Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation

Location based services and location based behavior in a smart city

Chen Wang 1 
1 SICAL - Situated Interaction, Collaboration, Adaptation and Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : The concept of “Smart Cities” has emerged during the last few years to describe how investments in human and social capital and modern Information and Communication Technologies (ICT) infrastructure and e-services fuel sustainable growth and quality of life, enabled by a wise management of natural resources and through participative government. To us, Smart City is a real augmented environment allowing ubiquitous computing, with up-to-date web 2.0, which is collaborative, mobile and contextual, human actors as well as different things (connected objects) are now an integral part of internet. In the international France-China project on Smart City we used the MOCOCO approach (Mobility, Contextualization, Collaboration) to conduct research work with multiple applications in working, learning and social situations; professional and home working situations, professional and teenager contextual mobile learning situations as well as Smart City applications are taken into account – transportation, goods distribution and local sport and cultural activities. This dissertation focuses on Location Based Services, and Internet of Things, which are both important aspects of Smart City. The choice of dynamic management of road lanes as a case study in this thesis, is also a good practice of integrating new technologies to make the city smarter and to make our life more comfortable. According to Schiller and Voisard (2004), Location Based Services (LBS) can be defined as services that integrate a mobile device’s location or position with other information so as to provide added value to a user. During recent years, LBS has evolved from simple GIS applications and positioning of emergent phone callers to more complicated, proactive, application-oriented services adapted to different users. However, heterogeneity of devices, data management and analysis, and HCI aspects are always main challenges for LBS. Our goal is to make the LBS meet the requirements of Smart City, with use of Internet of Things (IoT), integrating a certain degree of ambient intelligence. The theoretical aspect of our contributions is that we examine at component level the possibility and feasibility of using IoT to better support LBS. The ability of IoT architecture of integrating various objects gives LBS a better management of location-aware devices; the sensors can also enrich the data source of LBS. The middleware of IoT, good at objects abstraction and service composition, provides possibilities to deploy more intelligent and customized service components, thus can enhance the middleware of LBS. The practical aspect of our contributions is that we choose a dynamic lane management problem as a use case study demonstrating our approach in regard to combining LBS with IoT for a Smart City application. The goal of the dynamic lane management system is to make a better use of road lanes by dynamic allocation of lanes to different types of transportation. We provide the system architecture, user interfaces and a simulation environment to validate the solution design. We also develop a proof of concept to validate the technological aspects of the lane management system. The simulation environment of the lane management system is another important part of our contributions, it includes a core simulator to simulate the function of the system and the behaviors of the vehicles, and an editor of scenario and a generator of traffic as initialization tools. Different visualization methods of simulation results are also taken into consideration. In addition, we develop an evaluation tool which allows for real time user interaction, based on the visualization of the results of the simulator to conduct user tests for HCI aspects, as human factors should always be considered in the context of Smart City. [...]
Document type :
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Wednesday, February 22, 2017 - 2:31:16 PM
Last modification on : Tuesday, June 1, 2021 - 2:08:10 PM
Long-term archiving on: : Tuesday, May 23, 2017 - 1:50:03 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01474077, version 1


Chen Wang. Location based services and location based behavior in a smart city. Other. Université de Lyon, 2016. English. ⟨NNT : 2016LYSEC017⟩. ⟨tel-01474077⟩



Record views


Files downloads