Y. Akiyama, A. Kikuchi, M. Yamato, and T. Okano, Ultrathin Poly, 2004.

Q. An, J. Brinkmann, J. Huskens, S. Krabbenborg, J. De-boer et al., A Supramolecular System for the Electrochemically Controlled Release of Cells, Angewandte Chemie International Edition, vol.92, issue.49, pp.12233-12237, 2012.
DOI : 10.1002/anie.201205651

A. Andersson, K. Glasmästar, D. Sutherland, U. Lidberg, and B. Kasemo, Cell adhesion on supported lipid bilayers, Journal of Biomedical Materials Research Part A, vol.39, issue.4, pp.622-629, 2003.
DOI : 10.1002/jbm.a.10442

K. Anselme and M. Bigerelle, Role of materials surface topography on mammalian cell response, International Materials Reviews, vol.71, issue.4, pp.243-266, 2011.
DOI : 10.1016/j.biomaterials.2006.03.009

K. Anselme and M. Bigerelle, On the relation between surface roughness of metallic substrates and adhesion of human primary bone cells, Scanning, vol.27, issue.1, pp.11-20, 2014.
DOI : 10.1002/sca.21067

M. Arnold, E. A. Cavalcanti-adam, R. Glass, J. Blümmel, W. Eck et al., Activation of Integrin Function by Nanopatterned Adhesive Interfaces, ChemPhysChem, vol.5, issue.3, pp.383-388, 2004.
DOI : 10.1002/cphc.200301014

M. Arnold, V. C. Hirschfeld-warneken, T. Lohmüller, P. Heil, J. Blümmel et al., Induction of Cell Polarization and Migration by a Gradient of Nanoscale Variations in Adhesive Ligand Spacing, Nano Letters, vol.8, issue.7, pp.2063-2069, 2008.
DOI : 10.1021/nl801483w

J. Auernheimer, C. Dahmen, U. Hersel, A. Bausch, and H. Kessler, Photoswitched Cell Adhesion on Surfaces with RGD Peptides, Journal of the American Chemical Society, vol.127, issue.46, pp.16107-16110, 2005.
DOI : 10.1021/ja053648q

M. C. Berg, S. Y. Yang, P. T. Hammond, and M. F. Rubner, Controlling Mammalian Cell Interactions on Patterned Polyelectrolyte Multilayer Surfaces, Langmuir, vol.20, issue.4, pp.1362-1368, 2004.
DOI : 10.1021/la0355489

A. L. Berrier and K. M. Yamada, Cell???matrix adhesion, Journal of Cellular Physiology, vol.114, issue.3, pp.565-573, 2007.
DOI : 10.1002/jcp.21237

M. Bigerelle, S. Giljean, and K. Anselme, Existence of a typical threshold in the response of human mesenchymal stem cells to a peak and valley topography, Acta Biomaterialia, vol.7, issue.9, pp.3302-3311, 2011.
DOI : 10.1016/j.actbio.2011.05.013

J. Blümmel, N. Perschmann, D. Aydin, J. Drinjakovic, T. Surrey et al., Protein repellent properties of covalently attached PEG coatings on nanostructured SiO2-based interfaces, Biomaterials, vol.28, issue.32, pp.4739-4747, 2007.
DOI : 10.1016/j.biomaterials.2007.07.038

J. Boekhoven, R. Pérez, C. M. Sur, S. Worthy, A. Stupp et al., Dynamic Display of Bioactivity through Host-Guest Chemistry, Angewandte Chemie International Edition, vol.48, issue.5, pp.12077-12080, 2013.
DOI : 10.1002/anie.201306278

T. Boudou, T. Crouzier, K. Ren, G. Blin, and C. Picart, Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications, Advanced Materials, vol.30, issue.1, pp.441-467, 2010.
DOI : 10.1002/adma.200901327

URL : https://hal.archives-ouvertes.fr/hal-00670215

Z. A. Cheng, O. F. Zouani, K. Glinel, A. M. Jonas, and M. Durrieu, Bioactive Chemical Nanopatterns Impact Human Mesenchymal Stem Cell Fate, Nano Letters, vol.13, issue.8, pp.3923-3929, 2013.
DOI : 10.1021/nl4020149

M. A. Cole, N. H. Voelcker, H. Thissen, and H. J. Griesser, Stimuli-responsive interfaces and systems for the control of protein???surface and cell???surface interactions, Biomaterials, vol.30, issue.9, pp.1827-1850, 2009.
DOI : 10.1016/j.biomaterials.2008.12.026

M. A. Dechantsreiter, E. Planker, B. Mathä, E. Lohof, G. Hölzemann et al., Integrin Antagonists, Journal of Medicinal Chemistry, vol.42, issue.16, pp.3033-3040, 1999.
DOI : 10.1021/jm970832g

J. A. Deeg, I. Louban, D. Aydin, C. Selhuber-unkel, H. Kessler et al., Impact of Local versus Global Ligand Density on Cellular Adhesion, Nano Letters, vol.11, issue.4, pp.1469-1476, 2011.
DOI : 10.1021/nl104079r

G. Delaittre, A. M. Greiner, T. Pauloehrl, M. Bastmeyer, and C. Barner-kowollik, Chemical approaches to synthetic polymer surface biofunctionalization for targeted cell adhesion using small binding motifs, Soft Matter, vol.7, issue.28, pp.7323-7347, 2012.
DOI : 10.1039/C1PY00372K

S. Desseaux and H. Klok, Temperature-Controlled Masking/Unmasking of Cell-Adhesive Cues with Poly(ethylene glycol) Methacrylate Based Brushes, Biomacromolecules, vol.15, issue.10, pp.3859-3865, 2014.
DOI : 10.1021/bm501233h

D. Cio, S. Gautrot, and J. E. , Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype, Acta Biomaterialia, vol.30, pp.26-48, 2016.
DOI : 10.1016/j.actbio.2015.11.027

S. F. Van-dongen, J. Janvore, S. S. Berkel, . Van, E. Marie et al., Reactive protein-repellent surfaces for the straightforward attachment of small molecules up to whole cells, Chemical Science, vol.71, issue.10, 2012.
DOI : 10.1039/c2sc20652h

S. F. Van-dongen, P. Maiuri, E. Marie, C. Tribet, and M. Piel, Triggering Cell Adhesion, Migration or Shape Change with a Dynamic Surface Coating, Advanced Materials, vol.125, issue.12, pp.1687-1691, 2013.
DOI : 10.1002/adma.201204474

M. Ebara, M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai et al., Temperature-Responsive Cell Culture Surfaces Enable ???On???Off??? Affinity Control between Cell Integrins and RGDS Ligands, Biomacromolecules, vol.5, issue.2, pp.505-510, 2004.
DOI : 10.1021/bm0343601

N. D. Gallant, K. E. Michael, and A. J. García, Cell Adhesion Strengthening: Contributions of Adhesive Area, Integrin Binding, and Focal Adhesion Assembly, Molecular Biology of the Cell, vol.16, issue.9, pp.4329-4340, 2005.
DOI : 10.1091/mbc.E05-02-0170

B. Geiger, J. P. Spatz, and A. D. Bershadsky, Environmental sensing through focal adhesions, Nature Reviews Molecular Cell Biology, vol.8, issue.1, 2009.
DOI : 10.1038/nrm2593

URL : http://hdl.handle.net/11858/00-001M-0000-0010-3D56-D

S. Gon and M. M. Santore, Sensitivity of Protein Adsorption to Architectural Variations in a Protein-Resistant Polymer Brush Containing Engineered Nanoscale Adhesive Sites, Langmuir, vol.27, issue.24, pp.15083-15091, 2011.
DOI : 10.1021/la203293k

S. Gon, M. Bendersky, J. L. Ross, and M. M. Santore, Manipulating Protein Adsorption using a Patchy Protein-Resistant Brush, Langmuir, vol.26, issue.14, pp.12147-12154, 2010.
DOI : 10.1021/la1016752

M. L. Arispe and T. Segura, Hybrid Photopatterned Enzymatic Reaction (HyPER) for in Situ Cell Manipulation, ChemBioChem, vol.15, pp.233-242, 2014.

A. Halperin and M. Kröger, Thermoresponsive Cell Culture Substrates Based on PNIPAM Brushes Functionalized with Adhesion Peptides: Theoretical Considerations of Mechanism and Design, Langmuir, vol.28, issue.48, pp.16623-16637, 2012.
DOI : 10.1021/la303443t

URL : https://hal.archives-ouvertes.fr/hal-00971380

J. Huang, S. V. Gräter, F. Corbellini, S. Rinck, E. Bock et al., Impact of Order and Disorder in RGD Nanopatterns on Cell Adhesion, Nano Letters, vol.9, issue.3, pp.1111-1116, 2009.
DOI : 10.1021/nl803548b

N. Huang, R. Michel, J. Voros, M. Textor, R. Hofer et al., -poly(ethylene glycol) Layers on Metal Oxide Surfaces:?? Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption, Langmuir, vol.17, issue.2, pp.489-498, 2001.
DOI : 10.1021/la000736+

URL : https://hal.archives-ouvertes.fr/hal-00758431

G. A. Hudalla and W. L. Muph, Using ???Click??? Chemistry to Prepare SAM Substrates to Study Stem Cell Adhesion, Langmuir, vol.25, issue.10, pp.5737-5746
DOI : 10.1021/la804077t

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694954

R. O. Hynes, Integrins, Cell, vol.110, issue.6, pp.673-687, 2002.
DOI : 10.1016/S0092-8674(02)00971-6

R. Inaba, A. Khademhosseini, H. Suzuki, and J. Fukuda, Electrochemical desorption of self-assembled monolayers for engineering cellular tissues, Biomaterials, vol.30, issue.21, pp.3573-3579, 2009.
DOI : 10.1016/j.biomaterials.2009.03.045

D. E. Ingber, Tensegrity II. How structural networks influence cellular information processing networks, Journal of Cell Science, vol.116, issue.8, pp.1397-1408, 2003.
DOI : 10.1242/jcs.00360

R. Israels, F. A. Leermakers, and G. J. Fleer, Adsorption of Charged Block Copolymers: Effect on Colloidal Stability, Macromolecules, vol.28, issue.5, pp.1626-1634, 1995.
DOI : 10.1021/ma00109a040

S. I. Jeon, J. H. Lee, J. D. Andrade, D. Gennes, and P. G. , Protein???surface interactions in the presence of polyethylene oxide, Journal of Colloid and Interface Science, vol.142, issue.1, pp.149-158, 1991.
DOI : 10.1016/0021-9797(91)90043-8

X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides, Directing cell migration with asymmetric micropatterns, Proceedings of the National Academy of Sciences, vol.102, issue.4, pp.975-978, 2005.
DOI : 10.1073/pnas.0408954102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC545855

C. Jurchenko, Y. Chang, Y. Narui, Y. Zhang, and K. S. Salaita, Integrin-Generated Forces Lead to Streptavidin-Biotin Unbinding in Cellular Adhesions, Biophysical Journal, vol.106, issue.7, pp.1436-1446, 2014.
DOI : 10.1016/j.bpj.2014.01.049

H. Kaji, M. Kanada, D. Oyamatsu, T. Matsue, and M. Nishizawa, Microelectrochemical Approach to Induce Local Cell Adhesion and Growth on Substrates, Langmuir, vol.20, issue.1, pp.16-19, 2004.
DOI : 10.1021/la035537f

G. L. Kenausis, J. Vörös, D. L. Elbert, N. Huang, R. Hofer et al., Poly(l-lysine)-g-Poly(ethylene glycol) Laees o Metal OOide, 2000.

H. Kerdjoudj, F. Boulmedais, N. Berthelemy, H. Mjahed, H. Louis et al., Cellularized alginate sheets for blood vessel reconstruction, Soft Matter, vol.26, issue.7, pp.3621-3626, 2011.
DOI : 10.1039/c0sm00998a

S. Kim, J. Turnbull, and S. Guimond, Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor, Journal of Endocrinology, vol.209, issue.2, pp.139-151, 2011.
DOI : 10.1530/JOE-10-0377

A. Lagunas, J. Comelles, E. Martínez, E. Prats-alfonso, G. A. Acosta et al., Cell adhesion and focal contact formation on linear RGD molecular gradients: study of non-linear concentration dependence effects, Nanomedicine: Nanotechnology, Biology and Medicine, vol.8, issue.4, pp.432-439, 2012.
DOI : 10.1016/j.nano.2011.08.001

J. Lahann, S. Mitragotri, T. Tran, H. Kaido, J. Sundaram et al., A Reversibly Switching Surface, Science, vol.299, issue.5605, pp.371-374, 2003.
DOI : 10.1126/science.1078933

X. Laloyaux, E. Fautré, T. Blin, V. Purohit, J. Leprince et al., Temperature-Responsive Polymer Brushes Switching from Bactericidal to Cell-Repellent, Advanced Materials, vol.41, issue.44, 2010.
DOI : 10.1002/adma.201002538

B. M. Lamb, Y. , and M. N. , Redox-Switchable Surface for Controlling Peptide Structure, Journal of the American Chemical Society, vol.133, issue.23, 2011.
DOI : 10.1021/ja203198y

H. Lee, Y. Jang, J. Seo, J. Nam, and K. Char, Nanoparticle-Functionalized Polymer Platform for Controlling Metastatic Cancer Cell Adhesion, Shape, and Motility, ACS Nano, vol.5, issue.7, pp.5444-5456, 2011.
DOI : 10.1021/nn202103z

D. Liu, Y. Xie, H. Shao, and X. Jiang, Using Azobenzene-Embedded Self-Assembled Monolayers To Photochemically Control Cell Adhesion Reversibly, Angewandte Chemie International Edition, vol.125, issue.24, pp.4406-4408, 2009.
DOI : 10.1002/anie.200901130

Y. Liu, L. Berre, M. Lautenschlaeger, F. Maiuri, P. Callan-jones et al., Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells, Cell, vol.160, issue.4, pp.659-672, 2015.
DOI : 10.1016/j.cell.2015.01.007

Z. Liu, Y. Liu, Y. Chang, H. R. Seyf, A. Henry et al., Nanoscale optomechanical actuators for controlling mechanotransduction in living cells, Nature Methods, vol.13, issue.2, 2015.
DOI : 10.1529/biophysj.107.117234

C. Lo, H. Wang, M. Dembo, W. , and Y. , Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, pp.144-152, 2000.
DOI : 10.1016/S0006-3495(00)76279-5

W. A. Loesberg, J. Te-riet, F. C. Van-delft, P. Schön, C. G. Figdor et al., The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion, Biomaterials, vol.28, issue.27, pp.3944-3951, 2007.
DOI : 10.1016/j.biomaterials.2007.05.030

Y. Luk, M. Kato, and M. Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment, Langmuir, vol.16, issue.24, pp.9604-9608, 2000.
DOI : 10.1021/la0004653

J. W. Lussi, D. Falconnet, J. A. Hubbell, M. Textor, C. et al., Pattern stability under cell culture conditions???A comparative study of patterning methods based on PLL-g-PEG background passivation, Biomaterials, vol.27, issue.12, pp.2534-2541, 2006.
DOI : 10.1016/j.biomaterials.2005.11.027

M. P. Lutolf, Materials science: Cell environments programmed with light, Nature, vol.10, issue.7386, pp.477-478, 2012.
DOI : 10.1038/482477a

J. Malmström, B. Christensen, H. P. Jakobsen, J. Lovmand, R. Foldbjerg et al., Large Area Protein Patterning Reveals Nanoscale Control of Focal Adhesion Development, Nano Letters, vol.10, issue.2, pp.686-694, 2010.
DOI : 10.1021/nl903875r

R. A. Marklein and J. A. Burdick, Spatially controlled hydrogel mechanics to modulate stem cell interactions, Soft Matter, vol.94, issue.1, pp.136-143, 2009.
DOI : 10.1002/adma.200901055

C. Monge, J. Almodóvar, T. Boudou, and C. Picart, Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D, Advanced Healthcare Materials, vol.24, issue.6, pp.811-830, 2015.
DOI : 10.1038/nrm3897

K. A. Mosiewicz, L. Kolb, A. J. Vlies, . Van, and M. P. Lutolf, Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols, Biomater. Sci., vol.99, issue.Pt 2, pp.1640-1651, 2014.
DOI : 10.1016/j.bpj.2009.06.021

J. Nakanishi, Switchable Substrates for Analyzing and Engineering Cellular Functions, Chemistry - An Asian Journal, vol.326, issue.2, pp.406-417, 2014.
DOI : 10.1002/asia.201301325

C. C. Ng, A. Magenau, S. H. Ngalim, S. Ciampi, M. Chockalingham et al., Using an Electrical Potential to Reversibly Switch Surfaces between Two States for Dynamically Controlling Cell Adhesion, Angewandte Chemie International Edition, vol.604, issue.31, pp.7706-7710, 2012.
DOI : 10.1002/anie.201202118

G. Pan, Q. Guo, Y. Ma, H. Yang, L. et al., Thermo-Responsive Hydrogel Layers Imprinted with RGDS Peptide: A System for Harvesting Cell Sheets, Angewandte Chemie International Edition, vol.52, issue.27, pp.6907-6911, 2013.
DOI : 10.1002/anie.201300733

G. Pan, B. Guo, Y. Ma, W. Cui, F. He et al., Dynamic Introduction of Cell Adhesive Factor via Reversible Multicovalent Phenylboronic Acid, 2014.

J. Park, S. Bauer, K. Von-der-mark, and P. Schmuki, Nanotube Diameter Directs Cell Fate, Nano Letters, vol.7, issue.6, pp.1686-1691, 2007.
DOI : 10.1021/nl070678d

R. Peng, X. Yao, and J. Ding, Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion, Biomaterials, vol.32, issue.32, pp.8048-8057, 2011.
DOI : 10.1016/j.biomaterials.2011.07.035

B. Pidhatika, M. Rodenstein, Y. Chen, E. Rakhmatullina, A. Muehlebach et al., Comparative Stability Studies of Poly(2-methyl-2-oxazoline) and Poly(ethylene glycol) Brush Coatings, Biointerphases, vol.7, issue.1, 2012.
DOI : 10.1007/s13758-011-0001-y

S. V. Plotnikov and C. M. Waterman, Guiding cell migration by tugging, Current Opinion in Cell Biology, vol.25, issue.5, pp.619-626, 2013.
DOI : 10.1016/j.ceb.2013.06.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827722

S. Schmidt, M. Zeiser, T. Hellweg, C. Duschl, A. Fery et al., Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates, Advanced Functional Materials, vol.20, issue.19, pp.3235-3243, 2010.
DOI : 10.1002/adfm.201000730

M. Schütt, S. S. Krupka, A. G. Milbradt, S. Deindl, E. Sinner et al., Photocontrol of Cell Adhesion Processes, Chemistry & Biology, vol.10, issue.6, pp.487-490, 2003.
DOI : 10.1016/S1074-5521(03)00128-5

N. J. Sniadecki, A. Anguelouch, M. T. Yang, C. M. Lamb, Z. Liu et al., Magnetic microposts as an approach to apply forces to living cells, Proc. Natl. Acad, 2007.
DOI : 10.1073/pnas.0611613104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976246

S. J. Sofia, V. Premnath, M. , and E. W. , Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption, Macromolecules, vol.31, issue.15, pp.5059-5070, 1998.
DOI : 10.1021/ma971016l

C. H. Streuli, Integrins and cell-fate determination, Journal of Cell Science, vol.122, issue.2, pp.171-177, 2009.
DOI : 10.1242/jcs.018945

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714415

Z. Tang, Y. Akiyama, and T. Okano, -isopropylacrylamide), Journal of Polymer Science Part B: Polymer Physics, vol.130, issue.14, pp.917-926, 2014.
DOI : 10.1002/polb.23512

URL : https://hal.archives-ouvertes.fr/hal-00287645

S. J. Todd, D. J. Scurr, J. E. Gough, M. R. Alexander, and R. V. Ulijn, Enzyme-Activated RGD Ligands on Functionalized Poly(ethylene glycol) Monolayers: Surface Analysis and Cellular Response, Langmuir, vol.25, issue.13, pp.7533-7539, 2009.
DOI : 10.1021/la900376h

K. Uhlig, H. G. Boerner, E. Wischerhoff, J. Lutz, M. S. Jaeger et al., On the Interaction of Adherent Cells with Thermoresponsive Polymer Coatings, Polymers, vol.6, issue.4, pp.1164-1177, 2014.
DOI : 10.3390/polym6041164

M. Ventre, F. Causa, N. , and P. A. , Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials, Journal of The Royal Society Interface, vol.21, issue.6, pp.2017-2032, 2012.
DOI : 10.1038/nmat2441

V. Vogel and M. Sheetz, Local force and geometry sensing regulate cell functions, Nature Reviews Molecular Cell Biology, vol.31, issue.4, 2006.
DOI : 10.1016/S0022-2836(02)01001-X

M. Wirkner, S. Weis, V. San-miguel, M. Álvarez, R. A. Gropeanu et al., Photoactivatable Caged Cyclic RGD Peptide for Triggering Integrin Binding and Cell Adhesion to Surfaces, ChemBioChem, vol.58, issue.17, pp.2623-2629, 2011.
DOI : 10.1002/cbic.201100437

URL : http://hdl.handle.net/11858/00-001M-0000-000F-7021-C

N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki et al., Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells, Die Makromolekulare Chemie, Rapid Communications, vol.11, issue.11, pp.571-576, 1990.
DOI : 10.1002/marc.1990.030111109

W. Yeo, C. D. Hodneland, and M. Mrksich, Electroactive Monolayer Substrates that Selectively Release Adherent Cells, ChemBioChem, vol.40, issue.7-8, pp.590-593, 2001.
DOI : 10.1002/1439-7633(20010803)2:7/8<590::AID-CBIC590>3.0.CO;2-D

W. Yeo, M. N. Yousaf, and M. Mrksich, Dynamic Interfaces between Cells and Surfaces:?? Electroactive Substrates that Sequentially Release and Attach Cells, Journal of the American Chemical Society, vol.125, issue.49, pp.14994-14995, 2003.
DOI : 10.1021/ja038265b

H. M. Zareie, C. Boyer, V. Bulmus, E. Nateghi, D. et al., Temperature-Responsive Self-Assembled Monolayers of Oligo(ethylene glycol): Control of Biomolecular Recognition, ACS Nano, vol.2, issue.4, pp.757-765, 2008.
DOI : 10.1021/nn800076h

C. Zhao, I. Witte, and G. Wittstock, Switching On Cell Adhesion with Microelectrodes, 2006.
DOI : 10.1002/ange.200601151

O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland et al., Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography, Biomaterials, vol.25, issue.14, pp.2695-2711, 2004.
DOI : 10.1016/j.biomaterials.2003.09.111

P. Kristin, K. M. Karlsson, R. Svennersten, K. Loffler, S. Jager et al., Electronic Control of Cell Detachment Using a Self-Doped Conducting Polymer, Adv. Mater, vol.23, p.4403, 2011.

M. Arnold, E. A. Cavalcanti-adam, R. Glass, J. Blümmel, W. Eck et al., Activation of Integrin Function by Nanopatterned Adhesive Interfaces, ChemPhysChem, vol.5, issue.3, pp.383-388, 2004.
DOI : 10.1002/cphc.200301014

S. Desseaux and H. Klok, Temperature-Controlled Masking/Unmasking of Cell-Adhesive Cues with Poly(ethylene glycol) Methacrylate Based Brushes, Biomacromolecules, vol.15, issue.10, pp.3859-3865, 2014.
DOI : 10.1021/bm501233h

M. Ebara, M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai et al., Temperature-Responsive Cell Culture Surfaces Enable ???On???Off??? Affinity Control between Cell Integrins and RGDS Ligands, Biomacromolecules, vol.5, issue.2, pp.505-510, 2004.
DOI : 10.1021/bm0343601

A. Halperin and M. Kröger, Thermoresponsive Cell Culture Substrates Based on PNIPAM Brushes Functionalized with Adhesion Peptides: Theoretical Considerations of Mechanism and Design, Langmuir, vol.28, issue.48, pp.16623-16637, 2012.
DOI : 10.1021/la303443t

URL : https://hal.archives-ouvertes.fr/hal-00971380

J. Huang, X. Peng, C. Xiong, and J. Fang, Influence of substrate stiffness on cell???substrate interfacial adhesion and spreading: A mechano-chemical coupling model, Journal of Colloid and Interface Science, vol.355, issue.2, pp.503-508, 2011.
DOI : 10.1016/j.jcis.2010.12.055

G. A. Hudalla and W. L. Muph, Using ???Click??? Chemistry to Prepare SAM Substrates to Study Stem Cell Adhesion, Langmuir, vol.25, issue.10, pp.5737-5746
DOI : 10.1021/la804077t

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694954

A. Lagunas, J. Comelles, E. Martínez, E. Prats-alfonso, G. A. Acosta et al., Cell adhesion and focal contact formation on linear RGD molecular gradients: study of non-linear concentration dependence effects, Nanomedicine: Nanotechnology, Biology and Medicine, vol.8, issue.4, pp.432-439, 2012.
DOI : 10.1016/j.nano.2011.08.001

L. Li, Y. Zhu, B. Li, and C. Gao, Fabrication of Thermoresponsive Polymer Gradients for Study of Cell Adhesion and Detachment, Langmuir, vol.24, issue.23, pp.13632-13639, 2008.
DOI : 10.1021/la802556e

K. Mandal, M. Balland, and L. Bureau, Thermoresponsive Micropatterned Substrates for Single Cell Studies, PLoS ONE, vol.30, issue.5, 2012.
DOI : 10.1371/journal.pone.0037548.g009

URL : https://hal.archives-ouvertes.fr/hal-00640115

F. Mastrotto, P. Caliceti, V. Amendola, S. Bersani, J. P. Magnusson et al., Polymer control of ligand display on gold nanoparticles for multimodal switchable cell targeting, Chemical Communications, vol.67, issue.35, pp.9846-9848, 2011.
DOI : 10.1039/c1cc12654g

K. Nagase, M. Watanabe, A. Kikuchi, M. Yamato, and T. Okano, Thermo-Responsive Polymer Brushes as Intelligent Biointerfaces: Preparation via ATRP and Characterization, Macromolecular Bioscience, vol.26, issue.3, 2011.
DOI : 10.1002/mabi.201000312

N. G. Patel and G. Zhang, Responsive systems for cell sheet detachment, Organogenesis, vol.46, issue.2, pp.93-100, 2013.
DOI : 10.1002/(SICI)1097-4636(200004)50:1<82::AID-JBM12>3.0.CO;2-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812292

H. Takahashi, M. Nakayama, M. Yamato, and T. Okano, Controlled Chain Length and Graft Density of Thermoresponsive Polymer Brushes for Optimizing Cell Sheet Harvest, Biomacromolecules, vol.11, issue.8, 1991.
DOI : 10.1021/bm100342e

Z. Tang, Y. Akiyama, and T. Okano, Temperature-Responsive Polymer Modified Surface for, Cell Sheet Engineering. Polymers, vol.4, pp.1478-1498, 2012.
DOI : 10.3390/polym4031478

URL : http://doi.org/10.3390/polym4031478

Z. Tang, Y. Akiyama, and T. Okano, -isopropylacrylamide), we have no clear interpretation of the present result. Further investigations are necessary to confirm the present effect, pp.917-926, 2014.
DOI : 10.1002/polb.23512

URL : https://hal.archives-ouvertes.fr/hal-00287645

. Nme2-biotin, Table 17, ?TCP = -3 °C, the idig to Bioti ass't odulate light. II ottast, the threshold temperature of association of beads onto the surface was higher under UV illumination (~ 37.5 °C) than under blue illumination (~ 32.5 °C) on PLL-g-[0

. Biotin, PLL-g-[0.1]?-Azo,?-Butanamido-P(NIPAM-co-Biotin)(2) keeps its direct light-response once adsorbed on surface. To determine whether a collapse/swelling transition occurs in the azobenzene-containing PLL-g-PNIPAM adlayers, QCM-d measurements have been achieved, Preliminary data are shown in Figure 113 of Appendix 3 (section 2.3.4). Unfortunately, recorded signals on both PLL-g-P

H. Akiyama and N. Tamaoki, -isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units, Macromolecules, vol.40, issue.14, pp.5129-5132, 2007.
DOI : 10.1021/ma070628v

URL : https://hal.archives-ouvertes.fr/hal-00159675

J. Buller, A. Laschewsky, J. Lutz, and E. Wischerhoff, Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition, Polymer Chemistry, vol.25, issue.7, pp.1486-1489, 2011.
DOI : 10.1039/c1py00001b

D. T. Chen and H. Morawetz, Photoisomerization and Fluorescence of Chromophores Built into the Backbones of Flexible Polymer Chains, Macromolecules, vol.9, issue.3, pp.463-468, 1976.
DOI : 10.1021/ma60051a015

S. Dai, P. Ravi, T. , and K. C. , pH-Responsive polymers: synthesis, properties and applications, Soft Matter, vol.36, issue.3, pp.435-449, 2008.
DOI : 10.1039/b714741d

A. Desponds and R. Freitag, -Isopropylacrylamide Cotelomers, Langmuir, vol.19, issue.15, pp.6261-6270, 2003.
DOI : 10.1021/la020944x

URL : https://hal.archives-ouvertes.fr/halshs-00983951

M. Eberhardt, R. Mruk, R. Zentel, and P. Théato, Synthesis of pentafluorophenyl(meth)acrylate polymers: New precursor polymers for the synthesis of multifunctional materials, European Polymer Journal, vol.41, issue.7, pp.1569-1575, 2005.
DOI : 10.1016/j.eurpolymj.2005.01.025

M. Hahn, E. Görnitz, and H. Dautzenberg, Synthesis and Properties of Ionically Modified Polymers with LCST Behavior, Macromolecules, vol.31, issue.17, pp.5616-5623, 1998.
DOI : 10.1021/ma9800010

F. Hamon, F. Djedaini-pilard, F. Barbot, L. , and C. , Azobenzenes???synthesis and carbohydrate applications, Tetrahedron, vol.65, issue.49, pp.10105-10123, 2009.
DOI : 10.1016/j.tet.2009.08.063

M. R. Han, Y. Hirayama, and M. Hara, Fluorescence Enhancement from Self-Assembled Aggregates:?? Substituent Effects on Self-Assembly of Azobenzenes, Chemistry of Materials, vol.18, issue.12, pp.2784-2786, 2006.
DOI : 10.1021/cm060543t

M. Irie, Y. Misumi, and T. Tanaka, Stimuli-responsive polymers: chemical induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendent crown ether groups, Polymer, vol.34, issue.21, pp.4531-4535, 1993.
DOI : 10.1016/0032-3861(93)90160-C

N. Ishii, J. Mamiya, T. Ikeda, and F. M. Winnik, Solvent induced amplification of the photoresponsive properties of ??,??-di-[4-cyanophenyl-4???-(6-hexyloxy)-azobenzene]-poly(N-isopropylacrylamide) in aqueous media, Chem. Commun., vol.39, issue.4, pp.1267-1269, 2011.
DOI : 10.1039/C0CC04009F

A. E. Ivanov, N. L. Eremeev, P. Wahlund, I. Y. Galaev, and B. Mattiasson, Photosensitive copolymer of N-isopropylacrylamide and methacryloyl derivative of spyrobenzopyran, Polymer, vol.43, issue.13, pp.3819-3823, 2002.
DOI : 10.1016/S0032-3861(02)00191-X

I. G. Ivanova, D. Kuckling, H. P. Adler, T. Wolff, and K. Arndt, Preparation and properties of thin films of photocrosslinkable hydrophilic polymers, Designed Monomers & Polymers, vol.3, issue.4, pp.447-462, 2000.
DOI : 10.1163/156855500750206302

F. D. Jochum and P. Theato, Temperature- and Light-Responsive Polyacrylamides Prepared by a Double Polymer Analogous Reaction of Activated Ester Polymers, Macromolecules, vol.42, issue.16, pp.5941-5945, 2009.
DOI : 10.1021/ma900945s

F. D. Jochum and P. Theato, Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction, Polymer, vol.50, issue.14, pp.3079-3085, 2009.
DOI : 10.1016/j.polymer.2009.05.041

F. D. Jochum, L. Zur-borg, P. J. Roth, and P. Theato, Thermo- and Light-Responsive Polymers Containing Photoswitchable Azobenzene End Groups, Macromolecules, vol.42, issue.20, pp.7854-7862, 2009.
DOI : 10.1021/ma901295f

R. Kroger, H. Menzel, and M. L. Hallensleben, Light controlled solubility change of polymers: Copolymers of N,N-dimethylacrylamide and 4-phenylazophenyl acrylate, Macromolecular Chemistry and Physics, vol.195, issue.7, pp.2291-2298, 1994.
DOI : 10.1002/macp.1994.021950701

D. Kuckling, I. G. Ivanova, H. P. Adler, and T. Wolff, Photochemical switching of hydrogel film properties, Polymer, vol.43, issue.6, pp.1813-1820, 2002.
DOI : 10.1016/S0032-3861(01)00766-2

D. Kuckling, C. D. Vo, H. P. Adler, A. Völkel, C. et al., Preparation and Characterization of Photo-Cross-Linked Thermosensitive PNIPAAm Nanogels, Macromolecules, vol.39, issue.4, pp.1585-1591, 2006.
DOI : 10.1021/ma052227q

D. Kungwatchakun, I. Masahiro, . Polymers-photocontrol, . Of, . Phase-separation et al., PHOTORESPONSIVE, -PHENYLAZOPHENYL)ACRYLAMIDE]. Makromol Chem 9, pp.243-246, 1988.

A. Laschewsky, R. , and E. D. , Photochemical modification of the lower critical solution temperature of cinnamoylated poly(N-2-hydroxypropylmethacrylamide) in water, Macromolecular Rapid Communications, vol.21, issue.13, pp.937-940, 2000.
DOI : 10.1002/1521-3927(20000801)21:13<937::AID-MARC937>3.0.CO;2-9

H. Lee, J. Pietrasik, and K. Matyjaszewski, Phototunable Temperature-Responsive Molecular Brushes Prepared by ATRP, Macromolecules, vol.39, issue.11, pp.3914-3920, 2006.
DOI : 10.1021/ma060350r

H. Y. Liu and X. X. Zhu, Lower critical solution temperatures of N-substituted acrylamide copolymers in aqueous solutions, Polymer, vol.40, issue.25, pp.6985-6990, 1999.
DOI : 10.1016/S0032-3861(98)00858-1

Y. Liu, A. Pallier, J. Sun, S. Rudiuk, D. Baigl et al., Non-monotonous variation of the LCST of light-responsive, amphiphilic poly(NIPAM) derivatives, Soft Matter, vol.25, issue.32, pp.8446-8455, 2012.
DOI : 10.1039/c2sm25959a

H. Menzel, R. Kroger, and M. L. Hallensleben, Polymers with Light Controlled Water Solubility, Journal of Macromolecular Science, Part A, vol.5316, issue.sup1, pp.779-787, 1995.
DOI : 10.1007/BF02798546

A. Miasnikova, C. A. Benítez-montoya, and A. Laschewsky, Isomerization of Copolymerized Azobenzenes, Macromolecular Chemistry and Physics, vol.109, issue.2, pp.1504-1514, 2013.
DOI : 10.1002/macp.201300203

H. Ringsdorf, J. Venzmer, and F. M. Winnik, Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides), Macromolecules, vol.24, issue.7, pp.1678-1686, 1991.
DOI : 10.1021/ma00007a034

J. C. Rodríguez-cabello, M. Alonso, L. Guiscardo, V. Reboto, and A. Girotti, Amplified Photoresponse of a p-Phenylazobenzene Derivative of an Elastin-like Polymer by ??-Cyclodextrin: The Amplified ??Tt Mechanism, Advanced Materials, vol.14, issue.16, pp.1151-1154, 2002.
DOI : 10.1002/1521-4095(20020816)14:16<1151::AID-ADMA1151>3.0.CO;2-Y

J. Ruchmann, S. C. Sebai, and C. Tribet, Photoresponse of Complexes between Surfactants and Azobenzene-Modified Polymers Accounting for the Random Distribution of Hydrophobic Side Groups, Macromolecules, vol.44, issue.3, pp.604-611, 2011.
DOI : 10.1021/ma1024544

N. J. Tom, W. M. Simon, H. N. Frost, and M. Ewing, Deprotection of a primary Boc group under basic conditions, Tetrahedron Letters, vol.45, issue.5, pp.905-906, 2004.
DOI : 10.1016/j.tetlet.2003.11.108

Y. Zhao, L. Tremblay, and Y. Zhao, Phototunable LCST of Water-Soluble Polymers: Exploring a Topological Effect, Macromolecules, vol.44, issue.10, pp.4007-4011, 2011.
DOI : 10.1021/ma200691s

P. Zheng, X. Hu, X. Zhao, L. Li, K. C. Tam et al., Photoregulated Sol-Gel Transition of Novel Azobenzene-Functionalized Hydroxypropyl Methylcellulose and Its??-Cyclodextrin Complexes, Macromolecular Rapid Communications, vol.25, issue.5, pp.678-682, 2004.
DOI : 10.1002/marc.200300123

-. Azo, 135 3.2 Synthesis of N-acryloxysuccinimide (NAS, monomer), p.135

?. Pll-g-, NIPAM-co-Biotin)(2) ? 1 H-NMR, D2O) : 0.90-1.16 (s, CH2-CH(CO-NH-CH-(CH3)2)-, 22.5H), pp.18-20

. Biotin, layers was investigated by QCM-d in PBS without illumination (See Chapter 3 for more detailss. Reeoded sigals did't shoo a discernible transition and were closed to the detection limit (Figure 113) For the two polymers, frequency derivatives seem to reveal a maximum at, p.26

M. V. Badiger and B. A. Wolf, Shear Induced Demixing and Rheological Behavior of Aqueous Solutions of Poly(N-isopropylacrylamide), Macromolecular Chemistry and Physics, vol.204, issue.4, pp.600-606, 2003.
DOI : 10.1002/macp.200390026

I. Dimitrov, B. Trzebicka, A. H. Müller, A. Dworak, and C. B. Tsvetanov, Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities, Progress in Polymer Science, vol.32, issue.11, pp.1275-1343, 2007.
DOI : 10.1016/j.progpolymsci.2007.07.001

A. Duaad, D. Houdet, and F. Lafua, Theeoassoiatie GGaft Copolees: NMR Investigation and Comparison with Rheological Behaviour, J. Phys. Chem. B, vol.104, pp.9371-9377

R. Freitag and F. Garret-flaudy, -isopropylacrylamide) Oligomers from Aqueous Solution, Langmuir, vol.18, issue.9, pp.3434-3440, 2002.
DOI : 10.1021/la0106440

URL : https://hal.archives-ouvertes.fr/hal-00807429

M. Heskins and J. E. Guillet, Solution Properties of Poly(N-isopropylacrylamide), Journal of Macromolecular Science: Part A - Chemistry, vol.41, issue.8, 1968.
DOI : 10.1021/j150519a016

D. Johannsmann, Viscoelastic analysis of organic thin films on quartz resonators, Macromol, 1999.

D. Johannsmann, Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance, Physical Chemistry Chemical Physics, vol.94, issue.31, pp.4516-4534, 2008.
DOI : 10.1039/b803960g

I. Juurinen, S. Galambosi, A. G. Anghelescu-hakala, J. Koskelo, V. Honkimäki et al., -isopropylacrylamide) in Phase Transition, The Journal of Physical Chemistry B, vol.118, issue.20, pp.5518-5523, 2014.
DOI : 10.1021/jp501913p

Y. Kim, I. C. Kwon, Y. H. Bae, K. , and S. W. , Saccharide Effect on the Lower Critical Solution Temperature of Thermosensitive Polymers, Macromolecules, vol.28, issue.4, pp.939-944, 1995.
DOI : 10.1021/ma00108a022

T. Maeda, K. Yamamoto, and T. Aoyagi, Importance of bound water in hydration???dehydration behavior of hydroxylated poly(N-isopropylacrylamide), Journal of Colloid and Interface Science, vol.302, issue.2, pp.467-474, 2006.
DOI : 10.1016/j.jcis.2006.06.047

R. Plummer, D. J. Hill, and A. K. Whittaker, -isopropylacrylamide), Macromolecules, vol.39, issue.24, pp.8379-8388, 2006.
DOI : 10.1021/ma0614545

URL : https://hal.archives-ouvertes.fr/hal-01310418

X. Qiu, F. Tanaka, and F. M. Winnik, -isopropylacrylamide)s in Aqueous Solution, Macromolecules, vol.40, issue.20, pp.7069-7071, 2007.
DOI : 10.1021/ma071359b

URL : https://hal.archives-ouvertes.fr/hal-00758408

J. Rika, M. Meewes, R. Nyffenegger, and T. Binkert, Intermolecular and intramolecular solubilization: Collapse and expansion of a polymer chain in surfactant solutions, Physical Review Letters, vol.65, issue.5, pp.657-660, 1990.
DOI : 10.1103/PhysRevLett.65.657

H. Ringsdorf, J. Venzmer, and F. M. Winnik, Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides), Macromolecules, vol.24, issue.7, pp.1678-1686, 1991.
DOI : 10.1021/ma00007a034

M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo, ???factor measurements in gaseous and liquid environments, Review of Scientific Instruments, vol.66, issue.7, pp.3924-3930, 1995.
DOI : 10.1063/1.1145396

H. G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application, Progress in Polymer Science, vol.17, issue.2, 1992.
DOI : 10.1016/0079-6700(92)90023-R

H. G. Schild, T. , and D. A. , Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions, The Journal of Physical Chemistry, vol.94, issue.10, pp.4352-4356, 1990.
DOI : 10.1021/j100373a088

K. Van-durme, G. Van-assche, V. Mele, and B. , -isopropylacrylamide)/Water Studied by Modulated Temperature DSC, Macromolecules, vol.37, issue.25, pp.9596-9605, 2004.
DOI : 10.1021/ma048472b

X. Wan, J. Xu, and S. Liu, Facile synthesis of dendrimer-like star-branched poly(isopropylacrylamide) via combination of click chemistry and atom transfer radical polymerization, Science China Chemistry, vol.39, issue.12, pp.2520-2527, 2010.
DOI : 10.1007/s11426-010-4135-4

X. Wang, X. Qiu, and C. Wu, -isopropylacrylamide) Homopolymer Chain in Water, Macromolecules, vol.31, issue.9, pp.2972-2976, 1998.
DOI : 10.1021/ma971873p

URL : https://hal.archives-ouvertes.fr/hal-00807530

C. Wu and S. Zhou, Thermodynamically Stable Globule State of a Single Poly(N-isopropylacrylamide) Chain in Water, Macromolecules, vol.28, issue.15, pp.5388-5390, 1995.
DOI : 10.1021/ma00119a036

Y. Zhao, L. Tremblay, and Y. Zhao, Phototunable LCST of Water-Soluble Polymers: Exploring a Topological Effect, Macromolecules, vol.44, issue.10, pp.4007-4011, 2011.
DOI : 10.1021/ma200691s