It is a standard process now to estimate the right hand side of the above equality using
Young’s inequality with weight γ > 0, for example the last term of (1.13) can be estimated
from above by

c

∫

Ω′′
η1/2η3/2|∇∂zûε| ≤ c̃(

1
γ

+ γ

∫

Ω′′
η3|∇∂zûε|2).

Finally, putting all the estimates together and choosing γ small enough we can absorb
the terms γ

∫
Ω′′ η

3|∇∂zûε|2 on the right hand side of (1.12) by it’s left hand side and by
noticing that η = 1 on Ω′ we end up with the desired estimate. �
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Chapitre 3

Eternal solutions of the
homogeneous Boltzmann equation
with infinite energy

This is a work under preparation in collaboration with Marco Cannone † and Grzegorz
Karch ‡

Abstract

In the work [7] the authors proposed an approach which allows the study solutions
of the initial value problem for the homogeneous Boltzmann equation for Maxwellian
molecules in a space of probability measures of infinite second moment (so-called infinite
energy solutions). Here, we use the same approach to construct eternal and infinite energy
solutions which describe a large time behaviour of other infinite energy solutions.

1 Introduction

Homogeneous Boltzmann equation.

We consider the homogeneous Boltzmann equation in R3

(1.1) ∂tf(v, t) = Q(f, f)(v, t)

with the bilinear form corresponding to a Maxwellian gas

(1.2) Q(g, f)(v) =
∫

R3

∫

S2
B
(
v − v∗
|v − v∗|

· σ
) (
f(v′)g(v′∗)− f(v)g(v∗)

)
dσ dv∗.

Here, the unknown density f = f(v, t) is independent of the space variable, moreover, we
denote

(1.3) v′ = v + v∗
2 + |v − v∗|2 σ, v′∗ = v + v∗

2 − |v − v∗|2 σ

†. Université Paris-Est–Marne-la-Vallée, Laboratoire d’Analyse et de Mathématiques Appliquées, UMR
8050 CNRS, 5 boulevard Descartes, Cité Descartes Champs-sur-Marne, 77454 Marne-la-Vallée cedex 2,
France, e-mail : marco.cannone@u-pem.fr
‡. Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland,

e-mail : grzegorz.karch@math.uni.wroc.pl
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with σ varying in the unit sphere S2. Equation (1.1)–(1.2) is supplemented with a nonne-
gative initial datum

(1.4) f(v, 0) = f0(v)

which is assumed to be either a density of a probability distribution or, more generally, a
probability measure.

The collision kernel B in equation (1.2) is a nonnegative function and, in the case of
Maxwellian molecules, it depends only on the deviation angle θ, defined by the equation
cos θ = v−v∗

|v−v∗| · σ. It is well-known that the physical collision kernel B = B(y) has a
nonintegrable singularity as y → 1 of the form (1 − y)−5/4 (see e.g. [5, p. 1043], [16,
Ch. 1.1] and references therein).

In the study of the Boltzmann equation, it is natural to assume that the nonnegative
initial datum satisfies

(1.5)
∫

R3
f0(v) dv = 1,

∫

R3
f0(v)vi dv = 0 (i = 1, 2, 3),

∫

R3
f0(v)|v|2 dv = 3,

because these relations are interpreted as the unit mass, the zero mean value, and the
unit temperature of the gas, respectively. The existence of a unique solution of the initial
value problem (1.1)–(1.4) under assumptions (1.5) and for a large class on nonintegrable
collision kernels is well-known, see e.g. [4, 15, 16] and the references therein. This solution
satisfies f ∈ C1([0,∞), L1(R3)) and

(1.6)
∫

R3
f(v, t) dv = 1,

∫

R3
f(v, t)vi dv = 0 (i = 1, 2, 3),

∫

R3
f(v, t)|v|2 dv = 3

for all t > 0. For more information about the Boltzmann equation and its physical meaning,
we refer the reader to the book by Cercignani [9] and to the more recent review article by
Villani [16].

Homogeneous Boltzmann equation in Fourier variables.

We study properties of solutions to the initial value problem (1.1)-(1.4) using the
Bobylev formulation [4], where the Fourier transform of the unknown variable

(1.7) ϕ(ξ, t) ≡ f̂(ξ, t) =
∫

R3
e−iv·ξf(v, t) dv

satisfies the following simpler equation

(1.8) ∂tϕ(ξ, t) =
∫

S2
B
(
ξ · σ
|ξ|

) (
ϕ(ξ+, t)ϕ(ξ−, t)− ϕ(ξ, t)ϕ(0, t)

)
dσ,

with

(1.9) ξ+ = ξ + |ξ|σ
2 , ξ− = ξ − |ξ|σ

2 .

We recall that these two vectors ξ+ and ξ− satisfy the well-known relations

(1.10) ξ+ + ξ− = ξ and |ξ+|2 + |ξ−|2 = |ξ|2,

hence,

(1.11) |ξ+|2 = |ξ|2
1 + ξ

|ξ| · σ
2 and |ξ−|2 = |ξ|2

1− ξ
|ξ| · σ
2 .
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Remark 1.1. Here, we note that the formula for the Fourier transform of the bilinear
operator Q on the right-hand side of equation (1.8) is actually a particular case of a more
general one which does not assume the collision kernel to be Maxwellian, see [1, Appendix]
for more details.

In the following, we study properties the solutions of equation (1.8) supplemented with
an initial datum

(1.12) ϕ(ξ, 0) = ϕ0(ξ),

where ϕ0 is a characteristic function i.e. the Fourier transform of a probability measure,
cf. Section 2.

The spaces Kα.
The authors of [7] proposed to study solutions of problem (1.8)-(1.12) the space

(1.13) Kα =
{
ϕ : R3 → C is a characteristic function such that ‖ϕ− 1‖α <∞

}

with α ∈ [0, 2], where

(1.14) ‖ϕ− 1‖α ≡ sup
ξ∈R3

|ϕ(ξ)− 1|
|ξ|α .

It was proved in [7] that the set Kα is nontrivial only for α ∈ [0, 2], because Kα = {1}
for α > 2. On the other hand, K0 coincides with the set of all characteristic functions and
the following imbeddings hold true

(1.15) {1} ⊆ Kα ⊆ Kα0 ⊆ K0 for all 2 ≥ α ≥ α0 ≥ 0.

The space Kα endowed with the distance

(1.16) ‖ϕ− ϕ̃‖α ≡ sup
ξ∈R3

|ϕ(ξ)− ϕ̃(ξ)|
|ξ|α ,

is a complete metric space. We refer the reader to Section 2 for the proofs of all these
properties.

Next, for every ξ ∈ R3 \ {0}, we define the quantity which appears systematically in
our considerations :

(1.17) λα ≡
∫

S2
B
(
ξ · σ
|ξ|

)( |ξ−|α + |ξ+|α
|ξ|α − 1

)
dσ.

Using the identities |ξ±|α = |ξ|α((1± (ξ/|ξ|) · σ)/2)α/2 we can find C(α) > 0 such that

λα = 2π
∫ 1

−1
B(y)

[(1 + y

2

)α/2
+
(1− y

2

)α/2
− 1

]
dy ≤ C(α)

∫ 1

−1
B(y)(1− y2)α/2 dy

which is finite, independent of ξ, and positive for 0 < α < 2, under the assumption
(1− y)α/2(1 + y)α/2B(y) ∈ L1(−1, 1). However, to construct solutions to the initial-value
problem (1.8)– (1.12), we have to impose the stronger assumption on the collision kernel,
namely,

(1.18) (1− y)α0/4(1 + y)α0/4B(y) ∈ L1(−1, 1) for some α0 ∈ [0, 2].

We are in a position to recall results from [7] on the existence, uniqueness , and stability
of solutions to the initial value problem (1.8)–(1.12).
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Theorem 1.2 ([7, Theorem 2.2]). Assume that B satisfies assumption (1.18) for some
α0 ∈ [0, 2]. Then for each α ∈ [α0, 2] and every ϕ0 ∈ Kα there exists a classical solu-
tion ϕ ∈ C([0,+∞),Kα) of problem (1.8)–(1.12). The solution is unique in the space
C([0,+∞),Kα0).

Theorem 1.3 ([7, Theorem 2.5]). Assume that B satisfies condition (1.18) for some
α0 ∈ [0, 2]. Let α ∈ [α0, 2]. Given τ ∈ R, suppose that ϕ, ϕ̃ ∈ C([τ,+∞),Kα) solve (1.8)–
(1.11). Then for every τ ≤ t the following inequality holds true

(1.19) e−λαt‖ϕ(t)− ϕ̃(t)‖α ≤ e−λατ‖ϕ(τ)− ϕ̃(τ)‖α,

where the constant λα ≥ 0 is defined by equation (1.17).

Notice that Theorem 1.3 is the stability estimate, proved in [7, Section 4.4] for τ = 0,
however, the extension to arbitrary τ ∈ R is straightforward.

Results from Theorem 1.2 were recently improved and generalized by Morimoto and
his collaborators. In particular, it was noticed by Morimoto [11] that, to construct global-
in-time solutions in the space Kα, it suffices to impose the following weaker condition :
(1 − ȳ)α/2B(ȳ) ∈ L1(0, 1) for some α ∈ [0, 2] (here the symmetrised collisional kernel is
assumed). Moreover, Morimoto and Yang [12] proved smoothing effects for solutions to
problem (1.1)-(1.4) with a strongly singular kernel satisfying B(cos θ)θ2+2ν → b0 when
θ → 0+, for some 0 < ν < 1 and b0 > 0. Under these assumptions, a global-in-time
unique solution to problem (1.1)-(1.4) corresponding to an initial datum f0 with a finite
moment of order α is smooth, see also [14]. Recently, in the preprint [13], the theory from
[7] on measure valued infinite energy solutions for the homogeneous Boltzmann equation
(1.1)-(1.4) was extended on the case of hard and soft potentials.

2 Continuous positive definite functions
For the convenience of the reader in this section we are going to recall several properties

of characteristic and positive definite functions as introduced and described in [7].

Definition 2.1. A function ϕ : RN → C is called characteristic function if there is a
probability measure µ (i.e. a Borel measure with

∫
RN µ(dx) = 1) such that we have the

following identity ϕ(ξ) = µ̂(ξ) =
∫
RN e

−ix·ξ µ(dx). The set of all characteristic functions
ϕ : RN → C we will be denoted by K.

Definition 2.2. A function ϕ : RN → C is called positive definite if for every k ∈ N and
every vectors ξ1, ..., ξk ∈ RN the matrix

(
ϕ(ξj − ξ`))

j,`=1,...,k is positive Hermitian, i.e. for
all λ1, ..., λk ∈ C we have

(2.1)
k∑

j,`=1
ϕ(ξj − ξ`)λjλ` ≥ 0.

According to the Bochner theorem a continuous positive definite function is essentially
a characteristic function.

Theorem 2.3. A function ϕ : RN → C is a characteristic function if and only if the
following conditions are fulfilled
(i) ϕ is a continuous function on RN

(ii) ϕ(0) = 1
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(iii) ϕ is positive definite.

We refer the reader to the books either by Berg and Forst [2, Ch. I, §3] or by Jacob
[10, Ch. 3] for proofs of properties of positive definite functions which will be listed below.
As we will see later the larger set of positive definite functions (instead of simple charac-
teristic functions) allow to deal with the singularity of the collisional kernel in the space
of pseudomeasures Kα.

We start with some simple results.

Lemma 2.4. Every positive definite function ϕ satisfies

(2.2) ϕ(ξ) = ϕ(−ξ) and ϕ(0) ≥ 0

and

(2.3) |ϕ(ξ)| ≤ ϕ(0), hence sup
ξ∈RN

|ϕ(ξ)| = ϕ(0).

Lemma 2.5. Any linear combination with positive coefficients of positive definite functions
is a positive definite function. The set of positive definite functions is closed with respect
to the pointwise convergence.

Lemma 2.6. The product of two positive definite functions is a positive definite function.

Proof This is the immediate consequence of Definition 2.2 if we note that for every two
positive Hermitian matrices (ajk)j,k=1,...,N and (bjk)j,k=1,...,N , the matrix (cjk)j,k=1,...,N
with elements cjk = ajkbjk is positive Hermitian, see e.g. [10, Lemma 3.5.9]. �

Lemma 2.7. If ϕ is a positive definite function, so are ϕ and Reϕ.

Proof To show that ϕ is a positive definite function it suffices to compute the complex
conjugate of inequality (2.1). Using equality Reϕ = (ϕ + ϕ)/2 we complete the proof by
Lemma 2.5. �

The following inequalities play an important role in dealing with the singularity of the
collisional kernel. For the completeness of the exposition, we sketch their proofs, see either
[2, Ch. I, §3.4] or [10, Lemma 3.5.10] for more details.

Lemma 2.8. For any positive definite function ϕ = ϕ(ξ) such that ϕ(0) = 1 we have

(2.4) |ϕ(ξ)− ϕ(η)|2 ≤ 2
(
1− Reϕ(ξ − η)

)

and

(2.5) |ϕ(ξ)ϕ(η)− ϕ(ξ + η)|2 ≤ (1− |ϕ(ξ)|2)(1− |ϕ(η)|2)

for all ξ, η ∈ RN .

Proof We are going to use inequality (2.1) with suitable chosen vectors ξj and constants λj .
Indeed, for ξ, η ∈ RN such that ϕ(ξ) 6= ϕ(η) we consider the Hermitian matrix

(2.6)



ϕ(0) ϕ(ξ) ϕ(η)
ϕ(ξ) ϕ(0) ϕ(ξ − η)
ϕ(η) ϕ(ξ − η) ϕ(0)


 ,
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where ϕ(0) = 1. Next, with arbitrary and given s ∈ R, we define

λ1 = s, λ2 = s|ϕ(ξ)− ϕ(η)|
ϕ(ξ)− ϕ(η) , λ3 = −λ2.

Hence, applying inequality (2.1), we find by a straightforward calculation

1 + 2s2 + 2s|ϕ(ξ)− ϕ(η)| − 2s2Reϕ(ξ − η) ≥ 0.

This means that the discriminate of the quadratic form on the left-hand side (as the
function of s) has to be nonpositive, hence,

4|ϕ(ξ)− ϕ(η)|2 ≤ 4(2− 2Reϕ(ξ − η)).

which completes the proof of (2.4).
On the other hand, inequality (2.5) is equivalent to the fact that the determinant of

the Hermitian matrix (2.6) with ϕ(0) = 1 is non-negative. �

Let us now recall the definition of the function space

Kα =
{
ϕ : R3 → C is a characteristic function such that ‖ϕ− 1‖α <∞

}
,

supplemented with the metric

‖ϕ− ϕ̃‖α ≡ sup
ξ∈R3

|ϕ(ξ)− ϕ̃(ξ)|
|ξ|α .

First, we give some examples of characteristic functions in the space Kα.

Example 2.1. (1) The function ϕ = ϕ(ξ) satisfying ϕ(0) = 1 and ϕ(ξ) = 0 for ξ
different from zero is a positive definite function, however, it is not a characteristic
function (since it is not continuous)

(2) The function ϕ(ξ) = e−ib·ξ, with fixed b ∈ R3, is the Fourier transform of the Dirac
delta δb concentrated at b. It belongs to Kα for every α ∈ [0, 1].

(3) Maxwellians in the Fourier variables, ϕ(ξ) = e−A|ξ|
2 with fixed A > 0, belongs to Kα

for every α ∈ [0, 2].
(4) The function ϕα(ξ) = e−|ξ|

α is a characteristic function for each α ∈ (0, 2] because
this is the Fourier transform of the probability distribution of an α-stable symmetric
Lévy process, see e.g. [10, Examples 3.5.23 and 3.9.17] for more details. Hence,
ϕα ∈ Kβ for each β ∈ [0, α].

Proposition 2.9. For every α ∈ [0, 2], the set Kα endowed with the distance (1.16) is a
complete metric space.

Proof The proof is immediate because the set of characteristic functions is closed with
respect to the pointwise convergence. �

Next, we state without the proof simple properties of the space Kα.

Lemma 2.10. (i) The space Kα is not a vector space (e.g. ϕ(ξ) ≡ 0 does not belong to
Kα).

(ii) ϕ ≡ 1 ∈ Kα for every α ≥ 0.
(iii) For every ϕ ∈ Kα we have |ϕ(ξ)| ≤ ϕ(0) = 1 (cf. (2.3)).
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(iv) For all ϕ, ϕ̃ ∈ Kα their product satisfies ϕϕ̃ ∈ Kα.
(v) Any linear and convex combination of functions from Kα belongs to Kα (cf. Lemma

2.5).

In the following lemma, we explain why we limit ourselves to α ∈ [0, 2] in the definition
of Kα.

Lemma 2.11. (i) K0 = K
(ii) Kα1 ⊆ Kα2 if α2 ≤ α1.
(iii) Kα = {1} for every α > 2.

Proof In the case of i, it suffices to use (2.3) in order to see that any characteristic
function ϕ is bounded, more precisely, it satisfies supξ∈RN |ϕ(ξ)− 1| ≤ ϕ(0) + 1.

To show ii, for any ϕ ∈ Kα1 , we proceed as follows

‖ϕ− 1‖α2 ≤ sup
|ξ|≤1

|ϕ(ξ)− 1|
|ξ|α2

+ sup
|ξ|>1

|ϕ(ξ)− 1|
|ξ|α2

≤ sup
|ξ|≤1

|ϕ(ξ)− 1|
|ξ|α1

+ sup
|ξ|>1
|ϕ(ξ)− 1|

≤ ‖ϕ− 1‖α1 + ϕ(0) + 1,

since α2 ≤ α1 and by using (2.3). Hence, ϕ ∈ Kα2 .
Let us show iii. It follows immediately form eq. (1.14) that any ϕ ∈ Kα with α > 2

satisfies

(2.7)
∣∣∣∣
1− ϕ(ξ)
|ξ|2

∣∣∣∣ ≤ |ξ|α−2‖ϕ− 1‖α → 0 as |ξ| → 0.

Next, using inequality (2.4) we get for any unit vector ζ ∈ R3 and all ξ ∈ R3

∣∣∣∣
ϕ(ξ + hζ)− ϕ(ξ)

h

∣∣∣∣
2
≤ 2

(
1− Reϕ(hζ)

)

h2 ≤ 2
∣∣∣∣
1− ϕ(hζ)

h2

∣∣∣∣ ,

thus, by (2.7), we have

lim
h→0

ϕ(ξ + hζ)− ϕ(ξ)
h

= 0.

Hence, for all ζ ∈ R3 the directional derivative ζ · ∇ϕ(ξ) exists and is equal to zero,
implying that ϕ is constant. �

Lemma 2.12. Let α ∈ [0, 2]. Assume that ϕ ∈ Kα. Then Reϕ ∈ Kα,

(2.8) ‖Reϕ− 1‖α ≤ ‖ϕ− 1‖α, and sup
ξ∈R3\{0}

|Imϕ(ξ)|
|ξ|α ≤ ‖ϕ− 1‖α.

Proof Let ϕ ∈ Kα. It is well-known that Reϕ is a characteristic function (e.g. it suffices
to combine Lemma 2.7 with the Bochner Theorem 2.3). Now, by the Pythagorean theorem,
we obtain

(2.9) |ϕ(ξ)− 1|2 = |Imϕ(ξ)|2 + |Reϕ(ξ)− 1|2 ≥ |Reϕ(ξ)− 1|2.

Hence, we complete the proof of the first inequality in (2.8) dividing (2.9) by |ξ|α and
computing the supremum with respect to ξ ∈ R3.
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To show the second inequality in (2.8), we proceed analogously using the inequality
|ϕ(ξ)− 1| ≥ |Imϕ(ξ)| resulting from (2.9). �

The following inequality implies, as we will see later, that the nonlinear term in equa-
tion (1.8) is well-defined for functions from Kα if we impose the condition (1.18) on the
collision kernel.

Lemma 2.13. Let α ∈ [0, 2]. Assume that ϕ ∈ Kα. For every ξ ∈ R3 define ξ+ and ξ− by
equations (1.9) with some fixed n ∈ S2. Then

(2.10) |ϕ(ξ+)ϕ(ξ−)− ϕ(ξ)| ≤ 4|ξ+|α/2|ξ−|α/2‖ϕ− 1‖α.

Proof First, recall that ϕ(0) = 1. We begin the elementary identity

(2.11) 1− |ϕ(ξ+)|2 = (1− ϕ(ξ+))(1 + ϕ(ξ+)) + 2 Imϕ(ξ+).

Using the estimate |1 +ϕ(ξ+)| ≤ 1 + |ϕ(ξ+)| ≤ 2 (cf. (2.3)) and second inequality in (2.8)
we deduce from (2.11)

0 ≤ 1− |ϕ(ξ+)|2 ≤ 4|ξ+|α‖ϕ− 1‖α.
Obviously, an analogous inequality holds true if we replace ξ+ by ξ−. Now, applying
inequality (2.5), we conclude

|ϕ(ξ+)ϕ(ξ−)− ϕ(ξ)| ≤
√(

1− |ϕ(ξ+)|2)(1− |ϕ(ξ−)|2)

≤ 4|ξ+|α/2|ξ−|α/2‖ϕ− 1‖α
for all ξ ∈ R3. �

Lemma 2.14. Let α ∈ [0, 2]. Assume that µ is a probability measure on R3 such that∫
R3 |v|α µ(dv) is finite. If, moreover, α ∈ (1, 2], assume that

∫
R3 vi µ(dv) = 0 for i ∈

{1, 2, 3}. Then µ̂ ∈ Kα.

Proof Consider first α ∈ (0, 1]. Using the definition of the Fourier transform of a
probability measure µ(dv) we obtain

(2.12) |µ̂(ξ)− 1|
|ξ|α ≤

∫

R3

|e−iv·ξ − 1|
|ξ|α µ(dv).

Note now the by substituting ξ = η/|v|, we have

sup
ξ∈R3

|e−iv·ξ − 1|
|ξ|α = |v|α sup

η∈R3

|e−iη·v/|v| − 1|
|η|α ≤ C|v|α,

where, in view of the elementary inequality |eis − 1| ≤ |s| for all s ∈ R, the constant
C = supv,η∈R3 |e−iη·v/|v|−1||η|−α is finite for α ∈ (0, 1]. Hence, we deduce from (2.12) that

‖µ̂− 1‖α ≤ C
∫

R3
|v|α µ(dv),

For α ∈ (1, 2], one should proceed analogously using the following counterpart of
inequality (2.12)

|µ̂(ξ)− 1|
|ξ|α ≤

∫

R3

∣∣∣∣∣
e−iv·ξ + iv · ξ − 1

|ξ|α

∣∣∣∣∣ µ(dv).

being the simple consequence of the additional assumption
∫
R3 vi µ(dv) = 0, for every

i = {1, 2, 3}. �
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Remark 2.15. Let us provide a counterexample that the reverse implication in Lemma
2.14 for α ∈ (0, 2) is not true, in other words, we want to show that the space Kα is bigger
than the space of of characteristic functions corresponding to probability measures with
finite moments of order α. Is is well-known that the function ϕα(ξ) = e−|ξ|

α
, with α ∈

(0, 2), is the Fourier transform of the probability density Pα(x) of the α-stable symmetric
Lévy process, (see Example 2.1). Obviously, we have ϕα ∈ Kα. On the other hand, it is
known that for every α ∈ (0, 2) the function Pα is smooth, nonnegative, and satisfies the
estimate 0 < Pα(x) ≤ C(1 + |x|)−(α+n) for a constant C and all x ∈ Rn. Moreover,

(2.13) Pα(x)
|x|α+n → c0 when |x| → ∞,

where c0 = α2α−1π−(n+2)/2 sin(απ/2)Γ
(
α+n

2

)
Γ
(
α
2

)
. We refer the reader to [3] for a proof

of the formula (2.13) with the explicit constant c0.
In view of the limit relation (2.13), we have

∫
R3 Pα(x)|x|α dx =∞.

3 Propagation of generalized moments

We are in a position to present our new contribution to the existing theory for the
homogeneous Boltzmann equation for Maxwellian molecules in the space Kα.

Definition 3.1. We say that a constant K > 0 is an (isotropic) generalized α-moment of
a function ϕ ∈ Kα if

lim
ξ→0

1− ϕ(ξ)
|ξ|α = K

provided this limit exists.

Remark 3.2. If ϕ ∈ Kα has a generalized α-moment equal to K than it has to be a positive
constant. This is an immediate consequence of the following properties of characteristic
functions : |ϕ(ξ)| ≤ ϕ(0) = 1 for all ξ ∈ R3, see Lemma 2.4.

First, we prove a formula for a propagation of generalized α-moment of solutions to
equation (1.8), which were constructed in Theorem 1.2.

Theorem 3.3 (Propagation of α-moments). Assume that a collision kernel B satisfies
condition (1.18) for some α0 ∈ [0, 2). Consider a solution ϕ ∈ C([0,+∞),Kα) of problem
(1.8)–(1.12) with certain α ∈ [α0, 2). Suppose that

lim
ξ→0

1− ϕ(ξ, 0)
|ξ|α = K for some K > 0.

Then

(3.1) lim
ξ→0

1− ϕ(ξ, t)
|ξ|α = Keλαt for all t ≥ 0,

where the constant λα is defined in (1.17).

Remark 3.4. For α = 2, we have λα = 0 by relations (1.10) applied to equation (1.17).
Hence, formula (3.1) with α = 2, in the case of solutions satisfying (1.6), expresses the
conservation of the second moment (i.e. the conservation of energy) recalled in the third
equality in (1.6).
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Remark 3.5. The formula (3.1) for propagation of generalized moments plays a crucial
role in our construction of eternal self-similar solutions of equation (1.8), see below in the
proof of Theorem 6.1 for more details.

We need the following auxiliary result in the proof of Theorem 3.3.

Lemma 3.6. Consider a cut-off collision kernel B ∈ L1(−1, 1). Suppose that ϕ ∈ Kα
satisfies

(3.2) lim
ξ→0

1− ϕ(ξ)
|ξ|α = K for some K > 0,

then

(3.3) lim
ξ→0

1
|ξ|α

∫

S2
B
(
ξ · σ
|ξ|

) (
ϕ(ξ+)ϕ(ξ−)− ϕ(ξ)

)
dσ = −Kλα.

Proof By a direct calculation, we have the following equality

(3.4)

1
|ξ|α

∫

S2
B
(
ξ · σ
|ξ|

)(
ϕ(ξ+)ϕ(ξ−)− ϕ(ξ)

)
dσ +Kλα

=
∫

S2
B
(
ξ · σ
|ξ|

)( |ξ+|α
|ξ|α I1 + |ξ

−|α
|ξ|α I2 + I3

)
dσ,

where

I1 =
(
ϕ(ξ+)− 1
|ξ+|α +K

)
ϕ(ξ−)+K(1−ϕ(ξ−)), I2 = ϕ(ξ−)− 1

|ξ−|α +K, I3 = 1− ϕ(ξ)
|ξ|α −K

Because of inequalities |ξ+|, |ξ−| ≤ |ξ|, |ϕ(ξ)| ≤ 1, the equality ϕ(0) = 1, as well as relation
(3.2), the quantities Ij , for each j ∈ {1, 2, 3}, are bounded and converge to zero as |ξ| → 0.
Hence, the existence of the limit on (3.3) is an immediate consequence of the Lebesgue
dominated convergence theorem because, here, we consider an integrable collision kernel
B. �

Proof of Theorem 3.3
Step 1. Cut-off case

Consider first the cut-off case B ∈ L1(−1, 1). Following [7, Proof of Thm 4.5], we use
the nonlinear operator

(3.5) G(ϕ)(ξ) ≡
∫

S2
B
(
ξ · σ
|ξ|

)
ϕ(ξ+)ϕ(ξ−) dσ,

where ξ+ and ξ− are defined in (1.9). Hence, under the cut-off assumption, for the constant

γ2 ≡
∫

S2
B
(
ξ · σ
|ξ|

)
dσ = 2π

∫ 1

−1
B(s) ds,

and for ϕ satisfying ϕ(0, t) = 1 for all t ≥ 0, we may write equation (1.8) in the following
form

(3.6) ∂tϕ+ γ2ϕ = G(ϕ).
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Next, multiplying equation (3.6) by eγ2t and integrating with respect to t we obtain the
following equivalent formulation of problem (1.8)–(1.12)

(3.7) ϕ(ξ, t) = ϕ0(ξ)e−γ2t +
∫ t

0
e−γ2(t−τ)G(ϕ(·, τ))(ξ) dτ ≡ F(ϕ)(ξ, t).

In [7, Thm. 4.5], the authors showed that a solution of equation (3.6) supplemented with
an initial datum ϕ(·, 0) = ϕ0 ∈ Kα is obtained as a fixed point of equation (3.7) via the
Banach contraction principle applied to the nonlinear operator F(ϕ). More precisely, this
operator is a contraction on the metric space XαT = C([0, T ],Kα) supplemented with the
metric ‖ϕ − ϕ̃‖XαT ≡ supτ∈[0,T ] ‖ϕ(·, τ) − ϕ̃(·, τ)‖α provided T > 0 is sufficiently small.
Moreover, a unique solution of equation (3.6) (or equivalently (3.7)) is obtained as a limit
(uniform on each time interval [0, T ]) of the Picard iterations {ϕn}n∈N defined by the
recurrence formula ϕn+1 = F(ϕn), which by a direct calculation, we write in the form

(3.8) 1− ϕn+1(ξ, t)
|ξ|α = 1− ϕ0(ξ)

|ξ|α e−γ2t −
∫ t

0
e−γ2(t−τ)

(G(ϕn(·, τ))(ξ)− γ2
|ξ|α

)
dτ.

By an inductive argument and (3.8) we may define

(3.9) Kn(t) ≡ lim
ξ→0

1− ϕn(ξ, t)
|ξ|α for each n ∈ N and each t ≥ 0,

and we plan to find a recurrence relation for Kn by passing to the limit as ξ → 0 in
recurrence equation (3.8). Using the identity

G(ϕ)(ξ)− γ2
|ξ|α = 1

|ξ|α
∫

S2
B
(
ξ · σ
|ξ|

) (
ϕ(ξ+)ϕ(ξ−)− ϕ(ξ)

)
dσ − γ2

(
1− ϕ(ξ)

)

|ξ|α ,

and Lemma 3.6, we may pass to the limit ξ → 0 in (3.8) and get

(3.10) Kn+1(t) = Ke−γ2t + (λα + γ2)
∫ t

0
e−γ2(t−τ)Kn(τ) dτ and K0(t) = K.

It is easy to show that the limit K(t) = lim
n→∞

Kn(t) exists for all t ≥ 0 because the
recurrence equation in (3.10) corresponds to the Picard iterations for the Cauchy problem

K ′(t) = −γ2K(t) + (λα + γ2)K(t), K(0) = K

with the solution K(t) = Keλαt.
Since the sequence {ϕn}n∈N converges in the metric ‖ · ‖α towards the solution ϕ ∈

C([0, T ),Kα), we have

lim sup
ξ→0

∣∣∣∣
1− ϕ(ξ, t)
|ξ|α −Keλαt

∣∣∣∣ ≤ sup
ξ∈R3

∣∣∣∣
ϕn(ξ, t)− ϕ(ξ, t)

|ξ|α
∣∣∣∣

+ lim sup
ξ→0

∣∣∣∣
1− ϕn(ξ, t)
|ξ|α −Kn(t)

∣∣∣∣+ |Kn(t)−Keλαt|.

Hence using (3.9) and passing to the limit with n→∞ in the above inequality we obtain
relation (3.1) in the cut-off case.

Step 2. Non-cut-off case
To extend this result on the non cut-off case, first, we recall results form [7, Section 5],

where a solution ϕ of problem (1.8)-(1.12) with a singular kernel was obtained as a limit
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(uniform of compact subsets of R3 × [0,+∞)) of solutions ϕn of corresponding problems
with truncated kernels Bn(s) = min{n,B}, namely

(3.11) ∂tϕn(ξ, t) =
∫

S2
Bn
(
ξ · σ
|ξ|

)
(ϕn(ξ+, t)ϕn(ξ−, t)− ϕn(ξ, t)) dσ.

Subtracting (3.11) from (3.6) and dividing by |ξ|α we get (we also suppress the time
variable in the integrals)

(3.12)

∂thn(ξ, t) =
∫

S2
(B − Bn)

(
ξ · σ
|ξ|

)
ϕn(ξ+)ϕn(ξ−)− ϕn(ξ)

|ξ|α dσ

+ 1
|ξ|α

∫

S2
Bn
(
ξ · σ
|ξ|

)
(ϕ(ξ+)− ϕn(ξ+))ϕ(ξ−) + (ϕ(ξ−)− ϕn(ξ−))ϕn(ξ+) dσ + γn2 hn(ξ, t)

where
hn(ξ, t) = (ϕ(ξ, t)− ϕn(ξ, t))|ξ|−α and γn2 = 2π

∫ 1

−1
Bn(y) dy.

Using inequality (2.10) we can bound the first term of the right hand side of (3.12) by

(3.13) an = 4||ϕ− 1||α
∫

S2
(B − Bn)

(
ξ · σ
|ξ|

) |ξ+|α/2|ξ−|α/2
|ξ|α dσ

= 4||ϕ− 1||α
∫

S2
(B − Bn)

(
ξ · σ
|ξ|

)(1 + (ξ/|ξ|) · σ
2

)α/4 (1− (ξ/|ξ|) · σ
2

)α/4

= 2π
∫ 1

−1
(B − Bn)(y)

(1 + y

2

)α/4 (1− y
2

)α/4
dy.

Since α ∈ [α0, 2) we get by (1.18) and the dominated convergence theorem that an → 0.
Noting that the maximum of characteristic functions is 1, we may estimate for |ξ+|, |ξ−| ≤
|ξ| ≤ R the second term of the right hand side of (3.12) by

(3.14) ||ϕ(t)− ϕn(t)||α,R
∫

S2
Bn
(
ξ · σ
|ξ

) |ξ+|α + |ξ−|α
|ξ|α = ||ϕ(t)− ϕn(t)||α,R · γnα,

where
||ϕ(t)− ϕn(t)||α,R = sup

|ξ|≤R
|ϕ(ξ, t)− ϕn(ξ, t)||ξ|−α.

Combining (3.13) and (3.14) we may write (3.12) as

|∂thn(ξ, t)− γn2 hn(ξ, t)| ≤ αn + γnα||ϕ(t)− ϕn(t)||α,R,

which we then rewrite as

|∂t(eγ
n
2 thn(ξ, t))| ≤ eγn2 tan + γnαe

γn2 t||ϕ(t)− ϕn(t)||α,R.

Finally noting that hn(ξ, 0) = 0 we get

(3.15) |eγn2 thn(ξ, t)| ≤ pn(t) + γnα

∫ t

0
eγ

n
2 τ ||ϕ(τ)− ϕn(τ)||α,R dτ,
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where we set pn(t) = an
∫ t

0 e
γn2 τ dτ = an

eγ
n
2 t−1
γn2

. Taking the supremum over |ξ| ≤ R in
inequality (3.15), we may apply the Gronwall lemma and get

(3.16) sup
|ξ|≤R

|ϕ(ξ, t)− ϕn(ξ, t)|
|ξ|α ≤ e(γnα−γn2 )tγnα

∫ t

0
e−γ

n
ατpn(τ) dτ + pn(t)e−γn2 t = εn(t),

and after a few calculations we get

(3.17) εn(t) = an
e(γnα−γn2 )t − 1
γnα − γn2

.

By the monotone convergence theorem and (1.17) we obtain

γnα − γn2 ↗ γα − γ2 = λα > 0.

Hence lim
n→+∞

εn(t) = 0 for all t ≥ 0. We can now pass to the limit as R→ 0 in (3.16) and
using also (3.17) we get that for every t ≥ 0

(3.18) lim sup
ξ→0

|ϕ(ξ, t)− ϕn(ξ, t)|
|ξ|α ≤ εn(t).

By Step 1, we have that the generalized α-moment of ϕn(ξ, t) equals Keλαt, then we have
the estimate

lim sup
ξ→0

∣∣∣∣
1− ϕ(ξ, t)
|ξ|α −Keλαt

∣∣∣∣ ≤ lim sup
ξ→0

∣∣∣∣
ϕ(ξ, t)− ϕn(ξ, t)

|ξ|α
∣∣∣∣

+ lim sup
ξ→0

∣∣∣∣
1− ϕn(ξ, t)
|ξ|α −Keλαt

∣∣∣∣ ≤ εn(t),

from which we conclude relation (3.1) if we pass to the limit as n→ +∞. �

4 Self-similar solution by Bobylev and Cercignani
In [5], Bobylev and Cercignani constructed explicit eternal solutions of equation (1.7)-

(1.11). Here, we recall their arguments for clarity of the exposition.
The authors of [5] considered isotropic distributions f(|v|, t) with corresponding cha-

racteristic function f̂(|ξ|, t) = ϕ(x, t) where x = |ξ|2/2. Then, since f is a probability
distribution, we have ϕ(0, t) = 1. Moreover,

ϕ′(0, t) = 2
∫

R3
lim
ξ→0

e−iξ·v − 1
|ξ|2 f(v, t) dv = 4π

∫ +∞

0

∫ π

0
lim
s→0

e−isr cos θ − 1
s2 f(r, t) sin θr2 dθ dr

= −4π
∫ π

0
cos2 θ sin θ dθ

∫ +∞

0
f(r, t)r4 dr

or if we notice that
∫ π

0 cos2 θ sin θ dθ = 1/3
∫ π

0 sin θ dθ and passing back to the original
variables in the integral we get

(4.1) ϕ′(0, t) = −1
3

∫

R3
f(v, t)|v|2 dv

and the function ϕ solves

(4.2) ϕt =
∫ 1

0
G(r)(ϕ(rx)ϕ((1− r)x)− ϕ(0)ϕ(x)) dr

4. SELF-SIMILAR SOLUTION BY BOBYLEV AND CERCIGNANI 103



CHAPITRE 3. ETERNAL SOLUTIONS OF THE HOMOGENEOUS BOLTZMANN
EQUATION WITH INFINITE ENERGY

with G(r) = 4πB(1 − 2r), r ∈ [0, 1]. The authors of [5] looked for solutions with infinite
second moments, which by (4.1) means that ϕ′(x) → −∞ as x → 0+. Then in [5], the
following power series is considered

(4.3) ϕ(x, t) =
∞∑

n=0
ϕn(t) xnα/2

Γ(nα/2 + 1) ,

for α ∈ (0, 2) (note that α ∈ (0, 1) in the notation of [5]). Thus, using equation (4.2), one
may determine the first to terms of the power series as ϕ0(t) = 1 and ϕ1(t) = ϕ1(0)eλαt
with λα as in (1.17). Then for small x we have ϕ(x, t) ' 1 − c(xeµαt)α, with c > 0 and
µα = λα/α. Bobylev and Cercignani were motivated to represent the functions in (4.3) as
ϕ(x, t) = ψ(xeµαt, t), where ψ solves the equation

(4.4) ψt + µαxψx =
∫ 1

0
G(r)(ψ(rx)ψ((1− r)x)− ψ(0)ψ(x)) dr

with initial condition (1.12). If one supposes again that

ψ(x, t) =
∞∑

n=0
ψn(t) xnα/2

Γ(nα/2 + 1) ,

one may compute coefficients ψn using equation (4.4). Indeed, we have

(4.5) ∂tψ0 = ∂tψ1 = 0

and for n ≥ 2

(4.6) ∂tψn(t) + γn(α)ψn =
n−1∑

j=1
Eα(j, n− j)ψjψn−j ,

with γn(α) = nλα − λ(nα), λ(p) =
∫ 1

0 G(r)(rp/2 + (1− r)p/2 − 1) dr and

Eα(j, l) = Γ(nα/2 + 1)
Γ(jα/2)Γ(lα/2 + 1)

∫ 1

0
G(r)rjα/2(1− r)lα/2.

Then for n ≥ 2 we have

(4.7) ψn(t) = ψn(0)e−γn(α)t +
n−1∑

j=1
Eα(j, n− j)

∫ t

0
e−γn(α)(t−τ)ψj(τ)ψn−j(τ).

It is not difficult to see that γn(α) > 0 for n ≥ 2, we can therefore pass to the limit as
t→ +∞ in (4.7) and get lim

t→+∞
ψn(t) = un where un is the unique steady solution of (4.5),

(4.6) given by u0 = 1, u1 given and

(4.8) un = 1
γn(α)

n−1∑

j=1
Eα(j, n− j)ujun−j , n ≥ 2.

To sum up, setting x = |η|2/2, if un is as in (4.8) with u0 = 1, u1 = −K2α/2Γ(α/2 + 1),
then the Bobylev-Cercignani functions

ϕα,K(η) =
∞∑

n=0

un2−nα/2(|η|α)n)
Γ(nα/2 + 1) ,

are stationary solutions of (4.4), in particular the functions

(4.9) ϕ(ξ, t) = ϕα,K(ξeµαt),

are eternal self-similar solution of (1.7)-(1.11).
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5 Boltzmann equation in slow variables

In order to see a scaling property of equation (1.8) we “slow down” the time variable,
namely we map R to (0,+∞) using the change of variables

(5.1) w(ξ, s) = ϕ(ξ, log s), where t = log s,

for which we have

(5.2) ∂sw(ξ, s) = 1
s

∫

S2
B
(
ξ · σ
|ξ|

) (
w(ξ+, s)w(ξ−, t)− w(ξ, s)w(0, s)

)
dσ.

Remark 5.1. One can check by a direct calculation that if w be a solution of equation
(5.2), then, for all A,B ∈ R\{0}, the function wA,B(ξ, s) ≡ w(Aξ,Bs) is also a solutions of
this equation. Our goal is to construct self-similar solutions of equation (5.2), i.e. solutions
which are invariant under a particular case of this scaling.

In order to determine a correct scaling, we rephrase the stability estimate from Theo-
rem 1.3 for solutions of equation (5.2).

Corollary 5.2. Assume that B satisfies condition (1.18) for some α0 ∈ [0, 2]. Let α ∈
[α0, 2]. If for some τ > 0, we have two solutions w, w̃ ∈ C([τ,+∞),Kα) of equation (5.2)
then

(5.3) s−λα‖w(s)− w̃(s)‖α ≤ τ−λα‖w(τ)− w̃(τ)‖α for all τ ≤ s.

Proof It suffices to use the change of variables (5.1) in estimate (1.19) for two solutions
ϕ and ϕ̃ of equations (1.8)-(1.11). �

Now, for two arbitrary functions w, w̃ ∈ C((0,+∞),Kα) we define their distance

(5.4) |||w − w̃|||α = sup
s>0

s−λα‖w(s)− w̃(s)‖α

where the number λα is defined in (1.17). This distance appears to be invariant under a
particular case of the scaling of equation (5.2) mentioned in Remark 5.1 which we prove
in the following lemma.

Lemma 5.3. Let w ∈ C((0,+∞),Kα) be an arbitrary function such that |||w−1|||α <∞.
Then for the rescaled functions

(5.5) wB(ξ, s) = w(ξB−λα/α, sB) for a constant B > 0,

we have
|||wB − 1|||α = |||w − 1|||α for all B > 0.

Proof Here, it suffices to change variables s 7→ sB in the norm defined in (5.4) and to
use a scaling property of the norm (1.14). �
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6 Radial eternal self-similar solutions

Our goal of this section is to construct eternal self-similar solutions of equation (5.2).
Such solutions are called eternal because they exist for all s > 0, i.e. for all t ∈ R. They
are self-similar since they are invariant under scaling (5.5).

Theorem 6.1 (Radial self-similar solutions). Assume that B satisfies condition (1.18) for
some α0 ∈ [0, 2). Let α ∈ [α0, 2). There exists a solution w̄ ∈ C((0,+∞),Kα), w̄ 6≡ 1 of
(5.2) with

(6.1) |||w̄ − 1|||α <∞.

Before we prove Theorem 6.1 we give some remarks.

Remark 6.2. It follows immediately from the first condition in (6.1) that

lim
s→0

w(ξ, s) = 1 in the norm of Kα.

Thus, coming back to original variables and to the homogeneous Boltzmann equation for
Maxwellian molecules (1.1), we obtain that the eternal, self-similar, and infinite energy
solutions constructed in Theorem 6.1 are concentrated at the origin (i.e. they are a Dirac
measure) as t→ −∞.

Remark 6.3. According to an analogous theory for Navier-Stokes equation, it is natural
to look for self-similar solutions of an equation under considerations in scaling invariant
spaces, see e.g. [6]. In this work, the distance defined in (5.4) reflects a natural scaling in-
variant property of eternal solutions constructed by Bobylev and Cercignani in [5]. In fact,
we expect that the eternal solution constructed in the previous theorem will be the functions
which were constructed in [5], but a uniqueness result for eternal solutions is required to
prove this. Moreover we expect a classification of the radial eternal solutions according to
the parameters α and their generalized moment at s = 1, as defined in definition 3.1.

Remark 6.4. Eternal solutions exist also for the Navier-Stokes equations see for example [17].

We are in a position to prove the main result of this section.
Proof of Theorem 6.1
We divide this proof into a series of steps for a clarity of the exposition.

Step 1. Rescaled solution
We begin with an arbitrary function w1 ∈ Kα satisfying

lim
ξ→0

1− w1(ξ)
|ξ|α = K.

For example, we can choose w1(ξ) = e−K|ξ|
α . By Theorem 1.2, there exists a unique

solution w ∈ C([1,+∞),Kα) of equation (5.2) with the initial w(·, 1) = w1. Moreover, by
the stability estimate from Theorem 1.3

s−λα‖w(s)− 1‖α ≤ ‖w1 − 1‖α for all s ≥ 1.

For every B > 0 we consider the rescaled function

(6.2) wB(ξ, s) = w(ξB−µα , sB),
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which is defined in R3 × [ 1
B ,+∞) and, by Remark 5.1, it is a solution of equation (5.2)

satisfying the following scale invariant estimate

(6.3) sup
s≥ 1

B

s−λα‖wB(·, s)− 1‖α = sup
s≥1

s−λα‖w(·, s)− 1‖α ≤ ‖w1 − 1‖α.

Step 2. Compactness
We will show that there exists a function w̄ ∈ C((0,+∞),Kα) and a subsequence

Bj → +∞ such that wBj → w̄, locally uniformly in R3 × (0,+∞). Extending wB(·, s) by
w(ξB−µα , 1) = e−|ξ|

αB−λα for s ∈ (0, 1/B) and using estimate (6.3), we may write that
the family {wB}B>0 is uniformly bounded on every compact subset of R3 × (0,+∞). We
obtain the equicontinuity of this family in the space variable combining estimate (6.3)
with the reasoning from [7, Step 3 of the proof of Lemma 5.1]. Indeed, we have

|wB(ξ, s)− wB(η, s)| ≤
√

2(1− RewB(ξ − η, s))
≤
√

2|ξ − η|a/2sλα sup
s≥1/B

s−λα‖wB(·, s)− 1‖α

≤
√

2|ξ − η|a/2sλα‖w1 − 1‖α

for all ξ, η ∈ R3 and s > 0. For the equicontinuity in time, we use equation (5.2), again
estimate (6.3), and the reasoning from [7, Step 2 of the proof of Lemma 5.1] to obtain for
s > 1/B

|∂swB| ≤
1
s

∫

S2
B
(
ξ · σ
|ξ|

)
|wB(ξ+, s)wB(ξ−, s)− wB(ξ, s)|dσ

≤ 4sλα−1βα sup
s≥1/B

s−λα‖wB(·, s)− 1‖α

≤ 4sλα−1βα‖w1 − 1‖α
with

(6.4) βα =
∫

S2
B
(
ξ · σ
|ξ|

) |ξ+|α/2|ξ−|α/2
|ξ|α dσ

= 2π
∫ 1

−1
B(s)

(1 + s

2

)α/4 (1− s
2

)α/4
ds <∞

by (1.18). Then by the Arzela-Ascoli theorem and a diagonal argument there exists a
function w̄ ∈ C(R3 × (0,+∞)) such that we have up to a subsequence wBj → w̄ locally
uniformly in R3 × (0,+∞).
Step 3. The limit Bj → +∞

We have that wBj satisfies the equation

(6.5) ∂swBj (ξ, s) = 1
s

∫

S2
B
(
ξ · σ
|ξ|

)
|wBj (ξ+, s)wBj (ξ−, s)− wBj (ξ, s)|dσ,

then using (6.4) and the Lebesgue dominated convergence theorem we get that the right
hand side of (6.5) converges locally uniformly to a function ζ ∈ C(R3 × (0,+∞)) locally
uniformly in R3 × (0,+∞). Then ∂sw̄ = ζ and w̄ is a solution of (5.2) in R3 × (0,+∞).
Moreover, by the stability estimate from Corollary 5.2, we have for ξ 6= 0 and s ≥ 1/Bj

s−λα
|wBj (ξ, s)− 1|

|ξ|α ≤ B−λαj ||wBj (·, B−1
j )− 1||α = ||w(·, 1)− 1||α,
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and passing to the limit as Bj → +∞ we get |||w̄ − 1|||α <∞.
Step 4. w̄ 6≡ 1

It is wBj (ξ, 1) = w(ξB−µαj , Bj), which we may write in fast variables as φ(ξe−µαt, t),
with φ the solution of (1.8) with initial data w(ξ, 1). But by [7, Theorem 2.7] we have that
the function φ converges as t→ +∞ in self-similar variables to a function with α-moment
K at t = 0, and therefore, cannot converge to 1.

�

7 Conjectures for the non-radial case
One should notice that a generalized α-moment (discussed in Theorem 3.3) may not

exist for a large class of functions from Kα. Indeed, it suffices to consider the following
anisotropic case

ϕ(ξ) = exp
(−K1|ξ1|α1 −K2|ξ2|α2 −K3|ξ3|α3

)

with different αj ∈ (0, 2) and different Kj ≥ 0 for j ∈ {1, 2, 3}. One can show that this
is a characteristic function, hence ϕ ∈ Kα with α = min{α1, α2, α3}, see (1.13). For such
functions, we define their generalized moments in the following way.

Definition 7.1. We call a function ψ : R3 → R a generalized α-moment of a characteristic
function ϕ ∈ Kα if

ψ(ξ) = lim
`→0,`>0

(
1− ϕ(`ξ)

)

`α

for each ξ ∈ R3.

Let us first state elementary properties of such generalized moments. Using the de-
finition of ψ we immediately obtain that it is a homogeneous function of order α :
ψ(λξ) = λαψ(ξ) for all λ ∈ [0,∞) and ξ ∈ R3. Moreover, one can show that a generalized
moment of a characteristic function has to be negative definite, see e.g. [10, Ch. 3.6] for a
definition of negative definite functions and their properties.

Now, we are in a position to formulate the following conjecture which is a generalization
of Theorem 3.3.

Conjecture 7.2. Let ϕ ∈ C([0,∞),Kα) be a solution of problem (1.8)–(1.12) constructed
in Theorem 1.2. Suppose that there exists ψ0 the generalized α-moment of ϕ(ξ, 0) = ϕ0(ξ).
Then, the solution ϕ = ϕ(ξ, t) has a generalized α-moment ψ(ξ, t) for all t ≥ 0. The
function ψ(ξ, t) is a solution of the following initial value problem :

(7.1) ∂tψ(ξ, t) =
∫

S
B
(
ξ · σ
|ξ|

)
(ψ(ξ+, t) + ψ(ξ−, t)− ψ(ξ, t))dσdτ, ψ(ξ, 0) = ψ0(ξ).

A formal calculation leads to equation (7.1) immediately. However, it seems that a
rigorous proof of this conjecture requires some new ideas (especially in the non cut off
case) comparing with the proof of Theorem 3.3.
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