Skip to Main content Skip to Navigation

Magnétisme orbital et aspects géométriques de la théorie des bandes

Abstract : My research project has been to studythe orbital magnetic response of a electron gas inthe periodic potential of a crystal. Its purpose isto generalize Landau’s diamagnetism and Peierls’formula for one-band crystals. The main goal wasto generalize Peierls’ work to any number of bands.Then, I applied the obtained formula to 2-bandsystems in order to highlight the role of interbandeffects in the orbital susceptibility. The susceptibilitycan be written using Berry curvature, quantityassociated to interband effects, as well as the metrictensor. In particular, I show that a band isulatorcan have a non-vanishing magnetic responseeven if the chemical potential lies in the gap. Moreover,I study a model where the geometric propertiescan be tuned without changing the dispersionrelation. This tuning can drastically modifythe orbital magnetic response.
Complete list of metadatas

Cited literature [144 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Thursday, March 2, 2017 - 1:04:53 AM
Last modification on : Wednesday, September 16, 2020 - 4:33:20 PM
Long-term archiving on: : Wednesday, May 31, 2017 - 12:53:44 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01480954, version 1



Arnaud Raoux. Magnétisme orbital et aspects géométriques de la théorie des bandes. Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]. Université Paris Saclay (COmUE), 2017. Français. ⟨NNT : 2017SACLS041⟩. ⟨tel-01480954⟩



Record views


Files downloads