A. Antoniadis, I. Gijbels, and M. Nikolova, Penalized likelihood regression for generalized linear models with non-quadratic penalties, Annals of the Institute of Statistical Mathematics, vol.101, issue.3, pp.585-615, 2011.
DOI : 10.1007/s10463-009-0242-4

H. Attouch, J. Bolte-et-benar-fux, and . Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward???backward splitting, and regularized Gauss???Seidel methods, Mathematical Programming, vol.31, issue.1, 0200.
DOI : 10.1007/s10107-011-0484-9

URL : https://hal.archives-ouvertes.fr/inria-00636457

D. Axelrod, Cell-substrate contacts illuminated by total internal reflection fluorescence, The Journal of Cell Biology, vol.89, issue.1, 1981.
DOI : 10.1083/jcb.89.1.141

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111781

D. Axelrod, « Total internal reflection fluorescence microscopy in cell biology, 2001.

D. Axelrod, « Total internal reflection fluorescence microscopy, Methods in cell biology 89, pp.169-22100607, 2008.
DOI : 10.1007/978-1-4614-7513-2_21

A. Beck, C. Yonina, and . Eldar, Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms, SIAM Journal on Optimization, vol.23, issue.3, p.121, 2013.
DOI : 10.1137/120869778

URL : http://arxiv.org/abs/1203.4580

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, p.133, 2009.
DOI : 10.1137/080716542

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Bect, L. Blanc-féraud, G. Aubert, and A. Chambolle, « A l1- unified variational framework for image restoration, European Conference on Computer Vision, pp.1-13, 2004.

R. Bellman, S. Robert, and . Roth, The laplace transform. T. 3, World Scientific (cf. p, p.19, 1984.

F. Benvenuto, L. Camera, . Theys, H. Ferrari, M. Lantéri et al., « The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise, Inverse Problems, vol.24243, pp.35016-35048, 2008.

E. Betzig, H. George, R. Patterson, . Sougrat, S. Wolf-lindwasser et al., Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, Science, vol.313, issue.5793, 2006.
DOI : 10.1126/science.1127344

R. E. Bixby, « A brief history of linear and mixed-integer programming computation, pp.107-121, 2012.

A. Blake and A. Zisserman, Visual reconstruction. T. 2, p.122, 1987.

T. Blumensath, E. Mike, and . Davies, On the difference between orthogonal matching pursuit and orthogonal least squares, 2007.

B. Blumensath, T. Mike, and E. Davies, Iterative Thresholding for Sparse Approximations, Journal of Fourier Analysis and Applications, vol.73, issue.10, p.116, 2008.
DOI : 10.1007/s00041-008-9035-z

T. Blumensath, E. Mike, and . Davies, « Normalized iterative hard thresholding : Guaranteed stability and performance ». In : Selected Topics in Signal Processing, IEEE Journal, issue.2, pp.298-309, 2010.
DOI : 10.1109/jstsp.2010.2042411

T. Blumensath, M. Yaghoobi, E. Mike, and . Davies, Iterative Hard Thresholding and L0 Regularisation, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, 2007.
DOI : 10.1109/ICASSP.2007.366820

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Bolte and A. Daniilidis, « Clarke critical values of subanalytic Lipschitz continuous functions(memorial issue for S. Lojasiewicz) (cf, p.200, 2005.

M. Born and E. Wolf, Principles of optics : electromagnetic theory of propagation, interference and diffraction of light. CUP Archive (cf, p.13, 2000.
DOI : 10.1017/CBO9781139644181

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-gilloteaux et al., Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging, Proceedings of the National Academy of Sciences, pp.18-26, 2014.
DOI : 10.1073/pnas.1414106111

URL : https://hal.archives-ouvertes.fr/hal-01133826

S. Bourguignon, J. Ninin, H. Carfantan, and M. Mongeau, Exact Sparse Approximation Problems via Mixed-Integer Programming: Formulations and Computational Performance, IEEE Transactions on Signal Processing, vol.64, issue.6, 2016.
DOI : 10.1109/TSP.2015.2496367

URL : https://hal.archives-ouvertes.fr/hal-01254856

S. Boyd and L. Vandenberghe, Convex optimization, p.76, 2004.

P. Bradley, J. Mangasarian, and . Rosen, « Parsimonious least norm approximation, Computational Optimization and Applications, vol.11, 1998.

P. Breheny and J. Huang, Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection, The annals of applied statistics 5, 2011.
DOI : 10.1214/10-AOAS388

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212875

L. Breiman, Better Subset Regression Using the Nonnegative Garrote, Technometrics, vol.37, issue.4, 1995.
DOI : 10.1080/01621459.1980.10477428

A. G. Bruce, H. Et, and . Gao, « Waveshrink : shrinkage functions and thresholds, International Symposium on Optical Science, Engineering, and Instrumentation, 1995.
DOI : 10.1117/12.217582

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Burmeister, A. George, . Truskey, M. William, and . Reichert, Quantitative analysis of variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) of cell/substrate contacts, Journal of Microscopy, vol.1, issue.1, 1994.
DOI : 10.1111/j.1365-2818.1994.tb03426.x

E. J. Candès, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, vol.346, issue.9-10, p.76, 2008.
DOI : 10.1016/j.crma.2008.03.014

E. J. Candès and T. Tao, Decoding by Linear Programming, IEEE Transactions on Information Theory, vol.51, issue.12, pp.4203-4215, 2005.
DOI : 10.1109/TIT.2005.858979

E. J. Candès, B. Michael, and . Wakin, An Introduction To Compressive Sampling, Signal Processing Magazine, 2008.
DOI : 10.1109/MSP.2007.914731

E. J. Candès, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on pure and applied mathematics 59, 2006.
DOI : 10.1002/cpa.20124

E. J. Candès, B. Michael, . Wakin, P. Stephen, and . Boyd, Enhancing Sparsity by Reweighted ??? 1 Minimization, Journal of Fourier Analysis and Applications, vol.7, issue.3, 2008.
DOI : 10.1007/s00041-008-9045-x

E. Candes and T. Tao, « The Dantzig selector : Statistical estimation when p is much larger than n ». In : The Annals of Statistics, pp.2313-2351, 2007.
DOI : 10.1214/009053606000001523

URL : http://arxiv.org/abs/math/0506081

M. Chahid, « Echantillonnage compressif appliqué à la microscopie de fluorescence et à la microscopie de super résolution, Thèse de doct. Bordeaux (cf, p.161, 2014.

A. Chambolle and C. Dossal, On the Convergence of the Iterates of the ???Fast Iterative Shrinkage/Thresholding Algorithm???, Journal of Optimization Theory and Applications, vol.155, issue.2, pp.968-982, 2015.
DOI : 10.1007/s10957-015-0746-4

A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, 2011.
DOI : 10.1007/s10851-010-0251-1

URL : https://hal.archives-ouvertes.fr/hal-00490826

P. Charbonnier, L. Blanc-féraud, G. Aubert, and M. Barlaud, Deterministic edge-preserving regularization in computed imaging, Image Processing, pp.298-311, 1997.
DOI : 10.1109/83.551699

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Chartrand, Exact Reconstruction of Sparse Signals via Nonconvex Minimization, Signal Processing Letters, 2007.
DOI : 10.1109/LSP.2007.898300

S. Chen, . Shaobing, L. David, . Donoho, A. Michael et al., « Atomic decomposition by basis pursuit, In : SIAM journal on scientific computing, vol.201, pp.33-61, 1998.
DOI : 10.1137/s1064827596304010

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Chen, A. Stephen, W. Billings, and . Luo, Orthogonal least squares methods and their application to non-linear system identification, International Journal of Control, vol.10, issue.5, 1989.
DOI : 10.2307/2284566

A. Chinatto, E. Soubies, C. Junqueira, M. Joao, P. Romano et al., « L0-Optimization for Channel and DOA Sparse Estimation, International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2015.

«. Convex, Approach for Image Restoration with Exact Poisson?Gaussian Likelihood », In : SIAM Journal on Imaging Sciences, vol.8

F. H. Clarke, Optimization and nonsmooth analysis, pp.167-168, 1990.
DOI : 10.1137/1.9781611971309

A. Cohen, W. Dahmen, and R. Devore, Compressed sensing and best $k$-term approximation, Journal of the American Mathematical Society, vol.22, issue.1, pp.211-231, 2009.
DOI : 10.1090/S0894-0347-08-00610-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Cohen, D. Laurent, and R. Kimmel, Global minimum for active contour models: a minimal path approach, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997.
DOI : 10.1109/CVPR.1996.517144

P. L. Combettes and J. Pesquet, A proximal decomposition method for solving convex variational inverse problems, Inverse Problems, vol.24, issue.6, pp.65014-65040, 2008.
DOI : 10.1088/0266-5611/24/6/065014

URL : https://hal.archives-ouvertes.fr/hal-00692901

P. L. Combettes and J. Pesquet, Proximal Splitting Methods in Signal Processing, pp.185-212, 2011.
DOI : 10.1007/978-1-4419-9569-8_10

URL : https://hal.archives-ouvertes.fr/hal-00643807

P. L. Combettes, R. Valérie, and . Wajs, « Signal recovery by proximal forwardbackward splitting, Multiscale Modeling & Simulation, vol.76, p.77, 2005.
DOI : 10.1137/050626090

T. H. Cormen, E. Charles, . Leiserson, L. Ronald, C. Rivest et al., Introduction to algorithms (cf, pp.71-72, 2009.

C. Couvreur and Y. Bresler, On the Optimality of the Backward Greedy Algorithm for the Subset Selection Problem, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.3, pp.797-808, 2000.
DOI : 10.1137/S0895479898332928

W. Dai and O. Milenkovic, Subspace Pursuit for Compressive Sensing Signal Reconstruction, IEEE Transactions on Information Theory, vol.55, issue.5, 2009.
DOI : 10.1109/TIT.2009.2016006

URL : http://arxiv.org/abs/0803.0811

G. Dantzig and . Bernard, Linear programming and extensions. Princeton university press (cf, p.76, 1998.
DOI : 10.1515/9781400884179

I. Daubechies, M. Defrise, and C. D. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, vol.58, issue.11, 2004.
DOI : 10.1002/cpa.20042

I. Daubechies, R. Devore, M. Fornasier, and . Güntürk, Iteratively reweighted least squares minimization for sparse recovery, Communications on Pure and Applied Mathematics, vol.58, issue.1, 2010.
DOI : 10.1002/cpa.20303

URL : http://arxiv.org/abs/0807.0575

G. Davis, S. Mallat, and M. Avellaneda, Adaptive greedy approximations, Constructive Approximation, vol.21, issue.1, 1997.
DOI : 10.1007/BF02678430

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. M. Davis, G. Stephane, Z. Mallat, and . Zhang, « Adaptive time-frequency decompositions, Optical Engineering, 1994.

X. Descombes, Stochastic geometry for image analysis, 2011.
DOI : 10.1002/9781118601235

URL : https://hal.archives-ouvertes.fr/hal-00793677

N. Dey, L. Blanc-feraud, C. Zimmer, P. Roux, Z. Kam et al., Richardson???Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microscopy research and technique 69, pp.260-266, 2006.
DOI : 10.1002/jemt.20294

T. Dinh, L. Pham-et-hoai-an, and . Thi, « Recent advances in DC programming and DCA », In : Transactions on Computational Intelligence XIII, pp.1-37, 2014.

D. L. Donoho and M. Elad, « Optimally sparse representation in general (nonorthogonal ) dictionaries via l1 minimization, Proceedings of the National Academy of Sciences, pp.72-76, 2003.
DOI : 10.1073/pnas.0437847100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153464

D. L. Donoho and X. Huo, Uncertainty principles and ideal atomic decomposition, IEEE Transactions on Information Theory, vol.47, issue.7, 2001.
DOI : 10.1109/18.959265

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. L. Donoho, Y. Tsaig, I. Drori, and J. Starck, Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit, Information Theory, IEEE Transactions on 58, 2012.
DOI : 10.1109/TIT.2011.2173241

D. Santos, M. C. , R. Déturche, C. Vézy, and R. Jaffiol, Axial nanoscale localization by normalized total internal reflection fluorescence microscopy, Optics Letters, vol.39, issue.4, p.48, 2014.
DOI : 10.1364/OL.39.000869

D. Santos, M. Cardoso, C. Vézy, and R. Jaffiol, « Nanoscale characterization of vesicle adhesion by normalized total internal reflection fluorescence microscopy, Biochimica et Biophysica Acta, 2016.

R. O. Duda, P. E. Et, and . Hart, Use of the Hough transformation to detect lines and curves in pictures, Communications of the ACM, vol.15, issue.1, 1972.
DOI : 10.1145/361237.361242

D. Dussault and P. Hoess, Noise performance comparison of ICCD with CCD and EMCCD cameras, Infrared Systems and Photoelectronic Technology, pp.195-204, 2004.
DOI : 10.1117/12.561839

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, « Least angle regression, p.131, 2004.

M. Elad, Sparse and Redundant Representations : From Theory to Applications in Signal and Image Processing, p.76, 2010.
DOI : 10.1007/978-1-4419-7011-4

C. L. Epstein and J. Schotland, The Bad Truth about Laplace's Transform, SIAM Review, vol.50, issue.3, 2008.
DOI : 10.1137/060657273

J. Fan, Comments on ??Wavelets in statistics: A review?? by A. Antoniadis, Journal of the Italian Statistical Society, vol.58, issue.2, pp.131-138, 1997.
DOI : 10.1007/BF03178906

J. Fan and R. Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, Journal of the American Statistical Association, vol.96, issue.456, pp.96-169, 2001.
DOI : 10.1198/016214501753382273

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Fellers and . Davidson, « CCD noise sources and signal-to-noise ratio ». In : Optical Microscopy Primer, Molecular Expressions, p.20, 2004.

W. Fenchel, On conjugate convex functions, Journal canadien de math??matiques, vol.1, issue.1, pp.73-77, 1949.
DOI : 10.4153/CJM-1949-007-x

. Figueiredo, A. Mário, D. Robert, and . Nowak, An EM algorithm for wavelet-based image restoration, IEEE Transactions on Image Processing, vol.12, issue.8, pp.906-916, 2003.
DOI : 10.1109/TIP.2003.814255

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Fiolka, H. Belyaev, . Ewers, and . Stemmer, Even illumination in total internal reflection fluorescence microscopy using laser light, Microscopy research and technique 71, p.51, 2008.
DOI : 10.1002/jemt.20527

R. Fiolka, « Improving the resolution in total internal reflection fluorescence and phase microscopy, Thèse de doct. Diss., Eidgenössische Technische Hochschule ETH Zürich, p.15, 2009.

R. Fiolka, M. Beck, and A. Stemmer, Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator, Optics Letters, vol.33, issue.14, 2008.
DOI : 10.1364/OL.33.001629

S. Foucart, Hard Thresholding Pursuit: An Algorithm for Compressive Sensing, SIAM Journal on Numerical Analysis, vol.49, issue.6, 2011.
DOI : 10.1137/100806278

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Foucart, S. , and M. Lai, « Sparsest solutions of underdetermined linear systems via q -minimization for 0 < q 1 », In : Applied and Computational Harmonic Analysis, vol.263, pp.395-407, 2009.

S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing. T. 1. 3, p.76, 2013.

J. T. Frohn, F. Helmut, A. Knapp, and . Stemmer, True optical resolution beyond the Rayleigh limit achieved by standing wave illumination, Proceedings of the National Academy of Sciences 97, 2000.
DOI : 10.1073/pnas.130181797

Y. Fu, W. Peter, R. Winter, V. Rojas, M. Wang et al., Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching, Proceedings of the National Academy of Sciences 113.16, pp.4368-4373, 2016.
DOI : 10.1073/pnas.1516715113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843470

G. Fung and . Mangasarian, Equivalence of Minimal ??? 0- and ??? p -Norm Solutions of Linear Equalities, Inequalities and Linear Programs for Sufficiently Small p, Journal of optimization theory and applications 151, 2011.
DOI : 10.1007/s10957-011-9871-x

R. Garg and R. Khandekar, Gradient descent with sparsification, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553417

G. Gasso, A. Rakotomamonjy, and S. Canu, Recovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming, Signal Processing, IEEE Transactions on 57, pp.4686-4698, 2009.
DOI : 10.1109/TSP.2009.2026004

URL : https://hal.archives-ouvertes.fr/hal-00439453

D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.3, pp.367-383, 1992.
DOI : 10.1109/34.120331

S. Geman and D. Geman, « Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.6, pp.721-741, 1984.

D. Gingell, . Heavens, and . Mellor, « General electromagnetic theory of total internal reflection fluorescence : the quantitative basis for mapping cell-substratum topography, Journal of cell science, vol.875, pp.677-693, 1987.

P. Gong, C. Zhang, and Z. Lu, « A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems, Proceedings of The 30th International Conference on Machine Learning, pp.37-45, 2013.

I. F. Gorodnitsky, D. Bhaskar, and . Rao, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm, Signal Processing, pp.600-616, 1997.
DOI : 10.1109/78.558475

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Gribonval, P. Depalle, X. Rodet, E. Bacry, and S. Mallat, « Sound signals decomposition using a high resolution matching pursuit, ICMC : International Computer Music Conference, pp.293-296, 1996.
DOI : 10.1109/tfsa.1996.546702

URL : https://hal.inria.fr/inria-00576196/file/tfts96.pdf

. Gustafsson and G. Mats, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION, Journal of Microscopy, vol.198, issue.2, pp.82-87, 0198.
DOI : 10.1046/j.1365-2818.2000.00710.x

J. Hadamard, « Sur les problèmes aux dérivées partielles et leur signification physique, Princeton university bulletin 13, pp.49-52, 1902.

Z. T. Harmany, F. Roummel, . Marcia, M. Rebecca, and . Willett, This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms&#x2014;Theory and Practice, IEEE Transactions on Image Processing, vol.21, issue.3, 2012.
DOI : 10.1109/TIP.2011.2168410

D. Haugland, A Bidirectional Greedy Heuristic for the Subspace Selection Problem, pp.162-176, 2007.
DOI : 10.1007/978-3-540-74446-7_12

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics Letters, vol.19, issue.11, 1994.
DOI : 10.1364/OL.19.000780

E. H. Hellen and D. Axelrod, Fluorescence emission at dielectric and metal-film interfaces, Journal of the Optical Society of America B, vol.4, issue.3, 1987.
DOI : 10.1364/JOSAB.4.000337

K. K. Herrity, C. Anna, . Gilbert, A. Joel, and . Tropp, Sparse Approximation Via Iterative Thresholding, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, 2006.
DOI : 10.1109/ICASSP.2006.1660731

URL : http://authors.library.caltech.edu/9067/1/HERicassp06.pdf

C. Herzet and A. Drémeau, Bayesian pursuit algorithms, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00673801

C. Herzet and A. Drémeau, « Bayesian pursuit algorithms, Signal Processing Conference 18th European, pp.1474-1478, 2010.

S. J. Holden, S. Uphoff, N. Achillefs, and . Kapanidis, DAOSTORM: an algorithm for high- density super-resolution microscopy, Nature Methods, vol.8, issue.4, pp.279-280, 2011.
DOI : 10.1038/nbt.1551

R. Horst, V. Et-nguyen, and . Thoai, DC Programming: Overview, Journal of Optimization Theory and Applications, vol.1, issue.1, 1999.
DOI : 10.1023/A:1021765131316

B. Huang, W. Wang, M. Bates, and X. Zhuang, Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy, Science, vol.319, issue.5864, 2008.
DOI : 10.1126/science.1153529

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633023

J. Idier, Bayesian approach to inverse problems, p.139, 2013.
DOI : 10.1002/9780470611197

URL : https://hal.archives-ouvertes.fr/hal-00400668

P. Jain, A. Tewari, S. Inderjit, and . Dhillon, « Orthogonal matching pursuit with replacement, Advances in Neural Information Processing Systems, pp.1215-1223, 2011.

A. Jezierska and . Maria, « Image restoration in the presence of Poisson-Gaussian noise, Thèse de doct, p.32, 2013.

V. Jojic, S. Saria, and D. Koller, « Convex envelopes of complexity controlling penalties : the case against premature envelopment, pp.399-406, 2011.

C. Kanzow, N. Yamashita, and M. Fukushima, WITHDRAWN: Levenberg???Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, Journal of Computational and Applied Mathematics, vol.173, issue.2, 2004.
DOI : 10.1016/j.cam.2004.03.015

B. Kormylo, J. John, M. Jerry, and . Mendel, Maximum likelihood detection and estimation of Bernoulli - Gaussian processes, IEEE Transactions on Information Theory, vol.28, issue.3, pp.482-488, 1982.
DOI : 10.1109/TIT.1982.1056496

M. Kowalski, Thresholding RULES and iterative shrinkage/thresholding algorithm: A convergence study, 2014 IEEE International Conference on Image Processing (ICIP), 2014.
DOI : 10.1109/ICIP.2014.7025843

URL : https://hal.archives-ouvertes.fr/hal-01102810

. Larsson, C. Viktor, E. Olsson, F. Bylow, and . Kahl, Rank Minimization with Structured Data Patterns, European Conference on Computer Vision, pp.250-265, 2014.
DOI : 10.1007/978-3-319-10578-9_17

L. Thi and H. An, « Feature selection in machine learning : an exact penalty approach using a Difference of Convex function Algorithm, Machine Learning, pp.1-24, 2014.

L. Thi, H. An, H. M. Pham-dinh, X. T. Le, and . Vo, « DC approximation approaches for sparse optimization, European Journal of Operational Research, vol.244, pp.165-177, 2015.

Y. G. Leclerc, Constructing simple stable descriptions for image partitioning, International Journal of Computer Vision, vol.1, issue.2, 1989.
DOI : 10.1007/BF00054839

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Lerch, Sur un point de la th??orie des fonctions g??n??ratrices d???Abel, Acta Mathematica, vol.27, issue.0, pp.339-351, 1903.
DOI : 10.1007/BF02421315

J. Liang, J. Fadili, and G. Peyré, « A Multi-step Inertial Forward? Backward Splitting Method for Non-convex Optimization, 2016.

L. Liang, H. Shen, Y. Xu, P. De-camilli, K. Derek et al., A Bayesian method for 3D estimation of subcellular particle features in multi-angle TIRF microscopy, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.984-987, 2012.
DOI : 10.1109/ISBI.2012.6235722

S. Linde, A. Van-de, T. Löschberger, M. Klein, S. Heidbreder et al., « Direct stochastic optical reconstruction microscopy with standard fluorescent probes, 2011.

D. Loerke, W. Stühmer, and M. Oheim, « Quantifying axial secretorygranule motion with variable-angle evanescent-field excitation, » In : Journal of neuroscience methods, vol.1191, pp.178-182, 2002.
DOI : 10.1016/s0165-0270(02)00178-4

L. B. Lucy, An iterative technique for the rectification of observed distributions, The astronomical journal 79, 1974.
DOI : 10.1086/111605

. Mallat, G. Stéphane, and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, vol.41, issue.12, pp.3397-3415, 1993.
DOI : 10.1109/78.258082

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Mangasarian, « Machine learning via polyhedral concave minimization Applied Mathematics and Parallel Computing, pp.175-188, 1996.
DOI : 10.1007/978-3-642-99789-1_13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Marjanovic, M. O. Ulfarsson, O. Alfred, and . Hero, « MIST : L0 sparse linear regression with momentum, 2015 IEEE International Conference on, pp.3551-3555, 2015.
DOI : 10.1109/icassp.2015.7178632

URL : http://arxiv.org/abs/1409.7193

R. Marler, . Timothy, S. Jasbir, and . Arora, « Survey of multi-objective optimization methods for engineering Structural and multidisciplinary optimization 26, 2004.

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.
DOI : 10.1137/0111030

M. Martin-fernandez, . Tynan, and . Webb, A ???pocket guide??? to total internal reflection fluorescence, Journal of Microscopy, vol.16, issue.1, p.12, 2013.
DOI : 10.1111/jmi.12070

A. L. Mattheyses, D. Et, and . Axelrod, Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence, Journal of Biomedical Optics, vol.11, issue.1, 2006.
DOI : 10.1117/1.2161018

A. L. Mattheyses, K. Shaw, and D. Axelrod, Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle, Microscopy research and technique 69, 2006.
DOI : 10.1002/jemt.20334

R. Mazumder, H. Jerome, T. Friedman, and . Hastie, : Coordinate Descent With Nonconvex Penalties, Journal of the American Statistical Association, vol.106, issue.495, 2012.
DOI : 10.1198/jasa.2011.tm09738

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286300

M. Minsky, Memoir on inventing the confocal scanning microscope, Scanning, vol.10, issue.4, 1988.
DOI : 10.1002/sca.4950100403

H. Mobahi, W. John, and I. Fisher, « A theoretical analysis of optimization by gaussian continuation, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.1205-1211, 2015.

H. Mobahi, W. John, and I. Fisher, On the Link between Gaussian Homotopy Continuation and Convex Envelopes, pp.43-56, 2015.
DOI : 10.1007/978-3-319-14612-6_4

H. Mohimani, M. Babaie-zadeh, and C. Jutten, « A fast approach for overcomplete sparse decomposition based on smoothed 0 norm, IEEE Transactions on Signal Processing, vol.57, issue.123, p.124, 2009.

J. Moreau, « Fonctions convexes duales et points proximaux dans un espace hilbertien, In : CR Acad. Sci. Paris Sér. A Math, vol.255, pp.2897-2899, 1962.

B. Natarajan and . Kausik, Sparse Approximate Solutions to Linear Systems, SIAM journal on computing 24.2, pp.227-234, 1995.
DOI : 10.1137/S0097539792240406

D. Needell, A. Joel, and . Tropp, CoSaMP, Communications of the ACM, vol.53, issue.12, 2009.
DOI : 10.1145/1859204.1859229

D. Needell and R. Vershynin, Uniform Uncertainty Principle and Signal Recovery via??Regularized Orthogonal Matching Pursuit, Foundations of computational mathematics 9.3, pp.317-334, 2009.
DOI : 10.1007/s10208-008-9031-3

URL : http://arxiv.org/abs/0707.4203

Y. Nesterov, Gradient methods for minimizing composite functions, Mathematical Programming, vol.51, issue.1, 2013.
DOI : 10.1007/s10107-012-0629-5

M. Nikolova, Markovian reconstruction using a GNC approach, IEEE Transactions on Image Processing, vol.8, issue.9, 1999.
DOI : 10.1109/83.784433

M. Nikolova, Analysis of the Recovery of Edges in Images and Signals by Minimizing Nonconvex Regularized Least-Squares, Multiscale Modeling & Simulation, vol.4, issue.3, 2005.
DOI : 10.1137/040619582

B. Nikolova and M. , Description of the Minimizers of Least Squares Regularized with $\ell_0$-norm. Uniqueness of the Global Minimizer, SIAM Journal on Imaging Sciences, vol.6, issue.2, pp.904-937, 0195.
DOI : 10.1137/11085476X

M. Nikolova, Relationship between the optimal solutions of least squares regularized with ??? 0 -norm and constrained by k-sparsity, Applied and Computational Harmonic Analysis, 2016.
DOI : 10.1016/j.acha.2015.10.010

URL : https://hal.archives-ouvertes.fr/hal-00944006

P. Ochs, Y. Chen, T. Brox, and T. Pock, iPiano: Inertial Proximal Algorithm for Nonconvex Optimization, SIAM Journal on Imaging Sciences, vol.7, issue.2, pp.1388-1419, 2014.
DOI : 10.1137/130942954

P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock, On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision, SIAM Journal on Imaging Sciences, vol.8, issue.1, pp.331-372, 2015.
DOI : 10.1137/140971518

B. P. Ölveczky, N. Periasamy, and A. S. Verkman, Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy, Biophysical Journal, vol.73, issue.5, pp.6-349578312, 1997.
DOI : 10.1016/S0006-3495(97)78312-7

N. Parikh, P. Stephen, and . Boyd, Proximal Algorithms, Foundations and Trends?? in Optimization, vol.1, issue.3, p.77, 2014.
DOI : 10.1561/2400000003

Y. Pati, R. Chandra, P. Rezaiifar, and . Krishnaprasad, « Orthogonal matching pursuit : Recursive function approximation with applications to wavelet decomposition ». In : Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty- Seventh Asilomar Conference on, pp.40-44, 1993.
DOI : 10.1109/acssc.1993.342465

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Pirinen, A Brief Overview of 5G Research Activities, Proceedings of the 1st International Conference on 5G for Ubiquitous Connectivity, pp.17-22, 2014.
DOI : 10.4108/icst.5gu.2014.258061

B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Computational Mathematics and Mathematical Physics, vol.4, issue.5, pp.1-17, 1964.
DOI : 10.1016/0041-5553(64)90137-5

. Rao, D. Bhaskar, K. Engan, F. Shane, J. Cotter et al., Subset selection in noise based on diversity measure minimization, Signal Processing, 2003.
DOI : 10.1109/TSP.2002.808076

W. Reichert and . Truskey, « Total internal reflection fluorescence microscopy (TIRFM). I Modelling cell contact region fluorescence, Journal of cell science 96, pp.219-230, 1990.

A. Repetti, M. Q. Pham, L. Duval, E. Chouzenoux, and J. Pesquet, « Euclid in a Taxicab : Sparse Blind Deconvolution with Smoothed Regularization, Signal Processing Letters, 2015.

W. Richardson and . Hadley, Bayesian-Based Iterative Method of Image Restoration*, Journal of the Optical Society of America, vol.62, issue.1, 1972.
DOI : 10.1364/JOSA.62.000055

F. Rinaldi, F. Schoen, and M. Sciandrone, Concave programming for minimizing the zero-norm over polyhedral sets, Computational Optimization and Applications, vol.3, issue.3, pp.467-486, 2010.
DOI : 10.1007/s10589-008-9202-9

M. Robbins, J. Stanford-et-benjamin, and . Hadwen, The noise performance of electron multiplying charge-coupled devices, Electron Devices, 2003.
DOI : 10.1109/TED.2003.813462

M. C. Robini, E. Isabelle, and . Magnin, Optimization by Stochastic Continuation, SIAM Journal on Imaging Sciences, vol.3, issue.4, 2010.
DOI : 10.1137/090756181

M. C. Robini, A. Lachal, E. Isabelle, and . Magnin, « A stochastic continuation approach to piecewise constant reconstruction, IEEE Transactions on Image Processing, vol.1610, pp.2576-2589, 2007.

R. Rockafellar, . Tyrrell, J. Roger, and . Wets, Variational analysis. T. 317, p.95, 2009.

A. Rohrbach, Observing Secretory Granules with a Multiangle Evanescent Wave Microscope, Biophysical Journal, vol.78, issue.5, pp.6-3495, 2000.
DOI : 10.1016/S0006-3495(00)76808-1

R. Roy and T. Kailath, « ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, 1989.

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nature Methods, vol.127, issue.10, 2006.
DOI : 10.1038/nmeth929

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700296

S. Saffarian and T. Kirchhausen, Differential Evanescence Nanometry: Live-Cell Fluorescence Measurements with 10-nm Axial Resolution on the Plasma Membrane, Biophysical Journal, vol.94, issue.6, 2008.
DOI : 10.1529/biophysj.107.117234

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min et al., Quantitative evaluation of software packages for single-molecule localization microscopy, Nature Methods, vol.4, issue.8, pp.717-724, 2015.
DOI : 10.1038/nmeth.2073

J. L. Schiff, The Laplace transform : theory and applications, p.19, 2013.
DOI : 10.1007/978-0-387-22757-3

R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation, vol.34, issue.3, 1986.
DOI : 10.1109/TAP.1986.1143830

D. J. Segelstein, « The complex refractive index of water, Thèse de doct. University of Missouri?Kansas City (cf, p.54, 2011.

E. Soubies, L. Blanc-féraud, S. Schaub, and G. Aubert, Sparse reconstruction from Multiple-Angle Total Internal Reflection fluorescence Microscopy, 2014 IEEE International Conference on Image Processing (ICIP), pp.2014-2844, 2014.
DOI : 10.1109/ICIP.2014.7025575

URL : https://hal.archives-ouvertes.fr/hal-01037895

E. Soubies, L. Blanc-féraud, and G. Aubert, « A Continuous Exact l0 Penalty (CEL0) for Least Squares Regularized Problem, In : SIAM Journal on Imaging Sciences, vol.8, 2015.
DOI : 10.1137/151003714

E. Soubies, L. Blanc-féraud, and G. Aubert, « CEL0 : a continuous alternative to l0 penalty, Signal Processing with Adaptive Sparse Structured Representations (SPARS) (cf, p.95, 2015.

E. Soubies, L. B. Féraud, and G. Aubert, « Seuillage CEL0 pour la minimisation l2-l0 : comparaisons avec IHT, p.95, 2015.

B. Soubies, S. Emmanuel, A. Schaub, E. Radwanska, L. Van-obberghen-schilling et al., A framework for multi-angle TIRF microscope calibration, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.4-47, 2016.
DOI : 10.1109/ISBI.2016.7493355

URL : https://hal.archives-ouvertes.fr/hal-01257736

E. Soubies, L. Blanc-féraud, and G. Aubert, « A unified view of exact continuous penalties for l2-l0 minimization, 2016.

C. Soussen, « Sparse approximation algorithms inspired by Orthogonal Least Squares for inverse problems ». Habilitation à diriger des recherches, 2013.

C. Soussen, J. Idier, D. Brie, and J. Duan, From Bernoulli&#x2013;Gaussian Deconvolution to Sparse Signal Restoration, IEEE Transactions on Signal Processing, vol.59, issue.10, pp.4572-4584, 2011.
DOI : 10.1109/TSP.2011.2160633

C. Soussen and R. Gribonval, « Joint k-step analysis of orthogonal matching pursuit and orthogonal least squares ». In : Information Theory, Jérôme Idier et Cédric Herzet IEEE Transactions on, 2013.

C. Soussen, J. Idier, J. Duan, and D. Brie, « Homotopy based algorithms for L0-regularized least-squares, IEEE Transactions on Signal Processing, vol.63, issue.83, pp.131-140, 2015.

D. R. Stabley, T. Oh, M. Sanford, A. L. Simon, K. Mattheyses et al., Real-time fluorescence imaging with 20???nm axial resolution, Nature Communications, vol.12, 2015.
DOI : 10.1038/ncomms9307

URL : http://doi.org/10.1038/ncomms9307

D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse problems 19.6, S165. doi : 10 . 1088, pp.266-5611059, 2003.
DOI : 10.1088/0266-5611/19/6/059

Z. Tang, R. C. Cannizzaro, G. Leus, and P. Banelli, « Pilotassisted time-varying channel estimation for OFDM systems, IEEE Transactions on Signal Processing, vol.555, pp.2226-2238, 2007.

P. Tao and . Dinh, « The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Annals of Operations Research, vol.133, issue.120, 2005.

V. N. Temlyakov, « Greedy approximation, Acta Numerica, vol.17, pp.235-409, 2008.
DOI : 10.1017/s0962492906380014

R. Tibshirani, « Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B, pp.267-288, 1996.
DOI : 10.1111/j.1467-9868.2011.00771.x

J. A. Tropp, Greed is Good: Algorithmic Results for Sparse Approximation, IEEE Transactions on Information Theory, vol.50, issue.10, pp.2231-2242, 2004.
DOI : 10.1109/TIT.2004.834793

URL : http://authors.library.caltech.edu/9035/1/TROieeetit04a.pdf

J. A. Tropp, Just relax: convex programming methods for identifying sparse signals in noise, IEEE Transactions on Information Theory, vol.52, issue.3, 2006.
DOI : 10.1109/TIT.2005.864420

J. A. Tropp, J. Stephen, and . Wright, Computational Methods for Sparse Solution of Linear Inverse Problems, Proceedings of the IEEE 98.6, pp.948-958, 2010.
DOI : 10.1109/JPROC.2010.2044010

G. Truskey, E. Burmeister, W. Grapa, and . Reichert, « Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances, Journal of cell science 103, pp.491-499, 1992.

T. Tuncer, B. Engin, and . Friedlander, Classical and modern direction-of-arrival estimation, p.150, 2009.

M. Van-lieshout, Markov Point Processes, Markov point processes and Their Applications (cf, p.25, 2000.
DOI : 10.1142/9781860949760_0002

J. Wang, S. Kwon, and B. Shim, « Generalized orthogonal matching pursuit, Signal Processing, pp.6202-6216, 2012.

J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, « Use of the zero norm with linear models and kernel methods, The Journal of Machine Learning Research, vol.3, pp.1439-1461, 2003.

Q. Yang, « 3D Reconstruction and measurement of microtubules from multiple angle-total internal reflection fluorescence microscopy, Thèse de doct, p.25, 2010.

Q. Yang, A. Karpikov, D. Toomre, and J. Duncan, « 3D Reconstruction of microtubules from multiple-angle total internal reflection fluorescence microscopy using Bayesian framework, IEEE transactions on Image Processing, 2011.

B. Zhang, J. Zerubia, and J. Olivo-marin, Gaussian approximations of fluorescence microscope point-spread function models, Applied Optics, vol.46, issue.10, 2007.
DOI : 10.1364/AO.46.001819

URL : https://hal.archives-ouvertes.fr/pasteur-00163734

C. Zhang, « Discussion : One-step sparse estimates in nonconcave penalized likelihood models ». In : The Annals of Statistics 36, pp.1553-1560, 2008.

C. Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, vol.38, issue.2, pp.894-942, 2010.
DOI : 10.1214/09-AOS729

URL : http://arxiv.org/abs/1002.4734

T. Zhang, « Multi-stage convex relaxation for learning with sparse regularization, Advances in Neural Information Processing Systems, pp.1929-1936, 2009.
DOI : 10.3150/12-bej452

URL : http://arxiv.org/abs/1106.0565

T. Zhang, Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations, IEEE Transactions on Information Theory, vol.57, issue.7, pp.4689-4708, 2011.
DOI : 10.1109/TIT.2011.2146690

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Zhang and . Et-qian-chen, « Signal-to-noise ratio performance comparison of electron multiplying CCD and intensified CCD detectors, IASP 2009. International Conference on, pp.337-341, 2009.

H. Zou, The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, vol.101, issue.476, pp.1418-1429, 2006.
DOI : 10.1198/016214506000000735