L. J. Adlard and E. R. Handley, Gas chromatographic techniques and applications, pp.1-20, 2001.

R. A. Glajch and K. L. Schunn, Rapid on-line analysis of low molecular weight hydrocarbons using glass capillary gas chromatography, Journal of High Resolution Chromatography, vol.3, issue.7, pp.333-336, 1981.
DOI : 10.1002/jhrc.1240040705

J. L. Dierickx, P. M. Plehiers, and G. F. Froment, On-line gas chromatographic analysis of hydrocarbon effluents, Journal of Chromatography A, vol.362, pp.362-155, 1986.
DOI : 10.1016/S0021-9673(01)86965-X

J. Zhao, H. Wang, and Y. Guan, On-line introduction of high-pressure gas???liquid sample for capillary gas chromatographic analysis, Journal of Chromatography A, vol.1045, issue.1-2, pp.1045-1068, 2004.
DOI : 10.1016/j.chroma.2004.06.022

J. Wauquier, Le raffinage du pétrole: Pétrole brut, produits pétroliers, schémas de fabrication, 1994.

F. Baco-antoniali, A. Chevalier, and A. S. Funke, Documentation interne IFP Énergies nouvelles : L'injection des liquides en GC, 2004.

F. Baco-antoniali, On-line analysis of petroleum liquid products using Heated Pressure Liquid Injection System (HPLIS) with capillary gas chromatography Introduction, 2011.

J. C. Wessels and R. P. Dooper, Switching valve for glass capillary gas chromatography, Journal of Chromatography A, vol.279, pp.349-355, 1983.
DOI : 10.1016/S0021-9673(01)93634-9

G. M. Gross, B. J. Prazen, J. W. Grate, and R. E. Synovec, High-Speed Gas Chromatography Using Synchronized Dual-Valve Injection, Analytical Chemistry, vol.76, issue.13, pp.76-3517, 2004.
DOI : 10.1021/ac049909g

J. H. Marsman, H. J. Panneman, and A. A. Beenackers, Automatic on-line pressurized liquid injection in gas chromatography, Journal of Chromatography A, vol.483, pp.111-120, 1989.
DOI : 10.1016/S0021-9673(01)93114-0

R. L. Firor and N. Zou, High-Pressure Liquid Injection Device for the Agilent 7890A and 6890 Series Gas Chromatographs, Doc. Agil. Technol, pp.1-14, 2008.

J. Luong, R. Gras, R. Firor, L. Sieben, B. Winniford et al., Dual-purpose gas chromatographic injection device for pressurized liquid and gas injection, Journal of Chromatography A, vol.1216, issue.14, p.128
DOI : 10.1016/j.chroma.2008.12.069

M. Vincent-ylane, Développement d'une vanne d'injection d'échantillons liquides pour la micro-chromatographie en phase gazeuse ? Applications à des problématiques industrielles, 2015.

P. Guilbot, A. Valtz, H. Legendre, and D. Richon, Rapid on-line sampler-injector: a reliable tool for HT-HP sampling and on-line GC analysis, Analusis, vol.28, issue.5, pp.28-426, 2000.
DOI : 10.1051/analusis:2000128

. Siemens, Liquid Injection Valve, n.d

J. Luong, R. Gras, and R. Tymko, High Performance Pressurized Liquid Injection System (HPLIS) for Fast Gas Chromatography, 2003.

J. Luong, R. Gras, and R. Tymko, Innovations in High-Pressure Liquid Injection Technique for Gas Chromatography: Pressurized Liquid Injection System, Journal of Chromatographic Science, vol.41, issue.10, pp.41-550, 2003.
DOI : 10.1093/chromsci/41.10.550

F. Bertoncini, B. Celse, and C. Dartiguelongue, Procédé pour déterminer des propriétés physicochimiques d'un échantillon pétrolier à partir de chromatographie en phase gazeuse bidimensionnelle, 2009.

F. Bertoncini, M. Courtiade, and D. Thiébaut, Gas Chromatography and 2D-Gas Chromatography For Petroleum Industry, 2013.

F. Bertoncini, C. Vendeuvre, D. Espinat, and D. Thiébaut, Apport de la chromatographie en phase gazeuse bidimensionnelle pour la caractérisation de matrices, Spectra Anal, pp.26-31, 2005.

L. Ramos, Comprehensive Two Dimensional Gas Chromatography https://books.google.fr/books?, pp.22-32, 2009.

X. Fernandez, J. Filippi, and M. Jeanville, Chromatographie en phase gazeuse à deux dimensions : GC-GC et GCxGC, Doss. Les Tech. L'ingénieur, p.33, 2011.

T. Górecki, O. Pani?, and N. Oldridge, Recent Advances in Comprehensive Two???Dimensional Gas Chromatography (GC??GC), Journal of Liquid Chromatography & Related Technologies, vol.29, issue.7-8, pp.29-1077, 2006.
DOI : 10.1080/10826070600574762

C. Debonneville and A. Chaintreau, Quantitation of suspected allergens in fragrances -Part II. Evaluation of comprehensive gas chromatography-conventional mass spectrometry, J. Chromatogr. A, pp.1027-109, 2004.

A. Rey, E. Corbi, C. Pérès, and N. David, Determination of suspected fragrance allergens extended list by two-dimensional gas chromatography-mass spectrometry in ready-toinject samples, J. Chromatogr. A, pp.1404-95, 2015.

R. Shellie, P. Marriott, and P. Morrison, Comprehensive Two-Dimensional Gas Chromatography with Flame Ionization and Time-of-Flight Mass Spectrometry Detection: Qualitative and Quantitative Analysis of West Australian Sandalwood Oil, Journal of Chromatographic Science, vol.42, issue.8, pp.42-417, 2004.
DOI : 10.1093/chromsci/42.8.417

C. Cordero, P. Rubiolo, L. Cobelli, G. Stani, A. Miliazza et al., Potential of the reversed-inject differential flow modulator for comprehensive twodimensional gas chromatography in the quantitative profiling and fingerprinting of essential oils of different complexity, J. Chromatogr. A, pp.1417-79, 2015.

C. Cordero, P. Rubiolo, B. Sgorbini, M. Galli, and C. Bicchi, Comprehensive two-dimensional gas chromatography in the analysis of volatile samples of natural origin: A multidisciplinary approach to evaluate the influence of second dimension column coated with mixed stationary phases on system orthogonality, Journal of Chromatography A, vol.1132, issue.1-2, pp.1132-268, 2006.
DOI : 10.1016/j.chroma.2006.07.067

T. Dunkel, E. L. De-león-gallegos, C. D. Schönsee, T. Hesse, M. Jochmann et al., Evaluating the influence of wastewater composition on the growth of Microthrix parvicella by GCxGC/qMS and real-time PCR, Water Research, vol.88, pp.510-523, 2016.
DOI : 10.1016/j.watres.2015.10.027

C. Arsene, D. Vione, N. Grinberg, and R. I. Olariu, GC x GC-MS Hyphentaed techniques for the analysis of volatile organic compounds in air, J. Liq. Chromatogr. Relat. Technol, pp.34-1077, 2011.

Q. Gu, F. David, F. Lynen, K. Rumpel, G. Xu et al., Analysis of bacterial fatty acids by flow modulated comprehensive two-dimensional gas chromatography with parallel flame ionization detector/mass spectrometry, Journal of Chromatography A, vol.1217, issue.26, pp.1217-4448, 2010.
DOI : 10.1016/j.chroma.2010.04.057

R. E. Mohler, K. T. O-'reilly, D. A. Zemo, A. K. Tiwary, R. I. Magaw et al., Non-Targeted Analysis of Petroleum Metabolites in Groundwater Using GC??GC???TOFMS, Environmental Science & Technology, pp.47-10471, 2013.
DOI : 10.1021/es401706m

R. Costa, C. Fanali, G. Pennazza, L. Tedone, L. Dugo et al., Screening of volatile compounds composition of white truffle during storage by GCxGC-(FID/MS) and gas sensor array analyses, LWT - Food Science and Technology, vol.60, issue.2, pp.60-905, 2015.
DOI : 10.1016/j.lwt.2014.09.054

P. Manzano, E. Arnaiz, J. C. Diego, L. Toribio, C. Garcia-viguera et al., Comprehensive two-dimensional gas chromatography with capillary flow modulation to separate FAME isomers, Journal of Chromatography A, vol.1218, issue.30, pp.1218-4952, 2011.
DOI : 10.1016/j.chroma.2011.02.002

URL : https://digital.csic.es/bitstream/10261/51620/1/accesoRestringido.pdf

L. R. Snyder, J. C. Hoggard, T. J. Montine, and R. E. Synovec, Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of l-??-methylamino-alanine in human tissue, Journal of Chromatography A, vol.1217, issue.27, pp.1217-4639, 2010.
DOI : 10.1016/j.chroma.2010.04.065

S. M. Song, P. Marriott, and P. Wynne, Comprehensive two-dimensional gas chromatography???quadrupole mass spectrometric analysis of drugs, Journal of Chromatography A, vol.1058, issue.1-2, pp.1058-223, 2004.
DOI : 10.1016/S0021-9673(04)01444-X

A. I. Silva, H. M. Pereira, A. Casilli, F. C. Conceição, F. R. Aquino et al., Analytical challenges in doping control: Comprehensive two-dimensional gas chromatography with time of flight mass spectrometry, a promising option, Journal of Chromatography A, vol.1216, issue.14, pp.1216-2913, 2009.
DOI : 10.1016/j.chroma.2008.10.042

T. Hayward, R. Gras, and J. Luong, Determination of Sulfur-Based Odorants in Commercially Available Natural Gas with Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography Mar, LCGC North Am, pp.31-224, 2013.

N. J. Micyus, J. D. Mccurry, and J. V. Seeley, Analysis of aromatic compounds in gasoline with flow-switching comprehensive two-dimensional gas chromatography, Journal of Chromatography A, vol.1086, issue.1-2, 2005.
DOI : 10.1016/j.chroma.2005.06.015

K. M. Van-geem, S. P. Pyl, M. Reyniers, J. Vercammen, J. Beens et al., On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography, Journal of Chromatography A, vol.1217, issue.43, pp.1217-6623, 2010.
DOI : 10.1016/j.chroma.2010.04.006

C. Vendeuvre, R. Ruiz-guerrero, F. Bertoncini, L. Duval, and D. Thiebaut, Comprehensive Two-Dimensional Gas Chromatography for Detailed Characterisation of Petroleum Products, Oil & Gas Science and Technology - Revue de l'IFP, vol.62, issue.1, pp.43-55, 2007.
DOI : 10.2516/ogst:2007004

URL : https://hal.archives-ouvertes.fr/hal-00617264

T. Dutriez, Chromatographie multidimensionnelle : vers une caractérisation moléculaire étendue des charges type distillat sous vide et la compréhension de leur réactivité à l ' hydrotraitement, 2010.

Z. Y. Liu and J. P. Phillips, Comprehensive Two-Dimensional Gas Chromatography using an On-Column Thermal Modulator Interface, Journal of Chromatographic Science, vol.29, issue.6, pp.227-231, 1991.
DOI : 10.1093/chromsci/29.6.227

URL : http://chromsci.oxfordjournals.org/cgi/content/short/29/6/227

J. Beens, J. Blomberg, and P. J. Schoenmakers, Proper Tuning of Comprehensive Two-Dimensional Gas Chromatography (GC??GC) to Optimize the Separation of Complex Oil Fractions, Journal of High Resolution Chromatography, vol.4, issue.3, pp.182-188, 2000.
DOI : 10.1002/(SICI)1521-4168(20000301)23:3<182::AID-JHRC182>3.0.CO;2-E

J. V. Seeley, F. Kramp, and C. J. Hicks, Comprehensive Two-Dimensional Gas Chromatography via Differential Flow Modulation, Analytical Chemistry, vol.72, issue.18, pp.4346-4352, 2000.
DOI : 10.1021/ac000249z

F. C. Wang, New valve switching modulator for comprehensive two-dimensional gas chromatography, Journal of Chromatography A, vol.1188, issue.2, pp.1188-274, 2008.
DOI : 10.1016/j.chroma.2008.02.104

J. V. Seeley, N. J. Micyus, S. V. Bandurski, S. K. Seeley, and J. D. Mccurry, Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography, Analytical Chemistry, vol.79, issue.5, pp.79-1840, 2007.
DOI : 10.1021/ac061881g

A. Maniquet, Documentation interne IDEEL -Rapport d'expérimentation sur la vanne OLIS, Solaize, 2014.

G. Semard, C. Gouin, J. Bourdet, N. Bord, and V. Livadaris, Comparative study of differential flow and cryogenic modulators comprehensive two-dimensional gas chromatography systems for the detailed analysis of light cycle oil, Journal of Chromatography A, vol.1218, issue.21, pp.1218-3146, 2011.
DOI : 10.1016/j.chroma.2010.08.082

F. Bertoncini, B. Celse, and L. Duval, Méthode pour réaliser une analyse quantitative d'un mélange de composés moléculaires par chromatographie en phase gazeuse bidimensionnelle, pp.1953545-1953546, 2008.

C. Vendeuvre, R. Ruiz-guerrero, F. Bertoncini, L. Duval, D. Thiébaut et al., Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC??GC): A powerful alternative for performing various standard analysis of middle-distillates, Journal of Chromatography A, vol.1086, issue.1-2, pp.1086-1107, 2005.
DOI : 10.1016/j.chroma.2005.05.106

URL : https://hal.archives-ouvertes.fr/hal-01330596

S. C. Terry, J. H. Jerman, and J. B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Transactions on Electron Devices, vol.26, issue.12, pp.1880-1886, 1979.
DOI : 10.1109/T-ED.1979.19791

E. Astute, Astute échantillonnage miniaturisé http://eifastute.com/one-page- theme-2/astute-echantillonage-miniaturise, 2013.

M. Petitjean, Analytical Pixel Technology, in: Journées d'Axelera Sur L'innovation En Analyse Industrielle

M. O. Alpha, http://www.alpha-mos.com/fr/instruments-analytiques/chromatographe- en-phase-gaseuse-pr3000

J. Whiting, Breakthrough Multigas Analysis Using Nano Silicon Technology, in: CPAC -Fall NeSSI Meet, 2012.

R. Facchetti and A. Cadoppi, Simulated Distillation of Petroleum Products (A STM D2887) by GC in Less than Two Minutes, C.M. Taylor, Rapid GC Simulated Distillation Analysis

N. Roques and J. Crandall, Fast micro gas chromatograph system, 2013.

J. Luong, R. Gras, R. Mustacich, and H. Cortes, Low Thermal Mass Gas Chromatography: Principles and Applications, Journal of Chromatographic Science, vol.44, issue.5, pp.253-261, 2006.
DOI : 10.1093/chromsci/44.5.253

URL : http://chromsci.oxfordjournals.org/cgi/content/short/44/5/253

A. Technologies, Agilent Technologies Acquires RVM Scientific, a Leading Manufacturer of Direct Rapid Heating/Cooling Systems for GC Capillary Columns, pp.18-08009, 2008.

T. Holm, Aspects of the mechanism of the flame ionization detector, Journal of Chromatography A, vol.842, issue.1-2, pp.221-227, 1999.
DOI : 10.1016/S0021-9673(98)00706-7

D. G. Mcminn and H. H. Hill, Detectors for Capillary Chromatography, 1992.

T. C. Hayward and K. B. Thurbide, Carbon response characteristics of a micro-flame ionization detector, Talanta, vol.73, issue.3, pp.73-583, 2007.
DOI : 10.1016/j.talanta.2007.04.005

W. Kuipers and J. Müller, Characterization of a microelectromechanical systems-based counter-current flame ionization detector, Journal of Chromatography A, vol.1218, issue.14, pp.1218-1891, 2011.
DOI : 10.1016/j.chroma.2011.01.084

W. Kuipers and J. Müller, Sensitivity of a planar micro-flame ionization detector, Talanta, vol.82, issue.5, pp.1674-1679, 2010.
DOI : 10.1016/j.talanta.2010.07.042

J. Wang, H. Wang, C. Duan, and Y. Guan, Micro-flame ionization detector with a novel structure for portable gas chromatograph, Talanta, vol.82, issue.3, pp.1022-1026, 2010.
DOI : 10.1016/j.talanta.2010.06.010

J. W. Wang, H. Peng, C. F. Duan, and Y. F. Guan, Development of Micro-Flame Ionization Detector for Portable Gas Chromatograph, Chinese Journal of Analytical Chemistry, vol.39, issue.3, pp.39-439, 2011.
DOI : 10.1016/S1872-2040(10)60427-6

. Agilent, A Guide to Interpreting Detector Specifications for Gas Chromatography, pp.5989-3423

H. Oberacher and C. G. Huber, Capillary monoliths for the analysis of nucleic acids by high-performance liquid chromatography???electrospray ionization mass spectrometry, TrAC Trends in Analytical Chemistry, vol.21, issue.3, pp.166-174, 2002.
DOI : 10.1016/S0165-9936(02)00304-7

F. D. Hileman, R. E. Sievers, G. G. Hess, and W. D. Ross, In situ preparation and evaluation of open pore polyurethane chromatographic columns, Analytical Chemistry, vol.45, issue.7, pp.45-1126, 1973.
DOI : 10.1021/ac60329a029

A. A. Korolev, V. E. Shiryaeva, T. P. Popova, and A. A. Kurganov, High productivity chromatographic separations on monolithic capillary columns, Russ, J. Phys. Chem. A, vol.87, pp.508-511, 2013.
DOI : 10.1134/s003602441303014x

F. Svec and A. Kurganov, Less common applications of monoliths. III. Gas chromatography, J. Chromatogr. A, pp.1184-281, 2008.

K. Yusuf, A. Aqel, Z. Alothman, and A. , Badjah-Hadj-Ahmed, Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications, J. Chromatogr. A, pp.1301-200, 2013.

G. Puy, C. Demesmay, J. L. Rocca, J. Iapichella, A. Galarneau et al., Electrochromatographic behavior of silica monolithic capillaries of different skeleton sizes synthesized with a simplified and shortened sol???gel procedure, ELECTROPHORESIS, vol.781, issue.20, pp.27-3971, 2006.
DOI : 10.1002/elps.200600153

URL : https://hal.archives-ouvertes.fr/hal-00189333

K. Nakanishi and S. Naohiro, Phase Separation in Gelling Silica-Organic Polymer Solution: Systems Containing Poly(sodium styrenesulfonate), Journal of the American Ceramic Society, vol.87, issue.10, p.74, 1991.
DOI : 10.1111/j.1151-2916.1991.tb06794.x

D. C. Hoth, J. G. Rivera, and L. A. Colón, Metal oxide monolithic columns, Journal of Chromatography A, vol.1079, issue.1-2, pp.1079-392, 2005.
DOI : 10.1016/j.chroma.2005.03.051

K. Fujita, J. Konishi, K. Nakanishi, and K. Hirao, Strong light scattering in macroporous TiO2 monoliths induced by phase separation, Applied Physics Letters, vol.85, issue.23, 2004.
DOI : 10.1063/1.1823596

J. Randon, S. Huguet, A. Piram, G. Puy, C. Demesmay et al., Synthesis of zirconia monoliths for chromatographic separations, Journal of Chromatography A, vol.1109, issue.1, pp.1109-1128, 2006.
DOI : 10.1016/j.chroma.2005.12.044

J. Randon, J. F. Guerrin, and J. L. Rocca, Synthesis of titania monoliths for chromatographic separations, Journal of Chromatography A, vol.1214, issue.1-2, pp.1214-183, 2008.
DOI : 10.1016/j.chroma.2008.10.108

A. A. Korolev, T. P. Popova, V. E. Shiryaeva, A. Kozin, and A. A. Kurganov, Loading Capacities of Monolithic Capillary Columns in Gas Chromatography, Russ, J. Phys. Chem. A, pp.81-469, 2007.

A. A. Korolev, V. E. Shiryaeva, T. P. Popova, and A. A. Kurganov, Effect of the nature of the carrier gas on the chromatographic characteristics of monolithic silica capillary columns, Russ, J. Phys. Chem, pp.80-1135, 2006.

A. A. Korolev, V. E. Shiryaeva, T. P. Popova, and A. A. Kurganov, Polar monolithic capillary columns: Analysis of light hydrocarbons, Russian Journal of Physical Chemistry A, vol.87, issue.1, pp.120-124, 2013.
DOI : 10.1134/S0036024413010111

K. Nakanishi, H. Komura, R. Takahashi, and N. Soga, Phase Separation in Silica Sol???Gel System Containing Poly(ethylene oxide). I. Phase Relation and Gel Morphology, Bulletin of the Chemical Society of Japan, vol.67, issue.5, pp.67-1327, 1994.
DOI : 10.1246/bcsj.67.1327

R. El-debs, F. Cadoux, L. Bois, A. Bonhommé, J. Randon et al., Synthesis and Surface Reactivity of Vinylized Macroporous Silica Monoliths: One-Pot Hybrid versus Postsynthesis Grafting Strategies, Langmuir, vol.31, issue.42, pp.31-11649, 2015.
DOI : 10.1021/acs.langmuir.5b02681

URL : https://hal.archives-ouvertes.fr/hal-01234268

E. D. Racha, P. Gay, V. Dugas, and C. Demesmay, One-pot synthesis of a new high vinyl content hybrid silica monolith dedicated to nanoliquid chromatography, Journal of Separation Science, vol.1379, issue.5, pp.39-842, 2016.
DOI : 10.1002/jssc.201501076

F. Gritti and G. Guiochon, Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column, Journal of Chromatography A, vol.1327, pp.1327-1376, 2014.
DOI : 10.1016/j.chroma.2013.12.003

A. Maniquet, N. Bruyer, G. Raffin, F. Baco-antoniali, C. Demesmay et al., Behavior of short silica monolithic columns in high pressure gas chromatography, Journal of Chromatography A, vol.1460, pp.1460-153, 2016.
DOI : 10.1016/j.chroma.2016.07.011

A. Maniquet and S. Girardon, Quantification de l'hydrogène dissout dans les coupes pétrolières C3, pp.1-29, 2012.

A. Sous, B. De-co-2, and R. , M3-2), p.97

F. Chromatogramme-d-'une, . Injection, L. Realisee, . Vanne, and B. Sous, M3-1), p.98

F. Chromatogramme-type-d-'une-analyse, S. De-coupe-c-3, . Une, . Alumina, I. Mapd et al., 50 M X 0,32 MM X 5 ?M