A. H. Salmon and S. C. Satchell, Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability, The Journal of Pathology, vol.172, issue.4, pp.562-574, 2012.
DOI : 10.1002/path.3964

W. Risau, Development and differentiation of endothelium, Kidney International, vol.54, pp.3-6, 1998.
DOI : 10.1046/j.1523-1755.1998.06701.x

S. C. Satchell and F. Braet, Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier, AJP: Renal Physiology, vol.296, issue.5, pp.947-956, 2009.
DOI : 10.1152/ajprenal.90601.2008

K. Ichimura, R. V. Stan, and H. Kurihara, Glomerular Endothelial Cells Form Diaphragms during Development and Pathologic Conditions, Journal of the American Society of Nephrology, vol.19, issue.8, pp.1463-1471, 2008.
DOI : 10.1681/ASN.2007101138

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2488267

M. E. Nesheim and F. J. Nesheim, An experimental and mathematical model for fibrinolysis, FASEB J, vol.2, p.1412, 1988.

B. Haraldsson, J. Nystrom, J. , and W. M. Deen, Properties of the Glomerular Barrier and Mechanisms of Proteinuria, Physiological Reviews, vol.88, issue.2, pp.451-487, 2008.
DOI : 10.1152/physrev.00055.2006

A. R. Pries, T. W. Secomb, and P. Gaehtgens, The endothelial surface layer, Pfl??gers Archiv - European Journal of Physiology, vol.440, issue.5, pp.653-666, 2000.
DOI : 10.1007/s004240000307

S. Reitsma, D. W. Slaaf, and H. Vink, The endothelial glycocalyx: composition, functions, and visualization, Pfl??gers Archiv - European Journal of Physiology, vol.279, issue.Pt 1, pp.345-359, 2007.
DOI : 10.1007/s00424-007-0212-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1915585

S. Weinbaum, J. M. Tarbell, and E. R. Damiano, The Structure and Function of the Endothelial Glycocalyx Layer, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.121-167, 2007.
DOI : 10.1146/annurev.bioeng.9.060906.151959

J. H. Luft, Fine structure of capillary and endocapillary layer as revealed by ruthenium red, Microcirc Symp Fed Proc, pp.1773-1783, 1966.

B. Klitzman and B. R. Duling, Microvascular hematocrit and red cell flow in resting and contracting striated muscle, Am J Physiol, vol.237, pp.481-490, 1979.

A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross, Blood flow in microvascular networks. Experiments and simulation, Circulation Research, vol.67, issue.4, pp.826-834, 1990.
DOI : 10.1161/01.RES.67.4.826

A. S. Popel and P. C. Johnson, MICROCIRCULATION AND HEMORHEOLOGY, Annual Review of Fluid Mechanics, vol.37, issue.1, pp.37-43, 2005.
DOI : 10.1146/annurev.fluid.37.042604.133933

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000688

A. R. Pries, T. W. Secomb, H. Jacobs, M. Sperandio, K. Osterloh et al., Microvascular blood flow resistance: role of endothelial surface layer, Am. J. Physiol. Heart Circ. Physiol, pp.273-2272, 1997.

E. Dejana, E. Tournier-lasserve, and B. M. Weinstein, The Control of Vascular Integrity by Endothelial Cell Junctions: Molecular Basis and Pathological Implications, Developmental Cell, vol.16, issue.2, pp.209-221, 2009.
DOI : 10.1016/j.devcel.2009.01.004

N. J. Abbott, A. A. Patabendige, and D. E. Dolman, Structure and function of the blood???brain barrier, Neurobiology of Disease, vol.37, issue.1, pp.13-25, 2010.
DOI : 10.1016/j.nbd.2009.07.030

N. J. Abbott, L. Ronnback, and E. Hansson, Astrocyte???endothelial interactions at the blood???brain barrier, Nature Reviews Neuroscience, vol.15, issue.1, pp.41-53, 2006.
DOI : 10.1046/j.1469-7580.2002.00065.x

H. Vink and B. R. Duling, Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes Within Mammalian Capillaries, Circulation Research, vol.79, issue.3, pp.581-89
DOI : 10.1161/01.RES.79.3.581

E. R. Damiano, The Effect of the Endothelial-Cell Glycocalyx on the Motion of Red Blood Cells through Capillaries, Microvascular Research, vol.55, issue.1, pp.77-91, 1998.
DOI : 10.1006/mvre.1997.2052

T. W. Secomb, R. Hsu, and A. R. Pries, A model for red blood cell motion in glycocalyx-lined capillaries, Am. J. Physiol. Heart Circ. Physiol, vol.274, pp.1016-1038, 1998.

T. W. Secomb, R. Hsu, and A. R. Pries, Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity, Am. J. Physiol. Heart Circ. Physiol, vol.281, pp.629-665, 2001.

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, Flow of axisymmetric red blood cells in narrow capillaries, Journal of Fluid Mechanics, vol.17, issue.-1, pp.405-428, 1986.
DOI : 10.1016/0025-5564(77)90078-5

P. Algenstaedt, C. Schaefer, T. Biermann, A. Hamann, B. Schwarzloh et al., Hansen-Algenstaedt, Microvascular alterations in diabetic mice correlate with level of hyperglycemia, pp.542-549, 2003.

I. Rubio-gayosso, S. H. Platts, and B. R. Duling, Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury, AJP: Heart and Circulatory Physiology, vol.290, issue.6, pp.2247-2256, 2006.
DOI : 10.1152/ajpheart.00796.2005

H. Vink, A. A. Constantinescu, and J. A. Spaan, Oxidized Lipoproteins Degrade the Endothelial Surface Layer : Implications for Platelet-Endothelial Cell Adhesion, Circulation, vol.101, issue.13, pp.1500-1502, 2000.
DOI : 10.1161/01.CIR.101.13.1500

A. R. Pries, T. W. Tuma, R. Duran, W. Ley, and K. , Blood flow in microvascular networks, Handbook of Physiology 2008: section 2, The Cardiovascular System, IV, Microcirculation, pp.3-36

A. R. Pries, T. W. Secomb, and P. Gaehtgens, Structure and hemodynamics of microvascular networks: heterogeneity and correlations, Am. J. Physiol. Heart. Circ. Physiol, vol.269, pp.1713-1722, 1995.

B. R. Duling and D. H. Damon, An examination of the measurement of flow heterogeneity in striated muscle, Circulation Research, vol.60, issue.1, pp.1-13, 1987.
DOI : 10.1161/01.RES.60.1.1

T. W. Secomb and A. R. Pries, The microcirculation: physiology at the mesoscale, The Journal of Physiology, vol.288, issue.5, pp.1047-1052, 2011.
DOI : 10.1113/jphysiol.2010.201541

T. W. Secomb, Theoretical Models for Regulation of Blood Flow, Microcirculation, vol.15, issue.8, pp.765-775, 2008.
DOI : 10.1080/10739680802350112

A. H. Goodman, R. Einstein, and H. J. Granger, Effect of changing metabolic rate on local blood flow control in the canine hindlimb, Circulation Research, vol.43, issue.5, pp.769-776, 1978.
DOI : 10.1161/01.RES.43.5.769

P. C. Johnson, Autoregulation of blood flow, Circulation Research, vol.59, issue.5, pp.483-495, 1986.
DOI : 10.1161/01.RES.59.5.483

S. S. Segal, Regulation of Blood Flow in the Microcirculation, Microcirculation, vol.12, issue.1, pp.33-45, 2005.
DOI : 10.1080/10739680590895028

T. W. Secomb, R. Hsu, E. T. Ong, J. F. Gross, and M. W. Dewhirst, Analysis of the Effects of Oxygen Supply and Demand on Hypoxic Fraction in Tumors, Acta Oncologica, vol.11, issue.3, pp.313-316, 1995.
DOI : 10.1016/0360-3016(94)90065-5

C. H. Wang and A. S. Popel, Effect of red blood cell shape on oxygen transport in capillaries, Mathematical Biosciences, vol.116, issue.1, pp.89-110, 1993.
DOI : 10.1016/0025-5564(93)90062-F

P. C. Johnson, Overview of the Microcirculation, 2008.
DOI : 10.1016/B978-0-12-374530-9.00022-X

P. B. Canham and A. C. Burton, Distribution of Size and Shape in Populations of Normal Human Red Cells, Circulation Research, vol.22, issue.3, pp.405-422, 1968.
DOI : 10.1161/01.RES.22.3.405

R. E. Waugh, M. Narla, C. W. Jackson, T. J. Mueller, T. Suzuki et al., Rheologic properties of senescent erythrocytes: Loss of surface area and volume with red blood cell age, pp.1351-1358, 1992.

H. K. Gerald-lim, M. Wortis, and R. Mukhopadhyay, Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane, Soft Matter, vol.4, p.83, 2008.

R. M. Hochmuth and R. E. Waugh, Erythrocyte Membrane Elasticity and Viscosity, Annual Review of Physiology, vol.49, issue.1, pp.209-219, 1987.
DOI : 10.1146/annurev.ph.49.030187.001233

A. R. Pries, T. W. Secomb, and P. Gaehtgens, Biophysical aspects of blood flow in the microvasculature, Cardiovascular Research, vol.32, issue.4, pp.654-667, 1996.
DOI : 10.1016/S0008-6363(96)00065-X

M. Sugihara-seki and B. M. Fu, Blood flow and permeability in microvessels , Fluid Dynamics Research, pp.82-132, 2005.
DOI : 10.1016/j.fluiddyn.2004.03.006

T. W. Secomb, R. Hsu, and A. R. Pries, Blood Flow and Red Blood Cell Deformation in Nonuniform Capillaries: Effects of the Endothelial Surface Layer, Microcirculation, vol.9, issue.3, p.189, 0196.
DOI : 10.1038/sj.mn.7800132

G. Tomaiuolo, Blood?mimicking fluid for biotechnological applications . Fluidodynamic behavior of red blood cells and droplets under confined shear flow, 2009.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers, Biophysical Journal, vol.76, issue.2, pp.1145-1151, 1999.
DOI : 10.1016/S0006-3495(99)77279-6

E. A. Evans, Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophysical Journal, vol.43, issue.1, pp.27-30, 1983.
DOI : 10.1016/S0006-3495(83)84319-7

E. A. Evans, R. Waugh, and L. Melnik, Elastic area compressibility modulus of red cell membrane, Biophysical Journal, vol.16, issue.6, pp.585-595, 1976.
DOI : 10.1016/S0006-3495(76)85713-X

W. C. Hwang and R. E. Waugh, Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells, Biophysical Journal, vol.72, issue.6, pp.2669-2678, 1997.
DOI : 10.1016/S0006-3495(97)78910-0

M. Puig-de-morales-marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, Viscoelasticity of the human red blood cell, AJP: Cell Physiology, vol.293, issue.2, pp.597-605, 2007.
DOI : 10.1152/ajpcell.00562.2006

Y. Yoon, J. Kotar, G. Yoon, P. Cicuta, O. K. Baskurt et al., The nonlinear mechanical response of the red blood cell, Physical Biology, vol.5, issue.3, pp.36007-36036, 2003.
DOI : 10.1088/1478-3975/5/3/036007

C. Alonso, A. R. Pries, and P. Gaehtgens, Time-dependent rheological behaviour of blood flow at low shear in narrow horizontal tubes, Biorheology, vol.26, pp.229-246, 1989.

P. S. Lingard, Capillary pore rheology of erythrocytes. I. Hydroelastic behaviour of human erythrocytes, Microvascular Research, vol.8, issue.1, pp.53-63, 1974.
DOI : 10.1016/0026-2862(74)90063-6

A. S. Popel and P. C. Johnson, MICROCIRCULATION AND HEMORHEOLOGY, Annual Review of Fluid Mechanics, vol.37, issue.1, pp.43-69, 2005.
DOI : 10.1146/annurev.fluid.37.042604.133933

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000688

T. C. Pearson and R. R. Path, Hemorheology in the Erythrocytoses, The Mount Sinai Journal of Medicine, vol.68, issue.3, pp.182-191, 2001.

T. W. Secomb, Flow-dependent rheological properties of blood in capillaries , Microvascualr Research, pp.46-58, 1987.

S. Chien, S. Usami, and R. Skalak, Blood flow in small tubes, in: Handbook of Physiology: The Cardiovascular System IV, 1984.

S. Guido and G. Tomaiuolo, Microconfined flow behavior of red blood cells in vitro, Comptes Rendus Physique, vol.10, issue.8, pp.751-763, 2009.
DOI : 10.1016/j.crhy.2009.10.002

L. T. Chen and L. Weiss, The role of the sinus wall in the passage of erythrocytes through the spleen, Blood, vol.41, pp.529-537, 1973.

N. Watanabe, D. Sakota, K. Ohuchi, and S. Takatani, Deformability of Red Blood Cells and Its Relation to Blood Trauma in Rotary Blood Pumps, Artificial Organs, vol.20, issue.5, pp.352-358, 2007.
DOI : 10.1111/j.1525-1594.2005.29089.x

R. Skalak and P. I. Branemark, Deformation of Red Blood Cells in Capillaries, Science, vol.164, issue.3880, pp.717-719, 1969.
DOI : 10.1126/science.164.3880.717

G. Tomaiuolo, M. Simeone, S. Guido, R. Ciancia, C. Rinaldi et al., A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro, pp.186-192, 2007.

G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli, and S. Guido, Red blood cell deformation in microconfined flow, Soft Matter, vol.33, issue.15, pp.3736-3740, 2009.
DOI : 10.1039/b904584h

S. Chen, B. Gavish, S. Zhang, Y. Mahler, and S. Yedgar, Monitoring of erythrocyte aggregate morphology under flow by computerized image analysis, Biorheology, vol.32, issue.4, p.487, 1995.
DOI : 10.1016/0006-355X(95)00025-5

I. V. Pivkin and G. E. Karniadakis, Accurate Coarse-Grained Modeling of Red Blood Cells, Physical Review Letters, vol.101, issue.11, p.118105, 2008.
DOI : 10.1103/PhysRevLett.101.118105

N. Wohner, Role of Cellular Elements in Thrombus Formation and Dissolution, Cardiovascular & Hematological Agents in Medicinal Chemistry, vol.6, issue.3, p.224, 2008.
DOI : 10.2174/187152508784871972

V. T. Turitto and H. J. Weiss, Red blood cells: their dual role in thrombus formation, Science, vol.207, issue.4430, p.541, 1980.
DOI : 10.1126/science.7352265

J. Wan, W. D. Ristenpart, and H. A. Stone, Dynamics of shear-induced ATP release from red blood cells, Proceedings of the National Academy of Sciences, vol.105, issue.43, pp.105-16432, 2008.
DOI : 10.1073/pnas.0805779105

P. Gaehtgens, C. Dührssen, and K. H. Albrecht, Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes, Blood Cells, vol.6, issue.4, p.799, 1980.

J. L. Mcwhirter, H. Noguchi, and G. Gompper, Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, Proceedings of the National Academy of Sciences, vol.106, issue.15, pp.106-6039, 2009.
DOI : 10.1073/pnas.0811484106

R. Fahraeus, The suspension stability of the blood, Physiol. Rev, vol.9, pp.241-274, 1929.

R. Fahraeus and T. Lindqvist, The viscosity of the blood in narrow capillary tubes, Am. J. Physiol, vol.96, pp.562-568, 1931.

G. Bugliarello and J. W. Hayden, Detailed Characteristics of the Flow of Blood In Vitro, Transactions of the Society of Rheology, vol.7, issue.1, pp.209-230, 1963.
DOI : 10.1122/1.548964

H. H. Lipowsky, Microvascular rheology and hemodynamics, Microcirculation, pp.5-15, 2005.
DOI : 10.1080/10739680590894966

V. P. Zharov, E. I. Galanzha, Y. Menyaev, and V. V. Tuchin, In vivo high-speed imaging of individual cells in fast blood flow, Journal of Biomedical Optics, vol.11, issue.5, p.54034, 2006.
DOI : 10.1117/1.2355666

J. Seki and H. H. Lipowsky, In vivo and in vitro measurements of red cell velocity under epifluorescence microscopy, Microvascular Research, vol.38, issue.1, pp.110-124, 1989.
DOI : 10.1016/0026-2862(89)90020-4

]. U. Bagge, P. I. Branemark, R. Karlsson, and R. Skalak, Three? dimensional observations of red blood cell deformation in capillaries, Blood Cells, vol.6, pp.231-239, 1980.

P. Gaehtgens, C. Duhrssen, and K. H. Albrecht, Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes, Blood Cells, vol.6, pp.799-812, 1980.

M. Abkarian, M. Faivre, R. Horton, K. Smistrup, C. A. Best-popescu et al., Cellular-scale hydrodynamics, Biomedical Materials, vol.3, issue.3, p.34011, 2008.
DOI : 10.1088/1748-6041/3/3/034011

G. W. Schmid?schönbein, S. Usami, R. Skalak, and S. Chien, The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels, Microvascular Research, vol.19, issue.1, p.45, 1980.
DOI : 10.1016/0026-2862(80)90083-7

B. Kaoui, G. Biros, and C. Misbah, Why do red blood cells have asymmetric shapes even in a symmetric flow?, Physical Review Letters, p.188101, 2009.

K. H. Albrecht, P. Gaehtgens, A. Pries, and M. Heuser, The Fahraeus effect in narrow capillaries (i.d. 3.3 to 11.0 ??m), Microvascular Research, vol.18, issue.1, p.33, 1979.
DOI : 10.1016/0026-2862(79)90016-5

G. Ghigliotti, T. Biben, and C. Misbah, Rheology of a dilute two-dimensional suspension of vesicles, Journal of Fluid Mechanics, vol.292, p.489, 2010.
DOI : 10.1039/b716612e

F. Zhou and W. T. Huck, Surface grafted polymer brushes as ideal building blocks for ???smart??? surfaces, Phys. Chem. Chem. Phys., vol.109, issue.33, p.3815, 2006.
DOI : 10.1039/B606415A

R. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux et al., Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications, Chemical Reviews, vol.109, issue.11, p.5437, 2009.
DOI : 10.1021/cr900045a

M. Motornov, S. Minko, K. J. Eichhorn, M. Nitschke, F. Simon et al., Reversible Tuning of Wetting Behavior of Polymer Surface with Responsive Polymer Brushes, Langmuir, vol.19, issue.19, p.8077, 2003.
DOI : 10.1021/la0343573

M. A. Cole, N. H. Voelcker, H. Thissen, and H. J. Griesser, Stimuli-responsive interfaces and systems for the control of protein???surface and cell???surface interactions, Biomaterials, vol.30, issue.9, p.1827, 2009.
DOI : 10.1016/j.biomaterials.2008.12.026

A. J. Wang, J. J. Feng, and J. Fan, Covalent modified hydrophilic polymer brushes onto poly(dimethylsiloxane) microchannel surface for electrophoresis separation of amino acids, Journal of Chromatography A, vol.1192, issue.1, pp.1192-173, 2008.
DOI : 10.1016/j.chroma.2008.03.038

A. N. Constable and W. J. Brittain, Characterization of polymer brushes in capillaries, Coll. Surf. A, p.123, 2007.

A. N. Constable and W. J. Brittain, Modification of flow through silica microcapillaries via polymer brushes, Coll. Surf, p.128, 2011.

I. Lokuge, X. Wang, and P. W. Bohn, Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(Nisopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization, p.305, 2007.

R. Advincula, W. J. Brittain, K. C. Caster, and J. Rühe, Polymer Brushes: Synthesis, Characterization, Applications, 2004.
DOI : 10.1002/3527603824

O. Azzaroni, Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields, Journal of Polymer Science Part A: Polymer Chemistry, vol.425, issue.16, pp.3225-3258
DOI : 10.1002/pola.26119

X. Li, P. M. Vlahovska, and G. E. Karniadakis, Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease, Soft Matter, vol.12, issue.1, pp.28-37, 2013.
DOI : 10.1039/C2SM26891D

G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli et al., Microfluidics analysis of red blood cell membrane viscoelasticity, Lab Chip, vol.71, issue.3, pp.449-454, 2011.
DOI : 10.1039/C0LC00348D

G. Tomaiuolo, D. Rossi, S. Caserta, M. Cesarelli, and S. Guido, Comparison of two flow-based imaging methods to measure individual red blood cell area and volume, Cytometry Part A, vol.4, issue.Suppl 1, p.81, 2012.
DOI : 10.1002/cyto.a.22215

G. Tomaiuolo and S. Guido, Start-up shape dynamics of red blood cells in microcapillary flow, Microvascular Research, vol.82, issue.1, pp.35-41, 2011.
DOI : 10.1016/j.mvr.2011.03.004

T. Secomb and R. Hsu, Analysis of red blood cell motion through cylindrical micropores: effects of cell properties, Biophysical Journal, vol.71, issue.2, pp.71-1095, 1996.
DOI : 10.1016/S0006-3495(96)79311-6

H. Noguchi and G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows, Proceedings of the National Academy of Sciences, vol.102, issue.40, pp.14159-14164, 2005.
DOI : 10.1073/pnas.0504243102

C. Pozrikidis, Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells, Annals of Biomedical Engineering, vol.31, issue.10, pp.31-1194, 2003.
DOI : 10.1114/1.1617985

R. Hochmuth, R. Marple, and S. Sutera, Capillary blood flow. I. Erythrocyte deformation in glass capillaries, Microvasc Res, issue.2, pp.409-419, 1970.

A. Pries, T. Secomb, T. Gessner, M. Sperandio, J. Gross et al., Resistance to blood flow in microvessels in vivo, Circulation Research, vol.75, issue.5, pp.75-904, 1994.
DOI : 10.1161/01.RES.75.5.904

M. B. Kim and I. H. Sarelius, Distributions of wall shear stress in venular convergences of mouse cremaster muscle, Microcirculation, pp.167-178, 2003.

J. Zhang, P. C. Johnson, and A. S. Popel, Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows, Microvascular Research, vol.77, issue.3, pp.77-265, 2009.
DOI : 10.1016/j.mvr.2009.01.010

K. Binder, T. Kreer, and A. Milchev, Polymer brushes under flow and in other out-of-equilibrium conditions, Soft Matter, vol.123, issue.16, pp.7159-7172, 2011.
DOI : 10.1039/c1sm05212h

J. Klein, Science, Repair or replacement? A joint approach, pp.47-48, 2009.

G. Storm, S. O. Belliot, T. Daemen, and D. D. Lasic, Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system, Advanced Drug Delivery Reviews, vol.17, issue.1, pp.31-48, 1995.
DOI : 10.1016/0169-409X(95)00039-A

A. Hucknall, A. J. Simnick, R. T. Hill, A. Chilkoti, A. Garcia et al., Versatile synthesis and micropatterning of nonfouling polymer brushes on the wafer scale, Biointerphases, vol.4, issue.2, pp.50-57, 2009.
DOI : 10.1116/1.3151968

A. J. Wang, J. J. Xu, and H. Y. Chen, In?situ grafting hydrophilic polymer on chitosan modified poly (dimethysiloxane) microchip for separation of biomolecules, Journal of Chromatography A, pp.1147-120, 2007.

I. B. Malham and L. Bureau, Density effects on collapse, compression, and adhesion of thermoresponsive polymer brushes Langmuir, pp.4762-4768, 2009.

J. Yom, S. M. Lane, and R. A. Vaia, Multi-component hierarchically structured polymer brushes, Multi?component hierarchically structured polymer brushes, pp.12009-12016, 2012.
DOI : 10.1039/c2sm26277k

P. Connoly, Clinical diagnostics opportunities for biosensors and bioelectronics, Biosensors and Bioelectronics, vol.10, issue.1-2, pp.1-6, 1995.
DOI : 10.1016/0956-5663(95)96789-2

A. J. Tüdos, G. A. Besselink, and R. B. Schasfoort, Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry, Lab on a chip, issue.1, pp.83-95, 2001.

A. Manz, N. Graber, and H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol.1, issue.1-6, pp.244-248, 1990.
DOI : 10.1016/0925-4005(90)80209-I

N. E. Drenck, Point of care testing in Critical Care Medicine: the clinician's view, Clinica Chimica Acta, vol.307, issue.1-2, pp.3-7, 2001.
DOI : 10.1016/S0009-8981(01)00448-X

M. P. Hudson, R. H. Christenson, L. K. Newby, A. L. Kaplan, and E. M. Ohman, Cardiac markers: point of care testing, Clinica Chimica Acta, vol.284, issue.2, pp.223-237, 1999.
DOI : 10.1016/S0009-8981(99)00083-2

J. H. Nichols, Management of Point-of-Care Testing, Blood Gas News, pp.4-14, 1999.

D. A. Adams and M. Buus-frank, Point-of-care technology: The i-STAT system for bedside blood analysis, Journal of Pediatric Nursing, vol.10, issue.3, pp.194-198, 1995.
DOI : 10.1016/S0882-5963(05)80084-3

P. Stubbs and P. O. Collinson, Point-of-care testing: a cardiologist's view, Clinica Chimica Acta, vol.311, issue.1, pp.311-57, 2001.
DOI : 10.1016/S0009-8981(01)00560-5

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee et al., Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics, Proceedings of the IEEE, 2004.
DOI : 10.1109/JPROC.2003.820548

K. Matyjaszewski, P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman et al., Polymers at Interfaces:?? Using Atom Transfer Radical Polymerization in the Controlled Growth of Homopolymers and Block Copolymers from Silicon Surfaces in the Absence of Untethered Sacrificial Initiator, Macromolecules, vol.32, issue.26, pp.8716-8724, 1999.
DOI : 10.1021/ma991146p

A. Johansson, E. Hult, and . Malmström, Intelligent Dual-Responsive Cellulose Surfaces via Surface-Initiated ATRP, Biomacromolecules, vol.9, pp.2139-2145, 2008.

D. Bontempo, N. Tirelli, G. Masci, V. Crescenzi, and J. A. , Atom Transfer Radical Polymerization as a Tool for Surface Functionalization, Advanced Materials, vol.14, issue.17, pp.418-422, 2002.
DOI : 10.1002/1521-4095(20020903)14:17<1239::AID-ADMA1239>3.0.CO;2-P

F. J. Xu, J. P. Zhao, E. T. Kang, K. G. Neoh, and J. Li, Functionalization of Nylon Membranes via Surface-Initiated Atom-Transfer Radical Polymerization, Langmuir, vol.23, issue.16, pp.8585-8592, 2007.
DOI : 10.1021/la7011342

J. Liu, T. Pan, A. T. Woolley, and M. L. Lee, Surface-Modified Poly(methyl methacrylate) Capillary Electrophoresis Microchips for Protein and Peptide Analysis, Analytical Chemistry, vol.76, issue.23, pp.6948-6955, 2004.
DOI : 10.1021/ac040094l

O. Azzaroni, S. E. Moya, A. A. Brown, Z. Zheng, E. Donath et al., Polyelectrolyte Brushes as Ink Nanoreservoirs for Microcontact Printing of Ionic Species with Poly(dimethyl siloxane) Stamps, Advanced Functional Materials, vol.10, issue.8, pp.1037-1042, 2006.
DOI : 10.1002/adfm.200500702

E. R. Damiano, B. R. Duling, K. Ley, and T. C. Skalak, Axisymmetric pressure-driven flow of rigid pellets through a cylindrical tube lined with a deformable porous wall layer, Journal of Fluid Mechanics, vol.75, issue.-1, pp.314-163, 1996.
DOI : 10.1002/bip.360290311

I. B. Malham and L. Bureau, Density Effects on Collapse, Compression, and Adhesion of Thermoresponsive Polymer Brushes, Langmuir, vol.26, issue.7, p.4762, 2010.
DOI : 10.1021/la9035387

URL : https://hal.archives-ouvertes.fr/hal-00418617

L. Bureau, Surface force apparatus for nanorheology under large shear strain, Review of Scientific Instruments, vol.78, issue.6, pp.78-065110, 2007.
DOI : 10.1063/1.2748362

URL : https://hal.archives-ouvertes.fr/hal-00142937

W. Helfrich, Abstract, Zeitschrift f??r Naturforschung C, vol.28, issue.11-12, pp.693-703, 1973.
DOI : 10.1515/znc-1973-11-1209

U. Seifert, Configurations of fluid membranes and vesicles, Advances in Physics, vol.694, issue.1, pp.13-137, 1997.
DOI : 10.1103/PhysRevLett.74.3900

D. M. Jones and W. T. Huck, Controlled Surface-Initiated Polymerizations in Aqueous Media, Advanced Materials, vol.13, issue.16, p.1256, 2001.
DOI : 10.1002/1521-4095(200108)13:16<1256::AID-ADMA1256>3.0.CO;2-B

P. G. De-gennes, Conformations of polymers attached to an interface, Macromolecules, p.1069, 1980.

L. Lanotte, S. Guido, C. Misbah, P. Peyla, and L. Bureau, Flow reduction in microchannels coated with a polymer brush Langmuir, pp.13758-13764, 2012.

G. Tomaiuolo, L. Lanotte, G. Ghigliotti, C. Misbah, and S. Guido, Physics of Fluids, Red blood cell clustering in Poiseuille microcapillary ow 2012, pp.51903-051908

J. Barrat, A possible mechanism for swelling of polymer brushes under shear, Macromolecules, vol.25, issue.2, p.832, 1992.
DOI : 10.1021/ma00028a050

Y. Rabin and S. Alexander, Stretching of Grafted Polymer Layers, Europhysics Letters (EPL), vol.13, issue.1, pp.13-49, 1990.
DOI : 10.1209/0295-5075/13/1/009

R. Ivkov, P. D. Butler, S. K. Satija, and L. J. Fetters, Effect of Solvent Flow on a Polymer Brush:?? A Neutron Reflectivity Study of the Brush Height and Chain Density Profile, Langmuir, vol.17, issue.10, p.2999, 2001.
DOI : 10.1021/la001760q

L. Miao, H. Guo, and M. J. Zuckermann, Conformation of Polymer Brushes under Shear: Chain Tilting and Stretching, Macromolecules, vol.29, issue.6, p.2289, 1996.
DOI : 10.1021/ma951071z

M. Muller and C. Pastorino, Cyclic motion and inversion of surface flow direction in a dense polymer brush under shear, EPL (Europhysics Letters), vol.81, issue.2, pp.81-28002, 2008.
DOI : 10.1209/0295-5075/81/28002

F. Leonforte, J. Servantie, C. Pastorino, and M. Muller, Molecular transport and flow past hard and soft surfaces: computer simulation of model systems, Journal of Physics: Condensed Matter, vol.23, issue.18, p.184105, 2011.
DOI : 10.1088/0953-8984/23/18/184105

A. Laadhari, P. Saramito, and C. Misbah, Vesicle tumbling inhibited by inertia, Physics of Fluids, vol.24, issue.3, p.31901
DOI : 10.1063/1.3690862

URL : https://hal.archives-ouvertes.fr/hal-00604401

T. Biben, A. Farutin, and C. Misbah, Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram, Physical Review E, vol.83, issue.3, 2011.
DOI : 10.1103/PhysRevE.83.031921

C. Misbah, Vacillating Breathing and Tumbling of Vesicles under Shear Flow, Physical Review Letters, vol.96, issue.2, p.28104, 2006.
DOI : 10.1103/PhysRevLett.96.028104

P. M. Vlahovska and R. S. Gracia, Dynamics of a viscous vesicle in linear flows, Physical Review E, vol.75, issue.1, p.16313, 2007.
DOI : 10.1103/PhysRevE.75.016313

A. Farutin and C. Misbah, Symmetry breaking of vesicle shapes in Poiseuille flow, Physical Review E, vol.84, issue.1, p.11902, 2011.
DOI : 10.1103/PhysRevE.84.011902

URL : https://hal.archives-ouvertes.fr/hal-00908801

D. Barthés-biesel and J. M. Rallison, The time-dependent deformation of a capsule freely suspended in a linear shear flow, Journal of Fluid Mechanics, vol.17, issue.-1, pp.251-267, 1981.
DOI : 10.1017/S0022112070001696

]. R. Finken, S. Kessler, and U. Seifert, Micro-capsules in shear flow, Journal of Physics: Condensed Matter, vol.23, issue.18, p.184113, 2011.
DOI : 10.1088/0953-8984/23/18/184113

P. Gires, G. Danker, and C. Misbah, Hydrodynamic interaction between two vesicles in a linear shear flow: Asymptotic study, Physical Review E, vol.86, issue.1, p.11408, 2012.
DOI : 10.1103/PhysRevE.86.011408

URL : https://hal.archives-ouvertes.fr/hal-00909438

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, 1992.
DOI : 10.1017/CBO9780511624124

S. K. Veerapaneni, D. Gueyffier, D. Zorin, and G. Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics, vol.228, issue.7, pp.2334-2353, 2009.
DOI : 10.1016/j.jcp.2008.11.036

E. Lac, A. Morel, and D. Barthés-biesel, Hydrodynamic interaction between two identical capsules in simple shear flow, Journal of Fluid Mechanics, vol.573, pp.149-169, 2007.
DOI : 10.1017/S0022112006003739

URL : https://hal.archives-ouvertes.fr/hal-00172295

H. Wang, T. Lei, L. Huang, and Z. Yao, A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations, International Journal for Numerical Methods in Engineering, vol.2, issue.7, pp.812-839, 2004.
DOI : 10.1002/nme.1910

C. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.
DOI : 10.1016/0021-9991(77)90100-0

A. Z. Yazdani and P. Bagchi, Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method, Physical Review E, vol.85, issue.5, p.26314, 2011.
DOI : 10.1103/PhysRevE.85.056308

M. Ismail and A. Lefebvre-lepot, A necklace model for vesicles simulations in 2D, International Journal for Numerical Methods in Fluids, vol.196, issue.4-6, 2012.
DOI : 10.1002/fld.3960

URL : https://hal.archives-ouvertes.fr/hal-00670072

T. Biben, K. Kassner, and C. Misbah, Phase-field approach to three-dimensional vesicle dynamics, Physical Review E, vol.72, issue.4, p.41921, 2005.
DOI : 10.1103/PhysRevE.72.041921

D. Jamet and C. Misbah, Thermodynamically consistent picture of the phase-field model of vesicles: Elimination of the surface tension, Physical Review E, vol.78, issue.4, 2008.
DOI : 10.1103/PhysRevE.78.041903

E. Maitre, C. Misbah, P. Peyla, and A. Raoult, Comparison between advected-field and level-set methods in the study of vesicle dynamics, Physica D: Nonlinear Phenomena, vol.241, issue.13, pp.1146-1157, 2012.
DOI : 10.1016/j.physd.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00909424

I. V. Pivkin and G. E. Karniadakis, Accurate Coarse-Grained Modeling of Red Blood Cells, Physical Review Letters, vol.101, issue.11, p.118105, 2008.
DOI : 10.1103/PhysRevLett.101.118105

A. Lamura, G. Gompper, T. Ihle, and D. K. , Multi-particlecollision Dynamics: Flow around a Circular and a Square Cylinder, Institut fuer Festkoerperforschung Scientific Report, 2001.

J. L. Mcwhirter, H. Noguchi, and G. Gompper, Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, Proceedings of the National Academy of Sciences, vol.106, issue.15, pp.6039-6043, 2009.
DOI : 10.1073/pnas.0811484106

G. Ghigliotti, H. Selmi, L. Asmi, and C. Misbah, Why and how does collective red blood cells motion occur in the blood microcirculation?, Physics of Fluids, vol.24, issue.10, p.101901, 2012.
DOI : 10.1063/1.4757394

URL : https://hal.archives-ouvertes.fr/hal-00909441

W. J. Brittain and S. Minko, A structural definition of polymer brushes, Journal of Polymer Science Part A: Polymer Chemistry, vol.89, issue.16, 2007.
DOI : 10.1002/pola.22180

S. T. Milner, Polymer Brushes, Science, vol.251, issue.4996, p.905, 1991.
DOI : 10.1126/science.251.4996.905

M. Tirrell, S. Patel, and G. Hadziioannou, Polymeric amphiphiles at solid-fluid interfaces: Forces between layers of adsorbed block copolymers, Proceedings of the National Academy of Sciences, vol.84, issue.14, p.4725, 1987.
DOI : 10.1073/pnas.84.14.4725

A. I. Barakat and D. K. Lieu, Differential Responsiveness of Vascular Endothelial Cells to Different Types of Fluid Mechanical Shear Stress, Cell Biochemistry and Biophysics, vol.38, issue.3, 2003.
DOI : 10.1385/CBB:38:3:323

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, Flow of axisymmetric red blood cells in narrow capillaries, Journal of Fluid Mechanics, vol.17, issue.-1, pp.405-423, 1986.
DOI : 10.1016/0025-5564(77)90078-5

S. W. Park, M. Intaglietta, and D. M. Tartakovsky, Impact of endothelium roughness on blood flow, Journal of Theoretical Biology, vol.300, pp.152-160, 2012.
DOI : 10.1016/j.jtbi.2012.01.017

G. Ausanio, C. L. Hison, V. Iannotti, L. Lanotte, and L. Lanotte, Magneto-piezoresistance in elastomagnetic composites, Journal of Applied Physics, vol.110, issue.6, p.63903, 2011.
DOI : 10.1063/1.3634120

G. Tomaiuolo, L. Lanotte, G. Ghigliotti, C. Misbah, and S. Guido, Red blood cell clustering in Poiseuille microcapillary flow, Physics of Fluids, vol.24, issue.5, p.51903, 2012.
DOI : 10.1063/1.4721811

URL : https://hal.archives-ouvertes.fr/hal-00909443

L. Lanotte, S. Guido, C. Misbah, P. Peyla, and L. Bureau, Flow Reduction in Microchannels Coated with a Polymer Brush, Langmuir, vol.28, issue.38, pp.13758-13764
DOI : 10.1021/la302171a

URL : https://hal.archives-ouvertes.fr/hal-00968061

L. Lanotte, C. Bilotti, L. Sabetta, G. Tomaiuolo, and S. Guido, Dispersion of sepiolite rods in nanofibers by electrospinning, Polymer, vol.54, issue.4, pp.1295-1297, 2013.
DOI : 10.1016/j.polymer.2013.01.009

G. Ausanio, V. Iannotti, L. Lanotte, and L. Lanotte, Optimization of the coupling between piezoresistivity and magnetoelasticity in an elastomagnetic composite to sense a spatial gradient of the magnetic field, The European Physical Journal B, vol.44, issue.276, pp.51-61, 2013.
DOI : 10.1140/epjb/e2012-30657-1