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PREFACE 
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enjoyed the luxury of excellent mentorship during my career thus 

far as an independent scientist in France. All these mentors have 

taken it on trust that my training for a Ph.D. also included the 
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European countries. It ensures both that I am competent to not 

only continue to conduct original research, and that I have a 

directive seam in my research interests over time that is 

sufficiently rich to support myself and those trainees who will 

learn from my experience and contribute their efforts by my side 

to advancing science. To demonstrate that the faith of these 

esteemed colleagues has been well-placed since my Ph.D., I 

hereby present, to the best of my ability, my acquired credentials 

and my near- to mid-term projects. 
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RESEARCH THEMES 

Neural crest fate determination 

The over-arching theme of my work has been to identify molecular hallmarks and 
improve the physiopathological understanding of congenital and progressive conditions 
implicating a highly plastic embryological cell population known as the neural crest. 
These neural crest cells (NCC) participate directly or indirectly in the formation of a 
stunning array of tissues organs during embryogenesis. When the genes regulating the 
differentiation, proliferation, or migratory and appropriately invasive behavior of NCC 
are muted, this can lead to associations of pediatric congenital malformations or 
tumorigenesis. I make use of avian and, more recently, murine models, as well as careful 
observations effected on tissues derived from normal human embryos, to tease apart those 
mechanisms. 

My Ph.D. thesis concerned the contributions of transitory progenitor cell subpopulations 
to the developing vertebrate embryo. The first part, which was never published, 
demonstrated that limited deletions of the neural folds along the dorso-ventral axis only 
appeared to lead to regeneration of NCC at points where non-neural ectoderm contacts 
the remaining neuroectoderm, as the published dogma was at the time and remains, to a 
large extent, today. Indeed, the story is more nuanced than we understood at the time, and 
gradients of either morphogenetic signals or, more likely, the capacity of neuroepithelial 
cells to respond and initiate transdifferentiation into neural crest make the assignment of a 
positional and temporal limit to the de novo induction of NCC difficult if not impossible 
to resolve.  

Nonetheless, I established that there were points along the dorsoventral axis at which the 
neuroepithelium would not respond to the contact of non-neural ectoderm by expressing 
markers of NCC specification, and that the resultant central nervous system, at least with 
respect to the hindbrain, clearly did not regenerate at all. Thus, the dominant hypothesis 
in the field, that the entire dorsoventral gradient was respecified in the residual tissue and 
led thereby to the regeneration of neural crest cells, was incorrect. In addition, it showed 
me the limitations of the use of a small palette of molecular markers to define a cell 
population. 

The more fruitful part of my Ph.D. work concerned, first, ablation of more rostral neural 
folds in the chicken embryo. The resultant embryos not only had brain malformations as 
expected from the earlier work at the level of the rhombencephalon, but also a striking 
craniofacial phenotype ranging from maxillary hypoplasia, hypotelorism and 
synophthalmia to cyclopia and aprosencephaly. This last was surprising, since the neural 
folds corresponding to the prosencephalon, future territory of the diencephalon and 
telencephalon, had been left intact by the intervention. These observations have laid the 
groundwork for other researchers to continue to explore the trophic molecular cross-talk 
between NCC and the tissues into which these cells integrate during development, and is 
a theme to which I return repeatedly in my ongoing and future projects.  
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At this point, I returned to an interesting observation on the replacement of these ablated 
neural folds in the chicken by the equivalent tissue from a stage-matched quail donor. 
Making use of the powerful chimera fate-mapping tool that had been developed and 
exploited by my advisor, Nicole Le Douarin, and her many collaborators, I took a closer 
look at the cephalic and particularly vascular derivatives of NCC. I demonstrated the 
existence of a discrete vascular sector in which all non-endothelial components of blood 
vessel walls were constituted by NCC precursors. In addition, the original 
anterioposterior position of the NCC predicted its distoproximal location within the 
arboresence of that sector. In this way, I identified a cryptic axis in the highly dynamic 
cardiovascular system that had implications for capillary and arteriovenous 
malformations. I continue to be interested in this cellular interaction over the years, and in 
particular, in the role of the NCC derivative in most intimate juxtaposition to the vascular 
endothelium within this rostral sector, known as the pericyte. These cells, of NCC origin 
in the head, but of mesodermal origin elsewhere in the body, retain multipotency late in 
life. This property perhaps renders them uniquely susceptible to the effects of somatic 
mutations occurring during mid- to late gestation, especially if they take place on a 
predisposing genetic heritage. Recent research on Parkes-Weber and Sturge-Weber 
syndromes and other capillary malformations tend to support this hypothesis (Limaye, 
Boon, and Vikkula 2009). 

The concept of pathogenesis of localized, apparently sporadic congenital malformations 
through a two-step mutation mechanism is one I continue to actively explore in the 
context of a pure and indiscutable neurocristopathy, the giant congenital melanocytic 
nevus (see Future Projects). 

Through a desire to apply my knowledge about NCC differentiation to understanding the 
etiologies of human pathologies, I joined an INSERM research group in the Department 
of Genetics at the Necker Children‟s Hospital in Paris. Here, I had the opportunity to 
develop an original project in which I wished to study the transcriptome and alterations 
therein of human NCC. This ambitious approach attracted the approval of the new Avenir 
startup program that had been established by the INSERM, which supported the creation 
of my own research group over a three-year period. By these means, I was able to attract 
and provide research subjects to students and postdocs in an extraordinarily collaborative 
and fecund intellectual environment. This was enriched by the reference center aspect of 
our department, which brought me into contact with doctors discussing a rich and 
inspiring variety of rare pediatric genetic diseases, as well as with the patients themselves. 
In this way, I contributed my perspective and skills to studies concerning congenital 
malformations that had only a tangential neurocristopathic component, such as the 
cerebral proliferative vasculopathy known as Fowler syndrome; or cardiopathies not only 
involving the NCC-invested outflow tract but also situs inversus; or the Matthew-Wood 
syndrome. 

Developmental biology being a parsimonious field, and co-option of gene function being 
the rule rather than the exception (Meulemans and Bronner-Fraser 2005), the molecular 
pathways I have studied in these apparently disparate conditions have invariably been of 
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interest in the study of normal and pathological NCC fate determination. Thus I have 
found that the diversity of projects in which I have been involved has permitted 
unexpected synergies, and my research group will never lack for subjects as a result. 
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GENE EXPRESSION IN THE AVIAN EMBRYO 

During the early years of my postdoc, I published a few gene expression papers designed 
to offer insight as to the function of certain proteins over the course of development. 
These are the building blocks for embryologists through which they can elaborate 
hypotheses as to the sequence of events leading to differentiation and morphogenesis. I 
remain interested in the role of hypoxia in the remodeling of the pharyngeal arch arteries 
as they branch off the great vessels of the outflow tract, and intrigued by the genomic 
localization and perhaps concomitant transcriptional regulation of Nrf3 with the nearby 
Hox gene cluster, in particular in the heart. 

RELATED PAPERS: 
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N (1999) Expression of Frzb-1 during chick development. Mechanisms of Development 
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GENE EXPRESSION IN THE HUMAN EMBRYO AND FETUS 

I have applied the expertise gained in embryos of amniotes to intimately study the 
anatomy of the human embryo during the third to twelfth weeks of gestation, within the 
legal window for the termination of pregnancy and the donation of embryonic tissues to 
research. This has also acquainted me with French, American and European bioethical 
legislation governing the oversight of acquiring such delicate material.  

Just before I arrived for my postdoc, the group directed by Michel Vekemans, with years 
of experience in fetal pathology, cytogenetics and the study of normal gene expression in 
human embryos, and the group directed by Stanislas Lyonnet, studying the molecular 
genetics of neurocristopathies, had recently combined. The project I designed, to derive 
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human NCC and study their molecular characteristics before and after differentiation, was 
integrally dependent on both poles. 

Over the years, I slowly helped and then assumed much of the responsibility from Tania 
Attié-Bitach, in managing the human embryo collection so critical for our research. The 
rare and precious nature of these materials meant that every tissue was conserved and 
exploited, even if not immediately useful in the frame of the research projects underway. 
Conservation took the form of freezing microdissected primordia or fixing and processing 
whole embryos for the sparing use of sections for in situ hybridization and 
immunohistochemistry. Exploitation took the form of participating in numerous 
collaborations, in particular with members of our research unit, in which the 
spatiotemporal localization of a given gene transcript could provide clues as to its 
function during human development. Our ability to demonstrate and interpret expression 
results was highly sought after by collaborators who had identified genes for congenital 
malformations both locally and from around the world. 

For organizational reasons, the supply of embryos tapered off in Paris. They had been 
supplied by the Orthogenics Service of the Broussais Hospital, one of the rare clinics in 
which they encouraged women who had undergone the RU486 abortion protocol to 
remain through the period of expulsion, to accompany them and intervene in the rare 
cases of complications. The expelled material could then be donated to research. In 2001 
a law was voted and applied in 2004, whereby women could undergo the protocol 
accompanied by their general physician and no longer through specialized clinics. Since 
we were not routinely managing materials obtained by the aspiration technique, due to 
their often being older first-trimester abortions not eligible for the RU486 protocol, we 
continued to make use of earlier banked tissues for our studies. 

During the period 2006-2009, I continued to manage my research subgroup in Paris, but 
also worked part-time with a team studying the genetic bases of diseases affecting the 
anterior chamber of the eye, run by the ophthalmologist François Malecaze and the 
geneticist Patrick Calvas in Toulouse. The immediate justification was related to the work 
we had recently conducted on candidate genes involved in the polymalformative 
Matthew-Wood syndrome (discussed further below). 

In order to carry out work identifying new candidate genes for severe micro-/anopthalmia 
(MAO), Nicolas Chassaing and I undertook the identification of genomic targets of four 
transcription factors already known to be implicated in human isolated or syndromic 
MAO. This work is still ongoing in Toulouse, but entailed the establishment of a new 
source of human embryonic tissues and a distinct request to the French Agency for 
Biomedicine, which was approved in 2008. 
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HUMAN ORGANOGENESIS 

EYE 

As mentioned above, I have had some interest in the anterior chamber of the eye and its 
relationship to the appropriate formation of the cartilaginous sclera and its underlying 
choroid plexus, all of which are cephalic NCC derivatives, ever since my Ph.D. This area 
is a rich source of NCC-derived pericytes, and is affected by the absence of NCC by the 
two ocular primordial and their surrounding tissues fusing. Incidentally, my work in 
isolating vascular pericytes from this capillary plexus was hampered by the presence of 
numerous melanocytes I had also given annual courses in eye development to resident 
ophthalmologists since 2001. 

When a fetal pathology staff meeting at Necker in 2006 discussed a case with 
diaphragmatic hernia and absence of lungs, associated with bilateral clinical 
anophthalmia and a family history, and this was shortly followed by the discussion of a 
second similar case from the Institut de Puériculture, the embryologist in me had enough 
confidence to suggest examining a candidate gene coding the morphogen FGF10, based 
on what I knew of some overlapping features in the mouse knockout phenotype. We did 
this first by establishing the normal expression pattern of FGF10 and its cognate receptor 
FGFR2 in the human embryo during embryogenesis of the affected organ systems (both 
cases had atresic or absent pulmonary arteries and the second, a ventricular septal defect). 
We then sequenced both genes (and excluded coding mutations) in these patients. 

At that time, multiple French research groups were interested in this clinical association, 
from the perspective of different affected organ systems. This interest led our group to 
discussions with Fanny Bajolle, Stéphane Zaffran, and Margaret Buckingham from the 
Institut Pasteur and Fanny‟s chief of service in pediatric cardiology at Necker hospital, 
Damien Bonnet, because of the heart implications and their ongoing work on the role of 
Fgf10 in outflow tract development; with Patrick Calvas and Nicolas Chassaing for their 
interest in transcription factors responsible for micro-/anophthalmia and the idea that in 
their cohort, they may have postnatal examples of the same broad spectrum; and with the 
interests one of the local fetal pathologists (Jelena Martinovic) in congenital 
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diaphragmatic hernia. My Ph.D. student, Christelle Golzio, was particularly interested in 
the cardiac side of the story as well, leading to the development of collaborative projects 
concerning cardiovascular development in the human embryo and implications for 
congenital heart defect patients treated at Necker (discussed below). 

In the end, we and others (Pasutto et al. 2007) identified mutations in the STRA6 gene in 
Matthew-Wood patients , a protein necessary for the normal transfer of fat-soluble 
vitamin A into the cytoplasm (Kawaguchi et al. 2007) and to an intracellular carrier for 
further metabolism to the nuclear transcriptional signal, retinoic acid. Many organ 
systems are exquisitely sensitive to dosage fluctuations in the pool of retinoic acid during 
susceptible windows in development, including the major ones most often affected in this 
syndromic microphthalmia: eyes, heart, lungs, diaphragm and gut (Niederreither and 
Dolle 2008) . This paved the way for reflection on how retinoic acid might interact with 
genes implicated in human anophthalmia such as PAX6, RAX, SOX2 or OTX2 (work 
continues on retinoic acid-induced Rax-expressing embryonic stem cells in Toulouse) 
(Danno et al. 2008); or other ocular defects such as CHD7 (involved in a syndromic 
coloboma also affecting heart development) (Bajpai et al. 2010) given their 
spatiotemporal overlap in these sites, and more generally on the transcriptional regulation 
of FGF10 (Desai et al. 2004). 
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NEURAL TUBE 

Interestingly, one of the postnatal cases we identified with STRA6 mutations in Matthew-
Wood syndrome presented a spinal bifida occulta, which has in animal models been one 
of the many signs associated with vitamin A deficiency. 

I return on occasion to an ongoing interest in neural tube closure and brain and spinal 
cord anatomical morphogenesis developed in the early years of my Ph.D. By combining 
that interest with new expertise in human embryology and a highly fruitful collaboration 
cut short by the untimely death of the geneticist Marcy Speer (Duke University Medical 
Center), I was able to make limited contributions to understanding the process and one of 
the molecular players involved in the less extreme but far more common forms of human 
neural tube closure defects. Collaboration continues slowly but surely with the group of 
John Gilbert, now at the Hussman Institute for Human Genomics at the Miami University 
School of Medicine. One paper, being written up, involves the differential transcriptome 
established by use of the sensitive Serial Analysis of Gene Expression (SAGE) technique, 
of human neural tubes at four spatiotemporal points immediately following neural tube 
closure. Another topic, in continued three-way collaboration with the group of Stanislas 
Lyonnet at the Necker Children‟s Hospital, makes use of high-throughput genomics 
technologies to pinpoint the genetic bases of an unrelated congenital malformation 
syndrome. 
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BLOOD VESSELS AND HEART 

The outflow tract of the heart starts as a two-dimensional sheet, which remodels to form a 
tube, like so many other embryonic primordia. I have been interested in its continuous 
distal aspect, the branchial vascular sector, since my Ph.D. This interest has brought me 
into contact with the dynamic discipline of interventional neuroradiology, in which a 
fascinating variety of natural anatomical variations in the blood vessels irrigating the 
central nervous system, particularly complex in the head, are present in the pool of 
patients seeking treatment (Krings et al. 2007). It is around the major arteries that over 
time form a remodeling and dynamic cage around the pharynx, that all lower facial 
tissues are organized, and this has formed a leitmotif during my career to date. 
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One major area of curiosity has been the definition of the role of Fgf10 on one hand, and 
signaling through the Fgfr2 receptor on the other, in the morphogenesis of the cardiac 
outflow tract and/or the pulmonary vessels. We had identified expression of the isoform 
of Fgfr2 to which Fgf10 preferentially binds in both human and chicken embryonic NCC, 
Fgf10 being strongly produced by the second heart field preceding and during its 
septation. The second heart field is that part of the splanchnic mesoderm that will be 
incorporated into the right ventricle, conus cordis and truncus arteriosus (or 
conotruncus). Recent work by other groups having invalidated that necessity of direct 
Fgf10 signaling to Fgfr2-expressing NCC by performing genetic ablations of the receptor 
only in the NCC (Park et al. 2008), but maintaining a yet-important role for Fgf10 in 
cardiac morphogenesis (Watanabe et al. 2010; Urness, Wright, and Mansour 2010), we 
have examined the upstream regulation of this gene. A clearly indispensable transcription 
factor for development of the conotruncus is Islet-1(Cai et al. 2003). My group has been 
examining a combinatorial role of ISL1 in the direct transcriptional regulation of FGF10, 
supporting the importance of these proteins in human cardiogenesis. Below is a paper in 
progress that describes that work in more detail, an ideal transition to the new group in 
which I work and will train students with an eye toward developing complementary and 
synergistic research themes. 

New data at the end, and items that will be taken into consideration for the rewrite 
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Abstract 

The LIM homeodomain-containing transcription factor Islet-1 (Isl1) is critical for 
cardiogenesis in animal models. We demonstrate that ISL1 is instrumental in human heart 
development. It demarcates an anatomical region that supports the conserved existence of 
a second heart field and that co-expresses GATA4 during the same period in situ. ISL1 
directly activates human cardiac FGF10 transcription in a spatiotemporally specific 
manner by occupying a novel intronic regulatory element containing ISL1- and GATA-
binding sites. ISL1 also binds regulatory elements of additional cardiac genes transcribed 
at the beginning of the second month of human gestation, as observed after ChIP-
sequencing. Some of these elements are predicted to contain GATA-binding motifs, 
arranged similarly to the ISL1-GATA element identified in the FGF10 gene. ISL1 is thus 
positioned to directly coordinate FGF, BMP and cell polarity signalling pathways in cells 
of the prospective outflow tract of the human heart. 

 

Introduction 

 Congenital heart malformations occur in approximately 3 per 1000 births, more 
than half of which are potentially lethal malformations of the outflow tract (OFT) 
(Hoffman and Kaplan, 2002). Extensive studies have been undertaken to identify factors 
driving the differentiation of cell populations that participate in OFT formation. 

 Two spatially distinct groups of myocardiac progenitors, the first and the second 
heart fields, contribute to the definitive amniote heart. The chambers proper are derived 
from the former, while the outflow segment of the right ventricle and great arteries, and 
the inflow portion of the atrial sac, come from the latter. Coordination between these 
separate but adjacent mesodermal primordia is orchestrated by signaling events that 
converge on a common palette of transcription factors necessary for the site-appropriate 
differentiation of the multiple cell types present in a mature heart (Rochais et al., 2009). 

 The LIM homeodomain transcription factor Islet-1 (Isl1) is one of these. Isl1 is 
necessary for multipotent cardiovascular progenitors within the second heart field to 
proliferate, survive, and migrate into the forming heart. Isl1-null mice die at embryonic 
day (ED) 10 from gross cardiac malformations, notably the lack of the OFT and right 
ventricle. The residual hearts no longer express bone morphogenetic protein (Bmp) 
family members 2 and 7, or fibroblast growth factor (Fgf) ligands 8 and 10 (Cai et al., 
2003). Fgf10 expression also characterizes splanchnic mesoderm of the murine second 
heart field (Kelly et al., 2001). Its genetic ablation leads to malposition of the heart apex 
and absence of pulmonary arteries and veins; the absence of the cognate specific receptor 
isoform for Fgf10, Fgfr2-IIIb, leads to pulmonary vessel aplasia and to OFT 
malformations such as double outlet right ventricle or ventricular septal defects with 
overriding aorta (Marguerie et al., 2006). These effects are similar to combinatorial 
reduction of both Fgf8 and Fgf10 in the future myocardium (Watanabe et al., 2010). 

 To date, the spatiotemporal conservation of ISL1 expression in the developing 
human heart or the identity of cardiac genes putatively regulated by human ISL1, were 
unknown. Based on murine studies, human malformations of the inflow or outflow tracts 
could result from mutations in coding or non-coding regions of ISL1 transcriptional gene 
targets, although some highly conserved developmental genes are known to have species-
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specific domains of action (Fougerousse et al., 2000). We identified a novel intronic 
element in FGF10 that is not only regulated directly by ISL1 but also by the transcription 
factor GATA4 when they are expressed in the presumptive OFT of the human heart. As 
demonstrated by chromatin immunoprecipitation from embryonic human cardiac 
primordia, ISL1 occupied this as well as other binding sites across the genome in vivo. 
Such elements corresponded to regulatory regions of genes also expressed in the 
developing human heart. Some of the newly identified ISL1-bound sites were organized 
in similar ISL1-GATA modules to that observed in FGF10; such modules potentially 
represent a novel developmental cardiac enhancer motif.  

Materials and Methods 

Expression studies 

ISL1 and GATA4 in situ hybridizations were performed with transverse sections of normal 
human embryos from Carnegie stages (CS) 12 to 15 (O'Rahilly and Müller, 1987). 
Embryos were obtained from electively terminated pregnancies in concordance with 
French legislation (94-654 and 08-400) with approval from the Necker ethical review 
committee. Tissue fixation, sectioning, in situ hybridization were carried out as 
previously described (Delous et al., 2007). Total RNA was extracted from hearts at CS13 
to CS16 and RT-PCR was carried out using the GeneAmp kit (Roche) with 500 ng total 
RNA input for first strand synthesis. Primers are listed in Table S1. 

Plasmid constructs 

Human TBX20 and ISL1 expression vectors were generated. Full-length TBX20 cDNA 
and a fragment of ISL1 cDNA with the N-terminal 142 amino acids removed (Sanchez-
Garcia and Rabbitts, 1993) were inserted into the multiple cloning site of pcDNA3.1C 
(Invitrogen). Human GATA4 was purchased from GenScript (GN026113). 

Electrophoretic Mobility Shift Assays 

HeLa cells were transfected with either ISL1 or GATA4 expression constructs. Nuclear 
protein extracts were made using standard protocols. EMSA was performed using the 
LightShift Chemiluminescent EMSA Kit (Pierce) as specified. Primers are listed in Table 
S1. 

Transactivation assays and reporter constructs 

For the FGF10 reporter construct (LUC-FGF10-Int1), 1047 bp of the FGF10 first intron 
(chromosome 5:44421556-44422602) were subcloned into the BamHI site 3' to luc+ in 
pGL3 (Promega). Mouse 10T1/2 cells in DMEM/10% fetal calf serum were transfected 
with FuGeneHD (Roche). Cells were harvested and lysed 24h after transfection. Firefly 
and Renilla luciferase activities were measured on a Berthold Centro LB960 using the 
Dual-Luciferase Reporter assay system (Promega). Firefly luciferase activity was 
normalized to the Renilla luciferase internal control, pRL-CMV (Promega). Experiments 
were repeated in triplicate in three independent assays. 
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Chromatin immunoprecipitation 

ChIP was carried out as described, starting from nuclear isolation (Havis et al., 2006), 
using 11 microdissected and flash-frozen human cardiac tubes from CS14-15. An anti-
ISL1 (10 L, Santa Cruz Sc-23590X) or an anti-GFP antibody as negative control (10 L, 
Abcam ab1218), were used per 10 µg of sonicated chromatin. Immunoprecipitated DNA 
was analysed by end-point PCR (primers, Table S1). 

High throughput sequencing 

ISL1-bound DNA resulting from ChIP described above, was purified and sequenced on 
an Illumina Genome Analyzer II station, according to manufacturer‟s instructions 
provided by Fasteris SA (http://www.fasteris.com).  

Bioinformatics 

Sequence reads were mapped to the human genome, allowing up to two mismatches, 
using the Efficient Alignment of Nucleotide Databases module within the Illumina 
Genome Analyzer Pipeline software. Genome-wide distribution of identified binding 
peaks was considered to correlate with a gene when they fell within the 10 kilobases 5‟ to 
predicted transcriptional start sites or 3‟ to the last exon of RefSeq genes positioned in the 
UCSC genome browser (http://genome.ucsc.edu, hg18). Identification of putative 
consensus sites was performed with rVista 2.0 (http://rvista.dcode.org). A bioperl script, 
available on request, was written to screen sequences for the ISL1-GATA4 binding motif. 

Results and Discussion 

Expression of conserved human genes essential for cardiac development 

 Isl1, normally expressed by second heart field cells and subsequently in the OFT, 
affects the expression of murine Fgf10 (Cai et al., 2003). Three of the six GATA 
transcription factors, Gata4, -5 and -6, are also expressed in the early cardiac primordium 
(Molkentin, 2000), and Isl1 cooperates with Gata4 to directly co-regulate additional 
transcription factors needed for early mouse heart development (Dodou et al., 2004; 
Takeuchi et al., 2005). We first examined the expression of ISL1, GATA4, GATA5, 

GATA6, and FGF10 during human cardiac development to assess possible functional 
conservation.  

 To obtain spatial information about the expression patterns of ISL1 and GATA4 in 
the human embryonic heart, we performed in situ hybridizations at each Carnegie stage 
(CS) between CS12 and CS15. This period covers morphogenetic changes from 
directional S-shaped looping of the primitive cardiac tube to the appearance of four 
distinct chambers (Moorman et al., 2003). At CS12, unlike the equivalent stage in the 
mouse (Rojas et al., 2005), no GATA4 expression was observed in this vicinity; ISL1 was 
expressed in ventral foregut (Fig. 1A). However, between CS13 and 15, ISL1 and GATA4 
were both transcribed within the cardiac mesenchyme surrounding the aorticopulmonary 
canal (see magnifications Fig. 1F, G, H and I, J, K respectively). ISL1 was also expressed 
at CS15 in continuity with mesenchyme between the trachea and the heart, as reported for 
the mouse [cf. Fig. 1G of (Snarr et al., 2007)].  
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 Next, RT-PCR of mRNAs extracted from microdissected, staged heart primordia 
pooled by stage confirmed that ISL1, GATA4, GATA5, GATA6, and FGF10 were all 
transcribed by the embryonic human heart from CS13 to CS15 included. In contrast, 
although beta-actin expression continued unabated, these genes were abruptly no longer 
transcribed at CS16 (37-40 days of gestation) (Fig. 1 inset). 

 During OFT maturation, ISL1- and GATA4-expressing cardiac mesenchyme is 
colonized by neural crest cells. Neural crest cells are probably not present in this vicinity 
at CS13, but may be at CS14-CS15 (Thomas et al., 2008). Murine Isl1 is not expressed in 
migrating neural crest cells (Cai et al., 2003), and Gata4 is rapidly downregulated in the 
mesectodermal and cardiac subpopulations (Tomita et al., 2005). Human cardiac cells 
expressing ISL1 at CS14-15 (equivalent to ED10.5-11) are likely to be mesodermal in 
origin, supporting the novel assertion that a SHF also exists and contributes to heart 
development in humans. 

 In order to find cardiac transcriptional targets of ISL1 in this time window, we 
adapted ChIP to staged and prospectively frozen embryonic human hearts. DNA obtained 
after immunoprecipitation was analyzed using both end-point PCR and, for the first time 
using such starting material, high-throughput sequencing. 

ISL1 binds a novel intronic element of the FGF10 gene in heart but not hindlimb  

 A bioinformatics analysis of the FGF10 locus to search for putative ISL1 
consensus binding sites yielded two candidates. The first was previously predicted within 
the FGF10 promoter (Ohuchi et al., 2005) and termed FGF10-Pr2 (Fig. 2A); the latter 
within the intron 1 of FGF10, was termed FGF10-Int1 (Fig. 2A-2B). Using ChIP, we 
demonstrated that in the developing human heart at CS14-15, ISL1 bound to only the 
FGF10-Int1 fragment. In contrast, it did not occupy FGF10-Pr2 or a different promoter 
fragment without an ISL1 consensus site, termed FGF10-Pr1 (Fig. 2C). In parallel, we 
observed that acetylated histone H4 bound the ISL1 and FGF10 promoters. As expected, 
the chromatin around these two promoters was thus transcriptionally active in the human 
heart at CS14-15, consistent with the expression studies above (Fig. S1 in supplementary 
material). 

 Both Isl1 and Fgf10 play early and interdependent roles in the specification and 
outgrowth of vertebrate limb buds (Sekine et al., 1999). We therefore tested whether ISL1 
occupied the FGF10-Int1 element in human limb buds. FGF10 and ISL1 are indeed co-
expressed at foot plate stages in the human hindlimb, as shown by RT-PCR. However, by 
contrast with ChIP using CS14-15 hearts, ChIP using CS16-17 hindlimbs demonstrated 
no interaction between ISL1 and the FGF10-Int1 element (Fig. S2).  

ISL1 and GATA4 bound the FGF10-Int1 element in vitro 

 To investigate the ability of ISL1 to bind to its conserved consensus site (FGF10-
ISL1) within FGF10-Int1, we performed EMSA assays (Fig. 2D). ISL1 bound robustly to 
FGF10-ISL1 as well as to a known positive control site, termed Insulin I-ISL1 (Dodou et 
al., 2004) (Fig. 2D, lanes 2 and 7 respectively). Binding of ISL1 to its FGF10-ISL1 
cognate site was specific, since it could be partially competed off by excess unlabeled 
probe (Fig. 2D, lane 3) but not by a hundredfold excess of unlabeled mutated probe (Fig. 
2D, lane 4). In addition, ISL1 did not bind to a labeled, mutated version of FGF10-ISL1 
(Fig. 2D, lane 5).  
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ISL1, similar to other LIM domain-containing transcription factors, may not act 
alone in binding the FGF10 intron 1 region. Concordantly, we identified a potential 
binding site for GATA4/5/6-type transcription factors in FGF10-Int1 (Merika and Orkin, 
1993) (Fig. 2B). This non-canonical GATA binding site (i.e. 5‟-TGATTA-3‟) is 52 
nucleotides distant from the ISL1-binding site we demonstrated by ChIP. 

Similarly, GATA4 bound specifically to this non-canonical GATA4 site within 
FGF10-Int1 (Fig. 2D, lane 12), and binding to this site was completely abrogated by the 
addition of unlabeled FGF10-GATA4 probe (Fig. 2D, lane 13).  

ISL1 and GATA4 activate FGF10 via its intronic enhancer in cooperation with TBX20 

 Murine Isl1 and Gata4 directly co-activate transcription of downstream cardiac 
transcription factors Nkx2.5 and Mef2c (Dodou et al., 2004; Takeuchi et al., 2005). We 
thus tested the potential of the FGF10-Int1 element to direct the transcription of a 
luciferase reporter gene in the presence of ISL1 and/or GATA4. Co-transfection in 
10T1/2 cells of a GATA4 or ISL1 expression construct together with the LUC-FGF10-
Int1 reporter resulted in strong activation of luciferase activity (Fig. 3).  

The transcriptional response of murine Nkx2.5 to Isl1 and Gata4 in vitro can be 
potentiated by Tbx20, a member of a large family of genes related to the T (brachyury) 
transcription factor (Takeuchi et al., 2005). We therefore examined the potential for 
human TBX20 to activate the LUC-FGF10-Int1 reporter transfected into 10T1/2 cells. 
Co-transfection of a TBX20 expression construct, as for GATA4 and ISL1, indeed 
activated the reporter alone. Additional transfection of GATA4 and ISL1 expression 
constructs along with TBX20 resulted in the most efficient activation of LUC-FGF10-
Int1 (Fig. 3). Curiously, there is no T-box within the response element of FGF10. 
However, the response of murine Nkx2.5 to Tbx20 also occurs without a cognate T-box 
element. 

At CS14-15, cardiac neural crest cells, expressing FGFR2 (Thomas et al., 2008), 
may thus sense the FGF10 secreted by SHF-derived cells in the human OFT, under the 
control of mesodermal transcription factors such as ISL1 and GATA4/5/6. This cell-cell 
communication between cardiac neural crest cells, secondary and primary heart field cells 
is critical for the growth, maturation and septation of the OFT. 

ChIP-sequencing identifies in vivo ISL1-binding sites throughout the genome 

 In order to find additional cardiac targets of ISL1 at CS14-15, we turned to high-
throughput sequencing (ChIP-sequencing). Sequences were mapped to the human 
genome and putative ISL1-bound regions represented by the enrichment of overlapping, 
mapped sequences, or peaks. A total of 4.98 million initial sequences were generated, of 
which 39% were mapped and retained for peak generation. We chose to focus on the 124 
peaks defined by coverage of at least 20 hits within a gap interval of 100 bp between first 
position matches. Peaks mapped to simple repeat regions were excluded.  

 Of the twenty sites within ten kilobases (kb) of a predicted gene, thirteen were 
localized in intronic regions, four were located 5‟ to the nearest first exon and three were 
located 3‟ to the nearest last exon of a gene. A canonical 5‟-(C/T)TAATG(A/G)-3‟ ISL1-
binding motif was found in thirteen loci, of which eight were expressed in the embryonic 
heart (Fig. S3). We also scanned a window of 100bp flanking these eight ISL1 sites in 
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light of the presence of a GATA4/5/6-binding site in the FGF10-Int1 element. Consensus 
GATA sequences were present in the loci corresponding to BMP2, DOK5, JAKMIP3 and 
NUP54. Including FGF10, the GATA site was located between 55 and 80bp of the ISL1 
site in all five genes, defining a novel ISL-GATA regulatory motif. 

Many of the 124 original peaks did not have canonical ISL1 recognition 
sequences, indicating that the rather short consensus sequence may not account for all 
ISL1 binding to DNA. ISL1 may target these regions through protein-protein interactions 
(Takeuchi et al., 2005) or degenerate binding sites (Johnson et al., 2007). We re-scanned 
all 124 peaks for canonical GATA sites. In addition to those sites near canonical ISL1 
consensus sequences identified above, we found two additional peaks with only a GATA 
consensus binding site. These were within an intron of PDE3A and 3‟ to the last exon of 
BARX1. We confirmed that PDE3A was transcribed at the same time as ISL1 in the heart 
by RT-PCR (Fig. S3).  

 In addition to FGF10, the genes transcribed in the human cardiac primordium at 
CS14-15 whose loci are occupied by ISL1 were: NUP54, JAKMIP3, BMP2, DOK5, 
MAP4K4, MYO1D, UNC45B, ROCK1, and PDE3A. Many of these are signals or 
effectors that may poise SHF-derived cells to respond to their environment.  

 NUP54 encodes a nucleoporin, part of a complex involved in nuclear protein 
transport, about which little else is known to date, although it may be involved in 
maintaining the tone of arterial smooth muscle (Sabri et al., 2007). ISL1 may also directly 
regulate two intracellular effectors involved in signalling associated with cell shape 
changes, JAKMIP3 and ROCK1. Wnt11, a ligand used to establish planar cell polarity and 
required for proper invasion of the OFT by cardiac neural crest cells, transduces via both 
Jakmip3 and Rock1 (Zhou et al., 2007).  

 Bmp2 is required for the recruitment of SHF cells during murine OFT formation 
(Waldo et al., 2001). Its cardiac expression profile (Fig. S3) and the presence of an ISL1-
bound site located 6 kb after the last exon of BMP2 confirmed this potential role in 
humans. It was independently found that the 3‟ region of human BMP2 is responsible for 
its transcriptional regulation (Dathe et al., 2009).  

 MAP4K4 and DOK5 are intermediates between extracellular signals like FGF10, 
and a transcriptional response. The Dok family of proteins comprises common adaptor 
substrates for growth factor receptor tyrosine kinases. MAP4K4 activates c-Jun N-
terminal kinase (Machida et al., 2004). Possible effects are activation of the transcription 
factors JUN or ERK.  

 MYO1D and UNC45B are required for muscle myosin and sarcomere 
organization. Myo1D is expressed in the developing Xenopus embryo in cephalic and 
cardiac neural crest cells as they infiltrate the branchial arches (LeBlanc-Straceski et al., 
2009). Its Drosophila homologue, DmMyo31DF, leads to situs inversus upon mutation 
and co-localizes with beta-catenin, implying a potential role for MYO1D in cytoskeletal 
changes and human heart looping (Speder et al., 2006). The myosin chaperone protein 
Unc-45 is expressed in cardiac and striated muscles of the developing zebrafish. 
Morpholinos against Unc-45 lead to major cardiac malformations including situs 

inversus, as well as branchial arch cartilage dysmorphy (Wohlgemuth et al., 2007). 

 Phosphodiesterase 3A, present in murine cardiomyocytes, regulates sensitivity to 
cAMP-inducing prostaglandins by directly hydrolyzing cAMP (Sun et al., 2007). During 
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gestation, PDE3A expression increases in the muscle wall of the ductus arteriosus, a 
transient vessel derived from the sixth pharyngeal arch that shunts before birth between 
the aorta and the pulmonary trunk of the OFT (Liu and Maurice, 1998). The role of 
PDE3A is to increase its tension and permit postnatal remodelling of this region. An 
earlier, embryonic role in cardiac formation has been hitherto unsuspected. 

The ISL1-GATA4 motif 

 A total of 5/10 novel ISL1 binding sites were within 80bp of a GATA binding 
site. Similarly, 52 nucleotides separate a functionally validated Isl1 site from a Gata site 
in the murine Nkx2.5 promoter and this motif is highly conserved in human NKX2.5. 
Therefore, we tested the hypothesis that the close association of ISL1 to GATA binding 
sites represents an indissociable module rather than a fortuitous observation.  

An ISL1-GATA motif was defined as (C/T)TAATG(A/G) with 55-80 intervening 
base pairs from (A/T/C)GATA(A/G). Then, the entire sequence of human chromosome 5 
was scanned for it in both directions, with 2,279 occurrences. Using parameters generated 
by a Markov chain 1 model, we simulated 1000 same-sized virtual chromosomes and 
scanned these for the defined motif. There was a mean of 3,306 occurrences, which is 
significantly more than observed in the biological dataset (ZM-score of -17.95 with an 
associated p-value 2.5e-72). The fewer incidences found in vivo mean that the ISL1-GATA 
motif underwent evolutionary selection pressure. Moreover, similar analyses conducted 
for ISL1 or GATA sites individually showed observed versus simulated incidences of 
58,498 versus 83,258 for ISL1 (ZI-score of -90.27) and 242,329 versus 281,028 for 
GATA (ZG-score of -74.67).  

As for the whole motif, each binding site is found less frequently in vivo than 
would be expected by chance alone. The discrepancy between observed versus simulated 
incidences of the ISL1-GATA motif (ZM-score) is greater than for either site alone (ZI-
score and ZG-score), further suggesting that this regulatory module is a bona fide 
functional unit. 

The relatively short length of the spacer sequence led us to align the sequences 
separating the ISL1 and GATA-binding sites in the FGF10, NUP54, JAKMIP3, BMP2, 

and DOK5 genes, as well as the equivalent spacer sequence conserved in human NKX2.5. 
We found 29 nucleotides aligned among at least four of the six spacers. However, we 
observed an average of the same number of alignments in five groups of six randomly 
chosen intervals within ISL1-GATA motifs taken from one of the simulated 
chromosomes above, and the difference between the number of aligned residues in the 
biological versus simulated spacer sequences was not statistically significant.  

 

Overall, the data presented here support the idea that ISL1 confers a spatially 
restricted potential on human SHF progenitors to respond in a sensitive manner to 
morphogens in the cellular environment. ISL1 regulates the expression of several 
downstream effectors of signalling pathways involving FGFs, BMPs or cytoskeletal 
changes by means of non-promoter, primarily intronic, elements.  

A conserved mechanism may exist between humans and mice for the regulation of 
cardiac gene transcription by the convergence of several transcription factors during 
development. This hypothesis was supported by transactivation assays that confirmed the 
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ability of the human forms of ISL1 and GATA4 to act in cooperation to activate a 
reporter gene under the control of a FGF10 intronic element (i.e. Luc-FGF10-Int1). In 
addition, our statistical analyses support the conclusion that the proximity of ISL1 and 
GATA binding sites confers an evolutionary advantage. 

Knock-out models of many ISL1 targets, including Fgf10 and Bmp2, give rise to 
murine cardiac malformations of the OFT and have served as candidate genes for 
mutation screening in patients affected by congenital heart malformations (Martinovic-
Bouriel et al., 2007; Posch et al., 2008). Mutations in either the coding sequences of ISL1 
targets or in non-coding regulatory sequences recognized by ISL1 now become equally 
compelling candidates in human conotruncal heart defects. 
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Fig. 1: Expression of ISL1 and GATA4 transcripts in the human heart between 26 

and 38 days of gestation. 

A-G ISL1 in situ at Carnegie stages (CS)12 (26-30 days post fertilization [dpf]), CS13 

(28-32 dpf), CS14 (31-35 dpf) and CS15 (35-38 dpf) respectively. E-G are 

magnifications of B-D respectively. H-J show GATA4 expression in adjacent sections to 

B-D. (A): ISL1 is expressed at CS12 in foregut endoderm, splanchnic mesoderm, and 

early motoneurons. (B, E): At CS13, ISL1 is transcribed by mesenchyme around the 

cardiac OFT and pharyngeal arches. ISL1 expression continues in the splanchnic 

mesoderm between the trachea and OFT, and is visible in dorsal root ganglia, at CS14 (C, 

F) and CS15 (D, G). (H-J): GATA4 is expressed in the endocardium and myocardium of 

the arterial pole CS13, CS14 and CS15 (H, I, J respectively). Inset: RT-PCR of ISL1, 

GATA4, GATA5, GATA6, FGF10 and positive control ACTB mRNAs in embryonic 

human hearts at stages CS13-16. Abbreviations: drg, dorsal root ganglia; es, esophagus; 

fb, forebrain; fg, foregut; ph, pharynx; nt, neural tube; oft, OFT; ra, right atrium; t, 

trachea. Arrows, motoneurons. Bar: 110 µm (A,B,C,D,I) and 55 µm (E,F,G,H,J,K). 
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Fig. 2: In vivo and in vitro binding of ISL1 and GATA4 within the first intron of 

FGF10. 

A: The FGF10-Pr1, FGF0-Pr2 and FGF10-Int1 fragments are positioned relative to the 

human FGF10 locus. FGF10-Int1 fragment contains two consensus binding sites for ISL1 

and GATA factors (Fig. 2B). B: The sequence of the FGF10-Int1 fragment and position 

of conserved putative ISL1 and GATA binding sites. C: Results of PCR after ChIP from 

human embryonic hearts at CS14-15. D: Results of EMSA assays demonstrate specific 

binding of ISL1 and GATA4 to the FGF10 intronic element (FGF10-Int1). 
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Fig. 3: In vitro transcriptional activation assays.  

LUC-FGF10-Int1, which placed the luciferase gene under the control of the FGF10-Int1 

element, was transfected alone or together with ISL1, GATA4 and TBX20 expression 

vectors into 10T1/2 cells. Each factor alone potentiated luciferase expression and these 

effects were additive. 
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Gene RefSeq Chromo-

some 

Position Genomic 

Coordinates 

ISL1 

ISL1 CBS Spacer 

length 

(bp) 

Genomic 

Coordinat

es GATA 

GATA 

CBS 

NUP54 NM_017426 4 intron 77,266,265 ACATTAA 70 77,266,195 ATATCT 

JAKMIP3 NM_0011055
21 

10 intron 133,836,145 TTAATGT 65 133,836,08
0 

GTATCG 

BMP2 NM_001200 20 3' 6,770,105 TCATTAT 65 6,770,180 CTATCA 

DOK5 NM_018431 20 intron 52,663,020 TCATTAG 80 52,663,100 TTATCT 

MAP4K4 NM_145687 2 intron 101,816,800 TTTATGA    

MYO1D NM_015194 17 intron 28,174,005 CTAATGT    

UNC45B NM_173167 17 intron 30,502,300 CCATTAC    

ROCK1 NM_005406 18 3' 16,770,325 TTAATGA    

PDE3A NM_000921 12 intron    20,595,645 TGATAG 

 

Table 1: Transcriptional targets of ISL1 identified by ChIP-sequencing. 

Abbreviation: CBS, consensus binding site. 

 

Supplementary Information 

 

 

 

 

 

Fig. S1. ChIP assay on human embryonic heart chromatin using anti-acetylated 

histone H4. 

Using chromatin preparations from hearts at Carnegie stages 14-15, we observed that 
acetylated histone H4 bound the ISL1 and FGF10 promoters. The chromatin around the 
ISL1 and FGF10 promoters was therefore transcriptionally active at these stages in the 
heart (1). 

Reference: 1. Vettese-Dadey M, et al. (1996) Acetylation of histone H4 plays a primary 
role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo 

J 15(10):2508-2518. 
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Fig. S2. RT-PCR of ISL1 and FGF10 transcripts in the human forelimb and 

hindlimb buds and ChIP of human hindlimb bud chromatin using an anti-ISL1 

antibody. 

A: FGF10 and ISL1 were co-expressed at foot plate stages (Carnegie stages [CS]16-17, 
i.e. 37-44 days of gestation) in human hindlimbs as seen by RT-PCR. B: However, 
chromatin immunoprecipitation from this tissue demonstrated no interaction between 
ISL1 and the FGF10 first intron element we identified as bound in DNA derived from the 
CS14-15 heart. 

Fig. S3. RT-PCR of ISL1 identified targets in the human heart from CS14 and 

CS15. 

All targets reported in this study (Table 1) were expressed at both Carnegie stages (CS)14 
and CS15 in the human heart except for JAKMIP3, only expressed at CS15.  
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For in situ hybridization 

hISL1-T7-F TAATACGACTCACTATAGGGAGA

GGTTGTACGGGATCAAATGC 

hISL1-R GCCCGTCATCTCTACCAGTT 

hISL1-T7-R TAATACGACTCACTATAGGGAGA

GCCCGTCATCTCTACCAGTT  

hISL1-F GGTTGTACGGGATCAAATGC 

hGATA4-T7-F TAATACGACTCACTATAGGGAGA

TCTTGCAATGCGGAAAGAG 

hGATA4-R CAGTGATTATGTCCCCGTGA 

hGATA4-T7-R TAATACGACTCACTATAGGGAGA

CAGTGATTATGTCCCCGTGA 

hGATA4-F TCTTGCAATGCGGAAAGAG 

 

 

For RT-PCR 

hISL1-F GGTTGTACGGGATCAAATGC 

hISL1-R GCCCGTCATCTCTACCAGTT 

hGATA4-F TCTTGCAATGCGGAAAGAG 

hGATA4-R CAGTGATTATGTCCCCGTGA 

hGATA5-F CCTGCGGCCTCTACATGA 

hGATA5-R AGGCTCGAACTTGAACTCCA 

hGATA6-F GTGCCCAGACCACTTGCTAT 

hGATA6-R GCGAGACTGACGCCTATGTA 

hFGF10-F TGCTGCTTTTTGTTGCTGTT 

hFGF10-R CATTTGCCTCCCATTATGCT 

hACTB-F ATTGGCAATGAGCGGTTCCGC 

hACTB-R TCCTGCTTGCTGATCCACATC 

hNUP54-F ACGCTGTTGGGAGATGAGAG 

hNUP54-R GCTTGTTCAAAATGGGCATA 

hJAKMIP3-F AGCTGCTGTCAGAGGAGGAG 

hJAKMIP3-R AAAGGGTCCGATTCAATGTG 

hBMP2-F GTTCGGCCTGAAACAGAGAC 

hBMP2-R AATTCGGTGATGGAAACTGC 

hDOK5-F TCAATGACATCAGCCTTGGA 

hDOK5-R AGGCAGCAGAGTGGACTTTC 

hMAP4K4-F AGGCCAGAGGTTGAAAGTGA 

hMAP4K4-R TGACCAGTTTCCACAGATCG 

hMYO1D-F CCCTTCTTTACCGGACTGTG 

hMYO1D-R GCTGCTGCAGTTTCTCATTG 

hUNC45B-F GCCATTCATGACAACTCACG 

hUNC45B-R TAGTGCCACCATCATCTCCA 

hROCK1-F CAACAACGGTTAGAACAAGAGG 

hROCK1-R TTGTCTGCCTCAAATGCTTG 

hPDE3A-F TCATCCAGGAAGGACTAATGC 

hPDE3A-R GGACCATTGATATCAGCCAAC 

For ChIP 

hISL1-Prom-F CCTCCCACCCAACGTTTTTA 

hISL1-Prom-R CGAGTGGCTGGTGGGTAG 

hFGF10-Prom-
F 

TTTGTTCACCGTGCTGTCAT 

hFGF10-Prom-
R 

GATGCAAGGCAAGGAGAGAG 

FGF10-Pr1-F GGGAGCCAATTTCATTTTCA 

FGF10-Pr1-R GGAGCACTGTGACAAAA 

FGF10-Pr2-F TTCTTTTCTGTGCAGCCTTTC 

FGF10-Pr2-R TGTCCTTTTCAATCCTAGCAAA 

FGF10-Int1-F GGAAAAGGAATTGACACTCTTCA 

FGF10-Int1-R GGAGGGGTTCACTCTGCTAA 

 

 

For EMSA 

InsulinS (+ 
control) 

GCCCTTGTTAATAATCTAATTAC

CCTAG 

InsulinAS CTAGGGTAATTAGATTATTAACA

AGGGC 

FGF10-int1-S TAGACAATATCTTAATGATACCA

TGTAG 

FGF10-int1-AS CTACATGGTATCATTAAGATATT

GTCTA 

FGF10-int1mut-
S 

TAGACAATATCTTAGCTATACCA

TGTAG 

FGF10-int1mut-
AS 

CTACATGGTATAGCTAAGATATT

GTCTA 

GATA4-S GTAGCAGCATTTAGATTACCTGG

CCACATG 

GATA4-AS CATGTGGCCAGGTAATCTAAATG

CTGCTAC 

GATA4mut-S GTAGCAGCATTTACCATACCTGG

CCACATG 

GATA4mut-AS CATGTGGCCAGGTGGTATAAATG

CTGCTAC 

 



 
 

50 

Since the last submission of this text, we have carried out additional work and reflection 

with the assistance of two scientists whom we have included as authors. Some of this work 

and the new perspectives it has opened on studies of outflow tract development will be 

described hereafter. 

The authors and acknowledgement lists will therefore be revised to reflect their 

contributions (and my affiliation updated): 

Christelle Golzio1, Emmanuelle Havis2, Philippe Daubas3, Gregory Nuel4, Candice 
Babarit5, Arnold Munnich5,6, Michel Vekemans5,6, Stéphane Zaffran7, Stanislas 
Lyonnet5,6, Heather C. Etchevers7,* 

1. Duke University Medical Center, Box 3709, Durham, NC, 27710, USA 
2. UPMC Univ Paris 06, CNRS UMR 7622, 9 Quai Saint Bernard, Boîte 24 75005 

Paris, France 
3. CNRS URA 2578, Institut Pasteur, 75724 Paris Cedex 15, France 
4. CNRS 8145, Mathématiques appliquées, Université Paris Descartes, 75005 Paris, 

France 
5. INSERM U781, Université Paris Descartes, Faculté de Médecine, 75743 Paris 

Cedex, France 
6. Service de Génétique Médicale, Hôpital Necker-Enfants Malades, 75015 Paris, 

France 
7. INSERM UMR_S910, Université de la Méditerranée Aix-Marseille II, Faculté de 

Médecine, 13385 Marseille Cedex, France 
* Corresponding author: 

Heather Etchevers, INSERM UMR_S910, Université de la Méditerranée Aix-Marseille 
II, Faculté de Médecine, 13385 Marseille Cedex, France 

 Tel: (+33) 491 324 937; fax: (33) 491 797 227. heather.etchevers@inserm.fr 

Acknowledgements will include the following: 

Dr F. Langa Vives provided indispensible expertise to the generation of transgenic mice 
at the Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris. Drs. D. Bonnet, M. 
Buckingham, C. Fournier-Thibault, and R. Kelly provided invaluable discussion. 
 

Materials and Methods will include the following: 

All mice were maintained at the Animal Facility of the Pasteur Institute. The same 
1047 bp FGF10-Int1 fragment (chr 5:44421556-44422602) was subcloned into the 
BamHI site in the pSKT-TK-nLacZ plasmid and orientation verified by capillary 
sequencing with a standard T3 primer. The plasmid was linearized with SalI for injection 
at 2 ng/mL into mouse blastocysts. β-galactosidase-containing cells that had transcribed 
the reporter plasmid were stained in whole mount by the catalysis of the X-gal (5-bromo-
4-chloro-3-indolyl β-D-galactopyranoside) substrate. 
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Results will include the following: 

Of 249 construct-injected blastocysts, 148 embryos were recovered at four different 
stages: E8.5 (n=43), E9.5 (n=22), E10.5 (n=46) and E11.5 (n=37). Of these, only a 
fraction had integrated the transgene at E11.5 (n=3), E10.5 (n=1), E9.5 (n=3), E8.5 (n=2), 
as confirmed by both X-gal staining and by genotyping for the presence of plasmid in a 
piece of tail.  

LacZ+ cells were observed in the sites shown in Table [1 – if we remove the current 

Table 1]. Most of these sites are normal expression domains for Islet-1. Curiously, 
although many cells were observed in the walls of the common carotid arteries in one 
E11.5 embryo, only a few superficial cells were observed in the third aortic arch in the 
E10.5 embryo. Both E8.5 embryos had expression in cells of the presomitic mesoderm, 
one exclusively. 

 

Age forebrain lens MNs DRGs pancreas PA1 PA2 PA3 OFT 

E8.5 . n/a . n/a n/a . n/a n/a . 

E8.5 + n/a . n/a n/a . n/a n/a . 

E9.5 . n/a . . . + + . . 

E9.5 . n/a . . . . + . + 

E9.5 . n/a . . + + + . . 

E10.5 + + . + . + + + + 

E11.5 + + + + + . . + . 

E11.5 + + + + . . . . . 

E11.5 +  + + . . . . . 

 

Table 1 Sites of β-galactosidase activity in transgenic embryos. MN = motoneurons, 
DRGs = dorsal root ganglia 

We will not be able to obtain more human embryonic tissues with which to repeat or 

carry out qPCR experiments to validate our ChIP experiments with the Islet-1 antibody, 

or indeed with a Gata-4 antibody. We may therefore remove the ChIP-sequencing results, 

for which coverage was not as deep as today’s standards would require, because it will 

be difficult to validate the data more than we had done. The existence of a repeated ISL1-

GATA motif throughout the genome whereby cardiac transcription factors might poise 

the chromatin to respond transcriptionally would need further evidence to support. 
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B A 

 

 

 

Figure 4. A 1014 bp enhancer region within the first intron of human FGF10, containing 
ISL1 and GATA-binding sites, was placed ahead of a lacZ reporter gene under a 
thymidine kinase-driven promoter. This transgene, introduced by injection into mouse 
blastocysts, yielded animals in which the reporter enzymatic activity demonstrated the 
responsiveness of the intronic enhancer to endogenous signals, and in which tissues. In 
this example at embryonic day 10.5, the transgene was activated in some cells of the 
posterior outflow tract, in a subdomain of the first two pharyngeal arches, in the 
trigeminal and acoustic ganglia, and in the lens. No expression was ever observed in the 
limb buds. 
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FUTURE PROJECTS 

ETIOLOGY OF CONGENITAL HEART MALFORMATIONS OF THE 

OUTFLOW TRACT 

Slowly but surely, like the NCC themselves over time, I am becoming involved in 
studying progressively more proximal segments of the cardiovascular tree from my 
originally more distal interest, such as the pulmonary trunk, the semilunar valves, the 
aortic arch and the coronary vessels. 

After having studied a number of rare congenital malformations, the knowledge and 
approaches I can bring to the study of the most common group of congenital 
malformations, those of the heart, may benefit more people. Fully a third of these 
malformations concern the outflow tract and closely associated blood vessels, such as the 
coronary arteries. Since the early observations in the 1980s that ablation of the neural 
crest in chicks leads to conotruncal heart defects resembling those often seen in humans 
(double outlet right ventricle, tetralogy of Fallot), demonstrating an important inductive 
role for these in the septation of the outflow tract into aorta and pulmonary trunk, the 
precise nature of that role still remains to be elucidated (Kirby, Gale, and Stewart 1983; 
Kirby, Turnage, and Hays 1985). 

The prospective and carefully annotated collection of constitutive DNA from patients 
seen in the pediatric cardiology unit by Damien Bonnet at the Necker Children‟s Hospital, 
instigated by my student in order to investigate a potential role of mutations in non-
coding genomic binding sites for ISL1 in outflow tract anomalies, has become a rich 
resource for all the collaborators working on heart development, including my group. 
Specific sub-phenotypes can be examined in greater detail and with this cohort of many 
hundreds of patients, increasing clinical homogeneity can be obtained, which will help the 
identification of the genetic bases of such malformations. Classical homozygosity 
mapping is possible for the many families also represented in this collection. 

The other means by which such genetic bases can be discovered is by the proposal of 
candidate genes, based on their functions having been elucidated in animal model 
cardiogenesis. To continue with my group‟s work on genes involved in the second heart 
field, I plan to undertake collaborative and complementary experiments with other 
members of Stephan Zaffran‟s group. 

Currently I am trying to define the involvement and cross-species conservation of 
homeobox genes in addition to Hoxa1, Hoxa3 and Hoxb1, which this group has recently 
shown to molecularly define a subdomain of the pulmonary trunk myocardium in the 
conus (Bertrand et al. 2011). (Hoxa3 for example has recently been shown to not have 
exactly the same expression domains between chick and mouse).This region is 
anatomically interesting because it not only elongates but rotates over time, and cryptic 
domains in an otherwise homogeneous-appearing tube define the entry points of coronary 
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arteries into the aorta and the positions of the interventricular septum and valve leaflets 
(Bajolle et al. 2006; Bajolle et al. 2008). 

Because of the above-described interest in retinoic acid signaling and its known effects on 
both neural crest differentiation and on Hox gene expression, we will see if removing an 
enzyme essential for retinoic acid metabolism, Raldh2, specifically from the NCC lineage 
has an effect on cardiac development. Raldh2-/- mutants for whom the maternal diet is 
supplemented in retinoic acid can survive to a stage where their patent heart defects can 
be examined, and among these are deficient outflow tract septation (Ryckebusch et al. 
2008), a process known to be dependent on NCC. We will first examine the cardiac NCC 
lineage in such diet-supplemented Raldh2-/- embryos by making crosses with a Wnt1-
Cre;Rosa26R –lacZ line (Echelard, Vassileva, and McMahon 1994). We will then use 
mouse-chick neural tube chimeras (Fontaine-Pérus and Chéraud 2005) to determine 
whether retinoic acid is playing more than one cell-autonomous role in different cardiac 
cell lineages, and if the migratory NCC population does not also vehicle a secreted signal 
into the outflow tract that is necessary for its development. 

MOLECULAR ETIOLOGY OF LARGE AND GIANT CONGENITAL 

MELANOCYTIC NEVI 

A new research theme I have finally been able to launch this last academic year aims to 
understand the molecular causes of proliferative diseases of pigment cells by using the 
extreme and rare case of the large congenital melanocytic nevus (LCMN) as an 
exemplary pathology to elucidate others, such as neurocutaneous melanocytosis, 
malignant melanoma, and the lentigines and cafe-au-lait spots characteristic of a number 
of other syndromes. Localized excess skin pigmentation is the visible sign of both the 
common and rare congenital nevus as well as the relatively common adult-onset 
melanoma and the rarer, often lethal, pediatric forms. Our working hypothesis is that 
studying the rare disease will also shed mechanistic light on the more common 
presentations. 

My group is currently addressing the following questions: Which sequence variations of 
the human genome are associated with a predisposition to, or the onset of, LCMN? Can 
more indirect effects on genomic function or organization cause a LCMN to develop?  

Over the near term, I aim to study how some of these direct changes in genomic 
organization, first identified in preliminary genomic screens, may lead to abnormal 
melanocyte development during prenatal life. With the knowledge gained about the 
control of melanocyte proliferation, it should be possible to model and test treatments for 
human disease. Ultimately, I wish to examine the functional effects of physiological 
molecular modifications on melanocytes and their NCC precursors, using in vitro and in 

vivo models to recapitulate aspects of CMN development. 



 
 

55 

RATIONALE 

Description of LCMN 

Congenital melanocytic naevi (CMN) can arise 
in all areas of the skin. Their frequency 
decreases from 1 in every 100 births for the 
smallest lesions to an estimated 1 in 50,000 
births or more, for surfaces extending over 100 
cm2. All CMN have an abnormally high 
concentration of melanocytes, the pigment cells 
of the skin and iris, in sharply defined regions. 
Large and giant CMN (OMIM 137550) are 
variable in presentation, often comprising increased hair density and growth along with 
disparate levels of pigmentation, proliferative nodules and deficient skin annexes. Like 
other CMN, they can be located anywhere in the body, but are often localized along the 
midline of the head and trunk, including the face, most frequently over the shoulders or 
buttocks.  

Treatment protocols for CMN are highly variable, tethered to reconstructive surgery and 
based on anecdotal reports of risk management. The disfiguring aspect of the disease is 
coupled with a currently unmeasurable risk of severe neurological associations and 
oncological transformation – among which, pediatric malignant melanoma, with very 
poor prognosis. There appears to be increased incidence of degenerative complications in 
patients with the giant forms of CMN (Marghoob et al. 2004; Kinsler, Birley, and 
Atherton 2009). Aside from incomplete epidemiological observations, such as more 
frequent onset during early childhood, no environmental or genetic risk factors for these 
life-threatening additional conditions are currently known.  

LCMN are part of a family of developmental diseases known as neurocristopathies: 
disorders in the migration, proliferation or differentiation of a population of pluripotent 
embryonic cells called the neural crest (NC) (Etchevers, Amiel, and Lyonnet 2006). 
LCMN can be associated with malformations in other neural crest-derived tissues, and 
other forms of NC-derived tumors such as neurofibroma, schwannoma, or certain forms 
of head/neck rhabdomyosarcoma. The fact that associated conditions are regularly 
reported but not systematic implies that a second molecular event may have occurred 
among a subset of cells predisposed to it by the first, and that identification of both would 
be beneficial for patients. Initial studies have suggested that benign pigmented 
proliferations can be distinguished from malignant ones on the basis of the high 
frequency of large structural chromosomal aberrations in the latter (Broekaert et al. 2010). 

Embryological bases of congenital pigment cell proliferation disorders 

Human skin is made up of two distinct compartments, the epidermis and dermis, which 
are normally separated by a basal lamina. The epidermis, derived from the ectoderm, 
ensures a semi-permeable barrier function with the extracorporeal environment. It 
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contains annexes that develop from placodes into hair follicles, sebaceous and sudoripal 
glands. These are embedded into the dermis and the underlying adipose hypodermis, in 
such a way that the continuous epidermis folds and buckles. The dermis is an innervated 
and vascularized connective tissue, made up of fibroblasts, which secrete the collagen and 
elastin fibers that confer local mechanical properties on the organ as a whole. This layer 
also plays an important role in the homeostasis of the overlying epidermis (Cario-André 
et al. 2006). NC cells form in the human embryo during the first few weeks of pregnancy 
from the tissue that will give rise to the central nervous system. They migrate away from 
it throughout the body, integrating into nearly every tissue. All skin melanocytes, like all 
components of the peripheral nervous system, are derived from NC, which also gives rise 
to dermis, cartilage, adipocytes and vascular smooth muscle of the head and neck, among 
other tissues (Le Douarin and Kalcheim 1999).  

Over the course of development, after their precursors settle evenly within the basal layer 
of the stratified human epidermis, melanocytes normally begin to produce specialized 
organelles that contain the pigments eumelanin or pheomelanin. At a proportion of about 
one melanocyte to 30 neighboring epidermal keratinocytes, the former distribute these 
melanosomes to the latter by means of dendritic prolongations, and do not themselves 
retain pigment. Once incorporated, eumelanin protects the genetic material of the 
otherwise exposed keratinocytes from the effects of UV and superoxide damage. 
Melanocytes also distribute melanin to the cells lining the hair follicles and thereby tint 
hairs from the inside for as long as a resident melanoblast population in the cycling 
follicle is able to self-renew. NC-like stem cells persist in hair follicles (Fernandes et al. 
2004) and the dermis (Li et al. 2010) after birth. 

The structure of CMN skin is quite different. Massive and circumscribed aggregates of 
sometimes heavily self-pigmented melanocytes accumulate at the basal surface of the 
epidermis, while nests of these cells can extend throughout the thickness of the 
structurally disrupted dermis into subcutaneous tissues, often along nerves. Thick and 
abnormally dense hair is often observed, and other skin annexes can be disrupted. Even 
the subcutaneous tissues can be malformed, with nevus development occurring at the 
expense of hypodermic adipocytes, or on the contrary presenting large lipoma-like 
proliferations. Some remodeling of LCMN architecture occurs over the first years of life.  

“Tardive" congenital lesions are present as precursor conditions at birth but only manifest 
thereafter; the emergence of so-called "satellite" naevi throughout the first few years of 
life is indicative of the postnatal maturation of these precursors. In a long prospective 
study of an American cohort, the presence of >20 satellite nevi was found to be a 
significant risk marker for neurocutaneous melanocytosis (NCM), that is, a CMN, 
sometimes proliferative, that is tangled into the leptomeninges of the brain or spinal 
cord(Marghoob et al. 2004). A recent retrospective study of a large English cohort placed 
the presence of congenital satellite naevi as the primary prognostic factor for potential 
complications (Kinsler et al. 2008). Like the cutaneous LCMN with which it is 
associated, NCM is considered to be a kind of hamartoma (Fu et al. 2010). Most 
publications describe the often life-threatening epilepsy and/or hydrocephalus that NCM 
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can cause, but the long-term prognosis of non-symptomatic NCM remains unknown. 
Symptomatic NCM occurs in approximately 7% of patients with large CMN (≥ 20 cm 
diameter projected adult size [PAS]) (Slutsky et al. 2010). The incidence of malignant 
transformation remains controversial. A meta-study finds malignancy in around 1% of 
large CMN patients, with a range in reports to up to nearly 10% in patients with the giant 
forms of >40 cm PAS (Krengel, Hauschild, and Schafer 2006; Kinsler, Birley, and 
Atherton 2009). This incidence is thousands of times greater than the general European 
population (Holterhues 2010), although malignant melanoma is one of the more common 
cancers. 

Pathways common to normal neural crest development, nevogenesis and 

transformation 

Melanocyte proliferation can be stimulated by a number of ligand-tyrosine kinase 
receptor binomes, through intracellular effectors of the RAS family that activate the 
mitogen-activated protein (MAP) kinase pathway. Two important molecules in this 
transduction are NRAS and the next effector in the MAP kinase pathway, BRAF. 
Reproducible somatic mutations in BRAF, leading to abnormally high enzymatic activity, 
are involved in many cancers, malignant melanoma in particular (Brose et al. 2002), and, 
surprisingly, are also found in a number of clinically benign acquired naevi (Pollock et al. 
2003).  

Human neural crest-derived tissue lineages appear to be particularly sensitive to 
hyperactive RAS signaling overall, as exemplified by the Noonan, cardio-facio-
cutaneous, Costello and LEOPARD syndromes, in which autosomal dominant germline 
mutations of different MAPK effectors have been identified. In addition to malformations 
of other craniofactial or cardiac neural crest derivatives, these present pigment anomalies, 
including dark skin, woolly or curly hair, multiple lentigines or café-au-lait spots. 
Neurofibromatosis 1, also distinguished by multiple café-au-lait spots, can occur in 
conjunction with Noonan syndrome; the causative gene, NF1, normally also represses 
RAS activity. Interestingly, two patients in our initial cohort, collected with the 
collaboration of the American patient association Nevus Outreach, Inc., have tested 
positive for constitutional NF1 mutations after biopsy of neurofibromas, in addition to 
their LCMN. 

Patients with large or giant CMN on the whole, though not always, are exempt from other 
symptoms, pointing toward sporadic somatic mutations that occur early during embryonic 
life and present in a mosaic fashion n(Happle 1999). In a Belgian LCMN cohort of 24 
cases, 18 presented activating germline mutations in NRAS and only 3 in BRAF, in 
contrast to acquired naevi as mentioned above (Dessars et al. 2007; Dessars et al. 2009). 
The examination of the corresponding LCMN melanocyte transcriptome showed a non-
intuitive, significant downregulation of the transcription of a few dozen eumelanogenesis-
related genes, relative to a pool of melanocytes cultured from normal neonatal foreskin 
(Dessars et al. 2009). These findings imply a complex balance between surface receptor 
stimulation, in particular that of the melanocortin 1 receptor (MC1R), intracellular signal 
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transduction, and the activity of such developmentally important transcription factors as 
MITF over the course of embryonic and perinatal skin development (see Figure 2 of 

Reyes-Mugica et al. 2011, in Appendix).  

Animal models of LCMN 

Transgenic over-expression of stem cell factor (KITL) in the basal layer of mouse 
epidermis results in a hyperpigmented phenotype, with increased densities of melanocytes 
localized at the basal keratinocyte layer (Kunisada et al. 1998). However, this was not an 
ideal model for CMN, since the phenotype was uniform. Nevertheless, injection of 
soluble KITL into human skin grafts increased the number of melanocytes, while 
inhibition of its action through its receptor, KIT, resulted in the loss of melanocytes 
(Grichnik et al. 1998). These data demonstrate that this signaling pathway may be active 
even in postnatal skin and critical for the survival and persistence of melanocytes in the 
epidermis. 

We have already directly examined the BRAF gene sequence for known hotspot 
mutations in exon 15 in twelve tissue samples derived from LCMN in a preliminary 
collaborative study with Sylvie Fraitag in the pathology department of the Necker 
Children‟s Hospital, without finding any mutations. Dr. Kinsler in London (Great 
Ormond Street Hospital) has conducted a similar examination on blood samples from 
LCMN patients, with the same result (personal communication). The activating mutation 
of BRAF found most frequently in humans has been expressed in zebrafish pigment cells, 
under the control of the MITF promoter. While wild-type Braf did not change the 
pigmentation of the zebrafish, the activated form of the gene led to the appearance of 
nevus-like clusters of pigment covering large areas, up to 40% of the body surface (Patton 
et al. 2005). Interestingly, crossing these fish to those deficient in the tumor suppressor 
transcription factor p53 (product of the CDKN2A gene) led to the development of 
aggressively invasive melanoma, in which the MAP kinase pathway was unduly active. 

p53 protein is increased in the keratinocytes and melanocytes of acquired pigmented nevi 
in conjunction with keratinocyte KITL, while inhibition leads to a decrease in 
transcription of MC1R and the KITL receptor KIT and EDNRB in the melanocytes of 
organotypic cultures of the same lesions (Murase et al. 2009). It was demonstrated 
recently that NC progenitors from the mitfa:BRAF(V600E);p53

-/- zebrafish do not 
terminally differentiate, but retain many embryonic molecular characteristics that make 
the melanomas developing therefrom, more aggressive (Ceol et al. 2011). Blocking 
transcriptional elongation specifically inhibits both normal neural crest development and 
melanoma progression in this model(White et al. 2011). A complex and networked 
signaling cascade makes the immediate effects of loss- or gain-of-function of any of the 
components rather difficult to predict (Reyes-Mùgica et al., in press [Appendix]). 
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APPROACHES FORESEEN 

I have undertaken a strategy in collaboration with the group of Greg Barsh at the 
HudsonAlpha Institute, Alabama (USA) to identify the nature of both constitutive and 
“second hit” molecular events by using both germline and lesional DNAs, and study their 
effects in vitro. For constitutive (germline) DNA, we are using blood and saliva donations 
from patients and their parents, and have already subjected a number of samples to 
hybridization to Illumina Omni 1M single nucleotide polymorphism arrays. This has 
given us provocative information about unusual copy number variations, which in a few 
of the patients has implicated the availability of molecules we already know can be 
involved in melanocyte development. 

A masters student last year began to study the role of Mc1r and its natural agonist and 
antagonist in the embryonic chicken model, whose cutaneous melanocyte development is 
more similar to humans than the mouse. With a second-year masters student in 2011, we 
plan to examine the spatiotemporal distribution of some of these newly implicated 
molecules in the melanocytes and their precursors, in comparison to the pattern of Sox10 
expression in undifferentiated melanocyte precursors, that we have recently established. 

LCMN skin may maintain higher levels of KITL in the dermis, or more KIT receptor in 
the pigmented cells. To test this hypothesis, and to constitute the critical resource for 
further high-throughput sequencing strategy, I have established agreements with local 
surgeons and pathologists to collect donations of ten nevus samples from children being 
operated at the Timone Hospital, which will serve to prepare a formal request to the ethics 
committee. These samples will be subdivided. They will be subjected to 
immunohistochemical observation of the distribution of KITL and KIT, but also of other 
receptors including MET and two common intracellular effectors of these pathways that 
are indicated by our initial CNV results. More importantly, we will constitute the resource 
necessary to compare germline and somatic mutations in the same patients, subject to 
institutional approval that is currently being sought. Finally, we will also derive the 
pigment cells from a portion of these nevi for cell culture (Cario-André et al. 2006). 

Having recently published a protocol by which it is possible to derive undifferentiated 
human neural crest cell lines, already characterized by my group previously, I would like 
to have the possibility to establish new cell lines (see below). These could be infected 
with a lentiviral vector that will vehicle the over-expression of activated BRAF or NRAS, 
to test if potentiation of the RAS pathway is sufficient to drive phenotypic transformation 
of these cells, or to alter their response to the defined factors that drive melanocytic 
differentiation in vitro. BrdU incorporation could allow the comparison of proliferation 
rates between experimental and mock-transfected cultures.  

In collaboration with Alain Taieb‟s group in Bordeaux, we have long hoped to make 
three-dimensional epidermal reconstructs in order to examine the histology of the 
distribution of these constitutively active BRAF/NRAS-expressing melanocytes derived 
from our cultures as compared to normally induced melanocytes or naturally occurring 
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nevomelanocytes. Their proliferative response to MC1R binding or inactivation will also 
be tested, as polymorphisms in this modifier gene may be involved in the severity of 
LCMN phenotype (Kinsler et al., personal communication and (Krengel et al. 2011)). 
Finally, we would like to transplant the four different cell types (NC cells induced to 
become melanocytes, the same with activated BRAF or NRAS, and nevocytes) into 
chicken embryos to characterize and compare their migratory and proliferative behaviour 
in vivo. 

Meanwhile, electroporation of activated KIT receptor, upstream of the MAPK signalling 
pathway among other options, can be carried out directly into prospective neural crest 
cells in the chicken embryo. This may render them more sensitive to stochastic events 
that favor melanocytosis, similar to the mitfa:BRAF(V600E) zebrafish. In order to 
provoke such events artificially, we will locally transfect the surface ectoderm or the 
forebrain with either the secreted or membrane-bound isoforms of KITL, which may have 
different biological activity (Paulhe et al. 2009). In these ways we shall try to develop an 
animal model of LCMN and/or NCM in which to better characterize the process of 
nevogenesis and assess eventual therapies. 

RELATED ARTICLES: 

Krengel S, Breuninger H, Beckwith M, Etchevers HC. (2011) Meeting report from the 
2011 International Expert Meeting on Large Congenital Melanocytic Nevi and 
Neurocutaneous Melanocytosis, Tübingen. Pigment Cell Melanoma Res. Accepted 
manuscript online: 15 Jun 2011, doi: 10.1111/j.1755-148X.2011.00875.x 

Reyes-Mùgica M, Beckwith M, Etchevers HC. (2011) Etiology of congenital 
melanocytic nevi and related conditions. In: Nevogenesis (Practical Clinical Medicine 
series) eds. A. Marghoob, J. Grinchik, A. Scope and S. Dusza. Springer, New York. 

 

CONSTITUTION OF HUMAN TISSUE BIOLOGICAL RESOURCES 

In the near future, I will begin the process of building two distinct biobanks. The first is 
underway with respect to DNA derived from the blood of CMN patients and their parents, 
but it is under an authorization dependent on my collaborators at the Necker Children‟s 
Hospital and its ISO9001-approved DNA bank. Given that we have similarly excellent 
facilities in Marseille, that this city is a major regional center for pediatric surgery of 
large/giant CMN, and I have the agreement of Nathalie Dugardin to participate in this 
tissue banking, it will be ideal to simultaneously collect and then compare constitutional 
DNA from the blood of affected children and their parents, and the somatic DNA derived 
from the surgical samples. 

The second biobank will be a new human embryo collection, once the logistical details 
have been examined, to mirror that of Toulouse and perhaps complement the dwindling 
resources at the Necker Hospital. Ultimately, I would like to see the establishment of a 
permanent service platform from which it is possible to provide an informed, functional 
characterization of developmental genes in human tissues that is so often needed to 
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understand the phenotypes of certain gene mutations (Ostrer, Wilson, and Hanley 2006). 
Histological sections appropriate for spatiotemporal localization, but also frozen, cleanly 
microdissected tissues appropriate for chromatin immunoprecipitation or the isolation of 
nucleic acids and proteins for comparative analyses, will all constitute a precious 
commodity for my research group and collaborators, but I also aspire to have this become 
a self-sustaining resource over the long term. 
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INTRODUCTION

After neurulation, the cells of the vertebrate central nervous
system proliferate extensively as they organize into
functionally and morphologically distinct regions. The
forebrain, derived from the embryonic prosencephalic vesicle,
is structurally subdivided into (1) the diencephalon, yielding
the eyes, optic nerves and chiasm, thalamus, hypothalamus and
neurohypophysis, and (2) the telencephalon, essentially
composed of the olfactory bulbs and cerebral hemispheres.
Among chordates, the paired cerebral hemispheres are a
vertebrate-specific evolutionary development. A fate map of
the early anterior neural plate, constructed by the quail-chick
chimera technique (Couly and Le Douarin, 1985, 1987), shows
that, in birds, the presumptive territories of the cerebral
hemispheres are located in two anterolateral areas adjacent to
the neural folds. In contrast, the ventral diencephalic areas
destined to yield the unique hypothalamus, posthypophysis and
optic chiasm are found medially, separating the anlagen of the
eyes; the territory of the adenohypophysis is located in the
rostral transverse neural fold. The dorsal diencephalon,
including the epiphysis, arises from the caudally adjacent
region. Cephalic neural crest cells (NCC) emigrate from the
fused neural folds caudal to the epiphysis, from neural plate

levels corresponding to the presumptive regions of the
posterior diencephalon, mesencephalon and rhombencephalon
(Fig. 1A; c.f. Couly and Le Douarin, 1987). Similar
organization of the anterior neural plate appears to be
conserved, with minor variations, in other vertebrate classes
(reviewed in Rubenstein et al., 1998).

Following the mediodorsal closure of the neural tube, the
eyes and telencephalon are sites of particularly intense growth.
This cell proliferation leads to the rostral protrusion of first the
eyes and then the cerebral hemispheres beyond the anterior end
of the notochord and prechordal plate (e.g. Couly and Le
Douarin, 1988; Shimamura et al., 1995).

Forebrain growth is accompanied by the concomitant
development of the meninges, membranes surrounding the
central nervous system, which comprise an outer dura mater
and an inner leptomeninx (lepto-, thin). The leptomeningeal
matrix is initially composed of mesenchymal NCC and a
primitive vascular net of endothelial cells. Johnston (1966) first
observed a potential contribution of NCC to the forebrain
meninges, using a short-lived radioactive tracer. Subsequently,
systematic labeling of defined regions of the cephalic neural
folds, using the quail-chick chimera system, demonstrated that
not only each layer of the forebrain meninges (Fig. 1B) but also
the facial skeleton, frontal and parietal bones, and overlying
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The prosencephalon, or embryonic forebrain, grows within
a mesenchymal matrix of local paraxial mesoderm and of
neural crest cells (NCC) derived from the posterior
diencephalon and mesencephalon. Part of this NCC
population forms the outer wall of capillaries within the
prosencephalic leptomeninges and neuroepithelium itself.
The surgical removal of NCC from the anterior head of
chick embryos leads to massive cell death within the
forebrain neuroepithelium during an interval that precedes
its vascularization by at least 36 hours. During this critical
period, a mesenchymal layer made up of intermingled
mesodermal cells and NCC surround the neuroepithelium.
This layer is not formed after anterior cephalic NCC
ablation. The neuroepithelium then undergoes massive
apoptosis. Cyclopia ensues after forebrain deterioration
and absence of intervening frontonasal bud derivatives.
The deleterious effect of ablation of the anterior NC cannot

be interpreted as a deficit in vascularization because it
takes place well before the time when blood vessels start to
invade the neuroepithelium. Thus the mesenchymal layer
itself exerts a trophic effect on the prosencephalic
neuroepithelium. In an assay to rescue the operated
phenotype, we found that the rhombencephalic but not the
truncal NC can successfully replace the diencephalic and
mesencephalic NC. Moreover, any region of the paraxial
cephalic mesoderm can replace NCC in their dual function:
in their early trophic effect and in providing pericytes to
the forebrain meningeal blood vessels. The assumption of
these roles by the cephalic neural crest may have been
instrumental in the rostral expansion of the vertebrate
forebrain over the course of evolution. 

Key words: Pericyte, Telencephalon, Vascularization, Neural crest,
Meninges, Forebrain, Chimera, Chick, Quail
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dermis originate from the cephalic neural crest (Le Lièvre and
Le Douarin, 1975; Couly and Le Douarin, 1987; Couly et al.,
1993). The NC contribution to the leptomeninx includes
pericytes and connective tissue cells (H. C. E., G. C. and N.
M. Le D., unpublished data), but excludes the endothelial cells,
which arise from a small territory of the anterior paraxial
mesoderm within the head fold, adjacent to the prosencephalon
(Couly et al., 1995).

Thus, the cephalic NCC penetrate the forebrain
neuroepithelium together with vascular buds made up of
endothelial cells. This double origin of the leptomeninx from
the NC and paraxial mesoderm is exclusively found in the
forebrain; in the rest of the central nervous system (CNS), the
meninges are entirely of mesodermal origin (Le Lièvre, 1976;
Couly et al., 1992).

Unlike pericytes, which can be either of neural crest or
mesodermal origin, blood vessel endothelial cells of both the
head and body are strictly mesodermal in origin (reviewed in
Le Douarin, 1982). The blood vessel endothelium segregates
from other cephalic mesodermal derivatives as early as the
head-fold stage, as seen by the precocious expression of a
tyrosine kinase receptor to the vascular endothelium growth

factor (VEGF), designated as VEGFR2 (Eichmann et al.,
1993). VEGFR2-expressing cells give rise to the endothelial
walls of blood vessels, which form the perineural vascular
plexus of the developing leptomeninges in the head (Eichmann
et al., 1993). 

The coincidence of meningeal construction with the initial
phase of forebrain growth led to the present investigation,
aimed at exploring how the anterior cephalic NCC might
participate in the development of the forebrain. Strikingly, after
removal of the posterior diencephalic and mesencephalic
neural folds, the neuroepithelium of the entire future forebrain
underwent apoptosis within 1 day following closure of the
anterior neural tube, although the telencephalic neural folds
had been left intact. Cell death occurred well before the onset
of budding of the bulbs destined to form the telencephalic
cerebral hemispheres. The ventral diencephalon and retinae
were not included in this degenerative process because ectopic
migration and proliferation of NCC populations caudal to the
excised territory partially compensated for the rostral
deficiency. Embryos subjected to neural fold ablation became
cyclopic, while the mesencephalon and a variable extent of the
caudal and ventral diencephalon became in turn the rostralmost
portion of the brain.

The timing of forebrain apoptosis led to the conclusion that
the presence of NC-derived mesenchyme is necessary for the
survival and growth of the prosencephalic neuroepithelium
during a phase preceding the onset of its vascularization by at
least 36 hours. NCC transplanted heterotopically from the level
of the rhombencephalon, but not the trunk, can compensate for
the effects of anterior neural fold ablations. The grafted
compensatory cells later differentiate into rostral head-specific
derivatives such as meningeal and intraencephalic pericytes.
The entire cephalic NC is therefore capable of participating
together with endothelial cells to build the meninges. In normal
development, however, only the rostral population does so.
This emphasizes that the paraxial mesodermal population near
the prosencephalon behaves differently from that of the rest of
the head, since on its own it is not capable of constructing
forebrain meninges.

In all other parts of the CNS, the paraxial mesoderm ensures
the construction of the leptomeninx. The reason for which it is
not so for the anterior brain may be because the amount of
paraprosencephalic mesoderm is scanty during forebrain
expansion. To compensate this deficit of mesodermal cells,
NCC take over the production of pericytes and other connective
tissue in this area. In fact, NCC have already been shown to
play this role in the construction of the skull around the
forebrain and in forming the dermis in the facial and forehead
areas.

We have thus tested the capacity of various types of
mesoderm to replace the anterior NC and to form a complete
leptomeninx, which permits the survival and development of
the cerebral hemispheres. When added to neural fold-ablated
embryos, any level of the paraxial mesoderm (but not trunk
lateral plate mesoderm) can replace the NCC to partially or
fully maintain viability in the forebrain neuroepithelium.
Grafted paraxial mesoderm differentiates into both endothelial
cells and pericytes under these circumstances. Our results thus
indicate that it is the presence of a primitive leptomeninx that
is needed for the survival and subsequent growth of the
developing prosencephalon. 
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Fig. 1. (A) Fate map of the anterior neural plate. Adapted from
Couly et al. (1987, 1988). The paired territories of the presumptive
telencephalon lie in the lateral neural plate, dorsal to the future
anterior diencephalon and rostral to neural crest-producing neural
folds (blue). (B) Anatomy of the layers of the late embryonic head.
Blue layers correspond to derivatives of the neural crest surrounding
the anterior brain. The meninges (dura mater, arachnoid and pia
mater) enclose the entire central nervous system (CNS). The pia
mater continuously surrounds all of the circumconvolutions of the
CNS and isolates ingressing arachnoidal blood vessels from the
neuroepithelium. It is a constituent of the blood-brain barrier. The
subarachnoid space, well-defined in humans, is obscured in the
chicken. The term ‘leptomeninx’, employed in the text, thus refers to
both the arachnoid and pial layers of the meninges.
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MATERIALS AND METHODS

Operations
Chimeras were constructed between quail and chick embryos by
grafting either mesoderm or neural folds from the rhombencephalic
or truncal levels of stage-matched quail donors to the prosencephalic
area of chick hosts. These are described below and schematized in
Fig. 2. Gallus gallus (JA57 line, Institut de Sélection Animale, Lyon,
France) and Coturnix coturnix japonica eggs were incubated for
approximately 30 hours to obtain embryos from between the 2- and
5-somite stage, stage 7 to 8 of Hamburger and Hamilton (1951, HH7-
8), or between the 7- and 10-somite stage, HH9-10 for late controls.

The fate maps of the neural folds constructed by Couly et al. (1993)
and Grapin-Botton et al. (1995) were used to define the regions
corresponding respectively to the telencephalon, diencephalon,
mesencephalon and first rhombomere (r1) at the stage of the
operation. The length of each presumptive area was then determined
in a case-specific manner by using an ocular micrometer; the anterior
extremity of the embryo and the anterior limit of the first somite pair
were chosen as fixed reference points. Host embryos were visualized
by injection under the blastoderm of 5% India ink in PBS, or in
Tyrode’s solution, supplemented with antibiotics (Gibco). Embryos
were subsequently fixed at a range of times from 6 hours after the
operation to embryonic day 9 (E9).

Experiment 1: neural fold ablations
The cephalic neural folds release NCC from the mid-diencephalic
level caudally (Couly and Le Douarin, 1987). Anterior to this level,
which corresponds to the site of the prospective epiphysis, the neural
folds remain epithelial. The effects of the removal of the entire pool
of NCC that invest the anterior head were examined in this group of
experiments. The neural folds of the posterior diencephalon,
mesencephalon and rhombomere 1 (r1) (Experiment 1a, 1d), or the
posterior diencephalic and mesencephalic neural folds alone
(Experiment 1b, 1c), were ablated by extirpation with tungsten
scalpels. Neural folds were removed either bilaterally (Experiments
1a, 1b, 1d) or unilaterally (Experiment 1c). To confirm that none
of these ablations included the presumptive territory of the
telencephalon, a length of neural folds including the levels of posterior
diencephalon, mesencephalon and r1 was replaced bilaterally with the
equivalent tissue from stage-matched quail donors (Experiment 1d).
In Experiment 1e, similar bilateral neural fold ablations to Experiment
1a were made at HH9-10, after NCC emigration had begun.

Experiment 2: capacity of r1 and posterior neural folds to
compensate for removal of the anterior source of NCC
This experimental series was aimed at testing the capacity of NCC
from posterior axial levels to replace the rostral cephalic NCC. Three
types of experiments were performed, in all of which the neural folds
from the posterior diencephalon, mesencephalon and r1 were removed
bilaterally. For Experiment 2a, the r1 segment was replaced bilaterally
by its quail counterpart, leaving the posterior diencephalon and
mesencephalon without neural folds. In Experiment 2b, the entire
length of the ablation was replaced by unilateral or bilateral grafts of
neural folds corresponding to r4 through r8 (limit between somite
pairs 4 and 5). The same length of neural folds from the unsegmented
trunk level of quail donors, at stages ranging from 10 to 17 somites,
was grafted bilaterally in Experiment 2c. 

Experiment 3: cephalic mesoderm grafts
The paraxial mesoderm adjacent to the presumptive ventrolateral
diencephalon (area C of Couly et al., 1995; area 5 of Couly et al.,
1992) was exposed by surgical removal of the ectoderm from quail
donors at 2- to 5-somite stages. In order to test its endogenous capacity
to give rise to pericytes, this ‘paraprosencephalic’ mesodermal
population was removed by means of a Pasteur pipette pulled to a
diameter of approximately 80 µm, and transferred to stage-matched

chick hosts in which the homotopic mesenchyme had been disrupted
(Experiment 3a). In another experiment, the same graft was placed
heterotopically at the level of the mesencephalon (Experiment 3b).

Experiment 4: mesodermal grafts after neural fold ablations
Bilateral neural fold ablations were performed as described in
Experiment 1a on chick hosts. Next, paraxial mesoderm from
adjacent to the ventrolateral diencephalon (Experiment 4a,
‘paraprosencephalic’ mesoderm) or lateral mesencephalon
(Experiment 4b, ‘paramesencephalic’ mesoderm) was surgically
removed from quail donors and grafted into the chick host dorsally,
and secured under adjacent rostral ectoderm. Paraprosencephalic and
paramesencephalic mesoderm correspond respectively to areas 5 and
3 of Couly et al. (1992) or areas C and D of Couly et al. (1995). In
Experiments 4c and 4d, large pieces of trunk mesoderm were isolated
from 10- to 17-somite-stage quail donors in the non-segmented region
and cleaned of surrounding tissues (including ectoderm) by means of
1× pancreatin (Gibco) in PBS. Then grafts of approximately 150×300
µm were cut from paraxial (Experiment 4c) or lateral plate
(Experiment 4d) mesoderm for transfer to hosts as above.

Immunohistochemistry
Three monoclonal antibodies (mAb) were used: QCPN (anti-quail,
Developmental Studies Hybridoma Bank; undiluted hybridoma
supernatant of IgG1 isotype), MB1/QH1 (anti-quail endothelium and
white blood cells, Péault et al., 1983, and Pardanaud et al., 1987; 1:1500
dilution of ascites fluid of IgM isotype), and 1A4 (anti-smooth muscle
actin, Sigma; 1:400 dilution of ascites fluid of IgG2a isotype). Embryos
were processed as described by Catala et al. (1996), using appropriate
goat secondary antibodies conjugated to alkaline phosphatase (AP) or
horseradish peroxidase (HRP). The chromogenic reaction for AP was
performed using the Vector AP substrate kit III according to
manufacturer’s instructions; for HRP, 0.1 mg/ml diaminobenzidine
(Sigma) and 0.005% H2O2 in PBS were used. In triple-stained sections,
slides were bathed in 0.1 M glycine, pH 2.2 after the first AP reaction,
before applying the next primary antibody and another AP-conjugated
secondary antibody. Under these circumstances, the second AP-
conjugated immunocomplex was revealed with Fast Red substrate
tablets (Sigma). Sections were generally counterstained in Gill’s
hematoxylin solution and observed under a Leica light microscope.

Cell death and proliferation
29 embryos from Experiment 3a were harvested at HH19. All were
soaked in Nile blue-containing Pannett and Compton’s solution (Jeffs
and Osmond, 1992) to examine cell death in toto, and photographed
while the embryos were still alive. After paraffin sections were cut at
5 µm and rehydrated, the TUNEL reaction was carried out on 23
embryos according to the instructions in the kit by Boehringer
Mannheim, using 0.1 mg/ml diaminobenzidine, 0.005% H2O2 in PBS
as the chromogenic substrate for localization of cell death.

In situ hybridization
Probes were synthesized from linearized template plasmid for chicken
Hoxa3 (a kind gift of Dr R. Krumlauf). Hoxa3 riboprobe
incorporating 35S-UTP (Amersham) were applied to sections of
embryos fixed in Carnoy’s solution, pretreated as described by
Eichmann et al. (1993). Rinses were performed according to
Wilkinson and Nieto (1993). Slides were dipped in 1:1 water/Kodak
NTB-2 photographic emulsion, developed 10 days later in Kodak D-
19 and counterstained with Gill’s hematoxylin. 

RESULTS

Gross anatomy of the head following the partial
ablation of cephalic neural folds
We first examined the effects of ablation of the neural folds
from which NCC emigrate to participate in the telencephalic
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and diencephalic meninges (Experiment 1). These correspond
to the neural folds of the future diencephalon, caudal to the
level of the epiphysis, and the mesencephalon (Couly et al.,
1987). 

In Experiment 1a (Fig. 2), a length of neural folds including
those of the posterior diencephalon, mesencephalon and the
first rhombomere (r1) was removed bilaterally (Fig. 3A-C). As

a result, the telencephalon and dorsal diencephalon of operated
embryos were strikingly absent in 37/37 cases observed from
embryonic day (E)3 on (E3, n=26; E4, n=1; E5, n=2; E6, n=1;
E7, n=3; E8, n=4). The interocular distance was visibly
reduced in 14/24 embryos at E2 (HH15-HH18). This
phenotype was always accompanied by the severe reduction or
absence of the frontonasal bud, resulting in various degrees of
fusion of the optic cups going from synophthalmia with
associated hypotelorism (Fig. 3H-J) to complete cyclopia (Fig.
3D-G). In operated embryos, the two independent retinal
domains had converged after formation, but the eyes shared a
medial lens and orbit (Fig. 3F). Oculomotor muscles of the
rectus medialis were equally absent in cyclopic embryos.
While the cerebral hemispheres were never present, the size of
the ventral prosencephalon varied. In many animals, the optic
chiasm, hypothalamus and neurohypophysis were present. In
extreme cases (n=6 out of 37 embryos at E3-E8), the
diencephalon was reduced to a stub with a recognizable
neurohypophysis (Fig. 3F). The adenohypophysis was always
formed as well. The volume of the mesencephalic ventricle
varied, but the morphology and neuronal lamination of the
optic tecta appeared essentially normal (Fig. 3F). 

Experiment 1b consisted of a similar ablation that did not
include the neural folds of r1. In 4 out of 7 cases, we saw the
same severe deficiencies as when the ablation included the
neural folds of r1. However, normal external head morphology
was observed in 3 out of 7 embryos between E4 and E7 (not
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Fig. 2. Schematic representation of the experimental strategy. The
number of cases for each type of experiment, and their ages at
harvest, are indicated next to a diagram illustrating the manipulation
or graft. Host embryos were operated at HH7-8 unless otherwise
indicated. Experiment 1a: ablation of posterior diencephalic,
mesencephalic and first rhombomeric (r1) neural folds (nf).
Experiment 1b: ablation of posterior di- and mesencephalic neural
folds alone. Experiment 1c: unilateral ablation of posterior di- and
mesencephalic neural fold. Experiment 1d: homotopic, bilateral
replacement of posterior di- and mesencephalic neural folds of chick
with quail equivalent. Experiment 1e: ablation of posterior di-,
mesencephalic and r1 neural folds in HH9-10 embryos, after NCC
migration had begun. Experiment 2a: homotopic, bilateral
replacement of r1 neural folds of chick with quail equivalent, after
ablation of posterior diencephalic, mesencephalic and r1 neural folds
in host. Experiment 2b: heterotopic, bilateral replacement of
posterior di-, mesencephalic and r1 neural folds of chick with a
length of quail neural folds corresponding to r4-r8. Experiment 2c:
heterotopic, bilateral replacement of posterior di-, mesencephalic and
r1 neural folds of chick with a length of quail neural folds
corresponding to unsegmented somitic levels of donors at HH10-12.
Experiment 3a: homotopic graft of paraprosencephalic mesoderm
from quail to chick. Experiment 3b: heterotopic graft of
paraprosencephalic mesoderm from quail to chick at level of
mesencephalon. Experiment 4a: addition of paraprosencephalic
mesoderm from quail to chick in which posterior diencephalic,
mesencephalic and r1 neural folds had been previously ablated.
Experiment 4b: addition of paramesencephalic mesoderm from quail
to chick in which posterior di-, mesencephalic and r1 neural folds
had been previously ablated. Experiment 4c: addition of trunk-level
paraxial mesoderm from HH10-12 quail to chick in which posterior
di-, mesencephalic and r1 neural folds had been previously ablated.
Experiment 4d: addition of trunk-level lateral plate mesoderm from
HH10-12 quail to chick in which posterior di-, mesencephalic and r1
neural folds had been previously ablated.
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shown). In these cases, the telencephalon, though present, was
reduced in size compared to stage-matched control embryos. 

In order to see that the effects of neural fold ablation were
indeed due to the NCC, three control experiments were
performed (not shown). First, unilateral neural fold ablations
(Experiment 1c, Fig. 2) did not lead to significant
morphological consequences in any of 5 operated embryos,
through contralateral NC compensation. Second, bilateral
replacement of the ablated tissue in 3 embryos (Experiment 1d,
Fig. 2) with similarly excised neural folds from stage-matched
quails, confirmed that the normally formed telencephalon and
anterior diencephalon were of host origin when examined at
E4 and E8, although the meninges were graft-derived. Third,
bilateral ablation of the dorsal neural tube, including the neural
folds, from embryos in which NCC migration had previously
begun (Experiment 1e, Fig. 2) led to the maintenance of
telencephalic cerebral hemispheres in all 8 embryos examined
at E4 and E5.

Removal of the anterior
neural folds prior to NCC
emigration thus severely
hampers the development of
the telencephalon, the dorsal
diencephalon, the frontonasal
bud and the anterior part of
the ventral diencephalon,
while not affecting that of the
eyes. As a consequence of the
defect in telencephalic and
frontonasal development, the
two eye fields tend to fuse at
the midline, generating
various degrees of cyclopia.

Defective forebrain
development is a result
of massive cell death in
the telencephalic and
diencephalic
neuroepithelium
Cell death was examined in
toto, in control embryos and
after bilateral neural fold
ablations (Experiment 1a),
prior to fixation at HH15
(E2), HH18 (late E2) and
HH19 (early E3). Control
embryos (n=8) took up Nile
blue sulfate, showing cell
death concentrated in the
ventral optic lens (Fig. 4A,G,
arrows) and nasal epithelium
(Fig. 4G, arrowhead).
However, a prominent blue
zone of cell death was
apparent in the
prosencephalon at HH15
(Fig. 4D, arrow) or localized
in its protuberant remnant
below the eyes at HH18-19
(Fig. 4J, arrow). The TUNEL

technique confirmed numerous apoptotic figures in sections
through the same areas (HH15, n=6/6; HH18-19, n=15/17). In
unoperated embryos, apoptosis within the prosencephalon was
sparse at all ages with the exception of a dense, localized region
of the future olfactory neuroepithelium (Fig. 4C at HH15; Fig.
4I at HH18). Stage-matched operated embryos had a zone of
apoptosis which included and extended beyond these areas to
comprise most of the prosencephalic vesicle (Fig. 4F). The
telencephalon is substantially reduced by the third embryonic
day (Fig. 4J,K), and what is left is undergoing apoptosis (Fig.
4L). In unoperated embryos, NCC and mesodermal cells finish
surrounding the anterior encephalic vesicle and form the
leptomeninges at HH15, while vascular invasion of the
telencephalic neuroepithelium by NC-supported capillaries
normally begins at HH24 (H. C. E., G. C. and N. M. Le D.,
unpublished data). In the absence of the anterior NC
population, prosencephalic cell death is underway on HH15
(Fig. 4E) and the prospective telencephalon already eliminated

Fig. 3. Ablation of cephalic NC causes the subsequent absence of forebrain territories (Experiment 1).
Embryo before (A) and after operation (B, between arrowheads) at 5-somite stage. The right neural fold
has been ablated but is still being detached on the left (arrow). (C) Transverse section taken through the
level of operation of same embryo, fixed 2 hours after neural fold ablation (arrowheads). (D,E) A
synophthalmic embryo at E8 in side and frontal view (h, heart). (F) In a parasagittal section from the same
embryo, the fused eyes (e) are directly apposed to the remnant of the diencephalon (di), and the entire
telencephalon is missing. The retinal fusion interface is apparent; part of the neurohypophysis (nh) is
visible (mes, mesencephalon, rh, rhombencephalon, ph, pharynx). (G-J) Examples of facial malformations
range from complete cyclopia and reduction of naso-fronto-maxillary structures (G) to synophthalmia (H,
I) to hypotelorism (J). Bars: A,B,F, 0.5 mm; C, 100 µm; D,E,G-J, 1 mm.
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by HH19. Apoptosis thus begins up to 58 hours before normal
vascularization of the forebrain and is complete 22 hours later.

Because the presumptive telencephalic territory itself is not
included in the neural fold ablations of Experiment 1, damage
to it cannot be responsible for the telencephalic deficiency and
cell death observed. One hypothesis to explain the elimination
of the forebrain in absence of NCC is that their proximity is
critical for survival and further development of the forebrain.
We then explored whether other cell populations also had the
capacity to restore telencephalic growth in place of the
endogenous NC.

NCC from r1 can migrate rostrally and partly rescue
the survival of the telencephalon
When only the diencephalic and mesencephalic neural
folds were removed in Experiment 1b, nearly half of the
embryos retained diencephalic and some telencephalic
tissue. One would expect that these regions would be
absent, since the diencephalic and mesencephalic neural
crest give rise to meninges that cover the entire
diencephalon and telencephalon. Based on previous results
(see Fig. 7 of Couly et al., 1996), we postulated that the
host NC could be responsible for a partial compensatory
effect through rostral migration. Experiment 2a was
designed to see whether NCC from r1, which does not
normally make meningeal pericytes, would be able to
migrate rostrally in the absence of anterior NCC. A length

of neural folds including those of the posterior diencephalon,
mesencephalon and r1 was ablated as in Experiment 1a, and
the neural folds of r1 were replaced bilaterally by their quail
equivalent (Figs 2, 5A). Out of the 6 embryos observed, 3
embryos retained some telencephalic neuroepithelium (E3,
n=1; E6, n=1; E8, n=1; Fig. 5D), while 3 embryos lacked the
entire telencephalon (E3, n=1; E6, n=2; Fig. 5B). In the
embryos examined at E3, quail cells were found to have
migrated into the mesenchyme ventral and anterior to the eyes
(not shown). At E6 and E8, grafted cells from r1 became
pericytes within either the residual diencephalon (Fig. 5C) or
the diencephalon and telencephalon (Fig. 5E,F). These cells
did not express the antigen for MB1/QH1, a mAb recognizing
quail endothelial and blood cells (Fig. 5C), but did contain
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Fig. 4. The prosencephalon undergoes progressive apoptosis after
removal of the diencephalic and mesencephalic NC (Experiment
1). (A) Unoperated embryo stained with Nile blue, HH15. A
stripe of normal cell death is indicated in the ventral eye and
prosencephalon (arrow). (B) Parasagittal section through the
embryo in A, after the TUNEL reaction. The region magnified in
C is indicated. (C) Natural apoptosis occurs in a restricted part of
the ventral prosencephalon. (D) Operated embryo at HH15, Nile
blue. The eyes are closer together and a large zone of apoptosis is
visible (arrow). Two normal domains of cell death in the
rhombencephalon are indicated with arrowheads. (E) Parasagittal
section through the embryo in D, after the TUNEL reaction. The
region magnified in F is indicated, and the two zones of normal
hindbrain apoptosis shown with arrowheads. (F) Most of the
prosencephalon is undergoing vigorous apoptosis at this stage,
although dying cells have not yet been cleared (compare brain
profiles in B and E). (G) Unoperated embryo stained with Nile
blue, HH18. Normal cell death is present in the optic lens (arrow)
and nasal epithelium (arrowhead), as well as in scattered
ectodermal cells. (H) Parasagittal section through the embryo in
G, after the TUNEL reaction. The region magnified in I is
indicated. (I) A restricted zone of the prospective olfactory
neuroepithelium is undergoing apoptosis, but cell death is sparse
elsewhere in the forebrain. (J) Operated embryo at HH18, Nile
blue. The eyes are nearly synophthalmic in this case, and a dying
remnant of the forebrain is indicated with an arrow.
(K) Parasagittal section through the embryo in J, after the
TUNEL reaction. The region magnified in L is indicated. Note
that the caudal diencephalon is mostly intact in this embryo, but
the telencephalon is severely reduced (arrowhead). Many cells
have already been cleared dorsally (between open arrowheads;
compare profiles in H and K). (L) The remnant of telencephalon
is undergoing widespread cell death. Pros, prosencephalon; tel,
telencephalon; di, diencephalon; mes, mesencephalon; rh,
rhombencephalon; asterisk, eye. Bars: A,D,G,J, 0.5 mm;
B,E,H,K, 100 µm; C,F,I,L, 20 µm.
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alpha smooth muscle actin, characteristic of pericytes (Fig.
5E,F). The majority of NCC from r1 remained ventrolateral to
the eyes, participating in the first branchial arch, mesenchymal
cells of the adenohypophysis and some ventrolateral periocular
mesenchyme. 

NCC from r1 normally migrate into the first branchial arch
and give rise to mandibular and hyoid components (Couly et
al., 1996; Köntges and Lumsden, 1996). We show here that
when the neural folds anterior to r1 are removed, NCC from
r1 are capable of a significant rostral migratory diversion, into
areas normally colonized by NCC from diencephalic and
mesencephalic neural folds, where they partially compensate
for the ablation and rescue forebrain tissue. Such
compensation attenuates to varying degrees the
phenotype observed after removal of the anterior
cephalic neural crest.

NCC from the posterior
rhombencephalon can substitute for
anterior populations and rescue
telencephalic survival
In a second step, we tested the capacity of
posterior rhombencephalic NCC to prevent
forebrain cell death. NCC from rhombomeres 4
to 8, like the neuroepithelium from which they
derive, express Hox genes of the first four
paralogue groups when migrating in situ. They
normally do not participate in the meninges of the
hindbrain or any other region, but do migrate into
all branchial arches except for the first arch
(Couly et al., 1996). In Experiment 2b (Fig. 2),
the neural fold corresponding to r4 to r8 included
(i.e. from the r3/r4 limit to the level of the fourth
somite), was transplanted unilaterally (E2, n=9;
E3, n=2; E5, n=2; E6, n=8; E8, n=1) or bilaterally
(E2, n=3; E3, n=1; E5, n=2; E6, n=2; E7, n=1)
from quail donors into chick hosts after an
ablation including the neural folds of the
posterior diencephalon, mesencephalon and r1
(Fig. 6A). The grafted neural fold integrated
seamlessly into the host, and embryos formed
normally (Fig. 6B). The heterotopic NCC
contributed to each of the derivative cell types
described for the homotopic anterior NCC
population: meningeal pericytes (Fig. 6C),
frontonasal bud cartilage, dermis, periocular
structures and connective tissue of the
oculomotor muscles and adenohypophysis.
Pericytes derived from the grafted NCC were
found uniquely within the prosencephalon and its
meninges. Nonetheless, some of the posterior
rhombomeric crest population retained the
expression of Hoxa3 in ectopic locations such as
the mesenchyme surrounding Rathke’s pouch
and the ventral diencephalon as well as the first
branchial arch (Fig. 6D,E). Interestingly, Hoxa3
was not visible in the meninges or pericytes that
colonized the forebrain region (not shown).
These grafted cells apparently downregulated
Hoxa3 expression after having reached the
anterior neuroepithelium.

In Experiment 2c, a length of approximately 450 µm of
neural folds from the unsegmented trunk level of 10- to 17-
somite-stage quail donors was grafted bilaterally into the di-
/mesencephalic region (E4, n=1; E5, n=2). Embryos presented
defects identical to those in which the ablation of the
endogenous neural folds was not followed by any graft (c.f. Le
Douarin et al., 1977). The few migratory cells observed were
sometimes associated with cranial nerve IV (data not shown).

Restoration of prosencephalic development by
mesoderm addition
After bilateral ablation of a length of neural folds

Fig. 5. Partial compensation for the NC deficiency after ablation of diencephalic and
mesencephalic neural folds comes from NCC of the first rhombomere (Experiment
2a). (A) Immediately after operation, at 4-somite stage. The length of the neural fold
ablation is indicated between the arrowheads and bilaterally grafted r1 neural folds
are visible below the ablation. (B) The range of external defects in the 6 embryos
examined resembled that observed after Experiment 1b. This case, shown in slightly
parasagittal section at E6, lacked a telencephalon and was synophthalmic (di,
diencephalon; mes, mesencephalon; rh, rhombencephalon; n, notochord; nh,
neurohypophysis). (C) Grafted cells are found within the diencephalic meninges and
penetrating the neuroepithelium (arrows), in association with blood vessels.
(D) Another case, shown in transverse section at E6, had some telencephalic tissue
(tel) and normally spaced eyes (e). Areas enlarged in E and F are indicated. (E) r1
NCC (blue), when associated with blood vessels, colocalize with alpha-smooth
muscle actin (brown), confirming that they are pericytes. (F) Graft-derived pericytes
are found in the telencephalic meninges and neuroepithelium, although r1 NCC do
not normally participate in meninges. Bars: A, 200 µm, B,D, 0.5 mm; C,E,F, 20 µm.
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corresponding to the posterior diencephalon, mesencephalon
and r1, the endogenous paraxial mesoderm, adjacent to
the ventrolateral prosencephalon at HH7-8 (termed
‘paraprosencephalic’), is not sufficient to support
prosencephalic viability and growth. This might be due either
to the incapacity of this mesodermal area to yield pericytes in
the brain, or to the fact that the number and placement of
mesodermal cells in the paraprosencephalic area do not allow
the production of both endothelial and pericytic cell
populations for the dorsal prosencephalon. 

First, to establish if the paraprosencephalic mesoderm
normally differentiates into pericytes as well as endothelial
cells (Couly et al., 1995), we grafted it from quail donors into
chicken hosts at the prosencephalic level near the neural tube

in addition to the endogenous paraprosencephalic mesoderm
(Experiment 3a, Fig. 2). At HH29 (E6, not shown), grafted
cells participated in the endothelial wall of blood vessels both
in and around the forebrain (n=2). While most quail cells were
MB1/QH1 positive, a few were identified by the mAb 1A4 as
pericytes in blood vessels near the eyes (not shown), although
grafted pericytes were not observed in the brain. When placed
lateral to the mesencephalon (Experiment 3b, Fig. 2), the same
population of cells differentiated only into endothelium, but not
into pericytes, in blood vessels external to the brain (E5, n=1;
E6, n=1; E9, n=1). In conclusion, the paraprosencephalic
mesoderm yields mostly endothelial cells of blood vessels
within and outside of the brain, and virtually no pericytes,
although it does possess the capacity to differentiate into this
cell type. However, it never contributes to the pericytes of the
prosencephalic meningeal or intraencephalic vessels, nor to
pericytes of the mesencephalon when grafted ectopically (also
see Couly et al., 1995). Endogenous pericyte-forming
populations in either location contribute to the blood vessels of
the brain and its meninges, at the expense of the grafted
paraprosencephalic mesoderm.

To remove this competition, in Experiment 4a (Fig. 2), quail
paraprosencephalic mesoderm was grafted above the
dorsal prosencephalon after bilateral ablation of posterior
diencephalic, mesencephalic and r1 neural folds (Fig. 7A). In
5 out of 8 embryos observed at E5, the telencephalon was
restored (Fig. 7B,C). The grafted tissue, localized by QCPN
mAb immunoreactivity, was found adjacent to the
neuroepithelium, and quail cells were visible within the
forebrain tissue and meninges (Fig. 7D) as 1A4 mAb-positive
pericytes and MB1/QH1-positive endothelial cells. In the 3
other embryos, the forebrain had not developed; while the
grafted cells were present within the head mesenchyme, they
were not adjacent to the neuroepithelium. The capacity of the
paraprosencephalic mesoderm to yield pericytes within the
forebrain meninges or parenchyme is thus restricted to
experimental situations where the normal source of forebrain
pericytes (the NC) is lacking and where this mesodermal
population is grafted in a dorsal position over the
neuroepithelium to support its host counterpart.

Paramesencephalic mesoderm was similarly grafted above
the dorsal prosencephalon (Experiment 4b, Fig. 2). During
normal development, this mesodermal population yields all
components of the midbrain leptomeninx, including blood
vessel endothelial cells and pericytes (Couly et al., 1995). It
was therefore interesting to test the capacity of the
paramesencephalic mesoderm to rescue neuroepithelial
survival in the forebrain region and to examine the subsequent
differentation of the grafted cells. In 14/21 embryos, both
telencephalon and diencephalon developed (Fig. 7E).
Localized in the host by the QCPN mAb, the grafted
paramesencephalic mesoderm gave rise to both
intraencephalic endothelial cells and pericytes (Fig. 7F-H).
Vessels were generally chimeric, with host pericytes and
donor endothelial cells (Fig. 7F), donor pericytes and host
endothelial cells, or combinations of both (Fig. 7G,H). Here
too, in successful rescues, the grafted cells were located
dorsally and in contact with the telencephalon. NC-derived
mesenchyme is therefore not the only tissue able to promote
forebrain development.

Lastly, embryos received grafts of the paraxial mesoderm of
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Fig. 6. Heterotopic substitution of the diencephalic and
mesencephalic neural folds by those of the posterior
rhombencephalon leads to respecification of the fate of the grafted
NCC (Experiment 2b). (A) Operated embryo, with neural folds from
the level of r4 to r8 grafted between the arrowheads (corresponding
to the level of the posterior diencephalon, mesencephalon and r1).
(B) The same embryo at E6, with normal forebrain vesicles.
(C) Grafted NCC within the forebrain meninges (blue, arrows) also
make alpha-smooth muscle actin (brown). (D) The ectopic NCC
(brown, QCPN; parasagittal section of embryo in B) retain
expression of the anteroposterior position gene Hoxa3 in
inappropriate locations. (E) In an adjacent section, Hoxa3 expression
in the first branchial arch and around the ventral diencephalon. Di,
diencephalon; m, maxillary arch; ph, pharynx. Bars: A, 200 µm; B, 1
mm; C-E, 50 µm.
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the trunk after NC ablation (Experiment 4c). We observed a
delay in the degeneration of the forebrain neuroepithelium with
respect to embryos having undergone NC ablation without an
additional graft. Both of the 2 cases examined at E3 had normal

prosencephalic morphology (not shown). In contrast, in 4 other
embryos at E5 to E8, the same experiment led to the absence
of telencephalon and dorsal diencephalon, despite the presence
of quail endothelial cells in the head.

The lateral plate mesoderm of the trunk (Experiment 4d) was
unable to rescue telencephalic growth at all at E3 (n=2), E6
(n=1) or E8 (n=1), nor did it differentiate into endothelial cells
or pericytes in this context. Among mesodermal populations,
the mesenchymal paraxial mesoderm of the head is best
capable of replacing the anterior cephalic NCC in order to
maintain viability in the forebrain.

DISCUSSION

The major finding of this work is that after formation of the
primitive encephalic vesicles, in order to survive and grow, the
prosencephalon needs to be surrounded by mesenchymal cells
that are normally derived from the neural folds of the
prospective diencephalon and mesencephalon. These cells
yield the leptomeninges, in cooperation with the anteriormost
region of the cephalic paraxial mesoderm (paraprosencephalic
mesoderm).

The mesodermal component of the forebrain leptomeninx
normally provides the endothelial walls of blood vessels that
penetrate the neuroepithelium (Couly et al., 1995), while the
neural crest component yields accompanying pericytes plus
connective tissue cells. We have shown here that, when the
anterior neural folds are removed from the presumptive level
of the epiphysis down to r2, most of the forebrain undergoes
cell death during a period that precedes the onset of
vascularization by 36 to 58 hours, but which coincides with the
assembly of the perineural vascular network of the forebrain
during normal development. Progressive cell death in the
prospective telencephalon and dorsal diencephalon takes place
during the late second and early third embryonic days (HH15-
19); vascularization would begin within the neuroepithelium of
these areas only on the fourth embryonic day (HH24;
unpublished results). The deleterious effect of ablation of the
anterior NC cannot be interpreted as a deficit in vascularization
because it takes place well before the time when blood vessels
start to invade the neuroepithelium.

The outcome of this early cell death is the elimination of
neuroepithelial territory destined to become the cerebral
hemispheres and rhinencephalon, as well as a variable amount
of the diencephalon, resulting in fusion of the two eyes over
the area normally occupied by the telencephalon. This
phenotype is reminiscent of the organization of the rostral head
of Amphioxus, an invertebrate chordate considered to be the
nearest evolutionary relative to vertebrates. Like the residual
forebrain of the chicken embryo without anterior NCC, the
cerebral vesicle of larval Amphioxus terminates in a number of
unpaired, median structures associated with the vertebrate
diencephalon: an infundibular organ, an epiphysis and a frontal
‘eye’ (Lacalli et al., 1994). Confirming its similarity to the
diencephalon, the anterior end of the Amphioxus cerebral
vesicle expresses a unique Distal-less gene homologue,
reminiscent of the forebrain-restricted neuroepithelial
expression of related vertebrate Dlx genes (Holland et al.,
1996). A homologue to the Drosophila Orthodenticle gene is
also expressed in the cerebral vesicle and frontal eye (Williams

Fig. 7. The addition of paraxial mesoderm from lateral to the
prosencephalon or mesencephalon to anterior NC-ablated embryos
rescues the forebrain (Experiment 4). (A) Operated embryo from
Experiment 4a, from which posterior diencephalic, mesencephalic
and r1 neural folds were removed (between arrowheads) and a graft
of paraprosencephalic mesoderm placed over the prosencephalon
(asterisk). (B) The same embryo at E5, with normal forebrain
vesicles. (C) Parasagittal section of the same embryo, with region
enlarged in D indicated. (D) Triple stain of grafted mesoderm
(QCPN, blue nuclei), pericytes (1A4, brown) and grafted endothelial
cells (MB1/QH1, red) shows that chimeric blood vessels penetrate
the forebrain neuroepithelium, and that grafted cells may become
both endothelial cells and pericytes. (E) Parasagittal section of an E5
embryo from Experiment 4b, grafted with paramesencephalic
mesoderm as above. Vessels magnified in F-H are indicated.
(F) Meningeal blood vessel, with endothelial cells of graft origin
(arrowheads) and pericytes of host origin (arrows). (G) Telencephalic
blood vessel, with endothelial cells of host origin (arrowhead) and
pericytes of graft origin (arrows). (H) Diencephalic blood vessel,
with graft-derived pericytes (arrows) and endothelial cells
(arrowhead) but also host-derived pericytes (open arrow). Tel,
telencephalon; di, diencephalon; mes, mesencephalon; e, eye. Bars:
A, 200 µm; B,C,E, 1 mm; D,F-H, 20 µm.



3542

and Holland, 1996). In both agnathan and gnathostome
vertebrates, NCC that express the related Otx gene(s), derived
from Otx-expressing diencephalon and mesencephalon, fill a
head region that contains the forebrain as well as the first
pharyngeal arch (Tomsa and Langeland, 1999). The removal
of these NCC from the anterior head of the chicken embryo
phenocopies some aspects of a putative ancestral brain
organization. The expansion of the prosencephalic vesicle in
vertebrates is likely to be a direct consequence of the
appearance of the NC cell type and its extension of the vascular
system of the brain, as has been proposed for the skeletogenic
components of the head (Gans and Northcutt, 1983; reviewed
in Kuratani et al., 1997). 

When the anterior neural folds have not been replaced, the
ventral and caudal diencephalon nonetheless survives and
develops to a variable extent. The anterior rhombencephalic
NC (r1) can partially compensate for the ablation of the
diencephalic and mesencephalic NC by extending its migration
cranially. We attempted to rescue the cyclopic phenotype
induced by NC ablation by grafting either rhombencephalic or
truncal NC heterotopically to the site of ablation, or by adding
mesoderm of cephalic and trunk origin to the presumptive
forebrain level. When the rhombencephalic NC is substituted
for the diencephalic and mesencephalic NC, at least one Hox
gene continues to be expressed in some NCC derivatives.
Nonetheless, posterior cephalic NCC have the developmental
potential to maintain forebrain viability like anterior cephalic
NCC, although only the anterior population normally
contributes pericytes to brain meninges and intraencephalic
blood vessels. In contrast to cephalic NCC, the trunk NCC
cannot participate in the formation of the anterior meninges,
nor does it prevent cell death in the developing forebrain. This
population, unlike the cephalic NC, does not normally
participate in the smooth muscle walls of blood vessels or
spinal cord meninges in the body. Its incapacity for alternative
differentiation in the environment of the head (Le Douarin et
al., 1977) extends to its lack of a trophic effect for the forebrain
neuroepithelium. 

When cephalic or somitic paraxial mesoderm is grafted over
the dorsal prosencephalon of neural fold-deprived embryos,
cell death is prevented in the forebrain. This demonstrates that
the environment of the anterior head does not in itself prevent
mesodermal differentiation into pericytes. Under experimental
circumstances, even the paraprosencephalic mesoderm can
provide the meningeal and parenchymal blood vessels with
pericytes, although it does not do so during normal
development. It should be noted that the paraprosencephalic
mesoderm also does not participate in the construction of
meninges when the NC is simply eliminated. Its incapacity
might therefore lie either in cell quantity or in localization.
Endogenous paraprosencephalic mesoderm is located adjacent
to the ventral part of the neuroepithelium (Couly et al., 1993);
in the absence of NCC it fails to spread dorsally to cover the
developing forebrain (H. C. E., G. C. and N. M. Le D.,
unpublished data). A perineural capillary plexus forms only
once endothelial cells derived from the paraprosencephalic
mesoderm surround the prosencephalon after migration in
normal development, or through substitution of the
endogenous anterior NC by dorsal grafts of extra paraxial
mesoderm or any other cephalic NC. In contrast, the local
paramesencephalic mesoderm ensures all meningeal and blood

vessel formation of the midbrain (Couly et al., 1992). During
normal development, diencephalic and mesencephalic NCC
might act as a scaffold to promote the dorsal migration of
paraprosencephalic mesodermal cells so that the expanding
neuroepithelium becomes fully surrounded by the meningeal
anlage.

Our work identifies an important step in neurogenesis: it
follows neural induction and precedes vascularization, and
requires the presence of ‘paraneural’ mesenchymal cells for
growth to proceed. Are the NCC-derived pericytes and
connective cells, or the mesodermally derived endothelial cells,
the necessary component of the forming meninges for the
forebrain? In the absence of NCC, the prosencephalon
perishes, despite the presence of endothelial cells near its
ventral aspect. Pericytes are not necessary for the construction
of vascular plexi from endothelial precursors in vitro (reviewed
in Pepper and Montesano, 1990) or in vivo (Benjamin et al.,
1998). If a proximate vascular plexus was sufficient to maintain
forebrain viability, one would predict that, after anterior NCC
ablations, the ventral telencephalon would persist. It does not.
However, cephalic NCC can be replaced in their trophic
capacity by mesodermal cells. The mixture of mesenchymal
cells, of both mesodermal and NCC origin, of the future
leptomeninges may thus secrete trophic factor(s) necessary for
neuroepithelial viability before the blood supply has been
ensured. Such factor(s) remain to be identified.
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Abstract

We cloned the chick homolog of Xenopus and mouse Frzb-1, a secreted Wnt antagonist and performed in situ hybridisations to determine

the pattern of cFrzb-1 expression in the developing chick embryo. At early stages, cFrzb-1 transcripts are located exclusively in the

ectodermal layer corresponding to the neural plate. The labelling continues in the neural tube, but is always excluded from the ¯oor

plate. cFrzb-1 mRNA is expressed by migrating cephalic and truncal neural crest cells. Later, cFrzb-1 transcripts are found in a subset

of neural crest derivatives such as cephalic cartilage, nerves and spinal ganglia. In addition to ectodermal derivatives, cFrzb-1 transcripts

were also observed in mesodermal derivatives such as vertebral and limb cartilage, the adrenal cortex, the gonads, and a subpopulation of

blood cells. q 1999 Elsevier Science Ireland Ltd. All rights reserved.

Keywords: Frzb-1; Wnt antagonist; Chick embryo; Neurulation; Neural crest; Cartilage

1. Results and discussion

Frzb Frizzled Bone proteins were ®rst identi®ed by a

biochemical approach, as peptides from bovine cartilage

extracts that contained bone inducing activity (Hoang et

al., 1996) and have been now isolated from Xenopus

(Leyns et al., 1997; Wang et al., 1997) and mouse (Leyns

et al., 1997; Mayr et al., 1997). Frzbs are secreted soluble

proteins of approximately 300 amino acids containing a

cysteine-rich domain (CRD) similar to the Wnt-binding

region of the Frizzled transmembrane receptor family

(Moon et al., 1997; Wodarz and Nusse, 1998). Xenopus

Frzb-1 binds Wnt proteins and blocks their signalling,

suggesting a competition for Wnt binding between a recep-

tor and a structurally related soluble antagonist (Leyns et al.,

1997).

We have cloned by PCR a chick homologue of Frzb-1.

The cloned fragment of 138 amino acids comprises most of

the CRD region and is considered to be the Frzb-1 ortholo-

gue because of its high amino acid identity to Xenopus and

mouse Frzb-1 (see Section 2). Chick Frzb-1 shows impor-

tant differences in expression patterns with both its Xenopus

and mouse counterparts.

1.1. cFrzb-1 expression maps to the neural plate

During early neurulation, there is no detection of cFrzb-1

transcripts until the stage Hamburger Hamilton (HH) 42,

when cFrzb-1 transcripts show a restricted expression

pattern in the neural plate (Fig. 1A±F). In contrast, xFrzb-

1 is excluded from the neuroectodermal layer (Leyns et al.,

1997) or mFrzb-1 (Mayr et al., 1997; Leyns et al., 1997;

Hoang et al., 1998) can be found in all three germ layers,

including anterior central nervous system, during develop-

ment. The caudal extension of the neural plate (Fig.

1A,B,F,G,H) is marked by cFrzb-1 expression. Strong

expression at 14 somite-stage marks the medullary cord

(Fig. 1J), which gives rise to the neural tube during second-

ary neurulation (Catala et al., 1995). Strikingly, there is

never any expression in Hensen's node (HN) or in the

HN-derived notochord (No) and ¯oor plate (FP) (Fig.

1A,B,E±G,I,M). In Xenopus the dorsal blastopore lip

(Spemann Organizer) expresses xFrzb-1 at early stages,

becoming gradually restricted to anterior endomesoderm

and prechordal plate, lacking expression in the notochord
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(Leyns et al., 1997). Quail/chick grafting experiments

demonstrated that FP and No share the same embryological

origin in HN (Catala et al., 1996; Teillet et al., 1998). The

expression of cFrzb-1 in the spinal cord but not in the HN

(Fig. 1I) provides molecular con®rmation that the FP and

No arise from the same group of cells (Teillet et al., 1998).
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Fig. 1. Expression pattern of cFrzb-1 during neurulation and neural crest cell migration. Wholemount in situ hybridisation and subsequent histological

analysis. Dorsal views of embryos at HH4- (A), HHS (B), 3 somite stage (ss) (F), 6ss (G), 8ss (K), l4ss (H) and l7ss (N). Vibratome sections of embryos at stage

HH5 (C±E), 8ss (L,M) and l4ss (I,J). HN, Hensen's Node; No, notochord; MC, medullary cord; OpV, optic vesicle; OP, otic placode; OV, otic vesicle. PS,

Primitive streak. Scale bars (A,B,F±H,K,N), 355 mm; (C±E,I,J,L,M), 68 mm.



In addition, the optic vesicles (Fig. 1K) and the otic

placodes (Fig. 1M) express cFrzb-1.

1.2. Neural crest cells express cFrzb-1

cFrzb-1 transcripts are not detected in the most anterior

domain of the neural folds (Fig. 1F, arrowhead), a region

that does not give rise to any neural crest (NC) cells (Couly

and Le Douarin, 1987). At 8 somite-stage, cephalic NC cell

progenitors and NC cells migrating from the midbrain

strongly express cFrzb-1 (Fig. 1K,L). At 17ss-stage, two

streams of rhombencephalic NC cells migrating rostrally

and caudally to the otic vesicle are strongly labelled (Fig.

1N, arrows), like the NC-containing mesenchyme of the

head (Fig. 1N, arrowhead).

1.3. cFrzb-1 transcripts are located in a subset of NC-

derived cell

Within the peripheral nervous system, cFrzb-1 is

expressed in a subpopulation of cells in the spinal ganglia

(Fig. 2A). Since the most intense expression was found in

the dorsal and ventral roots of the spinal nerves (arrow-

heads), which contain many glial cells, we concluded that

cFrzb-1 probe in the ganglia labels essentially glial cells

rather than the neural component. Comparative analysis of

cFrzb-1 transcripts location and HNK1 immunohistochem-

istry (which recognises most of the NC-derivatives) shows

that NC cells of the oculomotor nerves strongly express the

cFrzb-1 gene (Fig. 2B,C). In order to follow the NC cells in

the branchial arches, we replaced cephalic neural folds from
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Fig. 2. Location of cFrzb-1 transcripts in neural crest derivatives. (A) Transverse section of an E6 embryo hybridised with cFrzb-1 probe. (B) Adjacent frontal

head sections at E6 were hybridised with cFrzb-1 probe or (C) incubated with HNK1 antibody. Consecutive frontal sections of HH26 (E5) quail-chick chimera

at the mandibular level (D±G), hybridised with cFrzb-1 probe (D,F). Quail cells, which correspond strictly to NC cells, are revealed using QCPN mAb (E,G).

My, Myotome; NT, neural tube; No, notochord; Re, retina; Ca, cartilage; Mu, muscle. Scales bars (A), 136 mm; (D,E), 340 mm; (B,C,F,G), 68 mm.



4-somites chick embryos with the quail equivalent, using

the QCPN antibody as a quail-speci®c marker. The chick

Frzb-1 probe reacts both with chick and quail tissues. In situ

hybridisation on such chimeras at embryonic day 5 showed

a restricted expression of cFrzb-1 (Fig. 2D) among the

QCPN-positive NC cells invading the branchial arches

(Fig. 2E). The differentiating cartilage (Fig. 2E, high magni-

®cation, 2G) is cFrzb-1 positive (Fig. 2D, high magni®ca-

tion 2F). Muscle cells, which are QCPN-negative because

not derived from the NC (Fig. 2G), do not express cFrzb-1

(Fig. 2F). However, isolated cells in muscle areas are posi-

tive for cFrzb-1 (Fig. 2F, arrowheads). These cells corre-

spond to connective tissue within the muscles which are of

NC origin and are labelled with QCPN (Fig. 2G, arrow-

heads). We concluded that cFrzb-1 is expressed in a wide

range of NC-derivatives.

1.4. cFrzb-1 is also expressed in mesoderm derivatives

cFrzb-1 gene is expressed in the adrenal gland (Fig. 3A).

Precise comparison with HNK1 shows that cFrzb-1 tran-

scripts are located in the adrenal cortex (Fig.3A, arrow-

heads) and not in the adrenal medulla, which is NC-

derived and HNK1-positive (Fig. 3B). In addition, cFrzb-1

transcripts are also detected in the gonads (Fig. 3C) and in a

subpopulation of circulating blood cells (Fig. 3D). More-

over, sclerotomal cells (future vertebral cartilage) surround-

ing myotomes (Fig. 2A, arrow) and notochord (Fig. 2D) are
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Fig. 3. Expression of cFrzb-1 in mesodermal derivatives. Consecutive transverse sections from HH28 (E6) embryo at the level of the adrenal gland, incubated

with cFrzb-1 probe (A) or HNK1 antibody (B). The gonads (C) and a subpopulation of blood cells (D) are positive for cFrzb-1. Distribution of cFrzb-1

transcripts in wings of HH2O (E) and 22 (F) embryos. (G) Wing of stage HH28 embryo (E6) was cut transversally and sections were hybridised with cFrzb-1

probe. AM, adrenal medulla; AC, adrenal cortex; Ao, Aorta. D, dorsal; V, ventral. Scale bars (A,B), 68 mm; (C,D), 34 mm; (E,F), 355 mm; G,136 mm.



positive for cFrz-1. cFrzb-1 mRNA is found from HH19

(E3) in the limb mesenchyme (Fig. 3E,F). In situ hybridisa-

tion on transverse sections along the proximo-distal axis of a

HH28 (E6) wing limb reveals that cFrzb-1 transcripts loca-

lised to the cartilage region (Fig. 3G).

In conclusion, we cloned the chick homolog of the

secreted Wnt-antagonist Frzb-1 gene. Despite the high

sequence conservation, the expression pattern of cFrzb-1

shows differences with its mouse and frog homologues, in

particular during early development.

2. Methods

2.1. Cloning

A partial clone of chick Frzb-1 was isolated by PCR, using

degenerated oligonucleotides located in conserved regions of

xFrzb-1 and mFrzb-1. The cFrzb-1 clone encodes a 138

aminoacid fragment comprising most of the CRD region

(also known as sFRP-3, Wodarz and Nusse, 1998), with 86

and 88% homology to Xenopus and mouse proteins, respec-

tively. The next closest related protein is mouse sFRP-4 (66%

identity). The Genbank accession number is AF153476.

2.2. In situ hybridisation and immunohistochemistry

Embryos were processed for in situ hybridisation to

wholemounts and sections as previously described by

Duprez et al. (1998). NC and quail cells were detected

using HNK-1 and QCPN mAbs, respectively (Developmen-

tal Hybridoma Bank, University of Iowa, Iowa City).

2.3. Quail/chick chimeras

Microsurgery was performed on embryos at stage HH7.

Bilateral cephalic neural folds from chick embryos were

replaced by their quail counterparts. Embryos were ®xed 3

days after grafting, embedded in paraf®n and sectioned onto

alternating slides.
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INTRODUCTION

Over chordate evolution, the anterior brain and its surrounding
head expanded spectacularly in vertebrates. This development
coincided with the appearance within the subphylum of a
pluripotent embryonic cell population called the neural crest. 

Evidence that the neural crest was instrumental in shaping
the head began to accrue from fate-mapping experiments that
showed the distribution of neural crest cells (NCCs) in the
avian embryo (Johnston, 1966). The use of a stable selective
cell-marking technique, based on the construction of quail-
chick chimeras allowed the definitive demonstration that NCCs
give rise to most connective components of the head, including
dermis, tendons and intercalating membranes of cephalic
muscles (Le Lièvre and Le Douarin, 1975; Noden, 1983; Couly
et al., 1993; Couly et al., 1996; Köntges and Lumsden, 1996).
Such soft tissues are associated with the NCC-derived bones
that make up most of the skull, notably the jawed facial
skeleton and the brain case (Couly et al., 1993; Couly et al.,
1996; Köntges and Lumsden, 1996). 

In addition to their role in forming the head, NCCs may have
participated in the enlargement of the brain itself within
members of the vertebrate subphylum. Initial support for this
hypothesis comes from the demonstration that, in the chicken

embryo, neural crest-derived mesenchyme is necessary for the
early survival of the forebrain neuroepithelium, upon which it
exerts a trophic influence (Etchevers et al., 1999). Many of
these NCCs participate in the forebrain meninges (Johnston,
1966; Le Lièvre and Le Douarin, 1975), which enclose the
capillary network necessary for later neuroepithelial growth via
its blood supply. 

All blood vessels are composed of an inner layer of endothelial
cells and an immediately adjacent layer of pericytes. Pericytes are
indispensable for the formation of mature blood vessels
(reviewed in Doherty and Canfield, 1999). They also mediate
capillary vasoconstriction and secrete specialised extracellular
matrices for microvessels within the neuroepithelium (Balabanov
and Dore-Duffy, 1998), kidney (Schlondorff, 1987), liver
(Kawada, 1997) and bone (Doherty and Canfield, 1999). In
addition to endothelial and pericytic components, larger blood
vessels also possess one or more concentric layers of connective
and smooth muscle cells, constituting the elastic tunica media and
the fibrous tunica externa. 

Endothelial cells are derived from mesodermal precursors
able to yield both the angiogenic and haematopoietic lineages,
the most primitive of which are characterised by the expression
of the vascular endothelial growth factor receptor 2 (Vegfr2)
(Eichmann et al., 1993; Couly et al., 1995). 
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Most connective tissues in the head develop from neural
crest cells (NCCs), an embryonic cell population present
only in vertebrates. We show that NCC-derived pericytes
and smooth muscle cells are distributed in a sharply
circumscribed sector of the vasculature of the avian
embryo. As NCCs detach from the neural folds that
correspond to the future posterior diencephalon,
mesencephalon and rhombencephalon, they migrate
between the ectoderm and the neuroepithelium into the
anterior/ventral head, encountering mesoderm-derived
endothelial precursors. Together, these two cell populations
build a vascular tree rooted at the departure of the aorta
from the heart and ramified into the capillary plexi that
irrigate the forebrain meninges, retinal choroids and all
facial structures, before returning to the heart. NCCs
ensheath each aortic arch-derived vessel, providing every

component except the endothelial cells. Within the
meninges, capillaries with pericytes of diencephalic and
mesencephalic neural fold origin supply the forebrain,
while capillaries with pericytes of mesodermal origin
supply the rest of the central nervous system, in a mutually
exclusive manner. The two types of head vasculature
contact at a few defined points, including the anastomotic
vessels of the circle of Willis, immediately ventral to the
forebrain/midbrain boundary. Over the course of
evolution, the vertebrate subphylum may have exploited
the exceptionally broad range of developmental
potentialities and the plasticity of NCCs in head
remodelling that resulted in the growth of the forebrain.

Key words: Pericyte, Vascular, Carotid, Branchial, Quail-chick
chimera, Evolution, Neural crest, Meninges, Forebrain, Head 

SUMMARY

The cephalic neural crest provides pericytes and smooth muscle cells to all

blood vessels of the face and forebrain
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In contrast, the outer wall layers, while originating from the
mesoderm in the body, can be made by NCCs in the head
(reviewed in Le Douarin and Kalcheim, 1999). Cephalic NCC
contribute to the muscular and connective wall of large arteries
derived from the branchial arches (Le Lièvre and Le Douarin,
1975), including the cardiac septum that separates the aorta from
the pulmonary artery trunk (Waldo et al., 1998). Continued
ramifications of the branchial arteries define a distinct anatomical
sector of the ventral and anterior head. A second vascular sector
of non-branchial arteries irrigates the dorsal, posterior head (Fig.
1). These two domains meet behind the optic chiasm in an
anastomotic structure known as the circle of Willis. Strikingly,
the branchial sector overlaps that part of the head to which the
NCC mesenchyme makes major structural contributions. 

In the present work we have analysed the precise
contribution of NCCs that originate from successive
anteroposterior levels of the neural folds to cephalic blood
vessels. We find that the dorsal/posterior vascular compartment
depends upon the cephalic paraxial mesoderm for all
components of the blood vessel wall, while the ventral/anterior
compartment derives its pericytes and musculo-connective wall
entirely from NCCs. The two domains are delimited distally
within the meninges by a sharp boundary between the forebrain
and the midbrain. 

The forebrain and the retinae are thus irrigated by capillaries
of composite mesoderm and neural crest origin, consistent with
their support by other neural crest-derived connective tissues.
In addition to the trophic role we have previously demonstrated
for cephalic NCCs in early forebrain development, it appears
plausible that there was a causal relationship between the
construction of a NCC-dependent vascular domain and the
continued expansion of the anterior brain and head over the
course of evolution.

MATERIALS AND METHODS

Isotopic grafts of the right neural fold were performed from quail
donors into stage-matched chick hosts at the three to five somite stage
(ss), on embryonic day (E) 2. The length of the neural fold taken
corresponded to the posterior half of the diencephalon (PD), the
anterior half of the mesencephalon (AM) or the posterior half of the
mesencephalon (PM) regions, approximately 100 µm each, or the AM
and PM together. Stage- and position-specific micrometry was
performed as outlined previously (Grapin-Botton et al., 1995).

Additional chicken embryos were examined in which an individual
rhombomeric neural fold had been replaced by its isotopic, isochronic
quail counterpart, as described previously (Couly et al., 1996). Neural
folds from given rhombomeric levels are referred to as r1-r8. The
neural folds of r8 were mapped over the length of each of the first
three somites, but the results, being similar, were grouped. All
chimeras were incubated at 38°C in humidified chambers and cleaned
in PBS before fixation for immunohistochemistry (IHC) or in situ
hybridisation (ISH). Numbers and stages at harvest for IHC are
summarised in Table 1.

Ink injections into the left ventricle of the heart of E8 chicken
embryos were followed by fixation in Carnoy’s solution, dehydration
in ethanol and clearing in 100% methyl salicylate (Fig. 4B).

IHC using the monoclonal antibodies QCPN (anti-quail, DSHB),
QH-1/MB-1 (anti-quail vascular endothelium and white blood cells)
and 1A4 (anti-alpha smooth muscle actin, Sigma) on sections was
performed as previously described (Etchevers et al., 1999). Tissues
were counterstained with Gill’s Haematoxylin. Some of the

rhombencephalic-grafted embryos were fixed in Zenker’s solution and
treated with the Feulgen-Rossenbeck stain procedure, described
previously (Le Douarin, 1969), as an alternative method to localise
quail cells in older embryos.

ISH of Vegfr2 (Eichmann et al., 1993), and the premigratory and

H. C. Etchevers and others

ventral (face)

dorsal (neck)

B.

V.

C. i.

Eth.
C. c. m.

C. c. p.

C. c. a.

Ce. v.
Ce. d.

T. m. v.

P. c.

T. m. d.

Fig. 1.The dorsal cephalic vascular tree, excluding the jaws, ventral
view. Six pairs of aortic arch arteries form during amniote
embryogenesis, looping from the ventral to the dorsal aorta. Three of
them persist in the adult: the third pair, as a segment of the common
carotid arteries; one of the fourth pair, as the aorta; and the sixth, as a
segment of the pulmonary arteries. The common carotid arteries give
rise to a ventral arterial pathway, of which the internal carotid (C. i.)
and derived arteries (pink) target the upper face, eyes, and forebrain.
The distal part of this route is made of vascular elements derived from
the first three aortic arches. The other arterial pathway in the head
(green) targets the midbrain and hindbrain, and arises from the
vertebral arteries (V.). Both trees start from the brachiocephalic artery
trunks, which diverge from the ventral (ascending) aorta. The
common carotid arteries immediately course into the neck and face.
The vertebral arteries project into the head along the underside of the
hindbrain after fusing to form the basilar artery. The two systems
contact at the circle of Willis (box), which surrounds the optic chiasm
ventral to the diencephalon. The posterior sides of this famous
vascular polygon are made by the bifurcation of the basilar artery,
while derivative branches of the internal carotid arteries constitute the
anterior sides. An anastomotic artery, the posterior communicante
(P. c.), connects them; in humans, a median fusion between the
anterior cerebral arteries completes the ‘circle’. The circle of Willis
represents the anatomical interface between the ventral and dorsal
vascular trees. B., basilaris; C. c. a., carotis cerebralis anterior;
C. c. m., carotis cerebralis medialis; C. c. p., carotis cerebralis
posterior; Ce. d., cerebellaris dorsalis; Ce. v., cerebellaris ventralis;
C. i., carotis interna; Eth., ethmoidalis; T. m. d., tecti mesencephalis
dorsalis; T. m. v., tecti mesencephalis ventralis; V, vertebralis.
Adapted, with permission, from Baumel (Baumel, 1979).
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early migratory neural crest marker Sox10 (Cheng et al., 2000) was
performed directly on 5 µm paraffin sections of embryos fixed in 11%
formaldehyde, 60% ethanol, 10% acetic acid. Digoxigenin-UTP-
labelled Vegfr2 probe and fluorescein-labelled Sox10 probe were
diluted in hybridisation mix to approximately 1 ng/µl each. The
probes were applied to sections, which had been deparaffinated,
rehydrated, digested with 10 µg/ml proteinase K for 7 minutes,
postfixed in 4% paraformaldehyde and rinsed. After hybridisation
overnight at 60°C, slides were washed twice in 50% formamide,
2×SSC at 65°C, then in MABT (0.1 M maleic acid, 150 mM NaCl,
0.1% Tween-20, pH 7.5). Nonspecific antibody binding was blocked
by incubation in MABT with 20% goat serum, 2% blocking reagent
(Roche) for 60 minutes. AP-conjugated anti-digoxigenin antibody
(Roche) was diluted in this solution to 1/2000 and applied. The
following day, slides were rinsed in MABT before equilibration in
100 mM NaCl, 50 mM MgCl2, 100 mM Tris (pH 9.5) and 0.1%
Tween-20 (NTMT). For a blue precipitate, 33.8 µg/ml nitro blue,
tetrazolium chloride (NBT) with 175 µg/ml 5-bromo-4-chloro-3-
indolyl phosphate, toluidinium salt (BCIP) were used in NTMT. The
slides were then treated with 0.1 M glycine, pH 2.2 for 15 minutes,
equilibrated in MABT and AP-conjugated anti-fluorescein antibody
(Roche) applied at 1:8000 for IHC. For a red precipitate, 2-(4-
iodophenyl)-3-(4-nitrophyenyl)-5-phenyl tetrazolium chloride (INT)
and BCIP were used at 248 µg/ml each in NTMT.

RESULTS

The prosencephalic vascular plexus forms
concomitantly with the arrival of NCCs
Cephalic mesenchyme may come from either NCCs or
cephalic mesoderm. In order to recognise the distinct origins
of the cells that give rise to the early vascular system of the
anterior head, the relative positions of its neural crest and
endothelial components over time were examined by in situ
hybridisation. Vegfr2 is expressed in endothelial cells and their
precursors (Eichmann et al., 1993). Sox10 is a homeobox-
containing gene that is specifically expressed in all early
migrating cephalic NCC, later functioning in both central and
peripheral nervous system glial lineages (Cheng et al., 2000).

Preceding NCC emigration, the bilateral telencephalic
primordia occupy dorsolateral domains within the anterior
neural plate (Couly and Le Douarin, 1987). At HH8 (4-6ss,
early E2), endothelial cell precursors, marked by Vegfr2
expression, are found close to the ventral neuroepithelium and
the foregut (Fig. 2A). As the neural folds of the anterior neural
plate approach during HH8, the presumptive telencephalic
domains come to directly underlie the ectoderm.

These epithelia are subsequently separated by NCCs
between HH9 and HH15. At HH9 (7-9ss, E2), NCCs emigrate
from the diencephalic and mesencephalic neural folds,
spreading both toward the pharynx and rostrally toward the
anterior neural fold (Fig. 2B), but they do not encounter
endothelial cells before HH10. 

At HH14 (Fig. 2C,D), mesoderm-derived endothelial
precursors have mixed with the NCCs. Together, they intervene
between the ectoderm and the caudal telencephalon, but have
not yet spread over the rostral telencephalon. Chimeric
embryos made with unilateral neural fold grafts at the
mesencephalic level show that anterior NCCs fan out
bilaterally, whereas those that migrate towards the pharynx
remain essentially unilateral (Fig. 2E). The rostral-moving
NCCs continue to lead the invasive front, closely followed by
capillaries that are organising adjacent to the neuroepithelium
(Fig. 2D,F). 

Two bilateral eminences evaginate from the prosencephalon
during this period. The first, the optic vesicles, appear in the
ventrolateral prosencephalon at HH9. The second, the
telencephalic vesicles, only emerge from the dorsolateral
prosencephalon at HH19 (E3). Capillaries begin to penetrate
the chicken ventral rhombencephalic and mesencephalic
neuroepithelium on HH18 (late E2), but the telencephalon is
invaded by blood vessels ventrally at HH24 (E4) and dorsally
after HH26 (E5; not shown). In chimeras, quail NCCs are first
seen within the host telencephalon associated with the first
capillaries on HH24 (Fig. 2G). 

Anterior cephalic NCCs participate in all forebrain
vasculature
After isotopic grafts of neural folds at the levels of the posterior
diencephalon or the mesencephalon, quail NCCs are abundant
within the meninges of the forebrain, to the exclusion of the
rest of the central nervous system (Fig. 3A). The greatest
contribution to the telencephalic meninges is from
mesencephalic NCCs, while posterior diencephalic NCCs
favour the ventral diencephalic meninges, although both
regions of the neural folds give rise to cells in all parts of the
forebrain meninges. There is no apparent difference in
distribution within the meninges between NCCs from the
anterior or posterior mesencephalon.

Avian meninges are made of two layers. The outer dura
mater is continuous with the condensing periosteum of the
overlying NCC-derived skull (Couly et al., 1993), and is also
NCC-derived (data not shown). The inner arachnoid, rich in

Table 1. Chimeric embryos used to construct fate map of cephalic vascular walls
Graft NF Di Ant mes Post mes Mes R1 R2 R4 R5 R6 R7 R8 (s1-3)

HH stage at harvest 16 (6) 10 (2) 26 (1) 10 (1) 29 (2) 35 (2) 33 (2) 18 (1) 28 (1) 26 (1) 29 (2)
(number of samples) 33 (1) 14 (1) 12 (1) 33 (1) 35 (1) 27 (1) 35 (2) 29 (1) 33 (1)

38 (1) 27 (1) 16 (3) 28 (1) 32 (1)
32 (1) 20 (1) 32 (1) 33 (2)
35 (1) 24 (2) 35 (2) 34 (1)
38 (2) 27 (2) 35 (1)

28 (1)
29 (3)
33 (1)

Total (59) 8 8 1 15 3 2 3 6 3 7 3

Ant mes, anterior mesencephalic; Di, diencephalic; Mes, mesencephalic; NF, neural folds; Post mes, posterior mesencephalic; R, rhombomere; s1-3, at the
level of somites 1 to 3.
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blood vessels, is inseparable from the pia mater, which
constitutes a component of the blood-brain barrier; pial
pericytes are closely associated with the outer aspect of the
vascular endothelium that penetrates the neuroepithelium. The
arachnoid/pia mater, known collectively as the leptomeninges,
include numerous NCC located in the walls of parenchymal
blood vessels (Fig. 3B, HH32).

Grafted cells found in the forebrain are not labelled after
IHC with the QH-1/MB-1 antibody, and hence are not
endothelial (data not shown). Quail NCC reside on the outside
of the capillaries and co-localise with alpha smooth muscle
actin, seen via 1A4 IHC (Fig. 3B,D). These observations are
consistent with pericytic identity. In larger arteries, such as the
internal carotid, NCCs are located within the 1A4-
immunolabelled smooth muscular tunica media (Fig. 3C). 

Caudal NCCs map to proximal vessels, rostral NCCs
map to distal vessels
Given a number of shared characteristics between pericytes and
smooth muscle cells (Alliot et al., 1999), we examined other
blood vessels derived from the aortic arches for the presence
of NCC. All arteries of the face and jaw that we examined,
which branch off from the common carotid
arteries, have tunica media of NCC origin. 

The more distal an artery from the heart, the
further rostral the origin of the NCCs that give rise
to the pericytes and/or smooth muscle cells of that
part of the vessel (Fig. 4A). Examples of distalmost
blood vessels include the meningeal capillaries of

the prosencephalon (Fig. 3B), and the pituitary and ophthalmic
arteries. The non-endothelial components of these vessels
come from posterior diencephalic and mesencephalic NCCs.
As shown in Fig. 4, cells from the posterior diencephaloin also
contribute to part of the wall of the internal carotid artery (Fig.
4C), r2 NCCs to the proximal maxillary artery (Fig. 4D), r4
NCCs to the stapedian artery (Fig. 4E) and r5 NCCs to the
common carotid artery (Fig. 4F). Grafts from adjacent levels
of the neural folds gave rise to cells in overlapping domains of
the same complement of blood vessels, indicating a gradual
transition within the vascular wall from NCCs of one origin to
NCCs of a neighbouring origin. The tunica media of long
arteries such as the internal carotids spans multiple
subdivisions of the neural folds (in this example, from PD to
r4 included). The same holds true for the ventral and anterior
cephalic veins, such as the jugulars, to which NCC from r4 to
r6 contribute (not shown).

Likewise, the more proximal an artery to the heart, the
further caudal the origin of the NCC along the neuraxis. The
distribution of NCCs derived from r6, r7 and r8 within the
musculo-connective wall of the large arteries overlapped
greatly (Fig. 5A). All three contributed to the ventral aorta as
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Fig. 2.Cephalic NCCs and mesodermal cells
intermingle by way of opposing dispersion patterns.
(A) Section through a HH7 (4ss, early E2) embryo at
level of the presumptive diencephalon. No mesodermal
cells, in particular endothelial precursors (blue, Vegfr2
expression), intervene between the ectoderm and the
prosencephalic alar plate. (B) Distribution of rostral-
spreading NCC (red, Sox10expression) and endothelial
cells (blue, Vegfr2expression) at early HH10 (10ss, E2)
in a transverse section at the level of the anterior
prosencephalon. (C) Parasagittal section of HH14 (E2)
embryo, anterior right. Endothelial cells (blue, Vegfr2
expression) and NCCs (red, Sox10expression) occupy
the mesenchyme intervening between the
neuroepithelium and ectoderm except around the rostral
telencephalon. Sox10is also expressed in the ventral
diencephalon (see Cheng et al., 2000). Boxed region is
magnified in D. (D) NCCs precede endothelial tubes as
they insinuate together between the ectoderm and
neuroepithelium of the telencephalon. (E) Distribution
of NCCs (brown, QCPN IHC) at HH14 after a
unilateral graft of an anterior mesencephalic neural
fold, in transverse section at the level of the ventral
diencephalon. NCCs disperse bilaterally rostral to the
graft but remain unilateral near the pharynx. (F) On a
slightly more anterior section of the same embryo,
grafted NCCs can be seen to separate neuroepithelium
from ectoderm and to be accompanied by capillaries
(asterisk) as in D. (G) NCCs (arrows) from a grafted
mesencephalic neural fold begin to penetrate the
telencephalic neuroepithelium from the surrounding
mesenchyme at HH24 (E4). Scale bars: 100 µm in
A-C,E,G: 50 µm in D,F.
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seen by E5 and later (Fig. 5B,C,F,H,J), as well as to the thin
tunica media of the cardinal veins and the sinus venosus (Fig.
5I). NCCs from r6 were found in the wall of the proximal
common carotid arteries, relaying the r5 NCCs. NCCs from r7
and r8 participated in the brachiocephalic arteries (Fig. 5D-G,J-
K), sigmoid valves of both the aorta (Fig. 5J,L) and pulmonary
artery trunk (Fig. 5F,G,J), and the distal conotruncus. The
deeper part of the conotruncus contained NCC of solely r8
origin at HH29 (E6.5) and HH33 (E8.5) (not shown).

No NCCs from any level of the cephalic neural folds were
found in the media of the cerebellar or occipital arteries at the
ages examined (not shown). These vessels are directly
connected to the vertebral arteries. The head is thus divided
into two vascular domains that meet at the forebrain/midbrain
boundary both within the meninges and in the larger vessels,
at the circle of Willis (Figs 1, 4). They occupy distinct ventral
and dorsal domains from the heart to the brain.

Anterior cephalic NCCs occupy overlapping but
distinct niches in connective tissues
We examined the distribution of cephalic NCC in other soft
connective tissues in further detail. In these derivatives as well,
a similar logic was maintained in the fate map.

Grafted NCC from PD are apparent in the ventrolateral
periocular structures (sclera, choroid and interstitial cells of the
ventral oculomotor muscles and lachrymal glands) (Fig. 6A-
C). PD quail cells also surround and infiltrate the developing
pituitary and salivary glands. 

NCCs from the AM region incorporate largely into
dorsomedial periocular structures, the scleral papillae and
dermis, the nasal septum and the telencephalic choroid plexus.
Examples of their presence as pericytes within oculomotor
muscles, the optic chiasm, the neurohypophysis and the
adenohypophysis are shown in Fig. 6E-H, respectively. Most

or all NCCs in these locations can be double-labelled with α
smooth muscle actin (not shown). However, many NCC in the
adenohypophysis did not, representing interstitial cells.

NCCs from the PM region migrate largely into the first
branchial arch maxillary processes. They also participate in the
ciliary ganglia, optic nerves and coalescing ventromedial
periocular structures (choroid pericytes, sclera, oculomotor
muscle interstitial cells) as observed at HH26 (E5). 

DISCUSSION

NCCs are distributed along the proximal-distal axis
of cephalic vascular media
The frontier of the NC- and mesoderm-derived meninges
surrounding the brain coincides with a classically described
anatomical interface in the head between two distinct
vasculatures. We have shown here that the forebrain
(telencephalon and diencephalon) is the only part of the central
nervous system into which NCCs penetrate. Arteries with walls
composed of NCC derivatives also supply the entire ventral
(facial) and anterior head, the connective tissues of which are
likewise of NCC origin. In contrast, the fully mesodermal
vertebral arteries supply the dorsal/posterior part of the head
and neck, caudal to the diencephalon (Couly et al., 1992; Couly
et al., 1993). The two vascular trees join and re-diverge at the
level of the optic chiasm, within the circle of Willis (Fig. 1).

This striking demarcation of vascular domains reveals the
point from which a new part of the head expanded in
vertebrates with respect to the chordate phylum as a whole.
Gans and Northcutt proposed that the neural crest played a key
role in the evolution of the face, in particular for the skeletal
and muscular elements of the jaws (Gans and Northcutt, 1983).
The essence of their theory is that these novel NCC-derived

Fig. 3.NCCs associated with blood
vessels in the head are pericytes or
smooth muscle cells. (A) Slightly
oblique transverse section of an
embryo grafted with an anterior
mesencephalic neural fold at HH32
(E8). Quail cells are visualised with
QCPN IHC in blue; α smooth muscle
actin IHC is in brown. Note that blue
NCCs are concentrated around the
forebrain, in contrast to the rest of the
central nervous system. Regions
magnified in B and C are indicated.
(B) Telencephalic meninges are full of
quail cells, some of which penetrate the
neuroepithelium and co-localise with α
smooth muscle actin. (C) The double
labelling of grafted cells with αsmooth
muscle actin within the internal carotid
artery tunica media indicates that these
NCCs have become smooth muscle cells (arrows). (D) Similar double-labelling within the neuroepithelial capillaries shows NCC-derived
pericytes (arrows); unlabelled endothelial cells are indicated with arrowheads. Scale bars: 1 mm in A; 50 µm in B,C; 100 µm in D.
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Fig. 4.Sequential distribution of NCC from successive neural fold origins in the walls of cephalic arteries. (A) Cephalic NCCs (colours, this
study) and mesoderm (greys; Le Lièvre, 1976; Couly et al., 1987) contribute to the musculo-connective wall of separate arterial trees in the
head. Red corresponds to cells derived from posterior diencephalic (PD), anterior and posterior mesencephalic (AM, PM) neural folds; orange
corresponds to rhombomere (r)1; yellow to r2; green to r4; turquoise to r5; and blue to r6 (in the vascular media of a schematic E7.5 chicken
head). Boundaries overlap between domains ensured by NCCs of given origins in vessel walls. Within the meninges of the central nervous
system, pink denotes those derived from PD, AM and PM NCCs; grey denotes those of mesodermal origin, with a sharp boundary between the
two at the diencephalon/mesencephalon junction. Levels of sections shown in C-F are indicated, where lower panel is a magnification of the
artery indicated in the upper panel. Levels of Fig. 3B and 3C are also shown. (B) Ink-injected E8 quail, showing both branchial and vertebral
artery ramifications. (C-F) The lower panels show the enlargement of the areas boxed in the upper panels. (C) E8 chimera after graft of PD
neural fold, in transverse section – internal carotid artery. (D) E8 chimera after graft of r2 neural fold, in transverse section – maxillary artery.
(E) E8 chimera after graft of r4 neural fold, in transverse section – stapedian artery. Quail cells revealed by Feulgen-Rossenbeck stain (lower
panel inset) are false-coloured in brown in the lower panel. (F) E8 chimera after graft of r5 neural fold, in transverse section – common carotid
artery. B., basilaris; C. c. a., carotis cerebralis anterior; C. c. m., carotis cerebralis medialis; C. c. p., carotis cerebralis posterior; Ce. v.,
cerebellaris ventralis; C. i., carotis interna; Eth., ethmoidalis; L., lingualis; Md., mandibularis; Mx., maxillaris; Occ., occipitalis; Oph.,
ophthalmica interna; P. c., posterior communicante (circle of Willis); St., stapedia; St. te., stapedia temporalis; St. sup., stapedia supraorbitalis;
T. m. v., tecti mesencephalis ventralis; V, vertebralis. Adapted, with permission, from Hughes (Hughes, 1934) and Baumel (Baumel, 1979).
Scale bars: 0.5 cm in B; 250 µm in C-F (top); 50 µm in C-F (bottom).
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cephalic structures may have permitted vertebrates to adopt an
advantageously active feeding lifestyle. Supporting evidence
comes from demonstrations that the face, jaws and skull are
derived from the neural crest in modern-day vertebrates (see,
for example, Couly et al., 1993; Imai et al., 1996). 

The forebrain, in particular the telencephalon, embodies an

evolutionarily recent morphological change in the central
nervous system, not a novel structure altogether. The faceless
and jawless cephalochordate Amphioxuspresents sensory and
endocrine functions in the anterior end of its nerve cord
(Lacalli et al., 1994; Lacalli and Kelly, 2000). Gene expression
patterns in this region recall those present in the vertebrate

Fig. 5.Overlapping contributions of NCC from the last three rhombomeres to proximal cardiac arteries. (A) The E12 chicken heart, with NCC from
r6 (blue), r7 (purple) and r8 (pink) in its major arteries. (B) Graft of r6 neural folds, at HH35 (E9). Abundant quail cells (QCPN IHC, brown) are
present in the aorta, magnified in C. (D) After graft of r7 neural folds, at HH35 (E9). Quail cells are visible in the outer vessel walls at the divergence
of the right brachiocephalic and common carotid arteries, magnified in E. (F) After graft of r8 neural folds, at HH33 (E8.5). Left common carotid
artery magnified in G. Aorta and pulmonary trunk walls magnified in H, and pericytes in the wall of the sinus venosus are indicated by arrows in I.
(J) Caudal section of same embryo, showing quail NCC abundant in the aorta, in the pulmonary trunk and arteries, in the right brachiocephalic artery
(magnified in K) and aortic semilunar valve (magnified in L). A, aorta; AV, atrioventricular valve; HV, hepatic vein; IVC, inferior vena cava; IVS,
interventricular septum; LACV, RACV, left and right anterior cardinal veins; LBCA, RBCA, left and right brachiocephalic arteries; LCCA, RCCA,
left and right common carotid arteries; LPV, left pulmonary vein (right hidden); PA, common pulmonary artery trunk; PCV, posterior cardinal vein;
SA, sinoatrial valve; SL, semilunar valve; SV, sinus venosus. Scale bars: in B, 250 µm for B,D,F,I; in C, 50 µm for E,G-I,K,L.
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forebrain (reviewed by Zimmer, 2000). The common chordate
ancestor to vertebrates and cephalochordates probably had a
similarly rudimentary forebrain, whose functions were
amplified and developed in the vertebrate diencephalon
(photosensation via the eyes and pineal gland, hormone
secretion from the ventral diencephalon and pituitary) and
telencephalon (chemosensation). 

Within vertebrates, the telencephalon assumed integrative
functions and importance over time, possibly owing to the
presence of a blood supply consecrated directly to its growing
needs for oxygen and nutrition. Our current observations
demonstrate that a NCC-supported vasculature developed to
irrigate both the NCC-derived jaws, already present in lower
vertebrates, and the forebrain, greatly expanded in higher
vertebrates. We have previously shown that NCC mesenchyme
has a trophic effect on the early forebrain, namely on the
cerebral hemispheres. In the absence of this mesenchyme,
achieved by ablation of the posterior
diencephalic and mesencephalic neural
folds, the forebrain neuroepithelium
undergoes massive cell death preceding its
normal period of vascularisation (Etchevers
et al., 1999). Thus, the neural crest has
three distinct roles in the development of
the forebrain: an antiapoptotic effect at an
early stage of neurogenesis, a second
trophic role via its contribution to the
leptomeninges and cephalic vasculature,
and a third role, in the protection of the
forebrain by means of the dura mater and
the skull.

Initial dispersion of anterior
cephalic NCCs accounts for their
final distribution
The lack of cell emigration from the neural
folds of the prosencephalon, anterior to the
burgeoning eyes (Couly and Le Douarin,

1988), creates a rostral niche that is filled by NCCs spreading
forward, fan-like, from the posterior diencephalic neural folds.
In the posterior head, NCCs from any given rhombomere
colonise more than one branchial arch to surround its aortic
artery (Birgbauer et al., 1995; Köntges and Lumsden, 1996;
Couly et al., 1996). When part of the cephalic neural folds are
removed by surgical ablation, NCC from regions rostral and/or
caudal to the excision disperse to ectopic compensatory
locations in the head (Couly et al., 1996; Salvidar et al., 1997;
Etchevers et al., 1999; Kulesa et al., 2000). In this way,
cephalic NCCs radiate from their dorsal points of origin into
wider ventral swathes, with some limited mixing among cells
of neighbouring origins.

The patterns of dispersion that establish the anterior
mesenchyme early on presage the final distribution of NCCs
in the head mesectoderm. Fate-mapping small domains of the
anterior neural folds shows that NCC from the posterior
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Fig. 6.NCCs integrate into periocular and
secretory tissues. (A) Parasagittal section of
E12 embryo grafted with posterior diencephalic
neural folds, in area of ventral eye. (B) Area
enlarged shows the palatine artery with NCC-
derived smooth muscle cells and a portion of
the palatine membrane bone. (C) Part of a
lachrymal gland, showing interstitial
(arrowheads) and pericytic (arrows)
participation of NCCs. (D) Lateral parasagittal
section of E12 embryo grafted with anterior
mesencephalic neural folds, indicating regions
magnified in E-H. (E) NCC-derived pericytes
(arrows) accompany the capillaries of the dorsal
rectus oculomotor muscle. (F) Both glia
(arrowheads) and capillary pericytes (arrows)
within the optic chiasm are derived from NCCs.
(G) Pericytes (arrows) are the only cells of graft
origin within the neurohypophysis. (H) Both
interstitial cells (arrowheads) and pericytes
(arrows) in the adenohypophysis come from
NCCs. Scale bars: 250 µm in A; 100 µm in
B,C,E-H; 1 mm in D.
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diencephalic or anterior mesencephalic neural folds occupy the
ventral and dorsal anterior heads respectively, the posterior
mesencephalic NCCs remaining essentially lateral to their
original rostrocaudal level in the jaws. 

In particular, we have observed that posterior diencephalic
NCCs are found within the walls of the pituitary vascular
plexus (Fig. 6G,H and Etchevers et al., 2001), adjacent to the
first branchial arch with its complement of anterior
rhombencephalic NCC. This surprising distribution reflects the
topological deformation of the longitudinal axis of the head
around the end of the notochord, which brings the anterior
transverse neural fold ventral and caudal to the future
hypothalamus (Couly et al., 1987). The mesencephalic NCC
participate in the meninges of the forebrain (this study) as well
as its overlying dermis and skull (Couly et al., 1993).
Mesencephalic NCCs actually constitute the most anterior
mesectoderm, by occupying a rostrally expanding area dorsal
to that populated by diencephalic NCC. 

There are two conclusions to be drawn from these results.
First, adjacent points in the neural folds map to contiguous
areas of the head along its original rostrocaudal axis, reflecting
the dispersion of cephalic NCC during migration. Second,
cooperation between the cephalic mesoderm and the neural
crest is necessary to build a vascular tree in that part of the
head that is constructed predominantly by NCCs. Mesodermal
cells initially located in a ventral position migrate dorsally and
mix with the ectomesenchyme of neural fold origin. Cephalic
mesodermal mesenchyme is the site of two successive waves
of cell determination and differentiation. Cells expressing
Vegfr2 (Eichmann et al., 1993) become endothelial cells of the
developing blood vessels. From this stage onwards, they
become associated with NCCs that differentiate into the
pericytes and musculo-connective tissue of the outer blood
vessel walls. The second wave of commitment affecting
mesodermal cells concerns the head muscles, for which
ectomesenchymal cells form connective components such as
membranes and tendons (Noden, 1983; Couly et al., 1996;
Köntges and Lumsden, 1996). 

NCC may be involved in human vascular
pathologies
Recent fate maps of NCC in the mouse (Imai et al., 1996; Jiang
et al., 2000) confirm the importance of avian studies to
interpreting mammalian vascular remodelling. Although we
have observed NCC from r8 in the proximal portion of the
pulmonary arteries, the posterior limit of r8 was not mapped
in this study. Waldo and Kirby have also found that the NCCs
of rostral r8 do not participate in the distal pulmonary arteries
but rather continue in the media of the transient ductus
arteriosus (sixth aortic arch), connecting their proximal portion
to the dorsal aorta (Waldo and Kirby, 1993). At this
intersection, vascular media no longer contain NCCs.
According to the logic of the vascular fate map we establish in
this paper, it appears likely that caudal r8 cells temporarily
contribute to the distal ductus arteriosus, rather than the distal
pulmonary arteries. These latter vessels are probably the
product of remodelling between two initially distinct parts of
the vascular tree. The pulmonary arteries thus would
recombine a proximal, NCC-ensheathed portion with a distal,
mesoderm-ensheathed segment. This situation resembles the
late anastomosis that occurs to establish the circle of Willis.

Waldo and Kirby also proved the necessity for NCCs in the
septation of the aorta from the pulmonary artery trunk within
the mesodermal context of the heart (Waldo and Kirby, 1993).
Septation is compromised in a number of congenital conditions
that affect other derivatives of the neural crest (reviewed in Le
Douarin and Kalcheim, 1999). As is the case for forebrain
vessels, cephalic NCCs make the musculo-connective wall of
large vessels near the heart, suggesting that vascular
remodelling in the head, neck and heart is dependent on NCC
participation.

The fact that the branchial arteries give rise to a distinct
vascular domain is pertinent to phakomatoses such as Sturge-
Weber syndrome (reviewed by Masson, 1970) or
meningioangiomatosis (reviewed by Chakrabarty and Franks,
1999). These diseases involve calcification of forebrain
capillary pericytes in the cerebral hemispheres; Sturge-Weber
syndrome is also associated with ipsilateral facial angiomas. It
is striking that NCCs from the same source as the forebrain
meninges and pericytes normally differentiate into membrane
bones when they are located in a subectodermal position
(Couly et al., 1993). 

Pericytes and smooth muscle cells share a common
lineage
Pericytes, immediately adjacent to the vascular endothelium of
both arteries and veins, are not in themselves smooth muscle
cells. They do, however, share some properties and markers, of
which one interesting representative is nestin (Alliot et al.,
1999). Like other nestin-expressing cell types, vascular
pericytes seem to retain a certain context-dependent flexibility
in their differentiation, acquiring characteristics suggestive of
smooth muscle, fibroblasts, osteoblasts, adipocytes or
chondrocytes in vitro (reviewed in Doherty and Canfield,
1999). Our results demonstrate unequivocally and for the first
time that in an entire vascular circuit, from the heart to
capillaries and back, there can be one common source of
precursor cells for both the smooth muscle walls and the
pericytes.
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Morphogenesis of the Branchial 
Vascular Sector

 

Heather C. Etchevers, Gérard Couly, and Nicole M. Le Douarin*

 

The branchial and dorsal cephalic vascular sectors correspond to the
blood vessels contained within evolutionarily recent and ancestral
parts of the head, respectively. Recent work demonstrates that neural
crest cells (NCCs) provide the pericytes, and connective and smooth
muscle cells to the entire branchial sector in an ordered fashion. Initial
NCC position is transposed to the vascular distal-to-proximal axis,
explaining why circumscribed cephalic vascular anomalies are often
associated with reproducible malformations in head tissues derived
from the neural crest. Unlike the rest of the central nervous system, the
forebrain requires mesenchyme-containing vascular-competent NCCs
to survive during embryogenesis and beyond. 

 

(Trends Cardiovasc Med
2002;12:299–304).

 

 © 2002, Elsevier Science Inc.

 

vides a cul-de-sac—the head fold—in
which the brain, skull, mouth, cephalic
muscles, and their blood vessels will
later develop. Experimental embryology
has discovered many of the mechanisms
by which developing cephalic tissues
contact each other and differentiate ap-
propriately to their local environment.

One major technique, the construction
of quail-chick chimeras, exploits species
differences in nuclear structure to per-
manently mark cells grafted from a do-
nor to a host embryo (Le Douarin 1969).
By following the fate of grafted cells at
later time points, it was shown that the
mesoderm lateral to the neural plate of
the future brain gives rise to both stri-
ated muscles and the endothelium of all
cephalic blood vessels. According to the
anteroposterior level at which a given
graft was performed, a corresponding
segment of the cephalic and encephalic
vasculature contained endothelial cells
of graft origin, whereas the nearby mus-
cles also contained grafted cells (Couly
et al. 1992 and 1995). The endothelial
cell lineage becomes distinct from other
future mesodermal progeny at a very
early time point, when the future head is
barely distinguished by an anterior trans-
verse buckling in the germ layers. A ty-
rosine kinase receptor to the vascular

endothelium growth factor, known as
VEGFR2, is already expressed at this
time point in a subset of cephalic meso-
dermal cells that subsequently acquire
characteristics of endothelial cells (Eich-
mann et al. 1993).

Neural crest cells (NCCs) also con-
tribute to much of the cephalic vascula-
ture, but never to blood vessels in the
body. NCCs delaminate from the bound-
aries between the ectoderm and the me-
dian neural plate as the latter forms the
tube that will give rise to the central ner-
vous system. They remain mesenchymal
during their ventral migration toward
the gut and their dorsolateral migration
under the ectoderm. After colonizing the
appropriate location, NCCs differentiate
into the peripheral nervous system, certain
types of endocrine cells, and all pigment
cells aside from the retinal pigmented
epithelium (reviewed in Le Douarin and
Kalcheim 1999). Specifically in the head,
NCCs also give rise to the “mesectoderm,”
tissues that, in the body, are mesodermally
derived. These include the intercalating
connective components of the cephalic
glands, muscles, and tendons. The dermis
and adipose tissue overlying the jawed
facial skeleton and brain case, the bones
of that part of the skull, and certain re-
gions of the meninges underlying it are
also mesectodermal (Couly et al. 1993
and 1996, Köntges and Lumsden 1996,
Le Lièvre 1974, Le Lièvre and Le Douarin
1975, Noden 1983).

Early indications of the role of NCCs
in cephalic blood vessels came from fate-
mapping experiments that showed their
constitution of the branchial arch mes-
enchyme and subsequent incorporation
into the smooth muscle walls of the cor-
responding large arteries (Johnston 1966,
Le Lièvre and Le Douarin 1975). In par-
ticular, NCCs derived from the posterior
rhombencephalon contribute all compo-
nents of the proximal large arteries to the
heart, with the exception of the endothe-
lium (Le Lièvre and Le Douarin 1975).
NCCs of this origin also play an impor-
tant role in the septation of the pulmo-
nary trunk from the aorta (Nishibatake
et al. 1987, Waldo and Kirby 1993,
Waldo et al. 1998). Although many of
these experiments have been performed
in the avian embryo, data from rodents
confirm that NCCs are equally impor-
tant to cephalic and outflow tract forma-
tion in mammals (Imai et al. 1996, Jiang
et al. 2000).

 

Vascular anatomy is determined by to-
pology. The adult head presents a partic-
ularly complex three-dimensional struc-
ture, with heavy localized demands for
oxygenation and nutrition within the
brain. Despite this complexity, underly-
ing structural principles of cephalic blood
vessel circuitry become apparent after
examining the developing embryo.

 

• Cephalic Blood Vessels Have 
Different Origins According to 
Their Position

 

The vertebrate head starts out as a su-
perposition of three cellular sheets: the
endoderm, mesoderm, and ectoderm.
Deformation of these germ layers around
the anterior end of the notochord pro-
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• Blood Vessels are Constructed from 
Locally Available Cellular Materials

 

The extent of NCC incorporation into
cephalic blood vessels was recently dem-
onstrated experimentally (Etchevers et al.
2001b). A series of quail-chick chimeras
were made by successively transplanting
small fragments of the brain neural folds
from donors to the equivalent antero-
posterior level of hosts preceding cepha-
lic NCC migration. Embryos were then
examined at different stages during the
first half of gestation to see where the
NCCs had integrated in the blood vessels.

Grafts from anterior brain levels cor-
responding to the diencephalon and mes-
encephalon resulted in abundant cells
within the forebrain meninges, with a
sharp border at the forebrain–midbrain
boundary (Etchevers et al. 2001b). These
cells, adjacent to endothelial capillary
walls within the parenchyma, were iden-
tified with the marker 

 

�

 

-smooth muscle
actin as being pericytes. All blood ves-
sels are composed of endothelial cells,
an immediately adjacent layer of peri-
cytes, and a basal lamina (reviewed in
Doherty and Canfield 1999). Signaling
between endothelial cells and pericytes
is necessary for the formation of mature
blood vessels, as has been demonstrated
in transgenic mice for the platelet-derived
growth factor-B/platelet-derived growth
factor receptor 

 

�

 

 (Lindahl et al. 1997 and
1998) and angiopoietin/tie-2 (Suri et al.
1996) ligand/receptor systems. In con-
trast, outer wall structures (the tunicae
media and externa) vary according to
vessel type as to the presence and num-

ber of concentric layers of smooth mus-
cle and connective cells.

In addition to the pericytes, smooth
muscle and connective tissue cells of graft
origin were observed in the distal por-
tions of the major cephalic arteries. Grafts
of neural folds at the level of the ante-
rior rhombencephalon, in contrast, gave
rise to the nonendothelial cells of the
proximal (closer to the heart) segments
of the same arteries as well as the distal
internal carotid arteries. Median rhom-
bencephalic neural folds contributed cells
to the carotid arteries and cardinal veins,
whereas posterior rhombencephalic NCCs
tended to incorporate into proximal seg-
ments of the carotid arteries, as well as
into the aortic and pulmonary trunks and
the conotruncus and semilunar valves of
the heart itself. As seen in Figure 1, the
original anteroposterior origin of a cell
within the neural folds corresponds to
its final distoproximal distribution in a
defined subset of cephalic blood vessels.
This subset, designated the “branchial
vascular sector,” is a distinct circuit of
blood vessels originating in the ventral
aorta and branchial arches, ramifying
into circumscribed capillary plexuses,
and terminating in their venous return
to the heart. These vessels correspond to
the forebrain, face, and jaws.

A second vascular division can be dis-
tinguished in the head by virtue of its
vessels not belonging to the branchial
sector. Its component arteries and veins
share the property of being entirely con-
structed from the embryonic cephalic
and somitic mesoderm (Figure 1A). In
mature vertebrates, vessels derived from

the vertebral arteries, which converge
into the basilar artery as they enter the
occipital region, irrigate the dorsal head,
including the midbrain, cerebellum, and
hindbrain. The two vascular domains
contact at the circle of Willis, a large
anastomosis between the bifurcation of
the basilar artery and the cerebral arter-
ies, which are branches of the internal
carotids. This polygon surrounds the optic
nerves and ventral diencephalon, reflecting
the transition within the meninges from
an entirely mesoderm-derived region,
the midbrain, to a composite mesoderm/
NCC-derived region, the forebrain.

 

• The Vertebrate Head is Sculpted 
in NCCs

 

NCCs constitute a somewhat, but not
strictly, stratified mesenchyme in the head,
according to their neural-fold origin.
Grafts from adjacent levels of the neural
folds give rise to cells in overlapping do-
mains of the branchial sector, indicating
a gradual succession from NCCs of one
origin to NCCs of a neighboring origin.
There is a similar composite distribu-
tion of NCCs from neighboring neural-
fold origins in the bones of the jaw
(Couly et al. 1996) and in the interstitial
cells of the various cephalic muscles
(Köntges and Lumsden 1996). The mor-
phology of head elements is imposed
secondarily, immobilizing the initial NCC
distributions. Recent data show that
the endoderm exerts a major instructive
influence on facial skeletal patterning
(Couly et al. 2002). Definitive vascular
architecture is shaped concomitant or

 

Figure 1. (A)

 

 Depiction of the origin of the pericytes, smooth muscle, and connective tissue of cephalic and proximal cardiac blood vessels.
Embryonic day 8 (E8) head and E12 heart of chicken. 

 

Colors

 

 correspond to cell origins from the cephalic neural folds; 

 

grays

 

 correspond to
cephalic and somitic mesoderm from the indicated regions in the neurula. Within the meninges of the central nervous system, 

 

pink

 

 denotes
meninges derived from anterior cephalic neural crest cells; 

 

grey

 

 denotes meninges of mesodermal origin, with a sharp boundary between the two
at the forebrain–midbrain junction. A major anastomosis (P.c.) between the two vascular sectors corresponds to the posterior communicating
artery in the circle of Willis. Levels of transverse sections shown in 

 

(B–F)

 

 are indicated; the 

 

lower panel

 

 is a magnification of the artery within
rectangles in the 

 

upper panel

 

. 

 

Brown cells

 

 correspond to those of quail (graft) origin. 

 

(B)

 

 E8 chimera after graft of posterior diencephalon neu-
ral fold—arteria carotis

 

 

 

interna. 

 

(C)

 

 E8 chimera after graft of r5 neural fold—arteria carotis communis. 

 

(D)

 

 E9 chimera after graft of r6 neural
fold—aorta. 

 

(E)

 

 E9 chimera after graft of r7 neural folds—divergence of the arteriae brachiocephalica dextra et carotis

 

 

 

communalis. 

 

(F)

 

 E8.5
chimera after graft of r8 neural folds—aorta et truncus pulmonaris 

 

above

 

, pericytes in the wall of the sinus venosus indicated by 

 

arrows, below

 

.
Cephalic arteriae: B., basilaris; C. c., carotis communis; C. c. a., carotis cerebralis anterior; C. c. m, media; C. c. p., posterior; Ce. v., cerebellaris
ventralis; C. i., carotis interna; Eth., ethmoidalis; L., lingualis; Md., mandibularis; Mx., maxillaris; Occ., occipitalis; Oph., ophthalmica externa;
P.c., communicans posterior; St., stapedia; St. te., temporalis; St. sup., supraorbitalis, T. m. v., tecti mesencephalis ventralis; V., vertebralis.
Neurula: PD, posterior diencephalon; AM, PM, anterior/posterior mesencephalon; r1–8, rhombomeres 1–8. Heart: A, aorta; AV, valva atrio-
ventricularis; HV, vena hepatica; IVC, vena cava inferior; IVS, septum interventriculare; LACV, RACV, vena cardinalis rostralis (sinistra, dex-
tra); LBCA, RBCA, arteria brachiocephalica (sinistra, dextra); LCCA, RCCA, arteria carotis communis (sinistra, dextra); LPV, vena pulmon-
alis sinistra (dextra hidden); PA, truncus pulmonalis; PCV, vena cardinalis caudalis; SA, valva sinoatrialis; SL, valva semilunaris; SV, sinus
venosus. Terminology for vascular system from Baumel (1979). Reprinted with permission from Etchevers et al. 2001b, p. 1064. Copyright
2001, The Company of Biologists Limited.
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Figure 1

 

subsequent to the morphogenesis of
these structures, from the same pool
of mesenchyme.

The lack of sharp boundaries in the
neural crest-derived sector of the head
contrasts with its strictly observed seg-
regation from the posterior part of the
head, where the mesoderm furnishes

the same connective tissue types as in the
body—for example, bone, cartilage, and
dermis. Nearly 20 years ago, a theory was
announced in which the development of
the anterior and ventral head was attrib-
uted to the phylogenetic emergence of
the NCC population (Gans and North-
cutt 1983). The “new head” evolutionary

theory was based on data demonstrat-
ing the unique NCC composition of the
jaw bones and cartilage, as well as the
facial and neck dermis (Le Lièvre 1974,
Le Lièvre and Le Douarin 1975). This
theory was later supported by the dis-
covery that in addition to the jaws,
nearly all of the skull brain case is NCC
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derived (Couly et al. 1993). The develop-
ment of NCCs in vertebrates may thus
be fundamental to the origin of the face
and the expansion of an anterior head
cavity, as well as the sustained enlarge-
ment of the forebrain over time. These
regions correspond precisely to that of
the branchial vascular sector.

More recently, ablation experiments
in the chick contributed evidence that
the morphology of the upper head de-
pends directly on the presence of NCCs
(Figure 2). Removal of the neural folds
along the length of the prospective dien-
cephalon, mesencephalon, and anterior
rhombencephalon deprives the rostral
head of NCCs. Under these experimental
conditions, the tissues directly derived
from these cells are missing: the nasal
septum and capsule, the upper beak and
jaw, the frontal and ethmoid bones, the
dermis over these regions, and the fore-
brain meninges. Surprisingly, other tissues,
not themselves NCC derivatives, are also
missing: the forebrain itself, the anterior
pituitary, the median oculomotor mus-
cles, and the superior salivary glands
(Etchevers et al. 1999 and 2001b). Over
time, holoprosencephaly and hypotelor-
ism or outright cyclopia develop in oper-
ated embryos.

Normally, NCCs and mesodermal cells
surround the forebrain from the dorsal
and ventral sides, respectively. They com-
bine to form a leptomeningeal plexus by
the second day of incubation in the
chick. Vascular invasion of the forebrain
parenchyma occurs during the fifth day.
In embryos lacking rostral NCCs, fore-
brain apoptosis occurs on the second
and third days of incubation, such that
prospective forebrain tissue is no longer
present on the fifth day (Etchevers et al.
1999). Therefore, the phenotype of oper-
ated chicks is due to a trophic effect of
NCC-containing mesenchyme on the early

forebrain neuroepithelium. An alterna-
tive hypothesis would be that the lack of
characteristically differentiated pericytes
causes a deficit in brain vascularization.
This, however, is belied by the timing of
the apoptosis, which precedes the ap-
pearance of any pericytic markers known
to date, as well as the entry of capillaries
into brain tissue.

A number of syndromes affect NC de-
rivatives in the head as well as vessels of
the branchial sector; in particular, those
near the heart. These include, but are not
restricted to, the syndromes of Von Hippel-
Lindau, Dubowitz, DiGeorge, and hemi-
facial microsomia. In most cases, the
defects in cranial NC tissues are proba-
bly downstream from a more general
pathogenic cause. Nonetheless, it is im-
portant to formulate the hypothesis that
a cascade of malformations is responsi-
ble for the multifactorial nature of these
syndromes and that, for instance, a prob-
lem induced in NCCs could give rise to the
pituitary malfunctions present in Harrod
or Dubowitz syndrome. In Sturge-Weber
syndrome, the colocalization of angiomas
in the telencephalic meninges, the ocular
choroid, and the facial dermis (port-wine
stain) leads us to propose that the rostral
cephalic NC is directly at cause, because
its distribution in the branchial vascular
sector corresponds to the affected regions
in Sturge-Weber patients. Moyamoya dis-
ease is a bilateral stenosis of the internal
carotid arteries, which is circumvented by
a profusion of telangiectatic blood vessels.
The fact that moyamoya is restricted to
this region of the cephalic arteries, and
that it has been associated with Sturge-
Weber syndrome, neurofibromatosis type
II, or incontinentia pigmenti (Echenne et
al., 1995) implies a primary or secondary
deficit in NC-derived pericytes and, in
particular, those derived from the mid-
rhombencephalon (rhombomeres 4-5).

In summary, there exist two vascular
sectors in the head, a branchial sector
and a dorsal sector. Their localizations
correspond to evolutionarily novel and
ancestral parts of the head, respectively.
Cephalic NCCs give rise to all the com-
ponents of the branchial vascular sector,
with the exception of the endothelium,
of mesodermal origin. Cephalic NCCs also
differentiate into the meninges of the fore-
brain, containing capillary beds derived
from the branchial blood vessels, in con-
trast to all other regions of the central
nervous system.

Muscles and glands that disappear after
NCC ablation may also undergo apopto-
sis, or may never form at all in the absence
of the connective tissue framework sup-
plied by the mesectoderm. The initial
formation of Rathke’s pouch, but lack of
subsequent pituitary differentiation, would
support the former hypothesis (Etch-
evers et al. 2001a). Such questions, as
well as the nature of the trophic activity
of prevascular cephalic NCCs, are still
under investigation.
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Abstract

Hypoxia is known to regulate angiogenesis and tissue growth by the induction of the alpha subunit of the heterodimeric transcription

factor, hypoxia-inducible factor 1. The expression pattern of HIF1a in both epithelial and mesenchymal structures of the chicken embryo

through the first 7 days of development is reported here. HIF1a transcript is expressed diffusely throughout the neuroepithelium, limb,

mesonephritic and cephalic mesenchyme, progressively becoming restricted to known proliferative zones of the central nervous system.

Specific, strong expression is unexpectedly found in the endoderm of Sessel’s pouch and in the ectoderm of both Rathke’s pouch and the first

branchial arch before the disappearance of the buccopharyngeal membrane.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: Aortic arch; bHLH-PAS; Branchial arch; Ectoderm; Embryo; Endoderm; Heart; Hypothalamus; Hypoxia; Neuroepithelium; Neural tube; Pharynx;

Transcription factor; Rathke’s pouch

1. Results and discussion

Hypoxia-inducible factor 1 is a heterodimeric basic

helix-loop-helix transcription factor of the PAS (Per-

ARNT-Sim domain) family. The promoters of genes

involved in vascular development, such as vascular

endothelial growth factor, erythropoietin A and endothe-

lin-1, contain HIF1 binding sites (Hu et al., 1998; Semenza

et al., 1999). HIF1 acts specifically through its a subunit,

which is transcribed in an inversely proportional manner to

cellular O2 concentration (Jiang et al., 1996). It is subject to

non-hypoxic regulation as well. The aryl hydrocarbon

receptor nuclear translocator (ARNT/HIF1b) dimerizes

with HIF1a (Semenza et al., 1997) but also with other

bHLH-PAS proteins including HIF2a (EPAS-1; Favier

et al., 1999) and single-minded-2 (Moffett et al., 1997).

Thus, the activities of different bHLH-PAS family members

are probably modulated according to their spatiotemporal

domains of expression (Jain et al., 1998). Homozygous

HIF1a knockout mice show VEGF-independent, abnormal

vascular remodeling and widespread apoptosis of the

cephalic mesenchyme before embryonic death at E10.5

(Kotch et al., 1999).

In the chicken embryo at the 10 somite stage (ss), HIF1a

transcripts appear within the pharyngeal endoderm (Fig.

1A). Pharyngeal expression of HIF1a increases over time to

its most intense at 22ss, in endoderm underlying the ventral

diencephalon and Rathke’s pouch (Fig. 1B). During this

time window, HIF1a message distribution changes. At a

transverse level corresponding to the posterior diencephalon

and the most rostral tip of Sessel’s pouch, the endoderm

expresses HIF1a equally around its circumference at both

13ss (Fig. 1C) and 16ss (Fig. 1F). Underneath the

mesencephalon, HIF1a expression diminishes in the ventral

midline of Sessel’s pouch at 13ss (Fig. 1D). The zone of

diminished expression extends laterally to encompass the

ventral half of the pouch by 16ss, while expression remains

strong in the thin dorsal epithelium (Fig. 1G). The ectoderm

around the buccopharyngeal membrane (the point of nearest

contact with the endoderm) and the distal ectoderm of the

first branchial arch (BA1) also express HIF1a (Fig. 1C,D,F,

G). Between the rhombencephalon and developing heart at

both 13ss (Fig. 1E) and 16ss (Fig. 1H), expression of HIF1a

is restricted to the dorsal face of the endoderm, where it is

thinnest, and is excluded from the thicker ventral region

near the heart. Notably, HIF1a transcripts are found in areas

of the endoderm not overlapping the expression domain of

1567-133X/03/$ - see front matter q 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S1567-133X(02)00076-5

Gene Expression Patterns 3 (2003) 49–52

www.elsevier.com/locate/modgep

* Present address: INSERM U393, Hôpital Necker – Enfants Malades,
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Fig. 1. HIF1a expression is strongest in the rostral pharyngeal endoderm. (A) Sagittal sections of 10ss and (B) 22ss embryos, rostral to right, dorsal to top. The

pharynx is outlined by black dots in (A); the aorta and aortic arch arteries are lined by red dashes in (B–K). At 13ss, transverse sections at the level of the

diencephalon (C), mesencephalon (D) and rhombencephalon (E) show diffuse HIF1a expression in the neuroepithelium and cephalic mesenchyme, stronger

expression in the ectoderm of the 1st branchial arch (C,D), and strongest expression in the pharynx. At 16ss, transverse sections at the level of diencephalon (F),

mesencephalon (G) and rhombencephalon (H) confirm the downregulation of HIF1a expression in the ventral pharyngeal endoderm at caudal cephalic levels.

(I) An oblique coronal section at 23ss shows the 2nd aortic arch that has formed at this time around the rostral tip of the HIF1a-expressing endoderm, under the

diencephalon. Their adjoined portion corresponds to the ventral aorta. The approximate level of section is indicated by a dashed line in a parasagittal section at

23ss (J), where some HIF1a expression is observed in Rathke’s pouch. (K) By 36ss (Hamburger–Hamilton 18), the buccopharyngeal membrane has

disappeared (open arrow) along with endodermal HIF1a transcripts. Some expression is seen in the hypothalamus (open arrowhead), outflow tract into the 3rd

aortic arch (arrowheads) and lung mesenchyme (oval). aa#, aortic arch #; BA1, 1st branchial arch; ca, carotid artery; da, dorsal aorta; di, diencephalon; h, heart;

mes, mesencephalon; nd, notochord; rh, rhombencephalon; ph, pharynx; pros, prosencephalon; RP, Rathke’s pouch; va, ventral aorta. Bar, 120 mm.
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endothelin-1 in ventral foregut of BA2 at the same stages

(Nataf et al., 1998; data not shown).

During a limited time window, BA2 arteries issue directly

from the outflow tract of the developing heart and curve

dorsally to feed into the paired dorsal aortae, temporarily

constituting the ventral aorta at the point of bifurcation.

Between 18ss and 25ss, BA2 arteries have formed in

apposition to HIF1a-expressing pharyngeal endoderm (Fig.

1I,J). By 25ss, when the buccopharyngeal membrane has

opened to create the oral cavity, HIF1a message rapidly

begins to disappear from the pharyngeal endoderm. While

transcripts are no longer visible in the endoderm, low levels

of expression continue in the heart outflow tract and appear in

the future lung mesenchyme at 36ss (Fig. 1K).

After 30ss, equivalent to Hamburger–Hamilton (HH)

stage 17 (Hamburger and Hamilton, 1951), novel expression

of HIF1a appears specifically in the ectodermal fold

between BA1 and BA2, and in the caudal mesenchyme of

BA2 (Fig. 2A,B). Seen transversally at HH19 (Fig. 2C), the

diffuse BA2 expression is reminiscent of that found in the

distal/caudal mesenchyme of the forelimb bud at HH20

(Fig. 2D,E). The mesonephros also contains low levels of

transcript (Fig. 2D).

Baseline HIF1a expression is visible in the neuroepithe-

lium at HH8 (5ss, data not shown) and continues throughout

the first 3 days of incubation (Fig. 1). A small region of the

posterior hypothalamus accumulates HIF1a transcripts

from HH18 on (Fig. 1K, arrow). Expression intensifies by

HH30 in proliferative cell layers of the retina (Fig. 2F),

mesencephalon (Fig. 2G), telencephalon (Fig. 2H) and the

ventricular zone of the spinal cord (data not shown), while

transcript remains present at low levels throughout the

parenchyme. HIF1a message is also observed in portions of

the middle ear epithelium at HH30 (data not shown) and the

epidermis of the head (Fig. 2G).

HIF1a is transcribed at baseline levels in many dense,

proliferating tissues of the chicken embryo, consistent with

observations of tissue hypoxia in these areas of murine

Fig. 2. (A) HIF1a transcripts are visible in whole-mount embryo at HH17 in the retina, in dorsal and rostral cephalic ectoderm, and in ventral BA2. The signal

in the otic vesicle is non-specific. (B) In parasagittal section, expression is present in lateral ectoderm between BA1 and BA2 and restricted to BA2 ventral

mesenchyme. (C) At HH19, BA2 mesenchymal expression (dotted) is seen in transverse section to be ventral and diffuse (dorsal to top). Weak expression is

also present in the neural tube (nt). (D,E) At HH20, HIF1a transcripts are also faintly expressed in a distal/caudal quadrant of wing bud mesenchyme (dotted)

and the mesonephros (mn, parallel stripes). Whole-mount in (D) in dorsal view, ant(erior) and post(erior) indicated; distoproximal axis (d-p) indicated in

section (E). (F–H) Central nervous system expression is strongest within proliferative neuronal layers as seen in the retina (F), the mesencephalon (G) and the

telencephalon (H) at HH30. BA#, branchial arch #; mes, mesencephalon; mn, mesonephros; nt, neural tube; ph, pharynx; ret, retina; tel, telencephalon. Bar, 525

mm in (A), 400 mm in (D) and 120 mm in all others.
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embryos (Lee et al., 2001). However, strong HIF1a

expression is shown here to be restricted to the rostral

endoderm down to the level of the hindbrain. This

pharyngeal endoderm is essential for patterning of the

cephalic neural crest-derived branchial arch skeleton (Couly

et al., 2002), perhaps explaining the early, dramatic head

phenotype of HIF1a knockout mice (Kotch et al., 1999).

HIF1a is also expressed in the future oral ectoderm but

disappears from the buccal orifice shortly after ectoderm

and pharyngeal endoderm have joined.

2. Experimental procedures

Plasmid pCHIF-1a-F2 was kindly provided by Dr

Toshiyuki Takahashi (Takahashi et al., 2001) and corre-

sponds to nucleotides 1623–2384 of chicken HIF1a

(GenBank Accession number: AB013746). In situ hybrid-

ization was performed using digoxygenin-labeled RNA

probes transcribed by SP6 on 7 mm paraffin sections of

chicken embryos as described (Etchevers et al., 2001), or on

embryos in toto as described (Henrique et al., 1995).
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A genetic origin of CCHS1 has long been
suspected based on concordance in
monozygotic twins2, rare familial cases
(siblings, half-siblings, and mother-to-
child transmission)3 and segregation
analysis suggesting an autosmal domi-
nant locus with low penetrance or a
multigenic model4. So far, only low-
penetrant predisposing mutations of the
RET-Glial cell line-derived neurotrophic
factor (GDNF), endothelin 3 (EDN3)
and brain-derived neurotrophic factor
(BDNF) pathways have been reported in
a few individuals with CCHS5–7. Consid-
ering the broad range of defects in the
ANS in CCHS on the one hand and the
key role of Phox2b in the ontogeny of the
ANS reflex circuits in mice8,9 on the
other hand, we regarded PHOX2B (also
called PMX2B and NBPHOX) as a candi-
date gene in the disease.

PHOX2B maps to chromosome 4p12
and encodes a highly conserved homeobox
transcription factor of 314 amino acids
with two short and stable polyalanine

Polyalanine expansion and frameshift
mutations of the paired-like
homeobox gene PHOX2B in congenital
central hypoventilation syndrome

Published online 17 March 2003, doi:10.1038/ng1130

Congenital central hypoventilation syndrome (CCHS or Ondine’s curse; OMIM 209880)
is a life-threatening disorder involving an impaired ventilatory response to hypercar-
bia and hypoxemia. This core phenotype is associated with lower-penetrance anom-
alies of the autonomic nervous system (ANS) including Hirschsprung disease and
tumors of neural-crest derivatives such as ganglioneuromas and neuroblastomas. In
mice, the development of ANS reflex circuits is dependent on the paired-like homeo-
box gene Phox2b. Thus, we regarded its human ortholog, PHOX2B, as a candidate
gene in CCHS. We found heterozygous de novo mutations in PHOX2B in 18 of 29
individuals with CCHS. Most mutations consisted of 5–9 alanine expansions within a
20-residue polyalanine tract probably resulting from non-homologous recombina-
tion. We show that PHOX2B is expressed in both the central and the peripheral ANS
during human embryonic development. Our data support an essential role of
PHOX2B in the normal patterning of the autonomous ventilation system and, more
generally, of the ANS in humans.

Fig. 1 Mutations of PHOX2B in CCHS. a, Genomic organization of PHOX2B and schematic representation of the PHOX2B protein. The homeobox domain and the
9- and 20-residue polyalanine tracts are indicated (blue and green boxes, respectively). b, DNA sequence electropherogram and PCR digestion showing the iden-
tified mutations in PHOX2B. Left, Heterozygous frameshift mutations. Right, Heterozygous alanine triplet expansions. Mutated alleles are seen as extra bands of
variable size between the 170- and 210-bp bands after enzymatic digestion with StuI of the 380-bp PCR product of PHOX2B exon 3 and migration on a 3%
agarose gel (see Supplementary Note 1 online). c, Mutant PHOX2B proteins. Top, 618–619insC and 722–759del37nt frameshift mutations. Bottom, various
polyalanine expansions observed. The duplicated codons are shown in green boxes.
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repeats of 9 and 20 residues, respectively
(Fig. 1a). The length of the polyalanine
tracts is conserved in mice and humans.
We screened the coding sequence of
PHOX2B in a series of 29 unrelated indi-
viduals with CCHS (see Supplementary
Note 1 online). Direct DNA sequencing
showed heterozygosity with respect to
PHOX2B variations in 18 of 29 cases. In 16
of 18 cases, the nucleotide variation was a
triplet expansion of 15–27 nucleotides (nt
721–780; Fig. 1b and Supplementary Table
1 online) adding 5–9 alanines to the 20-
residue polyalanine tract (Fig. 1c). Most
mutant genotypes were different, suggest-
ing that they derived from independent
mutational events (Fig. 1c). In addition,
whenever parents were available, we found
that the polyalanine triplet expansion
occurred de novo, supporting its role in the
disease phenotype (see Supplementary
Table 1 online). In two other CCHS cases,
a de novo cytosine insertion in a stretch of
four cytosines (618–619insC) and a dele-
tion of 37 nucleotides (722–759del37nt)

resulted in a frame shift downstream of the
homeobox, predicting a mutant protein
with no known function or homology
(Fig. 1b,c). The 722–759del37nt mutation
could be regarded as an out-of-frame con-
traction of the polyalanine tract. We found
neither alanine triplet expansions nor
frameshift mutations in 250 control chro-
mosomes from various ethnic back-
grounds. Notably, 2 of 250 control alleles
had a small polyalanine contraction (5 and
6 triplets, data not shown), suggesting an
unequal crossing-over during meiosis
rather than a polymerase slippage during
replication. In the former case, polyalanine
expansions and contractions are equally
likely to occur; PHOX2B contractions were
found as a rare variant in controls.

We found that 2 of 29 individuals with
CCHS carried heterozygous variants in
genes involved in the same developmental
pathway, namely RET and GDNF (amino-
acid substitutions P1039L and R93W,
respectively; see Supplementary Table 1
online; ref. 5), in addition to polyalanine

expansions in PHOX2B. Notably, Phox2
genes control Ret expression in both sym-
pathetic and enteric neurons in mice8.
Unlike the polyalanine expansions, how-
ever, these variants are neither necessary
(most individuals with CCHS do not have
any RET or GDNF gene variant) nor suffi-
cient for the disease to occur (carrier par-
ents have no phenotypic expression).
These data suggest that PHOX2B is the pri-
mary disease locus in CCHS. Moreover, we
found mutations in PHOX2B not only in
isolated cases of CCHS but also in individ-
uals with a more complex neural-crest
involvement including CCHS and
Hirschsprung disease (Haddad syndrome)
as well as early-onset neuroblastoma. We
did not find any correlation between the
size of the polyalanine tract and the com-
plexity of the disease in our analyses.

To confirm the involvement of muta-
tions in PHOX2B in the disease pheno-
type, we studied the expression pattern of
PHOX2B in early human development
(see Supplementary Note 1 online). In
accordance with the wide spectrum of
ANS dysfunction observed in individuals
with CCHS, the expression pattern of
PHOX2B involved both central auto-
nomic circuits and peripheral neural-
crest derivatives. From day 32 of
development, PHOX2B was expressed in
the seventh ganglion and the ninth/tenth
ganglionic complex (Fig. 2a–d). From day
33 of development, we observed strong
expression of PHOX2B in terminal rhom-
bomeres 4–8, in the presumptive enteric
ganglia and in the sympathetic chain gan-
glia (Fig. 2g–l). Finally, we detected
expression of PHOX2B in the presump-
tive carotid body at the carotid bifurca-
tion, ventral to the superior cervical
ganglion, which also expressed PHOX2B
(Fig. 2e,f). We did not detect any
PHOX2B expression in adrenal medulla
at the stages investigated.

Polyalanine expansion mutations
involving homeodomain or non-home-
odomain transcription factors (HOXA13,
HOXD13, ARX, RUNX2, ZIC2, FOXL2)
have been described in several human
malformations10,11. In each of these cases,
both the normal and expanded alanine
tracts range in a similar size, suggesting a
common underlying mechanism. In the
case of HOXD13 and ZIC2, the expansions
are not just loss-of-function mutations
but are responsible for a dominant nega-
tive effect12,13. In the case of PHOX2B, a
loss-of-function mutation with lower
penetrance for the enteric nervous system
anomalies is a possibility, as we found
frameshift mutations in two individuals.
Assuming that the protein is stable, how-
ever, the homeodomain is preserved in

Fig. 2 PHOX2B gene expression in developing human brainstem and enteric nervous system. Slides stained
with hematoxylin and eosin (a,c,e,g,i,k) and dark-field illumination of the hybridized adjacent sections
(b,d,f,h,j,l) at day 33 (a,b), day 54 (c–f) and day 47 of development (g–l). Parasagittal sections showing
expression of PHOX2B in rhombencephalon (rh; a,b), cervical spinal cord (sp; a,b), seventh (VII) ganglia and
ninth/tenth (IX+X) ganglionic complex (a–d), presumptive enteric ganglia of oesophagus (oe) and intestine
(in; i–l) and paravertebral sympathetic ganglia (sym), including the superior cervical ganglion (scg; g,h).
PHOX2B expression was also detected in the presumptive carotid body (arrow) at the carotid (c) bifurcation,
ventral to the superior cervical ganglion (e,f). Magnifications: a,b,g,h, ×15; c,d, ×25; i–l, ×30; e,f, ×40.
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both cases. As far as the ocular phenotype
is concerned, one can speculate that
PHOX2B mutant protein products exert a
dominant negative effect on PHOX2A,
considering the overlapping features
observed in CCHS and congenital fibrosis
of the extra ocular muscle type 2
(CFEOM2) resulting from homozygous
mutations of the gene PHOX2A (ref. 14).
Indeed, it has been shown that the third
and fourth motor nuclei express both
Phox2A and Phox2b in mice and are
Phox2a-dependent8. The mechanism for a
putative involvement of PHOX2B in iso-
lated neural-crest tumors is undefined at
present, but it is worth mentioning that
Phox2b has been shown to regulate neu-
ronal cell cycle15.

Little is known regarding the bases of
ventilatory control anomalies in CCHS.
It has been speculated that the disease
involves a defect in the integration by the
nucleus of the solitary tract and
interneurons of the inputs from the cen-
tral CO2/pH-sensitive chemoreceptors
(medulla oblongata) and the peripheral
O2, CO2 and pH-sensitive chemorecep-
tors in the carotid bodies1. Notably, sev-
eral of these structures express Phox2b in
mice8,9 and humans (this study) and fail
to form or degenerate in Phox2b–/–

mouse mutants (refs. 8,9 and J.-F. Brunet,
pers. comm.). So far, no phenotype has

been reported in Phox2b+/– mice. Our
mutation and expression studies strongly
support the view that PHOX2B is a mas-
ter gene for the formation and/or func-
tion of the neuronal network for
autonomous control of ventilation and
further suggests that PHOX2B mutations
trigger a wide spectrum of ANS disorders
ranging from dysgenetic malformations
to tumor predisposition.

Note: Supplementary information is avail-
able on the Nature Genetics website.
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1

Supplementary Table 1

Clinical data and PHOX2B gene mutations
in congenital central hypoventilation syndrome (CCHS)

CLINICAL DATA MOLECULAR ANALYSIS

Patients CCHS ANSD HSCR Tumour PHOX2B
Mutation

Alanine tract
expansion

Transmission

O1 +     E -
-

dup15nt A20>A25 ?
O2 + H, O - - dup15nt A20>A25 de novo
O3 + H, O constipation - -
O5 + E, H, O - - -
O6 + E, H, O - - -
O7 + H, O - - -
O9 + H constipation - dup21nt A20>A27 ?
O10 + E, H, O + ( ?) - dup15nt A20>A25 ?
O11 + H, O - - dup18nt A20>A26 de novo
O12 + nd - - dup18nt A20>A26 ?
O15 + H, O - - dup18nt A20>A26
O17 + H, O - - dup18nt A20>A26 de novo
O18 + H, O - - dup18nt A20>A26 ?
O19 + H, O - dup21nt A20>A27 ?
O21 + H, O - - dup15nt A20>A25
OH22 + E, H, O + (LS) + -

O27 + E, H, O - - dup18nt A20>A26 de novo
O29 + E, H, O - - dup27nt A20>A29 ?
OH30 H, O +  (SS) - dup21nt A20>A27 ?
O33 +   nd constipation - dup15nt A20>A25 de novo
OH123 + nd + ( ?) - -
OH160 + H, O + (LS) - dup21nt A20>A27 de novo
OH194 + H + (LS) - dup24nt A20>A28 ?
OH198 + H, O + (SS) - -
OH225 + nd* + (LS) - -
OH245 + H, O + (LS) - -
OH247 + nd + ( ?) - 722-759del38nt ?
OH253 + O + ( ?) + 618-619insC de novo
OH296 + nd + (LS) - dup21nt A20>A27 de novo

ANSD: autonomic nervous system dysfunction; ?: unknown; nd: not determined

(*died in the neonatal period); E: esophageal dysmotility2; H: decreased heart

rate variability3; O: abnormal pupillary reaction to light4; HSCR: Hirschsprung

disease6. Tumour in patients OH22 and OH253 were ganglioneuroblastoma and

neuroblastoma respectively7. OH160 and O2 were previously shown to carry a

heterozygous RET and GDNF gene mutation respectively (P1039L and R93W).
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of the components of blood ves-
sels, one major technique used in
experimental embryology has
been the construction of quail-
chick chimeras, which exploits
species differences in nuclear
structure to permanently mark
cells (“fate map”) grafted from a
donor to a host embryo 16. The en-
dothelial cell lineage becomes dis-
tinct from other future mesoder-
mal progeny at a very early time
point, when the future head is
barely distinguished by an ante-
rior transverse buckling in the
germ layers. A tyrosine kinase re-
ceptor to the vascular endothe-
lium growth factor, known as
VEGFR2, is already expressed at
this time point in a subset of
cephalic mesodermal cells that
subsequently acquire characteris-
tics of endothelial cells 8.

Vasculogenesis, the de novo
creation of vascular tubes from
endothelial and pericytic precur-
sors, takes place in the early em-
bryonic yolk sac and allantois, as
well as in intraembryonic sites
such as the bilaterally paired
dorsal aortae. VEGFR2-express-
ing precursors coalesce and cavi-
tate to create a primary capillary
network. Thereafter, new vessels
are created by sprouting from
pre-existing vessels, even primi-
tive ones. This process is known

The adult head of vertebrates
presents a particularly complex
three-dimensional volume, with
heavy localized demands for oxy-
genation and nutrition within the
dense parenchyma of the brain.
Despite the structural complexity
of the head, underlying principles
of its organization become appar-
ent after examining the develop-
ing embryo.

The head starts out as a super-
position of three cellular sheets:
the endoderm, mesoderm and ec-
toderm. Deformation of these ap-
parently uniform sheets around
the anterior end of the notochord,
providing the longitudinal axis of
the organism, creates a cul-de-sac
in which the structures of the
head will later develop.

Blood vessels are constructed
from endothelial cells, in direct
contact with the circulating blood
and in tight contact with each
other; from pericytes, multipotent
contractile cells on the abluminal
surface of the endothelial cells
that are responsible for the secre-
tion of a tissue-specific basal lam-
ina 6; from concentric layers of
smooth muscle cells (one or more
depending on vessel type), and
from connective cells which main-
tain the position of the blood ves-
sel within the tissue or cavity.

In order to discover the origins

as angiogenesis and occurs th-
roughout life.

By following the fate of grafted
cells in early chick-quail chimeras,
it has been shown, for example,
that the loose mesoderm lateral to
the future brain gives rise to both
striated muscles and the endothe-
lium of all cephalic blood vessels.
According to the anteroposterior
level at which grafts were per-
formed at one developmental
stage, corresponding segments of
the ensuing cephalic blood vessels
contained endothelial cells of
graft origin (nearby muscles also
contained grafted cells) 1,4.

Neural crest cells (NCC) de-
laminate from the left and right
boundaries between the ectoderm
and the median neural plate as
the latter forms the tube which
will give rise to the central ner-
vous system. NCC remain me-
senchymal until they colonize the
appropriate locations, where they
differentiate into the peripheral
nervous system, certain types of
endocrine cells, and all pigment
cells aside from the retinal pig-
mented epithelium 17.

Specifically in the head, NCC
also give rise to many tissues
which in the body are mesoder-
mally derived. These include the
intercalating connective compo-

Vasculo- and Angio-Genesis
in the Head and Neck
H. ETCHEVERS
Collège de France, Nogent sur Marne; France

Key words: vasculogenesis, angiogenesis, head & neck
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nents of the cephalic glands, mus-
cles and tendons. The dermis and
adipose tissue overlying the jawed
facial skeleton and brain case, the
bones of that part of the skull, and
certain regions of the meninges
underlying it are also of neural
crest origin 3,5,15,18,19,21.

Early indications of the role of
NCC in cephalic blood vessels
came from fate-mapping experi-
ments that showed their constitu-
tion of the branchial arch mes-
enchyme and subsequent incor-
poration into the smooth muscle
walls of the corresponding large
arteries 14,19. In particular, NCC de-
rived from the posterior rhom-
bencephalon contribute all com-
ponents of the proximal large ar-
teries to the heart, with the excep-
tion of the endothelium 19. NCC of
this origin also play an important
role in the septation of the pul-
monary trunk from the aorta 20,22,23.
NCC are equally important to
aortic arch vessel formation in
mammals 12,13.

We have recently demonstrated
the extent of NCC incorporation
into cephalic blood vessels 10.A se-
ries of quail-chick chimeras were
made by successively transplant-
ing small fragments of the brain
neural folds from donors to the e-
quivalent anteroposterior level of
hosts preceding cephalic NCC mi-
gration. Embryos were then ex-
amined at different stages during
the first half of gestation to see
where the NCC had integrated in
the blood vessels. Grafts from an-
terior brain levels corresponding
to the diencephalon and mesen-
cephalon resulted in abundant
cells within the forebrain me-
ninges, with a sharp border at the
forebrain-midbrain boundary 10.
These cells, adjacent to endothe-
lial capillary walls within the pa-
renchyma, were identified with
the marker α-smooth muscle
actin as being pericytes. Smooth
muscle and connective tissue cells
of graft origin were observed in
the distal portions of the major

the forebrain. NCC constitute a
somewhat, but not strictly, strati-
fied or “segmental” mesenchyme
in the head, according to their
neural fold origin.

Grafts from adjacent levels of
the neural folds give rise to cells
in overlapping domains of the
branchial sector, indicating a
gradual succession from NCC of
one origin to NCC of a neighbor-
ing origin. There is a similar com-
posite distribution of NCC from
neighboring neural fold origins in
the bones of the jaw 3 and in the
interstitial cells of the various
cephalic muscles 15.The morpholo-
gy of head elements is imposed
secondarily, immobilizing the ini-
tial NCC distributions. Recent da-
ta shows that the endoderm exer-
ts a major instructive influence on
facial skeletal morphogenesis 2.
Definitive vascular architecture
in the head is certainly subject to
the same sculpting influences as
these other cephalic structures,
since they are organized from
the same original pool of mesen-
chyme. Ablation experiments in
the chick have contributed evi-
dence that the morphology of the
upper head depends directly on
the presence of NCC. Removal of
the neural folds along the length of
the prospective diencephalon, me-
sencephalon and anterior rhom-
bencephalon deprives the rostral
head of NCC. Under these experi-
mental conditions, the tissues di-
rectly derived from these cells are
missing: the nasal septum and
capsule, the upper beak and jaw,
the frontal and ethmoid bones,
the dermis over these regions, the
forebrain meninges.

Surprisingly, other tissues, not
themselves NCC derivatives, are
also missing: the forebrain itself,
the anterior pituitary, the median
oculomotor muscles, the superior
salivary glands 10. Over time, holo-
prosencephaly and hypotelorism
or outright cyclopia develop in
operated embryos, if they have
been operated early enough.

cephalic arteries. Grafts of neural
folds at the level of the anterior
rhombencephalon, in contrast, ga-
ve rise to the non-endothelial cells
of the proximal (closer to the
heart) segments of the same arte-
ries as well as the distal internal
carotid arteries. Median rhom-
bencephalic neural folds con-
tributed cells to the carotid arte-
ries and cardinal veins, while po-
sterior rhombencephalic NCC
tended to incorporate into proxi-
mal segments of the carotid arte-
ries, as well as into the aortic and
pulmonary trunks and the cono-
truncus and semilunar valves of
the heart itself. Thus, the original
anteroposterior origin of a cell wi-
thin the neural folds corresponds
to its final distoproximal distribu-
tion in a defined subset of ce-
phalic blood vessels. This subset,
designated the “branchial vascu-
lar sector”, is a distinct circuit of
blood vessels originating in the
ventral aorta and aortic arches,
ramifying into circumscribed ca-
pillary plexuses, and terminating
in their venous return to the heart.
These vessels irrigate the forebrain,
face and jaws.

A second vascular division can
be distinguished in the head by
virtue of its vessels not belonging
to the branchial sector. Its compo-
nent arteries and veins share the
property of being entirely con-
structed from the embryonic me-
soderm. In mature vertebrates,
vessels branching rostrally from
the dorsal aorta irrigate the dorsal
head, including the midbrain, ce-
rebellum and hindbrain. The two
vascular domains contact at the
circle of Willis, a large anastomo-
sis between the bifurcation of the
basilar artery and the cerebral ar-
teries, branches of the internal
carotids. This polygon surrounds
the optic nerves and ventral dien-
cephalon, reflecting the transition
within the meninges from an en-
tirely mesoderm-derived region,
the midbrain, to a composite
mesoderm/NCC-derived region,
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Normally, NCC and VEGFRex-
pressing mesodermal cells sur-
round the forebrain from the
dorsal and ventral sides, respec-
tively. They combine to form a
leptomeningeal plexus by the sec-
ond day of incubation in the
chick, although vascular penetra-
tion of the forebrain only occurs
during the fifth day. In embryos
lacking rostral NCC, forebrain
cell death occurs on the second
and third days of incubation, such
that the prospective forebrain tis-
sue is not even present on the fifth
day 9. Therefore, the phenotype of
operated chicks is due to a sur-
vival effect of NCC-containing
mesenchyme on the early fore-
brain neuroepithelium.

Factors responsible for this
trophic effect are currently being
investigated.

A number of syndromes affect
NCC derivatives in the head as
well as vessels of the branchial

vascular sector corresponds to the
affected regions in Sturge-Weber
patients. Moya-moya disease is a
bilateral stenosis of the internal
carotid arteries, which is circum-
vented by a profusion of telang-
iectatic blood vessels.

The fact that moya-moya is re-
stricted to this particular region
of the cephalic arteries, and that
it has been associated with neu-
rocristopathies 7 implies the in-
volvement of deficient NC-de-
rived pericytes and in particular,
those derived from the mid-
rhombencephalon (rhombome-
res 4-5).

Acknowledgements

This work was supported by the
Centre National de la Recher-che
Scientifique and the Collège de
France. H.C.E. is a postdoctoral
fellow of the Sturge-Weber Foun-
dation.

sector, in particular those near the
heart. These include, but are not
at all restricted to, the syndromes
of Von Hippel-Lindau, Dubowitz,
DiGeorge, and hemifacial micro-
somia. In most cases, the defects
in cranial NC tissues are probably
downstream from a more general
pathogenic cause. Nonetheless, it
is important to realize that a
causal cascade of malformations
could be responsible for the mul-
tifactorial nature of these syn-
dromes and that, for instance, a
problem induced in NCC could
give rise to the pituitary malfunc-
tions present in Harrod or Dubo-
witz syndrome. In Sturge-Weber
disease, the co-localization of an-
giomas in the telencephalic me-
ninges, the ocular choroid and the
facial dermis (port-wine stain)
leads us to hypothesize that clonal
progeny of the rostral cephalic
NCC are directly deficient, since
NCC distribution in the branchial
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L Pinson, J Augé, S Audollent, G Mattéi, H Etchevers, N Gigarel, F Razavi, D Lacombe, S Odent,
M Le Merrer, J Amiel, A Munnich, G Meroni, S Lyonnet, M Vekemans, T Attié-Bitach
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O
pitz syndrome (G/BBB syndrome, MIM145410 and
MIM300000) is a midline congenital malformation
characterised by hypertelorism, hypospadias and

oesophagolaryngotracheal defects leading to swallowing
difficulties and a hoarse cry.1 Additional defects include cleft
lip with or without cleft palate, imperforate anus, anomalies
of the central nervous system (including corpus callosum
agenesis or vermis agenesis and hypoplasia),2 congenital
heart defects (atrial and ventricular septal defects, patent
ductus arteriosus and coarctation of the aorta),3 and
developmental delay in two thirds of patients. This condition
is genetically heterogeneous with an X-linked recessive form
mapped to Xp22.3 and at least one autosomal dominant form
mapped to chromosome 22q11.2.4 Also, several patients with
an autosomal Opitz syndrome have been reported with a
22q11 deletion.5 6 Recently, mutations in MID1, a member of
the B-box protein family have been identified in the X-linked
form of the disease7 but the gene for the autosomal dominant
form on 22q11 remains unknown.

MID1 encodes a protein belonging to a novel subclass of
RING, B-box, Coiled-Coil proteins characterised by a fibro-
nectin type III motif and a C-terminal domain. Although the
function of MID1 remains unknown, recent experiments
have demonstrated that MID1 is a microtubule associated
protein, belonging to a large multiprotein complex8 9 involved
in ubiquitination through microtubules.10 MID1 association
with microtubules is regulated by dynamic phosphorylation
involving MAP kinase and protein phosphatase 2A that is
targeted specifically to MID1 by a regulatory a4 subunit.

Here, we report on six MID1 mutations in a cohort of 14
patients with Opitz syndrome and on heart and hindbrain
expression of MID1 during early human development using
mRNA in situ hybridisation. In addition, we investigate the
contribution of chromosome X-inactivation studies to iden-
tify the X-linked form of the disease.

METHODS
Patients
A total of 14 cases were included in the study, namely six
familial forms consistent with X-linked inheritance and eight
isolated cases (11 males and 3 severely affected females).
Minimal inclusion criteria were: three major signs (hyper-
telorism, hypospadias in males or genital abnormalities in
females, oesophagolaryngotracheal defects) or two major and
at least two minor signs (cleft lip with or without cleft palate,
anal malformation, congenital heart defects, central nervous
system malformation, and limb or skeletal abnormalities). Pati-
ents were tested for 22q11 deletion using fluorescent in situ
hybridisation. Magnetic resonance imaging of the brain was
performed in most cases. Table 1 summarises the clinical findings
and molecular data of patients with a known MID1 mutation.

Patient 1 belongs to a large family (fig 1, family 1) with
several affected individuals. The proband had hypertelorism,
a broad nasal bridge, swallowing difficulties, laryngeal cleft,

and hypospadias (fig 1A). He was not developmentally
delayed. His mother only had hypertelorism and his brother
had hypertelorism, swallowing difficulties, and posterior
urethral valves.

Patient 2a (fig 1, family 2) had hypertelorism, anteverted
nostrils, laryngeal diastema, bilateral cleft lip, hypospadias
and developmental delay. Magnetic resonance imaging
showed vermis hypoplasia. His half brother (2b) had
hypertelorism, severe pharyngotracheal fistula, and hypo-
spadias. In addition, he had a unilateral cleft lip with a
broad nasal bridge and a widow’s peak, a flat philtrum, and

Abbreviation: DHPLC, denaturing high performance liquid
chromatography
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early human development. Obligate carrier mothers
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hindbrain expression of MID1 during early human
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and autosomal forms of the disease.
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low set ears. He required special education. Their mother had
a normal phenotype.

Patient 3 had a prominent forehead, hypertelorism,
anteverted nostrils, and a widow’s peak (fig 1, family 3).
He also had swallowing difficulties with laryngeal cleft and
severe hypospadias with micropenis, umbilical and inguinal
hernia, and mild mental retardation. No brain investigation
was available. His mother had hypertelorism and required
surgery for a short nose and a broad nasal bridge.

Patient 4 (fig 1, family 4) was the first child of healthy
parents. He had hypertelorism, papillar coloboma, anteverted
nostrils, low set ears, swallowing difficulties with laryngeal
diastema, and nasal voice, hypospadias, imperforate anus,
and bilateral ureteral reflux (fig 1B). Magnetic resonance
imaging showed inferior vermis agenesis but no develop-
mental delay was noted. His family history was suggestive of
Opitz syndrome segregating over three generations. Indeed,
his maternal grandmother, his mother (fig 1B), his maternal

Figure 1 Pedigree and sequence of probands with a MID1 mutation. Photographs of three probands (A, B, C) (Reproduced with parents’ permission)
and a mother (B) (Reproduced with mother’s permission). Pedigree and mutations in the X-linked locus. In family 3, the proband brother died during
pregnancy and had bilateral cleft lip and palate. The DNA sequence chromatograms are shown below the normal nucleotide sequence. * Patients for
whom molecular analysis was performed, carrying the mutation (red) or not (black).

Table 1 Clinical and molecular data of Opitz syndrome patients with a known MID1 mutation

Main features

Our series familial (F) and sporadic (S) cases

Family 1 Family 2 Family 6 Total

(F) (F) Patient 3 Patient 4 (F) Patient 9 Total
Previous
studies11 %

proband brother proband brother (F) (F) proband brother (S) /9 /28 % /37

Hypertelorism or telecantus + + + + + + + + + 9 28 100 100
Hypospadias + – + + + + + + + 8 25 89 89
Urogenital abnormalities + + +
Oesophagolaryngotracheal
anomalies

+ +* + + + + +* +* +* 9 21 75 78

Cleft lip or palate – – + + – – + – – 3 15 54 49
Ear abnormalities + + + + – + + ? + 7 11 39 48
Anteverted nostrils – – + – + + + + – 5 11 39 43
Heart defects – – – – + – – + – 2 9 32 30
Anal abnormalities – – – – – + + – – 2 8 28 27
Brain anomalies – – +� ? – +` +� +1 ? 4 6 21 27
Developmental delay – – + + + – + + – 5 14 50 51
MID1 mutation G452S R277X a.1285+2

delGAGT
1447–
1448
insAACA

R495X 403–411
del

*patients presenting with swallowing difficulties but no anatomical defects
�vermis hypoplasia
`inferior vermis agenesis
1vermis and posterior corpus callosum hypoplasia
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aunt, and his sister had hypertelorism. His sister also had an
anal malformation.

Patient 6 and his young affected brother had microcephaly,
vermis hypoplasia, hypertelorism, swallowing difficulties in
early childhood, and hypospadias (fig 1, family 6). He also
had a broad nasal bridge, a single central incisor, a cleft lip
and palate, and growth retardation. Psychomotor delay with
severe speech delay was present at 4K years of age. The
proband’s brother had a ventricular septal defect, a recto-
urethral fistula, a wide anterior fontanelle and hypoplasia of
the posterior part of the corpus callosum. His sister had
hypertelorism and anal anteposition.

Patient 9 had hypertelorism, low set posteriorly rotated
ears, swallowing difficulties in childhood, hypospadias, and
bilateral ureteral reflux (fig 1C). He had normal intelligence
at 10 years of age and no brain investigation was performed.

MID1 mutation screening
Genomic DNA was extracted from peripheral blood leuco-
cytes using standard procedures. The nine exons of the MID1
gene were PCR amplified using 12 MID1-specific primer pairs
as reported by Gaudenz et al12 except for exon 5 which was
amplified using another reverse primer (59-aagacaatacctg-
taaggtaatc). Denaturing high performance liquid chromato-
graphy (DHPLC) was used to detect nucleotide variants. We
determined the optimal analysis conditions, as previously
reported13 (mobile phase temperatures and acetonitrile
gradients are available on request). PCR products demon-
strating DHPLC variants were sequenced on both strands
using the big dye terminator cycle sequencing kit (Applied
Biosystems) and analysed on an ABI 377A automated
sequencer. For X-inactivation studies, we analysed the
methylation pattern at the human androgen receptor locus
as previously described by Hickey et al.14

MID1 in situ hybridisation
Human embryos were collected from terminated pregnancies
in agreement with French law (94–654 of July 29, 1994) and
the National Ethics Committee recommendations (No 1 of
May 22, 1984).

Tissues were fixed in 4% paraformaldehyde, embedded in
paraffin blocks and sectioned at 5 mm. Exon 9 primers were
selected for PCR amplification (F: ggcttctatcgccttttatga, R:
cacaggcttcatgagtgtaa). A T7 promoter sequence extension

(taatacgactcactatagggaga) was added at the 59 end of each
primer. T7F/R and F/T7R primers allowed the amplification of
sense and antisense templates. Riboprobes were labelled
using T7 polymerase in the presence of a[35S]UTP (1200 Ci/
mmol; NEN). Riboprobes were then purified on Sephadex
G50 columns. Hybridisation and posthybridisation washes
were carried out according to standard protocols.15 Slides
were dehydrated, exposed to BIOMAX MR X-ray films
(Amersham) for 3 days, dipped in Kodak NTB2 emulsion
for 3 weeks at +4 C̊, then developed and counterstained with
toluidine blue, coverslipped with Eukitt, and analysed under
dark and bright field illumination. No hybridisation signal
was detected with the a[35S]-labelled sense probe (fig 3Y and
not shown), confirming that the expression pattern obtained
with the a[35S]-labelled antisense probe was specific.

RESULTS
Denaturing high performance liquid chromatography and
direct sequencing analysis of the nine exons of the MID1 gene
detected six mutant genotypes among our 14 unrelated Opitz
syndrome patients (figs 1 and 2). In patient 1, a G1354A
missense mutation in exon 7 changed a glycine into a serine
(G452S) in the FNIII domain of the protein, the function of
which remains unknown (fig 2). The mutation was also
detected in the mildly symptomatic mother and her two
affected sons but not in the unaffected brother. In patient 2, a
C829T nonsense mutation (R277X) in exon 3 truncated the
C-terminal domain, the FNIII and the coiled-coil domains of
the protein, the latter domain mediating homodimerisa-
tion.16 17 The mutation was also observed in his mother and
his affected half brother but not in his unaffected brother.
In patient 3 and his mildly affected mother, we identified
a 4 bp deletion in the splice donor site of intron 6
(a.1285+2delGAGT), which was expected to result in either
an unstable transcript or a significant alteration at the C
terminal end of the protein because of aberrant splicing.
Unfortunately, no cell line from patient 3 was available to test
this hypothesis by reverse transcription experiments. Patient
4 carried a 4 bp insertion in exon 7 (1447–1448 insAACA),
predicting a premature stop codon five amino acids down-
stream, truncating the MID1 protein and lacking the C
terminal domain. No DNA was available for other family
members. In patient 6, a C1483T nonsense mutation (R495X)
truncated the C-terminal domain of the MID1 protein

Figure 2 MID1 mutations identified in our series. Schematic representation of MID1 cDNA (A) and protein with respect to the different functional
domains (B). Mutations identified in our series are indicated. C: MID1 alignment by CLUSTAL W* in five species is shown for the two domains where the
three amino acid deletion (B-Box 1) and the missense mutation are located (FNIII). The concerned amino acids are conserved in all species.
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Figure 3 MID1 expression in human embryos. MID1 expression by in situ hybridisation on human embryos (A–V) and fetal tissues (W–Y). A, C, E, G,
I, K, M, O, Q, S, U, and W are bright field illuminations of slides stained with haematoxylin, eosin, and safran adjacent to the ones presented for in situ
hybridisation studies in dark field illumination (B, D, F, H, J, L, N, P, R, T, V, X, Y). (A–D) Sagittal and parasagittal sections of 5 week old human
embryos showing MID1 expression in prosencephalon (Pro), mesencephalon (Mes), rhombencephalon (Rh), spinal cord (Sp), dorsal root ganglia
(DRG), otic vesicle (OV), pharyngeal arches (PA), foregut (Fg), mesonephros (Msn), and limb buds. (E–J) Transverse sections of 6 week old human
embryo through the head (E–H) showing the expression in telencephalic vesicle (Tel), and in nasal (NP) and oropharynx epithelia (Oph). I and J are
sections through the body at the thoracic level, showing the MID1 transcripts in spinal cord, dorsal root ganglia, epithelium of lung (Lu), and
oesophagus (Oe). Very localised MID1 expression is observed at the top of the interventricular septum (IVS, arrow). (K–V): sagittal and parasagittal
sections of 7 week old human embryo. In the head, (K-N), MID1 is strongly expressed in telencephalon, cerebellum bud (Cer), nasopharyngeal (NP)
epithelia, and at the oesophagolaryngeal junction (arrow). O and P show MID1 expression in limb mesenchyme but not in developing bones (b) and in
neural retina (NR). Note the false positive signal given by the pigmented retina (PR). Q and R show the MID1 expression in the spinal cord and the
respiratory and digestive tract epithelia. S, T: strong MID1 expression is observed in epithelia derivatives of developing kidney (Mtn) and in muscular
cells of proximal limbs (Mu). No expression is observed in adrenal glands (Ad), gonads (G), or liver (Li). U, V: MID1 is expressed in the anal folds
(arrow, An) and in the genital tubercle (GT). (W–Y) MID1 expression at the tip of the interventricular septum is clearly observed (arrowhead) in an
8.5 week old heart as compared to the control hybridised adjacent section (Y). Ao, aorta; H, Heart; L, larynx; LV, left ventricle; M, mandible; Oe,
oesophagus; Pa, palate; Ra, Rathke pouch; RV, right ventricle; To, tongue.
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involved in microtubule binding. Previous immunohisto-
chemical experiments have shown that a MID1 protein
carrying a mutation in the C-terminal domain does not
associate with microtubules but rather forms cytoplasmic
clots.18 Restriction analysis using the Taq 1 restriction enzyme
detected the same mutation in his mother and his young
brother. Finally, a 9 bp in frame deletion in patient 9 (403-
411del) abolished three conserved amino acids (valine,
threonine, and cysteine) in the B-box1 domain (fig 2a)
which interacts specifically with phosphatase 2A through its
a4 subunit.10 These findings suggest an important role of
these three amino acids for binding the a4 subunit to the
MID1 protein. The asymptomatic mother did not carry the
mutation, which therefore occurred de novo.

These nucleotide changes were not observed in 100 control
chromosomes. Sequencing of two additional abnormal DHPLC
patterns revealed conservative polymorphisms in exon 3 and
8 (G287G and S410S) in patients 4 and 12 respectively.

X-inactivation studies revealed a skewed inactivation
pattern (91%:9%) in a severely affected female with Opitz
syndrome, who had hypertelorism, laryngeal diastema,
oesophageal atresia, anterior placement of the anus, and
developmental delay. However, we failed to detect any MID1
mutation in this patient. The other two affected females with
Opitz syndrome and the three obligate carrier mothers
showed a random X-inactivation pattern.

MID1 expression pattern was studied during early human
development using in situ hybridisation on human embryo
sections at Carnegie stages 14 (that is, day 32), 15 (day 33),
18 (day 44), and 19 (day 47) and at 8.5 weeks of
development (fig 3). At day 32, MID1 was strongly expressed
in the central nervous system, from the prosencephalon
(except its most anterior part) to the spinal cord. MID1
expression was also observed in the ventral part of the otic
vesicle, the pharyngeal arches, the gastrointestinal tract, and
the mesonephros (fig 3A, B). The same expression pattern
was observed at day 34 in the central nervous system. In
addition, a signal was observed in dorsal root ganglia,
sclerotomes and limb buds (fig 3C, D). At day 44, MID1
expression was observed in telencephalic vesicles (fig 3E, F)
but not in the medial diencephalon (fig 3G, H). Also, it was
expressed in the respiratory and digestive tract epithelium
(fig 3I, J) and in the vertebra, where the expression was
restricted to the undifferentiated mesenchyme (data not
shown). Interestingly, a weak signal was detected in a
restricted area of the heart, at the apex of the interventricular
septum (fig 3I, J). By day 47, MID1 expression increased in
telencephalic vesicles and was also observed in the lateral
part of the ventral diencephalon (fig 3O, P), the rhombence-
phalon (mainly in the cerebellar bud, fig 3K, N), the
neurosensorial retina (fig 3K, L), the spinal cord (fig 3Q, R),
and the dorsal root ganglia (fig 3S, T). Meanwhile, signal
intensity decreased in the mesencephalon (fig 3M, N). A
strong expression was observed in the epithelia of nasal
(fig 3K–N), oral and oesophago-laryngeal cavities (fig 3K, L),
the medial part of the tongue (fig 3K, L) but not laterally
(fig 3M, N), in the respiratory and digestive tract epithelium
(fig 3Q, R), the metanephros (fig 3Q, R), and in the anal folds
(fig 3U, V). MID1 expression was also detected in myoblasts
but not in forming bones or nerves (fig 3S, T). Finally, at
8.5 weeks of development, expression of the MID1 gene in
the heart was still restricted to a small area of the
interventricular septum (fig 3W–Y).

DISCUSSION
Here we report on six MID1 mutations in a series of 14 Opitz
syndrome patients including five familial forms and one
sporadic case. All mutations identified in our series were
novel mutations except the R495X mutation, which was

previously reported in three unrelated patients.11 18 The
mutations were truncating mutations (4), an in frame 9 bp
deletion and a missense mutation. They were scattered along
the coding sequence, but most of them were located at the
C-terminal end of the protein, either in the FNIII or the
C-terminal domain. Our data support the prevalence of
truncating mutations, as most cases resulted in frameshift
mutations. Our study also supports the high mutation
detection rate in familial forms of the disease.12 18

As far as genotype/phenotype correlations are concerned, it
is striking to note that 4/5 patients carrying the R495X
mutation had a cerebellar anomaly (family 6, two cases in the
present report, one patient reported by Cox et al18 and two by
De Falco et al11). Vermis hypoplasia or agenesis was also
present in two other patients of our series, who carried a
R277X and a 1047–1448insAACA mutation, respectively.
Interestingly, no developmental delay was noted in the
patient carrying the 1047–1448insAACA mutation. Finally,
two other cerebral anomalies were described in two patients:
a corpus callosum agenesis (1312delATG7), and a Dandy-
Walker malformation (Q347X11). It appears therefore
that vermis hypoplasia or agenesis was the most common
brain anomaly in Opitz syndrome patients with MID1
mutations, particularly in association with the R495X
mutation (p,,0.0001). Therefore, systematic brain explora-
tion should be performed in patients with Opitz syndrome
even in the absence of mental retardation. On the other hand,
no other phenotype/genotype correlation could be established
in patients carrying a MID1 mutation. In particular, no
relationship was observed between the location of the
mutation and the severity of the disease.7 11 12 18

The role of MID1 during embryonic development has been
investigated through expression studies conducted in
mouse19 and chicken.20 The murine Mid1 gene is nearly
ubiquitously expressed but mostly in undifferentiated cells of
the central nervous system, the developing branchial arches,
and the gastrointestinal and urogenital systems. The devel-
opmental expression of chicken and mouse is very similar, a
feature consistent with the strong homology observed
between MID1 orthologues. However, at variance with chick,
no heart expression of Mid1 was observed in the mouse.20 The
present study shows that MID1 expression during human
development correlates with organ involvement in Opitz
syndrome, namely a defect in closure of the facial and
pharyngeal processes (oronasal clefts and tracheo-oesophagal
fistulas) and fusion defect of urethral folds (hypospadias).
Moreover, the restriction of MID1 expression to heart
interventricular septum correlates with conotruncal lesions
commonly seen in Opitz syndrome. Consistently, 30% of the
39 MID1 mutated patients reported so far presented a
congenital heart defect.7 11 12 18 21 22 MID1 is also expressed in
the cerebellum bud, correlating with cerebellar involvement
in Opitz syndrome (vermis hypoplasia or agenesis). Based on
this study, we suggest that cardiac defects and cerebellar
anomalies belong to the Opitz syndrome spectrum.

Despite the skewed pattern of X-inactivation found in a
female patient with Opitz syndrome, strongly suggesting an
X-linked disease, no MID1 mutation was identified in this
patient by sequencing the whole MID1 coding sequence. We
may have failed to find a MID1 genomic duplica-
tion7 11 12 18 21 22 or non-coding sequence alterations. On the
other hand, this could suggest another X-linked Opitz gene.
Finally, considering that three obligate carrier mothers
showed a random pattern of X-inactivation, it appears that
X-inactivation studies in females do not help when dis-
criminating the X-linked form of the disease.

In conclusion, the present study contributes to further
delineate the molecular spectrum underlying the Opitz
syndrome phenotype. Furthermore, expression studies during
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early human development strongly suggest that MID1 is
involved in human heart development, and also support the
view that vermis hypoplasia or agenesis should be regarded
as an important clinical feature of Opitz syndrome.
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Thyroid dysgenesis (TD) is responsible for most cases of con-
genital hypothyroidism, a condition that affects about one in
4000 newborns. Mutations in PAX8, TITF1, or FOXE1 may ac-
count for congenital hypothyroidism in patients with either
isolated TD or TD with associated malformations involving
kidney, lung, forebrain, and palate. Pax8, titf1, and foxe1 are
expressed in the mouse thyroid bud as soon as it differentiates
on the pharyngeal floor. Because the spatio-temporal expres-
sion of these genes is unknown in humans, we decided to study
them at different stages of human embryonic and fetal devel-
opment. PAX8 and TITF1 were first expressed in the median
thyroid primordium. Interestingly, PAX8 was also expressed

in the thyroglossal duct and the ultimobranchial bodies. Hu-
man FOXE1 expression was detected later than in the mouse.
PAX8 was also expressed in the developing central nervous
system and kidney, including the ureteric bud and the main
collecting ducts. TITF1 was expressed in the ventral forebrain
and lung. FOXE1 expression was detected in the oropharyn-
geal epithelium and thymus. In conclusion, the expression
patterns described here show some differences from those
reported in the mouse. They explain the malformations asso-
ciated with TD in patients carrying PAX8, TITF1, and FOXE1
gene mutations. (J Clin Endocrinol Metab 90: 455–462, 2005)

NORMAL THYROID FUNCTION is essential for devel-
opment, growth, and metabolic homeostasis. Defects

in any step of thyroid development (such as specification,
proliferation, migration, growth, organization, differentia-
tion, and survival) may result in a congenital anomaly
and/or impaired hormonogenesis, leading to variable de-
grees of hypothyroidism. Congenital hypothyroidism (CH)
affects one in 4000 newborns, and thyroid dysgenesis (TD)
accounts for about 85% of the cases; the other 10–15% result
from functional disorders in hormone synthesis. TD includes
absence of thyroid tissue (athyreosis), presence of ectopic
tissue, as well as hypoplasia of an orthotopic gland. Ectopic
thyroid is by far the most common cause of CH, followed by
athyreosis. In contrast, thyroid hypoplasia is very rare (1). TD
is usually sporadic, although some cases of familial forms
support Mendelian inheritance (2–4).

In the human embryo, the thyroid gland is the first en-
docrine gland to develop. In its mature form, it is composed
of two different hormone-producing cells, namely, thyroid
follicular cells and parafollicular cells, also called C cells.
These two cell types have distinct embryonic origins. The

former derives from the floor of the foregut (median pri-
mordium), whereas the latter arises from cells within the
ultimobranchial body (lateral primordia) (5). A morpholog-
ical and anatomical description of thyroid development is
summarized in Table 1.

A number of thyroid follicular cell-specific transcriptional
regulators have been identified in various animal models.
Three of these genes, namely, the paired domain factor
Pax8, Titf1 (also known as Nkx2a, Ttf-1, or T/ebp), and Foxe1
(also called Titf2 or Ttf-2), are expressed in the thyroid gland
during mouse development until adult life (6–9) and are
required for normal thyroid development. Indeed, in all
three knockout models, a thyroid primordium forms, but
fails to produce a definitive thyroid gland. In the pax8�/�

knockout mouse, the primary thyroid primordium disap-
pears, leading to a complete absence of follicular cells (10).
In the titf1�/� knockout mouse, the thyroid primordium is
lost by apoptosis, and neither thyroid follicular cells nor C
cells can be found (11). Finally, in the titf2�/� knockout
mouse, the thyroid primordium fails to migrate, and in half
of the fetuses on embryonic d 15.5 (E15.5) it is still detectable,
but by birth it has completely disappeared (12). In addition,
mutations of these genes have been identified in humans
providing a molecular basis for some cases of CH, frequently
with associated anomalies (13–15). In the present study we
describe the expression patterns of PAX8, TITF1, and FOXE1
genes and thyroglobulin protein during human develop-
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ment. Comparison of these expression patterns with those
observed in animal models provides new insights into hu-
man thyroid development and delineates a conceptual
framework to better assess the phenotypes of patients bear-
ing mutations in these genes.

Materials and Methods
Tissues

Human embryos and fetal tissues were obtained from legally termi-
nated pregnancies in agreement with French legislation, following na-
tional ethics committee recommendations, and with approval from the
Necker Hospital ethics committee. Embryonic stages were determined
according to morphological criteria of the Carnegie staging (CS) clas-
sification (16). Five different developmental stages were studied: two
embryos at CS14 (d 33), two embryos at CS15 (d 34), two embryos at CS19
(d 47–48), and two fetuses of 9 and 11 wk of development, respectively.
Tissues were fixed in 4% phosphatase-buffered paraformaldehyde, de-
hydrated, and embedded in paraffin blocks, and 5-�m-thick serial sec-
tions were cut.

Hybridization probes

Coding sequences of PAX8 (a 174-bp fragment in exon 6 correspond-
ing to positions 603–776), TITF1 (a 204-bp fragment in exon 2 between
positions 159 and 362), and FOXE1 (a 203-bp fragment between positions
583 and 785) were amplified by PCR from human genomic DNA using
the following forward and reverse primers: PAX8 forward, 5�-GAT-
CAGGATAGCTGCCGACT-3�; PAX8 reverse, 5�-GTTGTACCTGCTC-

GCCTTTG-3�; TITF1 forward, 5�-TACAAGAAAGTGGGCATGGA-3�;
TITF1 reverse, 5�-CAGGTTGCCGTTGCAGTAG-3�; FOXE1 forward,
5�-CCGTCTATGCAGGCTACGC-3�; and FOXE1 reverse, 5�-CTGGTA-
GCCGGTGGTGGTAG-3�. The amplified sequences were specific for
each gene respectively (not shared by other family members). A T7
(TAATACGACTCACTATAGGGAGA) extension was added to prim-
ers in the 5� position to produce experimental (antisense) and control
(sense) DNA template to generate probes. The antisense DNA template
was generated after amplification using a forward primer and a T7
added reverse primer. The sense DNA template was produced from a
fragment amplified with a reverse primer and a T7 added forward
primer. Probes were transcribed from the corresponding sense and
antisense DNA templates in the presence of [�-35S]UTP (1200 Ci/mmol;
NEN Life Science Products, Boston, MA) and were purified on Seph-
adex G-50 columns.

In situ hybridization

In situ hybridizations were performed as previously described (17, 18)
with 15 �l 50% formamide, 300 mm NaCl, 20 mm Tris-HCl (pH 7.4), 5
mm EDTA, 10% dextran sulfate, 1% Denhardt’s solution, 10 mm
NaH2PO4, 0,5 mg/ml yeast total RNA, and the [�-35S]UTP-labeled sense
or antisense probes to a final concentration of 5 � 104 cpm/�l. Slides
were incubated overnight at 50 C in a humidified chamber. After hy-
bridization, slides were washed, dipped in Kodak NTB2 photographic
emulsion (Eastman Kodak, Rochester, NY) for 3 wk at 4 C, developed,
fixed, counterstained with toluidine blue, dehydrated, and cover-
slipped. They were analyzed under dark- and brightfield illumination.
Adjacent slides were hematoxylin/eosin-stained for morphological
studies.

Immunohistochemistry

Sections were heated in a microwave oven at 750 watts twice for 4 min
each time to retrieve the antigen sites. The sections were additionally
permeabilized with PBS- 0.1%Triton and incubated for 1 h at room
temperature with universal blocking reagent (BioGenex, San Ramon,
CA) and then overnight at 4 C with a commercial polyclonal antihuman
thyroglobulin antibody (DakoCytomation, Carpinteria, CA) diluted
1:5000. Staining procedures and chromogenic reactions were carried out
according to the protocols of the Super Sensitive Concentrated Detection
System for alkaline phosphatase labeling (BioGenex) and Fast Red
(Sigma Fast, Sigma-Aldrich Corp., St. Louis, MO). Sections were coun-
terstained with hemalum. Control experiments were performed using a
commercial mixture of mouse IgG1, IgG2a, IgG2b, IgG3, and IgM (Da-
koCytomation) instead of the primary antibody.

Results
PAX8

At CS14, the PAX8 gene was strongly expressed in the
median thyroid anlage (Fig. 1, A and B, arrows) and laterally
in the ectodermic region of the fourth pharyngeal arch (Fig.
1, Q and R, arrow). At CS15, PAX8 expression was observed
in the median thyroid anlage (Fig. 1, E and F), the thyro-
glossal duct cells (Fig. 1F, arrowhead), and laterally in a deeper
cell population that is consistent with the ultimobranchial
body (Fig. 1, S and T, arrow). At CS19, after fusion of median
and lateral components, the developing thyroid continued to
strongly express PAX8 (Fig. 1, I and J). This signal persisted
in follicular cells at fetal stages (Fig. 1, M and N).

Outside the thyroid, expression of the PAX8 gene was also
observed in the otic vesicle, the central nervous system, and
the developing kidney. At CS14, PAX8 transcripts were
found in the ventral part of the otic vesicle and in the mid-
brain-hindbrain boundary (Fig. 2, A and B, arrowhead and
arrow, respectively). At CS15, in addition to the midbrain-
hindbrain boundary (Fig. 2, E and F, arrowhead), PAX8 was
expressed in the lateral part of the spinal cord along the

TABLE 1. Timing of events during human thyroid development

Developmental
stagea

Anatomical or morphological events
in thyroid development

CS10 (22 d) Thickening of the floor of the primitive
pharynx between the diverging aorta

CS12 (26 d) Outgrowth and budding of the median thyroid
primordium from the floor of the primitive
pharynx. The inferior part of the fourth
pharyngeal pouch forms the ultimobranchial
body.

CS13 (28 d) The median primordium grows caudally and
appears bilobed. It is connected to the
primitive pharynx by the thyroglossal duct.

CS14 (32 d) Migration of the median primordium, still
connected to the epithelium of the primitive
pharynx

CS15 (33 d) The thyroglossal duct starts to break down.

CS16 (37 d) The median primordium consists of two lobes,
an isthmus and a pedicle remnant. The
continuity with the primitive pharynx is
lost.

CS18 (44 d) Median primordium fuses with the lateral
components derived from the
ultimobranchial bodies.

CS19 (48 d) The thyroid reaches its final position in front
of the trachea just inferior to the cricoid
cartilage. It begins to form follicles.

10–12 wk Follicles containing colloid become visible. The
thyroid is able to incorporate iodine into
thyroid hormones.

a Embryos specifically assigned to one of the recognized CS. The
estimated age to the CS is given in parentheses (5, 45, 46).

456 J Clin Endocrinol Metab, January 2005, 90(1):455–462 Sura Trueba et al. • PAX8, TITF1, and FOXE1 in Human Development

 on February 3, 2005 jcem.endojournals.orgDownloaded from 

http://jcem.endojournals.org


rostro-caudal axis (Fig. 2, E and F, arrow). At CS19, PAX8
expression was observed in the ventral part of the myelen-
cephalon (Fig. 2, I and J, arrow) and the isthmus, as well as
in the dorsal part of the cerebellum anlage (Fig. 2, I–L, * and
arrow in L, respectively). In the spinal cord, PAX8 mRNAs
were located laterally in the mantle layer of both the alar and
the basal plates, next to the neuroepithelial layer (Fig. 2, M

and N, arrows). In the developing kidney, PAX8 transcripts
were found in the mesonephros at CS14 (Fig. 2, C and D), in
the metanephric blastema, and weakly in the ureteric bud at
CS15 (Fig. 2, G and H). At CS19, PAX8 was strongly ex-
pressed in the condensed mesenchyme (Fig. 2, O and P, white
arrows) and in the ureteric bud giving rise to the collecting
duct system (Fig. 2, O and P, arrowhead), but not at its terminal

FIG. 1. Expression of the PAX8, TITF1, and FOXE1 genes during human thyroid gland development. Hematoxylin/eosin-stained sections under
brightfield illumination (A, E, I, M, Q, and S) and adjacent hybridized sections under darkfield illumination (B–D, F–H, J–L, N–P, R, and T).
A–D, CS14; sagittal sections through the median thyroid primordium (Th) showing strong PAX8 (arrow, B) and weak TITF1 (arrow, C)
expression. FOXE1 expression is not detected. E–H, CS15; sagittal sections through median thyroid primordium. PAX8 is strongly expressed
in the thyroid primordium (arrow, F) and in the thyroglossal duct cells (arrowhead, F). TITF1 (arrow, G) and FOXE1 (arrow, H) are weakly
detected in the thyroid anlage. I–L, CS19; sagittal sections through developing thyroid. The three genes are expressed, strongly for PAX8. FOXE1
is also detected in thymus (Thym; L). M–P, Eleven weeks of development; transverse sections through fetal thyroid gland showing similar
expression levels of the three genes as in thyroid at CS19. Parasagittal sections at CS14 (Q and R) and CS15 (S and T) show PAX8 expression
in the fourth pharyngeal arch ectoderm (PA4; arrow, R) and in the ultimobranchial body (arrow, T). Ao, Aorta; H, heart; OV, otic vesicle; Rh,
rhombencephalon; To, tongue.
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tips (Fig. 2, O and P, black arrows). Finally, at 9 wk of devel-
opment, the highest PAX8 expression was observed in the
immature nephrons and in the condensed metanephric blast-
ema, but also in the main collecting ducts (Fig. 2, Q and R, *).
PAX8 transcripts were also observed in the mesonephric
ducts and the ureters reaching the bladder (Fig. 2, S and T).

TITF1

At CS14 and CS15, the TITF1 gene was weakly expressed
in the median thyroid primordium (Fig. 1, C and G, arrows).
This expression was also observed when the thyroid gland
had reached its final position at CS19 (Fig. 1K) as well as in
the fetal gland (Fig. 1O).

In addition to thyroid expression, TITF1 was detected in
the forebrain and the lung. At CS15, TITF1 was strongly
expressed in the ventral forebrain, the diencephalon, and the
nearby telencephalon (Fig. 3, A and B, arrows). At CS19,
TITF1 expression in the ventral diencephalon was located in
the hypothalamic floor and the infundibulum (Fig. 3, C and

D, arrowhead), whereas the expression in the telencephalon
corresponded to the developing basal ganglia territory (Fig.
3, C and D, arrow). During lung development, TITF1 was
detected in the lung bud at CS14 (Fig. 3, E and F, arrowhead).
At CS19, when the primary bronchi undergo dichotomous
divisions as they grow into the surrounding splanchnic mes-
enchyme, TITF1 was expressed in the primary bronchi ep-
ithelia (Fig. 3, G and H, arrows), whereas at 9 wk of devel-
opment only the alveolar primordia epithelium retained
TITF1 expression (Fig. 3, I and J).

FOXE1

Among the three genes studied, FOXE1 showed the weak-
est hybridization signal. It was first expressed at CS15 in the
thyroid primordium (Fig. 1, D and H, arrow) and then per-
sisted in the thyroid gland throughout development (Fig. 1,
L and P).

Outside the thyroid, FOXE1 signal, at CS19, was detected
in the thymus (Fig. 1L and Fig. 3, K and L) and weakly in the

FIG. 2. PAX8 expression during human development. Hematoxylin/eosin-stained sections under brightfield illumination (A, C, E, G, I, K, M,
O, Q, and S) and adjacent hybridized sections under darkfield illumination (B, D, F, H, J, L, N, P, R, and T). At CS14 (A–D), PAX8 expression
is observed in the otic vesicle (OV; arrowhead, B), the midbrain-hindbrain boundary (arrow, B), and the mesonephros (Msn; C and D). At CS15
(E–H), PAX8 expression is observed in midbrain-hindbrain boundary (arrowhead, F) and the spinal cord (Sp; arrows, F and H). In the developing
kidney, PAX8 is strongly expressed in the metanephric blastema (Mtn bl; G and H) and is weakly expressed in the ureteric bud (UB; G and
H). At CS19 (I and J), PAX8 expression is observed in the myelencephalon (My; arrow, J). K and L, Magnifications of the region boxed in I where
PAX8 is detected in the ventral region of the isthmus (Is; *, L) and cerebellum (Cer; arrow, L). It is also expressed in the lateral borders of the
neuroepithelial layer of the spinal cord (M; arrows, N). At CS19 (O and P), PAX8 is highly expressed in the condensed mesenchyme of the
metanephros (Mtn; white arrows, P). It is weakly expressed in the ureteric bud (arrowheads, P), but is absent at its terminal tips (black arrows,
O). PAX8 expression is maintained in the mesonephros. In fetal kidney (K) at 9 wk of development (Q–T), PAX8 is highly expressed in developing
nephrons (mesenchyme undergoing epithelialization), in S-shaped bodies, and also in the collecting system (*, R), but not at the terminal tips.
The ureter (U) arriving at the bladder (Bl) expresses PAX8. Ad, Adrenal; G, gonad; H, heart; Li, liver; Mes, mesencephalon; PA, pharyngeal
arches; Pro, prosencephalon; Rh, rhombencephalon; To, tongue; V, vertebral column.
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oropharyngeal epithelium (Fig. 3L, arrows). At 11 wk of de-
velopment, a weak FOXE1 signal was observed in the tra-
cheal and esophageal epithelium (Fig. 3, M and N, arrowhead
and arrow, respectively).

For all three genes, comparison of sense (data not shown)
and antisense hybridization signals allowed specific signal
detection from background.

Thyroglobulin

The thyroglobulin protein was not detected during early
thyroid organogenesis and migration at CS15 (Fig. 4, A and
B). It was first detected when the thyroid had reached its final
position in front of the trachea at CS19 (Fig. 4, C and D).
Thyroglobulin was still found at 11 wk of development in the
thyroid gland (Fig. 4, E and F).

Discussion

Thyroid expression of PAX8, TITF1, and FOXE1 during
development supports their direct implication in TD when
mutated and accounts for the associated malformations.
Comparison of the expression patterns of the three genes
during murine and human development highlights some
differences that are summarized in Table 2.

The first difference observed between human and murine
thyroid development concerns the time course of FOXE1
gene expression. In mice, titf1 and titf2 are expressed as early

as E8.5 in the floor of the foregut before budding of the
median thyroid anlage, whereas pax8 is expressed in the area
of thyroid evagination on E10.5 (8, 9). At the earliest stages
of human development studied (CS14), the median thyroid
primordium starts to migrate caudally, analogous to E10.5 in
mouse development. Both the PAX8 and TITF1 genes were
expressed in the migrating primordium, whereas FOXE1
transcripts were detected only at the CS15 stage and not as
early as expected from mouse data. The human thyroglob-
ulin promoter contains three binding sites for TITF1, one for
PAX8, and one for FOXE1 (19). Nevertheless, thyroglobulin
is produced only once the thyroid gland has reached its final
position, as described for the mouse, suggesting that addi-
tional mechanisms exist to regulate the expression of thy-
roid-specific genes. The second difference concerns the ex-
pression domains of TITF1 and PAX8. In the mouse, titf1 is
expressed in the fourth pharyngeal pouch, giving rise to
parafollicular cells. C Cells still express titf1 in the mature
thyroid gland (7, 10). In the human, no TITF1 expression, but
PAX8 expression, was observed at the surface ectoderm of
the fourth pharyngeal pouch, followed shortly thereafter by
expression in an inner structure consistent with the ultimo-
branchial body.

Experimental data in the chick and mouse have demon-
strated that neural crest cells colonize the ultimobranchial
body during development, giving rise to C cells, and it has

FIG. 3. TITF1 and FOXE1 gene expression during human development. A and B, At CS15, in sagittal sections TITF1 transcripts are clearly
found in the ventral part of the prosencephalon (Pro). At CS19 (C and D), TITF1 hybridization signal is detected in the ventral diencephalon
(Di; arrowhead, D), and in the nearby telencephalon (Tel; arrow, D). E–L, TITF1 expression is observed in the lung bud at CS14 (LB; arrowhead,
F) and in the lung epithelium at CS19 (arrows, H). At 9 wk of development, sections through the lung show that TITF1 is expressed only in
the epithelium of the most recently formed branches. FOXE1 expression is detected in thyroid (Th) and thymus (Thym) at CS19 (K and L). A
faint signal is present in the thin layer of the oropharyngeal epithelium (arrows, L). At 11 wk of development (M and N), FOXE1 is detected
in the tracheal (Tr; arrowhead, N) and esophageal (E; arrow, N) epithelia. H, Heart; Li, liver; M, mandible; Mes, mesencephalon; Met,
metencephalon; My, myelencephalon; Pal, palate; R, Rathke’s pouch; Rh, rhomboencephalon; Sp, spinal cord; To, tongue; V, vertebral column.
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been assumed that the same would be true in all mammals
(20–22). Merida-Velasco et al. (23) suggested that in human
embryos, the ultimobranchial body is colonized at CS15 by
cells of ectodermic origin, arising from the posterior margin
of the fourth pharyngeal cleft. Indeed, at CS14 we observed
PAX8 expression in the surface ectoderm of the fourth pha-
ryngeal arch and at CS15 in a deeper cell population, cor-
responding presumably to the ultimobranchial body. These
results add additional evidence to the possible contribution
of ectodermic cells to the ultimobranchial body.

The PAX8 gene has been implicated in the development
and maintenance of the follicular cell phenotype by activat-
ing thyroperoxidase, sodium/iodide symporter, and thyroglobulin
genes without apparent effect on C cell development (10, 24).
Whether follicular cells also originate from the ultimo-
branchial body is still debated. Thyroglobulin-containing
follicles have been identified in the ultimobranchial body-
derived structures of the dog (25, 26). In addition, cases of
lateral ectopic thyroid or lateral thyroidal cysts with follicles
support the premise that some thyroid follicular cells may
derive from the ultimobranchial body in humans (27, 28).
PAX8 expression in the ultimobranchial body observed in
our study adds to the view that the lateral primordia may
produce thyroid follicular cells in humans.

During normal development, the thyroglossal duct dis-
appears, but remnants may persist and form cysts anywhere
along the course of thyroid migration. Histological studies of
these remnants show that follicles and colloid are often
present (29–31). The PAX8 gene expression observed in the
thyroglossal duct cells suggests that this structure represents
a cellular track left by the migrating thyroid anlage rather
than a preestablished pathway for thyroid migration, and its
expression may explain the capacity of these cells to differ-
entiate into follicular cells.

The expression pattern of the PAX8 gene in the central
nervous system is similar to that observed in the mouse, i.e.
restricted to the midbrain-hindbrain boundary, then to the
myelencephalon and the spinal cord (8). However, neither
homozygous pax8�/� mice nor humans with heterozygous
PAX8 mutations have been reported to show a central ner-
vous system defect. This could be due to the redundancy of
another gene of the same family, PAX2, which is similarly
expressed in the central nervous system during both mouse
and human development (32–35). In addition to being ex-
pressed in the condensed mesenchyme of the developing
kidney, human PAX8 is expressed in the mesonephric duct,
the ureteric bud, and the collecting ducts (but not at their
tips). This is different from what has been described in the
mouse, where pax8 expression has never been observed in
the Wolffian duct or in the ureteric bud or its derivatives (8).
Kidney malformations are not classically associated with
PAX8 mutations. Yet, two TD patients with either unilateral
renal agenesis or left-sided uretero-pelvic obstruction, re-
spectively, were found to carry a heterozygous PAX8 mu-
tation (36). It is worth noting that this pattern of malforma-
tions is consistent with the human-specific pattern of PAX8
expression in the ureter and pelvis. It is likely, therefore, that
renal malformations associated with TD could be underes-
timated, because no systematic renal studies have been per-
formed in patients with TD. If confirmed, the presence of
renal anomalies would be highly suggestive of PAX8 in-
volvement in TD. Finally, no PAX8 homozygous mutations
have been reported in humans. Such homozygous mutations
could lead to a severe or lethal phenotype (e.g. bilateral renal
agenesis), as described for other PAX genes (37, 38) (Ayme,
S., and N. Philip, unpublished observations).

In humans and rats, TITF1 transcripts are detected during
lung development. TITF1 is first expressed in epithelial cells
and becomes progressively restricted to distal branches. No
TITF1 expression is detected in main bronchial epithelial cells

TABLE 2. Human and murine PAX8, TITF1, and FOXE1 gene
expression patterns

Features shared between
human and mouse

Features observed in
human or mouse only

PAX8
Thyroid 4th pharyngeal pouch in human
Brain and spinal cord Ureteric bud and derivatives

in human
Otic vesicle
Metanephric blastema and

derivatives
TITF1

Thyroid 4th pharyngeal pouch in mouse
Lung
Ventral part of forebrain

FOXE1
Thyroid Later onset in the median thyroid

primordium in human
Foregut Thymus in human

FIG. 4. Thyroglobulin production during human thyroid gland de-
velopment. Hemalum-stained sections under brightfield illumination
with the control of mouse Igs (A, C, and E) and adjacent sections with
polyclonal antihuman thyroglobulin antibody (B, D, and F). A and B,
CS15; sagittal sections through the median thyroid primordium (Th)
showing no thyroglobulin production. C and D, CS19; sagittal sections
through developing thyroid. The thyroglobulin protein is detected in
the thyroid gland as well as in the remnant located in the migration
track. E and F, Eleven weeks of development; transverse sections
through the fetal thyroid gland producing thyroglobulin. H, Heart;
Thym, thymus; To, tongue.
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or in the proximal respiratory compartments of the fetal lung.
This expression pattern is consistent with that described
during rat development and in human fetal stages (7, 39). The
expression of TITF1 in the distal part of the lung is also
consistent with its role in surfactant production and regu-
lation and explains the postnatal respiratory distress syn-
drome in patients bearing a TITF1 mutation (14, 40). TITF1
gene expression is also observed in the ventral part of the
forebrain. In the diencephalon, its expression is restricted to
the hypothalamic area and then to the infundibulum. In the
telencephalic floor, the signal is observed in an area corre-
sponding to the developing striatum and the paleostriatum,
as previously described (7, 9, 41). Hypotonia and dyskinesia
associated with changes in the basal ganglia and pituitary
in patients with TITF1 mutations are consistent with the
expression pattern of TITF1 in the central nervous system
(14, 39, 42).

During human development, a barely detectable FOXE1
signal was observed in the pharyngeal epithelium and later
in the tracheal and esophageal epithelium. In the mouse, titf2
is also weakly expressed in the foregut endoderm and the
visceral epithelium of pharyngeal arches (6, 9). However, the
FOXE1 expression pattern is consistent with the malforma-
tions associated with FOXE1 mutations (6, 12). Indeed, both
knockout mice and four reported patients with a FOXE1
mutation displayed TD and cleft palate (13, 43). In addition,
FOXE1 mRNAs were detected in the human thymus, as
previously described (44), but no abnormal thymus or im-
munodeficiency has been reported in the rare patients car-
rying a FOXE1 mutation. An immunological analysis of these
patients should allow evaluation of the biological signifi-
cance of FOXE1 expression in the thymus.

In conclusion, the present study of PAX8, TITF1, and
FOXE1 gene expression during human development sheds
new light on thyroid development and on the impact of
mutations in these genes. This study also highlights the dif-
ferences in gene expression between species. Indeed, PAX8
is expressed in all territories that may give rise to thyroid
follicular cells and in the ultimobranchial bodies, adding
support to the contribution of this structure to the follicular
cell population. At variance with the mouse gene, PAX8 was
expressed in the ureteric bud and some derivatives, suggest-
ing that patients with a PAX8 mutation should be screened
for kidney malformations. Also at variance with the mouse
gene, TITF1 expression was not detected in the pharyngeal
arches, and human FOXE1 expression in the thyroid anlage
was observed later than that in the mouse and was present
in the thymus. Finally, the expression patterns of the three
genes correlate well with the phenotypes observed in pa-
tients carrying mutations of the corresponding gene.
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Bardet-Biedl syndrome (BBS) is a multisystemic disorder characterized by postaxial polydactyly, progressive retinal
dystrophy, obesity, hypogonadism, renal dysfunction, and learning difficulty. Other manifestations include diabetes
mellitus, heart disease, hepatic fibrosis, and neurological features. The condition is genetically heterogeneous, and
eight genes (BBS1–BBS8) have been identified to date. A mutation of the BBS1 gene on chromosome 11q13 is
observed in 30%–40% of BBS cases. In addition, a complex triallelic inheritance has been established in this
disorder—that is, in some families, three mutations at two BBS loci are necessary for the disease to be expressed.
The clinical features of BBS that can be observed at birth are polydactyly, kidney anomaly, hepatic fibrosis, and
genital and heart malformations. Interestingly, polydactyly, cystic kidneys, and liver anomalies (hepatic fibrosis with
bile-duct proliferation) are also observed in Meckel syndrome, along with occipital encephalocele. Therefore, we
decided to sequence the eight BBS genes in a series of 13 antenatal cases presenting with cystic kidneys and
polydactyly and/or hepatic fibrosis but no encephalocele. These fetuses were mostly diagnosed as having Meckel
or “Meckel-like” syndrome. In six cases, we identified a recessive mutation in a BBS gene (three in BBS2, two in
BBS4, and one in BBS6). We found a heterozygous BBS6 mutation in three additional cases. No BBS1, BBS3,
BBS5, BBS7, or BBS8 mutations were identified in our series. These results suggest that the antenatal presentation
of BBS may mimic Meckel syndrome.

Introduction

Bardet-Biedl syndrome (BBS [MIM 209900]) is a multi-
systemic genetic disorder characterized by postaxial
polydactyly, progressive retinal dystrophy, obesity, hy-
pogonadism, learning difficulty, and renal dysfunction.
Other manifestations include diabetes mellitus, neuro-
logical impairments (mainly ataxia), heart disease, den-
tal malformations, and hepatic fibrosis. This condition
is genetically heterogeneous, and six genes (BBS1–BBS6)
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were identified by genetic linkage studies (Katsanis et al.
2000; Slavotinek et al. 2000; Mykytyn et al. 2001, 2002;
Nishimura et al. 2001; Chiang et al. 2004; Fan et al.
2004; Li et al. 2004). Two more genes (BBS7 [Badano
et al. 2003a] and BBS8 [Ansley et al. 2003]) have been
identified on the basis of their homology to previously
identified BBS genes. The major locus, BBS1, is on chro-
mosome 11q13. It is responsible for 30%–40% of BBS
cases (Beales et al. 2001). In addition to genetic hetero-
geneity, a complex mode of inheritance called “tri-
allelism” has been established for this disorder, since, at
least in some families, three mutations at two BBS loci
are necessary for the condition to be expressed (Katsanis
et al. 2001, 2002).

Because of the late onset of symptoms, the diagnosis
of BBS is usually made during childhood. For example,
obesity appears around age 2–3 years, and retinal de-
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generation becomes clinically apparent only at age 8
years (Beales et al. 1999). The only features that may
be present at birth are polydactyly, kidney anomaly,
hepatic fibrosis, and genital or heart malformations. In-
terestingly, polydactyly and cystic kidneys are two mal-
formations—along with occipital encephalocele—that
characterize Meckel syndrome (MKS) (Mecke and Pas-
sarge 1971), a fetal-lethal autosomic recessive con-
dition. Liver anomalies (hepatic fibrosis and bile-duct
proliferation) are constant in MKS (Salonen 1984). On
the basis of this phenotypic overlap between the two
syndromes and the absence of major signs of BBS in the
perinatal period, we hypothesized that fetuses present-
ing with cystic kidneys, polydactyly, and/or hepatic fi-
brosis but without encephalocele could be either mis-
diagnosed as MKS or referred to as “Meckel-like.”
Therefore, we decided to sequence the eight known BBS
genes (BBS1–BBS8) in a series of 13 antenatal cases
presenting with kidney anomaly, polydactyly, and/or he-
patic fibrosis but not encephalocele. We identified a re-
cessive mutation in a BBS gene in six cases and observed
a heterozygous mutation in BBS6 in three additional
cases (fig. 1). In the present study, we describe the an-
tenatal phenotype of patients with BBS and discuss the
overlap with the clinical spectrum of MKS.

Material and Methods

Patients

A total of 13 patients, presenting with the association
of kidney anomaly, polydactyly, and/or hepatic fibrosis,
diagnosed prenatally, were included in the study. In 11
cases, pregnancy was terminated because of either severe
renal dysfunction (oligohydramnios) or brain anomaly
(corpus callosum agenesis/hypoplasia or Dandy-Walker
malformation [DWM]), in accordance with French leg-
islation. In the two postnatal cases (1 and 13b), the
parents declined pregnancy termination, after genetic
counseling. Chromosome analyses and clinicopathol-
ogical examinations were performed in 11 cases after
parental consent was obtained. Clinical and histological
features are summarized in table 1.

Mutation Screening of BBS Genes

Genomic DNA was extracted from frozen fetal tissue
in 11 cases and from peripheral blood samples in 2 post-
natal cases, by use of standard procedures. Primers were
designed using introns flanking the coding exons of the
eight BBS genes and are available on request. Direct
sequencing of both strands was performed using the Big
Dye Terminator Cycle Sequencing kit (Applied Biosys-
tems) and was analyzed on an ABI 3100 automated se-
quencer (Applied Biosystems).

Results

BBS2

Mutations were identified in three fetuses. Case 1 (in
family FRA) was a 28-wk-old fetus presenting with en-
larged hyperechogenic kidneys and unilateral foot poly-
dactyly. After pregnancy termination, neuropathological
study disclosed moderate cerebral ventricular dilatation
with neuronal ectopias. Histological study of the kidneys
showed preserved corticomedullar differentiation but
the presence of multiple medullary cysts (fig. 2E and 2F).
The liver was normal (fig. 2G and 2H). We identified
two heterozygous truncating BBS2 mutations: a 2-bp
deletion in exon 15 (1909–1910delAT), resulting in a
frameshift mutation (M637fsX648), which was inher-
ited from the father, and a CrT transversion in exon 6,
resulting in a nonsense mutation at codon 234 (R234X)
(fig. 1A), which was inherited from the mother. In this
fetus, a heterozygous 4-bp deletion was also detected in
BBS4 intron 7, potentially removing the lariat branch
site. This mutation was inherited from the asymptomatic
father. RNA was extracted from a blood sample, but
RT-PCR failed to find an abnormal supernumerary tran-
script. This case is the only one of our series in which
three BBS mutated alleles have been identified.

Case 2b (in family LER) was a BBS2 compound het-
erozygote, 22-wk-old fetus (fig. 1B). He carried a pa-
ternally inherited nonsense mutation in exon 6 (R216X)
and a 2-bp deletion in exon 15 (1808delAT), resulting
in a frameshift mutation (Y603fsX612), which he in-
herited from his mother (fig. 1B). The pregnancy was
terminated because of the presence, on ultrasound ex-
amination, of cystic kidneys associated with unilateral
upper-limb and bilateral feet postaxial polydactyly. This
case was first diagnosed as MKS, on the basis of kidney
macroscopic and histological features showing severe
disorganization of the renal parenchymal architecture,
involving cortical and medullary layers (fig. 2U and 2V).
However, the liver showed mild portal fibrosis but no
bile-duct proliferation (fig. 2W and 2X). In this family,
a previous child (case 2a) had died with hydrops at age
2 d (fig. 1B), and no autopsy was performed. She did
not have polydactyly or brain anomaly, and the left kid-
ney was slightly larger than normal on ultrasound ex-
amination. DNA analysis showed that she was hetero-
zygous for the paternal R216X mutation.

Case 3 (in family KAY) was a 26-wk-old fetus of Turk-
ish consanguineous descent. The pregnancy was termi-
nated because the fetus presented with enlarged cystic
kidneys, oligoamnios, and bilateral foot polydactyly.
Histological examination of the liver showed mild portal
fibrosis with no bile-duct proliferation (fig. 2O and 2P).
The corticomedullary architecture of the enlarged kid-
neys was severely affected by numerous irregular cysts,



Figure 1 Results of the BBS2, BBS4, and BBS6 mutation screening. The pedigrees and mutations are indicated. The black symbols indicate
the affected cases. Below each pedigree, sequence chromatographs are shown. In family BOU, the results of the RT-PCR study confirming the
deletion of three BBS4 exons in proband 5b (E) and the results of haplotype analysis at the BBS4 locus (F) are shown.



Table 1

Clinical and Pathological Findings Observed in Patients

TRAIT

FINDING IN PATIENT (FAMILY)a

1 (FRA) 2a (LER) 2b (LER) 3 (KAY) 4 (BAL) 5a (BOU) 5b (BOU) 6 (FIL) 7 (CRE) 8 (COL) 9a (AKI) 9b (AKI) 10 (STA) 11 (AND) 12 (KAL) 13a (MOU) 13b (MOU)

Consanguinity � � � � � � � � � � � � � � � � �
National origin France France France Turkey Turkey Tunisia Tunisia France France France Turkey Turkey France France Algeria France France
Ageb 28 wk 2 d 22 wk 26 wk 26 wk 26 wk 12 d 24 wk 12 years 32 wk 32 wk ? 27 wk 37 wk 25 wk 29 wk 18 wk
Brain:

Anomalyc � � � � � � ? � � � � ? � � � � �
Supratentorial VD CCA CCH, Arh
Infratentorial Nect DWM ME DWM DWM ME, DWM OD,DWM

Hand polydactyly �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�
Foot polydactyly �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�
Kidney anomalyc � Enlargedd � � � � � � � Enlarged � � � � � � �
Pathology MC NA MKL MKL MC MKL NA MKS Failure Normal MC NA MC MC MKL MC MC
Portal fibrosis � NA � � � � NA � NA � � NA � � � � �
BDP � NA � � � � NA � NA � � NA � � � � �/�
Heart defect � � � � � � � � � � � NA � �
Other defects � � � � � � NA � � � � NA � �
Initial diagnosis BBS ? MKS MKL MKL MKS MKS MKL BBS BBS MKS var MKS var BBS Ago/Gold MKS Ago,

MKS var
Ago,

MKS var
BBS mutation(s) 2 Htz

BBS2 �
1 BBS4

1 Htz
BBS2

2 Htz
BBS2

1 Hmz
BBS2

1 Hmz
BBS4

None
BBS4

1 Hmz
BBS4

2 Htz
BBS6

1 Htz
BBS6

1 Htz
BBS6

None
BBS6

1 Htz
BBS6

a � p present; � p absent; ? p unknown; NA p not available; Ago p Agostino syndrome; Arh p arhinencephaly; BDP p bile-duct proliferation; CCA p corpus callosum agenesis; CCH p corpus callosum
hypoplasia; Gold p Goldston syndrome; Htz p heterozygous mutation; Hmz p homozygous mutation; ME p meningocele; MC p medullary cysts; MKL p Meckel-like; Nect p neuronal ectopias; OD p
occipital defect; var p variant; VD p ventricular dilatation.

b Wk indicates weeks of gestation.
c Detected on ultrasound examination.
d Enlarged left kidney.



Figure 2 Histological sections (hematoxylin/eosin) of kidneys and livers of fetuses carrying BBS mutations. Case 8 shows normal kidney
histology. Cases 1 and 4 show medullary cysts, whereas cases 3, 6, and 2b show kidneys “Meckel-like” lesions. The liver shows moderate
portal fibrosis in cases 3 and 2b.
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lined with a single cell layer. These cysts involved the
entire renal parenchyma, with volume enlargement to-
ward the medulla. Only one to two ranges of immature
glomeruli were observed in the cortical nephrogenic zone
(fig. 2M and 2N). There were no other visceral malfor-
mations, and examination of the CNS was unremark-
able. In this case, a homozygous GrC transversion in
exon 1 of the BBS2 gene, leading to the substitution of
an arginine with a proline at codon 23 (R23P), was
identified. Both parents were heterozygous for this mu-
tation (fig. 1C). This missense mutation concerned a con-
served amino acid and was not detected in 100 control
chromosomes.

BBS4

Mutations were identified in two fetuses. Case 4 (in
family BAL) was a 26-wk-old fetus presenting with
quadrilateral postaxial polydactyly and bilateral en-
larged kidneys with cysts located in the deep cortex and
the renal medulla (fig. 2I and 2J). The liver was normal
(fig. 2K and 2L). Corpus callosum agenesis was observed
on ultrasound examination and was confirmed at au-
topsy. No other malformation was observed. Sequence
analysis of BBS4 revealed a homozygous ArG transition
in exon 13, resulting in a missense mutation (D348G)
(fig. 1D). This mutation was inherited from consan-
guineous Turkish parents who were heterozygous for
this mutation. A healthy brother did not carry this mu-
tation and had inherited both wild-type alleles. This mis-
sense mutation involved a conserved amino acid and was
not detected in 100 control chromosomes.

Case 5b (the proband in family BOU) was a girl who
died at age 12 d. She had unilateral foot polydactyly,
cystic kidneys, and endocardial cushion defects. No
brain anomaly was apparent. Autopsy was refused. The
absence of amplification of BBS4 exons 4, 5, and 6 led
to the suspicion of a homozygous deletion of these ex-
ons. The deletion was confirmed by RT-PCR analysis of
RNA extracted from lymphoblastoid cells, by use of
primers located in exons 3 and 7. The expected wild-
type fragment was 345 bp in length, whereas the 96-bp
amplification product (fig. 1E) observed in proband 5b
corresponded to a lack of three exons, as confirmed by
sequencing (data not shown). Haplotyping was per-
formed using two flanking markers and one intragenic
marker located in intron 4 of the BBS4 gene. The ab-
sence of amplification of the intragenic marker in pro-
band 5b and the hemizygosity observed in the parents
are in accordance with both of the consanguineous par-
ents being heterozygous for this deletion (fig. 1F). In-
terestingly, in this family, an earlier fetus (5a) presented
with occipital meningocele, cystic kidneys, hepatic portal
fibrosis, and bile-duct proliferation, a presentation con-
sidered characteristic of MKS. DNA was extracted from
paraffin blocks, and haplotyping at the BBS4 locus

showed that sib 5a had a different haplotype from the
proband and did not carry the BBS4 deletion (fig. 1F).

BBS6

Mutations were identified in four fetuses. Case 6 (in
family FIL) was a 24-wk-old fetus. The pregnancy was
terminated after detection, on ultrasound examination,
of enlarged and cystic kidneys, anamnios, and quadri-
lateral postaxial hexadactyly. Autopsy confirmed the ab-
sence of other malformations. Microscopic examination
of the liver was normal (fig. 2S and 2T), but the kidneys
showed histopathological changes reminiscent of MKS,
with both cortical and medullar cystic formations. These
cysts were larger in the medulla than in the cortex and
were lined with a thin cuboidal epithelium. A thin cor-
tical glomerular layer was present (fig. 2Q and 2R). Se-
quencing of the BBS genes revealed that this fetus was
a BBS6 compound heterozygote—the first missense mu-
tation resulted in the substitution of the methionine in-
itiator codon with an arginine (M1R), and the second
change was a missense mutation in exon 6, resulting in
the substitution of a serine with a proline at codon 460
(S460P) (fig. 1G). Unfortunately, DNA of the parents
was not available to establish the inheritance of these
mutations.

Case 7 (in family CRE) was a 12-year-old girl pre-
senting with BBS. Enlarged kidneys, bilateral hand poly-
dactyly, and left-foot polydactyly were detected ante-
natally. After a genetic-counseling discussion about the
risk of MKS, the parents declined pregnancy termina-
tion. After birth, the size of the kidneys decreased to
normal, whereas progressive renal failure appeared.
Obesity started at age 3 years, and an electroretinogram
examination established the diagnosis of BBS. At age 12
years, vision was normal. We found one heterozygous
BBS6 CrG transversion in exon 3 of the BBS6 gene,
resulting in a nonsense mutation (R139X) (fig. 1H). No
other BBS mutations were identified in this patient.

In case 8 (in family COL), pregnancy was termina-
ted at 32 wk of gestation because of enlarged kidneys
and bilateral foot polydactyly detected on ultrasound
examination. Autopsy and histological examination
showed no other malformations. The CNS, liver, and
kidneys were unremarkable (fig. 2A–2D). The diagnosis
of BBS was suggested. We identified one heterozygous
missense mutation in exon 3 of BBS6, resulting in the
substitution of a threonine with a proline at codon 237
(T237P). This mutation was inherited from the father
(fig. 1I) and was not observed in 1100 control chro-
mosomes. We failed to find any other change in the
coding sequence of BBS6 or the other BBS genes in this
fetus.

In family 9 (AKI), a fetus (case 9a) presented with
cystic kidneys and heart defect. Corpus callosum hy-
poplasia was detected on ultrasound examination, and
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Table 2

Polymorphisms and Variants Observed
in BBS Genes

Gene and
Nucleotide Variation Protein Change

BBS1:
G379A L126L
IVS6�55 CrT
C684T L228L
IVS8�8 GrC
C1413T L471L
IVS17�7 GrA

BBS2:
A367G I123V
IVS5�54 GrC
IVS6�34 CrT
A1413C V471V

BBS3:
IVS4�18 TrC
IVS5�49 ArG
IVS8�75 ArG
IVS8�80 ArG
IVS8�82–86 del5

BBS4:
IVS1�17 CrT
IVS1�38 CrA
IVS2�19 GrT
IVS2�6 ArG
A137G K46R
A180G Q60Q
IVS6�7 CrT
IVS7�23 GrC
IVS10�17 GrC
C1061T T354I

BBS5:
IVS1�40 GrC

BBS6:
C117T P39P
C534T I178I
IVS3�17 ArC
IVS3�34 CrG
G1595T G532V
C1549T R517C

BBS7:
�133 CrG
IVS3�45 CrT
IVS9�32 ArG
IVS9�32–34del4
IVS14�24 CrA
IVS17�16 GrA
IVS17�12 CrA

BBS8:
IVS3�18 ArG
IVS3�48 TrC
IVS6�67 ArG
IVS14�12 CrG

the parents elected to terminate the pregnancy at 32 wk
of gestation. Brain examination showed absence of ol-
factory bulbs. Microscopical examination of the liver
showed portal fibrosis and focal bile-duct proliferation
and dilatation in some large portal areas. In the kidneys,
medullary microcysts were noted. During the pregnancy
that followed (proband 9b), abnormal kidneys were de-
tected on ultrasound examination, and the pregnancy
was terminated. The parents declined autopsy but agreed
to molecular analysis of a blood sample. A heterozygous
BBS6 ArG transition was identified, resulting in the
substitution of an isoleucine with a valine at codon 339
(I339V) (fig. 1J). This change was not observed in 100
control chromosomes and involved a conserved amino
acid. No other BBS6 coding-sequence mutations could
be found in the fetus. Paraffin blocks were obtained from
sib 9a, and DNA was extracted for molecular analysis,
but we failed to find the same mutation.

No mutation was identified in the coding sequences
of the BBS1, BBS3, BBS5, BBS7, and BBS8 genes. Poly-
morphic changes observed in the BBS genes are sum-
marized in table 2.

Discussion

We sequenced the eight known BBS genes in 13 patients
presenting prenatally with a kidney anomaly associated
with polydactyly and/or hepatic fibrosis but with no en-
cephalocele. Most of these cases were considered to be
MKS or “Meckel-like” syndromes, on the basis of the
presence of a CNS anomaly (cases 2b, 4, 9, 11, 12, and
13), kidney histology (cases 3 and 6), or MKS in the
same family (case 5). We identified recessive mutations
in BBS genes in six cases—BBS2 in cases 1, 2b, and 3;
BBS4 in cases 4 and 5b; and BBS6 in case 6—and iden-
tified a BBS6 heterozygous mutation in cases 7, 8, and
9b. Since mutations in one of the eight known BBS genes
are found in only 40% of BBS cases (Katsanis 2004),
the diagnosis of BBS is not excluded in the remaining
cases of our series.

Two mutations identified in our series have been re-
ported elsewhere in patients with BBS. As in case 9b,
the I339V BBS6 mutation was reported in the hetero-
zygous state in a patient with BBS in whom no other
BBS gene mutations were identified (Slavotinek et al.
2002). Although this change may be a rare variant,
neither Slavotinek et al. (2002) nor we found it in 100
controls, and it is not listed as a polymorphism in hu-
man SNP databases (see dbSNP and Ensembl Web sites).
The R216X BBS2 mutation identified in case 2b was
reported in a BBS case carrying, in addition, a BBS2
frameshift mutation and a BBS6 missense mutation
(Katsanis et al. 2001). This case presented a typical BBS
phenotype with renal involvement.

No mutation in the BBS1 gene, the major gene re-
sponsible for 30%–40% of postnatal BBS cases, was

identified in our series. However, a single M390R mu-
tation with a founder effect from Northern Europe ac-
counts for 80% of cases with BBS1 mutations (Beales
et al. 2003; Mykytyn et al. 2003), and none of our cases
was of North European extraction. In agreement with
previous studies, a high rate of heterozygous BBS6 mu-
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tations was observed (cases 7, 8, and 9b), and we failed
to find any other BBS gene mutations in the three cases
with a heterozygous BBS6 mutation. These alleles might
correspond to a “third allele,” and further molecular
analysis will be necessary to establish whether these
cases carry a recessive mutation at another as-yet-un-
identified BBS gene. In case 1, two BBS2 mutations were
identified, and, in addition, a 4-bp deletion was iden-
tified in BBS4 intron 7, potentially located in the lariat
branch site. As mentioned above, this is the only case
in our series in which three BBS mutations were
identified.

In the present study, polydactyly and cystic kidneys
were the only features observed in seven fetuses on pre-
natal ultrasound examination (cases 1, 3, 5b, 6, 7, 8,
and 10). In one of them (case 3), mild liver portal fi-
brosis without bile-duct proliferation was found on his-
tological examination. A BBS mutation was identified
in 6/7 of these cases. In two of them (cases 3 and 6),
the kidney histopathological changes were reminiscent
of MKS, and, interestingly, the occurrence of such severe
cystic kidneys in a sib with BBS has been reported else-
where (Gershoni-Baruch et al. 1992). The association
of polydactyly and cystic kidneys is not reported as a
single entity in OMIM but is observed in numerous
syndromes, such as BBS, MKS, and Pallister-Hall syn-
drome (table 3). In addition, these features have been
reported in patients with Joubert, Jeune, Smith-Lemli-
Opitz, oro-facio-digital I (OFDI), and Simpson-Golabi
syndromes. However, in all these syndromes, other clin-
ical features can be detected antenatally. Cassart et al.
(2004) already suggested that BBS was a possible di-
agnosis for cases in which polydactyly and enlarged
kidneys were observed antenatally. We demonstrate that
6/7 of cases presenting this association, with or without
liver portal fibrosis but with no other findings, are cases
of BBS. In the absence of polydactyly, other congenital
hepatorenal fibrocystic syndromes can be discussed
(Johnson et al. 2003).

To our knowledge, corpus callosum agenesis has
never been reported in patients with BBS. In the present
study, a homozygous BBS4 mutation was found in one
patient (case 4) with corpus callosum agenesis associ-
ated with polydactyly and cystic kidneys. These data
suggest that corpus callosum agenesis might be asso-
ciated with the antenatal presentation of BBS. Interest-
ingly, hypoplasia of the corpus callosum was also pre-
sent in patient 9a, in addition to cystic kidneys and a
heart defect. Portal fibrosis and focal bile-duct prolif-
eration and dilatation in some large portal areas were
noted on histological examination. The pregnancy that
followed (case 9b) was terminated for cystic kidneys,
and the fetus was found to carry a heterozygous I339V
BBS6 mutation, previously identified in a patient with
BBS (Slavotinek et al. 2002). However, analysis of DNA

from paraffin blocks of fetus 9a failed to find the same
BBS6 mutation. Either this change is a rare variant or
this “third” BBS mutated allele not shared by the sibs—
who may still share another homozygous BBS gene mu-
tation—acts as a modifier and modulates the phenotype,
as reported elsewhere in some families with BBS and a
third mutation present in the more severely affected sib
but not the other (Badano et al. 2003b).

The association of DWM with either polydactyly
(Hart et al. 1972; Tal et al. 1980) or cystic kidney dys-
plasia (D’Agostino et al. 1963; Goldston et al. 1963)
has been reported. In addition, DWM, cystic kidneys,
and hepatic fibrosis have been documented in several
cases (Kudo et al. 1985; Gloeb et al. 1989; Pierquin et
al. 1989; Hunter et al. 1991; Walpole et al. 1991; Gul-
can et al. 2001) and have been recorded as Goldston
syndrome. Despite the lack of bile-duct proliferation,
Goldston syndrome has been suggested to be a variant
of MKS (Walpole et al. 1991; Gulcan et al. 2001). Fur-
thermore, the association of DWM, cystic kidneys, and
hepatic fibrosis with polydactyly (as observed in case
2b) has been reported several times; most authors con-
sidered these patients as having MKS (Summers and
Donnenfeld 1995; Cincinnati et al. 2000), suggesting
that DWM belongs to the spectrum of MKS brain mal-
formations. By other authors, these cases were classified
as “Meckel-like,” in the context of the cerebro-reno-
digital syndrome (Lurie et al. 1991; Genuardi et al.
1993). In these reports, however, hepatic fibrosis but no
bile-duct proliferation was present (Genuardi et al.
1993; Summers and Donnenfeld 1995; Cincinnati et al.
2000). Although a molecular study is necessary to es-
tablish whether these patients had BBS, these findings
suggest that they did not have MKS. Finally, the present
study shows that infratentorial malformations should
be added to the spectrum of malformations observed in
BBS. Along this line, vermis agenesis and mega cisterna
magna have been reported once in BBS (Baskin et al.
2002).

Other syndromes constantly or occasionally associ-
ating DWM with cystic kidneys and/or polydactyly—
namely, MKS, Goldston, Joubert, hydrolethalus (Mo-
rava et al. 1996), Ellis-Van Creveld (EVC), SLO,
congenital disorder of glycosylation (CDG), OFDII, and
scalp defects with polydactyly—are summarized in table
3. In all these syndromes (except Joubert and CDG),
other clinical signs, such as intrauterine growth retar-
dation (IUGR) (in SLO), short ribs (in EVC), and tongue
anomalies (in OFDII), are observed antenatally. In the
present report, three cases presented with this associa-
tion, but no BBS mutation was detected. Although other
BBS genes could be mutated, some cases could also
correspond to prenatal cases of Joubert syndrome.

Several patients with Goldston syndrome, MKS, or
Joubert syndrome have been reported to have both



000 Am. J. Hum. Genet. 76:000–000, 2005

DWM and an occipital meningocele (Miranda et al.
1972; Malpuech et al. 1979; Walpole et al. 1991; Moer-
man et al. 1993; Piantanida et al. 1993; Al-Gazali et
al. 1996; Yapar et al. 1996). This raised the possibility
of a common mechanism for both malformations, even
though discordant sibs with either encephalocele or
DWM have been reported (Blankenberg et al. 1987;
Moerman et al. 1993). In most cases, however, the so-
called DWM was diagnosed on the basis of brain-
imaging criteria alone, and one can postulate that the
occipital meningo encephalocele may interfere with
brainstem and cerebellum development, leading to an
infratentorial dysplasia mimicking DWM. Only a neu-
ropathological examination could help distinguish these
two entities.

In view of the results of the present study, the question
of whether MKS and BBS are allelic disorders arose.
First, MKS is a genetically heterogeneous condition.
Three loci have been mapped on 17q23 (MKS1 [Paavola
et al. 1995]), 11q14 (MKS2 [Roume et al. 1998]), and
8q24 (MKS3 [Morgan et al. 2002]), but no gene has
been identified yet. One locus is common to both MKS
and BBS, since both BBS1 and MKS2 map on chro-
mosome 11q13-q14. Although the BBS1 gene is located
almost 10 cM centromeric to the MKS2 locus, we se-
quenced the BBS1 gene in 17 MKS cases, including the
familial cases linked to 11q13 (Roume et al. 1998), and
identified a heterozygous BBS1 mutation in two cases:
the recurrent M390R mutation and a new G559D mu-
tation. No other BBS gene mutation could be identified
in these two cases. These results may suggest genetic
interactions between BBS and MKS. However, although
renal histological features in some cases are very similar
to those observed in MKS (fig. 2M, 2N, and 2Q), the
typical liver ductal plate anomaly, considered a constant
in MKS, was absent from cases in the present study.
Finally, other malformations frequently found in MKS,
such as cleft lip/palate and pancreatic and epidydymal
cysts, are not observed in patients with BBS (Fraser and
Lytwyn 1981). These observations argue against the hy-
pothesis that the two disorders are allelic. Also, in the
family in which a homozygous BBS4 deletion was found
in one sib presenting with severe BBS (case 5b), the sib
born earlier (case 5a) with an MKS phenotype did not
carry this deletion. Therefore, it is likely that, in this
consanguineous family, two different recessive dis-
orders—both characterized by the association of poly-
dactyly and cystic kidneys—were segregating. Indeed,
both BBS and MKS are frequently found in consan-
guineous populations (Teebi 1994; Zlotogora 1997).
Here, also, one can hypothesize that an as-yet-uniden-
tified MKS allele may be shared between sibs and may
add to the severity of the BBS phenotype in case 5b.
Interestingly, family 5 illustrates how the clinical spec-
trum of a genetic disorder might be extended wrongly

when two different disorders segregate in consanguine-
ous families.

In conclusion, our study shows that the association
of DWM, cystic kidneys, and hepatic fibrosis without
bile-duct proliferation, reported as Goldston syndrome
or as “Meckel-like,” belongs to the clinical spectrum of
BBS. Although BBS and MKS kidney histopathological
findings may be similar, the present study suggests that,
although genetic interaction may exist between BBS and
MKS genes, the two disorders are not caused by the
same gene mutations. This hypothesis can be definitively
established when MKS genes are identified. The recent
demonstration of the role of BBS proteins in ciliary func-
tion and the clinical overlap between BBS and MKS will
hopefully open the way to discovery of the MKS disease-
causing genes.
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Craniofacial abnormalities are one of the most common birth defects in humans, but little is known about the
human genes that control these important developmental processes. To identify relevant genes, we analyzed
transcription profiles of human pharyngeal arch 1 (PA1), a conserved embryonic structure that develops into
the palate and jaw. Using microdissected, normal human craniofacial structures, we constructed 12 SAGE
(serial analysis of gene expression) libraries and sequenced 606 532 tags. We also performed Affymetrix
microarray analysis on 25 craniofacial targets. Our data revealed not only genes ‘enriched’ or differentially
expressed in PA1 during fourth and fifth week of human development, but also 6927 genes newly identified
to be expressed in human PA1. Many of these genes are involved in biosynthetic processes and have binding
function and catalytic activity. We compared expression profiles of human genes with those of mouse homo-
logs to look for genes more specific to human craniofacial development and found 766 genes expressed in
human PA1, but not in mouse PA1. We also identified 1408 genes that were expressed in mouse as well as
human PA1 and could be useful in creating mouse models for human conditions. We confirmed conservation
of some human PA1 expression patterns in mouse embryonic samples with whole mount in situ hybridization
and real-time RT–PCR. This comprehensive approach to expression profiling gives insights into the early
development of the craniofacial region and provides markers for developmental structures and candidate
genes, including SET and CCT3, for diseases such as orofacial clefting and micrognathia.

INTRODUCTION

Craniofacial abnormalities, such as orofacial clefting, micro-
gnathia, hemifacial microsomia, mandibulofacial dysostosis
and craniosynostosis, are among the most common malfor-
mations in humans with frequencies as high as approximately
one per 1000 live births (1). More than 700 craniofacial
disorders have been reported (www.ncbi.nlm.nih.gov/omim).
Many affected structures, including the palate and jaw,
are derived from pharyngeal arches. Therefore, these
malformations may be due to abnormalities or perturbations
of pharyngeal arches during the first 2 months of human
embryonic development. Elucidation of the etiology of these

malformations depends upon knowledge of normal patterns
of gene expression during the development of pharyngeal
arches.

Pharyngeal arches are a prominent feature at the cephalic
end of all vertebrate embryos (2). These arches appear as
pairs of mesenchymal structures during fourth and fifth week
of human development. Cells from all three germ layers and
neural crest contribute to pharyngeal arch development. Ecto-
derm is the origin of arch-associated epidermis and sensory
neurons and induces odontogenesis (3), whereas mesoderm
develops into striated musculature and endothelial cells of
the arch arteries. Endoderm gives rise to the epithelial lining
of the pharynx and provides signaling molecules necessary
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for the development of the thymus, parathyroid and thyroid.
Neural crest cells migrate from the edges of the neural folds
at the levels of the lower midbrain and rhombomeric sub-
divisions of the hindbrain to populate pharyngeal arches
(4,5). Subsequently, the first arch subdivides into maxillary
and mandibular portions, which give rise to the palate and
jaw, respectively. The maxillary prominence contributes to
the formation of the upper midface and palate through inter-
actions with the frontonasal prominence.

Relatively, little is known about the details of the early mol-
ecular processes during pharyngeal arch development. HOX
genes are critical for the development of the neural crest (6).
The signaling molecule BMP4 (7) and the class II homeobox
gene MSX2 (8) expressed in migrating neural crest cells are
involved in apoptotic separation of individual arches. Neural
crest independent mechanisms of pharyngeal arch develop-
ment have also been suggested, on the basis of expression pat-
terns of molecules such as Bmp7, Fgf8, Pax1 and Shh (9).

To generate the first comprehensive gene expression pro-
files during early human craniofacial development, we utilized
micro-cDNA technologies for serial analysis of gene
expression (SAGE) (10) and Affymetrix microarrays. Both
of these methods have been successfully used to identify
differential gene expression between normal and disease
states, but have rarely been used for human embryonic devel-
opment (11,12). More importantly, because SAGE does not
require a priori knowledge of the existence of a gene, we
could identify novel genes. We focused our analysis on
human pharyngeal arch 1 (PA1), because more craniofacial
structures are derived from this pair of arches than the
others. In situ hybridization and RT–PCR data were used on
mouse PA1 samples to study conservation and differences
between species. The data from our study also identified
biological markers for pharyngeal arch development and
candidate genes for cleft palate and micrognathia.

RESULTS

Characterization of human PA1 SAGE libraries and
microarray data

We constructed 12 SAGE libraries from various micro-
dissected structures of early human craniofacial development
(Table 1). For each library, we used only 1 mg of total RNA
in our micro-SAGE protocol (13). A total of 606 352 tags
were sequenced, with an average of 50 531 tags sequenced
for each library, and 101 705 (16.7%) unique tags were ident-
ified. These libraries are of high quality because 1) there was
no GC content bias (14), 2) the frequency of duplicate ditags
and linker contamination (both ,0.5%) was equivalent to or
less than that of other reported SAGE libraries (15), and 3)
simulation analysis using R (www.r-project.org) indicated
that subpopulations of data from the same SAGE library
were similar.

Comparison between libraries provided further evidence of
the quality of our SAGE libraries. In replicate libraries derived
from independent RNA sources of microdissected fourth week
frontonasal prominences, we found that the correlation coeffi-
cient was 0.96, and only 0.39% of the tags showed changes
.2-fold (P , 0.05). In contrast, comparison between fourth

week pharyngeal arch 1 (W4PA1) and fifth week pharyngeal
arch 1 (W5PA1) libraries showed that the correlation coeffi-
cient was smaller (0.86), and significantly more tags (1.6%)
showed changes .2-fold (P , 0.05).

Tag sequences from W4PA1 and W5PA1 libraries were
matched to the SAGEmap database (www.ncbi.nlm.nih.gov/
sage) for gene identification. In PA1, a few genes (,5%)
are expressed at high levels and most are expressed at moder-
ate to low levels (Supplementary Material, Table S1). This
distribution is consistent with that observed in other tissues
and cell types (16–18). Of the 19 698 and 21 881 unique
SAGE tags from W4PA1 and W5PA1 libraries, respectively,
�24% were novel without matches to UniGene clusters. Of
the SAGE tags that matched to UniGene clusters, �40%
matched to more than one cluster. The low specificity of a
SAGE tag for a specific gene was largely because of the
short length (10 bp) of the SAGE tag sequence.

We also performed microarray analysis on 25 craniofacial
structures, using the Affymetrix Human Genome U95Av2
chip (Table 1). By hierarchical clustering (19), duplicates of
the same PA1 targets were found to cluster together in the
same subnode with a correlation coefficient of 0.97, showing
reproducibility between duplicate arrays. For W4PA1 and
W5PA1, we found that 29–39% of all genes tested were
expressed in PA1; of the total 12 600 probe sets on a chip,
3681 and 4869 are expressed in W4PA1 and W5PA1, respect-
ively. We consider that a gene is expressed if there is a
‘present’ call by the Affymetrix default algorithm, which has
a sensitivity of at least 70% of detecting genes expressed at
the level of one per 100 000 transcripts.

Genes identified to be expressed in PA1 by SAGE or micro-
array were assigned to 12 different molecular function cate-
gories, on the basis of information from the Gene Ontology
Consortium (www.geneontology.org). The distribution of
genes in the different categories was similar for both
W4PA1 and W5PA1 (Table 2; Supplementary Material,
Table S2). Genes classified into binding or catalytic activity
groups accounted for 61.2–62.3%, with genes of transporter,
signal transducer and transcription regulator activity groups
accounting for 21.4–25.0%. The remaining genes were in
structural molecule, enzyme regulator, chaperone, translation
regulator, motor and antioxidant activity groups.

Comparison between W4PA1 and W5PA1 libraries

To detect human genes that are differentially expressed
between fourth and fifth week of PA1 development, we
analyzed both SAGE libraries [using the statistical method
of Audic and Claverie (20), fold change .2 and P-value
,0.01] and Affymetrix data [using the statistical method of
Li and Wong (19) and lower boundary fold change .2]. We
identified 97 genes differentially expressed between human
W4PA1 and W5PA1 by SAGE (Supplementary Material,
Table S3) and 62 genes by Affymetrix microarrays (Sup-
plementary Material, Table S4). The distribution of differen-
tially expressed genes assigned to different molecular
functional categories was similar to all genes expressed in
both W4PA1 and W5PA1 libraries (Supplementary Material,
Table S2). These differentially expressed genes were also
assigned to different biological process categories (21).
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Several biosynthesis processes, including nucleotide, protein
and lipid synthesis processes, as well as the protein transport
and the cell cycle processes were overrepresented in the differ-
entially expressed genes determined by SAGE (P , 0.05;
Table 3), whereas no biological processes were overrepre-
sented in the differentially expressed genes detected by
microarrays.

Few genes were identified to be differentially expressed by
both our SAGE and microarray analyses. Only a few pub-
lished studies were available to corroborate these differentially
expressed genes. In the case of human FIGF, we detected
increased expression from fourth to fifth week human PA1
SAGE libraries (zero versus eight tags). This result was
confirmed by Affymetrix analysis (6.4-fold increase). Further-
more, mouse Figf expression was not detected in mouse
PA1 at GD8.5, but was detected in PA1 at GD10.5 by
in situ hybridization (22).

Direct validation of the expression changes would ideally
be done with human samples. However, because of the
limited availability of human embryos and generally presumed
conservation of gene expression in mammals, mouse embryos
were used to further study expression changes in PA1. We
used real-time RT–PCR to analyze RNAs from corresponding
mouse stages. Mouse PA1 obtained by microdissection of
GD9.5 and GD10.5 embryos was analyzed, using primers
specific to mouse homologs of several human genes. We
found that 93% of the RT–PCR analyses agreed with our
SAGE data in the direction of change and 86% had a fold
change of �2 (Supplementary Material, Table S5). Although

there was good agreement between our SAGE and RT–PCR
differential gene expression data, complete agreement was
not expected because of differences in sensitivity and speci-
ficity of the methods, intrinsic variation in gene expression
and/or species differences between human and mouse.

Genes highly expressed in human PA1

Of the highly expressed tags present more than 100 times in
either W4PA1 or W5PA1 SAGE library, 24 tags were
uniquely matched to UniGene clusters (Supplementary
Material, Table S6). Thirteen of these were among the 200
genes (�5% of all genes called ‘present’) with the highest nor-
malized intensity values assayed by Affymetrix microarray.
Many of these genes code for components of the ribosomal
complex, reflecting the increased translational activity in
PA1 during early human development. The percentage of
highly expressed genes was 4-fold increased in the structural
molecule activity group when compared with that of all
genes identified in PA1. No highly expressed genes were
identified in the transporter, signal transducer and transcription
regulator activity groups.

Genes ‘enriched’ in human PA1

To screen for human genes that are at least 2-fold ‘enriched’ in
PA1, we calculated the ratio of the number of tags from either
W4PA1 or W5PA1 SAGE library to the average number
of tags from 10 libraries derived from other embryonic,

Table 1. SAGE libraries and microarray data generated from human embryonic craniofacial structures

Abbreviation Carnegie Structures SAGE libraries Affymetrix
stage

Total tags Unique tags
microarrays

D26E C12 26 day embryo 51 216 19 602 þ

W4PA1 C12 Fourth week pharyngeal arch 1 59 959 19 698 þ

W4PA2 C12 Fourth week pharyngeal arch 2 59 964 19 698 þ

W4PA3 C12 Fourth week pharyngeal arches 3 and 4 NA NA þ

W4FNP C12 Fourth week frontonasal prominence 55 263 15 540 þ

W4MDP C12 Fourth week mandibular prominence 17 359 7912 NA
W4ARH C12 Fourth week anterior rhombomere 20 876 8143 þ

W4PRH C12 Fourth week posterior rhombomere 38 717 15 143 þ

W5PA1 C15 Fifth week pharyngeal arch 1 67 982 21 883 þ

W5PA2 C15 Fifth week pharyngeal arch 2 60 870 23 587 þ

W5PA3 C15 Fifth week pharyngeal arches 3 and 4 NA NA þ

W5FNP C15 Fifth week frontonasal prominence 64 171 20 503 þ

W5AR C15 Fifth week anterior rhombomere NA NA þ

W5PR C15 Fifth week posterior rhombomere NA NA þ

W6MAN C16/C17 Sixth week mandible NA NA þ

W6MAX C16/C17 Sixth week maxilla NA NA þ

W6LNP C16/C17 Sixth week lateral nasal prominence NA NA þ

W6MNP C16/C17 Sixth week medial nasal prominence NA NA þ

W85MAN C23 8.5th week mandible NA NA þ

W85SG C23 8.5th week salivary gland NA NA þ

W85AT C23 8.5th week anterior tongue NA NA þ

W85PT C23 8.5th week posterior tongue NA NA þ

W85PL C23 8.5th week palate 48 922 17 491 þ

W85DL C23 8.5th week dental lamina NA NA þ

W85UL C23 8.5th week upper lip 61 053 21 793 þ

W85LL C23 8.5th week lower lip NA NA þ

þ, Affymetrix HG-U95Av2 data available; NA, not available.

Human Molecular Genetics, 2005, Vol. 14, No. 7 905



craniofacial structures. For a gene to be considered ‘enriched’,
both ratios had to be greater than 2. Only moderately to highly
expressed SAGE tags with a combined count of more than 20
in all libraries were analyzed. We also searched for genes at
least 2-fold ‘enriched’ in W4PA1 and W5PA1 by analyzing
our Affymetrix microarray data. We found 74 ‘enriched’
genes by SAGE (Supplementary Material, Table S7) and 96
genes by Affymetrix microarrays (Supplementary Material,
Table S8). The proportion of ‘enriched’ genes assigned to
different functional categories was also similar to that of all
genes expressed in PA1 (Supplementary Material, Table S2).
No biological processes were overrepresented in the SAGE
‘enriched’ genes, whereas the biosynthesis and energy pathway
processes were overrepresented in microarray ‘enriched’ genes
(Table 3). Some of these ‘enriched’ genes are known to be
involved in human disorders affecting the craniofacial region
such as GPC3 in Simpson-Golabi-Behmel syndrome type I
(23,24), NOTCH3 in cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy (25) and
TNFRSF10B in head and neck squamous cell carcinoma (26).

Genes common to human and mouse PA1

To compare the gene expression between human and mouse
craniofacial structures, we searched The Jackson Laboratory
Mouse Genome Informatics database (www.informatics.jax.
org) for previously reported mouse gene expression in PA1
and its quantitation. Three hundred and fifteen genes have
been shown to be expressed in PA1 by immunohistochemistry,
in situ hybridization or RT–PCR. Of these 315 genes, 228
genes have human homologs that matched uniquely to
UniGene clusters. One hundred and seventy-nine (78%)
were found in our SAGE analysis of human W4PA1 and
W5PA1 libraries. Thirty-two percent of these genes were

classified as signal transducers and transcription regulators
such as HoxA1, Msx1, Msx2, Pax8, Pax9, Bmp4, Bmp5,
Bmp7, Fgfr11 and Tgfb1 (Table 2). Of the 228 human
genes, 174 have probe sets on Affymetrix HG-U95Av2 chip.
One hundred and six (61%) were called ‘present’, when
human PA1 targets were analyzed. Ninety-six genes were
detected by both unique SAGE tags and microarray analysis.
Both multiple matched SAGE tags and Affymetrix microarray
data identified additional genes, such as TWIST and TCOF1,
which are known to be involved in craniofacial disorders
affecting pharyngeal arch development in humans (Saethre-
Chotzen and Treacher Collins syndromes, respectively) and
relevant mouse models (27–30).

To discover additional PA1 genes expressed in human and
mouse, we performed microarray analysis on mouse PA1
microdissected at GD9.5 and compared these results with our
human data. We identified an additional 7307 genes expressed
in mouse PA1. Of all the genes expressed in human PA1, 2174
have mouse homologs and 1408 (64.8%) were also expressed in
mouse PA1 as determined either by microarray analysis or
present in The Jackson Laboratory Mouse Genome Informatics
database (Supplementary Material, Table S9). These results
further suggest that the large portion of genes and molecular
pathways that are relatively conserved between human and
mouse PA1 development account for the basic craniofacial
structures present in mammals.

Temporospatial expression of mouse homologs of
human genes expressed in PA1

To screen for genes that may be involved in craniofacial dis-
orders and to investigate the temporospatial expression pattern
of PA1 genes, we identified genes that are more highly
expressed in pharyngeal arches than that in other embryonic,

Table 2. Functional classification of PA1 genes

Functional category PA1a Human–mouse homologs

Commonb (only in JAXc) Only in humand Only in mousee

Antioxidant activity 0.3 0.3 (0.4) 0.4 0.1
Binding 37.5 39.4 (39.0) 38.9 39.4
Catalytic activity 24.7 26.7 (14.9) 24.3 22.7
Chaperone activity 1.6 0.0 (1.0) 0.0 0.1
Enzyme regulator activity 3.1 2.7 (2.0) 3.8 3.4
Motor activity 0.6 0.9 (0.0) 0.9 0.1
Signal transducer activity 9.5 7.6 (14.7) 11.6 10.2
Structural molecule activity 3.8 5.8 (2.3) 2.8 2.6
Transcription regulator activity 7.1 7.4 (17.2) 7.3 10.7
Translation regulator activity 0.8 0.7 (0.0) 0.7 0.1
Transporter activity 8.4 6.4 (4.2) 7.4 7.4
Unknown 2.6 2.1 (4.3) 1.9 3.1

Listed are percentages of genes assigned to 12 molecular function categories, on the basis of information from the Gene Ontology Consortium
(www.geneontology.org).
aGenes from all 5055 called ‘present’ in microarrays of W4PA1 and W5PA1.
The groups of human–mouse homologs analyzed by microarray include:
b1408 genes expressed in both human (present by both SAGE and microarray) and mouse PA1 (either present in The Jackson Laboratory Mouse
Genome Informatics database or by microarray).
c96 genes expressed in both human (present by both SAGE and microarray) and mouse PA1 (present only in The Jackson Laboratory Mouse Genome
Informatics database).
d766 genes expressed only in human PA1 (present by both SAGE and microarray), but not in mouse (not present in The Jackson Laboratory Mouse
Genome Informatics database or by microarray).
e940 genes expressed only in mouse, but not in human PA1.
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craniofacial structures as listed in Table 1. The mouse homo-
logs for human genes previously not known to be expressed in
PA1 were studied by whole mount in situ hybridization analy-
sis using mouse embryos from GD8.5 through GD10.5, the
stages corresponding to fourth and fifth week human embryo-
nic development.

One of these is the SET gene, which was previously ident-
ified because it was disrupted by a translocation breakpoint in
human chromosome 9 associated with a subtype of acute
myeloid leukemia (31). Human SET, matched by multiple

SAGE tags, was present in 75 of 59 959 tags and 101 of
67 982 tags sequenced in W4PA1 and W5PA1 libraries,
respectively. This gene was relatively ‘enriched’ in PA1,
because it was present on average only 47 of 50 531 tags in
all other libraries. Its PA1 expression was further confirmed
by both human and mouse Affymetrix microarray analysis.
By whole mount in situ hybridization, we found that at
GD8.5, mouse Set was highly expressed in cells of the
neural crest folds and less expressed in PA1 (Fig. 1). At
GD9.5, a high level of Set expression was in the pharyngeal

Table 3. Biological processes

Biological processes Genes P-value

Overrepresented in differentially expressed genes detected by SAGEa

Biosynthesis SQLE; ATP6V1E1; RPL4; NME4; RPL23; RPL32; EIF3S8; RPL9; RPL14;
HSPCA; SUI1; CYP51A1; RPLP2; FADS2; FASN; RPL17; ATP5L

5.91E205

Macromolecule biosynthesis SQLE; RPL4; RPL9; RPL14; SUI1; CYP51A1; RPLP2; RPL23; FADS2;
RPL32; FASN; RPL17; EIF3S8

0.0135

Cellular physiological process SET; ATP6V1E1; PCNA; SLC25A6; HNRPD; POLD3; FSCN1; CCNG1;
RPL23; TIMM17B; NEDD5; MAC30; TOPBP1; NGFRAP1; VP16_HUMAN;
EWSR1; COPB; SUI1; HSPCA; MORF4L1; FIGF; GABARAP; MARCKS;
H2AFY; LAPTM4A; SEC13L1; TM4SF6; ATP5L; HMGB2

0.0231

Cell growth and/or maintenance SET; ATP6V1E1; PCNA; SLC25A6; HNRPD; POLD3; FSCN1; CCNG1;
RPL23; TIMM17B; NEDD5; MAC30; TOPBP1; VP16_HUMAN; EWSR1;
COPB; SUI1; HSPCA; MORF4L1; FIGF; GABARAP; H2AFY; LAPTM4A;
SEC13L1; ATP5L; HMGB2

0.0231

Intracellular transport SET; VP16_HUMAN; SLC25A6; HSPCA; RPL23; TIMM17B;
GABARAP; SEC13L1

0.0231

DNA metabolism SET; PCNA; POLD3; NTHL1; MORF4L1; TOPBP1; H2AFY; HMGB2 0.0231

DNA replication and chromosome cycle SET; PCNA; TOPBP1; POLD3; HMGB2 0.0231

Chromosome organization and biogenesis
(sensu Eukarya)

Nuclear organization and
biogenesis

SET; MORF4L1; HNRPD; H2AFY; HMGB2

SET; MORF4L1; HNRPD; H2AFY; HMGB2

0.0231

0.0231

Response to DNA damage stimulus
Response to endogenous stimulus

NTHL1; PCNA; HNRPD; POLD3; HMGB2
NTHL1; PCNA; HNRPD; POLD3; HMGB2

0.0231
0.0231

Chromatin assembly or disassembly
Establishment and/or maintenance of

chromatin architecture
DNA packaging

SET; MORF4L1; H2AFY; HMGB2
SET; MORF4L1; H2AFY; HMGB2

SET; MORF4L1; H2AFY; HMGB2

0.0231
0.0353

0.0363

Cell cycle SET; PCNA; POLD3; CCNG1; FIGF; NEDD5; TOPBP1; HMGB2 0.0234

Protein biosynthesis RPL23; RPLP2; RPL4; RPL32; RPL17; RPL9; RPL14; EIF3S8; SUI1 0.0251

DNA replication SET; PCNA; POLD3; HMGB2 0.0252

Macromolecule metabolism SET; SQLE; ULK1; RPL4; HNRPD; PPIA; NTHL1; PTPRA; RPL23;
CCNG1; TIMM17B; RPL32; DPP7; EIF3S8; MTMR4; RPL9; RPL14;
HSPCA; SUI1; CS; CYP51A1; RPLP2; FADS2; GABARAP; FASN; RPL17

0.0257

Intracellular protein transport RPL23; TIMM17B; VP16_HUMAN; GABARAP; SEC13L1 0.0264

Lipid biosynthesis SQLE; CYP51A1; FADS2; FASN 0.0264

Protein transport RPL23; TIMM17B; VP16_HUMAN; COPB; GABARAP; SEC13L1 0.0294

DNA repair NTHL1; PCNA; POLD3; HMGB2 0.0349

Cell proliferation SET; PCNA; POLD3; FSCN1; CCNG1; FIGF; NEDD5; TOPBP1; HMGB2 0.0352

Overrepresented ‘enriched’ genes detected by microarrayb

Biosynthesis NME1; EIF3K; RPLP1; RPL38; NOLA2; RPS5; RPS21; RPL18; RPS12;
GMPS; PSPH; OAZ1; FDPS; RPL28; ATP5G3; QDPR; RPS15; WBSCR1

8.84E205

Energy pathways UQCRC1; COX6A1; ATP5G3; COX8A; UQCR; COX6C; IDH3B 0.00565

aListed are biological process annotations statistically overrepresented in 97 differentially expressed genes, as determined by SAGE (P , 0.05)
(Supplementary Material, Table S3).
bListed are biological process annotations statistically overrepresented in 96 ‘enriched’ genes, as determined by microarray (P , 0.05) (Supplementary
Material, Table S8).
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arches, especially in PA1, suggesting that the Set-expressing
neural crest cells had migrated from the hindbrain folds to
the arches. Upon further development at GD10.5, Set
expression was still strong, but restricted to the maxillary
portion of PA1. During this stage, Set was also expressed in
the frontonasal prominence, specifically in the lateral nasal
prominence and, interestingly, in the limb buds.

Another gene that we studied was CCT3, which encodes a
chaperone protein (32). Human CCT3, matched by multiple
SAGE tags, was present in 338 of 59 959 tags and 230 of
67 982 tags sequenced in W4PA1 and W5PA1 libraries,
respectively. This gene was highly expressed in PA1, being
present on average only 91 of 50 531 tags in all other libraries.
CCT3 was also determined to be ‘enriched’ in both PA1 and
PA2 using a Wilcoxon rank sum test (33), in which the

normalized expression level of this gene in W4PA1,
W5PA1, W4PA2 and W5PA2 was at least twice that in the
other eight libraries tested with a one-sided P-value ,0.05.
Furthermore, Affymetrix microarray data on both human and
mouse confirmed that CCT3 was highly expressed (top 5%
of genes) in PA1. In whole mount in situ hybridization at
GD8.5, mouse Cct3 was predominantly expressed in PA1, as
well as in the frontonasal prominence (Fig. 2). Its level of
expression in PA1 and the frontonasal prominence persisted,
and it was also present in PA2. By GD10.5, the predominant
expression of Cct3 had moved to the mandibular portion of
PA1 and the limb buds.

Genes newly identified to be expressed in human PA1

We identified 6927 genes previously not known to be
expressed in human PA1. Of these genes, 4842 and 6096
were detected by SAGE and microarray, respectively.
In addition, these genes had not been identified to be

Figure 2. Mouse in situ hybridization of the Cct3 gene. Whole embryo stain-
ing for GD8.5 (A and B ), GD9.5 (C and D ) and GD10.5 (E and F ) shows
Cct3 expression throughout early craniofacial development. (B, D and F)
are the higher magnifications of the boxed regions in (A, C and E), respect-
ively. Cct3 expression on GD8.5 is localized to PA1 and frontonasal promi-
nence. At GD9.5, Cct3 expression is present in the frontonasal prominence
and is predominant in PA1. By GD10.5, Cct3 expression is observed through-
out PA1, but most prominently in the mandibular portion of PA1. It is also
expressed in PA2 (D and F ) and frontonasal prominence (B, D and F ) at
these stages. Cct3 is expressed in the limb bud (C and E ). , PA1; 4 , fronto-
nasal prominence; , PA2; , limb bud.

Figure 1. Mouse in situ hybridization of the Set gene. Whole embryo staining
for GD8.5 (A and B), GD9.5 (C and D) and GD10.5 (E and F) shows Set
expression throughout early craniofacial development. (B, D and F) are the
higher magnifications of the boxed regions in (A, C and E), respectively.
Set expression on GD8.5 is localized to the frontonasal prominence, crest of
the neural folds and PA1. At GD9.5, expression is present throughout PA1
and also at the posterior half of PA2. By GD10.5, Set is expressed mostly
in the maxillary portion of PA1. Set is expressed in the frontonasal prominence
at all stages observed (B, D and F). At GD10.5, Set is expressed in the lateral
nasal prominence (F). Set is expressed in the limb bud (C). , PA1; 4 , fronto-
nasal prominence; P, neural folds; , PA2; , limb bud.
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expressed in mouse PA1 by The Jackson Laboratory Mouse
Genome Informatics database (www.informatics.jax.org).
Among these new genes are all of the highly expressed
(Supplementary Material, Table S6) and most of the differen-
tially expressed or the ‘enriched’ human PA1 genes (Sup-
plementary Material, Tables S3, S4, S7 and S8). A
comparison was made between our human versus mouse
microarray data on PA1, using the default Affymetrix algor-
ithm of present/absent call. We found that 35% (766 of
2174 mouse homologs) were expressed in only human PA1
(Table 4), whereas 40% (940 of 2348 human homologs)
were expressed in only mouse PA1 (Supplementary Material,
Table S10). The distribution of these genes that are more
specific to human or mouse into molecular functional cat-
egories is similar to all genes identified in PA1 (Table 2).
Therefore, species differences in gene expression levels as
well as timing and localization, rather than function, may
account for some of the obvious morphological differences of
the craniofacial region at later stages. However, further
studies will need to be performed to substantiate this hypo-
thesis. Our data also suggest the limitation of using mouse
models to study some human conditions and provide a means
by which genes can be prioritized for mouse knockout studies.

DISCUSSION

This study is unique in that gene expression profiling was per-
formed on RNAs from normal human embryos. Our analysis
allowed us to identify a large number of transcripts previously
not known to be expressed in the human craniofacial region.
We focused on PA1, because it is essential to the development
of many craniofacial structures. Although technically challen-
ging, we were able to microdissect PA1 because of its distinct
morphology and generate sufficient cDNA by adapting micro-
methods using very small quantities of total RNAs.

Previous studies of gene expression during normal cranio-
facial development have been carried out in mouse or zebra-
fish, using microarrays (34) and phenotype-based techniques
such as ENU mutagenesis (35) or subtractive libraries (36).
Microarray results were restricted to those genes present on
a chip or filter and may not be as sensitive as SAGE or
RT–PCR. Both mutagenesis screens and subtractive libraries
were also less comprehensive.

Fowles et al. (36) used subtractive hybridization of a mouse
PA1 cDNA library against an adult mouse liver cDNA library
to identify genes ‘enriched’ in PA1. Their subtraction method
aimed to remove ubiquitously expressed housekeeping genes
and to enrich for those genes with a specific role in PA1 devel-
opment. However, genes common to both liver and cranio-
facial development may still be important to the latter and
would be missed. After sequencing 453 clones, 273 non-
redundant cDNA clones were identified. One hundred and
twenty-three of the latter clones had sequences homologous
to unique UniGene clusters. When we compared their results
with our data, we found that all were identified in our
SAGE and microarray analyses. In addition, we identified
thousands of more genes expressed in mouse PA1, as well
as in human PA1, by SAGE and microarrays.

We identified genes that are ‘enriched’ in PA1 from fourth
to fifth week of human development. These PA1-enriched

genes are good candidates for craniofacial diseases. Some of
these PA1-enriched genes when mutated could lead to signifi-
cant craniofacial abnormalities or even result in embryonic
lethality. As a validation, some of these genes have already

Table 4. Genes newly identified to be expressed in human PA1 by SAGE and
microarray

Gene UniGene id Gene UniGene id

GAPD Hs.169476 CHST3 Hs.158304
TPT1 Hs.374596 CSRP1 Hs.108080
RPS27 Hs.337307 NDUFS6 Hs.408257
RPL18A Hs.337766 KPNB1 Hs.439683
ARL6IP Hs.75249 RBM9 Hs.433574
RPL11 Hs.388664 ALDOB Hs.315235
PKM2 Hs.198281 RAB22A Hs.281117
NMB Hs.386470 UBTF Hs.89781
RPL38 Hs.380953 IL7R Hs.362807
MARCKS Hs.318603 SEC13L1 Hs.227949
HSPCB Hs.74335 RBM12 Hs.166887
MYL6 Hs.77385 KIAA0252 Hs.83419
EPRS Hs.171292 CENPF Hs.77204
CLTC Hs.187416 LSM4 Hs.76719
HNRPA0 Hs.96996 CDC10 Hs.396503
EIF3S6 Hs.405590 EIF3S10 Hs.389559
PTPN13 Hs.387553 SDCCAG1 Hs.388584
INPP4A Hs.334575 SNRPF Hs.105465
PDE3B Hs.337616 SLC12A4 Hs.10094
HSPCA Hs.446579 MCM2 Hs.57101
ACTB Hs.426930 RAB5C Hs.479
STMN1 Hs.209983 DKC1 Hs.4747
CRI1 Hs.381137 BSCL2 Hs.438912
MDH1 Hs.75375 GRINA Hs.339697
BASP1 Hs.511745 MCM3 Hs.179565
CCNB1 Hs.23960 DPYSL2 Hs.173381
CRADD Hs.155566 UQCRB Hs.131255
KHSRP Hs.91142 RYBP Hs.7910
CAPZB Hs.333417 SFRS6 Hs.6891
CYC1 Hs.289271 EIF3S5 Hs.381255
HSPA1A Hs.75452 ZFPL1 Hs.155165
SFPQ Hs.180610 C14orf1 Hs.15106
MSF Hs.288094 BAIAP2 Hs.128316
ILVBL Hs.78880 NEDD5 Hs.131736
UBE2D3 Hs.472031 COX4I1 Hs.433419
RPS10 Hs.406620 SNRPD3 Hs.356549
MDH2 Hs.405860 KRT19 Hs.309517
MCM7 Hs.438720 SLC16A3 Hs.386678
KDELR1 Hs.78040 PPOX Hs.376314
AKAP1 Hs.78921 TNFRSF1B Hs.256278
PLXNB1 Hs.278311 USP22 Hs.12064
TARS Hs.84131 LSM2 Hs.103106
HSPD1 Hs.79037 NDUFA9 Hs.75227
MAFF Hs.460889 COX7B Hs.432170
ZNF9 Hs.2110 CREM Hs.231975
HLA-A Hs.181244 ZFP36L2 Hs.78909
UNC119 Hs.410455 HSPB1 Hs.76067
MYH10 Hs.280311 TUB Hs.54468
HFE Hs.233325 MEG3 Hs.534530
SFRS10 Hs.30035 UBXD2 Hs.350806

Listed are the 100 most highly expressed human genes in PA1 as
determined by both SAGE and Affymetrix microarray. These genes are
ranked by their combined tag counts in W4PA1 and W5PA1 SAGE
libraries. Human genes whose mouse homologs were already known to
be expressed in PA1 as noted by The Jackson Laboratory Mouse
Genome Informatics database and mouse microarray analysis were
excluded. For a gene to be considered ‘expressed’ in human PA1, the
number of SAGE tags for that gene should be greater than 1, and it
also should have a ‘present’ call by Affymetrix microarray.
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been implicated in several human craniofacial disorders.
The presence of some PA1-enriched genes in our libraries
that cause human diseases without craniofacial manifestations
may be due to their functional redundancy and/or their func-
tional importance in other organ systems (Supplementary
Material, Tables S7 and S8).

These profiling data, in combination with in situ hybridiz-
ation, have also identified genes that might have a role in
specific craniofacial abnormalities. The high expression of
the Set gene in PA1 and its localization in the maxillary
portion by GD10.5 suggests this gene as a candidate for
orofacial clefting, because the palate normally forms by the
fusion of the maxillary prominences. Similarly, the localiz-
ation of Cct3 expression to the mandibular portion of the
PA1 suggests this gene as a candidate for micrognathia, as
well as for other jaw abnormalities. Furthermore, these
genes may serve as biological markers for PA1. For
example, at GD10.5, cranial derivatives for neural crest cell
populations are limited to pharyngeal arches and sensory
ganglia of the face (upper only). At this stage, both Set and
Cct3 appear to be expressed in neural crest derivatives such
as both arches.

Our results show that a large portion (65%) of human genes
expressed in PA1 is also expressed in mouse PA1, providing
further evidence for the conservation of developmental
pathways between species. Real-time RT–PCR on mouse
samples confirmed several expression changes detected by
human SAGE libraries. These differentially expressed genes
may shed light on the pathways involved in temporal develop-
ment of PA1. In addition, many of these genes are involved
in biosynthetic processes of early development. To date, a sig-
nificant proportion of genes studied in both human and mouse
PA1 are signal transducers and transcription regulators, but
our functional analysis of all genes identified by our SAGE
and Affymetrix data suggest future studies should focus on
the genes which have binding or catalytic activities, because
they represent the majority of PA1 genes.

We also found that Set and Cct3 are expressed in the limb
bud, an observation that may have clinical significance.
Many patients with craniofacial syndromes also manifest
limb abnormalities. Classic examples include craniosynostosis
syndromes such as Pfeiffer, Apert, Crouzon, Greig cephalopo-
lysyndactyly and metabolic defects such as Smith-Lemli-Optiz
syndromes (www.ncbi.nlm.nih.gov/omim). Identifying mole-
cules and signaling pathways shared by different organ
systems will reveal common factors among diverse birth
defects.

We observed limited agreement between our SAGE and
microarray data. Only one of the ‘enriched’ genes identified
by SAGE was identified by Affymetrix analysis, whereas
only two genes that were differentially expressed by SAGE
were confirmed by Affymetrix analysis. However, when
highly expressed genes were analyzed, there was better agree-
ment. More than half of the transcripts with SAGE tag counts
greater than 100 were also among the highly expressed genes
by Affymetrix analysis (Supplementary Material, Table S6).
These discrepancies are similar to observations reported in
other comparative studies (37–39) and are highlighted by
issues of sensitivity (e.g. the number of sequenced SAGE
tags, Affymetrix hybridization and detection procedures),

specificity (multiple and non-matched SAGE tags and
Affymetrix probe sets for alternative transcripts) and analyti-
cal methodologies. These results emphasize the need to use
more than one global gene expression method and gene-
specific expression assays for validation.

This large-scale expression profile of normal human
craniofacial development is an important initial step toward
elucidating this complex process. Our data can now be
used to design microarrays with genes expressed in PA1 to
provide further insights into early embryonic development.
Correlating gene expression patterns and abnormal cranio-
facial phenotypes with linkage, association and mutation
analyses is a powerful integrated approach to identify the
causes of malformations.

MATERIALS AND METHODS

Human RNA acquisition

Morphologically normal human embryos were obtained
through legalized abortions induced by Mifepristove
(RU-486), according to the recommendations of the French
National Ethics Committee. The developmental stage of
each embryo was estimated, according to the Carnegie classi-
fication. Common chromosomal abnormalities were excluded
by fluorescent quantitative PCR on chromosomes 13, 18, 21,
X and Y, which are among the most commonly occurring
aneuploidies. Embryos were microdissected from the whole
trophoblasts stored in Tyrode’s solution. Microdissected struc-
tures were suspended in Trizol, and total RNA was isolated
according to manufacturer’s protocol (Invitrogen, Carlsbad,
CA, USA). Structure-specific RNAs collected from three to
five different embryos at the same developmental stage were
pooled and subjected to gene expression analysis.

Construction and analysis of human SAGE libraries

SAGE libraries were generated using a modified micro-SAGE
protocol as previously reported (13). We constructed SAGE
libraries from 1 to 2 mg of total RNA isolated from pooled
microdissected tissues, without any preamplification steps
that would potentially compromise the quantitative nature
of this method. To increase the yield of SAGE ditags, we
use a single-tube procedure for all steps prior to tag release,
Dynal magnetic beads (Dynal, Brown Deer, WI, USA) and
PhaseLock Gel (Eppendorf AG, Hamburg, Germany). All
the SAGE data are available at hg.wustl.edu/cogene. Compari-
sons between libraries were carried out using the SAGE2000
(www.sagenet.org) and eSAGE softwares (14).

Human Affymetrix microarray hybridization and analysis

Human cDNA was generated using the same total RNA
sources for SAGE (discussed earlier) with a modified
SMART oligo method (hg.wustl.edu/cogene). In vitro tran-
scription was performed with 100 ng of cDNA, using a
MEGAscript High Yield Transcription Kit (Ambion, Austin,
TX, USA). The resulting RNA was treated with DNase I,
passed through a Sephadex G50 column and ethanol precipi-
tated. This RNA was spiked with control RNAs and used
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for synthesis of cDNA primed with oligo(T)18-T7, according
to the Affymetrix GeneChip instructions (Affymetrix, Santa
Clara, CA, USA). The resulting DNA was used in an
in vitro transcription reaction with labeled ribonucleotides.
These targets were used on HG-U95Av2 chips. Hybridization,
washing and image scanning were performed, according to the
Affymetrix protocol. Duplicate experiments were performed
for each target. Estimation, normalization of gene expression
values and hierarchical clustering were performed, using
dChip software (19). All our Affymetrix microarray data are
available at hg.wustl.edu/cogene.

Mouse Affymetrix microarray hybridization and
real-time RT–PCR analysis

Mouse GD9.5 and GD10.5 embryos were collected. PA1s were
microdissected from the embryos, and 10–12 PA1s (each
�200 mm in size and from the same stages) were pooled and
stored in RNAlater solution (Invitrogen). Total RNA was
extracted using an RNeasy Mini Kit (Qiagen, Valencia, CA,
USA) and cDNA was synthesized using an Omniscript RT
Kit (Qiagen), according to the manufacturer’s protocol for
both real-time PCR and Affymetrix microarray hybridization
to MOE430A and B chip set. Analyses were performed as for
the human chips (discussed earlier).

For real-time PCR, PCR primers were designed with
Primer3 software (frodo.wi.mit.edu/) to amplify intron-
spanning amplicons. Real-time PCR reactions were carried
out with QuantiTect SYBR Master Mix (Qiagen), as described
previously (40). Specific amplification from cDNA and no
amplification from genomic DNA were confirmed by melting
curve analysis and subsequent gel electophoresis. External
standards were generated using mouse brain Poly(A) RNA
(Ambion) and the OmniScript kit for reverse transcription
(Qiagen). Ten-fold serial dilutions of the products were
made from 1:1 to 1:1024 to create a standard curve. Triplicate
reactions were performed for both the samples and the stan-
dards. Transcript concentrations of both GD9.5 and GD10.5
PA1s were inferred from the standard curve, and fold changes
were calculated after normalizing against a reference gene.
The Tmsb4x gene (UniGene Hs.75968) was chosen as a
reference gene, because it was among the top 1% of genes
with respect to constant expression level in all SAGE libraries,
and a robust real-time RT–PCR assay could be developed.

Mouse whole mount in situ hybridization

PCR primers, designed with Primer3 software (frodo.wi.mit.
edu/), were used to amplify cDNA-specific products, which
were sequenced in both directions to ensure no mutations
were incorporated. DIG-labeled RNA probes were generated
from the PCR products using a DIG RNA transcription kit
(Roche, Indianapolis, IN, USA), according to the manufac-
turer’s protocol. Normal C57BL/6J mice were mated for 2 h.
GD8.5, GD9.5 or GD10.5 mouse embryos were dissected in
Ringer’s solution and were fixed in 4% paraformaldehyde in
PBS overnight at 48C. Mouse whole mount in situ hybridiza-
tion was then performed as described previously (41). Images
were taken with DXM1200 digital camera (Nikon, Melville,
NY, USA).

GO analysis

Functional categories for genes were assigned to top-level
GO terms under the ‘molecular function’ hierarchy, on the
basis of information from the Gene Ontology Consortium
(www.geneontology.org). Gominer software (discover.nci.nih.
gov/gominer) was used with data source set to ‘UniProt
(H. sapiens et al. )’ and organisms set to ‘H. sapiens’ (42).
To find statistically overrepresented biological process GO
terms, GOstat program was used (gostat.wehi.edu.au) (21).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.
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The cap ‘n’ collar family member NF-E2-related factor 3 (Nrf3)

is expressed in mesodermal derivatives of the avian embryo
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ABSTRACT  NF-E2-related factor 3 (Nrf3) is a recently identified member of a family of transcrip-

tion factors homologous to the Drosophila  «cap ‘n’ collar» or CNC protein. The cnc  gene is located

immediately 3’ to the Drosophila  homeobox gene cluster and has been shown to regulate at least

one of those genes, deformed. Likewise, human and mouse CNC homologues are located

immediately 3’ to each of the four Hox  complexes, although no genetic interactions have yet been

demonstrated in vertebrates. Work presented here demonstrates that Nrf3, adjacent to the Hox

A  cluster, is expressed during early development of the chicken embryo. Expression begins in the

presumptive heart myocardium from the time of cardiac tube fusion through the looping process.

Nrf3  transcripts then disappear from the heart and are next observed in the myotomal compart-

ment of maturing somites, restricted to the medial portion along the rostrocaudal axis and fading

after muscle precursors migrate. Central nervous system expression appears gradually and

persists at low levels in ventricular neuroepithelial cells until at least embryonic day 6. Strong

expression is observed in the early epiphysis, in the collecting ducts of the developing kidney and

in individual cells of the yolk sac, underlying blood islands. This is the first description using in situ

hybridization of the expression of a CNC family member and its dynamics through the course of

early development.
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Introduction

In bilaterians, segmental identity along the rostrocaudal axis is
conferred through the action of Hox transcription factors, of which
the DNA-binding domains have been highly conserved over the
course of evolution. Hox  genes are organized in chromosomal
clusters, where the order of representation in the 3’ to 5’ direction
is reproduced in nested expression domains along the length of
the body. The transcription factor cap ‘n’ collar is located
immediately 3’ to the unique Drosophila  homeobox gene cluster
(Mohler et al., 1991, 1995). Four CNC homologues are found just
3’ to each of the four Hox  gene clusters of humans and mice: NF-
E2/p45  (Andrews et al., 1993) near the Hox C  complex, Nrf1
(Chan et al., 1996) also known as LCR-F1  (Caterina et al., 1994)
near the Hox B  complex, Nrf2  (Moi et al., 1994); also known as
ECH  (Itoh et al., 1995) near the Hox D  complex and Nrf3
(Kobayashi et al., 1999; Genbank NM_004289 annotated as
NFE2L3 ), near the Hox A  complex.

The CNC factors are basic region-leucine zipper proteins and
interact with structurally related factors such as c-fos, small Maf
(F, G, K) or Jun proteins, for DNA binding activity. The resultant

heterodimers appear to behave as transcriptional activators
(reviewed in Veraksa et al., 2000), with the exception of the
divergent Bach proteins which show repressor activity (Muto et
al., 1998; Oyake et al., 1996). BACH1  and BACH2  map to distinct
chromosomes (6q15 and 21q22.1 in humans) and contain
additional regulatory domains for protein-protein interactions
(Blouin et al., 1998; Ohira et al., 1998; Sasaki et al., 2000). In the
absence of a large CNC-type subunit, the small Maf protein
partners inhibit promiscuous activation of a consensus binding
motif on target DNA sequences, which otherwise can be induced
by AP-1-like transcription factors.

The originally identified cap ‘n’ collar protein exists as three
isoforms through differential splicing. One of these, CncB, is
expressed in the pharyngeal endoderm and has been shown to
suppress the transcription of Deformed in the Drosophila  mandible,
thereby maintaining mandibular identity (McGinnis et al., 1998).
cncA  and cncC  transcripts are ubiquitously expressed. Deformed
is a homeobox-containing transcription factor, located at the 3’
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end of the homeobox complex. In vertebrates, the Hoxa4, b4, c4
and d4 orthologues of Deformed are expressed within and caudal
to the hindbrain in the CNS, in somites and in the esophageal and
posterior gut during embryonic life (reviewed in Couly et al.,
1996). Expression of cnc family members in vertebrates has been
restricted to Northern blot analysis. NF-E2  is only seen in
hematopoietic cell lines and tissues such as mouse fetal liver and
human adult spleen and bone marrow (Peters et al., 1993). Nrf1
has a reportedly ubiquitous expression (Chan et al., 1993). Nrf2
transcripts are found in mouse red blood cells, kidney and
intestine and at lower levels in brain, liver, skeletal muscle and
heart (Itoh et al., 1995). Nrf3  is expressed at high levels in the
placenta and lower levels in adult human heart, brain, lung, kidney
and pancreas (Kobayashi et al., 1999).

In the context of recent data from the Institut d’Embryologie in
Nogent-sur-Marne, demonstrating the influence of pharyngeal
endoderm and Hox  gene expression on the morphogenesis of
cephalic neural crest derivatives (Couly et al., 2002; Creuzet et
al., 2002), I examined the developing chicken embryo for the
possible presence and localization of CNC  genes. One of these,
the putative chicken homologue of Nrf3, showed a surprising and
dynamic expression pattern in non-cephalic mesodermal
derivatives during embryogenesis, notably in the heart, somites,
yolk sac and kidney. This pattern was unexpected given the
ubiquitous expression described for the CNC genes to date and
implies an earlier, more specific role in target gene regulation by
Nrf3.

Results

Nrf3  is first transcribed at detectable levels at Hamburger-
Hamilton stage (HH) 10 in the wall of the fused cardiac tube (not
shown). This expression becomes increasingly intense until stage
18 (Figure 1A) and disappears from the myocardium by HH20
(Figure 1G). Expression appears stronger in the inflow and
outflow tracts than in the ventricular wall (Figure 1D).

Somitic expression begins at HH15 in the rostralmost somites
and progresses in a caudal direction (Figure 1C). Nrf3  expression
occurs in the median portion of the myotomal compartment along
the rostrocaudal axis (Figure 1A, C, E). As the myotome
differentiates, the strong expression levels are downregulated but
not entirely abrogated; migrating hypaxial muscle precursors
appear to maintain some Nrf3  expression (Figure 1A and 1F,
arrows) and muscle masses in the embryonic day 5 limb continue
to faintly express Nrf3  (Figure 1J, arrow). However, expression
disappears from the somites by HH20, which precedes terminal
muscle differentiation from the myotome; therefore, it is concluded
that not all muscle precursors express Nrf3.

The pharyngeal endoderm only transcribes Nrf3  transiently
and at low levels during branchial arch formation. Expression is
observed within the endodermal outpocketings separating
branchial arches 2-3 and 3-4 at HH18 (Figure 1A, open arrows)
and is already absent from this area at HH20. Uniformly faint
levels of Nrf3  mRNA are detected throughout the neuroepithelium
at both HH18 and HH20, with the exception of the strongly
expressing epiphyseal placode at these stages (Figure 1G, 1H,
arrows). The Wolffian ducts do not express Nrf3  at any stage
preceding HH18, when faint expression is observed (Figure 1A,
arrowhead).

Between HH26-28, Nrf3  transcription increases dramatically
in the mesonephric tubules, resembling collecting ducts (Figure
1I-K). Not all tubules are positive, but mesonephric glomeruli are
essentially negative with the exception of scattered cells (Figure1L,
arrow). Expression is also present in the rostral end of the
regressing mesonephric duct (Figure 1M).

Concordant with studies showing the importance of CNC type
genes in erythroid and platelet differentiation (Andrews et al.,
1993; Caterina et al., 1994), Nrf3  is found in a subpopulation of
cells within the yolk sac at HH26 (Figure 1N). These cells are
located abutting the blood islands forming in the mesoderm on
their endodermal face, a location consistent with hematopoietic
precursors that have not yet matured into blood islands (Figure
1N; Manaia et al., 2000).

Discussion

Nrf3  is a member of the cap ‘n’ collar gene family that has been
largely conserved during evolution between the insect and the
vertebrate subphyla. In this work, the expression pattern of Nrf3
has been examined at chosen stages of development in the avian
embryo. The dynamic and specific activation of Nrf3  in tissues of
mesodermal origin shown here is the first demonstration of its
potential role in vertebrate embryogenesis.

Conserved Hox partners link Hox and FGF activities
Nrf2  and Nrf3  have recently been demonstrated to be

upregulated through the action of FGF7, or keratinocyte growth
factor (KGF), in healing skin wounds (Braun et al., 2002). The
embryonic expression pattern of FGF7  significantly overlaps with
that of Nrf3  as shown here. Like chicken Nrf3, FGF7  is first
detected in the developing heart of the mouse and at higher levels
in the atrial than the ventricular end of the cardiac tube, disappearing
after further differentiation (Mason et al., 1994). These authors
also showed that FGF7  is not detected in epithelial somites but,
once the myotome differentiates, is expressed in a rostrocaudal
temporal gradient within each somitic myotome and disappears
from the somites with the dispersion of the myotome. While this
early pattern greatly resembles that of Nrf3  (cf. Figure 1), in
contrast, FGF7  continues to be strongly expressed thereafter
within all skeletal muscles at levels not equivalent to the low Nrf3
expression visible in muscle masses of the chicken embryo. Other
differences include strong localized expression of FGF7  within
the telencephalic ventricle, foregut subepithelial mucosa,
perichondral mesenchyme and the dermis (Mason et al., 1994),
not seen for Nrf3. Finch and colleagues (1995) extended the work
of Mason et al. (1994) to compare the expression of FGF7  and its
receptor KGFR  or FGFR2b  (Miki et al., 1992). Examination of the
mouse urogenital system revealed strong KGFR  expression in
the collecting duct epithelia of the kidney, analogous to Nrf3
expression. However, FGF7  itself was expressed in the
surrounding mesenchyme of the collecting ducts; neither ligand
nor receptor was found in the vicinity of the nephrons (Finch et al.,
1995). Given these expression domains, it is possible that Nrf3  is
a target of FGF7  activity through FGFR2b, but that its transcription
is also regulated by other factors.

Other fibroblast growth factors acting through FGFR2b include
FGF3, FGF10 and FGF15. These FGFs have been shown to be
modulated by the Pbx transcription factors. Like the vertebrate
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Fig. 1. Expression of Nrf3 in the

embryonic chicken. (A) In situ
hybridization with an antisense
probe against Nrf3  mRNA in a
HH18 embryo. Expression is seen
in a medial stripe within each somite
and in cells migrating ventrally from
these stripes (arrows), in the heart
(h) and faintly in the Wolffian duct
(arrowhead) and the clefts between
branchial arches 2/3 and 3/4 (open
arrows). Brackets indicate two
examples of somitic boundaries.
Asterisk, non-specific signal. (B)

Hybridization to a sense probe in a
HH18 embryo shows non-specific
signal in the optic (**) and otic (*)
vesicles. (C) Somitic Nrf3
expression increases gradually as
epithelial somites mature; at HH17,
caudal somites do not yet have
detectable transcripts. Brackets
demonstrate somitic boundaries.
Rostral to top. (D) Parasagittal
section through heart of HH18
embryo showing more intense Nrf3
expression in the atrial (A) than the
ventricular (V) portion. (E)

Parasagittal section through
somites showing Nrf3  transcripts
restricted to the medial third of
myotomes along the rostrocaudal
axis (bracketed). (F) Myotomal  Nrf3
expression at HH18 is evident in
this transverse section at thoracic
level. Note transcripts in myoblasts
migrating in the hypaxial pathway
(arrow). (G)HH17 epiphysis (arrow)
expresses Nrf3  locally, seen from
top. Double asterisk, eyes; h, heart.
(H)Epiphyseal Nrf3  expression is
strong at HH18 (arrow). The brain
had been opened along the dorsal
midline for hybridization, dorsal to
right. Ret, retina. (I) Nrf3  transcripts
are first seen in the developing
kidney at HH26 (arrows). (J)

Oblique parasagittal section of the
body at HH28, rostral to top, facing
left. Areas enlarged in (K,M)
indicated. Note faint expression in
muscle masses of proximal
hindlimb, arrow. (K) Nrf3+
collecting ducts of the HH28 kidney.
(L) Scattered cells, e.g. arrow,
express Nrf3  in some glomeruli
(g). (M) Rostral end of the receding
pronephros also expresses Nrf3.
(N) Yolk sac Nrf3  transcripts are
seen in cells at the interface
between the mesodermal blood
islands (bi) and the endoderm. Bars:
A,B,J, 1 mm; C,G, 2 mm;
D,E,F,H,I,K,L,N, 150 µm; M,100
µm.
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CNC proteins, Pbx1 is involved in blood formation; human
mutations in Pbx1  are associated with childhood leukemias
(Kamps et al., 1990; Nourse et al., 1990). In Drosophila , the
repressive influence of Nrf3’s orthologue, cnc, on Deformed is
counteracted by the action of the Pbx orthologue, extradenticle
(Veraksa et al., 2000). The feedback binding of Deformed to an
element of its own promoter is enhanced by the addition of
extradenticle to the reaction (Pinsonneault et al., 1997).

Pbx1 binds DNA cooperatively with some Hox  genes including
those of the first four paralogue groups, targeting and modulating
Hox activity (Zakany and Duboule, 1999; Selleri et al., 2001;
Waskiewicz et al., 2002). In the zebrafish, Pbx proteins (somewhat
redundant in their functions as Hox co-factors) are necessary for
the early transcription of FGF3  and FGF8  in a central rhombomere,
r4. The FGF signals then exert patterning effects on the flanking
rhombomeres r3 and r5. For example, FGF3 from r4, acting
through FGFR2b (Ornitz et al., 1996), activates an indirect cascade
which results in the differential transcription of Hox  genes of
paralogue groups 2 and 3 (Waskiewicz et al., 2002).

The Pbx1 protein also directly activates FGF15  transcription,
presumably in concert with a Hox protein under normal
circumstances (McWhirter et al., 1997). The FGF15  expression
domain within the central nervous system is complementary to
that of other early-expressed FGFs, including FGF3 and it is also
transcribed specifically and transiently within the branchial arch
endodermal pouches (McWhirter et al., 1997). Recent evidence
implicates FGFR2 and excludes FGFR4 as a possible transducer
of the FGF15 signal in the developing mouse brain (Ishibashi and
McMahon, 2002), despite an in vitro  demonstration that its
putative human homologue, FGF19, acts exclusively through
FGFR4 (Xie et al., 1999). It would be interesting to compare the
FGF15  expression domain with that of members of Hox paralogue
group 4, or to see if FGF15  transcription is repressed by Nrf3 in
the branchial arches.

To summarize, FGF signaling through the FGFR2b isoform
appears to affect Hox transcriptional activity in a feedback loop,
perhaps through altering the balance between Hox repressors of
the CNC family such as Nrf3 and Hox activators of the Pbx family.
Given its expression pattern, Nrf3  does not appear to be a
mediator of hindbrain Hox  gene regulation, but it may be involved
in determination of mesodermal segments, notably the somites or
the embryonic mesonephric collecting ducts. Potential roles in the
specification of the pineal gland and in hematopoiesis also remain
to be explored.

Materials and Methods

The chick EST database maintained by the University of Delaware
EST project (http://www.chickest.udel.edu/) was screened for the presence
of sequences homologous to cnc. One clone, pgp1n.pk002.o10, isolated
from a chicken pituitary/hypothalamic/pineal cDNA library, displayed
46% nucleotide homology to human NRF3  cDNA (Kobayashi et al., 1999)
using ALIGN v 2.0 (Myers and Miller, 1989) and was chosen for further
analysis. The vector was linearized using Sal I; SP6 RNA polymerase was
used to transcribe antisense digoxygenin-labelled RNA probes (Not I and
T7 for sense) for in situ  hybridizations. Paraffin sections at 7 µm or whole
embryos were hybridized as described (Henrique et al., 1995; Etchevers
et al., 2001); the latter were cut at 10 µm on a Leica microtome after
embedding in 15% gelatin/30% sucrose/PBS that had been cross-linked
with 2% gluteraldehyde. Hamburger-Hamilton stages 7-13, 15, 17, 18,
24, 26 and 28 were examined.
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Note added in press:
Chenais et al. (2004) have recently demonstrated that Nrf3 and its small
Maf partner, MafG, are a transcriptional activator in human placental
chorionic villus cytotrophoblasts.
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Abstract

Birth defects (congenital anomalies) are the leading cause of death in babies under 1 year of age. Neural tube defects (NTD), with a birth

incidence of approximately 1/1000 in American Caucasians, are the second most common type of birth defect after congenital heart defects.

The most common presentations of NTD are spina bifida and anencephaly. The etiologies of NTDs are complex, with both genetic and

environmental factors implicated. In this manuscript, we review the evidence for genetic etiology and for environmental influences, and we

present current views on the developmental processes involved in human neural tube closure.
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Birth defects (congenital anomalies) are the leading cause

of death in babies under 1 year of age. Neural tube defects

(NTD), with a birth incidence of approximately 1/1000 in
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American Caucasians, are the second most common type of

birth defect after congenital heart defects. In human, the

most common NTD are anencephaly and myelomeningo-

cele. Anencephaly results from a failed closure of the rostral

end of the neural tube and is characterized by a total or

partial absence of the cranial vault and cerebral hemisphere.

Myelomeningocele is a defective closure of the neural tube
ogy 27 (2005) 515–524



Fig. 1. Human embryonic developmental stages during which the neural

tube forms. A1 and 2: Carnegie stage 9 (CS 9–20 days) the neural groove is

open and anterior neural fold is visible. B1 and 2: CS 10 (22 days). The

neural folds fuses centrally leaving an open tube in the rostral and caudal

region. C1, 2 and 3: CS 11 (24 days). The neural tube is closed except for

the rostral (C2 and 3) and caudal neuropores. D1 and 2: CS 12 (26 days) the

caudal neuropore is closing (C2). E1 and 2: CS 13 (28 days). The

neuropores are closed. E1 corresponds to early CS 13 and E2 to a late CS

13. The scale bars represent 1 mm in all photographs except C3 and D2

where they represent 0.5 mm.
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in the vertebral column. Depending on the size and the

location of the defect, the patient can suffer either no

physical handicap or lifelong disabilities [86]. These

common birth defects vary in frequency depending on the

geographical localization. Anencephaly and spina bifida

occur at frequencies ranging from 0.9 in Canada to 7.7 in

the United Arab Emirates and 0.7 in central France to 11.7

in South America per 10,000 births [86].

The mortality rate for children with spina bifida is

increased over the general population risk in the first year of

life. The cost of providing for medical care for a child with

myelomeningocele has been estimated to be over $70,000

(adjusted to 2001 dollars) annually for the first 20 years of

life, including costs associated with an average of 5

surgeries per year [94] in the first 5 years of life (20 year

lifetime cost is $1.4 million/case).

The phenotypes of the open NTDs include myelome-

ningocele (spina bifida cystica, open spina bifida) and

anencephaly. Anencephaly, an incomplete formation of the

brain and skull, is uniformly lethal. The most common

form of NTD, myelomeningocele, is an open lesion in the

caudal spine and contains dysplastic spinal cord, often

resulting in a lack of neural function below the level of

the defect. Affected patients usually have reduced ability

to walk, or need the use of a wheelchair, have little or no

bowel and/or bladder control, and require frequent

surgical interventions to minimize the effects of hydro-

cephalus. The most common presentations, spina bifida

and anencephaly, can occur within the same family,

raising the question as to whether these phenotypes are

related and due to a common underlying gene [29,31,33,

38,65,77].

Defining the phenotype in affected patients is paramount

to the evaluation of human neural tube defects. Phenotypic

parameters include: location and level of the defect, whether

the defect crosses CNS segmental boundaries, and catalogu-

ing the variety of anomalies in a patient or family. Open

defects such as anencephaly, craniorachischisis, myelome-

ningocele, and myeloschisis are defined based upon the

location and level and are descriptive in nature. Associated

anomalies, Chiari II malformation, hydrocephalus, syringo-

myelia, polymicrogyria, cortical heterotopias, and agenesis

of the corpus callosum further add to and can confuse the

phenotypic definitions.

NTDs in humans result from the combined effects of

genetic and environmental influences, and as such are a

classic example of a multifactorial disorder. Identifying the

genetic factors is critical for characterizing the interactions

between genes and the environment, and understanding

these interactions will provide the basis for designing novel

preventive strategies and for offering accurate reproductive

risks to couples. The genetic factors will likely involve

aberrant variations in genes key for the normal closure of the

neural tube. Neural tube closure is a complex, early

developmental process, informed not only by nascent studies

in human embryos, but by the plethora of investigations in a
variety of experimental systems including but not restricted

to mouse, zebrafish, and chick.
1. Formation of the human neural tube

Neurulation, which is the formation of the neural tube, is

an important morphogenetic event in human development.
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The neural tube gives rise to the brain and the spinal cord to

form the central nervous system. Neurulation in mammalian

embryos occurs in two phases: primary and secondary

neurulation [68]. These two phases occur in distinct areas

along the rostro-caudal axis of the embryo. Secondary

neurulation is limited to the tail bud, which lies beyond the

caudal neuropore. In contrast to primary neurulation,

described in detail below, secondary neurulation occurs by

proliferation of stem cells [8], which form a rod-like

condensation that subsequently cavitates. The cavitation

transforms the rod into a tube, and the lumen of this tube

comes into continuity with the lumen of the tube formed

during primary neurulation. In tailless humans, the tail bud

does not develop as in tailed animals, and secondary

neurulation does not appear to be responsible for open

neural tube defects. For this reason, we will focus on

primary neurulation.

Primary neurulation generates the entire neural tube

rostral to the caudal neuropore. During this process,

occurring during the third and fourth weeks of development

(Carnegie stages (CS) 8 to 13, Fig. 1), the flat layer of

ectodermal cells overlying the notochord is transformed into

a hollow tube.

Eighteen days after fertilization (CS 8), the midline

dorsal ectoderm of the embryo thickens and forms the

neural plate while cell shape changes. The neural plate first

appears at the cranial end of the embryo and differentiates

in the caudal direction. The edges of the plate thicken and

begin to move upward forming the neural fold. The neural

plate becomes narrower, longer, and is transformed from

an elliptical to a key-hole shaped structure. This trans-

formation occurs by polarized cell movements in the

medial direction and cell intercalation in the midline. The

mechanism of these movements, known as convergent

extension, is not specific to neural tube formation.

Convergent extension has been widely studied in animal

models (mouse, Xenopus and Drosophila), where it
Fig. 2. Proposed mechanisms for neural t
depends on the highly conserved Wnt-frizzled signal

transduction pathways (see Lawrence at al. 2003 [48]

and Copp et al. 2003 [13] for reviews on convergent

extension).

On day 19 (CS 8.5), the border of the neural plate

becomes gradually more pronounced and elevated. The

neural plate folds longitudinally along the midline of the

plate from the head toward the tail to form the neural

groove. The folds rise up dorsally, approach each other and

ultimately merge together, forming a tube open at both ends

by day 23 (CS 10.5) (Fig 1A and B). As the neural folds

fuse, the cells adjacent to the neural plate also fuse across

the midline to become the overlying epidermis. The rostral

and caudal openings are called neuropores and are best

distinguished around day 23 when about 17–19 somites are

visible (Fig. 1C). The rostral and caudal neuropores close

later, on the 26th (CS 12) and 28th (CS 13) days of

gestation, respectively (Fig. 1D to E). We utilize the

terminology suggested by O’Rahilly and Mqller [60], who
reserve the term bclosureQ for the closing of neuropores,

while the term bfusionQ is used to designate the merging of

the neural folds and the formation of a tube.

Although there is general agreement on the morphoge-

netic movements of the first events of neural tube formation,

the last event in neural tube formation, the fusion of neural

folds, is subject to debate concerning the number of

initiation sites of fusion and their location. Indeed, the

fusion of the neural folds has originally been described in

humans as a process initiated at a single site, and extending

bi-directionally, rostrally and caudally, from this initiation

site to the rostral and caudal neuropores [68]. However, over

the past 20 years, a hypothesis of bmultiple site of neural

tube fusionQ has been investigated in animal models and in

humans. This hypothesis has been extensively studied in

mice and rats [74]. According to Sakai, who wrote a

comprehensive review of available data in mice and rats,

rodent neural tube fusion occurs between day E8 and day
ube closure in mouse and humans.
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E10 of gestation [74]. Four sites of neural tube fusion were

identified. Site 1 initiates in the future cervical region

between the third and fourth somites at the caudal part of the

hindbrain, and progresses both caudally and rostrally.

Caudally, it proceeds all the way down to the end of the

neural groove until the caudal neuropore. The next two sites

of initiation of fusion are located rostral to site 1. A second

fusion initiates at the prosencephalon–mesencephalon boun-

dary (Site 2) and extends both rostrally and caudally. This

second fusion completely closes the roof of the tele-

ncephalon and the metencephalon. A third fusion site (site

3) progresses caudally, and closes the rostral end of the

neural plate. Finally, the fourth fusion site (site 4) appears at

the caudal end of the neural plate and extends rostrally to

meet the fusion extending back from site 1. These proposed

mechanisms are summarized in Fig. 2.
2. Single site of neural fold fusion

Since the susceptibility to NTDs in human is known to

vary among ethnic groups, one might hypothesize that

heterogeneity of human neural tube defects could also

originate from differences in fusion at site 2. This statement

implies that the multiple sites of neural tube fusion occur in

humans. In 1993, van Allen proposed multiple sites of

fusion in human embryos, although a human site 2 had

never been observed. She based her model on the

observation of the type and the frequency of human tube

defects. A model of a single site of fusion would predict that

most human neural tube defects would be localized in the

caudal and rostral ends of the tube where the neuropores

close, which is not the case. Van Allen’s model predicted 5

sites of fusion and four neuropores. In addition to the rostral

and caudal neuropores, she postulated the existence of a

prosencephalic and a mesencephalic neuropore, resulting

respectively from fusion of a second and a fourth closing

site [88]. In the mid 1990s, Seller [78,79] and Golden [30]

arrived at similar conclusions from the study of human

neural tube defects.

Although the model of multiple sites of fusion was

attractive to explain such defects, experimental observa-

tion of human embryos clearly corroborates the hypothesis

of a single site of fusion and a zipper-like process of

neural tube closure. Using light microscopy and laser

scanning electron microscopy to observe successive stages

of development, Sulik and coworkers showed a zipper-

like fusion of the human neural tube from a single

initiation site located in the middle of the future hindbrain

region [84]. This finding was later corroborated by two

studies. Nakatsu and coworkers examined histological

sections of human embryos at various stages of neural

tube formation, and described three sites of apposition.

Site 1 was the widely recognized site of true fusion

located in the cervical region. From site 1, fusion

extended both rostrally and caudally, reaching the caudal
neuropore at the caudal end of the embryos. Site 2 was

located at the boundary between mesencephalon and

rhombencephalon, but was only an apposition site before

being caught up by the rostralwards fusion. Site 3

corresponded to the rostral tip of the neural folds and is

also an apposition, becoming fusion upon closure of the

anterior neuropore [57]. Finally, a study by O’Rahilly

found two regions of fusion in humans [60] as observed

by Sulik and coworkers [84], extending bi-directionally

from the rhombencephalic region. Caudally, the fusion

extended until the caudal neuropore, while ending

rostrally at the dorsal lip of the rostral neuropore, closing

the neuropore rostrocaudally.
3. Relationship of human neural tube closure to mouse

neural tube closure

Three initiation sites of fusion in rodent models have

been confirmed by several groups [11,30,41,42], while a

fourth one has not been described elsewhere (see [25] for a

comparison of these studies). The locations of sites 1 and 3

were uniform between studies, but the location of site 2

showed strain differences. Genetically determined, it is

considered to modify the susceptibility of each strain to

neural tube defects (NTDs) [13,42].

It seems clear that in mice, the multiple sites of fusion

model can be applied, even if the exact location of each site

varies between mouse strains. In contrast, there seems to be

a single initiation site of fusion in humans. Apposition of the

neural folds may occur at several sites, but fusion itself only

occurs when the extension of fusion reaches the area where

the neural folds were apposed. This difference between

humans and rodents does not necessarily imply that the

mechanisms of fusion and closure are different; the same

genes are likely to be involved in both species. Under-

standing the processes, both environmental and genetic, that

influence neural tube closure in humans is critical so that

relevant, rational interventions and preventions can be

designed; but because humans are non-experimental sys-

tems, it is equally important to understand the similarities

and differences between the human system and experimen-

tal systems such as mouse.
4. Clues from observational data

Attempting to define the defects based upon the under-

lying embryopathy may be the most appropriate method for

defining NTD phenotype. Shum et al. [80] demonstrated

that at least three different modes of neural tube formation

might exist along the rostrocaudal axis; therefore, regional

differences in modes of neural tube closure may result in

different types of open defects. Mode 1 occurs in the

cervicothoracic region, where a distinct medial hinge point

(MHP) forms without any clear morphological evidence of
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dorsolateral hinge points (DLHP) resulting in an ovoid

neural tube and slit shaped central canal. Defective mode 1

has been proposed to cause craniorachischisis by interfering

with MHP formation resulting in normal but widely spaced

neural folds preventing proper fusion. In the midbrain/

hindbrain region, mode 2 has been described as generating

both MHP and DLHP prior to fusion. After fusion, the

neural tube has a diamond shaped configuration, perhaps

foreshadowing the shape of the adult fourth ventricle.

Defects of mode 2 result in exencephaly due to defective

DLHP function.

Neural tube formation in the lumbosacral region, mode 3,

is different in that there is only a suggestion of DLHP

formation along with a well-developed MHP. The closed

tube has a more oval shape with a large patent central canal.

Where the driving force of neural tube closure in mode 1

appears to be extrinsic to the neural tube, the source of the

force in mode 3 is less defined.

The last embryopathic mechanism proposes that a

properly neurulated (wouldn’t closed be a better word

here?) neural tube can be reopened. The only spontaneous

mutant in which this mechanism occurs is the curtailed

mouse in which increased cerebrospinal fluid pressure is

thought to rupture a thinned roof plate and dermis in the

absence of competent dorsal bony vertebrae [64]. Although

the curtailed mutant may indeed have a reopening of a

previously closed neural tube, this mechanism is not thought

to be a likely cause of human NTD.
5. Evidence for a genetic factor in human neural tube

defects

Several lines of evidence suggest a genetic component to

NTDs. First, NTDs are associated with known genetic

syndromes including Meckel syndrome, anterior sacral

meningocele and anal stenosis, in addition to others. NTDs

are frequently associated with trisomies 13 and 18 and

various chromosome rearrangements. Secondly, in NTDs

occurring without other syndromes, the recurrence risk for

siblings is approximately 2–5% (giving a ks value [70,71]

between 20 and 50), which represents up to a 50-fold

increase over that observed in the general population.

Khoury et al. [47] have shown that for a recurrence risk

to be this high, an environmental teratogen would have to

increase the risk at least 100 fold to exhibit the same degree

of familial aggregation, making a genetic component

essential. Such potent teratogens are extraordinarily rare;

however, one example of a teratogen exerting such a high

relative risk is thalidomide.

Evidence of a genetic factor is further strengthened by

the presence of a family history in a number of those

affected. While family history of NTDs has been reported in

8.5% of one group of families studied [66], inspection of

these multiplex NTD families shows that affected parent–

child pairs are rare; most affected relative pairs are related at
either the second or third degree, thus suggesting oligogenic

inheritance. More data on parent–child transmission will be

available over the next two decades, as children born with

NTDs now receive sufficiently sophisticated medical care

and can live to maturity and reproduce. Segregation analysis

studies demonstrating evidence of a major gene have been

performed in series of NTD families, one demonstrating

evidence for a major dominant gene and another for a major

gene with recessive effect [16,24]. These studies are

admittedly small and suffer from common problems of

ascertainment. Twin studies for the NTDs are anecdotal in

nature, comparing concordance in like-sex vs. unlike-sex

twins instead of the more formal comparison between

dizygotic and monozygotic twins. The limited available data

are based on very small sample sizes, but range from 3.7%

to 18% [20].

Chromosome abnormalities, specifically aneuploidy, are

found in 5–17% of cases with NTDs [37,46,67]. NTDs are

frequently associated with trisomies 13 and 18. A study by

Kennedy et al. [46] suggests a frequency of chromosomal

anomalies in 6.5% (13/212) neural tube defect patients. A

gene or genes in the region of 13q33–34 associated with a

13q deletion syndrome has been shown to cause NTDs [51].

These cytogenetic rearrangements can be key positional

clues to candidate genes and have been recently summarized

[53].
6. If neural tube defects are genetic, how do they present

in families?

One of the longest running controversies, as yet

undecided, is whether NTDs at different levels represent

different defects. In other words, are rostral level defects

(e.g., anencephaly) different in some fundamental way than

caudal defects (e.g., myelomeningocele)? Additionally, are

lesions that include both rostral and caudal levels (e.g.,

craniorachischisis) altogether variant embryopathies? If the

etiology of upper and lower lesions are different, then it

would be expected that recurrences in families would breed

true: affected individuals in an upper lesion family would all

have upper lesions and vice versa for lower lesions. NTDs

tend to breed true within families; in other words,

recurrences in families in which the case is affected with

spina bifida tend to be spina bifida, and recurrences in

families in which the case is anencephaly tend to be

anencephaly [18,26,28,33,87]. However, between 30% and

40% of recurrences involve an NTD phenotype that is

different from the case phenotype. This intra-family hetero-

geneity may represent the pleiotropic effect of a common

underlying gene or may suggest that families with different

phenotypic presentations may result from different under-

lying genes. Alternatively, these dramatic phenotypic differ-

ences within families may suggest slight differences in

timing to key environmental exposures in susceptible

pregnancies, or may suggest that the underlying genes are
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different. Or, these differences may represent the variable

outcomes following different environmental exposures at

key developmental times, or even just the result of random

chance. While studies to date have provided conflicting and

inconclusive results, the availability of such families will be

vital to understanding the genetic and environmental

influences to NTDs.
7. Clues to genes involved in human neural tube defects

from mouse models

The folding of the plate results from a number of region-

specific mechanisms, as suggested by the regional local-

ization of neural tube defects observed in humans and in

mutant mice. More than 80 mutations in a variety of genes

have been identified and linked to a variety of rodent NTDs,

implicating more than 100 genes directly or indirectly in

neural tube formation. These genes have recently been

comprehensively reviewed [13,34,35,95]. Unlike the major-

ity of human cases, many of these mutants show autosomal

recessive inheritance and, in addition to NTDs, these mice

present other associated anomalies. Moreover, the pene-

trance and expression of many of these mutations are

affected by the genetic background, which can increase the

susceptibility to teratogen-causing NTDs, consistent with

multifactorial inheritance. The mechanisms by which NTD

arise in these murine models are generally unclear, even

when the mutated gene has been identified. The most

relevant animal model of human NTDs are the SELH mice,

where the liability to exencephaly is genetic and best fits a

multifactorial threshold model of inheritance involving 2 or

3 loci [43].

The best model for caudal spinal NTD, the most common

presentation in humans, is the curly tail mouse, that

naturally develops a lumbosacral myelomeningocele and is

a phenocopy of nonsyndromic multifactorial human neural

tube defects [59]. Recently, a mouse homologue of the

Drosophila grainyhead transcription factor, Grhl-3, was

shown to be responsible for this phenotype [85]. At the

tissue level, mutant curly tail mouse embryos exhibit a cell-

type-specific abnormality of cell proliferation that affects

the gut endoderm and notochord but not the neuroepithe-

lium [12]. The reduced rate of ventral embryonic cell

proliferation results in a growth imbalance between ventral

gut primordia and the dorsal neural elements. The result is a

delay in posterior neuropore closure because of abnormal

caudal flexion, resulting in spinal neural tube defects [10].

Mutations in the Macs gene in mouse lead to exence-

phaly and other midline NTDs; its human homologue

MACS has been localized to 6q21–22.2 [4,50,83]. Most

mouse models for NTD lead to exencephaly, the mouse

counterpart for anencephaly, the less common but most

severe NTD manifestation in humans. Murine models with

hindbrain excencephaly, such as the Pax-3-splotch mutant,

are noted to have defective DLHP formation in the region of
the hindbrain [17,21–23]. Of relevance to the human

condition, the Pax3 gene has been reported to be defective

in Waardenburg syndrome patients with a subset having

spinal neural tube defects [2]. It is not known how mutant

Pax3 causes neural tube defects; increased apoptosis [5,62],

faulty pyrimidine synthesis or alterations in cell migration

[19,52] have been proposed. There is also good evidence

that a digenic mechanism is likely.

In four mouse mutants with craniorachischisis, dish-

eveled [3,40], loop-tail [45], circletail [56], and crash [14],

the underlying cellular mechanism has been attributed to

abnormal neural plate development as a consequence of

disturbed convergent extension. Disturbing convergent

extension yields a shortened and broad neural plate, thus a

widened and misshapen MHP. The planar-polarity gene-

Wnt signaling pathways [91] are thought to be the

responsible molecular substrate.

No mutations identified in mouse have yet been shown

to represent major genes for NTD in humans. Mimicking

the genetic complexity seen in humans will be difficult,

since it is likely to be caused by a cumulative effect of

several interchangeable loci, not a major gene with

modifiers. Nonetheless, since humans are a non-experi-

mental system, understanding the relationship between

humans and a model system such as mouse will be key to

eventually considering interventions based on genetic and

environmental risk.
8. Environmental factors associated with neural tube

defects

Myriad exogenous causes for NTDs have been postu-

lated and investigated (see [20,32] for review). Factors for

which no significant association with NTDs have been

found to date include maternal and paternal age effects,

maternal periconceptional infections, number of prior

bsuccessfulQ pregnancies, recreational drug use, caffeine

intake, smoking, and alcohol use. Hyperthermia (fever and/

or hot tub use) has been investigated, though most of these

studies are subject to extreme recall bias and have yielded

inconsistent results. However, increased risk for NTDs is

definitively associated with maternal diabetes and maternal

obesity (both associated with glucose metabolism), and

maternal use of anti-convulsant medications (for the treat-

ment of epilepsy). For example, anti-epileptic drugs

administered to pregnant mothers induce congenital mal-

formations, the incidence rising from 3% without drug to

9% with drug administration [44]. These numbers can rise

up to 28% when 3 or more antiepileptic drugs are given to

the epileptic mother [36]. The well-known anti-epileptic

drug, valproic acid, is teratogenic when given to pregnant

women, and its administration results in 1% to 2% incidence

of spina bifida [49,58]. Moreover, recent data suggests that

this agent also induces mental retardation in children with

no physical manifestation.
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Paternal exposure to Agent Orange in Vietnam veterans

has been implicated, as has water chlorination by-products

[39] and maternal exposure to solvents through house

cleaning occupation [7]. Exposure to fumonisins, a fungal

metabolite commonly found in maize, has also been

implicated and in vivo and in vitro studies have

demonstrated an association of exposure with neural tube

defects [73]. Prenatal exposure of mice to cadmium has

shown that the metal is localized in the developing neural

tube and can result in NTDs [15,92]. These known

environmental associations, however, are insufficient to

explain the degree of familial aggregation observed in

NTDs.

Several studies have demonstrated that maternal peri-

conceptional supplementation with folic acid reduces the

recurrence risk for NTDs (e.g., [54]) by 50–70%,

implicating genes involved in the metabolism of folate.

Yet the recurrence risk is not entirely eliminated (e.g.,

above and [9], suggesting that additional, genetic factors

are responsible for the development of NTDs and these

non-folate responsive cases may represent highly genetic

cases of NTDs [76]. The mechanism for how folic acid

works to reduce the risk is unclear and likely mediated by

genetic effects. Folate acts as a cofactor for an enzyme

involved in DNA and RNA biosynthesis, and is also a

supplier of methyl groups to the methylation cycles [75].

Folate deficiency leads to up-regulation of folate receptors,

which are ubiquitous and mediate folate uptake at

physiological level [1]. A recent study by Rothenberg et

al. [72] showed that some mothers with a pregnancy

complicated by a NTD produced autoantibodies that bind

to folate receptors on the placental membrane and there-

fore blocked the binding of folic acid. The authors further

suggest that the periconceptional administration of folate

would bypass the autoantibodies that mediate a placental

folate receptor blockage. Indeed, folate has a high affinity

for its receptor and might displace the autoantibody when

administered at high doses.

Identifying those women whose risk for NTD is

minimized by folic acid supplementation would allow

genotype-directed pharmacogenetic interventions.

Researchers are looking at a number of different genes

involved in folic acid metabolism, including those

encoding folate receptors, 5,10-methylenetetrahydrofolate

reductase (MTHFR), and cystathionine (beta)-synthase.

Recent studies have implicated homozygosity for the

C677T thermolabile variant of the MTHFR gene as a risk

factor for NTDs ([27,61,93] among many others), and

others have suggested that the effect may be dependent on

level of lesion [90]. A recent meta-analysis [6] found a

pooled odds ratio for infants homozygous at C677T of 1.7

(95% CI 1.4–2.2), with a pooled attributable fraction of

6% for homozygosity. While the paternal effect was non-

significant, the odds ratios for maternal genotype, either

homozygous or heterozygous for the thermolabile bTQ
allele, were consistent with a trend for MTHFR involve-
ment (OR for homozygosity was 2.1 [95% CI 1.5–2.9]

and for heterozygosity was 1.2 [95% CI 0.9–1.5]).

In addition, other mutations in the MTHFR gene have

been investigated, including A1298C, and other genes,

such as cystathionine â-synthase, that when in combination

with the C677T allele may increase the risk for NTDs

[82,89]. Several reports [63,69,81] have failed to demon-

strate the association seen with the C677T MTHFR allele

and NTDs. Additional data suggesting that MTHFR is not

a major risk factor comes from a report by Molloy [55]

confirming that homozygosity for the briskQ allele fails to

influence maternal folate levels, which are known to

predict NTD risk.
9. Synthesizing the data

Current technology for approaching complex diseases

continues to be developed at a phenomenal rate. Novel

approaches from the molecular, expression, and statistical

realms promise enhanced ability to identify genetic influ-

ences, understand the interactions between genes, and

characterize the relationship of environmental risk factors

to genetic susceptibilities. Integrating these approaches will

facilitate progress. Any insight into one or more genes

predisposing to the development of neural tube defects will

lend useful information towards more accurate genetic

counseling for families and prevention of these frequent

birth defects.
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Abstract Neural tube defects (NTDs) are common birth
defects, occurring in approximately 1/1,000 births; both
genetic and environmental factors are implicated. To
date, no major genetic risk factors have been identified.
Throughout development, cell adhesion molecules are
strongly implicated in cell–cell interactions, and may
play a role in the formation and closure of the neural

tube. To evaluate the role of neural cell adhesion mol-
ecule 1 (NCAM1) in risk of human NTDs, we screened
for novel single-nucleotide polymorphisms (SNPs)
within the gene. Eleven SNPs across NCAM1 were
genotyped using TaqMan. We utilized a family-based
approach to evaluate evidence for association and/or
linkage disequilibrium. We evaluated American Cauca-
sian simplex lumbosacral myelomeningocele families
(n=132 families) using the family based association test
(FBAT) and the pedigree disequilibrium test (PDT).
Association analysis revealed a significant association
between risk for NTDs and intronic SNP rs2298526
using both the FBAT test (P=0.0018) and the PDT
(P=0.0025). Using the HBAT version of the FBAT to
look for haplotype association, all pairwise comparisons
with SNP rs2298526 were also significant. A replication
study set, consisting of 72 additional families showed no
significant association; however, the overall trend for
overtransmission of the less common allele of SNP
rs2298526 remained significant in the combined sample
set. In addition, we analyzed the expression pattern of
the NCAM1 protein in human embryos, and while
NCAM1 is not expressed within the neural tube at the
time of closure, it is expressed in the surrounding and
later in differentiated neurons of the CNS. These results
suggest variations in NCAM1 may influence risk for
human NTDs.

Introduction

Neural tube defects (NTDs) result from failure of neural
tube closure and are one of the most common human
malformations, occurring at an average rate of 1 per
1,000 human pregnancies (Campbell et al. 1986). Both
genetic and environmental components have been
implicated; however, no causative genes have been
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identified. Formation of the neural tube is driven by
several morphogenetic cell behaviors, including changes
in cell–cell and cell–matrix interactions. During neural
tube closure, the neural folds are brought together at the
dorsal midline to form the neural tube and adhere to
each other. In humans and other mammals, closure of
the neural tube is thought to be initiated by sites of
fusion at more than one place along the anterior–pos-
terior axis (Van Allen et al. 1993; O’Rahilly and Muller
2002; Sulik et al. 1998). The first fusion occurs in hu-
mans when there are 4–6 somite pairs present, at Car-
negie stage (C) 10, and closure continues though C12
with the closure of the caudal neuropore (O’Rahilly and
Muller 2002).

The cell adhesion molecules (CAMs) are involved in
defining the interaction of cell collectives and their
borders during morphogenesis. Neural cell adhesion
molecule 1 (NCAM1), an integral membrane protein
belonging to the immunoglobulin superfamily (Edelman
1983), is involved in cell adhesion-dependent morpho-
genetic events, including the migration of various cells to
the proper sites in neural tissues. NCAM is an important
player in cell–cell and cell–matrix adhesion and is in-
volved in many activities, including cell migration,
neurite growth, axonal guidance, and synaptic plasticity
(Thiery et al. 1982; Edelman 1983; Rutishauser and
Jessell 1988).

A diverse group of NCAM molecules can be achieved
from a single locus due to both transcriptional and
posttranslational modifications. Alterative splicing,
which is regulated in a cell and developmental stage-
specific manner, produces three major isoforms. Two
isoforms, NCAM-140 and NCAM-180, are membrane-
spanning with a variable cytoplasmic domain and
NCAM-120 is linked to the membrane by a glycosyl
phosphatidylinositol lipid anchor (Cunningham et al.
1987). There are two alternate exons that can be in-
cluded in the final NCAM1 transcript. The VASE or
variable alternative spliced exon contains an additional
30-bp insertion that results in an additional ten amino
acids in the fourth immunoglobulin-like loop. Inclusion
of the SEC exon results in a premature termination of
translation and a secreted isoform (Small and Akeson
1990). In mouse cell lines, it has been shown that the
binding of transcription factors encoded by Hox- and
Pax-gene controls regulation of the NCAM promoter
(Jones et al. 1992).

In the mouse, Ncam transcripts are first detected
around day 8.5 in the somites and in the forming neural
tube. Expression is not uniform along the rostrocaudal
axis, with stronger expression in the caudal region of the
neural tube and neural plate. Ncam expression continues
until day 12.5, but is restricted to postmitotic neurons at
later stages (Bally-Cuif et al. 1993). In Ncam-knockout
mice with a targeted replacement with a lacZ reporter
gene under control of endogenous Ncam regulatory se-
quences, b-galactosidase staining was seen throughout
the spinal cord and dorsal root ganglia from E9.5 to
E13.5 (Holst et al. 1998). This expression coincides with

the neural tube formation in mouse embryos, around
day 8 of gestation, and complete elevation and closure
around day 10 (Harris and Juriloff 1999).

NCAM expression is also found in the neural tube in
several other species. At the 15-somite stage of chicken
embryos, NCAM is found in the neural plate and the
adjacent ectoderm near Hensen’s node, where the neural
tube is not closed, but is exclusively expressed in the
neural tube during and after closure at more rostral
trunk levels (Thiery et al. 1982). By immunocytochemi-
cal analysis, both cell adhesion molecules N-cadherin
and NCAM are detected on the cranial neural folds
prior to neural tube closure and on migrating neural
crest cells thereafter (Bronner-Fraser et al. 1992).
Chicken NCAM is visible in the otic placode (Thiery
et al. 1982) and later in differentiating auditory nuclei of
the hindbrain, appearing progressively in differentiating
neuron groups of the CNS (Hrynkow et al. 1998). The
NCAM is also expressed in Xenopus embryos in a radial
pattern within the neural tube during and for several
hours after neural tube closure (Balak et al. 1987), and
both zNCAM and zPCAM in zebrafish are expressed
throughout the length of the closing neural tube from 11
to 30 hpf, during somitogenesis (Mizuno et al. 2001).

In the mouse, deletion of exons 3 and 4 of Ncam1
prevents any isoform from being produced. The null
mutants have few defects and are otherwise healthy and
fertile (Cremer et al. 1994). However, by using homol-
ogous recombination to introduce a premature stop
codon, a secreted form of NCAM can be produced in
the absence of any membrane-associated protein. No
heterozygous progeny were obtained from chimera
crosses, suggesting dominant lethality. Chimeric em-
bryos (E8.5) with a high ES cell contribution had poorly
formed somites with kinking of the neural tube, and by
E9.5, the anterior neuropore remained open in the mu-
tant embryos (Rabinowitz et al. 1996). NCAM is a
known downstream target of the Pax-3 transcription
factor (Moase and Trasler 1991; Neale and Trasler
1994). Pax-3 (splotch) mutant mice display multiple
defects, including neural tube closure in the form of both
spina bifida and exencephaly. In these mutants, altered
NCAM isoform ratio and a decrease in the sialylation of
the protein may alter the adhesive properties of NCAM
(Epstein et al. 1991; Glogarova and Buckiova 2004).
Quail embryos with spontaneous neural tube defects
were shown to have disturbed matrix and cell adhesion
molecule expression, including NCAM, by immunocy-
tochemistry. The embryos expressed both N-cadherin
and NCAM, not normally found at the stage examined
(Newgreen et al. 1997). It was proposed that disruption
of cell adhesion or extracellular matrix molecules
that result in greater adhesion may impede appropri-
ate morphogenetic movements, resulting in NTDs
(Newgreen et al. 1997).

Given the importance of cell morphogenic events in
neural tube closure, we hypothesized that a genetic
variant that compromises the ability of a cell adhesion
molecule in neural tissue may be associated with an
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increased risk for human neural tube defects. For this
reason, we investigated 11 SNPs across NCAM1 for
possible association with neural tube defects. We eval-
uated the promoter region, coding sequences, and
alternative exons of NCAM1 for polymorphisms that
may play a role in NTDs. In addition, we examined
the distribution of NCAM1 protein in human embryo
sections of the neural tube and lateral tissues by
immunohistochemistry.

Materials and methods

Sample population

To identify novel polymorphisms within NCAM1, we
screened 230 individuals with lumbosacral myelome-
ningocele by HPLC and sequencing methods, as de-
scribed below. The simplex families (n=204) used for
frequency and association analysis consisted of a sam-
pled affected individual with lumbosacral myelomenin-
gocele and nuclear families, including unaffected siblings
where available. In this study all individuals were
American Caucasian. The complete sample set included
an initial group of 132 families (Series 1), as well as a
replication set of 72 additional families (Series 2) of the
same phenotype and ethnicity. The Series 1 families were
those first collected and included 107 complete triads
and 25 families with one parent; this sample included
121 discordant sibling pairs. Series 2 families are the next
set of families collected and included 49 complete triads
and 23 families with one parent; this sample included 56
discordant sibling pairs. All data and samples were
collected following informed consent of subjects; this
study was approved by the Duke University Medical
Center Institutional Review Board.

SNP selection and genotyping

Initially, a set of five SNPs (cv236895, rs2298526,
rs2011505, rs584427, and rs1006826) were chosen to
characterize association between NCAM1 and human
neural tube defects. The SNPs were spaced across the
gene, with four being intronic and one coding. Follow-
ing analysis in the Series 1 families (n=132), an addi-
tional five SNPs (rs720023, rs723599, rs1940699,
rs1245113, and rs1245104) were typed surrounding the
marker that showed association. Where available, SNPs
in conserved non-coding sequences were included in the
selection. All known SNPs that were genotyped had a
heterozygosity of 0.28 or greater. We also initiated
dHPLC screening to identify novel SNPs, leading to the
identification of one novel coding SNP (see below). SNP
locations are shown in Fig.1.

The TaqMan allelic discrimination assays were used
for the genotyping of these 11 SNPs across NCAM1
(Assay-on-demand and Assay-by-Design, Applied
Biosystems, Foster City, Calif., USA). The PCR

amplification was performed using the GeneAmp PCR
system 9700 thermocyclers (Applied Biosystems)
according to the assay specifications. Fluorescence
detection was performed with the ABI Prism 7900 and
analyzed with SDS software (Applied Biosystems).
Quality control measures consisted of 24 duplicated
individuals per 384-well plate and were blinded from
laboratory technicians. In addition, two samples from
CEPH individuals were located across all plates for
internal control. To pass quality control, data plates had
to pass 100% matching for all 26 duplicated samples and
95% overall plate efficiency. The SNPs were tested in the
family set for Mendelian inconsistencies.

Variation detection

To search for novel polymorphisms within NCAM1, the
genomic sequence was divided into individual segments
that included one exon each and minimal surrounding
intronic sequence. In addition, the alternative exons
VASE and SEC were evaluated in this study. For
analysis for the promoter region, the size of the region
evaluated was dependent upon regions of mouse
homology and presence of predicted promoter element.
Primers were designed flanking each region of interest by
the use of the program Primer3 (Primer 3 website). For
each fragment, a total of 30 ng of pooled DNA was
amplified using standard PCR protocols (Table 1).
DNA was extracted from blood samples of NTD pa-
tients and their families using the PureGene system and
the Autopure LS (Gentra Systems, Minneapolis, Minn.,
USA) according to the manufacturer’s protocol. The
DNA samples were prepared and stored by the Duke
Center for Human Genetics DNA bank Core. Following
visualization and quantitation on a 2% agarose gel,
PCR products were heteroduplexed by heating samples
to 95�C for 3 min and slowly cooling to 30�C over
40 min. For polymorphism detection by denaturing high
performance liquid chromatography (DHPLC), samples
were injected into the Transgenomic WAVE Fragment
Analysis System (version 4.1) for separation at vari-
ous melting temperatures, as determined by WAVE-
MAKER software, version 4.1.42 (Transgenomic, San
Jose, Calif., USA). When an apparent variation was
noted by DHPLC, the individual samples exhibiting the
variable pattern were directly sequenced. The PCR
product was purified using QIAquick PCR Purification
kit (Qiagen, Valencia, Calif., USA) according to the

Fig. 1 Diagram of SNPs analyzed in the NCAM1-association
study. The SNP with the asterisk shows the significant association
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manufacturer’s directions. The sample was then se-
quenced using the BigDye Terminator version 3.1 Cycle
Sequencing Ready Reaction kit (Applied Biosystems)
and purified using Performa DTR Gel Filtration Car-
tridges (Edge Biosystems, Gaithersburg, Md., USA). In
order to determine and confirm putative polymor-
phisms, sequence analysis was performed using ABI
3100 Data Collection Software Version 1.01 and ABI
Sequencing Analysis 3.7.

Statistical analysis

All SNPs were tested for departure from Hardy-Wein-
berg equilibrium using a single affected and separately
using an unaffected individual randomly selected from
each family. These tests were conducted using the Ge-
netic Data Analysis (GDA) software with a permutation
test to estimate the P value (Lewis Lab Software Web-
site). Pairwise calculations of linkage disequilibrium
(LD) were computed with the Graphical Overview of
Linkage Disequilibrium (GOLD) software for both the
squared correlation coefficient (r2) and Lewontin’s
standardized disequilibrium coefficient (D¢) (Abecasis
and Cookson 2000). Single-locus association analysis
was performed using the pedigree disequilibrium test
(PDT) for allelic association and the genotype-based
version, the geno-PDT (Martin et al. 2000, 2003). We
used the PDTave statistic, giving equal weight to all
families, for comparison of allele frequencies between
affected individuals and their unaffected parents or sib-
lings (Martin et al. 2000). In addition, the family-based
association test (FBAT) was performed to test for
association in both single loci and in haplotypes
(Horvath et al. 2004). Haplotype analysis was performed

with the HBAT function, using windows of three adja-
cent SNPs across NCAM1. Haplotypes with frequencies
of <1% were excluded from this analysis.

Bioinformatics

Genomic and protein sequences were obtained from The
Human Genome Browser (assembly July 2003) Univer-
sity of California, Santa Cruz (UCSC web site) with
additional information from Ensembl at http://
www.ensembl.org/. Genomic and mRNA sequences
were obtained from NCBI (accession numbers
NM_000615 and NM_000615.1). All SNP references are
based on NM_00615, with the ATG initiation codon
being +1, and are named according to the recommen-
dations of the Nomenclature Working Group (Anton-
arakis 1998). Protein references are based on NCAM140
(NP_00606). Promoter regions were chosen based on the
prediction of promoter elements using Proscan and
the Transfac databases (Wingender et al. 2001). Se-
quence alignment of human and mouse NCAM (Gen-
Bank accession numbers NM_000615 and NM_010875,
respectively) was performed using PipMaker (Schwartz
et al. 2000) to search for conserved non-coding
sequences.

Immunohistochemistry

For NCAM expression analysis, unaffected human em-
bryos were obtained from legally terminated pregnancies
in agreement with French law 00–800 and with recom-
mendations by the Necker Hospital ethics committee.
Sections from embryos ranging from Carnegie stage 9 to

Table 1 PCR fragments,
primers, and conditions for all
NCAM1 fragments analyzed

Fragment name Forward primer (5¢-3¢) Reverse primer (5¢-3¢) HPLC temp (�C)

Exon 1 ggctgggactgtcactcatt gcaaaccagattgagaattaaaa 60
Exon 2 gggtttcattcttgaacattgg cctgagggctcctgctctac 60
Exon 3 ggggacttattagtcttttcgactt gcagaagaagaaggaggctct 61
Exon 4 gaagcagctgttttccctca tgaaaaagctagggaacttgg 60.5
Exon 5 tgcagatgctctctgactga ccaaggttgtagcaatgcag 60
Exon 6 tgtctcttctccaggccatt gactttgtgatgccccattc 59.5
Exon 7 tggtcgaaatcatgctactttg attgtggcagagcagtgacc 60.5
VASE ctaagggggaaaaaaagctggaca tcatccactcccaacacagc 56
Exon 8 tgcatgccatcatttaaacc attccaaggccctgaaactc 56, 60.5
Exon 9 ccttgggctctgacatgc catcctgaccctgccttg 63.5
Exon 10 aatcatggcagtcatcctga ttggagcccacctagagtca 61
Exon 11 tgaccatcccataggacactt attgggctggcagggttag 60
Exon 12 atggtcttgggccaaactg caggtggggacatctgagta 61
SEC gagggtgatgccgagaaggaa cacacggagggaacaccaaga 57
Exon 13 gaaatagaattgctggaccaaa aaggtgggctgggaaaag 57
Exon 14 cctgtcactccatcccattc cagggttctggtgaagtctga 60
Exon 15 tcccgtaagttttgcctattg caagcaagttgtcagggttg 60.5
Exon 16 gtctggaggtctcgcatctc caaacctcagcaaggtggac 63
Exon 17 gccttgggttgagtcatagc gggtctctacggagcaggt 63
Exon 18 agaccgtggtctcagtggtt tggaaatgctctggtgaagc 60.5
Promoter 1 gagggtttcagtgttctaggc aagaaaactccgatgtttggaa 54
Promoter mid ttttcttcgggttatttctgga ccagccttccttaatcagca 56.5
Promoter 2 ctgattaaggaaggctgggta tttttgcagaattgtttcctg 63
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19 and spinal cords from 22 to 27sa fetuses as positive
controls were chosen. When available, sections from
levels of both open and closed neural tube from the same
embryo underwent classical immunohistochemistry
using two different primary antibodies: 1:100 dilution of
a CD56/NCAM mAb (1B6, Novocastra), recognizing
the 120/140-kDa forms or a rabbit pAb to NCAM
(Chemicon, AB5032), recognizing all isoforms. Tissues
had been fixed with 4% paraformaldehyde, embedded in
paraffin blocks, and 5-lm sections were processed in
0.1% Tween-20-containing PBS. Anti-rabbit-555 (Invi-
trogen/Molecular Probes) was used for visualization at a
dilution of 1:400 or anti-mIgG-biotin and ABC-HRP
from the Vector MOM kit, PK2200 according to man-
ufacturer’s instructions. Specimens were examined on a
Nikon EclipseTE300 fluorescent microscope equipped
with a Roper Scientific CCD camera for image capture
using Metaview (UIC) software.

Results

SNP detection

No variations were detected by DHPLC in exons 1–4, 8,
and 10–18, in addition to two promoter regions and the
VASE and SEC exons. However, six novel SNPs were
detected and several known SNPs were verified in our
population (Table 2). Only two of the SNPs occurred in
exonic regions, one resulting in an amino acid change.
Of the novel SNPs, one was analyzed in the entire family
series via TaqMan allelic discrimination assays based on
the frequency and putative correlation with disease sta-
tus. All other novel SNPs were found to be in five or
fewer individuals. Because the variant would have been
too rare for identification of linkage disequilibrium in
our family sample series ( £ 1%), we pursued no further
analysis.

Association studies

No SNP tested in the family-based series showed evi-
dence for deviation from Hardy-Weinberg equilibrium
in either the affected or unaffected individuals (data not
shown). Pairwise LD across all 11 markers is shown in
Table 3. The LD analysis based on r2 (>0.5) revealed
strong LD between all intron 1 SNPs cv236895,

rs720023, rs2298526, rs723599, and rs1940699, as well as
between SNPs rs1245113 and rs2011505, in both the
affected and unaffected individuals. Values of D¢ were
also large for several SNP pairs, suggesting little
recombination in the region over evolutionary time.
Although novel polymorphism D260N has large values
of D¢ with several SNPs, the minor allele frequency is
very small.

The results of the single-locus analysis are summa-
rized in Table 4.The family-based association analysis
using FBAT demonstrated strong evidence for associa-
tion of intronic SNP rs2298526 (P=0.0018; C allele
positively associated), and this association was also seen
using the PDT test (P=0.0025) with the NTD pheno-
type in the first data series. Global tests for genotype
association were approaching significance (P=0.06) for
SNP rs2298526. Upon analysis of the initial five SNPs in
the original family set (n=132), we attempted to repli-
cate the findings using an additional 72 families. Single-
locus association tests for the five SNPs in this family set
did not reveal evidence for association in any marker. To
further test for possible influence of NCAM1 on NTDs,
we typed five additional SNPs within the large first in-
tronic region where significant SNP rs2298526 is located.
In addition, one novel coding SNP found by DHPLC,
resulting in the amino acid change D260N, was also
followed up in the family set based on its frequency in
affected and controls. This secondary screen and all
additional SNPs were tested in both sample sets. Anal-
ysis of the two data sets as a combined group (n=204) of
families, suggested no evidence for association with any
of the new SNPs tested. Association with marker
rs2298526 in the entire sample set was marginally sig-
nificant using FBAT (P=0.06). None of the other SNPs
tested showed significant evidence for association in any
test (Table 4).

Results from the haplotype analysis, using a sliding
window analysis of three markers, are shown in Table 5
for the haplotype displaying the highest Z-statistic
showing association. In the original 132 family sample
set, all windows that contain the SNP rs2298526 are
significant with the haplotype A-C-G for SNPs
rs720023, rs2298526, and rs723599 being the most highly
associated (P=0.00028). The transmission of a haplo-
type window containing up to seven markers remains
significant (P=0.05) with inclusion of the SNP
rs2298526. In the combined sample set (n=204 families),
transmission of this same haplotype remains significant
(P=0.02).

Immunohistochemistry

The NCAM1 protein expression is present in the par-
axial mesoderm at C9 and later in the epithelial somites
at stages C10 (data not shown). However, no expres-
sion is seen in the open or closed neural tube at
these stages. At C11, the first neural tube expression
appears, with NCAM1 on a few cells in the ventral

Table 2 Novel polymorphisms in NCAM1

Fragment SNP Surrounding sequence

Exon 5 g.244569G>A gaatggtgagG/Aagagtccgtt
Exon 6 g.245781C>T tggctC/TataccttttatcatgG/Aactag

g.245797G>A See above
Exon 7 c.958G>A; D260N agaggaagacG/Aatgagaagta

c.1032G>A; E284E acgaggctgaG/Atacatctgca
Exon 9 g.270021C>A ccttccccccC/Aacccccggca
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rhombencephalon and a faint, diffuse expression dor-
sally at the contact of the roofplate with the ectoderm
(Fig.2b) that is absent at trunk levels. Similar expres-
sion is observed at stage C12, characterized by strong
expression in discrete ventral areas of the hindbrain
(Fig.2d) and individual ventrolateral cells of the spinal
cord at all levels (Fig.2e, f). The position of these cells
and fiber tracts, distant from the ventricle, is consistent
with motoneuron identity. Epithelial somite expression
persists (Fig.2f). At C12, human neural tube closure is
complete aside from the caudal neuropore (K. Sulik,
personal communication, and our observations). At
C13, NCAM1 is expressed more robustly in the ventral
midbrain, hindbrain, and spinal cord (Fig.2h, j, k) and
becomes apparent in the ventral roots as well. As
somites mature, expression becomes restricted to a
dorsomedial sector in phase with but not surrounding
the ventral roots (Fig.2i, j). NCAM1 is also visible in
the epithelial mesonephros from C13 (Fig.2i, k). By
C16, spinal cord NCAM1 expression has extended to
mediolateral axon tracts and continues in the motor
roots, but is absent from immature ventricular cells,
commissural axons crossing the floorplate or dorsal
roots/ganglia (Fig.2l). At C19, this pattern persists;

strong annular expression is also seen in a cross-section
of spinal nerves (Fig.2m).

Discussion

Although rs2298526 appears to be associated with in-
creased risk for neural tube defects, the functional sig-
nificance of this association remains unclear. Our sample
set of American Caucasian simplex lumbosacral myelo-
meningocele families (n=132 families), revealed a sig-
nificant association between risk for NTDs and intronic
SNP rs2298526 using both the FBAT test (P=0.0018)
and the PDT (P=0.0025). Using the HBAT for haplo-
type association, all pairwise comparisons with SNP
rs2298526 were also significant. In a replication study set
of 72 additional families, no significant association was
detected in this sample set, however; the overall trend for
overtransmission of the less common allele of SNP
rs2298526 remains significant in the combined sample
set.

Our failure to replicate the significant association in
the additional Series 2 families added to our screen may
be the result of spurious association in the original

Table 3 Measures of linkage disequilibrium between NCAM1 SNPs. The r2 values are given above the diagonal and D¢ values are given
below the diagonal

cv236895 rs720023 rs2298526 rs723599 rs1940699 rs1245113 rs1245104 rs2011505 D260N rs584427 rs1006826

cv236895 – 0.575 0.556 0.524 0.545 0.243 0.090 0.196 0.028 0.019 0.007
rs720023 0.991 – 0.957 0.959 0.960 0.390 0.052 0.313 0.014 0.005 0.011
rs2298526 0.98 0.987 – 0.994 1 0.396 0.048 0.306 0.017 0.009 0.009
rs723599 0.96 0.988 1 – 1 0.399 0.046 0.302 0.007 0.004 0.014
rs1940699 0.971 0.988 1 1 – 0.406 0.045 0.310 0.014 0.005 0.385
rs1245113 0.695 0.669 0.667 0.664 0.673 – 0.385 0.847 0.013 0.026 0.009
rs1245104 0.338 0.335 0.329 0.320 0.312 0.974 – 0.340 0.014 0.026 0.003
rs2011505 0.678 0.643 0.623 0.620 0.631 0.986 1 – 0.012 0.032 0.012
D260N 1 1 1 0.658 1 1 0.616 1 – 0.013 0.002
rs584427 0.241 0.099 0.125 0.684 0.090 0.202 0.319 0.211 1 – 0
rs1006826 0.236 0.217 0.213 0.239 0.974 0.187 0.154 0.195 0.775 0.001 –

Table 4 Results from single-locus family-based tests of association for NCAM1 SNPs. No P value (n/a) is reported for D260N in the
FBAT test due to the low minor allele frequency

SNP P value

Series 1 Series 2 Combined 204 families

FBAT PDT FBAT PDT FBAT PDT GenoPDT

cv236895a 0.38 0.47 0.66 0.73 0.68 0.69 0.86
rs720023 0.041 0.035 0.31 0.17 0.28 0.37 0.28
rs2298526a 0.0018 0.0025 0.11 0.075 0.06 0.09 0.14
rs723599 0.0081 0.0059 0.12 0.077 0.22 0.37 0.20
rs1940699 0.012 0.012 0.16 0.11 0.23 0.27 0.10
rs1245113 0.64 0.57 0.78 0.81 0.59 0.77 0.60
rs1245104 0.46 0.49 0.83 0.55 0.49 0.36 0.51
rs2011505a 0.33 0.22 1.00 0.75 0.43 0.41 0.87
D260N n/a 0.40 n/a 0.65 n/a 0.41 0.41
rs584427a 0.39 0.45 0.49 0.65 0.67 0.45 0.70
rs1006826a 0.18 0.24 0.24 0.25 0.06 0.11 0.66

aThe original five SNPs
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sample set, or could simply be due to the genetic com-
plexity NTDs in humans. It may also be that the Series 2
families differ in the risk associated with NCAM1 from
the initial set of families, or that the smaller sample size
(approximately 40% smaller) in Series 2 decreases the
power enough so that no association is found. Differ-
ences in the family characteristics between the two series
may also account for the differences. For instance, in the
Series 1 families, 19% of the families had one missing
parent, compared with 32% of the families in the Series
2 set. Series 1 families also had a higher proportion of
discordant sibling pairs than the Series 2 families (0.92
versus 0.78 per family). Both these differences are sta-
tistically significant (P=0.003 and 0.01, respectively).
Future follow-up is necessary to assess any role that
NCAM1 may have in other ethnic groups or NTD
phenotypes.

The significant association could be explained by ei-
ther some functional significance of the rs2298526 C
allele itself, or by LD between this SNP and one that
confers a functional role. The SNP is a potential binding
site for several transcription factors, some of which are
created or eliminated by the C allele, and could explain a
possible function. The fact that rs2298526 is within in-
tron 1, a large intron more than 240 kb in size, may
suggest a regulatory role. Recent reports have suggested
that segments of DNA that are highly conserved across
vertebrates from fugu to mouse to humans may repre-
sent regions of fundamental importance to vertebrate
development (Bejerano et al. 2004; Woolfe et al. 2004).
Although none of these are near NCAM1, it is clear that
non-coding DNA elements may have a significant
functional role.

Alternatively, the association we have found could be
due to LD between this marker and some untyped
functional variant with an unknown role; several SNPs
within this first intron are within a strong LD block.
Furthermore, variations that are detected at the nucle-
otide level may contribute to the development of NTDs
only in the presence of other genetic or environmental
factors. Such polymorphisms may alter NCAM1
expression or adhesive properties that alone or when
combined with other factors may contribute to failure of
neural crest elevation and/or neural tube closure. During
creation of the neural folds, there is pushing of the
presumptive epidermis toward the midline and anchor-
ing of the neural plate to the underlying mesoderm
(Alvarez and Schoenwolf 1992). In this process, cells of
the epidermis must slide over the mesoderm during
neural fold elevation and closure. Newgreen et al. (1997)
suggests that the ectopic NCAM expression in the neural
tube observed in avian embryos with spontaneous neural
tube defects caused a tendency toward greater adhesion,
which may impede this process. However, the ectopic
expression may be a secondary effect rather than caus-
ative. Ectopic expression of NCAM alone in Xenopus
embryos does not cause abnormal neural tube closure
(Kintner 1988). It is maintained that the differential
adhesion between the ectoderm and neural plate playsT
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an important role in neural tube closure, since injection
of N-cadherin into a Xenopus embryo results in the
failure of the neural tube tissues to separate from the
presumptive epidermis (Detrick et al. 1990). Unfortu-
nately, ectopic (in)activation of NCAM was not exam-
ined in these experiments.

It has been suggested that NCAM1 may not play an
essential role in mammalian neurulation (Copp et al.

2003), based on the Xenopusmodel and the fact that mice
with nullmutations inNcamhave normal closure (Cremer
et al. 1994). However, interestingly, among the brain de-
fects in null mice is a large reduction in the size of the
olfactory bulbs, into which NCAM-expressing neuronal
stem cell progenymigrate throughout adult life (Pennartz
et al. 2004). Producing only the extracellular domain of
the NCAM molecule in mammals results in lethality and
serious morphological defects (Rabinowitz et al. 1996),
possibly through a dominant negative effect on hetero-
philic adhesion. Prag et al. (2002) suggest that this puz-
zling observation may be explained by the fact that both
the cytoplasmic and extracellular parts of NCAM are
capable of modifying the motility and migration of cells.
Indeed, the intracellular domain of NCAM mobilizes in-
tegrin signaling through association with the fibroblast
growth factor receptor 4 (Cavallaro et al. 2001).

In Xenopus, chicken, and mouse, NCAM appears to
be expressed in the immature neural tube during closure,
although closer examination reveals that expression in
frogs and mice is essentially restricted to migrating
neural crest cells or to fiber-projecting, differentiated
neurons at later stages. The chicken data, most detailed,
vary from our findings in human embryos with respect
to expression in the closing avian neural tube, cephalic
placodes and derivatives, and the cardiac mesoderm
(Thiery et al. 1982). However, our results are concordant
with respect to the somites, the presence of positive en-
teric ganglia and absence of dorsal root ganglion
expression. The discordances are probably species-spe-
cific, but differences in antibody sensitivity are not to be
excluded. We have found that the timing of NCAM1
expression in the dorsal neural tube does not correlate
with closure in humans. Nonetheless, it is likely that

Fig. 2 a Parasagittal section of human embryo stained with DAPI
at C11 (24 days), with enlargement in b indicated. b NCAM1
expression is visible on isolated cells of the ventral rhombenceph-
alon (arrowheads). It is also specifically present in its wide, thin
roofplate, a region-specific anatomical feature. c Parasagittal-to-
transverse section of human embryo at C12 (26 days), DAPI stain,
position of d–f indicated. NCAM expression is present in future
motor areas of the rhombencephalon (arrowheads, d) and in sparse
cells of head mesenchyme, possibly neural crest cells (circled). A
few ventrolateral cells of the spinal cord at all levels are NCAM1+

and epithelial somite expression persists (e, f, transverse section). g
Parasagittal section of human embryo at C13 (29 days), DAPI
stain and photo reconstruction. h Robust NCAM1 expression in
the ventral midbrain and hindbrain (arrowheads). i NCAM1 is
present in both a trunk-level epithelial somite and in the
mesonephros (also see k). j Spinal cord ventral roots are highly
immunoreactive and ventral spinal cord expression persists
(arrowheads). As somites mature, expression is restricted to a
dorsomedial sector in phase with but not in contact with the ventral
roots. k NCAM1 is visible in the mesonephros and in ventrolateral
spinal cord (arrowheads). l By C16 (37 days), mediolateral axon
tracts and ventral roots of the spinal cord are immunoreactive for
NCAM1, but not immature ventricular cells, commissural axons
crossing the floorplate or dorsal roots or associated ganglia. Dorsal
to left. m At C19 (47 days), this pattern persists; strong annular
expression is also visible in the cross-section of segmental nerves
(asterisks). Dorsal to bottom (drg dorsal root ganglion, h heart, mn
mesonephros, op optic vesicle, ot otic vesicle, pa pharyngeal
arch(es), pros prosencephalon, s somite, sc spinal cord, v vertebra,
vr ventral root). Bar: in a, c, h, i, 0.5 mm; in b, d–f, l, 0.2 mm; in g,
0.71 mm; in j, 0.29 mm; in k, 0.22 mm; in m, 0.27 mm
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variations that cause inappropriate or increased
NCAM1 expression could incur a risk for NTDs by
altering the heterophilic adhesive properties of neural
tube cells relative to their NCAM1-expressing somitic
environment, rather than homophilic adhesion to each
other at the line of closure. In addition, the transitory
NCAM1 immunoreactivity we observed in the dorsal
roof of the human hindbrain just after neural tube clo-
sure may correlate with the propensity of this region to
develop occipital encephalocele.

In conclusion, the trend for over-transmission of the
rs2298526 C allele is significant in NTD cases. Haplo-
type analysis in both the original and combined sample
sets suggests a role for SNPs located within the first
intron of NCAM1. In addition, the expression pattern of
the NCAM1 protein in human shows no expression
within the neural tube at the time of closure, but it ap-
pears to be expressed in the surrounding mesoderm and
later in differentiated neurons of the CNS. Our results
show a possible involvement of polymorphisms in
NCAM1 with the risk for human neural tube defects.
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VASCULARISATION DE LA TÊTE ET DU COU
AU COURS DU DÉVELOPPEMENT
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RÉSUMÉ

Au cours de l’embryogenèse, le premier rôle de la vascularisation est d’assurer les besoins métaboliques de la tête, ceci
dès les stades les plus précoces. Le présent article passe en revue quelques principes qui gouvernent la construction cellulaire
des vaisseaux et leur emplacement. Pour comprendre l’organisation et la mise en place de l’arbre vasculaire céphalique, il
est nécessaire de rappeler d’une part les mouvements morphogénétiques qui dirigent la formation de la tête des vertébrés
et d’autre part les cellules à partir desquelles les vaisseaux se constituent. Certaines des principales molécules de signalisation
impliquées dans le développement vasculaire, notamment les angiopoïétines, les endothélines, les FGFs, les Notchs, les
PDGFs, Sonic hedgehog, les TGFs et les VEGFs, sont évoquées afin de souligner les similitudes entre la vascularisation
embryonnaire et postnatale, même dans le contexte de morphologies de plus en plus divergentes.

Mots-clés : angiogenèse, vasculogenèse, crête neurale, mésoderme.

SUMMARY

Vascularization of the head and neck during development
One of the earliest priorities of the embryonic vascular system is to ensure the metabolic needs of the head. This review

covers some of the principles that govern the cellular assembly and localization of blood vessels in the head. In order to under-
stand the development and organization of the cephalic vascular tree, one needs to recall the morphogenetic movements under-
lying vertebrate head formation and giving rise to the constituent cells of the vascular system. Some of the major signaling
molecules involved in vascular development are discussed, including the angiopoietins, the endothelins, the FGFs, the Notch
receptors, the PDGFs, Sonic hedgehog, the TGF family and the VEGFs, in order to underline similarities between embryonic
and postnatal vascular development, even in the context of increasingly divergent form.

Key words: angiogenesis, vasculogenesis, neural crest, mesoderm.

MORPHOGENÈSE ET SPÉCIFICATION 
DES COMPOSANTS VASCULAIRES 
DE L’EMBRYON HUMAIN

Durant les troisième et quatrième semaines après la
fécondation, l’embryon, jusqu’alors bidermique, est
le lieu d’importants mouvements cellulaires qui le
transforment en un embryon à trois couches cellulai-
res. Durant ce processus dénommé gastrulation,
des cellules mésodermiques mésenchymateuses
générées au niveau de ligne primitive s’intercalent
entre l’ectoderme et l’endoderme. Le mésoderme
naît donc sur la ligne médiane et migre ensuite vers
les bords latéraux de l’embryon. Simultanément,
l’ectoderme de la partie rostrale de l’embryon, au
devant de la ligne primitive, s’épaissit pour former le
neurectoderme. Le neurectoderme s’enroule et se
soude sur sa face dorsale pour donner naissance à un
tube qui sera à l’origine de tout le système nerveux
central. Lors de la soudure du tube, des cellules se
détachent de la frontière entre le neurectoderme et
l’ectoderme. Ces cellules, dénommées crêtes neura-
les, migreront dans tout l’embryon pour donner de
multiples dérivés dont certains participeront à la
vascularisation de la tête et du cou. L’excellent livre

illustré de Larsen [48] en embryologie humaine
retrace ces étapes en détail.

La matière première des vaisseaux sanguins est la
cellule endothéliale (CE). Elle tapisse l’intérieur du
vaisseau et se trouve au contact direct avec le sang.
Pendant la gastrulation et la neurulation, les héman-
gioblastes se différencient à partir de cellules souches
issues du mésoderme. Ces cellules, apparaissant dans
les membranes extra-embryonnaires, ont la capacité
de devenir soit des cellules hématopoïétiques, soit
des angioblastes, les précurseurs des cellules endo-
théliales [72].

Une fois spécifiées, les angioblastes migrent, se
différencient et s’assemblent en plexus vasculaire
primaire en jouant notamment sur la modification
des caractéristiques de l’adhésion à la matrice
extracellulaire [24, 39]. Ce processus d’assemblage
in situ de vaisseaux à partir de composants réunis
sur place est dénommé vasculogenèse. L’aorte et
les veines cardinales se forment de la sorte. La vas-
culogenèse est suivie par l’angiogenèse, c’est-à-
dire la croissance, le remodelage et l’extension de
ce réseau primitif pour former un réseau vasculaire
mature. Ce second processus constitue le méca-
nisme principal de la vascularisation des tissus en
croissance, tant chez l’embryon que chez l’orga-
nisme adulte.

La morphogenèse vasculogenèse au niveau du
tronc comporte deux phases marquantes : a) le ras-
semblement des angioblastes de l’endocarde pré-
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somptif autour de la porte intestinale antérieure
en dessous de la tête [58] et, b) le rassemblement
d’angioblastes en deux colonnes de part et d’autre
de la notochorde pour former les aortes dorsales.
Ces artères primaires de la neurula longent l’axe
antéropostérieur du corps et fusionnent pour devenir
l’aorte définitive, entre la notochorde et l’intestin.
La première angiogenèse des artères intersomitiques
segmentaires se produira à partir des aortes dorsales.
Simultanément, d’autres vaisseaux se brancheront
bilatéralement près de la sortie du coeur et se diri-
geront ultérieurement vers la tête.

Au niveau de la tête, la vasculogenèse se pro-
duit au sein du mésoderme mésenchymateux entre
l’ectoderme et le neurectoderme et genère une
accumulation d’angioblastes à proximité du cer-
veau [14]. Le reste de ce mésoderme est consacré
au précurseurs des muscles céphaliques, qui se
développent grâce aux signaux secrétés par les
cellules de la CN céphalique [89]. Par le biais de
l’embryologie expérimentale, on a pu souligner de
nombreuses différences de devenir entre les cellu-
les de CN émigrant à partir de différents niveaux
antéropostérieurs du neurectoderme. Ainsi, les
cellules de CN sortant au niveau du futur cerveau
ont la capacité de se différencier en cellules de
muscle lisse vasculaire, en péricytes, en méninges,
en derme, en os ou en cartilage de la tête, alors
que leurs consoeurs sortant au niveau de la moelle
épinière ont une différenciation plus restreinte
en cellules du système nerveux périphérique, en
mélanocytes ou en certaines cellules endocrinien-
nes [51].

Le cœur, localisé coté ventral (figure 1a), expulse
du sang oxygéné dans les aortes dorsales par le
biais d’une artère en forme d’épingle à cheveux
dont la partie ventrale est désignée comme l’aorte
ventrale (figure 1b). L’épingle s’allonge en direc-
tion de la tête, et des connections symétriques, les
arcs aortiques, se forment autour de l’endoderme
pharyngien entre l’aorte ventrale et dorsale.
L’organisation des feuillets embryonnaires autour
de ces paires d’artères, et notamment la différen-
ciation localement dirigée de la CN céphalique,
donnera lieu aux éléments du visage inférieur et du
cou. Au moment où se forme la troisième paire
d’arcs aortiques, la première paire se détache et les
artères se ramifient en direction du cerveau anté-
rieur ; c’est le début de l’important remodelage des
gros vaisseaux pendant l’embryogenèse. Ainsi, les
5 paires d’arcs aortiques (numérotés 1 à 4 et 6 pour
des raisons historiques) n’existent jamais simulta-
nément. Des éléments de la première à la troisième
paire d’arcs aortiques se trouveront au sein de la
paroi de la carotide interne par exemple, alors que
seul l’arc gauche de la quatrième paire persistera
en tant que crosse de l’aorte et les sixièmes arcs
s’intégreront dans le canal artériel qui disparaîtra
après la naissance chez l’homme.

Les cellules endothéliales assument des fonctions
différentes suivant le tissu et le type de vaisseau dans
lequel elles se trouvent [7]. L’acquisition de ces
caractéristiques propre à chaque localisation est le
résultat de la double influence de l’environnement et
des programmes génétiques endogènes.

CASCADES GÉNÉTIQUES IMPLIQUÉS 
DANS LA VASCULOGENÈSE

Durant plusieurs décennies, l’hypothèse domi-
nante expliquant la différenciation entre veine et
artère postulait que la pression et la direction du flux
sanguin à l’intérieur d’un vaisseau déterminaient sa
destinée. Des données récentes ont remis cette
hypothèse en cause. Ainsi, le Noble et ses collabora-
teurs ont démontré que les caractéristiques molécu-
laires des artères et des veines s’exprimaient avant le
début du flux sanguin mais qu’elles se ségrégeaient
sur les vaisseaux appropriés une fois que le flux était
établi dans le sac vitellin [52]. Par contre, des don-
nées obtenues notamment chez le poisson zèbre sug-
gèrent que cette détermination se produit au sein
même de l’embryon avant l’apparition de toute cir-
culation sanguine dans le futur vaisseau et se main-
tient par la suite [101].

Une structure clé de l’organisation vasculaire est
la notochorde. La notochorde est un bâton mésoder-
mique s’étendant sous le tube neural ventral, le long
de l’axe antéropostérieur de l’embryon (figure 1).
Depuis longtemps, cette structure est connue comme
le centre organisateur du développement du tube
neural [28] et des somites [9, 20]. Des travaux
récents ont également démontré un rôle prépondé-
rant au cours de l’induction de l’endoderme [10] et
des artères et veines axiales (discuté plus loin). Par
conséquent, les facteurs de transcription régulant la
mise en place de la notochorde interviennent en
amont des gènes responsables de l’organisation de
l’aorte et, à un moindre degré, de la veine cardinale
[36, 85]. Ces facteurs de transcription sortent du
cadre de cette revue.

Des lignées de poisson-zèbres issues de criblage
par la mutagenèse permettent une caractérisation
moléculaire des phénotypes morphologiques décrits.
Ainsi, des poissons sans notochorde, normalement
située au-dessus de l’aorte dorsale, ou avec des mal-
formations de l’endoderme, sous la veine axiale
(future cardinale inférieure) (figure 1d), manifestent
des anomalies vasculaires dont les molécules respon-
sables ont pu être identifiées. Certaines, comme
Sonic hedgehog, émanent directement de la noto-
chorde alors que d’autres, comme Notch-1 ou
VEGF, sont induites dans les tissus avoisinants.

Sonic hedgehog

Sonic hedgehog (Shh) est un facteur sécrété, très
conservé au cours de l’évolution, et principal média-
teur des effets induits par la notochorde. Par exem-
ple, la sécrétion de Shh vers le somite induit sa
différenciation en précurseurs des cartilages costaux
et vertébraux [33].

Chez des embryons de poisson-zèbres normaux,
l’application d’un excès de Shh entraîne une diffé-
renciation artérielle ectopique qui se substitue à la
veine cardinale postérieure. La surexpression de Shh
au sein du système nerveux central du poulet
embryonnaire résulte en son hypervascularisation
[76]. Comme tous les nouveaux capillaires, ceux-là
expriment initialement des marqueurs spécifiques
aux artères avant de les perdre du coté veineux au
cours de leur maturation [37], ce qui renforce l’hypo-
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thèse que Shh aurait un effet positif sur la formation
des artères.

Pourtant, Shh n’agit pas directement sur la proli-
fération ni sur la migration des cellules endothélia-
les, mais induit l’expression du vascular endothelial
growth factor (VEGF) dans les somites à proximité.
Le VEGF est très impliqué dans l’angiogenèse
classique et sera discuté plus en détail dans la partie
consacrée à ce sujet. L’application exogène de
VEGF permet de préserver l’aorte dorsale chez les
embryons déficients en Shh ; ces embryons sont nor-
malement dépourvus d’artères telles qu’identifiées
par des marqueurs moléculaires [50]. L’effet de Shh
est une induction de vaisseaux à grande lumière,
comme des fistules artériovéneuses, alors que VEGF

promeut la croissance d’un plexus de petits vais-
seaux homogènes possédant des marqueurs arté-
riaux [74]. On considère que les grands vaisseaux
sont assimilables à des vaisseaux matures alors que
le plexus capillaire ressemble plus aux vaisseaux
immatures. Cette différence est attribuée à l’activa-
tion simultanée d’autres facteurs par Shh, dans la
maturation vasculaire [74]. Pour résumer, Shh joue
un rôle de coordinateur moléculaire de la vasculo-
genèse.

Les récepteurs Notch

Les récepteurs transmembranaires de la famille
Notch, hautement conservés au cours de l’évolution,

FIG. 1. –  a) Embryon humain 23 jours après fécondation montrant deux arcs branchiaux (AB1 et 2) et 19 paires de somites.
Les niveaux approximatifs des schémas de B (cadre) et C-E (lignes pour coupes transversales) sont indiqués. Rostral à gauche.
b) Schéma de la morphologie des premiers arcs aortiques (aa1 et aa2) par rapport aux structures céphaliques : le cerveau (pros,
prosencéphale ; mes, mésencéphale ; rh, rhombencéphale), la notochorde (ND) et l’endoderme pharyngien (endo). c-e) Quel-
ques signaux et leurs récepteurs discutés dans le texte sont indiqués en italiques à l’emplacement de leur synthèse. c) Schéma
d’une coupe au niveau d’un arc branchial hypothétique, dorsal vers le haut. Les artères se forment à proximité de l’endoderme ;
celles de l’aorte dorsale du coté dorsal et celles des arcs aortiques du coté ventral. Les cellules de crête neurale céphalique,
mésenchymateuses, traversent le mésoderme (gris) qui flanque le tube neurale pour atteindre l’arc branchial. d, e) Schémas de
coupes transversales à un niveau rostral du corps (d), où la morphogenèse est plus avancée qu’au niveau caudal du corps (e).
Le somite se différencie en la sclérotome mésenchymateux qui sera traversé par la crête neurale et les angioblastes, et en la
dermamyotome. L’espace du cœlome isole et entoure l’intestin ; les premiers vaisseaux sanguins se différencient entre la noto-
chorde et l’endoderme. Les aortes dorsales fusionnent ainsi que les veines cardinales postérieures pour donner des structures
uniques et médianes.

FIG. 1. – a) Human embryo at 23 days post-fertilization with two branchial arches (AB1 and 2) and 19 pairs of somites. Appro-
ximate levels of the drawings in B (frame) and C-E (lines for transverse sections) are shown. Rostral to left. b) Diagram of the
morphology of the first aortic arches (aa1 and aa2) with respect to other cephalic structures: the brain (pros, prosencephalon; mes,
mesencephalon; rh, rhombencephalon), the notochord (ND) and the pharyngeal endoderm (endo). c-e) Some of the ligand/receptors
discussed in the text are indicated in italics at the location where they are synthesized. C) Diagram of a transverse section at the level
of a hypothetical branchial arch, dorsal to top. Arteries form close to the endoderm: those of the dorsal aorta on the dorsal side and
of the aortic arches on the ventral side. Migrating cephalic neural crest cells penetrate the mesoderm (gray) flanking the neural tube
to fill out the branchial arch. d, e) Diagrams of transverse sections at a rostral (d) or more caudal (e) level of the body, where mor-
phogenesis is more advanced in d than e. The somite differentiates into loose sclerotome, through which the trunk neural crest and
angioblasts migrate, and the dermamyotome. The space of the coelom isolates and surrounds the intestine; the first blood vessels of
the body differentiate between the notochord and the endoderm. The dorsal aortae fuse as do the posterior cardinal veins to give
rise to unique midline structures.
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reconnaissent deux familles de ligands, les Deltas ou
les Jagged/Serrates. Chez l’homme, trois molécules
Delta-like et deux molécules Jagged sont reconnues
par quatre récepteurs Notch, mais, différentes
combinaisons de ligands et de récepteurs ont été
retenues au cours de l’évolution. Les récepteurs
Notchs 1, 3, 4, et certains ligands (Delta-4 et les deux
Jagged) sont exprimés dans les artères embryonnai-
res ; par contre, aucun de ceux-ci n’est exprimé dans
les veines [91].

Des mutations de NOTCH3 chez l’homme ont été
mis en évidence dans la maladie CADASIL (Cerebral
Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy) [45]. CADASIL se
manifeste par des migraines dues à une dégradation de
la paroi musculaire des petits vaisseaux cérébraux.
Dans le modèle murin de la maladie comme chez
l’homme, des mutations stéréotypées de Notch-3
conduisent à une accumulation anormale du récepteur
au sein de la membrane des cellules de soutien des
vaisseaux matures [77]. L’effet cellulaire de cette accu-
mulation est encore inconnu mais on peut supposer
qu’elle est à l’origine de la désintégration de la paroi.

Le rôle de Notch-3 a aussi été étudié chez l’embryon
du poisson-zèbre. Par contraste avec son rôle dans les
vaisseaux matures, Notch-3 confère une identité arté-
rielle et réprime le phénotype veineux au moment de
la vasculogenèse [49]. En l’absence de Shh dans ce
modèle, l’apport exogène de VEGF peut restaurer la
différentiation artérielle. De même, après réduction
expérimentale de VEGF, Notch-1 ectopique permet le
sauvetage des artères ou même la stimulation l’artério-
genèse ectopique en présence de VEGF physiologique
[50]. La différentiation de l’aorte est régulée par une
cascade de régulation, où Shh induit l’expression de
VEGF dans les cellules mésenchymateuses du somite,
ce qui provoque l’agrégation des CE. Le VEGF induit
également l’expression de Notch-3 qui à son tour
réprime le récepteur VEGFR3 dans l’aorte dorsale.
Pour preuve, l’absence de Notch-3 dans la veine cardi-
nale postérieure, éloignée de la source de Shh et du
VEGF des somites, permet la persistance de VEGFR3
[50] (figure 1e). La signalisation VEGF contribue à
renforcer l’identité artérielle de l’aorte par le biais de
VEGFR2 et l’identité veineuse dans la veine axiale par
le biais de VEGFR3.

Lors d’expériences de surexpression de Notch chez
le xénope, Notch-1 est capable de réduire
l’expression de Shh dans la notochorde et de le
surexprimer dans le plancher du neurectoderme
[57]. Cet effet survient pendant une décision
binaire de la gastrulation où les cellules pénétran-
tes s’intègrent dans l’une ou l’autre structure.
Ainsi, le moment où survient la signalisation
embryonnaire par des récepteurs Notch est déter-
minant ; une réduction précoce de la notochorde
réduirait la taille de l’aorte dorsale en faveur de la
veine cardinale postérieure alors qu’une
augmentation de la signalisation Notch quand ces
gènes sont exprimés dans les CE conduirait à
l’effet inverse.

Fibroblast growth factors

Le facteur de croissance secrété FGF2 (fibroblast
growth factor 2) induit une différenciation angioblas-

tique dans les somites in vitro et in vivo chez les
embryons aviaires [17]. Ce facteur est largement
connu pour son rôle mitogénique et tropique pen-
dant l’angiogenèse adulte [75]. Le rôle essentiel et
conservé de la famille des FGFs dans la formation
de tubes se trouve confirmé par l’utilisation de cette
voie de signalisation dans la trachéogenèse chez le
Drosophile [99] ainsi que dans la migration d’angio-
blastes pour la formation de tubes capillaires chez la
souris [88] (figure 2). La migration et la tubuloge-
nèse s’arrêtent lors de la maturation vasculaire grâce
à l’action de cellules de soutien qui freinent activité
de FGF-2, laquelle molécule, peut donner lieu à des
hémangiomes lorsqu’elle n’est pas contrôlée [54, 86,
98]. FGF-2 est aussi un facteur fortement angiogéni-
que ; c’est-à-dire que sa présence entraîne la forma-
tion de nouveaux vaisseaux à partir de cellules
endothéliales in vitro [64] ainsi qu’à partir de vais-
seaux existants in vivo [69].

CASCADES GÉNÉTIQUES IMPLIQUÉS 
DANS L’ANGIOGENÈSE 
ET LA MATURATION VASCULAIRE

VEGF

Les VEGFs constituent une super-famille de
cinq molécules (VEGF-A à VEGF-E) homologues
et structurellement apparentés au PDGF (platelet-
derived growth factor) et au PlGF (placental growth
factor) [13]. Les membres de cette super-famille
agissent sous forme d’homodimères et d’hétérodi-
mères [67, 75]. VEGF-A, particulièrement étudié
dans le contexte de l’angiogenèse, est exprimé
d’une façon quasi-ubiquitaire chez l’embryon à
l’exception des cellules endothéliales elles-mêmes
[4, 5]. L’inactivation d’un seul allèle de VEGF-A
diminue la capacité des îlots sanguins à effectuer
l’hématopoïèse, réduit le nombre de cellules endo-
théliales et empêche leur organisation correcte [8,
34].

Un des trois récepteurs pour le VEGF, le VEGFR2,
est exprimé par les hémangioblastes à partir d’un
stade très précoce du développement et continue à
être exprimé par leur descendance angioblastique et
endothéliale [27, 93] (figure 2). La souris knock-out
de VEGFR2 n’accomplit ni l’hématopoïèse, ni la
vasculogenèse [81]. Lorsqu’il se lie au VEGFR2, le
VEGF-C peut aussi stimuler la différenciation
d’angioblastes en cellules endothéliales [26]. Alors
que le VEGF-C est particulièrement impliqué dans
la lymphangiogenèse à des stades embryonnaires
plus tardif [47], sa séquestration par le VEGFR3
dans les angioblastes serait critique pour la transi-
tion de la vasculogenèse vers l’angiogenèse effectuée
par les CE, qui continuent à exprimer le VEGFR2
[40].

L’expression de VEGF par la zone marginale ven-
triculaire du système nerveux central en formation
attire et dirige l’ingression des capillaires [60]. Cette
expression est elle-même indirectement induite par
l’hypoxie résultant des divisions cellulaires rapides
dans la zone ventriculaire. Certains facteurs nucléi-
ques, tels les HIFs (hypoxia inducible factors),
répondent directement au taux d’oxygène ambiant
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[44]. Ces facteurs déclenchent des programmes
angiogéniques en activant la transcription de gènes
cibles tels VEGF ou endothéline-1, discutée plus
loin [35, 42].

Au niveau de la tête, HIF1α, la sous-unité des
HIF leur conférant leur spécificité, est exprimée
dans l’endoderme pharyngien au moment de la
formation des vaisseaux des arcs aortiques [30].
Cette expression lors de la mise en place des arcs
aortiques suggère que les anastomoses entre aorte
ventrale et dorsale se forment par une réponse
angiogénique des cellules endothéliales VEGFR2+

à un plus fort taux local de VEGF-A sous
l’influence d’HIF1α.. Des expériences chez le
xénope et chez la caille montrent également que
les CE sont bien présentes, mais incapables de
s’assembler en vaisseaux, en l’absence d’endo-
derme [92].

Les endothélines

Les endothélines 1, 2 et 3 (EDN1-3) sont des
hormones peptidiques secrétées [43] et présentes
depuis l’embryogenèse précoce jusqu’à la fin de la
vie. Les EDN ont été identifiées grâce à leur effet
vasoconstricteur sur les vaisseaux matures [97]
mais elles participent aussi à la mise en place du
système nerveux entérique, de la pigmentation, de
la morphogenèse des vaisseaux issus des arcs aorti-
ques et surtout à l’angiogenèse. Comme le VEGF,

l’EDN-1, la plus étudiée, est transcrite en réponse
à l’hypoxie, lors de la liaison de HIF1 à son promo-
teur [95].

Dans les vaisseaux embryonnaires ou immatures,
l’application d’EDN-1 exogène entraîne une fort
angiogenèse autour de sa source, vraisemblable-
ment par l’intermédiaire de VEGF [18]. Le signal
est reçu par des CE possédant au moins le récep-
teur B parmi les trois récepteurs connus des endo-
thélines : ET-A, ET-B et ET-C. À la suite de
l’angiogenèse, des cellules mésenchymateuses
s’accumulent autour des nouveaux vaisseaux et se
différencient en constituants muraux qui s’organi-
sent en couches concentriques. Les premières cellu-
les au contact de l’endothélium sont les péricytes,
des cellules multipotentes qui peuvent se différen-
cier en muscle lisse vasculaire, en adipocytes, en
cartilage ou en os, [23].

L’effet vasoconstricteur d’EDN-1 sur les vais-
seaux matures est médié par le récepteur ET-A pré-
sent sur les péricytes. EDN-1 aurait également une
activité trophique pour les péricytes exprimant ET-
A in vitro [94]. En réponse à la stimulation d’ ET-A,
les péricytes inhibent la prolifération endothéliale
tout en augmentant l’expression d’EDN-1 endothé-
liale, ce qui stabilise les vaisseaux déjà formés par
une boucle de régulation [61].

Les EDNs sont particulièrement importantes
pour la différenciation des cellules de CN chez
l’embryon. Au niveau moléculaire, le schisme entre

FIG. 2. –  Schéma non exhaustif de la diffé-
renciation d’un capillaire lambda en insistant
sur les quelques signaux mentionnés dans le
texte. La différenciation progresse temporelle-
ment du haut vers le bas de la page et de la
gauche vers la droite. Un agrandi du vaisseau
en cours de maturation en bas de page permet
de voir quelques-uns des nombreux échanges
moléculaires entre péricytes et cellules endo-
théliales qui peuvent être modulés par les
conditions environnementales.

FIG. 2. – Diagram of some aspects of the dif-
ferentiation of an idealized capillary with
emphasis on those signals discussed in the text.
Differentiation progresses temporally from the
top to the bottom of the drawing, and from left
to right. The enlargement of a maturing vessel
toward the bottom of the figure allows the
depiction of some of the molecular exchanges
between pericytes and endothelial cells, that can
be modulated by environmental conditions.
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la tête et le tronc est représenté par la dépendance
de la CN céphalique, exprimant ET-A, de la pré-
sence d’EDN-1 dans l’environnement céphalique et
cardiaque, par rapport à celle de la CN troncale, ET-
C+, de la présence d’EDN-3 dans le reste du corps
[73].

Le système d’EDN-1/ET-A participe également à
la constitution d’une partie de la paroi vasculaire par
des cellules de CN (figure 2). Chaque paire d’arcs
aortiques entoure l’endoderme pharyngien expri-
mant HIF1α d’une manière transitoire [30]. En
même temps, chaque grande artère se trouve à
proximité d’un petit amas de cellules mésodermi-
ques, source d’angioblastes et de précurseurs muscu-
laires, entourée d’un nombre croissant de cellules
mésenchymateuses de CN qui s’infiltrent entre
l’ectoderme et l’endoderme. Les ensembles métamé-
riques de ce type s’appellent les arcs branchiaux ou
pharyngiens (figure 1c).

La CN colonise chaque paire d’arcs branchiaux à
partir des différents niveaux du cerveau en forma-
tion. Cette distribution n’est pas strictement délimi-
tée mais les cellules voisines tendent à provenir de
régions voisines au sein du neuroépithélium. Quand
les structures dérivées de la crête neurale se diffé-
rencient, elles maintiennent cette provenance vague-
ment métamérique. Ainsi, les différents os du crâne
peuvent être cartographiés et attribués à de la CN
issue de segments distincts du cerveau [16] ; les vais-
seaux sanguins du cerveau antérieur, du visage et du
cou peuvent aussi l’être en ce qui concerne leurs
péricytes et leurs muscles lisses [32]. On comprend
mieux le caractère segmentaire de certaines mala-
dies vasculaires tels le Sturge-Weber ou le moya-
moya, qui sont localisées dans des régions distinctes
de la tête car elles ont la même origine que les cel-
lules de CN de la paroi des vaisseaux pathologiques
[31].

L’ectoderme et l’endothélium de chaque arc
branchial expriment EDN-1 pendant que la CN
céphalique, exprimant ET-A, emplit chaque arc
branchial [66]. Des expériences d’abrogation géné-
tique d’EDN-1 ou d’ET-A chez la souris ont mon-
tré clairement que les déficiences de remodelage
des arcs aortiques et les malformations craniofacia-
les (mâchoires hypoplastiques, fusions osseuses,
dents ectopiques) étaient toutes dues à un compor-
tement anormal de la CN céphalique [97]. En
l’absence de communication par le pôle EDN-1/
ET-A, les cellules de CN céphalique colonisent
incomplètement la partie la plus ventrale des arcs
branchiaux et les quelques cellules colonisatrices
ont une différentiation anormale ou subissent une
mort cellulaire programmée [11, 12]. Ainsi, cette
voie de signalisation module la migration et la dif-
férentiation des CN céphalique dans les arcs, impli-
quant directement l’endothélium des arcs aortiques
dans la morphogenèse craniofaciale et cardiovascu-
laire. La mise en évidence du rôle essentiel de
l’endoderme pharyngien dans ces processus conforte
cette hypothèse [15].

Platelet-derived growth factors

L’un des premiers facteurs impliqués dans
l’attraction des péricytes vers l’endothélium est le

PDGF, apparenté structurellement au VEGF. Il
existe 4 gènes, PDGF-A à -D, codant pour des uni-
tés s’assemblant en homo- ou hétérodimères [3]. Ces
molécules se lient à deux types de récepteurs trans-
membranaires dimériques : le PDGFRα reconnais-
sant les isoformes PDGF-AA, -AB, -BB, et -CC, et
le PDGFRß reconnaissant les isoformes PDGF-BB
et -DD.

Récemment, une activité angiogénique de PDGF-
AB, -BB et surtout -CC a été mise en évidence [6].
Ces chercheurs ont montré in vivo chez la souris que
des billes recouvertes de ces isoformes de PDGF
sont aussi attirantes pour la formation de nouveaux
vaisseaux que le VEGF ou le FGF2. L’isoforme
PDGF-CC agirait uniquement par liaison du récep-
teur PDGFRα [6]. PDGF-BB, en agissant sur le
PDGFRα endothélial dans un modèle de vasculoge-
nèse in vitro, abrogerait l’effet positif de FGF-2 sur
la migration des CE et leur organisation en tubules
[19]. Les études de localisation des isoformes de
PDGF montrent une distribution dans de nombreux
tissus chez des modèles animaux, quoique en dehors
du système rénal, peu d’études au niveau cellulaire
ont été effectué pour es molécules. En ce qui
concerne les récepteurs, le PDGFRß est absent de la
membrane des CE mais est présent sur celle des
péricytes et des cellules de muscle et sur leurs pré-
curseurs mésodermiques [82] (figure 2). Le PDG-
FRα est plus ubiquitaire et présent sur tous les types
cellulaires de la paroi vasculaire [62]. Ainsi, les
PDGF-AB, -BB et -CC pourraient moduler l’angio-
genèse indirectement par activation de muscle lisse
des vaisseaux déjà existants, et par une déstabilisa-
tion de la structure murale qui permettrait le bour-
geonnement endothélial. Un tel processus a déjà été
décrit dans le cœur. La liaison de PDGFRα par le
PDGF-AB endothélial y induit dans les myocytes la
synthèse de VEGF et entraîne une néovascularisa-
tion après ischémie myocardiaque [25].

Le PDGF intervient également lors de la stabili-
sation et de la maturation des nouveaux capillaires
suite à l’association avec des péricytes. Les CE
secrètent PDGF-AB et -BB du coté abluminal vers
le mésenchyme [25]. Les souris knock-out pour le
gène de PDGF-B ont un phénotype très sévère pré-
sentant une mort fœtale avec des microanévrysmes
au niveau du cerveau et une hémorragie importante,
secondaire à un manque de péricytes autour des lits
capillaires [56]. Chez ces souris mutantes, les microa-
névrysmes sont accompagnés d’une accumulation de
CE, ce qui confirme le rôle anti-mitoique des péricy-
tes pour les CE dans les vaisseaux stabilisés [41]. Les
souris dont le PDGFRß a été inactivé sont égale-
ment hemorragiques et oedémateuses mais survivent
jusqu’à la période périnatale [83].

Ainsi, le PDGF-BB endothélial a une double
fonction. Il agit d’une manière paracrine, sur le
PDGFRß des péricytes afin de les attirer vers les
capillaires primaires, mais aussi d’une manière auto-
crine par le biais de PDGFRα, afin de ralentir
l’angiogenèse des tubules à stabiliser.

Le récepteur PDGFRα est présent sur des cellules
multipotentes de la CN céphalique à l’exclusion des
précurseurs neuronaux [65]. Les knock-outs de
PDGFRα associent hémorrhagies et œdèmes, sur-
tout au niveau du système nerveux central, à de
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sévères malformations des os craniofaciaux, à des
fusions costales et vertébrales et à des malforma-
tions cardiaques dues au problèmes de remaniement
des arcs aortiques [84, 87]. Les ARNs messagers
pour le PDGF-A et PDGF-C sont, eux, exprimés au
sein des couches épithéliales des arcs branchiaux [1].
Ainsi, il existe des parallèles entre le système des
endothélines et celui des PDGFs puisque les ligands
EDN-1 et PDGF-AA/AB/CC sont exprimés par
l’endothélium (et l’ectoderme) des arcs branchiaux
et leurs récepteurs ET-A et PDGFRα par les cellules
de CN qui entourent cet endothélium. Il est proba-
ble que les rôles de ces systèmes ne soient pas res-
treints à ces types cellulaires, car les EDNs et
PDGFs sont exprimés dans de nombreux autres
types cellulaires ailleurs. Les rôles décrits ci-dessus
reflèteraient plutôt un exemple des interactions
entre épithélium et mésenchyme nécessaires tant
pour l’organogenèse du système vasculaire (construc-
tion et maturation de la paroi) que pour les poumons,
le squelette, ou les reins.

Les angiopoïétines

Les angiopoïétines (1 et 2) et leur récepteur tie-2
sont impliqués dans la communication entre cellules
endothéliales et péricytes. L’inactivation de tie-2
chez la souris entraîne la mort embryonnaire à la mi-
gestation, sans vascularisation du cerveau et avec des
gros vaisseaux dilatés [79]. Chez l’humain, une acti-
vation constitutive de la signalisation effectuée par
tie-2 est responsable d’une malformation veineuse
avec peu de cellules de soutien autour des gros vais-
seaux dilatés [90]. Les péricytes secrètent normale-
ment l’angiopoïétine-1, alors que tie-2 est présent
sur les CE. L’angiopoïétin-1 est nécessaire pour que
les péricytes quiescents restent autour des vaisseaux
mais on ne sait pas encore quel système de dialogue
péricyte-CE serait impliqué. L’antagoniste naturel
de l’angiopoïétine-1, l’angiopoïétine-2, est exprimé
dans les sites de remodelage vasculaire chez l’homme
et chez la souris et induit une régression vasculaire
[59]. En situation hypoxique, les deux angiopoïétines
sont moins transcrites dans les cellules de soutien
vasculaire alors que la synthèse du VEGF est acti-
vée, d’une manière coordonnée, ce qui permet une
nouvelle angiogenèse [46] (figure 2).

La superfamille TGFβ
La famille étendue de cytokines TGFβ (transfor-

ming growth factor) régule de nombreux processus
cellulaires dans tout le règne animal parmi lesquels
on trouve la prolifération, la migration, la différen-
ciation et l’apoptose. Le prototype, TGFβ, est indis-
pensable pour l’hématopoïèse et la vasculogenèse
embryonnaire. L’inactivation de ce gène chez la sou-
ris entraîne la mort à mi-gestation suite à une fusion
excessive des capillaires dans le sac vitellin et à
l’hyperdilatation des grands vaisseaux [21].

Des voies impliquant TGFβ ont également été
rapportées dans la maturation vasculaire tardive.
TGFβ ligand, son récepteur TβRII et son co-récep-
teur endogline sont des partenaires dans une voie de
signalisation qui inhibe l’activation génique effec-
tuée par un récepteur concurrent de TGFβ, Alk5

[68]. Chez l’humain, des mutations dans les gènes
d’endogline ou d’Alk1, un récepteur d’activine, sont
à l’origine des malformations vasculaires des mala-
dies HHT1 et 2 (Hereditary Haemorrhagic Telan-
giectasia) respectivement [63]. Les embryons de
souris chez lesquelles Alk1 est inactivé ont un phé-
notype vasculaire qui ressemble à celles des knock-
out de TGFβ1, de TβRII [71] ou d’endogline [53], ce
qui laisse penser que l’activine pourrait aussi jouer
un rôle physiologique dans la constitution de la paroi
vasculaire. On constate néanmoins que la malforma-
tion vasculaire des maladies HHT humains consiste
en une prolifération excessive du muscle lisse arté-
riel, alors que chez les souris mutantes pour Alk1 ou
pour l’endogline, l’endothélium est plutôt négligé
par les cellules périvasculaires. Dans les cultures de
crête neurale de rat, le TGFβ1 force la différencia-
tion en cellules de muscle lisse à l’exclusion des
autres dérivés de ces cellules multipotentes [80]. Il
est possible que chez les rongeurs mutants de la
famille TGFβ, il manque autour des vaisseaux des
péricytes à recruter, quoique des études fonctionnel-
les de l’activité des récepteurs Alk1 ou endogline
n’ont pas été effectuées in vitro de la même manière.
Chez l’homme, l’absence d’endogline et d’Alk1 per-
met une suractivation de Alk5 par le TGFβ1
ambiant et produit l’effet inverse de prolifération
périvasculaire.

In vitro, l’expression de TGFβ par des péricytes
inhibe la prolifération endothéliale [2, 79]. TGFβ
inhibe la production de angiopoïétine-1 [29], mais on
ne sait toujours pas si cette inhibition se fait par la
voie d’Alk5 ou de TβRII. Il reste pourtant probable
que TGFβ participe à une boucle de régulation et
devient sa propre cible à différents moments de la
vasculogenèse puis de la maturation des parois vas-
culaires.

CONCLUSION

Chronologiquement, la vasculogenèse est la pre-
mière phase de formation des vaisseaux sanguins
embryonnaires. Elle est rapidement suivie par le
processus d’angiogenèse. La différenciation des CE
à partir d’angioblastes se fait pendant et après une
dissémination de ces précurseurs à travers le corps et
notamment dans le mésenchyme qui entoure le cer-
veau et d’autres organes en cours de formation.

L’organisation des premiers tubes endothéliaux
commence d’une manière indépendante d’autres
types cellulaires. Rapidement, une communication
s’établit entre ces tubes et le mésenchyme qui les
entoure. Au niveau céphalique, cette communica-
tion est nécessaire pour la survie et la morphogenèse
appropriée du mésenchyme qui a pour origine les
crêtes neurales ainsi que des vaisseaux dont il
construit les parois abluminales. Quand les vaisseaux
commencent à rassembler leurs composants périvas-
culaires, une signalisation paracrine entre les CE et
les péricytes induit la maturation et la permanence
du vaisseau.

Alors que tous les vaisseaux ont des caractéristi-
ques spécifiques, telles celles qui participent à la
barrière hémato-encéphalique, ils passent inévitable-
ment par des étapes de constitution de la paroi, de
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sécrétion d’une matrice extracellulaire appropriée et
par le remodelage dû aux variations du flux sanguin.
Ainsi, les vaisseaux restent plastiques tout au long
de la vie et maintiennent un certain potentiel adap-
tatif leur permettant de répondre aux modifications
environnementales en réactivant des cascades géné-
tiques employées pendant la vie embryonnaire et
fœtale.
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Background: The acronym CHARGE refers to a non-random cluster of malformations including coloboma,
heart malformation, choanal atresia, retardation of growth and/or development, genital anomalies, and
ear anomalies. This set of multiple congenital anomalies is frequent, despite rare patients with normal
intelligence, and prognosis remains poor. Recently, CHD7 gene mutations have been identified in
CHARGE patients; however, the function of CHD7 during development remains unknown.
Methods: We studied a series of 10 antenatal cases in whom the diagnosis of CHARGE syndrome was
suspected, considering that a careful pathological description would shed light on the CHD7 function
during development. CHD7 sequence analysis and in situ hybridisation were employed.
Results: The diagnosis of CHARGE syndrome was confirmed in all 10 fetuses by the identification of a
CHD7 heterozygous truncating mutation. Interestingly, arhinencephaly and semi-circular canal agenesis
were two constant features which are not included in formal diagnostic criteria so far. In situ hybridisation
analysis of the CHD7 gene during early human development emphasised the role of CHD7 in the
development of the central nervous system, internal ear, and neural crest of pharyngeal arches, and more
generally showed a good correlation between specific CHD7 expression pattern and the developmental
anomalies observed in CHARGE syndrome.
Conclusions: These results allowed us to further refine the phenotypic spectrum of developmental
anomalies resulting from CHD7 dysfunction.

C
HARGE syndrome refers to an association of defects
including ocular coloboma (C), heart disease (H),
choanal atresia (A), retarded growth and/or anomalies

of the central nervous system (R), genito-urinary defects and/
or hypogonadism (G), and ear anomalies and/or deafness
(E). The acronym was coined by Pagon et al,1 but the
syndrome was first reported by Hall2 and Hittner et al.3 Other
diagnostic criteria were proposed based on major/minor
anomalies,4–6 however, all features have variable expression
and can be inconsistent, and many are non-specific. The
incidence of CHARGE syndrome has been estimated to range
from 0.1 to 1.2/100 000 live births with the highest incidence
(to 1/8500 live births) in Canada.7

Recently, Vissers et al reported mutations in the CHD7 gene
in two out of three CHARGE patients tested.8 CHD7 belongs
to a large family of evolutionarily conserved proteins thought
to play a role in chromatin organisation. However, although
more than 200 newborns and infants with CHARGE
syndrome have been described, only two prenatally detected
cases have been reported to date9 10 and nothing is known
about CHD7 function during fetal development. In the

present study, we analysed the coding sequence of the
CHD7 gene in 10 fetuses presenting with clinical features
of CHARGE syndrome, considering that a careful path-
ological description would shed light on the CHD7 function
during development. Clinical features as well as criteria
necessary to establish the diagnosis of CHARGE syndrome
prenatally remained to be defined. In fetuses, coloboma,
heart malformation, choanal atresia, intrauterine growth
retardation, genital anomalies, and external ear anomalies
can be identified, while clinical symptoms such as mental
retardation and deafness have to be replaced by their
equivalents: central nervous system (CNS) anomalies and
semi-circular canal (SCC) hypoplasia or agenesis, respec-
tively. In this series, four of the above major anomalies
were required for the diagnosis of CHARGE syndrome
because the other features, such as growth retardation,
cryptorchidism, or cranial nerve dysfunction, appear only
in the postnatal period. All fetuses underwent autopsy and
a detailed neuropathological examination with close
attention to olfactory bulbs and tracts, brainstem, and
cerebellum.
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We identified a truncating mutation in all cases examined,
confirming the diagnosis of CHARGE syndrome in all 10 fetal
cases and allowing the phenotypic spectrum of the develop-
mental anomalies resulting from CHD7 dysfunction to be
further envisaged. In addition, in situ hybridisation analysis
of the CHD7 gene at different stages of early human
development emphasised the role of CHD7 in the develop-
ment of the central nervous system, internal ear, and neural
crest of pharyngeal arches, and more generally showed a
good correlation between specific CHD7 expression pattern
and the developmental anomalies observed in CHARGE
syndrome.

METHODS
Patients
In all cases, the presence of severe malformations was noted
at ultrasound (US) examination and pregnancies were
terminated in accordance with French law. Detailed clin-
icopathological examination was carried out after parental
consent. For all cases, the diagnosis of CHARGE syndrome
was established either based on US evaluation or after
fetopathological examination using the diagnostic criteria
described above. For all cases, karyotype and CHD7 mutation
screening was performed. Clinical and genetic data are
summarised in table 1 and detailed in supplementary data
available online at http://www.jmedgenet.com/supplemental.

CHD7 sequence analysis
DNA was extracted from frozen tissues according to standard
protocols. We designed 42 primer pairs covering the 37 CHD7
coding exons (exons 2–38) and the corresponding exon-
intron boundaries. Primer sequences and PCR conditions are
available on request. PCR products were purified and directly
sequenced in both directions on an ABI PRISM 3730 DNA
sequencer (Perkin Elmer-Applied Biosystems, Courtaboeuf,
France) using the dye terminator method according to the
manufacturer’s instructions.

In situ hybridisation
Normal human embryos and fetal tissues were obtained after
elective termination of pregnancy in agreement with French
legislation (law no. 94-654 of July 29, 1994), Necker Hospital,
and the National Ethics Committee recommendations (report
no. 1 of May 22, 1984). Embryonic stages were established
according to the Carnegie staging (CS) classification.11 Seven
different embryonic stages (CS9 (d20), CS10 (d22), CS11
(d24), CS12 (d26), CS14 (d33), CS15 (d34), and CS19 (d 47–
48)) as well as two fetal stages (9 and 11 weeks) were
studied. Tissues were fixed in 4% phosphate buffered
paraformaldehyde, dehydrated, and embedded in paraffin
blocks. Five micron thick serial sections were cut. Exon 35
primers were selected for PCR amplification (F: 59-
GCTGTTCCCAAACAACTAGACATTG-39 R: 59-GAAACATTCA-
AGGAAAAGGCAGAG-39). A T7 promotor sequence exten-
sion (TAATACGACTCACTATAGGGAGA) was added at the 59

end of each primer. T7F/R and F/T7R primers allowed the
amplification of sense and antisense templates specific to the
CHD7 gene. Riboprobes labelling, tissue fixation, hybridisa-
tion, and developing were carried out according to standard
protocols,12 as previously described.13

RESULTS
Molecular results
Direct sequencing of the 37 CHD7 coding exons (gene ID
55636, NM_017780, NCBI: http://www.ncbi.nlm.nih.gov/)
detected ten heterozygous truncating mutations. They are
summarised in fig 1. Six were nonsense mutations (cases 2,
3, 4, 7, 8, 10), and four were frameshift mutations predicting
a premature stop codon (cases 1, 5, 6, 9). In seven cases,

parental DNA was studied (cases 1, 3, 6, 7, 8, 9, 10). All
mutations occurred de novo (table 1). None of the 10
mutations was described previously. We found two muta-
tions in exon 2, two mutations in exon 8 (at the end of the
first chromodomain), and two identical mutations in exon 12
(R987X, unrelated cases 2 and 8) located in the SNF2
domain. In patient 5, the mutation (N1371fsX1374) is
located in another domain of CHD7 encoding the putative
helicase domain. None of the remaining mutations involved
known functional domains of the protein.

Clinical analysis
This series of 10 fetuses (seven male and three female)
ranged from 21 to 36 weeks of gestation (WG) with a mean
of 27 WG. Mean paternal age was 35 years and 8 months and
mean maternal age was 30 years and 6 months. Prenatal US
was abnormal in all patients. It disclosed polyhydramnios in
3/8 cases. Although two fetuses (cases 7 and 9) weighed
between the 3rd and the 10th percentile, intrauterine growth
retardation was never observed. All fetuses presented
bilateral and asymmetric external ear abnormalities, semi-
circular canal hypoplasia/agenesis, and arhinencephaly. As
shown in fig 2A, the ears were typically low set, asymmetric
with a small or absent lobe, posteriorly rotated and triangular
or square shaped.

Coloboma was found in seven patients, always affecting
the retina or the choroid segment (fig 2Be,f). Microphthalmia
was observed in two out the 10 cases in accordance with
earlier postnatal observations.14

A congenital heart defect was found in 9/10 patients. These
defects were complex cardiopathies and five involved the
conotruncal region (cases 2, 3, 4, 5, 9). They frequently
included atrial and/or ventricular septal defects, in accor-
dance with earlier postnatal observations.15

Choanal atresia was found in six out of 10 patients (four
bilateral and two unilateral). Among the four remaining
patients, three had a cleft lip and/or palate. In two cases
unilateral choanal atresia was found with a controlateral cleft
palate. In one patient (case 6), neither choanal atresia nor
facial clefting was found.

CHD7 expression during human embryonic
development
At CS9 (d20; not shown), CS10 (d22; fig 3A), and CS11 (d24;
fig 3B), CHD7 is ubiquitously expressed, with a distinct signal
in the neural tube. At CS12 (d26), CHD7 is expressed
throughout the CNS and neural crest-containing mesench-
yme of the pharyngeal arches. At CS14 (d33), CHD7
transcripts continue to be expressed in the cephalic
mesenchyme, pharyngeal arches, and the brain. Expression
is observed in the otic vesicle (fig 3C) as well as in the limb
bud mesenchyme; it is more intense in the spinal cord and
dorsal root ganglia (fig 3D). By CS15 (d34; fig 3E), expression
continues to be intense within the CNS but is restricted to the
dorsal part of the otic vesicle. Interestingly, no expression is
observed in the nasal placode, neural retina, or pharyngeal
endoderm. Also no expression is detected in the heart at any
age. By CS19 (d47), CHD7 is strongly expressed in the neural
retina and rhombencephalon. It is moderately expressed in
the semicircular canals (fig 3F), as well as in the forebrain,
pituitary gland, and olfactory bulbs and nerves (fig 3G).
Expression at 9 weeks of development is localised in the
nasal epithelia (fig 3H), the neural retina, the optic nerve
sheath (fig 3I), and the anterior and median lobes of the
pituitary gland (fig 3J).

DISCUSSION
Here we report on a series of fetuses with CHARGE syndrome
using diagnostic criteria adapted to the prenatal situation. All
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fetuses underwent an extensive necropsy as well as molecular
analysis of the CHD7 gene. This study confirms the role of the
CHD7 gene in CHARGE syndrome and allows delineation of
the antenatal clinical spectrum of CHD7 mutations.

Molecular analysis of CHD7
Nine different mutations were identified in our series. One,
the R987X mutation, was found in two unrelated fetuses
(cases 2 and 8). Interestingly, they differed as regards the
presence of distal arthrogryposis and hemivertebra (case 2),
suggesting that other additional factors might be involved.
However, based on our results and in agreement with Vissers
et al, so far it is not possible to establish a genotype/phenotype
correlation.8 Large deletions and nonsense mutations in the
first exon(s) of the CHD7 gene are observed. This suggests
that haploinsufficiency of the CHD7 gene is probably the
mechanism accounting for CHARGE syndrome. Because the
mutations occurred de novo, genetic counselling can be
reassuring, although germ-line mosaicism can never be
excluded.

Clinical analysis
In our series of fetal CHARGE syndrome, our detailed
clinicopathological evaluation led to the identification of
three constant features: anomalies of the external ear,
agenesis/hypoplasia of the semi-circular canals, and arhi-
nencephaly. Six other features occur frequently (in at least in
seven of 10 cases), namely genital anomalies, thymic
hypoplasia, ocular coloboma, other CNS anomalies (other
than arhinencephaly), choanal atresia/cleft palate, and heart
defect.

Bilateral and asymmetric external ear malformations are
found in all our cases. As shown in fig 2A, typical features are
small, low set, posteriorly rotated ears, with a prominent crux
helix, a small or absent lobe, and a triangular shape as
described previously.5 15 16 In the literature, internal ear
anomalies, ranging from subtle modular deficiencies to
Mondini malformation and semi-circular canal hypoplasia
or agenesis, are classically reported in CHARGE syn-
drome.7 17 18 Semi-circular hypoplasia/agenesis was reported
in up to 100% of cases in the literature.15 18 We confirm these
data and emphasise the necessity of detecting temporal bone
anomalies though cephalic x ray evaluation for the antenatal
diagnosis of CHARGE syndrome (fig 2Ba,b).

Interestingly, among CNS anomalies, arhinencephaly was
found in all our cases (fig 2Bc,d). Arhinencephaly has already
been reported by Lin et al in some patients.19 However, its
frequency among CHARGE patients has not been evaluated
in the literature, aside from the observation of Harvey et al
who found arhinencephaly in 7/7 CHARGE postnatal cases.20

More recently, Chalouhi et al assessed olfactory deficiency in
14 children with CHARGE syndrome. Half of them were
anosmic and the others had olfactory residual function
(hyposmic). All nine MRIs showed anomalies of the olfactory
tracts and bulbs varying from moderate hypoplasia to
complete aplasia, without any relationship between the
radiological and functional results.21 Our systematic neuro-
pathological examination clearly shows that arhinencephaly
is a constant sign of CHD7 mutation. We propose it should be
considered a major sign for prenatal CHARGE diagnosis.
Other CNS anomalies included brainstem and cerebellum
abnormalities. They were observed in eight of our 10 fetuses,
but were reported also in postnatal cohorts.19 20 They are
mainly characterised by hypoplasia of the inferior cerebellar
vermis and brain stem (cases 1, 5, 7) and severe cerebellar
heterotopia (case 8).

The high incidence of heart defects, cleft lip/palate, and
brain anomalies in our series when compared to postnatal
data can probably be explained by detection by US during

pregnancy. It has been shown that CHARGE individuals have
increased mortality due to AVSD defects and cerebellar and
or brain stem anomalies associated with ventriculomegaly.7 15

Moreover, males have been reported to have an increased
mortality compared to females.15 22 This study presents a
population of 10 fetuses with a severe phenotype of CHARGE
syndrome, with an especially high number of complex
cardiopathies, bilateral posterior choanal atresia, tracheo-
oesophageal fistula,22 brain anomalies, and increased repre-
sentation of males (7/10).

Among other frequent features, genital anomalies deserve
special attention: they were found in 7/10 cases. In three
male fetuses, they were noticed only at the histological level
(Leydig cell rarefaction). To our knowledge these histological
anomalies have not been described previously. This may
explain the delay in puberty noticed more in males than
females that has been reported postnatally.23 In a female
fetus, the only genital anomaly found was a hypoplastic
ovary. According to the postnatal literature, female genital
hypoplasia is rare and micropenis or cryptorchidism are more
frequent features observed in males.24

Interestingly, thymus hypoplasia or agenesis was found in
seven of out 10 cases. This contrasts with postnatal cases
where thymic hypoplasia is rarely reported.5 The association
of CHARGE and DiGeorge syndromes reported previously25

suggests a neural crest defect causes the clinical overlap of
both syndromes. Whether the CHD7 gene could be respon-
sible for a CHARGE-DiGeorge association should be tested
further, particularly in postnatal patients.

Our study also confirms that growth retardation is usually
observed postnatally.26 Indeed, no intrauterine growth
retardation was observed in our antenatal series. In addition
to the severe feeding problems related to gastro-oesophageal
reflux and brain stem anomalies, the postnatal growth
retardation could be explained in part by a pituitary gland
dysfunction. Interestingly, CHD7 gene expression is observed
within this tissue during the embryonic period.

It is worth stressing that case 9 presented with ectrodactyly
(fig 2C), which has not been reported so far in CHARGE
syndrome. Four patients presented limb anomalies although
minor, such as clinodactyly. Skeletal (including costal and
vertebral defects) or renal anomalies were found in four out
of 10 cases. Finally, among other features, tracheo-oesopha-
geal fistulas were noticed twice.

Based on our clinicopathological observations, we consider
semicircular canal agenesis as well as arhinencephaly highly
predictive diagnostic criteria of CHARGE syndrome. We
suggest that they should be added to the two major
diagnostic criteria described by Pagon, along with the
external ears malformations. Indeed, four of six major
criteria of CHARGE (coloboma, choanal atresia and/or cleft
lip/palate, heart defect, arhinencephaly, semi-circular canal
agenesis, and external ear anomalies) were necessary and
sufficient for the diagnosis of CHARGE in our series. As
previously suggested for postnatal cases, minor diagnostic
criteria such as facial dysmorphism and renal, digestive, and
skeletal anomalies should also be considered for fetal
CHARGE syndrome in addition to thymus hypoplasia/
agenesis and polyhydramnios. Interestingly, in most patients
with three major features and three minor features proposed
as CHARGE syndrome,5 the presence of arhinencephaly and
semi-circular canals hypoplasia/agenesis was not evaluated
and we recommend brain MRI to assess the diagnosis of
CHARGE syndrome in these cases.

Our study contributes to the development of a strategy for
the diagnosis of CHARGE syndrome during pregnancy.
Indeed, features of CHARGE syndrome detected at routine
US such as hydramnios, heart defects, cleft lip/palate, CNS
anomalies, and kidney or gastrointestinal anomalies are
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common. More specific features would help in the diagnosis
of CHARGE syndrome. We thus propose that focussed US
and/or brain MRI should be performed for the detection of
external ear anomalies, choanal atresia, semi-circular canal
agenesis, and arhinencephaly. This strategy will certainly lead
to a higher prenatal detection rate of CHARGE syndrome.

Embryonic function of CHD7
The CHD7 protein encompasses several important domains.
The chromatin organisation modifier (chromo) domain is a
conserved region of around 50 amino acids found in a variety
of chromosomal proteins that appear to play a role in the
functional organisation of the eukaryotic nucleus.
Experimental evidence shows that the chromodomain is
involved in binding proteins to histone and possibly RNA.
CHD7-like helicase domains are involved in ATP-dependent
unwinding of DNA or RNA duplexes and histone deacetyla-
tion.27 28 Certain CHD proteins have been shown to participate
in nucleosome remodeling deacetylase (NuRD) protein
complexes which interact with sequence-specific DNA-bind-
ing factors for targeted repression.29 Presumably, the CHD7

protein plays an important role in chromatin remodelling
during early development and allows a level of epigenetic
control over target genes expressed in mesenchymal cells
derived from the cephalic neural crest.

We analysed the expression pattern of the CHD7 gene
during early human development. CHD7 is widely expressed
in the undifferentiated neuroepithelium and in mesenchyme
of neural crest origin. Towards the end of the first trimester it
is expressed in dorsal root ganglia, cranial nerves/ganglia,
and auditory, pituitary, and nasal tissues as well as in the
neural retina. Absent from the myocardium, bones of
mesodermal or neural crest origin, and the genital ridge,
CHD7 expression correlates with defects observed in these
tissues because of its presence in neural crest cells investing
the outflow tract of the heart, and in the hypothalamus and
pituitary gland. Endocrine deficiency may occur centrally, in
the differentiation of hypothalamic nuclei secreting soma-
tostatin or GnRH, or more peripherally in the differentiation
of somatotropic or gonadotropic cells of the anterior pituitary.
It could be related to the clinical findings of delayed puberty
in the adolescent and adult population with CHARGE

Figure 1 Schematic representation of the CHD7 mutations identified so far. The mutations found by Vissers et al8 are shown in orange; the ten
nonsense mutations found in our cohort are shown in blue. Circles indicate the nonsense mutations, squares the missense mutations, and triangles the
intron-exon boundary mutations. On the bottom, functional CHD7 domains are indicated: chromodomains in red, SNF2 domain in green, and helicase
domain in yellow.

Figure 2 (A) External ear dysmorphism in the 10 fetuses. Note the characteristic triangular or square shaped and wrinkled morphology in all cases.
(B) Normal (on the left) and pathological (on the right) view of three of the major clinical findings, namely severe semicircular canal hypoplasia (b: fetus
10) on profile babygram at 19 weeks (control at 19 weeks), arhinencephaly (d: fetus 10) at 34 weeks (control at 34 weeks), and retinal coloboma (f:
fetus 1) at 19 weeks (control at 19 weeks). (C) Hands of fetus 9 showing the ectrodactyly. (These images are published with consent.)
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syndrome.23 A major testable hypothesis in this context is
that CHD7 regulates paired domain- or homeobox domain-
containing transcription factor genes important for the
development of the pituitary gland and other organ systems,
such as Hesx1, Otx1, Prop1, Krox20, Pitx2, and Titf1/Nkx2a.

Other regulatory transcription factor genes such as Pax2 or
Tbx1, with multiple expression sites in many affected organ
systems or inductive tissues for these organ anlages, still
remain attractive and non-exclusive CHD7 functional tar-
gets.30

Figure 3 Expression of the CHD7 gene during human embryonic development. Adjacent sections are coloured with haematoxylin/eosin (X), treated
with antisense or sense control riboprobes (X9 and X99, respectively). Ventral to right, rostral to top where applicable. (A) At Carnegie stage (C)10, after
22 days (d) of development, CHD7 is expressed ubiquitously within embryonic but not extraembryonic tissues (cv) seen in transverse section. (B) By
C11, expression is slightly more intense within the rhombencephalon, as observed in parasagittal section, but is not markedly present within the heart
(h), liver (lv), or pharyngeal endoderm (pe). (C) A stronger signal is observed in the entire central nervous system (prosencephalon (pros) and
rhombencephalon (rh)) by C14, including the diencephalic optic stalk (os), and is also seen in the cephalic mesenchyme (ms) of the frontonasal bud and
pharyngeal arches (pa1, pa2). Heart expression is non-existent/not found (h). The otic vesicle, negative at C12 (not shown), expresses CHD7 in its
epithelium (ot) and associated acoustic ganglion (*) at this stage. Parasagittal section. (D) Enlargement of the body of the same C14 embryo shows a
strong CHD7 signal in the spinal cord (sc) and dorsal root ganglia (drg), and a weak signal in limb bud mesenchyme (lb). (E) At C15, CHD7 expression
is restricted to the dorsal epithelium of the otic vesicle (ot), presumptive inner ear, and the rhombencephalon (rh), spinal cord, and dorsal root ganglia
(not shown); however, expression is barely above background in pharyngeal arch mesenchyme (pa1–3) and absent from the neural retina (nr),
pharyngeal endoderm (pe), and nasal placode (np). (F, G) By C19, the CHD7 signal becomes intense in the entire neural retina (nr), rhombencephalon
(rh), anterior pituitary gland (pit), diencephalon (di; in particular the hypothalamus (hyp)), and olfactory nerve (on, arrowhead) and bulb and is more
discrete but distinct within the semicircular canals (scc). Expression continues to be absent from any portion of the heart (h). md, mandible; tg, tongue.
(H) At 9 weeks of development (wd), CHD7 transcripts are detectable in the nasal epithelium (ne) but not within the nasal septum (ns) in coronal section.
(I) Also at 9 wd, CHD7 expression is observed in neuronal soma of the neural retina in contrast to the absence of signal in the axon fascicles at the optic
papilla (pp) and nerve (on), although the outer sheath of the nerve continues to express CHD7 (compare frame C9). (J) An enlargement of the pituitary
gland in the same coronal section as (I) demonstrates continued CHD7 expression within anterior and median lobes at 9 wd.
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CONCLUSION
In the present study we confirmed the predominant role of
the CHD7 gene during fetal development. The clinicopatho-
logical spectrum of CHD7 mutations in a series of 10 fetuses
examined at the anatomical as well as histological level
allowed the phenotypic spectrum of the developmental
anomalies resulting from CHD7 dysfunction to be further
envisaged and led us to propose agenesis of the semi-circular
canals and arhinencephaly as major diagnostic criteria of
CHARGE syndrome. Further postnatal studies are needed to
confirm these data.
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Case 1 (LAS): 

A 35-year-old woman was referred for termination of the pregnancy due to severe 

congenital heart defect, namely pulmonary artery atresia with intact septum, detected 

by US at 20 weeks of gestation (WG). Fetal external examination revealed 

dysmorphic features with bilateral choanal atresia, short nose, anteverted nostrils, 

large mouth with “M”-shaped upper lip, retrognathia and dysplastic ears without lobe. 

In addition a short neck, and abnormally set toes were noted. The X-ray examination 

revealed semi-circular canal agenesis as well as splitting of the lumbar vertebrae. 

Autopsy confirmed the heart defect and disclosed thymic hypoplasia, bilateral retinal 

coloboma (Fig 1B,f), and CNS gross abnormalities (arhinencephaly, thick corpus 

callosum, ponto-cerebellar hypoplasia involving mainly the inferior vermis). 

Histological study revealed immature lateral geniculate body with hypoplastic cranial 

nerve nuclei of predominantly the VII
th

 and VIII
th

 nerve. The karyotype was normal, 

46,XY. No 22q11.2 deletion was detected using Fluorescence In Situ Hybridization 

(FISH). 

Case 2 (BOS): 

At 22 WG during the second pregnancy of a 26 year-old mother, US examination 

revealed cleft lip, congenital heart defect and hydrocephaly. Pregnancy was 

terminated at 21 WG. Fetal examination showed an eutrophic fetus with distinctive 

facial features including hypertelorism, bilateral microphthalmia, right cleft lip/palate, 

short nose, microretrognathia, and short, asymmetric dysplastic ears without a lobe. 

The neck was short. In addition, distal arthrogryposis was noted. Semi-circular canal 

agenesis and the presence of T2 hemivertebra were depicted by X-ray. Visceral 

examination confirmed the heart defect with type I truncus arteriosus. In addition, it 

revealed complete thymic agenesis. Neuropathological examination showed the 

absence of olfactory bulbs (arhinencephaly), moderate ventricular enlargement and 

cerebellar hypoplasia. Focal retinal dysplasia with colobomatous cysts was also found. 



Amniocentesis revealed a normal karyotype 46,XY. Using FISH no 22q11.2 

microdeletion was detected. 

Case 3 (GAL): 

It is the fourth pregnancy of a 32 year-old mother an increased nuchal translucency (4 

mm) was noted on first trimester (11 WG) US examination. The second trimester US 

evaluation disclosed multiple malformations leading to pregnancy termination at 23 

WG. X-ray showed bilateral semi-circular agenesis. Fetal examination showed facial 

dysmorphism including left microphtalmia, asymmetric dysplastic ears, and short 

neck with left choanal atresia. Autopsy disclosed aortic dextroposition, ventricular 

septal defect (VSD), and persistent left superior caval vein. CNS examination revealed 

arhinencephaly with moderate hydrocephaly and retinal coloboma. The brain stem and 

cerebellum were unremarkable. Amniocentesis revealed a normal karyotype, 46,XY. 

Using FISH no 22q11.2 microdeletion was detected. 

Case 4 (BAR) : 

A 27-year-old woman was referred for severe malformations depicted by US 

examination, including heart defect, cleft palate, and short ears. Pregnancy was 

terminated at 23 WG. Fetal examination revealed an eutrophic male fetus presenting 

brachycephaly, hypertelorism, bilateral labio-palatine complete cleft, asymmetric 

dysplastic ears, limb malformations (quadrilateral hypoplastic nails and short halluces) 

with micropenis. X-ray examination revealed severe bilateral semi-circular canal 

hypoplasia. Autopsy disclosed a type II truncus arteriosus with ventricular septal 

defect (VSD), bilateral hydronephrosis and tubular stomach. Histological examination 

showed decreased Leydig cell population in both testicles. Neuropathological findings 

included left olfactory bulb agenesis and retinal coloboma. The brain stem and 

cerebellum were well developed. Karyotype was normal, 46,XY. No 22q11.2 deletion 

was detected using FISH. 

Case 5 (GOD) : 



A 24-year-old woman was referred at 28 WG for heart defect, dysplastic ears, 

hypoplastic thymus and vermis hypoplasia detected by US. Fetal X-ray disclosed 

agenesis of semi-circular canals. The pathological examination of this eutrophic male 

fetus revealed facial dysmorphism with broad nose tip, anteverted nostrils, asymmetric 

small dysplastic ears, retrognathia, short neck and cleft palate. Visceral malformations 

included conotruncal heart defect with aortic atresia and ventricular septal defect, 

thymic agenesis, and left pulmonary isomerism. Histological examination revealed 

decreased Leydig cell population. Neuropathological examination showed bilateral 

arhinencephaly and inferior vermis hypoplasia. Karyotype was normal, 46,XY. No 

22q11.2 deletion was detected using FISH. 

Case 6 (LAN): 

A 31 year-old woman was referred because of multiple fetal malformations detected 

on US. The pregnancy was terminated at 29 WG for heart and brain malformations 

and abnormal ears. X-ray examination revealed the absence of semi-circular canals 

and a left 13th additional rib. External examination of this eutrophic male fetus 

revealed brachycephaly with flat occiput, hypertelorism, hypoplastic alae nasi, malar 

hypoplasia, microstomia, micrognathia, asymmetric and dysplastic ears, and short 

neck. Fetal autopsy confirmed the atrio-ventricular septal defect with a right retro-

oesophageal subclavian artery, and disclosed left cryptorchidism with increased 

testicular connective tissue. CNS abnormalities were bilateral agenesis of olfactory 

bulbs, ventricular enlargement and posterior partial corpus callosum agenesis. 

Histology demonstrated an increase of connective tissue in the testicles. Karyotype 

was normal, 46,XY. No 22q11.2 deletion was detected using FISH. 

Case 7 (COQ): 

This was the first pregnancy of a young non-consanguineous couple (respectively 37 

and 39 year-old mother and father). At 22 WG, US suspected cleft lip/palate. At 25 

WG, the presence of a large facial clefting was confirmed. Additionally, bilateral renal 



hypoplasia, small stomach, and a single umbilical artery were depicted. The 

pregnancy was terminated at 29 WG. X-ray examination showed semi-circular canal 

agenesis and the absence of ossification of the 12
th

 rib pair. The female fetus showed a 

moderate growth retardation (10
th

-20
th

 percentile), facial asymmetry with right 

choanal atresia, left cleft lip/palate, dysplastic ears and short neck. Visceral 

malformations included ectopic and hypoplastic thymus, congenital heart 

malformation with atrioventricular septal defect (AVSD) and hypoplastic aortic arch, 

single umbilical artery, bilateral renal hypoplasia, and small ovaries. 

Neuropathological examination revealed arhinencephaly with brain stem and vermian 

hypoplasia, and colobomatous retinal cysts. Karyotype was normal, 46,XX. No 

22q11.2 deletion was detected using FISH. 

Case 8 (BEL) : 

This case is the first pregnancy of a 31 year-old mother. First trimester (11 WG) US 

detected fetal hygroma. At the second trimester, US as well as Magnetic Resonance 

Imaging (MRI) showed multiple malformations including cleft lip, thymic hypoplasia, 

bilateral microphthalmia and heart defect. Pregnancy was terminated at 29 WG. X-ray 

examination of the fetus showed severe hypoplasia of the semi-circular canals. Fetal 

examination showed an eutrophic male fetus presenting bilateral choanal atresia, 

blepharophimosis, an asymmetric microphthalmia (right > left) with right 

microcornea, asymmetric dysplastic ears and phimosis. Visceral malformations 

included right heart hypoplasia, atretic pulmonary artery with an intact septum, thymic 

hypoplasia and absent ossification of the 12
th

 rib. Neuropathological examination 

revealed bilateral retinal coloboma and arhinencephaly with a well-developed 

brainstem and cerebellum but severe cerebellar heterotopias. The karyotype was 

normal, 46,XY. No 22q11.2 deletion was detected using FISH. 

Case 9 (RAB): 



This was the second pregnancy of a young non-consanguineous couple (28 year-old 

parents). A previous spontaneous abortion occurred at 12 WG (unknown cause). US at 

24 WG revealed short nasal bones, frontal oedema, and suspected heart malformation, 

which was confirmed by US at 32 WG. In addition, retrognathia and polyhydramnios 

were observed. The pregnancy was terminated. Cranial X-ray examination revealed 

semi-circular canal agenesis. Fetal examination disclosed bilateral choanal atresia and 

craniofacial dysmorphic features including microcephaly with small anterior fontanel, 

frontal bossing, hypertelorism, broad nasal bridge, large mouth with “M” shaped 

upper lip, microretrognathia, and abnormal external ears. In addition, upper limb 

malformations with bilateral ectrodactyly were observed (Fig. 1C). Visceral 

malformations included Fallot’s tetralogy with a right retro-oesophageal subclavian 

artery, severe thymic hypoplasia, abnormal left pulmonary segmentation, oesophageal 

atresia (type III), and a small supernumerary spleen. Neuropathological examination 

showed the absence of olfactory bulbs. Brain stem and cerebellum were 

unremarkable. The karyotype was normal, 46,XX. No 22q11.2 deletion was detected 

using FISH. 

Case 10 (DER) : 

In a 31-year-old woman, severe polyhydramnios, vermis hypoplasia, thin brainstem 

and ventricular dilatation were detected on US examination during the second 

trimester of the pregnancy. Brain malformations were confirmed by MRI and the 

pregnancy was terminated at 36 WG. Fetal examination showed a female fetus with a 

weight between the 3
rd

 and the 10
th

 percentile. Length and head circumference were 

around the 50
th

 percentile. Hypoplasia of the semi-circular canals was the only 

significant radiologic feature (Fig 1B,b). The fetus presented bilateral choanal atresia, 

asymmetric dysplastic ears and retrognathia. Visceral malformations included thymic 

hypoplasia, ventricular disequilibrium with right retro-oesophageal subclavian artery, 

oesophageal type III atresia with tracheo-oesophageal fistula and left hydronephrosis. 



Neuropathological examination revealed arhinencephaly (Fig 1B,d) and retinal 

coloboma. The brain stem and cerebellum were well developed, except for an ectopic 

olivary nucleus in the medulla. Karyotype was normal, 46,XX. No 22q11.2 deletion 

was detected using FISH. 
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Molecular Bases of Human Neurocristopathies
Heather C. Etchevers,* Jeanne Amiel and Stanislas Lyonnet

Introduction

Neural crest cells (NCC) form in the human embryo during the third to fifth weeks of
pregnancy, within the neural folds that delineate the neural plate from the ectoderm.
During the fusion of the neural folds, which ultimately yields a tube that will become

the central nervous system (CNS), NCC detach and become mesenchymal. They migrate
throughout the body, integrating nearly every organ.

NCC derivatives include the neurons and support cells of the entire peripheral nervous
system (sensory and autonomic), adrenergic and other endocrine cells, and all pigment cells
except those arising from the retina (reviewed by Le Douarin and Kalcheim1). In the head, in
addition to the cell types mentioned above, NCC differentiate into connective and struc-
tural tissues such as dermis,2,3 bones and cartilage of most of the skull3,4 and muscle
tendons.5,6 They also infiltrate and are essential for the function of glandular and vascular
elements such as the thymus, the thyroid and parathyroid glands, the conotruncal region of
the heart and the entire branchial vascular sector,7-9 giving rise to connective, adipose and
smooth muscle cells.

The astonishing diversity of NCC derivatives has led to this population being nicknamed
the “fourth embryonic germ layer.” The fact that NCC were known to exist only in the embryo
precluded their being perceived as a true stem cell type. Recently, however, it was demonstrated
that the enteric nervous system of the adult rat contains neural crest stem cells that self-renew
and remain oligopotent.10 Avian melanocytes are able to transdifferentiate into glial cells,
neurons or smooth muscle-like cells in vitro, also implying the long-term existence of multipotent
progenitors.11 It is thought that NCC derivatives are generated through progressive restriction
of developmental potential.12,13

The ultimate choice in phenotype made at a given site of differentiation is the result of a
combination of extrinsic factors in the embryonic microenvironment and cell-intrinsic properties
that modify its responsiveness to these external influences. The former have been documented
through observation of the disruption of neurotrophic growth factors and receptor genes that
result in deficiencies of selected subsets of NCC derivatives.14,15 Both their migration
pathways and fate are imposed on NCC by surrounding tissues as they leave the neural
primordium; these are not dependent on intrinsic properties regionally distributed along the
neuraxis, as had initially been presumed. For instance, truncal NCC transplanted at the vagal
level colonize the gut and differentiate into enteric ganglia in which neurons synthesize acetyl-
choline rather than catecholamines, as they would have done normally at the truncal level.3 A
notable exception, the cephalic NCC contributing to the branchial arch-derived facial skeleton
has some intrinsic positional information and commitment,16,17 apparently imparted by the
rostral endoderm before and during their emigration from the neural folds.18,19
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Definition of a Neurocristopathy
Abnormal migration, differentiation, division or survival of NCC lead to organ and tissue

dysplasias with highly diverse clinical and pathological features. Referring to their proposed
common embryological origin, Bolande first introduced the concept of “neurocristopathy” in
order to highlight the potential for shared pathogenetic mechanisms.20

Nuanced definitions of a “neurocristopathy” have been made due to the great diversity in
NCC derivatives and the organs in which they play an integral functional role over time. One
can attempt to remain “purist,” including only those clinical entities where direct derivatives of
the neural crest are affected. However, in order to be useful, the term neurocristopathy over the
last thirty years has also been applied to include entities where abnormal NCC affect the
development of other tissues not themselves solely derived from NCC, such as the heart or the
thyroid gland. Unfortunately, there have been inconsistencies in the inclusion (neurofibroma-
tosis type II) or exclusion (craniostenoses) of many pathologies. At the time any given disease
has been termed a neurocristopathy, its classification was based on a corpus of knowledge that
has been subject to enormous change with the advent and renewal of experimental molecular
embryology.

The situation has hardly been clarified by molecular studies. In those rare cases where truly
only NCC derivatives are affected and the responsible gene is identified, it usually turns out to
be an evolutionarily conserved gene with distinct known functions in separate organ systems
(or “fields”) in humans or animals. Early developmental genes seem to affect multiple germ
layers and moments in cellular existence through an evolutionary sort of functional recycling
known as “cooption” (reviewed in ref. 21). Why are NCC more vulnerable than other cell
types? Like many other embryonic cell types, they undergo all the processes of
epithelial-mesenchymal transition, proliferation, migration, a drawn-out period of differentiation
with maintenance of plasticity, niche occupation and apoptosis. Perhaps the adaptability of the
evolutionarily recent NCC,22 useful for making wildly diverse head and body appendices,23 is
its Achilles’ heel with respect to pathogenesis.

Certain disorders have not been included as neurocristopathies below. In particular, we
have excluded those that arise from functional deficiencies in differentiated NCC. Thus,
although oculocutanous albinism does indeed affect neural crest-derived melanocytes, it is less
directly a result of their development but rather of their final metabolic function (to synthesize
melanin). We have also, with more difficulty, left aside those clinical entities largely involving
fields in which NCC play no part during development. These would comprise the limb,
kidney, and liver, all of which can be associated with defects in NCC-derived tissues (e.g., von
Hippel-Lindau syndrome with pheochromocytoma; tuberous sclerosis syndrome with
hypopigmented or café-au-lait macules). The aim is to restrict the definition to those entities in
which a NCC defect is causative, excluding secondary phenomena. Simple craniostenoses (cran-
iosynostoses), for example, have not been included because they appear to represent defects in
osteoblast function and are also associated, in syndromic forms, with bone problems in the
limbs, ribs or vertebrae, none of which have a NCC component. One exception,
craniofrontonasal syndrome, will be mentioned among the gene cascades involved in NCC
migration.

Here, we attempt to describe which entities we consider to be neurocristopathies and why,
based on recent advances in basic and clinical research.

Clinical Appreciation of Neurocristopathies
When considering a patient with multiple congenital birth defects, it is clearly useful to

take an embryological point of view in order to find an underlying common cause. NCC
colonize four compartments unequal in size: the skin, the peripheral nervous system, some of
the endocrine system and a pharyngocephalic pole. Anomalies affecting any of these compart-
ments can be considered to arise from one initial field, and warrant closer examination of the
other compartments. Table 1 presents isolated versus syndromic neurocristopathies on one axis
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and the useful distinction between cancers or malformations on the other. Naturally, the
syndromic neurocristopathies may have both cancerous and malformative components. It is
truly rare among these rare diseases, to see a “pure” syndromic neurocristopathy. However, the
concept of “neurocristopathy” is useful to the clinician in orienting their approach to the
patient by grouping apparently divergent and unrelated signs under one umbrella.

Isolated Neurocristopathic Tumors
Although the following tumors occur sporadically in many cases, all have been demonstrated

to be transmitted in families to some extent. They also all occur in syndromic forms, with one
another or with the neurocristopathic malformations. In particular, neuroblastoma and medullary
thyroid carcinoma occur in conjunction with Hirschsprung disease, as discussed below.

Neuroblastoma (MIM 256700) is the most common extracranial childhood solid tumor,
and the one with the highest rate of remission (around 90%; reviewed in ref. 24). Neuroblastomas,
derived from sympathetic components, as schwannomas are from sensory components, possess
phenotypic markers common to components of the peripheral nervous system. Histologically,
they consist of cells that resemble undifferentiated NCC mesenchyme and, upon tumor
regression, acquire nonmalignant characteristics resembling neurofibromas or ganglioneuromas.

Medullary thyroid carcinomas (MTC, MIM 155240), derived from calcitonin-producing
C cells of the thyroid gland, exist in both sporadic (~75%) and familial forms (~25%). MTC
cells inappropriately (over) express peptides such as serotonin, vasoactive intestinal peptide or
calcitonin, leading to hypercalcemia among other effects. Histologically, they resemble carci-
noid tumors, which occur usually in endodermally-derived organs such as the digestive or
pulmonary tracts and are diagnosed at all ages.

Pheochromocytomas (MIM 171300) are derived from chromaffin cells of the adrenal
medulla and also cause systemic effects such as sweating, tachycardia and hypertension (with
subsequent effects on, for example, the retinal or cerebral vasculature), arising from an increase
in epinephrine and norepinephrine production. Both sporadic and familial forms exist. Pheo-
chromocytoma is a hallmark of a number of neurocristopathic syndromes discussed below, as
well as of von Hippel-Lindau syndrome (VHL; MIM 193300), in some forms in conjunction
with renal carcinomas. Paragangliomas (MIM 168000) arise in the complementary,
nonchromaffin chemoreceptors of the head and neck region. Tumors of the glomus jugulare
and carotid body are often seen in this heterogeneous familial neurocristopathy with complex
inheritance—at least one of the genes is subject to imprinting and is only transmitted from the
paternal line.25

The cutaneous NCC cancers, melanoma (MIM 155600) and Merkel cell (MC) carcinoma,
are both locally and systemically aggressive in behavior. Malignant melanoma arises in melano-
cytes that are one of the latest-differentiating and most widely disseminated NCC phenotypes,
and can occur in any part of the skin, even those never exposed to the sun (for instance, the
nasal epithelium or the genitals). Childhood melanoma, while rare, carries one of the highest
rates of distant metastasis among cancers. In contrast, around half of MC carcinomas are
localized in the head and neck region, with mostly limited spread,26 and they arise preferentially in
the dermis of elderly adult patients.27 MC carcinomas are occasionally associated with neu-
rofibromatosis type 128 or breast and ovarian adenocarcinomas, and more frequently with
squamous cell carcinomas.26 Recently, the controversial hypothesis that mammalian MCs,
commonly found in the basal epidermis, are in fact NCC derivatives was supported by experi-
mental evidence.29 MC cells, in synaptic-like contact with sensory nerve terminals in the skin,
appear to have a local neuroendocrine or mechanosensory function, much as melanocytes are
postulated to have had earlier in evolution.30

Isolated Neurocristopathic Malformations
These include many of the most frequent birth defects such as Hirschsprung disease (1 in

5000 births), cleft lip and/or palate (1 in 1000 births), conotruncal heart malformations
involving (or not) the great arteries (1 in 500 births), and congenital nevi (1 in 100 births).
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Indeed, such malformations overlap to some extent with neural tube closure defects (1 in 1000
births) by virtue of a segmentally defective specification or fusion of the neural folds from
which NCC emigrate. Isolated defects in neural tube closure are not considered to be
neurocristopathies as they are in and of themselves a very heterogeneous group of disorders that
derive from an embryological event preceding that of NCC specification.31 Nonetheless, as
will be discussed in the section devoted to genetic cascades, common molecular origins can be
at the root of both neural tube closure defects and various neurocristopathies.

Hirschsprung disease (HSCR), or aganglionic megacolon, is a congenital malformation
characterized by the absence of enteric ganglia along a variable length of the intestine. It was
first reported by Harald Hirschsprung in 1886. The enteric ganglia, components of the auto-
nomic nervous system, are organized in two concentric rings throughout the gut wall: the outer
myenteric plexus (Auerbach plexus) and the inner submucosal plexus (Meissner plexus). The
neurons making up these ganglia include: sensorineurons detecting information from the gut,
interneurons processing the sensory information, and motor neurons that provide innervation
to smooth muscles regulating the contractility of the gut as well as the secretory activity of
glands. In the late 1940’s, a surgical procedure was developed in which the aganglionic segment
of the bowel is resected by an abdomino-anal pull-through (reviewed in ref. 32). This previ-
ously fatal disorder became surgically treatable and enabled the survival of patients and the
discovery of familial transmission of HSCR.33

Orofacial clefting arises from defects in the fusion of the palatal shelves, derived from the
maxillary portion of the first pharyngeal arch. Mesenchymal NCC derived from the mid- and
hindbrain migrate toward the endoderm and into the five bilaterally paired arches. The mesen-
chyme surrounds transitory pairs of aortic arch arteries that circumvent the pharynx and act as
organizing centers for the structures of the lower face and neck.

The heart is essentially a mesodermal derivative. However, the NCC that enter the most
caudal pharyngeal arches encase both the arteries (the left part of the fourth pair will persist as
the aorta) and the cardiac tube in its conotruncal extremity.3 Within the wall of the outflow
tract, thickenings of this mesenchyme will lead to separation of the aorta from the pulmonary
trunk, formation of the semilunar valves and completion of ventricular septation. Experimen-
tal removal of NCC lead to defects in all of these processes8 as well as atrophy of the thymus
and parathyroid glands.7 Clonal expansion of a single defective NCC precursor in the cardiac
region may lead to the individualized, spatially restricted phenotypes.

A similar mechanism could explain how congenital melanocytic nevi arise in any area of the
skin at a frequency decreasing inversely proportionally to surface, from 1 in 100 births for the
smallest lesions, to an estimated 1 in 20,000 for surfaces over 100 cm.2 All melanocytic nevi are
characterized by an abnormally high and localized concentration of melanocytes, and are often
associated with hyperpilosity and variable coloration. The giant congenital melanocytic nevi
(GCMN, OMIM 137550) can also present with nodules, absent or deficient skin annexes and
abnormal dermis.

Complex Tumor Predisposition Syndromes
These include neurofibromatosis I (NF1), the multiple endocrine neoplasias (MEN) type

2A and 2B, familial medullary thyroid carcinoma (FMTC), Sturge-Weber syndrome and neu-
rocutaneous melanosis.

NF1, also known as Recklinghausen disease (MIM 162200), is one of the most common
neurocristopathies with a prevalence of 1/2000 to 1/3000 live births. Both Schwann cells and
melanocytes are affected, undergoing abnormal proliferations that give rise to neurofibromas
and “café au lait” spots. Neurofibrosarcomas as well as leukemia, and Wilms tumors in tissues
not themselves derived from NCC, can also occur in patients. NF1 is an autosomal dominant
disorder with high penetrance. However, since the disease is expressed in a broadly variable
manner, clinical criteria for diagnosis need to be searched for carefully. Lisch nodules, visible as
spots on the iris (colored by NCC-derived melanocytes), are one of the most penetrant features
after the age of 20.
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Familial medullary thyroid carcinoma (FMTC, MIM 155240), MEN type 2A (MEN2A,
MIM 171200) and type 2B (MEN2B, MIM 162300) are also transmitted with autosomal
dominant inheritance. MEN2A is characterized by hyperplasia of the calcitonin-producing
parafollicular cells of the thyroid with subsequent neoplastic progression to medullary thyroid
carcinoma (MTC) as described earlier, but also pheochromocytoma and parathyroid hyperpla-
sia. Patients affected with MEN2B can also present with oral neuromas, marfanoid habitus and
hyperganglionosis of the hindgut (contrasting with HSCR), although the clinical presentation
can be similar to functional intestinal obstruction syndromes. The penetrance of MEN2 is
age-related; only about 70% of MEN2A gene carriers will present with MTC by the age of 70
years, but precursor C-cell hyperplasia is detectable in almost all carriers prior to 40 years of age.

Sturge-Weber syndrome (around 1 in 50000 births, MIM 185300) merits discussion as it is
not usually included as an example of a neurocristopathy, yet it is the only one of the classical
“phakomatoses” (a term invented by Van der Hœve in 1921, not yet fallen into complete
disuse) that from an embryological viewpoint can be unequivocally attributed to a simple
NCC defect. Symptoms include a facial capillary hemangioma along the trigeminal nerve,
with soft tissue or skeletal hypertrophy beneath it; leptomeningeal angioma with occasional
calcification in the underlying cortex and ensuing epilepsy or hemiparesis; ocular choroid an-
gioma with ipsilateral glaucoma due to permeable blood vessels. It is now understood that one
discrete segment of cephalic NCC gives rise to vascular wall components within all affected
areas,9,34 and a single event in a clonal precursor could find itself expressed in a somatically
mosaic manner.35 The same mechanism may be responsible for the association of neurocutane-
ous melanosis (melanocytic tumor of the meninges) with congenital giant nevus of the skin
and, more infrequently, with malignant melanoma.

Complex NCC-Related Malformative Syndromes
Waardenburg syndrome (WS), a genetically heterogeneous condition, combines pigmen-

tary anomalies and sensorineural deafness. At a frequency of 1 in 50,000 live births, WS ac-
counts for 2-5% of all congenital deafness. The condition results from the absence or reduction
of melanocytes in both the skin and the stria vascularis of the cochlea.10 WS is clinically and
genetically heterogeneous (OMIM 193500, 148820 and 193510). The combination of HSCR
with WS defines the WS4 type (Shah-Waardenburg syndrome, OMIM 277580). The addition
to of a Peripheral demyelinating neuropathy and a Central dysmyelinating leukodystrophy to
Waardenburg and Hirschsprung disease (WS4) define the PCWH syndrome36 (MIM 609136).
The close lineage relationship between glial cells and melanocytes11 also justifies grouping
these diverse clinical entities together on a continuum, pointing at the defective specification
of a single NCC precursor type.

CCHS (Ondine’s curse, MIM 209880) is a life-threatening disorder primarily manifesting as
sleep-associated respiratory insufficiency and markedly impaired ventilatory responses to hyper-
capnia and hypoxaemia.37 The autonomic nervous system is affected: from the level of its central
control in the hindbrain through the vagus nerve and out to the peripheral, NCC-derived target
ganglia. In addition, HSCR or tumors such as neuroblastoma, ganglioneuroblastoma and
ganglioneuroma are noted in 20-30% and 5-10% of CCHS patients respectively (e.g., see ref. 38).

Most of the other malformative syndromes markedly affect the cardio-cephalic pole (Table
1). Facial dysmorphy is a distinguishing feature, as expected from the enormous contribution
of NCC to the face and brain vault. However, it has only recently been acknowledged that
pituitary development, like that of the heart outflow tract, depends on the presence and par-
ticipation of cephalic NCC,39 although the final contribution of these cells to the gland is
negligible. Thus, syndromes that entail growth or genital abnormalities in addition to more
obvious effects on NCC derivatives should be considered as potential neurocristopathies. One
example is that of Allgrove syndrome (MIM 231550), an autosomal recessive disorder also
known as AAA syndrome for alacrima, achalasia of the esophagus due to neurological impair-
ment and adreno-corticotropic hormone (ACTH)-resistant adrenal failure. Bamforth-Lazarus



7Molecular Bases of Human Neurocristopathies

syndrome (MIM 241850) associates cleft palate and choanal atresia with thyroid agenesis.40 A
NCC contribution to the connective tissue of the thyroid gland has been recognized for
decades3,7 but is not commonly evoked.

Gene Cascades Implicated in Human Neurocristopathies
Breaking down the timeline of NCC development into stages is one approach to consider-

ing the abundant molecules that are now known to be involved in or suspected in pathogenesis.

Neural Crest Induction
Specification of the neural folds is the subject of many excellent reviews41-43 and ongoing

research,44-47 going beyond the scope of this chapter. To resume, the roles of signaling molecules
such as members of the Wnt,45,46,48,49 fibroblast growth factor (FGF), bone morphogenetic
protein (BMP) or hedgehog families and their control by gradients of retinoic acid and Hox
transcription factor expression have been underlined. Several transcription factors are also
expressed during early induction of the vertebrate neural crest lineage in the neural folds or
surrounding tissues such as members of the highly conserved families Slug/Snail, Sox, Fox, and Pax.

To date, germline mutations of the PAX3,50 MITF,51 SNAI2 52 and SOX1053 genes have
been demonstrated to be directly involved in pure syndromic neurocristopathies (WS1-4
respectively), suggesting that impairment of the other pathways may be lethal or, as yet, unrec-
ognized. The spontaneous mouse mutation in Pax3,54 known as Splotch for its heterozygous
coat color defect, leads to hindbrain exencephaly in homozygous mice; it was somewhat of a
surprise to find that its later role in glial/melanocyte lineage determination was predominant in
human disease, rather than its earlier one in NCC specification (similar findings for SNAI2
and SOX10, see below). Although no PAX3 mutations have been demonstrated in isolated
neural tube closure defects to date, some WS1 patients do have spinal neural tube defects and
WS3 patients, skeletal muscular abnormalities.55 SNAI2, also known as SLUG, is mutated in
WS2D52 and piebaldism56 but also is possibly an oncogene in an activated form.57 Expressed
in premigratory and migrating NCC throughout the vertebrate subclass, Snail or Slug
homologues are also found in the gastrulating mesoderm and are generally implicated in the
epitheliomesenchymal transition.58

NCC Migration
The term migration describes a long period in NCC existence: from the epithelio-mesenchymal

transition and delamination from the neural folds, to reorganisation of the cytoskeleton, to mi-
gration along pathways constrained by anatomy and the local extracellular matrix (ECM) in
order to encounter appropriate orientation and differentiation cues. The mechanism of migra-
tion has an intrinsic component, represented by the capacity of a given NCC to respond to its
environment by physical changes and motility, and an extrinsic component, represented by the
extracellular matrix or cellular/anatomical environment through which NCC migrate. It is the
latter component that may explain the neurocristopathic contribution to other malformation
syndromes (e.g., basal cell nevus syndrome), in particular those involving the cardio-cephalic pole
and its abundant NCC-derived mesenchyme.

The noncanonical Wnt signaling pathway, exemplified physiologically by Wnt11 and its
receptor Fz7 in mouse,46 the EphB-ephrinB,59 neuregulin-ErbB60 and endothelin-endothelin
receptor61 families of ligands and their receptors, are known to be involved in initiating and
maintaining migratory behavior of NCC. The transcription factors Sox9, then Slug/Snail,
FoxD3 and Sox10 appear to control the cell-autonomous acquisition of a migratory pheno-
type.47,62 The composition of the ECM in fibronectin63,64 and vitronectin65 and appropriate
collagens66,67 and laminins68,69 is certainly relevant to the direction of integrin-bearing NCC
as they distance themselves from the neural tube and enter either the dorsoventral or the
dorsolateral compartment pathways. Integrins, like both Eph receptors and their ephrin
ligands, effect changes in the cytoskeleton upon binding their substrates. Their specificity is



Neural Crest Induction and Differentiation8

Ta
bl

e 
2.

K
no

w
n 

ge
ne

s 
or

 lo
ci

 in
 n

eu
ro

cr
is

to
pa

th
ie

s

C
hr

om
os

om
al

Pa
th

ol
og

y
M

IM
Tr

an
sm

is
si

on
G

en
e

Lo
ca

liz
at

io
n

Sp
on

ta
ne

ou
s 

M
ou

se
 M

od
el

 o
r 

Tr
an

sg
en

ic
 (

+
)

Pi
eb

al
di

sm
17

28
00

A
D

K
IT

4q
12

W
hi

te
-s

po
tti

ng
, +

M
el

an
om

a
15

56
00

A
D

1p
36

M
el

an
om

a
15

56
00

S
N

R
A

S
1p

13
.1

+
M

el
an

om
a

15
56

00
S

B
R

A
F

7q
34

+
M

el
an

om
a

15
56

00
A

D
, S

C
D

K
N

2A
9p

21
+

M
el

an
om

a
15

56
00

A
R

, S
M

C
1R

16
q2

4.
3

Ta
w

ny
, r

ec
es

si
ve

 y
el

lo
w

, t
ob

ac
co

-d
ar

ke
ni

ng
, s

om
br

e ,
 +

M
el

an
om

a
15

56
00

A
D

, S
C

D
K

4
12

q1
4

+
W

S1
19

35
00

A
D

PA
X

3
2q

35
Sp

lo
tc

h,
 +

W
S3

19
35

00
A

R
PA

X
3

2q
35

Sp
lo

tc
h,

 +
W

S2
A

19
35

10
A

D
M

IT
F

3p
14

M
ic

ro
ph

th
al

m
ia

, v
iti

lig
o,

 w
hi

te
, r

ed
 e

ye
d 

w
hi

te
, b

ro
w

ni
sh

, +
W

S2
B

60
01

93
A

D
1p

W
S2

C
60

66
62

?
8p

23
W

S2
D

60
88

90
A

R
SN

A
I2

8q
11

+
W

S4
27

75
80

A
R

ED
N

R
B

13
q2

2
Pi

eb
al

d,
 p

ie
ba

ld
 le

th
al

, +
W

S4
27

75
80

A
R

ED
N

3
20

q1
3

Le
th

al
 s

po
tti

ng
,+

W
S4

27
75

80
A

D
SO

X
10

22
q1

3
D

om
in

an
t m

eg
ac

ol
on

, +
H

SC
R

14
26

23
C

I*
R

ET
10

q1
1.

2
+

H
SC

R
14

26
23

C
I

G
D

N
F

5p
13

.2
+

H
SC

R
14

26
23

C
I

A
R

A
F

X
p1

1.
3

+
H

SC
R

14
26

23
C

I
N

TN
19

p1
3.

3
+

H
SC

R
14

26
23

C
I

ED
N

R
B

13
q2

2
Pi

eb
al

d,
 p

ie
ba

ld
 le

th
al

, +
H

SC
R

14
26

23
C

I
ED

N
3

20
q1

3
Le

th
al

 s
po

tti
ng

,+
H

SC
R

14
26

23
A

D
PH

O
X

2B
4p

12
+

H
SC

R
14

26
23

3p
12

H
SC

R
14

26
23

19
q1

3
H

SC
R

14
26

23
A

D
L1

C
A

M
X

q2
8

+

co
nt

in
ue

d 
on

 n
ex

t 
pa

ge



9Molecular Bases of Human Neurocristopathies

Ta
bl

e 
2.

C
on

ti
nu

ed

C
hr

om
os

om
al

Pa
th

ol
og

y
M

IM
Tr

an
sm

is
si

on
G

en
e

Lo
ca

liz
at

io
n

Sp
on

ta
ne

ou
s 

M
ou

se
 M

od
el

 o
r 

Tr
an

sg
en

ic
 (

+
)

N
B

25
67

00
A

D
, S

PH
O

X
2B

4p
12

+
H

ad
da

d
20

98
80

A
D

, S
PH

O
X

2B
4p

12
+

C
C

H
S

20
98

80
A

D
, S

PH
O

X
2B

4p
12

+
Ph

eo
ch

ro
m

oc
yt

om
a

17
13

00
A

D
R

ET
10

q1
2

+
Ph

eo
ch

ro
m

oc
yt

om
a

17
13

00
A

D
SD

H
B

1p
36

Pa
ra

ga
ng

lio
m

a 
4

11
53

10
A

D
SD

H
B

1p
36

Pa
ra

ga
ng

lio
m

a 
2

60
16

50
A

D
11

q1
3.

1
Pa

ra
ga

ng
lio

m
a 

3
60

53
73

A
D

SD
H

C
1q

21
Pa

ra
ga

ng
lio

m
a 

1
16

80
00

A
D

SD
H

D
11

q2
3

+
Ph

eo
ch

ro
m

oc
yt

om
a

17
13

00
A

D
SD

H
D

11
q2

3
+

M
C

 c
ar

ci
no

m
a

60
26

90
.0

01
9

S
SD

H
D

11
q2

3
+

M
EN

2A
17

14
00

A
D

R
ET

10
q1

2
+

M
EN

2B
16

23
00

A
D

R
ET

10
q1

2
+

M
TC

15
52

40
A

D
R

ET
10

q1
2

+
Fa

m
ili

al
 d

ys
au

to
no

m
ia

 2
25

68
00

A
R

N
TR

K
1

1q
21

+
N

F1
16

22
00

A
D

N
F1

17
q1

1
+

D
iG

eo
rg

e
18

84
00

A
D

TB
X

1
22

q1
1.

2
+

C
H

A
R

G
E

21
48

00
A

D
C

H
D

7
8q

12
+

G
ol

de
nh

ar
16

42
10

A
D

14
q3

2
M

oe
bi

us
15

79
00

A
D

13
q1

2.
2-

q1
3

B
am

fo
rt

h-
La

za
ru

s
24

18
50

A
R

FO
X

E1
9q

22
+

R
ie

ge
r 

1
18

05
00

A
D

PI
TX

2
4q

25
+

R
ie

ge
r 

2
60

14
99

A
D

FO
X

C
1

13
q1

4
C

on
ge

ni
ta

l h
yd

ro
ce

ph
al

us
, +

C
ra

ni
of

ro
nt

on
as

al
30

41
10

X
LD

EF
N

B
1

X
q1

3.
1

+
A

llg
ro

ve
23

15
50

A
R

A
LA

D
IN

12
q1

3

A
D

 o
r 

R
, a

ut
os

om
al

 d
om

in
an

t/r
ec

es
si

ve
; X

L,
 X

-l
in

ke
d;

 C
I, 

co
m

pl
ex

 in
he

ri
ta

nc
e;

 *
 m

aj
or

 lo
cu

s;
 S

, s
om

at
ic

 m
ut

at
io

n.



Neural Crest Induction and Differentiation10

partly conferred by the numerous alpha integrin subunits, of which alpha-1, alpha-4,
alpha-5 and alpha-v appear to be widely expressed, like the beta-1 subunit, on emigrating
NCC;63-65,67,68,70 alpha-6 and alpha-7 appear on subsets of cranial71 or trunk72 NCC respec-
tively. Some alterations in ECM molecules have been observed in HSCR patients,66 although
their distribution may be a secondary effect of changes in intestinal architecture rather than
causative. In mouse and chick models, the alpha-4 subunit and its specific binding site to
fibronectin are needed for normal NCC emigration from the neural tube to occur.64

If the recently identified role of ephrin signaling is a typical example, mutations in any of
these adhesion molecules should affect NCC derivatives but are likely to lead to broader
polymalformative syndromes. Binding of ephrinB to its receptor, EphB, leads to
contact-mediated repulsion by the bilateral activation of protease activity and the rapid release
of adhesion via the integrins.73,74 Human and mouse mutations in the EPHRB (ephrinB) gene
lead to severe clinical effects on NCC derivatives such as the skull (coronal craniosynostosis),
the palate and the face, but also lead to effects on the chest and limb skeleton and fingernails;
this association is known as craniofrontonasal syndrome).75,76

Differentiation of NCC
The restriction of the ability of NCC to develop into the various lineages begins before

migration. In vivo, cranial NCC are distinct in their potential from trunk-level NCC. The
cranial crest lineages include mesectoderm derivatives such as bone, cartilage, teeth, adipocytes,
dermis, glandular and vascular connective tissue and smooth muscle, as well as the possibility
to become all other derivatives of trunk NCC if transplanted into the appropriate location in
the body.77 Only after a long sojourn in vitro and apparent reprogramming can trunk NCC
acquire some chondrogenic ability.78

The subsequent refinement of the different classes of NCC derivatives is done over time in
different locations in the body. We have judged it convenient to address the involvement of the
three major gene groups sequentially. However, it is important to keep in mind that any indi-
vidual NCC is subject to interactions between these gene cascades as it differentiates and its
increasingly fate-restricted progeny proliferate. Genes affecting pigmentation, neural differen-
tiation or the establishment of cardiocephalic structures are grouped separately simply for the
purpose of discussion.

The Pigmentation Gene Cascade
In vitro, embryonic NCC will give rise over successive generations to a mix of stem-like

cells with varying degrees of potential to differentiate into all or only some NCC deriva-
tives.13 In particular, the bipotent glia-melanocyte precursor79 as well as a tripotent
melanocyte-neural-adrenergic precursor80 have been shown to proliferate and expand
preferentially in the presence of endothelin-3 (EDN3). The three known endothelins are
peptides, first identified by their potent vasoconstrictive activity on vascular smooth muscle,
but soon understood to be mitogens for melanocytes.81

Deletion of the mouse endothelin type B receptor (Ednrb) gene produces an autosomal
recessive phenotype of white spotting and megacolon, bringing to light the critical role of
endothelins in melanocytic and enteric development.82 Mutations in human EDNRB lead to
HSCR isolated or syndromic (WS4), according to the type and copy number of the muta-
tion.83-85 A patient with HSCR, heterozygous for weak hypomorphic mutations in both the
RET receptor gene (see the “neural selector” group below) and EDNRB, has recently been
reported.86 Each mutation was inherited from a healthy parent. Interestingly, overexpression of
EDNRB is sufficient to direct NCC-like migration in vivo and melanocytic differentiation in
noncommitted embryonic stem cells.61

Although EDNRB can bind all three EDNs, only EDN3 is a physiologically relevant ligand
in the enteric environment.87 Homozygous EDN3 mutations have also been found in patients
with WS4.88 Mutant heterozygotes in one of these families were either unaffected or had mild



11Molecular Bases of Human Neurocristopathies

pigmentary anomalies, as did other untested family members. In addition, an EDN3 frame-
shift mutation has been identified in a patient with CCHS and chronic constipation.89 Thus,
distinct human tissues—melanocytes versus components of the autonomic nervous system—
appear to have different sensitivities to EDN3/EDNRB dosage.

EDNRB, like many other growth factor receptors, transduces its activation to nuclear
targets via the Ras signaling cascade. N-ras is a direct component of the MAPK/Erk pathway
but also can activate phosphatidylinositol-3-kinase and its targets.90 Ras molecules in general
activate the mitogen-activated protein (MAP) kinase pathway to induce proliferation; EDNRB
binding also counters apoptosis through the parallel activation of phosphatidylinositol-3-kinase.
Two important molecules in the formation of nevi appear to be N-RAS and the next effector in
the MAP kinase pathway, B-RAF. An early indication of B-raf function came from the initial
knockout mice in which endothelial cells underwent abnormal differentiation and did not
organize into mature, functional blood vessels,91 as happens in numerous models with mutated
growth factor receptors. However, it was upon the recent demonstration that reproducible
mutations in BRAF were involved in highly diverse cancers, malignant melanoma in particu-
lar,92,93 and, surprisingly, in a number of clinically benign nevi,94 that a more specific role of
this molecule in the development of NCC derivatives began to be explored.

The activating mutation of BRAF found most frequently in humans was specifically
expressed in zebrafish melanophores experimentally. While wild-type B-Raf did not change the
pigmentation of the zebrafish, the activated form of the gene led to the appearance of nevus-like
clusters of pigment covering large areas, up to 40% of the body surface.95 This was the first
animal model of nevus formation. Crossing these fish to those deficient in the tumor suppres-
sor p53 (product of the CDKN2A gene) led to the development of aggressively invasive melanoma
in which the MAPK/Erk pathway was unduly active.

Dominant mutations of the PAX3 transcription factor and the MITF (Microphthalmia-
associated transcription factor) genes have been reported in WS1, WS2 or Tietz syndrome96

(MIM 103500). In the mouse, Pax3 is critical for skeletal muscle development as well as the
development of the dorsal neural tube and the NCC that migrate from it.97 Mitf, Trp-1
(tyrosinase-related protein-1) and the tyrosine kinase receptor c-met, all expressed in melano-
cytes, appear to be transcriptional targets of Pax3.51,98,99

WS4 patients can also carry mutations of the Sry-type HMG box family transcription fac-
tor member, SOX10. This implies some interaction between endothelin signaling and Sox10
transcriptional effects. Indeed, Sox10 is expressed in premigratory NCC, then in both melano-
cytes and enteric ganglia, as well as in glia of both CNS and PNS origin.100 It is involved in cell
lineage determination and is capable of transactivating MITF synergistically with PAX3.101,102

SOX10 mutations can cause either WS453 or PCWH:36 Translated, mutant Sox10 proteins,
whose mRNAs are not degraded by the nonsense-mediated decay pathway, lead to the more
severe form associated with peripheral neuropathy. Mere haploinsufficiency through the proper
degradation of mutant SOX10 mRNAs leads to WS4.36 Combined with the observed lack of
Ednrb transcripts in mice with a truncating mutation of Sox10,103 one might postulate that yet
unidentified genes regulate the different response of melanocytes104 or glia versus precursor
NCC to Sox10 dosage, and that Ednrb lies downstream of both Sox10 and these other genes.
Indeed, additional modifying loci for aganglionosis have been identified recently in mice.105,106

Misregulated control of mRNA degradation is likely to be found with increasing frequency in
human pathology and offers an additional explanation for how different mutations in the same
gene can result in very distinct diseases, especially for master regulatory transcription factors of
development.

The Neural Selector Gene Cascade
The Drosophila achaete-scute complex is a cluster of four proneural genes coding for basic

helix-loop-helix domain-containing transcription factors achaete, scute, lethal of scute and
asense.107 The complex controls early development of both the central and peripheral nervous
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system in the insect by instructing the differentiation of neuroblasts from ectodermal precur-
sors. In the mouse, two homologues of the achaete-scute complex (ash) are known as Mash-1 and
Mash-2.108 Mash-2 is an imprinted gene expressed only in the trophoblast lineage.109 In
contrast, Mash-1 expression is restricted to the CNS and PNS within a restricted spatiotemporal
window.110 The entire ventricular zone of the CNS expresses Mash-1 at one point or another
during the proliferation of neurectodermal precursors. The enteric and sympathetic neurons of
the PNS also express Mash-1.111 Homozygous Mash-1 knockout mice die within the day follow-
ing birth due to respiratory failure and inability to suckle.112 The PNS is dramatically affected
with an absence of the sympathetic and parasympathetic ganglia as well as the esophageal enteric
neurons. Mash-1, like its evolutionary forerunner, has proneural properties.113,114

The human homologue to Mash1, HASH1, is a small, two-exon gene localized at 12q24. It
is involved in a feedback loop with the PHOX2 (paired homeobox 2) homeodomain-containing
transcription factors. PHOX2A and PHOX2B are very similar in their homeodomains
but divergent in their promoters. Both are expressed in all CNS or PNS neurons that embark
upon the noradrenergic synthesis pathway, be it temporarily or permanently.115 They are both
found in the branchiomotor and visceromotor neurons and the motor tracts of cranial nerves
VII, IX and X. Only PHOX2A is expressed in the nuclei corresponding to cranial nerves III and
IV. In the autonomic nervous system, Phox2b has been shown to act upstream of Mash1116 and
Phox2a,115,117 but the feedback control of Phox genes by Mash1 is not direct.118

Mutations in PHOX2B have recently been shown to be responsible for CCHS37 but,
according to the type of mutation, also can predispose to neuroblastoma or HSCR.38,119 Phox2b
promotes cell cycle exit and neuronal differentiation in the sympatho-adrenal lineage (ref ).
Downstream, Phox2b directly binds the promoter of the dopamine beta-hydroxylase (DBH)
gene (the key enzyme of noradrenaline synthesis)120 and, indirectly, activates TH (tyrosine
hydroxylase)121 and the Ret receptor tyrosine kinase, which is the major gene involved in HSCR,
MEN2 syndromes and isolated pheochromocytoma (see below). Phox2b+/- mice present a
dysfunction of their respiratory system that is similar to the one observed in CCHS patients,
although it remains mild and transient.122,123 They do display a temporarily altered response to
hypoxia and hypercapnia122 as well as sleep-disordered breathing (apnea and hypoventilation).123

Ventilatory changes induced by hypoxia are mediated by afferents from carotid body glomus
cells to the nucleus of the solitary tract (nTS) via the IXth cranial ganglion, where tyrosine
hydroxylase (TH) expression is significantly decreased during the same period. All of these
structures express Phox2b in mice115,121 and humans37 and fail to form or degenerate in Phox2b-/
- mouse mutants.116

Most patients with RET mutations have HSCR only, but some develop pheochromocy-
toma or MEN2. A multiplicative oligogenic model with three loci has been proposed for
isolated, nonsyndromic HSCR, with RET being the major susceptibility gene and the two
other genes remaining to be identified.124 The RET mutations identified in HSCR are unique
and occur throughout the gene. This is in contrast to MEN2A, for which RET mutations
occur in a cluster of six cysteines,125-127 and MEN2B, which is uniquely associated with an
M918T mutation.128,129 Remarkably, some HSCR mutations occur at the same cysteines as
the ones involved in MEN2A. RET mutations in MEN2 are activating mutations which
constitutively dimerize the receptor, leading to transformation,130 while those in HSCR are
generally inactivating mutations which lead to misfolding or failure to transport the protein to
the cell surface. The identification of HSCR patients with RET deletions131 argues in favor of
haploinsufficiency as a mechanism for pathogenesis. Consequently, although a MEN2A/
MTC-type activating mutation has been observed in HSCR, haploinsufficiency may have
occurred due to inefficient transport to the cell surface132 at a key period in enteric development.

In mice, the Ret signaling pathway is implicated in the development of all noradrenergic
derivatives133,134 as well as the kidney, an organ rarely affected in human mutations of RET.135

Likewise, a major ligand for RET, GDNF (glial-derived neurotrophic factor), is exceptionally
responsible for HSCR,136 but in mice it is essential for both enteric nervous system and renal
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development.134 GDNF, being a TGF-β related protein, is unusual in activating RET only in
the presence of a glycosylphosphatidylinositol (GPI)-linked coreceptor, GFRA1. No muta-
tions in GFRA1 have been discovered despite a careful search for variants in HSCR patients
with similar phenotypes to Gfra1-/- mice.137-139 Four structurally related GPI-linked coreceptors,
GFRA1-4, and four related soluble growth factors, GDNF, neurturin (NTN), persephin (PSPN)
and artemin, have been identified to date (reviewed in ref. 140). Of these, one family with a
putative NTN mutation, in conjunction with a RET mutation, has been identified.141 Like
GDNF, NTN does not appear to have a major effect on HSCR and probably can only exert its
mutational effect in conjunction with other disruptions of RET signaling.

Genetic interactions between RET and EDNRB/EDN3 have been demonstrated in both
humans and mice for the HSCR phenotype.142,143 Indeed, similar interactions of many of the
molecules in the pigmentation group with those of the neural selector group lead to the
conclusion that a wide and complex cascade of events fine-tunes NCC differentiation. For
instance, while human BRAF and NRAS mutations are causal in nevogenesis and formation of
melanoma as mentioned above, A-Raf null mice have megacolon.144 However, A-raf-deficient
fibroblasts are able to maintain normal signalling through the MAPK/Erk pathway via
increased activity in B-raf and Raf-1,145 implicating target genes in the appropriate differentiation
of neurons, glia and melanocytes from their common progenitor.

The Cardio-Cephalic Gene Cascade
In the 1980’s and 1990’s, experimental embryologists demonstrated that ablation of most

or all posterior cephalic NCC phenocopies many of the aspects of the 22q11.2 deletion
syndromes (DiGeorge; MIM 188400).7,8,146 For many years, these results were interpreted to
mean that NCC deficiency was directly responsible for outflow tract and caudal pharyngeal
arch anomalies, especially since the affected structures had long been known to have a signifi-
cant NCC component (although transient in the heart3). However, it was recently discovered
that the pharyngeal endoderm is responsible for the survival and patterning of cephalic NCC.19

This nonautonomous effect may initially be due to early mesendodermal production of retinoic
acid147,148 and subsequent activation of transcription factors regulating rostrocaudal identity,
the Hox genes, in nested domains within surrounding tissues (reviewed in ref. 149), and finally
the production of secreted signaling molecules such as Sonic hedgehog (Shh) or FGFs.150,151

FGF8 (one of >23 different FGFs), on chromosome 10q24, is transcribed during neurulation
by the paraxial mesoderm and, later, by defined regions of the forebrain and cerebellar primor-
dia, facial ectoderm and pharyngeal endoderm.151 In animal models, a second wave of retinoic
acid synthesis in these latter epithelia is responsible for the spatiotemporal coordination of Fgf8
localization with Shh.150 Mutations in Shh, in genes coding for enzymes responsible for its
biosynthesis, or in components of its intracellular signaling cascade lead to holoprosencephaly
and fusion of the retinal fields (from hypotelorism to cyclopia, reviewed in ref. 152). Absence
of cephalic NCC, exposure to high levels of maternal ethanol or maternal diabetes can also lead
to a holoprosencephalic phenotype.153-155

Among its many roles, Fgf8 both induces and maintains proliferation of cephalic NCC.45,156

Fgf8 haploinsufficiency in mice gives rise to an intriguing spectrum of malformations also
recalling that of 22q11.2 chromosomal deletions in humans.151,157 All mutants, with Fgf8
levels intermediate between a half and full dose, have micrognathia, many have cleft palate, otic
ossicle and external ear anomalies and all mutants have central nervous system malformations,
including hypoplasia or aplasia of the cerebellum and olfactory bulbs. Nearly all have outflow
tract defects of the heart, including persistent truncus arteriosus, and hypoplasic or aplasic
thymus and parathyroid glands.

Fgf10, another member of this large family of growth factors, signals through a different
splice isoform of the same receptor as Fgf8, and is present in many organs where epithelia bud
into Fgf10-expressing mesenchyme: lung, spleen, teeth, pituitary, salivary and lachrymal glands.
Interestingly, in the developing limb bud, pharyngeal arches and heart, and pituitary gland,
Fgf10 and Fgf8 lie within an autoregulatory loop controlling each other’s expression.157,158
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Tbx1, a T-box and homeodomain-containing transcription factor directly produced by the
pharyngeal endoderm, is also expressed in the mesenchyme of the branchial arches and rostral
head, in discrete areas of the outflow tract of the heart, in the ventral otocyst and sclerotome in
both mouse159-161 and human embryos (HCE, unpublished observations). Tbx1 is a target of
Shh signaling in the pharyngeal endoderm.162

Given that it is physically located in the 22q11.2 critical interval for DiGeorge syndrome, it
had long been thought to be the best candidate gene. Recent efforts have identified TBX1
mutations in DiGeorge patients.163,164 Tbx1 haploinsufficiency in mice affects the remodeling
of the definitive aorta at the level of the fourth aortic arch and conotruncal septation in the
heart.165 These mice also have malformed, tiny external ears as in DiGeorge syndrome.159

Recently, it was demonstrated that Tbx1 affects morphogenesis of the great vessels of the
heart in a non cell-autonomous manner, meaning that its normal transcription affects the
function of another, secreted mediator of its activity.166 Tbx1 directly upregulates the
transcription of Fgf10, and Tbx1-/- mice lack Fgf10 expression specifically in the mesoderm of
the secondary heart field.165,166 Fgf10 normally maintains the proliferation and incorporation
of myocytes from the splanchnic mesoderm into the outflow tract region of the growing
cardiac tube.167 Likewise, Tbx1-/- mice lack pharyngeal endodermal expression of Fgf8,
probably similarly responsible for the proliferation of the rhombencephalic neural crest cells
necessary for colonization of the outflow tract and subsequent mediation of correct septation.

Neurocristopathies affecting the cardiocephalic pole often leave their most visible mark on the
face, since most facial tissues (bone, cartilage, teeth, vascular walls, and dermis) are direct NCC
derivatives. In addition, when cephalic NCC are reduced in number or completely ablated in the
embryonic chicken, other non NCC elements such as the forebrain, the pituitary gland, the
thymus or facial muscles are themselves severely hypoplasic or absent.7,153 Compromised
pituitary function or holoprosencephaly can therefore be considered to be part of the spectrum of
cephalic neurocristopathies, in the way that malformations of the heart outflow tract have long
been admitted to be. Indeed, numerous forebrain and premaxillary nasofrontal malformations
are frequently reported in association with human pituitary deficiencies (reviewed in ref. 39). The
NCC surrounding the forebrain are supported in their proliferation and survival by a localized
source of Fgf8 at the anterior neural ridge and, in return, maintain that source for forebrain
outgrowth to take place (ref. 156 and S. Creuzet, personal communication).

Part of the patterning activity of cephalic NCC on non NCC head elements can be
accounted for by the secretion of proteins belonging to other well-known signaling cascades as
well. Cephalic NCC synthesize the BMP antagonists Gremlin and Noggin168 and the Wnt
antagonist Frzb.49 Frzb acts by inhibiting the canonical Wnt signaling pathway via beta-catenin,
which is normally activated by the local expression of Wnt-3a by the dorsal neural tube and/or
Wnt-2b/Wnt-13 by the facial ectoderm.168 Recently, it has been demonstrated that induction
of migratory behavior only takes place upon the reception of a noncanonical Wnt11 signal,
again synthesized by the ectoderm, by Frizzled-7 receptors on NCC.46

The phenotypic spectrum of the murine Fgf8 hypomorphs resembles CHARGE syndrome
(MIM 214800) as much, if not more, than DiGeorge syndrome.151 The acronym CHARGE
refers to an association of congenital malformations first described by Hall et al169 including
ocular Coloboma, Heart outflow tract malformations, choanal Atresia, Retarded growth and
mental development, Genital hypoplasia, Ear abnormalities and/or deafness. The CHD7 gene
has recently been shown to be mutated in 60% of CHARGE postnatal patients170 and 100%
of prenatally diagnosed patients.171 CHD7 belongs to a family of proteins thought to play a
role in chromatin organization through their conserved chromodomain (reviewed in refs.
172,173). Chromodomain-containing proteins maintain a silencing, heterochromatin-like struc-
ture around such embryologically important genes as the HOX transcription factor clusters or
tumor suppressors like CDKN2A.174 In addition, CHD subfamily members also contain a
helicase-ATPase domain that is directly involved in histone deacetylation.175 Indirect targets of
CHD7 activity in the cardiocephalic pole, given their phenotypes in mouse inactivation
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models, are likely to include some of the genes previously investigated as candidates for CHARGE
or DiGeorge syndrome such as TBX1, among others.

Discussion

Cooption of Developmental Gene Cascades during Evolution and Teratogens
Many syndromic neurocristopathies also affect tissues that are not directly derived from the

neural crest. Nearly all genes identified as involved in seemingly isolated neurocristopathies are
well known in the development of other, non NCC derivatives. The primary reason for these
observations is that molecular cascades are conserved and coopted for new purposes during
embryonic development of diverging species over the course of evolution. (The secondary
reason has involved the historical inclusion or exclusion of given clinical entities in the definition
of a neurocristopathy, as discussed earlier). Indeed, molecular inroads into the mechanisms of
development are blurring the distinction between what is or is not a neurocristopathy so that it
is probably a more useful term for clinicians than for embryologists or molecular biologists.

In various instances, neurocristopathies arise from embryonic exposure to teratogens such
as vitamin A derivatives, high maternal blood glucose, cyclopamine or ethanol. Retinoic
embryopathy MIM 243430, is a distinct clinical entity associating conotruncal heart or great
artery defects, micrognathia and malformed external ears, and posterior fossa malformations.
Known effects on the hedgehog signaling pathway by retinoic acid147,148,150 or cyclopamine176

contrast in their specificity with more general possible effects on mitochondrial respiration and
oxygen management,177-179 to which migrating, undifferentiated cells such as the NCC could
be more vulnerable. Thus, environmental teratogens particularly affect NCC by coopting those
genetic programs used to maintain plasticity and adaptation in NCC during the course of
vertebrate evolution.

Neurocristopathy Genetics in Mouse and Man
Many mouse models for HSCR, carrying mutations in known HSCR or WS genes, do not

transmit the phenotype in the same way as in humans. Full phenotypic penetrance is usually
observed in the mouse models and generally not in humans, as there is enormous intra- and
inter-familial variation in presentation. This observation can be explained by the fact that mouse
models are made on homogeneous backgrounds, which is not the case within even a given
human family. Thus, the expression of phenotype is subject to variations in genetic background.
In addition, many of the mouse models are made with homozygous null mutations, whereas
most HSCR patients have heterozygous mutations that range in potency from weak hypomorphic
changes to complete loss of function. The conclusion that HSCR is a genetically heteroge-
neous, oligogenic disease is now uncontested. HSCR is the best studied neurocristopathy from
a genetic point of view, but its complex inheritance is likely to apply to other neurocristopathies
affecting the same subset of NCC derivatives.

Malformations and Carcinogenesis
It has long been suspected that, depending on the nature of gene mutations or on the gene

series involved, mutations of developmental pathways in humans may result in either
malformative syndromes or cancer predispositions. The field of neurocristopathies has already
been been rewarding for that hypothesis, with the following examples: (i) RET mutations in
HSCR and in MEN2 syndromes; (ii) PHOX2B gene mutation in CCHS and neuroblastoma;
(iii) BRAF and NRAS mutations in congenital naevi, lung and prostate cancers and melanoma;
(iv) FOXC1 mutations in Rieger syndrome and rhabdomyosarcoma;180 (v) PAX3 mutations in
WS and its fusion to FOXO1, also in rhabdomyosarcoma;99,181 (vi) SNAI2 mutations in WS
and a likely role in leukemia (reviewed in ref. 182). Clearly, the identification of new genes
involved in rare congenital malformations will ultimately continue to bear fruit in the wide
field of cancer research.
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Cytogenetic and histological features of a human embryo
with homogeneous chromosome 8 trisomy
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Background Homogeneous and complete trisomy 8 is extremely rare. With one recent neonatal exception, all
reported cases have been mosaic, due to mitotic non-disjunction during early zygotic development. We report a
case of chromosome 8 trisomy in a human embryo examined at Carnegie stage 11 (25 days post-fertilization).
It presented severe cardiovascular and central nervous system malformations.

Methods The unusual bifid heart in this embryo spurred a detailed histological examination, karyotyping of
a chorionic villus sample and subsequent FISH on inter-phase nuclei of intra-embryonic sections.

Results Trophoblast cells had a karyotype of 47,XX, +8. Within the embryo proper, FISH demonstrated that
the trisomy 8 was homogeneous in embryonic as well as extra-embryonic tissues. FQ-PCR supports a meiosis
I origin of non-disjunction. In sections, the pharyngeal arches (including cardiac outflow tract), forebrain,
mesonephros and liver were absent. Somites and yolk sac blood vessels were irregularly shaped.

Conclusion We show that homogeneous, intra-embryonic trisomy 8 is compatible with implantation and
early human development. Molecular pathways that may be compromised and their impact on organogenesis
are discussed. Copyright  2006 John Wiley & Sons, Ltd.

KEY WORDS: trisomy 8; cardia bifida; liver; forebrain; FOG2; SOX7

INTRODUCTION

Mosaic trisomy 8 or Warkany syndrome has been
reported in over a hundred still or live births (Chen et al.,
1998a; Henderson and Crawford, 1996a; Jay et al.,
1999a) and may be more frequent than these figures
would indicate (Wang et al., 1993). Clinical signs are
highly variable but include mental retardation, agenesis
of the corpus callosum, renal and hepatic malforma-
tions or polycystosis (Jay et al., 1999a), cardiomegaly or
perforate inter-ventricular septal defect, skeletal anoma-
lies of the limbs (Alvi et al., 2004) and facial dysmor-
phism including cleft palate and micrognathia (Chen
et al., 1998a; Henderson and Crawford, 1996a; Jay
et al., 1999a).

Physical anomalies associated with trisomy 8 can be
detected prenatally by ultrasound (Henderson and Craw-
ford, 1996a) although the fetus may appear normal if it
has a low proportion of aneuploid cells. Amniocentesis
is used to confirm trisomy 8 (Hsu et al., 1997). It has
been demonstrated, however, that karyotypes from both
amniocentesis and direct chorionic villi sampling (CVS)
of cytotrophoblasts can yield apparently normal results,

*Correspondence to: Heather C. Etchevers, INSERM U781,
Hôpital Necker—Enfants Malades, 149 rue de Sèvres, 75743
Paris Cedex 15, France. E-mail: etchevers@necker.fr

while only the cultured CVS mesodermal core allowed
the detection of trisomy 8 in a mosaic case presenting
with multiple malformations (Hahnemann and Vejerslev,
1997).

When trisomy 8 mosaicism is confined to the pla-
centa, extra-embryonic tissues have a variable propor-
tion of trisomic cells while fetal tissues can be normal
(Karadima et al., 1998a). At least one case of confined
placental mosaicism for trisomy 8 has been reported
with intra-uterine growth retardation, although after birth
the child grew normally with no subsequent problems
(Saks et al., 1998). However, apparently confined pla-
cental mosaicism and a normal karyotype from a fetal
blood sample still require strict surveillance of the preg-
nancy (de Pater et al., 2000; Wolstenholme, 1996); the
proportion of aneuploid cells can be homogenous within
the placenta but may vary according to the fetal tissue
studied (blood, skin or muscle) (Jay et al., 1999a).

Acquired or constitutional chromosome 8 trisomy
is often associated with myelodyplasia and acute
monoblastic leukaemia (Batanian et al., 2001; Haferlach
et al., 2002; Le Beau et al., 2002; Secker-Walker and
Fitchett, 1995). It is not currently known at what
level the trisomy induces carcinogenesis, but mosaicism
within the granulocytic lineage is sufficient. In murine
models for leukaemia resulting from the human PML-
RARA fusion product, gain of a chromosome syntenic
to human chromosome 8 is often observed secondarily

Copyright  2006 John Wiley & Sons, Ltd. Received: 27 June 2006
Revised: 21 September 2006

Accepted: 27 September 2006
Published online: 30 October 2006



1202 C. GOLZIO ET AL.

Figure 1—(A) Representative karyotype from chorionic villus sample of embryo R900 showing complete trisomy of chromosome 8. (B) FISH
using centromeric markers for chromosome 8 (red, arrowheads) and chromosome 12 (green, arrows) on trophoblastic nuclei in metaphase and
on intra-embryonic nuclei in inter-phase (inset). Three chromosome 8 signals were observed in 198/200 nuclei with two chromosome 12 signals
present

and is necessary for the progression of leukemogenesis
(Le Beau et al., 2002).

Homogeneous trisomy 8 occurs in an estimated 0.1%
of recognized pregnancies and is responsible for 0.7%
of spontaneous abortions (Hassold et al., 1980). Only
one post-natal case has ever been reported to date, and
the child died in its second month from cardiac failure
(Hendson et al., 2003). It remains plausible that this
patient was a severely affected mosaic, having lost a
third copy of chromosome 8 in tissues that had not
been sampled and supporting its brief survival. Here,
we report an unusually malformed human embryo after
elective abortion with homogeneous trisomy 8 in both
embryonic and extra-embryonic tissues.

METHODS

Anonymous human conceptuses were collected from
elective pregnancy terminations using the mefiprestone
protocol, in agreement with French law 2004–800 and
hospital ethics committee recommendations. Embryos
are staged using the Carnegie system according to cri-
teria of gestational age, size and morphological fea-
tures. When destined for histology, they are fixed in 4%
paraformaldehyde in PBS, pH 7.5 overnight before rins-
ing in PBS, dehydrating and embedding in Paraplast,
using standard techniques. Sections were cut at 5 µm
and collected individually on Superfrost Plus slides
(Fisher-Bioblock) and coloured using standard hema-
toxylin–eosin staining.

Direct karyotyping of the chorionic villi was carried
out in parallel using the standard colchemid protocol.

Centromeric alphoid sequence probes were derived
from pBR12 for chromosome 12 (Baldini et al., 1990)
and BAC pZ8.4 for chromosome 8 (Archidiacono et al.,
1995). Double FISH on inter-phase nuclei of embry-
onic sections at 5 µm was performed as per protocols
available from Resources for Molecular Cytogenetics in
Bari, Italy (http://www.biologia.uniba.it/rmc/index.html)
and as described elsewhere (Archidiacono et al., 1995;
Aubele et al., 1997), with the exception of using pro-
teinase K rather than pronase E. Two hundred nuclei

with two signals for chromosome 12 were scored for
the number and presence of chromosome 8 hybridization
signals.

PCR products using fluorochrome-tagged primers for
the following polymorphic markers were evaluated
by standard Genescan analysis: D8S1706, D8S1839,
D8S1820, D8S538, D8S285, D8S260, D8S279 and
D8S1793.

RESULTS

Embryo R900 presented with externally normal chori-
onic villi on its placental sac. The embryo itself
(Figure 2(A)) had an abnormally small head with
blebbed anterior and dorsal vesicles, a flexed trunk
region with small, irregularly spaced somites and a dor-
sally oriented caudal extremity. The 16 somite pairs
present were not aligned symmetrically. The number
of somites and the size of the yolk sac were consis-
tent with the assignation of Carnegie stage 11 (13–20
somites, 22 days after fertilization). The heart was
bifid (Figure 2(C)) and abnormally dilated vessels were
observed in the yolk sac (asterisk), in which some blood
islands were present.

Histological examination (Figure 2(E)) showed
absence of the forebrain and otic vesicles, with a closed
rostral neuropore. A structure resembling a severely
hypoplastic first pharyngeal arch could be distinguished.
Identifiable cardiac tissue was continuous with the atrial
end of the cardiac tube, implying lack of development of
the secondary cardiac field giving rise to the conotrun-
cal pole. Cardiac jelly and endocardium were present
but the dorsal aortae were not apparent caudally. No
liver bud or mesonephros was distinguishable, although
embryonic endoderm had formed. The absence of other
internal organs and limb buds is normal for this stage of
development (cf Figure 2(F)).

CVS was made for direct karyotyping and, in paral-
lel, DNA was extracted for fluorescent quantitative PCR
(FQ-PCR). The karyotype of R900 was 47,XX,+8, as
counted on five trophoblast metaphases (Figure 1(A)).
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Figure 2—(A–D) Rostral to top. (A) Dorsal view of embryo R900, to compare with dorsolateral-left view of stage-matched normal embryo
R884 ((B), early Carnegie stage 11–24 days post-fertilization). (C) Ventral view of embryo R900, to compare with ventrolateral-right view of
stage-matched normal embryo R946 ((D), late Carnegie stage 11–25 days post-fertilization). (E–F) Rostral to left, dorsal to top. (E) Parasagittal
section of embryo R900. The embryo was small for its stage based on the number of somites visible and its tissues disorganized. (F) Stage-matched
normal embryo R795 (late Carnegie stage 11). The anterior intestinal portal in R900 was located directly caudal to the bifid heart primordia
(arrowhead, C) without an intervening liver bud, and dilated blood vessels were visible in the yolk sac (asterisks, C, E). da, dorsal aorta; h, heart;
li, liver bud; nt, neural tube; ot, otic vesicle; pa#, pharyngeal arch #; pe, pharyngeal endoderm; pros, prosencephalon; rh, rhombencephalon; s,
somite; tb, tail bud; ys, yolk sac

FISH, tested first on trophoblastic metaphase nuclei
(Figure 1(B)), was performed on inter-phase nuclei
derived from histological sections of the embryo itself.
Two hundred of these nuclei were counted, with 198/200
showing three hybridization signals for pZ8.4, demon-
strating that the trisomy 8 was homogeneous and intra-
embryonic (Figure 1(B) inset).

FQ-PCR performed for markers on chromosome 8
supported the conclusion of non-disjunction during the
first division of meiosis: markers D8S1706, D8S1839,
D8S1820 and D8S279 were triallelic, as were cen-
tromeric markers D8S538 and D8S260; only markers
D8S285 and marker D8S1793 gave trisomic, biallelic
profiles (Figure 3). Parental DNA was not available for
further analyses.

DISCUSSION

Embryo R900, a product of elective abortion, was diag-
nosed fortuitously with homogeneous trisomy of chro-
mosome 8. Until this case, FQ-PCR of polymorphic
markers on chromosomes 13, 18, 21, X and Y was
routinely performed in multiplex to determine if mor-
phologically normal embryos recruited for ongoing gene
expression studies were exempt from common aneuploi-
dies (Megarbane et al., 2001; Germanaud et al., 2003).

Our laboratory now performs initial screening by kary-
otyping of cytotrophoblasts from CVS in both externally
normal and abnormal embryos.

On the basis of the polymorphic markers of chromo-
some 8 that were used, it was possible to distinguish
between non-disjunction occurring in the first or second
meiotic division by the use of pericentromeric markers
D8S538 and D8S260. These, like most of the markers
examined, gave triallelic profiles, because of heterozy-
gosity in the parent of origin. The non-reduction of
heterozygosity infers failure of the homologous chro-
mosomes to separate during meiosis I. However, the
parental origin of the meiotic non-disjunction was not
ascertainable in R900, as the embryo was an anonymous
donation to research. Errors in maternal meiosis are
more common in spontaneous first-trimester abortions
due to trisomy 8 (James and Jacobs, 1996; Karadima
et al., 1998b; Nicolaidis et al., 1998), although pericen-
tromeric markers were not available in these initial stud-
ies to pinpoint the stage of non-disjunction (James and
Jacobs, 1996). Mitotic errors and mosaicism appear to be
more compatible with full-term pregnancies (Karadima
et al., 1998b). It is easier to prove mosaicism than non-
mosaicism as fetuses grow and the possibility of sam-
pling all tissues decreases. The small size of the case
presented here allowed sampling of nuclei across its
whole-body sections and represent intra-embryonic as
well as extra-embryonic tissues. The paucity of reports
of non-mosaic trisomy 8 supports our contention that
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Figure 3—Diagram of the localization on human chromosome 8
of eight markers examined by FQ-PCR in embryo R900. On the
long arm, markers D8S285 and D8S1793 were trisomic and biallelic;
however, both markers on the short arm (D8S1706, D8S1839 and
D8S1820) and long arm (D8S538, D8S260, D8S279) were triallelic.
We conclude that the origin of non-disjunction was during meiosis
I because of the non-reduction of heterozygosity in pericentromeric
markers

meiotic non-disjunction leading to trisomy 8 is lethal
early in the first trimester.

The malformations observed were consistent with, but
far more severe than, the wide range of anomalies associ-
ated with mosaic or partial trisomy 8. In R900, the fore-
brain, mesonephros, pharyngeal arches and liver were
absent. Mental retardation is common in mosaic trisomy
8 (Fineman et al., 1975) and frontal meningocoele has
been reported in a partial trisomy 8q (Schinzel, 1977).
Pharyngeal arch development is frequently impaired in
all forms of trisomy 8, as seen in facial dysmorphology
and clefting (Fan and Siu, 2001; Henderson and Craw-
ford, 1996b) and diverse cardiac defects (Pezzolo et al.,
1990; Winters et al., 1995; Jay et al., 1999b; Hendson
et al., 2003). Hepatic malformations and hepatoblastoma
are also associated with abnormal chromosome 8 copy
numbers (Winters et al., 1995; Jay et al., 1999b; Parada
et al., 2000). The absence of embryonic kidney primor-
dia (mesonephros) in our case may be analogous to
the hydronephrosis and abnormal kidney morphogene-
sis seen in mosaic or partial trisomy 8, although the
definitive kidney primordia are not normally present at

stage C11 (Chen et al., 1998b; Fan and Siu, 2001; Fine-
man et al., 1975; Schofield et al., 1992). Appendage and
skeletal abnormalities are reported in post-natal cases;
R900 was too young to have developed limb buds but
its abnormally formed somites would probably have led
to hypoplastic sclerotome compartments, from which the
body cartilage is derived.

Candidate genes on chromosome 8 for the severe mal-
formations observed in embryo R900 include those cod-
ing the transcription factors SOX7 and ZFPM2/FOG2
and the Wnt morphogen receptors FRIZZLED3 and
FRIZZLED6. Large-scale genetic screens of zebrafish
have identified at least eight distinct loci associated
with cardia bifida, including homologues of fibronectin,
the sphingosine 1-phosphate receptor, and a number of
transcription factors important for endoderm and car-
diac formation such as the colourfully named casanova
and faust (Chen et al., 1996; Stainier et al., 1996).
The casanova locus corresponds to an atypical ‘F-type’
Sox-family factor similar to Sox7, shown recently to
be essential for cardiac formation in Xenopus (Zhang
et al., 2005). Human ZFPM2, also known as FOG2
(friend of GATA 2), interacts physically and functionally
with the GATA5 transcription factor at the faust locus
(Stainier, 2001). Interestingly, human missense muta-
tions in FOG2 have been found in isolated tetralogy
of Fallot (Pizzuti et al., 2003), implying dose sensitivity
to these transcription factors in cardiac morphogenesis.

The fact that embryo R900 lacked a liver bud, in
addition to its cardia bifida and defective somitogenesis,
implies misregulation of earlier endodermal specifica-
tion needed for all three processes through a balance
of transcription factors such as SOX7 or FOG2. Among
the zebrafish loci associated with cardia bifida, a cascade
of transcriptional activation including sox and gata fac-
tors has been established in normal heart development
that converges on the highly conserved, ‘master’ cardiac
transcription factor, nkx2.5. Indeed, human NKX2.5 is
also mutated, infrequently, in a wide phenotypic range of
isolated congenital heart defects (Akazawa and Komuro,
2005). Finally, essential to the convergence of the bilat-
erally paired cardiac fields and numerous endodermal
primordia, as well as somite maturation, is the estab-
lishment of planar cell polarity mediated by the Frizzled
receptor family (Eisenberg and Eisenberg, 2006; Mat-
sui et al., 2005). Haploinsufficiency of Frizzled3 and
Frizzled6 have been shown in mice to cause neural
tube closure defects through perturbation of the vec-
torial organization of cells within the early ectodermal
and endodermal epithelia (Wang et al., 2006). Clearly,
additional work in both experimental embryology and
in cytogenetics will be necessary to shed light on the
lethal effects of homogeneous trisomy 8 on early human
development.
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4Université Paris-Descartes; Hôpital Necker—Enfants Malades, Paris, France
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We describe two fetal cases of microphthalmia/anophthal-
mia, pulmonary agenesis, and diaphragmatic defect. This
rare association is known as Matthew-Wood syndrome
(MWS; MIM 601186) or by the acronym ‘‘PMD’’ (Pulmonary
agenesis, Microphthalmia, Diaphragmatic defect). Fewer
than ten pre- and perinatal diagnoses of Matthew-
Wood syndrome have been described to date. The cause is
unknown, and the mode of transmission remains unclear.
Most cases have been reported as isolated and sporadic,
although recurrence among sibs has been observed once.
Our two cases both occurred in consanguineous families,
further supporting autosomal recessive transmission. In
addition, in one family at least one of the elder sibs
presented an evocatively similar phenotype. The spatiotem-
poral expression pattern of the FGF10 and FGFR2 genes in

human embryos and the reported phenotypes of knockout
mice for these genes spurred us to examine their coding
sequences in our two cases of MWS. While in our patients, no
causative sequence variations were identified in FGF10 or
FGFR2, this cognate ligand-receptor pair and its downstream
effectors remain functional candidates for MWS and
similar associations of congenital ocular, diaphragmatic and
pulmonary malformations. � 2007 Wiley-Liss, Inc.

Key words: microphthalmia; pulmonary hypoplasia; con-
genital diaphragmatic defect; polymalformative syndrome;
association; growth retardation; facial dysmorphy; prenatal
diagnosis; fibroblast growth factor; embryo
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INTRODUCTION

A distinct association of pulmonary, ocular, and
diaphragmatic congenital malformations has been
reported occasionally over the last 25 years. Spear
et al. [1987] examined a patient with bilateral
pulmonary agenesis, eventration of the left dia-
phragm, bilateral microphthalmia, and a complex
cardiac defect with a ventricular septal defect and
absent pulmonary vessels. Engellenner et al. [1989]
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described another patient with bilateral pulmonary
agenesis, an inverted right diaphragm, right micro-
phthalmia and a small heart with absent pulmonary
veins. Seller et al. [1996] coined the term Matthew-
Wood syndrome (MWS) in reference to an associa-
tion of microphthalmia and pulmonary hypoplasia,
after the name of a firstborn sib. Berkenstadt
et al. [1999] reported the coincidence of unilateral
pulmonary agenesis, microphthalmia, diaphrag-
matic hernia, and intrauterine growth retardation
under the acronym ‘‘PMD.’’ The authors proposed
that PMD might be a new entity, and that MWS,
reported as anophthalmia and pulmonary hypo-
plasia, might represent an incomplete form of PMD.

A few cases have been observed in the peri- and
postnatal period [Spear et al., 1987; Enns et al., 1998;
Priolo et al., 2004; Li and Wei, 2006; Robert Lee et al.,
2006] as well as three cases of prenatal diagnosis of
the syndrome at the respective ages of 18, 22, and
36 weeks’ gestation [Engellenner et al., 1989; Seller
et al., 1996; Berkenstadt et al., 1999]. While most
cases were apparently sporadic and isolated, MWS
seems to have a genetic basis because of one report
of familial recurrence [Seller et al., 1996]. A similar
phenotype, presenting in addition with tetralogy of
Fallot, was observed in a patient with a balanced
reciprocal translocation de novo 46,XY,t(1;15) (q41;
21.2) [Smith et al., 1994]. No one animal model
recapitulates this particular human association.
However, knock-outs of the murine Fgf10 (fibroblast
growth factor 10) [Min et al., 1998; Sekine et al., 1999]
or its binding-specific receptor isoform, Fgfr2(IIIb)
[De Moerlooze et al., 2000], have multiple congenital
defects including pulmonary agenesis. Other organ
systems are affected including ablepharon for
Fgfr2b, atretic or stenotic colon [Fairbanks et al.,
2005] or imperforate anus, hypoplasic pituitary,
lacrimal and salivary glands, pancreas and spleen,
abnormal limbs and, inconsistently, kidneys [Ohuchi
et al., 1997; Min et al., 1998]. Cardiac outflow tract
malformations have also been noted.

Given a certain number of similarities between
these animal models and the clinical signs of
Matthew-Wood cases described here and elsewhere
in the literature, we therefore undertook a molecular
analysis of the FGF10 and FGFR2 genes in our two
patients and were able to exclude both genes as
pathogenic candidates in these individuals.

METHODS

Standard Karyotype and FISH (Fluorescence In
Situ Hybridization) Analysis on Chromosomes

Standard karyotyping using GTG and RHG band-
ing analysis was carried out on cultured amniotic
fluid cells according to standard procedures. FISH
was performed using BACs, RP11-297K5, RP11-

1149B18, RP11-239E10 spanning the GATA4
(8p23.1) and CHD2 (15q26.1) genes and the 1q41
region, respectively, to rule out any possible
deletions. BACs were selected from several data-
bases accessible through the Internet (UCSC, Uni-
versity of California, Santa Cruz http://www.
genome.ucsc.edu/ and NCBI, National centre for
Biotechnology Information http://www.ncbi.nlm.
nih.gov/). FISH experiments were performed on
chromosome preparations as described previously
[Romana et al., 1993].

In Situ Hybridization

Human embryos were collected from pregnancies
legally terminated using the mefiprestone protocol,
in concordance with French law 00-800 and hospital
ethics committee recommendations. Primers were
selected for PCR amplification (FGF10: [F] 50-
CTGGATGGCTTGTATCAAATG-30 [R] 50-TTGGCA-
AAAGAGCCATTGGT-30 corresponding to exon 3;
FGFR2(IIIb): [F] 50-CTTTAATGCCGCTGTTTAG-
30 [R] 50-TCTTTTCAGCTTCTATATCCAG-30 corre-
sponding to alternatively spliced exon 9, included
as the 8th exon in the IIIb RNA isoform). A T7
promotor sequence extension (TAATACGACTCAC-
TATAGGGAGA) was added at the 50 end of each
primer. T7F/R and F/T7R primer pairs allowed
the amplification of sense and antisense templates
respectively, specific to the FGF10 or the
FGFR2(IIIb) transcripts. Riboprobe labeling, tissue
fixation, hybridization, and developing were carried
out according to standard protocols, as previously
described [Wilkinson, 1992; Trueba et al., 2005].

DNA Analysis

Both cases had normal chromosomes according to
karyotype. DNA was extracted from thymus samples
after informed consent and autopsy using standard
protocols. PCRs were carried out using intronic
primers for the 3 exons of the FGF10 gene and the
18 coding exons (including the alternatively
included exons 8 and 9) for the FGFR2 gene;
sequences and conditions presented in Table II.

CLINICAL REPORT

Patient 1

A consanguineous healthy couple of Romanian
origin presented with a history of neonatal demise in
their two first-born children. The first child, a boy
delivered vaginally at 33 weeks’ gestation (birth-
weight: 800 g, <3rd centile), died on the first day
postpartum with no autopsy. The second child, a
girl delivered at 43 weeks’ gestation (birthweight:
2,800 g, 3rd centile), died within the first hour of life.
The parents brought to our attention her respiratory
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problems associated with a bilateral absence of
ocular globes. However, the parents had no medical
records and autopsy was not performed. Over
the following years, the mother had four healthy
children. Her seventh pregnancy ended in a volun-
tary interruption.

Their eighth child is a boy who developed ocular
troubles but he has had neither medical follow-up
nor an obvious diagnosis.

In the ninth pregnancy, at a maternal age of
34 years, the first sonogram, performed at 12 weeks’
gestation showed normal nuchal translucency and
no anomalies. A second sonogram at 23 weeks’
gestation showed bilateral anophthalmia (Fig. 1) and
gastro-duodenal dilatation in a male fetus. The
control ultrasound at 29 weeks’ gestation confirmed
the absence of ocular globes and jejunal distension.
In addition, polyhydramnios, a left diaphragmatic
defect (Fig. 2), and a short femoral length, measured
at the 3rd centile, were noted. A TORCH study was
negative. Amniocentesis showed a normal male
karyotype (46,XY). After genetic counseling, the
parents opted for termination of pregnancy at
31 weeks, in the light of a poor prognosis.

The fetus (birth weight: 1,250 g, <3rd centile;
length: 38 cm, 3rd centile; head circumference: 28
cm, 10th–25th centile) presented with bilateral
microphthalmia with recessed orbits, hypotelorism,
narrow palpebral fissures, short nose, large ears,
and retrognathia (Fig. 3A,B). Autopsy showed the
bilateral absence of bronchial and pulmonaryanlage
below blind-ended tracheae. The heart was normal,
except for the absence of pulmonary artery branches
and pulmonary veins. Bilateral diaphragmatic even-
tration, as well as stomach and duodenal dilatation
upstream of stenosis at the duodeno-jejunal junction
were confirmed (Fig. 4). In addition, a common
mesentery was noted. Microscopic ocular examina-
tion showed bilateral cataracts and the presence of
retinal tissue in severely hypoplastic globes. The

cerebral examination was normal, except for a
slightly hypoplastic lateral geniculate body. The
vermis displayed a few heterotopic Purkinje cells
(not shown).

Patient 2

A 32-year-old G2P2 (Tanner scale) woman
presented on her second pregnancy with no
particular medical history and a previous, healthy

FIG. 1. Ultrasonography at 29 SA in Patient 1 showing a left diaphragmatic
defect with an ascended stomach. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

FIG. 2. 3D ultrasonography at 29 SA in Patient 1 showing bilateral
microphthalmia. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

FIG. 3. Facial gestalt in Patient 1 (A: front, B: profile) and Patient 2 (C: front,
D: profile) showing common features: narrow palpebral fissures with
microphthalmia, high forehead, short nose with anteverted nostrils. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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son. The couple is consanguineous, of Portuguese
origin.

The second sonogram, performed at 23 weeks’
gestation, showed a left diaphragmatic defect with
mediastinal shift, hypoechogenic digestive tract,
bilateral anophthalmia, long philtrum, abnormal
ears, and moderate renal dysplasia. Amniocentesis
yielded a normal female karyotype (46,XX).
Echocardiography showed atresia of the pulmonary
artery with ventricular septal defect. Given a very
poor prognosis, the parents opted for termination of
the pregnancy at 29 weeks.

The fetus (birthweight: 1,160g, 10th centile; length:
37 cm, 10th centile; HC: 27.5 cm, 25th–50th centile)
presented bilateral microphthalmia, a high forehead,
a flat nosewith antevertednares, a bifid uvula, a large
neck, and camptodactyly (Fig. 3C,D). The autopsy
showed bilateral pulmonary agenesis with no main
bronchi, bilateral diaphragmatic eventration, a hor-
izontalized heart with pulmonary artery agenesis and
perimembraneous septal defect (Fig. 5). In addition,
duodenal stenosis (Fig. 6), pancreatic agenesis, and a
multilobulated spleen were noted. Microscopic
ocular examination confirmed bilateral microphthal-
mia with retinal dysplasia and cataracts (Fig. 7). No

anomalies were found on neuropathologic exam-
ination.

MOLECULAR STUDIES

Standard Karyotype and FISH Analysis

In all 20 metaphases analyzed, chromosomal
analysis of the fetus 1 and 2 were normal. FISH
analysis with BAC clones RP11-297K5, RP11-
1149B18, RP11-239E10 showed two hybridization
signals on chromosomes 8, 15, and 1, respectively.
According to these results, a submicroscopic deletion
was excluded.

In Situ Hybridization

The expression patterns of FGF10 and the
FGFR2(IIIb) isoform, corresponding to the only
receptor form to which FGF10 specifically binds,

FIG. 4. Diaphragmatic eventration and pulmonary agenesis in Patient 1.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

FIG. 5. Pulmonary artery agenesis in Patient 2. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

FIG. 6. Duodenal dilatation in Patient 1 (A) and Patient 2 (B). [Color figure
can be viewed in the online issue, which is available at www.interscience.
wiley.com.]
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were analyzed at multiple stages of development of
normal human embryos.

At Carnegie stage (C) 11 (24 days’ development,
not shown) FGF10was restricted to themesenchyme
of the secondary heart field (future outflow tract)
andweak expression began in the anlage of the
adenohypophysis; diffuse central nervous system
(CNS) expression was seen at C12 (26 days).
FGFR2(IIIb) was transcribed in both cardiac inflow
and outflow segments, throughout the CNS, and
strongly expressed in the pharyngeal endoderm and
lateral plate mesoderm. FGF10 transcripts were
observed at C13–C14 (28–32 days) in restricted
portions of the otic vesicle and pharyngeal arch
mesenchyme, as well as uniformly in fore- and
hindlimb bud mesenchyme in similar domains to
those already noted in vertebrate animal models.
FGFR2(IIIb)began to be expressed at higher levels in
both dorsal and ventral posterior diencephalon, in
the ventral CNS elsewhere, in the ectodermal/
endodermal epithelia of the pharyngeal arches, in
the gut endoderm, and in the otic vesicle. At C15 (34
days, not shown) and C19 (47 days), FGF10
expression was present in the nasal pit ectoderm as
well as in the neural retina (Fig. 8A, inset). An
equivalent retinal expression domain had not
hitherto been noted in the reports of spatiotemporal
transcript distribution in the mouse or chick.

Expression was maintained in the germinal layers
of the CNS for both FGF10 and FGFR2(IIIb) at C19.
Particularly intenseFGF10 signalwas observed in the

future hypothalamus (mirroring the strong receptor
expression visible between C12 and C15), while both
FGF10 and its receptor were expressed in the
developing adenohypophysis (ah; Fig. 8A–C). Com-
plementary patterns were observed in the facial
primordia,with strongFGF10 expression in the tooth
mesenchyme and tongue muscle (tb, to; Fig. 8C), and
morediscretely in thenasal andpalatialmesenchyme
(fm), while FGFR2(IIIb) was transcribed within the
buccal ectoderm (be) and pharyngeal endodermal
epithelia, within the thymic and thyroid primordia
(thry, tm), and around the condensing mesenchyme
of Meckel’s cartilage (MC; Fig. 8D). Intense FGF10
expression was found in the muscular layer of
the stomach (not shown), intestine and rectum
(int; Fig. 8A), and lower levels were observed in
the mesenchyme of the urogenital folds (uf);
FGFR2(IIIb) transcripts were localized to the uro-
genital fold epithelium (Fig. 8B) and their signal was
only abovebackgroundwithin the intestinalmucosal
epithelium. However, both ligand and receptor were
expressed in the muscular layer of the physiological
(at this stage) intestinal hernia into the umbilical cord
(Fig. 8A,B). Lung (lu) expression patterns were also
complementary, with FGF10 transcripts observed in
the interstitial mesenchyme between the developing
lobes (Fig. 8E), and FGFR2(IIIb) highly expressed in
the tracheal and bronchial epithelia (Fig. 8F). Both
genes were expressed in the pericartilaginous
condensations of the developing digits at this stage
(Fig. 8A,B).

FGF10 and FGFR2 Gene Analyses

Direct sequencing of both cases was carried out for
the FGF10 and FGFR2 genes. Case 1 had a hetero-
zygous, conservative substitution in FGFR2 at V534V,
inherited from his non-affected mother. FGF10 had
no sequence variations from the published sequence
(RefSeq NM_004465). Genescan analysis showed
that unaffected parents and affected fetus shared one
common allele encompassing the entire gene
and flanking regions (data not shown), rendering
an interstitial chromosomal deletion unlikely in the
face of probable familial recurrence.

Case 2 had no coding variations in FGF10
but demonstrated heterozygosity at IVS2-15g> c,
thereby excluding a heterozygous deletion of the
entire gene. For FGFR2, while no coding variations
were seen, a known SNP was identified at V232V
(dbSNP: rs17859273), allowing the same conclusion
to be drawn.

DISCUSSION

The principal clinical signs of hitherto reported
cases of MWS or PMD syndrome in comparison to
our two cases, are presented in Table I. In both our
cases, bilateral pulmonary agenesis is associated

FIG. 7. Ocular histology (hematoxylin/eosin) in Patient 2 showing retinal
dysplasia and cataract. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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with diaphragmatic eventration. In one case, the
pulmonary arterywas absent, in theother pulmonary
artery branches were missing. Two other cases
described previously had bilateral pulmonary agen-
esis associated with unilateral diaphragmatic even-
tration [Spear et al., 1987; Engellenner et al., 1989].
Similar facial gestalt exists in our cases, and included
a high forehead, short palpebral fissures and micro-
phthalmia, short nose with anteverted nostrils and a
small chin. Similar features such as flat face, long
philtrum, narrow palpebral fissures, prominent nose
have been observed by other groups [Seller et al.,
1996; Steiner et al., 2002].

It is noteworthy that duodenal stenosis was present
in both of our cases, though not previously reported.
Moreover, we have observed pancreatic agenesis
and a multilobulated spleen in the second case.
Seller et al. [1996] had observed a case with a

hypoplastic spleen. Two other cases presented with
renal dysplasia and malrotation [Engellenner et al.,
1989; Priolo et al., 2004]. In our second case, the
sonogram noted a moderate renal dysplasia which
was not confirmed at the autopsy.

Microphthalmia/anophthalmia in association with
diaphragmatic defect and pulmonary hypoplasia has
been reported in multiple syndromes, including
Fryns syndrome [Lubinsky et al., 1983], Fraser
syndrome, Goldenhar syndrome, and Goltz–Gorlin
syndrome [Kunze et al., 1979; Warburg et al., 1997].
Fryns syndrome is the best-characterized syndrome
of diaphragmatic defects with eye abnormalities
[reviewed in Fryns, 1987; Cunniff et al., 1998].
The combination of features in Fryns syndrome
was described as follows: hydramnios, coarse
face, cleft palate, distal limb hypoplasia, diaphrag-
matic defect, lung hypoplasia, cloudy cornea,

FIG. 8. In situ hybridization on human parasagittal embryo sections at Carnegie stage 19 (47 days) using ribosondes against FGF10 (A,C,E) or FGFR2(IIIb) (B,D,F).
Signal in white, aside from refringent red blood cells. Rostral left, ventral top. A: FGF10 transcripts are observed in this near-sagittal section in the germinal zone of the
CNS, in particular in the ventral diencephalon; in themuscle of the tongue, esophagus and intestine, with strong expression in the rectum, and in themesenchyme of the
urogenital folds. Inset: distinct expression is observed in the neural retina. B: An adjacent section hybridized with the FGFR2(IIIb) antisense probe. Transcripts are
observed in the endodermal and ectodermal epithelia, in the adenohypophysis, the urogenital fold and hindlimb ectoderm. C: A close-up of the craniofacial region
shows low FGF10 expression in the adenohypophysis, more intense signal in the tooth buds and forming salivary glands, and in the facial mesenchyme and
oesophageal muscles. D: FGFR2(IIIb) is expressed complementarily in the buccal ectoderm and pharyngeal endodermal epithelium; in the thyroid and thymic
primordia, and around but not within Meckel’s cartilage. E: FGF10 transcripts are seen at low levels in the muscular walls of the pulmonary artery and aorta, and in the
interlobar mesenchyme of the lung. F: Its receptor is transcribed within the tracheal and bronchial epithelia, but not in the great vessels. Non-specific, flocular signal is
seen at the sites of red blood cell accumulation.
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microphthalmia, renal dysplasia, and cerebral
malformations. It is interesting that primary pulmon-
ary hypoplasia without a diaphragmatic defect
has also been described in Fryns syndrome [Willems
et al., 1991; Wilgenbus et al., 1994]. Furthermore,
chromosomal abnormalities, such as deletions
of 15q26.2, 8p23.1, and 1q41-q42.12, have been
associated with the congenital diaphragmatic her-
niaof Fryns syndrome [Slavotinek et al., 2005;
Kantarci et al., 2006]. We excluded submicroscopic
deletions in these regions of both present patients
using FISH.

The hallmarks of Fraser syndrome are cryptoph-
talmos or anophthalmia (93%), laryngeal atresia with
enlarged lungs, cutaneous syndactyly of digits (54%),
genital or renal anomalies with frequent renal
agenesis (90%), abnormal ears and an anomaly of
cord implantation on the abdominal wall [Tibboel
and Gaag, 1996]. Almost half of the affected infants
are stillborn or die in infancy, and mental retardation

is common. In humans, this autosomal recessive
disorder is genetically heterogeneous. The FRAS1
gene maps to 4q21 and encodes a large extracellular
matrix protein highly homologous to the murine
equivalent [McGregor et al., 2003]. In two families
with Fraser syndrome unlinked to the FRAS1 gene,
Jadeja et al. [2005] found a missense mutation in the
FREM2 gene. Both proteins are involved in ectoder-
mal adhesion to underlying basal mesenchyme
during development [reviewed in Smyth and Scam-
bler, 2005]. The absence of characteristic signs of
Fraser syndrome, in particular, digital and renal
anomalies, support a different condition in our cases,
although they may be functionally related through
impaired epithelial-mesenchymal signaling during
fetal life.

The mode of transmission of the Matthew-Wood
syndrome has been a subject of debate. Most cases
reported in the literature appear to be isolated.
However, Seller et al. [1996] reported two sibs of

TABLE II. PCR Primers for Direct Sequencing of Human FGF10 and FGFR2

Name Temperature Amplicon size

TCCAGTATGTTCCTTCTGATG FGF10-1F 54.58C 424 bp
TGGGGGTGGATAATTGGAA FGF10-1R 54.58C
TTGCCGGGTTTTAAGACACA FGF10-2F 558C 332 bp
GGTAATGGTTTACTGGAGTGG FGF10-2R 558C
CTGGATGGCTTGTATCAAATG FGF10-3F 54.58C 319 bp
TTGGCAAAAGAGCCATTGGT FGF10-3R 54.58C
TCCCTGACTCGCCAATCTCTTTC FGFR2-EX2-F 558C 343 bp
TGCCCCCAGACAAATCCCAAAAC FGFR2-EX2-R 558C
CACTGACCTTTGTTGGACGTTC FGFR2-EX3-F 558C 380 bp
GAGAAGAGAGAGCATAGTGCTGG FGFR2-EX3-R 558C
TGGAGAAGGTCTCAGTTGTAGAT FGFR2-EX4-F 558C 232 bp
AGACAGGTGACAGGCAGAACT FGFR2-EX4-R 558C
CAAAGCGAAATGATCTTACCTG FGFR2-EX5-F 558C 291 bp
AGAAATGTGATGTTCTGAAAGC FGFR2-EX5-R 558C
GCTAGGATTGTTAAATAACCGCC FGFR2-EX6-F 558C 226 bp
AAACGAGTCAAGCAAGAATGGG FGFR2-EX6-R 558C
ACAGCCCTCTGGACAACACA FGFR2-EX7-F 558C 393 bp
CTGGCTAGTCAAAAAAGAGAA FGFR2-EX7-R 558C
CTTTAATGCCGCTGTTTAG FGFR2-EXIIIB-F 548C 333 bp
TCTTTTCAGCTTCTATATCCAG FGFR2-EXIIIB-R 548C
ATCATTCCTGTGTCGTCTAG FGFR2-EXIIIC-F 548C 224 bp
AAAAACCCAGAGAGAAAGAACAGTATA FGFR2-EXIIIC-R 548C
TGCGTCAGTCTGGTGTGCTAAC FGFR2-EX9-F 558C 341 bp
AGGACAAGATCCACAAGCTGGC FGFR2-EX9-R 558C
TGACTTCCAGCCTTCTCAGATG FGFR2-EX10-F 558C 252 bp
AGTCTCCATCCTGGGACATGG FGFR2-EX10-R 558C
CCCCATCACCAGATGCTATGTG FGFR2-EX11-F 558C 221 bp
TTGATAAGACTCTCCACCCAGCC FGFR2-EX11-R 558C
GAGGAAATGAACTGATTTGTG FGFR2-EX12-F 558C 192 bp
GCAGAGTATTTGGGCGAATG FGFR2-EX12-R 558C
CTGGATTCTCTCTTTAGGGAG FGFR2-EX13-F 558C 263 bp
CACCCAGCCAAGTAGAATG FGFR2-EX13-R 558C
ACATATTTCCTTTTTGTTCTGG FGFR2-EX14-F 558C 256 bp
TCTTCCTGGAACATTCTGAG FGFR2-EX14-R 558C
GAGCCTGCTAAGATAAATTCTT FGFR2-EX15-F 558C 180 bp
AGCTCAAGCCCAGGAAAAAG FGFR2-EX15-R 558C
GGTTTTGGCAACGTGGATGGG FGFR2-EX16-F 558C 254 bp
GAGAGGTATTACTGGTGTGGCAAG FGFR2-EX16-R 558C
ACACCACGTCCCCATATTGCC FGFR2-EX17-F 558C 243 bp
CTCACAAGACAACCAAGGACAAG FGFR2-EX17-R 558C
TCCCACGTCCAATACCCACAT FGFR2-EX18-F 558C 368 bp
TTCCCAGTGCTGTCCTGTTTGG FGFR2-EX18-R 558C

226 MARTINOVIC-BOURIEL ET AL.

American Journal of Medical Genetics Part A: DOI 10.1002/ajmg.a



a non-consanguineous Caucasian couple who
presented MWS. Both children had pulmonary
hypoplasia and anophthalmia. One also had a
number of other malformations, as micrognathia, a
cleft palate reminiscent of the bifid uvula in our
second case, a short upper lip and low-set ears. The
autopsy showeda single ventricle, anhypoplastic left
atrium, an hypoplastic spleen and a bicornuate
uterus.

Both our cases occurred in consanguineous
couples, as may have been the case for one of the
original reports comprising bilateral colobomatous
microphthalmia and diaphragmatic eventration
[Radhakrishnan, 1981], highly supporting a recessive
autosomal inheritance. Moreover, in our first case an
additional sibling presented with similar features
(respiratory anomalies and anophthalmia).

Our cases, together with previously published
cases with similar features, strongly support
the hypothesis that this combination of defects is
non-random [Steiner et al., 2002]. The spectrum of
malformations seems to correspond to organs
developing simultaneously from the fourth week of
gestation on [Priolo et al., 2004]. The expression
patterns in both animal models and humans of
FGF10 and FGFR2(IIIb) were evocative of the organ
systems affected in MWS, although coding anomalies
in these genes were excluded in our cases. The
presence of FGF10 transcripts in the human neural,
non-pigmented retina was novel relative to reports
made in animal models to date, demonstrating the
relevance of performing expression analysis in
human embryos. Further studies will be needed to
rule out mutations in the promoter regions of these
genes spread over large genomic territories, as well
as modified functional interactions with heparin
sulfate or intracellular effector gene candidates.

In summary, rare cases of microphthalmia/
anophthalmia associated with pulmonary hypopla-
sia/agenesis have been hitherto reported in the
literature. We report on two patients presenting
microphthalmia and pulmonary agenesis associated
with bilateral diaphragmatic eventration. In addition,
not previously reported, both cases presented
duodenal stenosis. Facial gestalt is rather similar to
hitherto reported cases. Most cases of Matthew-
Wood syndrome are described as sporadic. Our
cases occurred in consanguineous families with
recurrence among sibs in the first family. As in a
similar, published case [Seller et al., 1996], these
observations strongly support autosomal recessive
inheritance of the syndrome. However, additional
cases will be necessary to further delineate this
syndrome, as well as to provide some information
on its natural history. Further molecular studies
may help us understand these pleiotropic field
defects. Meanwhile, careful sonogram examination
in further pregnancies should be offered to the
families.
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Homozygous silencing of T-box
transcription factor EOMES leads
to microcephaly with
polymicrogyria and corpus
callosum agenesis
Lekbir Baala1,2, Sylvain Briault3,8, Heather C Etchevers2,
Frédéric Laumonnier3, Abdelhafid Natiq1, Jeanne Amiel2,
Nathalie Boddaert4, Capucine Picard5, Aziza Sbiti1,
Abdellah Asermouh6, Tania Attié-Bitach2,7,
Féréchté Encha-Razavi2,7, Arnold Munnich2,7,
Abdelaziz Sefiani1 & Stanislas Lyonnet2,7

Neural progenitor proliferation and migration influence brain
size during neurogenesis. We report an autosomal recessive
microcephaly syndrome cosegregating with a homozygous
balanced translocation between chromosomes 3p and 10q,
and we show that a position effect at the breakpoint on
chromosome 3 silences the eomesodermin transcript (EOMES),
also known as T-box-brain2 (TBR2). Together with the
expression pattern of EOMES in the developing human brain,
our data suggest that EOMES is involved in neuronal division
and/or migration. Thus, mutations in genes encoding not only
mitotic and apoptotic proteins but also transcription factors
may be responsible for malformative microcephaly syndromes.

Microcephaly syndromes are a heterogeneous group of genetic dis-
orders in which affected individuals have a head circumference below
3 s.d., a small and malformed brain and cognitive deficiency. A
large consanguineous Moroccan family was referred to us with a
marked prenatal-onset microcephaly (mean occipitofrontal circum-
ference at birth ¼ –4 s.d.) and severe motor delay with hypotonia in
four affected children. Early lethality was observed in three children
(death at 15–18 months of age) due to respiratory distress after
chronic infections. The surviving child (patient V.6) has had a
persistent fever since birth and recurrent infections (Supplementary
Note online).

Notably, in addition to congenital microcephaly, these individuals
consistently showed corpus callosum agenesis, bilateral polymicro-
gyria, ventricular dilatation and a small cerebellum, as demonstrated
by brain CT and MRI scans (Supplementary Fig. 1 online).
This defines a congenital microcephaly with extensive poly-
microgyria1, the mechanisms of which are not known and are

presumably ascribed to abnormal neuronal and/or glial proliferation

or apoptosis. This condition is clearly different from primary micro-

cephaly syndromes.
Despite a pattern of affected individuals in the pedigree suggestive

of an autosomal mode of inheritance, chromosomal analysis on
leukocytes showed a reciprocal balanced translocation between chro-
mosomes 3p and 10q segregating in the family (Fig. 1a). We found
that the translocation was homozygous in each of the four affected
individuals studied (46,XY,t(3;10)(p24;q23)2x), whereas healthy
parents were heterozygous. Genome-wide comparative genomic
hybridization pattern analysis showed that chromosomal rearrange-
ment had occurred without detectable loss or gain of genetic material
at a resolution of 3 Mb (data not shown).

Linkage analysis between the disease trait and polymorphic markers
of chromosomes 3p and 10q defined two regions identical by descent
of 27 Mb and 11.4 Mb, respectively (Fig. 1b). The two-point lod score
between the translocation breakpoint used as a marker, and the disease
locus peaked at significant values of 3.45. In addition, we excluded
linkage to the six known primary microcephaly loci (MCPH1 to
MCPH6) (Supplementary Methods online). One hypothesis is that a
locus involved in neuronal proliferation and/or migration maps to
either chromosome 3 or chromosome 10 and that the translocation
breakpoint disrupts the disease-causing gene.

We therefore established a physical map of chromosomal regions
3p24 and 10q23 and characterized the BACs that encompassed the
breakpoints for each chromosome (BAC RP11-9a14 and RP11-
102H24 on chromosomes 3 and 10, respectively; Supplementary
Fig. 2 and Supplementary Table 1 online). Furthermore, DNA
sequencing of long-range PCR products allowed us to characterize
the translocation breakpoints and demonstrate that they occurred
without any deletion at nucleotide positions 27954024 and 82932753
(NCBI build 36.1) on chromosomes 3p and 10q, respectively (Sup-
plementary Methods and Supplementary Fig. 3 online). Notably,
neither of the translocation breakpoints disrupted a known or pre-
dicted gene coding sequence on either chromosome, suggesting that
the translocation affected surrounding gene(s) by a positional effect.

Among the nine annotated genes located closest to the breakpoints,
EOMES (MIM 604615) was considered the best candidate gene.
EOMES encodes a transcription factor, a member of the T-box family,
that is critical in vertebrate embryonic development of the central
nervous system and mesoderm2–4. The EOMES locus (NCBI build
36.1, position 27732891–27738789) is located 215 kb 3¢ to the
translocation breakpoint on chromosome 3p and is transcribed
away from it. We sequenced the six annotated coding exons of
EOMES in affected family members and did not find any mutation
in these or in a 5¢ predicted noncoding exon that is located 136 bp
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6Hôpital d’Enfants CHU Avicenne, Rabat, Maroc. 7Université Réné Descartes - Paris 5, Paris, France. 8Present address: Laboratoire de génétique, CHR La Source,
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5¢ to the transcription start site and may be used in several alternative
EOMES transcripts (Supplementary Table 2 online).

However, we identified a synonymous SNP in EOMES exon 6 (A/G,
rs6783101; estimated frequency of the rare allele A in the African
American population ¼ 5.9%). The A allele of SNP rs6783101
cosegregated with the derivative 3p–10q translocated chromosome
in the family, allowing its use as a cis marker to test allele-specific
expression at the EOMES locus in cell lines. Indeed, quantitative
RT-PCR showed no EOMES expression in affected individuals
(Fig. 2a), whereas the only transcribed allele in a heterozygous parent
carried the wild-type G nucleotide at SNP rs6783101 (Fig. 2b),
demonstrating monoallelic expression and specific silencing of the
EOMES allele on the translocated chromosome. Qualitative RT-PCR
showed that, among the nine genes proximate to the breakpoints, the
mRNA transcribed from EOMES on chromosome 3p24 was the only
one absent from lymphoblast cell lines from affected individuals
(Fig. 1b, Supplementary Methods and Supplementary Table 2).

Tbr2 has recently been shown to be pivotal in the developing mouse
neocortex, along with other transcription factors, including Pax6,
NeuroD and Tbr1 (refs. 5,6). Therefore, we investigated the expression
pattern of EOMES in human prenatal tissues at different stages of
development (Fig. 2c–i and Supplementary Methods). The EOMES
transcript was visibly expressed at 7 weeks of development (Carnegie
stage 19) in a pattern apparently restricted to the forebrain floorplate
of the central nervous system (Fig. 2d). However, we observed distinct
EOMES expression within the mantle layer (Fig. 2h) and migrating

neuroblasts (Fig. 2i) of the telencephalon at 12.5 weeks. This limited
expression pattern differs from that of the mouse, implying
evolutionary divergence of noncoding control elements, as shown
for brain-specific expression of WNT7A7. This pattern supports a role
for human EOMES in late neuronal development and suggests that its
silencing contributes to the disease phenotype in individuals with
microcephaly syndrome.

Proliferation and neuronal fate specification are key events in the
developing ventricular zone and subventricular zone (SVZ) of the
central nervous system5,6. Mouse Eomes (Tbr2) is expressed in these
sites and may be involved in precursor proliferation. In humans,
neuronal migration occurs largely between the 12th and 24th week of
gestation. This period, preceded and accompanied by intense cell
division in the ventricular zone, corresponds to the time frame in
which we observe EOMES expression in the telencephalon. During
development, a number of other transcriptional regulators balance
cortical cell proliferation and differentiation8. In the cortex, radial glia
produce both neurons and glia9, whereas intermediate progenitor cells
produce only neurons and divide away from the ventricular surface.
The transition from radial glia to intermediate progenitor cell in the
mouse is associated with upregulation of Eomes and downregulation
of Pax6, whereas the subsequent transition from intermediate pro-
genitor cell to postmitotic neuron is marked by downregulation of
Eomes and upregulation of Tbr1 (ref. 5). Interruption of the efficiency
of precursor production, or secondary impairment of neuronal
migration, would be predicted to result in a smaller telencephalic
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Figure 1 Segregation, genetic and fine physical mapping of the disease locus. (a) Simplified family pedigree. Chromosomal and molecular analyses were

carried out on the core family (indicated by a triangle) after we obtained their informed, written consent, under supervision by the Necker Hospital ethics

committee. Filled black symbols indicate individuals with the microcephaly syndrome. R banding of chromosomes 3 and 10 is schematically presented;

arrowheads indicate translocation breakpoints. (b) Mapping of the disease locus using homozygosity for a balanced reciprocal translocation, and expression

pattern in surrounding candidate genes. The BACs crossing the breakpoints were identified for both chromosomes 3p and 10q (shaded boxes). The genetic

map shows the region cosegregating with the disease phenotype (filled black bars). Candidate genes are indicated on the physical map and in Supplementary

Table 2. Results of qualitative PCR on lymphoblast cDNA from individual V.6 are shown at right (+, expressed; –, not expressed).
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surface. However, the fact that normally sized brains are also asso-
ciated with corpus callosum agenesis, as well as the complexity of
corpus callosum development, does not permit the conclusion that the
absence of the corpus callosum in these individuals is readily explained
by a neuronal migration or proliferation defect alone. Furthermore,
EOMES may have a species-specific role in corpus callosum develop-
ment. We screened six unrelated individuals with absent corpus
callosum as a primary feature for coding sequence mutations of the
EOMES gene and did not find any mutations or rearrangements (data
not shown). At least 18 numerical or structural chromosomal aberra-
tions have been reported in individuals with corpus callosum defects,
and more heterogeneity is likely1.

Eomes has been described in mouse as a key transcription factor for
memory CD8+ T cells and for full effector differentiation of CD8+

T cells10. Eomes is induced in effector CD8+ T cells after viral infection
and after expression increases in memory T cells; it is induced in
memory cells only after bacterial infections leading to high levels of
interleukin 12, which favors the acute host response11. However, we
did not detect any major immune deficiency and/or quantitative
abnormalities in the T CD8 subset in affected individual V.6 (Supple-
mentary Note). Further T functional studies must be performed to
explore the effect of EOMES silencing on the immune system.

The genetic and expression evidence that we provide supports the
conclusion that homozygous silencing of the human EOMES locus
results in a microcephaly syndrome with polymicrogyria and agenesis
of the corpus callosum. Unusually, silencing of the EOMES locus in
the individuals studied is ascribed to a position effect resulting from a
translocation breakpoint. As no additional EOMES exons have been
detected (Supplementary Methods) and the transcriptional direction
of EOMES gene is away from the breakpoint on the native chromo-
some 3p, we hypothesize that a cis-regulatory sequence12 lying 215 kb
or more 5¢ to the EOMES locus may have been separated from the
EOMES core promoter.

Because the full knockout of Tbr2 in mice leads to embryonic
lethality before implantation4,13, the essential role of this gene product
in brain development has not been hitherto emphasized. The motor
delay with hypotonia observed in the individuals with microcephaly

syndrome in our study, as well as their reduced cerebellar size, recalls
the recently demonstrated co-opting of this developmental gene cascade
in the mouse cerebellum, in which precursors of the neurons of the
deep cerebellar nuclei both express and require Eomes transcripts14. We
did not observe any EOMES expression in the developing human
cerebellum at Carnegie stage 19 or 12.5 weeks of development; later
stages were not accessible for analysis. Although other T-box family
member genes (TBX3 and TBX5) have been reported to be involved in
human developmental disorders involving the heart and skeleton
(ulnar-mammary (MIM181450) and Holt-Oram (MIM142900) syn-
dromes, respectively), our report is the first to implicate EOMES in a
severe neurological malformation in humans.

Note: Supplementary information is available on the Nature Genetics website.
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Figure 2 Silencing of the translocated EOMES locus and normal EOMES expression in the developing human brain. (a) Quantitative PCR of EOMES exon

6 on cDNA derived from lymphoblast lines of a control individual, the homozygous affected individual V.6 and his heterozygous father, normalized to the

expression level of b-actin. Bars represent s.d. from three replicates. (b) Monoallelic expression of the wild-type EOMES locus. Genomic sequence traces

centered on the A/G SNP found in EOMES exon 6 are shown for affected individual V.6, his father and a control. RT-PCR sequences of the EOMES mRNA in

the same individuals are shown below. We did not detect any EOMES mRNA in V.6, whereas only the non-translocated EOMES allele was expressed in the

heterozygous father. (c–i) Parasagittal sections through the head of a Carnegie stage 19 embryo (7 weeks of development). c, hematoxylin-eosin (HE) stain.

d, enlargement of basal forebrain showing discrete EOMES expression in the floorplate (arrowhead) as compared with the adjacent sense control hybridized

slide (e). d and e are 75–80 mm medial to c. We observed localized EOMES expression when we hybridized an antisense probe (f) versus a sense probe (g)
in adjacent frontal sections through the telencephalon of a fetus at 12.5 weeks of development. Magnifications of the cortical mantle layer (h), with intense

signal in the subventricular zone, and dense neuroblasts (i) of the future basal ganglia.
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Supplementary figure 1: The following features  were observed in all patients : i) extreme microcephaly (V.3, V.5 and 
V.6), ii)  craniosynostosis secondary to microcephaly (a, b, d, e), iii) corpus callosum agenesis (CT scan view (c) and MRI 
view (g, h), iv) other brain malformations, namely: bilateral cortical polymicrogyria (h white arrow), myelinization delay 
on anterior arm of internal capsulae (i white arrow), a reduced cerebellum without malformation of posterior fossa (g), v) 
Individual V.5 also presented with a left kidney pyelo-ureteral junction abnormality (f). The photographs are published 
with parental consent. 
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Supplementary Figure 2  
FISH analyses of BACs (Bacterial artificial chromosome) RP11-9A14 on chromosome 3p (A) and 
RP11-102H24 on chromosome 10q (B), encompassing the breakpoints (green probes indicated by 
white arrows). The specific chromosome 10 satellite probe is a purple/red colour (red arrows). 
der3 : derivative chromosome 3; der10 : derivative chromosome 10. 
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Supplementary figure 3 : Sequencing of the junction fragments on 3p24 (blue arrow) 
and 10q22 (green arrow) demonstrated that no deletion was involved. A 56 nucleotide 
sequence originating from a Long Interspersed Nuclear Element (LINE) repeat was 
intercalated at the translocation breakpoint (red dotted line). 
 
 

LINE sequence Chromosome 3 

Chromosome 10 



 
Supplementary Table 1: BAC probes encompassing the 3p and 10q translocation breakpoint. All BAC clones 

are from the RP11 library. The probes overlapping the breakpoints are in bold case (see Supplementary Figure 

2) 

 

Chromosome 3 Chromosome 10 

Probes Accession N° Physical 
position 
(UCSC) 

Probes 
crossing 

the 
breakpoint 

Probes Accession N° Physical 
position 
(UCSC) 

Probe 
crossing 

the 
breakpoint 

RP11-49D9 AC103585 24.627.517 no RP11-589B3 BX248123 80.945.468 no 
RP11-537O8 AC092422 25.029.895 no RP11-506M13 AC068139 81.241.465 no 
RP11-286D1 AC098973 27.730.346 no RP11-369J21 AL356095 81.745.793 no 
RP11-8L15 AC117417 27.944.512 yes RP11-36D19 AL513174 81.915.872 no 
RP11-9A14 AC092415 27.946.511 yes RP11-175M21 AC009405 82.411.891 no 
RP11-301D8 AC093142 28.336.078 no RP11-102H24 AL356307 82.798.241 yes 

    RP11-202D18 AC010157 83.863.806 no 
    RP11-156D10 AL354749 84.487.215 no 

 
 



Supplementary Table 2: Methods for RT-PCR analysis of candidate genes on chromosomes 3p and 10q. In addition, 
the PRO-NRG3, DC-TM4F2, and EOMES genes were fully sequenced. 
 

Genes & accession N° 
 

Primer sequences and exon location Physical Position (UCSC) 

Chromosome 3 

SLC4A7 (or 
S4A7_HUMAN) 
Solute carrier family 4 
member 7 

5’-ACGAGGCTTTGGAGAAGCTCTTT, Exon 15 
5’-ACACCAAAAGAGCACATCTGGAAT, Exon 17 

27,393,200-27,453,960 

5’-GATCATTACGAAACAGGG- Exon1F 
5’-TGAATCATAGTTGTCTCTGA- Exon5R      

5’-AGCATGGAGCCGTAGGGGTAG, Exon1F 
5’-TCCGAGCGGTACTACCTCCAGT, Exon1R 
5’-GGACTACCATGGACCTCCAGAACA, Exon6F 
5’-TCTTCAGCATTAATGTCCTCACACTT, Exon6R 

 
EOMES 
T box brain 2 / 
eomesodermin homolog 
(Xenopus laevis)  
(NM_005442) 

5’-CCGGTGGCCTTATTATAAAGG, Alt-exon1F 
5’-GAATTAGTGTCACCTCCACCAC, Alt-Ex1-2R 
5’-CCTGTCTCATCCAGTGGGAACCAG, Exon3R  

27,732,891-27,738,789 

 

 

 

 

27,738,925-27,739,206 
(Spliced exon) 

MGC61571  
(hypothetical protein 
LOC152100) 
(NM_182523) 

5’-TCCTGGCGGTGCTTTGCAAAGGG, Exon1 
5’-TTGTTCAGAACACCTCTCTTTCCG,  Exon2 
 

28,258,128-28,336,265  

5’-GAACCTGGCTTCGCTAACG, Exon 1F 
5’-TTTCTTCTGACTCGGCAGG, Exon1R 

 
AZI2 
5-azacytidine induced 2 
 (NM_022461) 
 5’-CGGTCCGTTTCCAAACACTAAGG, Exon1F 

5’-CAACAGATTCATCTCCTGAATA, Exon2R 
 

28,339,090-28,365,579 

Chromosome 10 

LOC375920 
Modified Nov 1, 2006 to 
SH2D4B 
(NM_207372) 

 
5’-GAAGAACAGTTGCGCCGGTCC, Exon 4-5F 
5’-GGTGTTCCTCTCGAAGCCAG, Exon 6R 

82,287,638-82,396,296  
 

LOC375921 
Discontinued from RefSeq 
10-May-2005 

5’-CAAGCACCAAGATCATGAAGCC, F 
5’-GTGGAAACTCTGGAAATTCACAA, R 

Amplifies 82,466,224-
82,466,794 

DC-TM4F2 
Tetraspanin-14 
(Transmembrane 4 
superfamily member 14) 
(NM_030927) 

5’-TGAAGACTGGGACCTCAACG, Exon8F 
5’-AGATCAGCGTCCTTGCCAG, Exon11R 

82,204,047-82,269,364 

PRO-NRG3 
Pro-neuregulin-3, 
membrane-bound isoform 
precursor (Pro-NRG3)  
(NM_001010848) 

 
5’-GAGTCTATCCTCTTGCTGCA, Exon8F 
5’-CTTGGCAAGGTATCGTATC, Exon8R 

83,625,077-84,735,340 

KIAA2020 

 

5’-TCCAGGAACCTGTTTACTTT, Exon1F 
5’-TGGGTATGCTCCATTTGAAG, Exon1-2R 88,975,237-89,120,432 

 
 



 

SUPPLEMENTARY METHODS 

Cytogenetic studies  

Blood samples were collected from all four patients and their parents. Informed written consent was obtained 

from the families. Cytogenetic analysis was performed using standard R-band techniques. FISH experiments, using 

BACs as probes (CHORI Center), were performed on metaphases of patient IV.5 and his father IV.7 (Fig. 1). Total 

DNA from these BACs was labelled with biotin by nick-translation as previously described. The probes were revealed 

by using avidin-FITC (Sigma). All slides were counter-stained with DAPI (Sigma). The slides were observed under a 

Zeiss epifluorescence microscope (Axiophot) connected to the Powergene 810 probe system (Perspective Scientific 

International LTD). After the CGH experiment was performed, the slides were visualized on an epifluorescent 

microscope (DMRXA, Leica Microsystems). Images were processed and analyzed with the Quips CGH software (Vysis 

Inc.) 

 

Linkage analysis  

- Chromosomes 3p and 10q 

Linkage analysis was performed in chromosome 3p and 10q to identify a homozygous region by descent for 

each of the two chromosomes which prompted us to select BACs for the physical fine mapping of the breakpoint. The 

following microsatellite markers were used: D3S1304, D3S1263, D3S1259, D3S1286, D3S1293, D3S1266, D3S1582, 

D3S1613, D3S3717, D3S3721; and D10S556, D10S195, D10S201, D10S1686, D10S1744, D10S198, D10S192, 

D10S1663, D10S597. 

 

When assuming a fully penetrant autosomal recessive disorder, linkage analysis between the disease phenotype 

and translocation breakpoints used as polymorphic markers yielded a maximum lodscore of Z = 3.45 at 3p24 or 10q23, 

when including three affected individuals only. If one common ancestor carried the translocation, the likelihood that 

three affected offspring would be homozygous for the translocation by chance is 1/4,000.  

 
- Exclusion of MCPH loci 

We did homozygosity mapping and linkage analysis by using 36 microsatellite markers across the six MCPH 

loci from the family branch with two affected individuals and one healthy sister. We excluded the following loci: 

MCPH1 (D8S1798, D8S277); MCPH2 (D19S414, D19S570, D19S220, D19S881, D19S417, D19S223, D19S197, 

D19S198, D19S423, D19S420, D19S900); MCPH3 (D9S1872, D9S1682); MCPH4 (D15S1007, D15S1042, 

D15S1012, D15S1044, D15S994, D15S968, D15S1006, D15S978, D15S126, D15S982, D15S1003, D15S117, 

D15S964, D15S643, D15S155); MCPH5 (D1S238, D1S422, CRB1 [a CA repeat marker designed locally, primers 

available on request] and D1S413); MCPH6 (D13S742, D13S221). 

 
 

DNA sequence analysis  

DNA was extracted from peripheral blood (or lymphoblastic cell lines) according to standard protocols. We 

analysed candidate genes by genomic and/or cDNA sequencing. PCR products were purified and directly sequenced in 

both directions on an ABI PRISM 3130 DNA sequencer (Perkin Elmer-Applied Biosystems) using the dye terminator 

method according to the manufacturer’s instructions (cf. Nature Protocols).  

 

 



 Expression analysis 

 - Total RNA extraction and RT-PCR analysis 

Total RNA was extracted from cultured lymphoblastic cell lines using the RNeasy Mini kit (Qiagen) according 

to manufacturer’s instructions. A sample of extracted RNA was electrophoresed on a 2% agarose gel to verify integrity. 

First strand cDNA was synthesized using random hexamer primers (GeneAmp RNA PCR kit, Applied Biosystems). 

Reverse transcription was carried out at 42° for 15 min, at 99° for 5 min, and at 5° for 5 min. RT-PCR was performed 

using gene-specific primers (Supplementary Table 2).  

 

- Quantitative RT-PCR :  

Quantitative measurements of changes in gene expression were performed using a LightCycler (Roche 

Diagnostics, Indianapolis, Ind.) thermocycler. Q-PCR was performed (operating system version 3.0) in 10µl mixtures 

containing 1 µl of Faststart DNA Sybr Green I (Roche Molecular Biochemicals), 1.5 mM MgCl2, 0.5 mM each primer 

(EOMES-Ex6F2-5’-GGACTACCATGGACCTCCAGAACA-3’, and EOMES-Ex6R1 5’-

TCTTCAGCATTAATGTCCTCACACTT-3’), and 5 µl of extracted DNA (1 to 25 ng). The reaction was performed 

with preliminary denaturation for 10 min at 95°C (slope, 20°C/s), followed by 40 cycles of denaturation at 94°C for 10 s 

(slope, 20°C/s), annealing at 60°C for 5 s (slope, 20°C/s), primer extension at 72°C for 8 s (slope 20°C/s), and product 

detection at 77°C for 5 s (slope, 20°C/s). A final cooling step was performed at 4°C for 1 min (slope, 20°C/s). A 239-bp 

product resulted from the reaction. Experiments were repeated in triplicate and normalized for input cDNA against beta-

actin. 

 

- RACE (Rapid Amplification of cDNA Ends) 

We performed 3’ RACE analysis using the GeneRacerTM Kit (Invitrogen). The first-strand of cDNA was 

amplified using a forward gene specific primer within the published first exon (Forward GSP: 5’-

TCCGAGCGGTACTACCTCCAGT) and the GeneRacerTM Oligo dT Primer according to manufacturer’s instructions. 

We did not find supplementary exons 3’ to the six published exons of EOMES. 

 

-  In situ hybridisation  

Normal human embryos and foetal tissues were obtained after elective termination of pregnancy in agreement 

with current French bioethical legislation (94-654 and 00-800), the Necker Hospital CCPPRB and National Ethics 

Committee recommendations (N° 1 of May 22, 1984). Embryonic stages were established according to Carnegie 

staging (CS) classification. Six different embryonic stages (CS8 (d18), CS9 (d20), CS15 (d33), CS19 (d 47–48)) as well 

as two fetal stages (14.5 and 24 weeks) were studied. Tissues were fixed in 4% phosphate buffered paraformaldehyde, 

dehydrated, and embedded in paraffin blocks. Five micron thick serial sections were cut. Exon 2 primers were selected 

for PCR amplification (F: 5’-CCTGTTCTAGGACATCCCAATT -3’ R: 5’-GAGGGTTACGATTTCTTC-3’). A T7 

promoter sequence extension (TAATACGACTCACTATAGGGAGA) was added at the 5’ end of each primer. T7F/ R 

and F/ T7R primers allowed the amplification of sense and antisense templates respectively, specific to the EOMES 

gene. Riboprobe labelling with 35S-UTP, tissue fixation, hybridization, and photographic development were carried out 

according to standard protocols as previously described. 

 

 



Supplementary note 
 
Patient V.6 

During the first week of life, he had a fever (38.6-40.3°C) that was unresponsive to 
antipyretics, caused by Escherichia coli sepsis. Biological explorations showed augmented 
leucocytes (16 780 /µl) and lymphocytes (61.7 %; Normal: 19 - 48 %), diminished levels of 
red blood cells, haemoglobin, hematocrit , and polymorphonuclear neutrophils. At the age of 
3 months, he presented an urinary infection (pyelonephritis) associated with fever and  
Klebsiella pneumoniae isolated in the urine.  

The cytobacterial investigation in the cerebrospinal liquid showed a very high level of 
red blood cells (120/µl; N: 1 - 2) and leucocytes (4/µl; N: <3). The direct bacteriological exam 
revealed absence of germs. 

The haematological survey was essentially normal except the polymorphonuclear 
basophils which were two fold higher than normal. At the time of publication, the infant at 9 
months of age has had a fever on every measurement and subsequent episodes of infections. 
The exploration of lymphocyte subtypes of patient V.6 had found normal distribution of T, B 
and NK cells. For T CD8 subtypes the percentage of memory and naive cells was normal, but 
the patient presented a slight increase in effector T (CD8) cells with normal expression of 
CD122.  

The results of all other standard immunological explorations were normal, including 
serum immunoglobulin levels (at the age of 6 and 9 months), antibody responses to proteins 
and complement (CH50, C3, C4).  
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Les cellules de la crête neurale (CN) sont produites chez
l’embryon de la 3e à la 5e semaine de grossesse, au niveau
des bourrelets médullaires séparant la plaque neurale de l’ecto-
derme. Au cours de la fusion des bourrelets médullaires, qui
aboutit à la formation d’un tube à l’origine du futur système
nerveux central (SNC), les cellules de la CN se détachent et
adoptent un type mésenchymateux. Elles migrent alors à tra-
vers le corps et envahissent pratiquement tous les organes.

Les cellules dérivées des cellules de la CN comprennent les
neurones et les cellules de support de l’ensemble du système
nerveux périphérique (sensoriel et autonome), les cellules adré-
nergiques et autres cellules endocrines, ainsi que toutes les cel-
lules pigmentaires, à l’exception de celles dérivant de la rétine
[1,2]. Au niveau de la tête, les cellules de la CN donnent éga-
lement naissance aux tissus conjonctifs et structuraux du crâne
(de type dermique osseux ou cartilagineux), et aux tendons
musculaires. Elles infiltrent et sont essentielles au fonctionne-
ment d’éléments glandulaires ou vasculaires tels que le thymus,
les glandes thyroïde et parathyroïde, la région conotroncale du
cœur et l’ensemble du secteur vasculaire branchial, donnant
naissance à des cellules de tissus conjonctifs, adipeux ou
encore du muscle lisse.

Le fait que les cellules de la CN n’aient été retrouvées que
chez l’embryon exclut de les considérer comme de réelles cel-
lules souches. Cependant, il a été récemment démontré que le
Pour citer cet article : H.-C. Etchevers et al., Bases génétiques et moléculaire
ped.2007.02.072.
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système nerveux intestinal du rat adulte contient des cellules de
la CN capables de s’autorenouveler et multipotentes. Par ail-
leurs, les mélanocytes aviaires peuvent, in vitro, se différencier
en cellules gliales, en neurones et en cellule de type muscle
lisse, ce qui suggère aussi la persistance de progénitors multi-
potents. Il est probable que les cellules dérivées des cellules de
la CN sont le produit d’une restriction progressive du potentiel
développemental.

Le choix final du phénotype à mettre en place à tel ou tel
endroit de l’organisme résulte de l’action combinée de diffé-
rents facteurs extrinsèques, appartenant au microenvironne-
ment embryonnaire, et des propriétés qu’ont les cellules elles-
mêmes d’adapter leur réponse à ces influences extérieures. On
a ainsi observé qu’une déficience en facteurs de croissance
neurotrophiques et en gènes codant pour leur récepteur entraîne
une pénurie des sous-types cellulaires correspondants dérivés
des cellules de la CN. Si la migration et le devenir des cellules
de la CN sont imposés par la nature des tissus environnants au
moment où elles quittent l’ébauche neurale, ils ne dépendent
pas, contrairement à ce qui avait été avancé, des propriétés
intrinsèques retrouvées localement le long de l’axe neural.

1. Définition des neurocristopathies

Une anomalie dans la migration, la différenciation, la divi-
sion ou la durée de vie des cellules de la CN entraîne la forma-
tion de dysplasies organiques ou tissulaires, aux caractéristi-
ques cliniques et pathologiques extrêmement diverses. En
s des neurocristopathies, Archives de pédiatrie (2007), doi: 10.1016/j.arc-
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raison de leur origine embryonnaire commune, Bolande avait
suggéré de rassembler ces pathologies sous le terme de
« neurocristopathies », pour souligner le fait qu’elles parta-
geaient des mécanismes pathogéniques communs. Des défini-
tions plus nuancées ont été proposées par la suite, permettant
de prendre en compte l’importante diversité des cellules déri-
vées des cellules de la CN et des organes dans lesquelles elles
jouent à part entière, et de façon prolongée, un rôle fonctionnel.
Cependant, classer telle ou telle maladie dans la catégorie des
neurocristopathies s’effectue sur la base des connaissances dis-
ponibles à un moment donné, des données scientifiques en per-
pétuelle évolution avec l’avènement et l’essor de l’embryologie
moléculaire.

Certains troubles, notamment ceux entraînés par la défiance
fonctionnelle de cellules de la CN déjà différenciées, n’ont pas
été inclus dans la liste des neurocristopathies présentée ici
(Tableau 1). Ainsi, bien que l’albinisme oculocutané corres-
ponde bien à une affection des mélanocytes dérivés de la CN,
il provient moins d’un problème dans leur développement que
d’un problème dans leur fonction métabolique finale (la syn-
thèse de mélanine). De fait, l’idée ici est de restreindre la défi-
nition d’une neurocristopathie aux pathologies pour lesquelles
les perturbations observées dans les cellules de la CN sont cau-
sales, et ne constituent pas un phénomène secondaire. Les cra-
niosténoses simples, par exemple, en sont exclues, dans la
mesure où elles semblent refléter un défaut de fonction des
ostéoblastes associé, dans les formes syndromiques, à des pro-
blèmes osseux au niveau des jambes, des côtes ou des vertè-
Tableau 1
Exemples de neurocristopathies, classées selon leur type et le compartiment concer

Peau Système nerveux
périphérique

Système en

Cancers
Isolés Mélanome Neuroblastome Phéochrom

Carcinome à cellules de
Merkel

Schwannome Épithéliom
Paragangliome Paragangli

Tumeurs c
Syndromique Neurofibromatose Ib Hirschsprung

+ neuroblastome
Néoplasies
2A, BMélanose neurocutanée

Malformations
Isolées Nævus congénital géant Hirschsprung

Piébaldisme

Syndromiques Sturge-Weber Waardenburg Allgrove
Dysautonomie familiale
de type 2

Bamforth-L

a Syndromes comportant une composante endocrine imputable aux cellules de la
b Cas combinant une neurocristopathie avec des malformations non neurocristopa

Pour citer cet article : H.-C. Etchevers et al., Bases génétiques et moléculaire
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bres, aucun de ces éléments n’ayant de composant issu des
cellules de la CN (exception faite du syndrome craniofrontona-
sal, qui implique une perturbation des cascades de gènes inter-
venant dans la migration des cellules de la CN).

2. Diagnostic clinique des neurocristopathies

Il est important, devant un patient présentant de multiples
anomalies congénitales, de considérer la situation d’un point de
vue embryologique, afin de déterminer une éventuelle cause
commune sous-jacente. Les cellules de la CN colonisent 4 com-
partiments, de taille différente : la peau, le système nerveux péri-
phérique, une partie du système endocrine et un pôle pharyngo-
céphalique. Les anomalies touchant l’un ou l’autre de ces
compartiments trouvent a priori leur origine dans un même
domaine initial, ce qui justifie l’examen soigné des autres com-
partiments qui en dérivent. Le Tableau 1 compare les neurocris-
topathies isolées et syndromiques, d’une part, et les distinctions
à faire entre symptômes cancéreux et malformatifs d’autre part.
Bien entendu, les neurocristopathies syndromiques peuvent à la
fois avoir des composantes cancéreuses et malformatives : il est
effectivement rare de rencontrer une neurocristopathie syndro-
mique pure. Toutefois, ce concept de neurocristopathie est utile
aux cliniciens dans leur approche du patient, puisqu’il permet de
regrouper sous un même étendard des symptômes apparemment
divergents et non reliés entre eux. Examinons maintenant, à titre
d’exemple, quelques cas de figures représentatifs de neurocristo-
pathies de présentation pédiatrique.
né

docrine Pôle pharyngocéphalique

ocytome Hémangiopéricytome
e médullaire de la thyroïde Paragangliome non-chromaffin (oreille)
ome chromaffine
arcinoïdes
multiples endocriniennes Hypoventilation congénitale centrale

Malformations artérioveineuses cérébrodurales
Fentes palatine et labiale
Moya-moya
Cardiopathies conotroncales isolées
Aplasie des glandes lacrymales et salivaires
CHARGEa

azarus DiGeorge
Pierre Robin
Holoprosencéphaliea,b

Kallmanna

Riegera

Bindera

Mœbiusa

Johanson-Blizzarda

Treacher-Collins-Franceschetti
Craniofrontonasalb

Goldenhara,b

Orofacial-digital VIa,b

crête neurale non endocrines, essentielles à la formation de l’hypophyse.
thiques.
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2.1. Anomalies du développement des mélanoblastes

Les mélanoblastes issus des CN migrent essentiellement
vers 3 destinations : la jonction derme–épiderme, le bulbe
capillaire dans le derme, l’iris et la choroïde au niveau de
l’œil (les mélanocytes de la rétine dérivent de la plaque
optique). Les anomalies du développement des cellules des
CN à destinée mélanocytaire se manifestent par l’existence de
zones cutanées dépigmentées dès la naissance du fait de
l’absence de mélanocytes. Ces anomalies de la pigmentation
Tableau 2
Gènes ou loci de neurocristopathies

Maladie ou syndrome MIM Hérédité Gène Chr
Piebaldisme 172800 AD KIT 4q1
Mélanome 155600 AD 1p3
Mélanome 155600 S NRAS 1p1
Mélanome 155600 S BRAF 7q3
Mélanome 155600 AD, S CDKN2A 9p2
Mélanome 155600 AR, S MC1R 16q
Mélanome 155600 AD, S CDK4 12q
WS1 193500 AD PAX3 2q3
WS3 193500 AR PAX3 2q3
WS2A 193510 AD MITF 3p1
WS2B 600193 AD 1p
WS2C 606662 ? 8p2
WS2D 608890 AR SNAI2 8q1
WS4 277580 AR EDNRB 13q
WS4 277580 AR EDN3 20q
WS4 277580 AD SOX10 22q
HSCR 142623 CI* RET 10q
HSCR 142623 CI GDNF 5p1
HSCR 142623 CI ARAF Xp1
HSCR 142623 CI NTN 19p
HSCR 142623 CI EDNRB 13q
HSCR 142623 CI EDN3 20q
HSCR 142623 AD PHOX2B 4p1
HSCR 142623 3p1
HSCR 142623 19q
HSCR 142623 AD L1CAM Xq2
NB 256700 AD, S PHOX2B 4p1
Haddad 209880 AD, S PHOX2B 4p1
CCHS 209880 AD, S PHOX2B 4p1
Phéochromocytome 171300 AD RET 10q
Phéochromocytome 171300 AD SDHB 1p3
Paragangliome 4 115310 AD SDHB 1p3
Paragangliome 2 601650 AD 11q
Paragangliome 3 605373 AD SDHC 1q2
Paraganglioma 1 168000 AD SDHD 11q
Phéochromocytome 171300 AD SDHD 11q
MC carcinome 602690.0019 S SDHD 11q
NEM2A 171400 AD RET 10q
NEM2B 162300 AD RET 10q
CMT 155240 AD RET 10q
Dysautonomie de type 2 256800 AR NTRK1 1q2
NF1 162200 AD NF1 17q
DiGeorge 188400 AD 22q
CHARGE 214800 AD CHD7 8q1
Goldenhar 164210 AD 14q
Moebius 157900 AD 13q
Bamforth-Lazarus 241850 AR FOXE1 9q2
Rieger 1 180500 AD PITX2 4q2
Rieger 2 601499 AD FOXC1 13q
Craniofrontonasal 304110 XLD EFNB1 Xq1
Allgrove 231550 AR ALADIN 12q
AD ou AR : autosomique dominant–récessif ; XL : lié aux chromosomes X ; CI : h

Pour citer cet article : H.-C. Etchevers et al., Bases génétiques et moléculaire
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se distinguent du vitiligo au cours duquel la dépigmentation
est un phénomène acquis après la naissance, et de l’albinisme
qui est une anomalie de la fonction et non du développement
du mélanocyte. Les anomalies de la pigmentation se retrouvent
dans différentes neurocristopathies, soit isolées comme dans le
piebaldisme, soit associées à d’autres anomalies du développe-
ment comme dans le syndrome de Waardenburg. En matière
tumorale, c’est le mélanome, de manifestation pédiatrique
exceptionnelle, qui constitue le meilleur exemple (Tableaux 1
et 2).
omosome Modèle murin spontané ou transgénique (+)
2 White-spotting, +
6
3.1 +
4 +
1 +
24.3 Tawny, recessive yellow, tobacco-darkening, sombre, +
14 +
5 Splotch, +
5 spLotch, +
4 Microphthalmia, Vitiligo, White, Red eyed white, Brownish, +

3
1 +
22 Piebald, piebald lethal, +
13 Lethal spotting, +
13 Dominant megacolon, +
11.2 +
3.2 +
1.3 +
13.3 +
22 Piebald, piebald lethal, +
13 Lethal spotting, +
2 +
2
13
8 +
2 +
2 +
2 +
12 +
6
6
13.1
1
23 +
23 +
23 +
12 +
12 +
12 +
1 +
11 +
11.2
2
32
12.2-q13
2 +
5 +
14 Congenital hydrocephalus, +
3.1 +
13
érédité complexe ; * : locus majeur ; S : somatic.
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2.2. Anomalies des dérivés endocrines : néoplasies
endocriniennes multiples de type 2

Les néoplasies endocriniennes multiples de type 2 (NEM 2)
constituent un groupe de syndromes de prédisposition familiale
aux tumeurs des glandes endocrines dérivées des CN (phéo-
chromocytome, carcinome médullaire de la thyroïde). Le can-
cer médullaire de la thyroïde (CMT) se développe à partir des
cellules C sécrétrices de calcitonine et est retrouvé de manière
constante, alors qu’un phéochromocytome (tumeur dérivée des
cellules chromaffines de la médullosurrénale) est présent dans
environ 50 % des cas. Les NEM2 se comportent comme des
caractères autosomiques dominants d’expression variable,
mais de pénétrance quasi complète au-delà de 30–40 ans. Le
gène de susceptibilité a été identifié, il s’agit du proto-
oncogène RET pour lequel des formes réarrangées avaient été
détectées dans des carcinomes papillaires de la thyroïde et dont
l’ARN messager avait été retrouvé très fortement exprimé dans
des tumeurs d’origine neuroectodermique. Ce gène est localisé
sur le bras long du chromosome 10 (10q11-12), et code pour
une protéine membranaire appartenant à la superfamille des
récepteurs tyrosine-kinase. Contrairement au schéma classique
des mutations d’antioncogènes dans les formes familiales de
tumeurs, on a affaire ici à des mutations germinales transmises
en dominance et conduisant à l’activation constitutionnelle du
récepteur tyrosine-kinase RET.

2.3. Système nerveux périphérique : la maladie
d’Hirschsprung

La maladie d’Hirschsprung (MH) est la plus fréquente mal-
formation du tube digestif (1 cas sur 4 à 5000 naissances)
résultant d’une anomalie du développement du système ner-
veux entérique (SNE) par défaut de migration, de prolifération,
de différentiation ou de survie des cellules dérivées des CN
dans la paroi du tube digestif pour former les plexus myentéri-
ques et sous-muqueux. Cela définit la MH comme une neuro-
cristopathie pure. Cliniquement, il faut distinguer MH isolée et
MH syndromique. Tout les oppose en effet : le pronostic, les
bases moléculaires et donc le conseil génétique.

2.3.1. Maladie d’Hirchsprung isolée
Les observations épidémiologiques collectées sur la MH

isolée sont en faveur d’une hérédité multifactorielle modifiée
par le sexe. En effet :

● le sex-ratio est déséquilibré en faveur des filles (4 garçons
pour 1 fille atteinte) ;

● le risque de récidive dans la fratrie du cas index est très
augmenté par rapport à celui de la population générale
sans pour autant suivre les lois de Mendel et varie de 1 à
33 % ;

● l’incidence varie en fonction de l’ethnie.

Les études de ségrégation plaident pour des modèles diffé-
rents en fonction de la forme de la maladie :
Pour citer cet article : H.-C. Etchevers et al., Bases génétiques et moléculaire
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● un gène majeur autosomique dominant de pénétrance
incomplète et avec un taux de mutations de novo d’environ
15 % dans les formes longues ;

● une hérédité multigénique ou autosomique récessive dans
les formes courtes (qui n’exclut pas la participation d’un
gène majeur).

Le gène majeur a été localisé en 10q11.2 puis identifié par
une approche candidate ; il s’agit encore du proto-oncogène
RET. Les mutations de RET sont hétérozygotes et ici très
variées. Fait surprenant, la fréquence des mutations de RET
détectées n’avoisine que la moitié des cas familiaux alors que
toutes les familles multiplexes de MH étudiées sont compati-
bles avec une liaison au locus RET. Le taux de détection est d’à
peine 15 % dans les cas sporadiques. Plus récemment, plu-
sieurs équipes ont identifié un haplotype de polymorphismes
le long du gène transmis des parents sains aux enfants atteints
plus souvent que ne voudrait le hasard. Cet haplotype est cen-
tré sur un polymorphisme intronique fréquent (20 % de la
population générale), qui pourrait bien être l’allèle hypomorphe
recherché, et qui est retrouvé, à l’état homozygote, dans la
majorité des cas sporadiques de MH sans mutation de RET
identifiée. Ainsi, le modèle génétique le plus probable pour la
MH est celui d’un gène majeur RET impliqué dans tous les cas
de MH (soit par une mutation classique, soit plus souvent par
un allèle de prédisposition) et de loci modificateurs localisés
sur les chromosomes 3p21, 19q12 et 9q31 mais non encore
identifiés.

2.3.2. Formes syndromiques de maladie d’Hirchsprung
L’association syndromique ne fait aucun doute lorsqu’elle

est forte ; 5–10 % des patients atteints de syndrome carti-
lage–hair hypoplasia, de Bardet-Biedl, ou encore de Smith-
Lemli-Opitz ont une MH, par exemple. Il en est de même
pour les patients présentant une trisomie 21 ou encore dans le
syndrome d’hypoventilation alvéolaire congénitale centrale
(syndrome d’Ondine) par mutation hétérozygote du gène
PHOX2B. L’implication de la voie de signalisation médiée
par les endothélines dans le développement des neurones enté-
riques a aussi été démontrée dans le syndrome de Waardenburg
de type 4 (MH + Waardenburg).

Dans quelques cas, la MH est le signe clinique qui a permis
de rapprocher les malades et de définir un nouveau syndrome.
C’est le cas du syndrome de Goldberg-Shprintzen ou du syn-
drome de Mowat-Wilson par mutation du gène ZFHX1B.
Lorsque la MH n’est rapportée qu’une fois pour un syndrome,
il est difficile de trancher sur le caractère fortuit (lié à la fré-
quence élevée de la MH) ou réel de cette association.

2.4. Crêtes neurales rhombomériques et malformations
de la face

Un certain nombre de malformations de la face et du cou
correspondent à une défaillance totale ou partielle du dévelop-
pement d’une unité segmentaire de la région du cerveau pos-
térieur et des structures qui lui sont associées. En allant du
s des neurocristopathies, Archives de pédiatrie (2007), doi: 10.1016/j.arc-
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rhombomère 2 au rhombomère 8, on peut distinguer un certain
nombre de malformations de la face :

● les syndromes du premier arc correspondent à un défaut du
développement de certains dérivés de la CN mésencépha-
lique et rhombencéphalique antérieure constituant les bour-
geons maxillaires et mandibulaires d’une part, et le nerf tri-
jumeau (nerf V) d’autre part, (syndromes de Goldenhar,
Franceschetti ou otomandibulaire) ;

● les syndromes du deuxième arc correspondent à un défaut
de développement des dérivés de la CN rhombencéphalique
constituant le deuxième arc branchial (lobule de l’oreille,
derme de la partie moyenne du cou, os hyoïde). Le
deuxième arc branchial est innervé par nerf facial (nerf
VII), aux anomalies des structures anatomiques sus-citées
peut donc s’associer une paralysie faciale (syndrome de
Moebius) ;

● les syndromes des troisièmes et quatrièmes arcs branchiaux
sont la conséquence d’un défaut du développement des
structures dérivées des CN au niveau des rhombomères 6,
7, et 8, c’est-à-dire le thymus, les parathyroïdes, les cellules
à calcitonine et le tronc aortopulmonaire ainsi que les déri-
vés des arcs aortiques. Le syndrome de DiGeorge associe
une hypoplasie ou une agénésie du thymus et des parathy-
roïdes, une anomalie des 3e, 4e et 6e arcs aortiques et des
malformations cardiaques conotroncales et du septum inte-
rauriculaire. La séquence de Pierre Robin correspond à un
Pour citer cet article : H.-C. Etchevers et al., Bases génétiques et moléculaire
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défaut de développement du tronc cérébral dérivé des 6e, 7e

et 8e rhombomères. Il en résulte une désorganisation anté-
natale des fonctions orales et céphaliques digestives (suc-
cion, déglutition), de la ventilation et de la commande para-
sympathique du cœur. Ces troubles fonctionnels induisent
durant la vie fœtale une division vélopalatine et un rétrogna-
thisme.

3. Conclusion

Les CN participent au développement de cellules aussi dif-
férentes que les mélanocytes, les neurones du système nerveux
entérique, les tissus de soutien de la face ou encore les structu-
res conotroncales du cœur. Une bonne connaissance du déve-
loppement des CN et des structures qui en sont dérivées permet
de comprendre l’association de malformations d’organes en
apparence si différents. De manière très complémentaire, la
découverte de gènes impliqués dans les neurocristopathies
humaines s’est avérée essentielle pour la connaissance du déve-
loppement normal des CN.
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E-mail: etchevers@necker.fr
Am. J. Hum. Genet. 2007;80:000–000. � 2007 by The American Society of Human Genetics. All rights reserved. 0002-9297/2007/8006-00XX$15.00
DOI: 10.1086/518177

Microphthalmia refers to a clinical spectrum that is char-
acterized by a congenital reduction in the size of the optic
globe(s), which may be reduced to a vestige visible only
on histological analysis. This most severe form of micro-
phthalmia is sometimes called “secondary” or “clinical”
anophthalmia and occurs later in development than pri-
mary anophthalmia because of a lack of optic vesicle for-
mation from the embryonic prosencephalon. Isolated se-
vere microphthalmia/anophthalmia demonstrates both
genetic and phenotypic heterogeneity in humans, cur-
rently implicating genes coding for transcription factors.
CHX10 mutations lead to microphthalmia, coloboma, and
cataracts1,2; mutations in the RAX gene have been iden-
tified in an individual with unilateral anophthalmia and
sclerocornea in the other eye.3 PAX6 mutations lead to
diverse congenital ocular malformations, the most com-
mon of which is aniridia, but a few genotypes have been
described to date that engender primary anophthalmia4

or microphthalmia,5–7 as documented in the PAX Allelic
Variant Database.

Syndromic microphthalmias (MIM 164180, 206900,
206920, 248450, 300166, 301590, 309801, 600776,
605856, 607932, 610125, 610126, and 601349) can be as-
sociated with craniofacial dysmorphic features, heart and
vascular malformations, skeletal and limb anomalies, skin
or gut defects, mental retardation, and hydrocephalus, or

combinations thereof. Although rare, the association of
severe microphthalmia and pulmonary hypoplasia (MIM
601186) is a distinct entity known as “Matthew-Wood
syndrome” (MWS [MIM 601186]).8 Most authors have re-
ported further associations of MWS with cardiac and/or
diaphragmatic malformations and intrauterine growth re-
tardation (IUGR).9–13

In two familial cases of MWS, we have excluded mu-
tations in the FGF10 and FGFR2IIIb genes encoding fibro-
blast growth factor 10 and its specific receptor isoform.14

These proteins are essential for the development of all
affected organs in MWS.15–17 Meanwhile, STRA6 gene mu-
tations were recently implicated in heterogeneous post-
natal associations of clinical anophthalmia, pulmonary
hypoplasia, diaphragmatic hernia, and cardiac defects.18 A
molecular analysis of the STRA6 gene was undertaken in
the two families with MWS we had described,14 as well as
in five other fetuses presenting at least one of the two
major signs of clinical anophthalmia or pulmonary hy-
poplasia and at least one of the two associated signs of
diaphragmatic closure defect or cardiopathy.

In all seven fetuses examined, the presence of severe
malformations was noted on ultrasound examination,
and, after genetic counseling, pregnancies were inter-
rupted. Clinical data are summarized in table 1. Chro-
mosome and molecular analyses and pathological exam-
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Table 2. STRA6 Oligonucleotides Used for Sequencing

Exon(s)

Oligonucleotide Sequences (5′r3′)

Forward Reverse

1a GGGGTGGGTTCCTCTGAT CACCCCAGGTCTCCAAACT
1b GCTGAAGGCAGGTATGTGTG CCTCTCGTGTCCCCTCCT
2 AAGCCTCTTTTCACATCTGTAGTG CAGTTGCAACCTCTGCCATC
3 TGGGTAAAGCCTCAGTGTGA GTTGGACTTGCATCCTGGTT
4 CAAGCCCTCAAACTCAGACC TGGGGGTCCTGACTAAACCT
5 CCACCTCCTTGATTTATGGAA GCATCGTTGTAAAGACTGGATG
6 and 7 ACCTTCTCATTTTGCCCTTG CTCAAAGGAGGCACTGTGGT
8 GCAACGGATTCTGGTTCTTG GGAGTAGGGCTGTCTTGGG
9 and 10 ACGAATGGGTCGAGGCAG TCTGTGCAAGGGAGGGTAAC
11 CTTGGGAGGGAGGAGGG GGTTGAGGGCAGGGCTC
12 CCAGCGTCTCCCCTGTTAG CATAGACCTTGGGTCTCCCC
13 TGGCAGGGGTTCTGAGG CACAGGACTCCCACTCCTTC
14 TGGCCCAGAGGAGGATTTAG CCAACTGAGGCCAGTGTCTG
15 and 16 AAAGCCCTTGGTTCTGGG ACACCGAAGAAGAGGCGAG
17 AGGTCTGACACTGACCCTGG GATGCCTTCCTCACTGCTTG
18 TGGATGCCTCCAGTGTGG AGGGGCACACATCCTTCC
19 GATCAGGTCTGAGGGCCAG GAGGAGGATGGTAGGCAGG

NOTE.—The annealing temperature for PCR was 60�C for all primers.
For QMPSF, fluorescent primers corresponding to STRA6 exon 13 were
used, and MLH1 was chosen as a reference (GTAGTCTGTGATCTCCGTTT, 5′;
ATGTATGAGGTCCTGTCCT, 3′). Coamplification was performed for 21 cycles,
and the peaks were integrated and proportional DNA copy numbers were
estimated with the use of Genotyper 3.7 software (Applied Biosystems).

Figure 1. Pedigrees of cases 1 and 2, with markers flanking the STRA6 gene, and electropherograms. Case 1 (blue arrow) had a
homozygous insertion/deletion in exon 2 of STRA6 (c.50_52delACTinsCC p.AspD17Ala fsX55). Case 2 (yellow arrow) had a homozygous
insertion in exon 7 (c.527_528insG p.Gly176Gly fsX59). Markers D15S160, D15S991, and D15S114 were also homozygous; relatives’ DNA
was unavailable for further analysis. wg p Weeks gestation.

inations were performed in all cases with full parental
consent. Genomic DNA was extracted from frozen tissue
in fetal cases and from peripheral blood samples for par-
ents in accordance with standard protocols.

Polymorphic markers D15S188, D15S160, D15S991, and
D15S114, flanking the STRA6 gene, were chosen using the
UCSC Genome Browser and were examined in fetal cases
1 and 2 (fig. 1). The parents of case 1 are a consanguineous
couple of Romanian origin, and the parents of case 2 are
a consanguineous couple of Portuguese origin.14 Homo-
zygous haplotypes were demonstrated in each fetus, al-
though the clinically unaffected parents of case 1 had a
heterozygous haplotype with an allele presumably inher-
ited from a common ancestor (DNA was unavailable from
the other family members of case 2).

Primers were subsequently designed to cover the 20 ex-
ons and exon-intron junctions of the STRA6 gene (UCSC
Genome Browser reference sequence NM_022369), in-
cluding exons 1A and 1B (the first noncoding exon may
be alternatively spliced), with the use of Primer3 software19

(table 2). PCRs were treated with the ExoSAP enzyme mix
as per the manufacturer’s instructions (GE-Amersham). Se-
quencing was performed for all seven fetal DNA samples
with the use of Big Dye v3.1 Terminator Cycle Sequencing
Reactions on an ABI 3130 (Applied Biosystems). Both the
sense and antisense strands of the PCR-amplified frag-
ments were analyzed with Sequence Analysis software (Ap-
plied Biosystems).

Cases 1 and 2 both presented homozygous mutations
in the coding sequence of STRA6 (fig. 1). A homozygous
insertion/deletion in exon 2 (c.50_52delACTinsCC) for fe-
tus 1 causes a frameshift and the appearance of a pre-
mature stop codon (p.Asp17Ala fsX55). An older brother
with isolated bilateral coloboma of the retina and iris was

heterozygous for this mutation, as were the clinically un-
affected parents. Case 2 presented a homozygous single-
base insertion in exon 7 (c.527_528insG) that also predicts
a premature stop codon (p.Gly176Gly fsX59).

Case 4 had six intronic variations and one conservative
amino acid substitution (table 3), all of which were ho-
mozygous and documented SNPs in the general popula-
tion (dbSNP). Parental samples for fetus 4 were not avail-
able for analysis. Since the fetus was not known to come
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Table 3. Sequence Variations in STRA6

Fetal Case and
Nucleotide Change
versus NM_022369

Predicted Effect
on ORF

dbSNP Reference
Number Status

1:
c.50_52delACTinsCC p.Asp17Ala fsX55 … Homozygous

2:
c.527_528insG p.Gly176Gly fsX59 … Homozygous

4:
c.331CrT p.Leu111Leu rs11857410 Homozygous
c.406�97ArG … rs34147822 Homozygous
c.406�111ArG … rs35255788 Homozygous
c.430�24TrA … rs971756 Homozygous
c.431�37CrT … rs971757 Homozygous
c.1685�24TrC … rs12913041 Homozygous
c.1840�50TrC … rs12912578 Homozygous

5:
c.596�9TrG … rs28541560 Heterozygous
c.1301�43ArC p.Ser472Ser rs351240 Heterozygous
c.1416GrA … rs351241 Heterozygous

6:
c.1166�32GrA … … Heterozygous

7:
c.1167�10CrG … rs2277608 Heterozygous

NOTE.—Case 3 had no sequence variations.

from a consanguineous background and had a normal kar-
yotype, the hypothesis of a small, heterozygous deletion
was considered. Quantitative multiplex PCR of small fluo-
rescent fragments (QMPSF)20 was undertaken to measure
the number of genomic STRA6 copies for case 4. The re-
sults indicated that this fetus did not present a deletion
of the STRA6 gene that would explain the observed ho-
mozygosity of the SNPs (data not shown).

A single heterozygous variation located in intron 13
(c.1407�32GrA) that was observed in case 5 has not
been identified to date in dbSNP (table 3). We screened
260 control chromosomes without observing the
c.1407�32GrA variation. The only tissue available from
fetus 5 for expression analysis was a frozen lung sample.
STRA6 transcripts were not observed in either total lung
RNA extracted from an age-matched fetus affected with
an unrelated disorder or from the case 5 tissue sample
(data not shown). Therefore, the consequence of this var-
iation on STRA6 transcription remains to be determined.

We report homozygous mutations in the STRA6 gene
in two fetuses presenting the principal features of MWS,
including bilateral severe microphthalmia and pulmonary
agenesis. Both also had bilateral diaphragmatic eventra-
tion, and one had a cardiac malformation. The observa-
tion that both fetuses came from consanguineous fami-
lies—and, moreover, that one family demonstrated sibling
recurrence—had already evoked a recessive model of in-
heritance for MWS.14 Since the molecular anomaly has
been found, it is now possible to affirm that MWS is indeed
an autosomal recessive disorder that can be ascribed to
mutations in the STRA6 gene.

These two fetuses with the STRA6 mutation would not
have survived postnatally. In both cases, the mutations

would have led to a truncated protein if translated. Ho-
mozygous STRA6 mutations have also been observed in
peri- and postnatal patients from two other families, as
well as in three sporadic cases with a similar phenotypic
spectrum.18 However, four missense mutations were found
to be associated with a severe clinical phenotype, whereas
two cases with a truncating mutation had milder clinical
signs with no growth retardation nor apparent pulmonary
anomalies. Indeed, one of those patients has survived into
his teens. Comparison of all reported patients with STRA6
mutations (table 1) thus demonstrates that there is no
correlation to date between the nature of a coding mu-
tation and the severity of the phenotype.

The recent functional study of 50 random missense mu-
tations introduced into bovine Stra6 has shown that a few
of these are sufficient to prevent cell surface expression
and that one, although allowing protein insertion into the
membrane, abrogates vitamin A entry into the cell.21 Sim-
ilar studies will now need to be conducted with docu-
mented human mutations to draw conclusions, but it is
probable that phenotypic severity is a result of the reduc-
tion in perceived retinoic acid (RA) dose within sensitive
target tissues, rather than a simple distinction between
missense and nonsense mutations.

We also undertook molecular analysis of STRA6 in five
other fetuses with pulmonary and ocular or cardiac mal-
formations, but no other patent mutations were identi-
fied, despite some intriguing variations (table 3). The
clinical diversity of patients with STRA6 mutations, and
the large phenotypic overlap with those who do not
have the mutations, strongly suggests that MWS and re-
lated syndromes are not only clinically but genetically
heterogeneous.
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The only necessary diagnostic criterion predicting the
involvement of STRA6, on the basis of the patients cur-
rently reported here and in the previous study,18 is severe
microphthalmia (clinical anophthalmia).Microphthalmia
with any macroscopically residual presence of the ocular
globe does not correlate with STRA6 mutations in either
series (table 1). Obviously, since many genes have previ-
ously been identified in both isolated and syndromic mi-
crophthalmia, this feature is not sufficient to direct mo-
lecular testing. The severe eye malformations subsequent
to STRA6 mutations are always observed in association
with one or more of the three following signs: pulmonary
defects, congenital diaphragmatic eventration/hernia, or
cardiovascular malformation involving the common aor-
ticopulmonary trunk or pulmonary arteries. Furthermore,
according to our two MWS cases and descriptions of MWS
in the literature, pancreatic malformations and IUGR may
also be secondary diagnostic criteria.

Pulmonary defects range from agenesis (this report) to
hypoplasia or unilobar lung (among families with MWS
mutations) to no obvious lung problems (in either mem-
ber of family 2 examined by Pasutto et al).18 Pulmonary
and diaphragmatic malformations (eventration/hernia)
are not always associated and occur separately or in com-
bination even among members of the same family.18 This
observation leads us to conclude that, in the context of
STRA6 mutations, the pulmonary phenotype of patients
with mutations is a primary malformation and is not a
consequence of diaphragmatic hernia. However, the joint
presence of clinical anophthalmia and pulmonary and/or
diaphragmatic anomalies is still not sufficient to guarantee
STRA6 involvement, because other cases with bilateral an-
ophthalmia and hypoplastic lungs (patients with MWS
GM23728 and CD50396 from Pasutto et al.18 and our case
4) do not present coding-sequence mutations (table 1).

Cardiovascular involvement is frequent but inconstant.
Case 2 had a ventricular septal defect and pulmonary
trunk agenesis, whereas case 1 presented isolated agenesis
of the pulmonary arteries. Furthermore, STRA6 mutations
described by Pasutto et al. also give rise to conotruncal or
great-artery malformations (i.e., truncus arteriosus, tetra-
logy of Fallot, pulmonary valve or arterial stenosis, and
right aortic arch) in at least some family members.18 Other
affected members with identical mutations had no car-
diovascular signs (cf. MWS4-BE). Cases of MWS described
elsewhere9,12 also show a preponderance of pulmonary
artery absence, ductus arteriosus, or ventricular septal
defects.

Fryns syndrome (MIM 229850) has a clinical spectrum
that includes diaphragmatic hernia and, less frequently,
microphthalmia, facial dysmorphy, and distal limb anom-
alies. Fetal case 3, presenting with bilateral microphthal-
mia, pulmonary hypoplasia, diaphragmatic hernia, car-
diac involvement, and cleft palate, was given a diagnosis
of Fryns syndrome. Despite the implication of the same
organ systems as in MWS and absence of a digital phe-
notype, no mutations in the STRA6 coding sequence were

found. Patients GM23728 and CD50396 from Pasutto et
al.18 also had a similar phenotype (table 1); the latter was
given a diagnosis of MWS, presented true clinical an-
ophthalmia, and had a cleft palate. Palate involvement
might therefore be suggestive of Fryns syndrome rather
than MWS. Phenotypic overlap between these two dis-
orders indicates that similar cases given a diagnosis of
Fryns syndrome or MWS have either a noncoding mu-
tation in STRA6 or involvement of another gene necessary
for the cellular interpretation of RA levels. For some au-
thors, animal models of retinoid deficiency also evoke the
PAGOD syndrome (pulmonary tract and pulmonary ar-
tery, agonadism, omphalocele, diaphragmatic defect, and
dextrocardia [MIM 202660]), which shares features with
Fryns syndrome and MWS.22

RA, a small lipophilic hormone derived from retinol (vi-
tamin A), is a ligand for nuclear receptors (RARa, -b, and
-g) that act in homodimers or in heterodimers with reti-
noid X receptor partners to bind DNA and regulate the
expression of many genes, including the Stra (stimulated
by retinoic acid) targets.23,24 The functionally identified
Stra genes have different roles and structurally unrelated
products. For example, Stra1 encodes ephrin B1, a bidi-
rectional, membrane-bound signaling molecule highly ex-
pressed in the embryonic neural crest25; Stra7, later iden-
tified as the evolutionarily conserved transcription factor
Gbx2,26 partners with the homeobox transcription factor
Otx2 in the specification of the isthmic organizer (mid-
brain/hindbrain junction).27

Otx2 was also subsequently identified as a transcrip-
tional target of RA, which leads to derepression of Pax6
transcription in the optic cup.28 Interestingly, both OTX229

and PAX64 are responsible for human anophthalmias
(MIM 610125 and 607108 [allelic variant .0005], respec-
tively), through heterozygous loss-of-function with in-
complete penetrance for the former and compound het-
erozygous loss-of-function engendering a primary anoph-
thalmia for the latter. Mutations in EFNB1 (encoding hu-
man ephrin B1) induce craniofrontonasal syndrome (MIM
304110), sometimes in association with congenital dia-
phragmatic hernia (CDH).30,31 We note that CRABP1 (cel-
lular retinoic acid–binding protein 1), another transcrip-
tional target and effector of cytoplasmic RA levels,32 is
located close to reported CDH loci in the long arm of
chromosome 15. Experimental or teratogenic reductions
in RA levels also lead to CDH in both animals and
humans.33,34

The murine Stra6 gene encodes an integral transmem-
brane protein that is expressed in the developing eye,
lung, other endodermal gut derivatives, limbs, and so-
mites.23 In addition to being stimulated by RA, Stra6 en-
codes a receptor for soluble retinol-binding protein, effi-
ciently mediating retinol uptake from the circulatory
system into target cells.21

Signaling by RA within the caudal pharyngeal endo-
derm of the vertebrate embryo is critical for the organi-
zation of the adjacent aortic arch vessels and heart. Sen-
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sitivity of only the most posterior aortic arches, which
persist in direct continuity with the outflow tract of the
heart, may be a result of the localized mesodermal pro-
duction of retinaldehyde dehydrogenase 2 (Raldh2), a
major enzyme for RA synthesis from retinol during de-
velopment.35 Raldh2�/� mice demonstrate third- and
fourth-arch artery malformations, with agenesis of the
sixth arch36 in addition to cardiac septation defects37 and
partial pancreatic agenesis.38 The variable implication of
the cardiac outflow tract and vascular derivatives of the
embryonic fourth (definitive aorta) and sixth (ductus ar-
teriosus and proximal pulmonary artery) aortic arches in
our patients is consistent with an underlying field defect
affecting the perception of RA dose by the endoderm.

Indeed, murine Stra6 is highly expressed in the pharyn-
geal endoderm and mesenchyme along the embryonic
gut.23 Our two severely affected patients with mutations
had duodenal stenosis and pancreatic malformations in
addition to lung agenesis. These organs are among the
many derivatives of the embryonic endoderm produced
by localized outpocketings into the mesoderm that will
consolidate into the definitive structure.

RA is particularly necessary for normal growth and for-
mation of the lung. Fgf10�/� mice demonstrate complete
lung agenesis,15,16 whereas, in knockout mice for the ap-
propriate Fgf10-binding isoform of Fgfr2, the tracheal bi-
furcation at the origin of the bronchi is absent.17 In
Raldh2�/� mouse embryos, Fgf10 is no longer expressed in
the lung bud, and complete agenesis results.39 It appears
likely that Stra6 expressed, among other places, in the
Raldh2� bronchial mesenchyme of the early lung23 me-
diates retinol entry into the mesoderm and a subsequent
effect on Fgfr2 signaling in the endoderm. Indeed, the
supply of exogenous RA for short periods can partially
rescue both Fgf10 expression and lung agenesis, leading
to unilobar or unilateral right-sided lung development;
longer rescue periods lead to better recovery and more
subtle alveolar malformations.40

Stra6 is also expressed at all stages of eye development—
initially, within the optic vesicle and, later, within the
periocular mesenchyme, the choroid, and the optic nerve
(and forebrain) meninges. Expression in the retinal pig-
ment epithelium persists throughout adult life in both
mice and humans,18,23 which is indicative of the continued
need for RA for ocular function. The consistency of clinical
anophthalmia in patients with STRA6 mutations argues
for the need for vitamin A uptake to further all stages of
eye development after initial optic specification.

Stra6 transcripts are also detected in several other sites,
including the forebrain, the isthmic organizer, and the
neurohypophysis. However, no patients with STRA6 mu-
tations present CNS malformations or pituitary anomalies,
although IUGR or short stature may indicate a more subtle
effect (table 1). Murine expression patterns do not always
suffice to explain clinical outcome.41 Despite the strong,
localized brain expression of the RA target Gbx2 (Stra7),
its absence in mice gives rise only to posterior branchial

arch anomalies and cardiac malformations, reminiscent
of those observed in patients with STRA6 mutations or in
Raldh2�/� mice.42 There may also be species-specific dif-
ferences in the RA sensitivity of the developing brain; the
clinical spectrum of human vitamin A deficiency syn-
drome does not include the exencephaly observed in
mouse models.43

In conclusion, STRA6 mutations are responsible for a
large spectrum of congenital malformations with no cur-
rent evidence of a genotype-phenotype correlation. Dif-
ferent transcriptional targets of RA signaling in humans
appear to effect subset phenotypes of those observed in
more generalized deficiencies.43 MWS is thus part of a
growing family of human syndromes due to mutations in
genes encoding effectors of the powerful developmental
morphogen, RA.
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.nlm.nih.gov/Omim/ (for syndromic microphthalmias, an-
ophthalmia, anophthalmia and pulmonary hypoplasia, MWS,
Fryns syndrome, PAGOD syndrome, and craniofrontonasal
syndrome)

PAX6 Allelic Variant Database, http://pax6.hgu.mrc.ac.uk/
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Neuroblastoma (NB), an embryonic tumour originating from neural crest cells, is one of the

most common solid tumours in childhood. Although NB is characterised by numerous

recurrent, large-scale chromosome rearrangements, the genes targeted by these imbal-

ances have remained elusive. We recently identified the paired-like homeobox 2B (PHOX2B,

MIM 603851) gene as disease-causing in dysautonomic disorders including Congenital Cen-

tral Hypoventilation Syndrome (CCHS), Hirschsprung disease (HSCR) and NB in various

combinations. Most patients with NB due to a germline heterozygous PHOX2B gene muta-

tion are familial and/or syndromic. PHOX2B, at chromosome 4p12, does not lie in a com-

monly rearranged locus in NB. To evaluate the role of PHOX2B in sporadic, isolated NB,

we analysed 13 NB cell lines and 45 tumours for expression, mutations of coding and pro-

moter sequences, loss of heterozygosity (LOH), or aberrant hypermethylation of PHOX2B (13

cell lines and 18 tumours). We didn’t identify any mutation but LOH in about 10% of the

cases and aberrant CpG dinucleotide methylation of the 500 bp PHOX2B promoter region

in 4/31 tumours and cell lines (12.9%). Altogether, both germinal and somatic anomalies

at the PHOX2B locus are found in NB.

� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Neuroblastoma (NB; MIM 256700) is a tumour of the sympa-

thetic nervous system that accounts for 10% of all cancers

in children. Several lines of evidence support the involvement

of genetic factors in NB, namely, rare familial cases with ver-

tical transmission and the association of NB with other genet-

ically determined congenital malformations of neural crest

origin, such as Hirschsprung disease (HSCR; MIM 142623)
er Ltd. All rights reserved

fax: +33 1 44495150.
).
and/or Congenital Central Hypoventilation Syndrome (CCHS;

MIM 209880). We recently identified the paired-like homeobox

2B (PHOX2B; MIM 603851) gene as the major disease-causing

gene in CCHS1 and the first gene for which germline muta-

tions predispose to NB.2–5 PHOX2B is a highly conserved

homeotic transcription factor with two alanine tracts of nine

and 20 alanines, C terminal to the homeodomain. The vast

majority of mutations leading to CCHS result in an expansion

of the longer alanine tract. Interestingly, patients harbouring
.

mailto:amiel@necker.fr


E U R O P E A N J O U R N A L O F C A N C E R 4 3 ( 2 0 0 7 ) 2 3 6 6 – 2 3 7 2 2367
either a missense mutation in the homeodomain or a frame-

shift mutation are the ones at risk of developing NB, whether

or not they have CCHS.6 However, both germline and somatic

PHOX2B coding sequence mutations are rare events in spo-

radic, isolated NB.7,4,8

Epigenetic abnormalities, especially alterations in DNA

methylation, are involved in the development of various adult

tumours. More recent studies have indicated that epigenetic

aberrations may also contribute to paediatric cancer pathogen-

esis. In neuroblastomas, several potential tumour-suppressor

genes have been found to be frequently hypermethylated and

consequently down-regulated; in particular, genes of the

tumour necrosis factor-related apoptosis-inducing ligand

(TRAIL) pathway, CASP89 and the DCR receptors (DCR1, DCR2,

DCR3 and DCR4.10,11 DNA methylation has been shown to re-

duce the binding affinity of sequence-specific transcription

factors while methylation-dependent gene silencing may also

involve alterations in chromatin structure, mediated by methyl

binding proteins. Chromosome distribution of the methyl-tar-

geted genes are clustered and the full pattern of methylation

may be generated early in tumourigenesis.12,13 Finally, in tu-

mours carrying a germline mutation, a second-step methyla-

tion of the DNA promoter, if present, occurs exclusively on

the wild-type allele.

The possible involvement of non-coding mutations or pro-

moter methylation of the PHOX2B locus in sporadic neuro-

blastoma has not been evaluated. In this study, we

examined the level of PHOX2B expression and its methylation

in NB. PHOX2B was silenced in a subset of 3/13 NB cell lines

and loss of expression was associated with aberrant 5 0CpG

dinucleotide methylation of the PHOX2B promoter. PHOX2B

promoter methylation was also detected in 2/18 tumuors ana-

lysed. Treatment with the demethyling agent 5-Aza-2 0-deoxy-

cytidine (5-Aza-dC) restored PHOX2B transcription in PHOX2B-

negative cell lines, showing that gene silencing was due to

aberrant hypermethylation. We conclude that aberrant CpG

dinucleotide methylation of PHOX2B is an alternative mecha-

nism at least as frequent as coding sequence mutations for

inactivation of PHOX2B in sporadic NB.

2. Materials and methods

2.1. Patients

13 NB cell lines and 46 sporadic neuroblastic tumours were

investigated. Patients were staged according to the Interna-

tional Neuroblastoma Staging System (INSS) and included se-

ven with stage I tumour, ten stage II, seven stage III, 15 stage

IV and seven stage IVS. Constitutional and tumour DNA were

extracted using standard protocols. We included a patient

from a two generation family with predisposition to NB due

to a germline PHOX2B gene mutation (NBAF5, Table 1).2

2.2. Sequence analysis

We screened the coding sequence of the PHOX2B gene by di-

rect DNA sequencing, as described elsewhere.1 We studied a

533 bp sequence of the promotor region that is extremely con-

served among species (97% between human and chicken at

nucleotide level). The primer sequences for PHOX2B promotor
region are 5 0-GAAGGGGGAAAACACACAC-3 0 (forward) and 5 0-

CGTAGGCAGAGGAATTGAGG-3 0 (reverse). PCR Direct DNA

sequencing was performed using the fluorometric method

(Big Dye Terminator Cycle Sequencing kit [Applied

Biosystems]).

2.3. LOH analysis

Matched constitutional and tumour DNA samples were PCR

amplified using microsatellitte markers of the Généthon data-

base D4S2974 and D4S1536 flanking the PHOX2B locus.

D4S1536 is 4.1Mb centromeric to PHOX2B and D4S2974 is 95

Kb telomeric to PHOX2B. Fluorescent PCR products were elec-

trophoresed and analysed on an automatic sequencer

(ABI377, Applied Biosystems, Foster City, USA).

2.4. Cell culture

Cell lines were cultured at 37 �C, 5% CO2, in Dulbecco’s mod-

ified essential medium (DMEM; Invitrogen/Gibco, NY) con-

taining 10% foetal calf serum, 292 lg/ml L-glutamine, 1%

100X MEM (non-essential amino acids medium, Invitrogen/

Gibco), and 0.5% penicillin solution. Primary human neural

crest cells were cultured for 3 weeks in FGF2- and EGF-con-

taining embryonic stem cell medium with modifications

available upon request.

2.5. PHOX2B expression in NB cell lines and tumours

Total RNA was isolated from cell lines and tumours by use of

RNAzolB (Invitrogen). PHOX2B expression was first obtained

from microarray on Affymetrix HG-U133 Plus 2.0 arrays. Data

from 55 neuroblastic tumours were normalised using the GC-

RMA method. Detailed methods will be detailed elsewhere (I.

Janoueix-Lerosey and O. Delattre, manuscript in preparation).

In addition, RT-PCR detection of PHOX2B mRNA was per-

formed in order to validate these data in 13 NB cell lines

and eight tumours (Fig. 1a). First strand cDNA synthesis was

performed on 2 lg of total RNA in a volume of 20 ll by use

of [RNA kit, Applied Biosystems] and oligo(dT) primers. The

specific primers used for mRNA amplification were designed

within exons 2 and 3, as follows: 5 0-GAGGCGCGAGTCCA

GGTGTGGTTC-3 0 (forward) and 5 0-CGACAATAGCCTTGGGCC-

TACCCG-3 0 (reverse). Expression analysis was performed in

a 25-ll PCR reaction containing 1 ll of cDNA, 1 ll dNTPs (2.5

mmol/l each), 0.5 ll of each specific primers (150 ng/ll), and

0.2 ll Taq polymerase (5 U/ll; Invitrogen). PCR conditions were

standard with an annealing temperature of 69 �C. PCR prod-

ucts were loaded on a 2% agarose gel and directly visualised

under UV illumination.

2.6. Analysis of PHOX2B gene hypermethylation by
bisulfite DNA sequencing

Genomic DNA was isolated from cell lines and primary tissues

by standard procedures. Bisulfite treatment and DNA

sequencing were performed as described.14 The primer se-

quences for PHOX2B are 5 0-AAATGTAATTTATAAGATGTTT

TTTTTTTG-3 0 (forward) and 5 0-CACACTACTTAAAAATAATAA

AAATTAAAT-30 (reverse). PCR conditions were standard with



Table 1 – Presentation of a series of 13 NB cell lines and 18 tumours for which PHOX2B expression data were analysed on
Affymetrix HG U133 Plus 2.0 arrays (Affy Exp) and/or RT-PCR. Mutations, LOH and methylation analyses are presented as
well as prognostic factors (stage, loss of 1p36, N-MYC amplification; A, Amplified; NA, Non Amplified)

PHOX2B

Affy Exp RT-PCR Mutation LOH Methylation Stage INSS Loss of 1p36 N-MYC

Cell lines CLB-BAR 3679 + – – – 4 + A

CLB-GA 6956 + – – – 4 + NA

CLB-GE 5725 + – – – 4 + A

CLB-MA 7820 + – – – 4 + A

CLB-PE 387 + – – – 2 – A

GIMEN 6 – – – + 4 + NA

IMR32 8839 + – – – 2 + A

KCNR 5181 + – – – 4 + A

SJNB12 11010 + – – – 3A + NA

SKNAS 2169 + – – – 4 + NA

SKNSH 23 – 721–740del20nt – – 4 – NA

SKNBE 6 – – – + 4 + A

TR14 2534 + – – – 3 + A

Tumours NBAF15 6775 ND – – – 2B – NA

NBAF21 136 – – – + 3 – NA

NBAF26 8259 + – – – 4S – NA

NBAF38 23 – – + – 2A – NA

NBAF39 6293 ND – – – 2B – NA

NBAF40 7462 ND – + – 4S – NA

NBAF42 7557 ND – – – 4 – NA

NBAF43 3415 + – – – 2B

NBAF45 7089 + – – – 1 – NA

NBAF46 1394 + – – – 2A – NA

NBAF5 1053 ND 299G > T(R100L) – – 1 – NA

NBAF50 7811 ND – – – 2B – NA

NBAF54 5166 ND – + – 4S – NA

NBAF56 12059 ND – – – 4S + NA

NBAF59 10706 + – + – 2A – NA

NBAF61 10684 ND – + – 4S – NA

NBAF64 5349 ND – – – 4 + NA

NB10 ND – – – + 2B – NA
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an annealing temperature of 58 �C. PCR products were loaded

on a 2% agarose gel and directly visualised under UV illumi-

nation. PCR products were cloned in a TA cloning vector (Pro-

mega, Madison, WI) and ten individual clones were

sequenced for each sample.

2.7. Treatment of NB cells with 5-Aza-dC

Cells were seeded, allowed to attach over a 24 h period, and

treated for 72 h with the demethyling reagent 5-Aza-dC (Sig-

ma) at a final concentration of 1 lM. After the treatment per-

iod the medium was removed and RNAs were extracted.

3. Results

3.1. Mutation and LOH at the PHOX2B locus in
neuroblastoma

As previously reported, a heterozygous frameshift mutation

was identified in the SK-N-SH cell line (721-740del20nt,3). No

mutation, either somatic or germinal, of the PHOX2B coding

sequence and promoter conserved region were identified in

the other 12 NB cell lines and the 45 individuals with sporadic

NB. A heterozygous missense mutation (R100L) was identified

in patient NBAF5 originating from a family predisposed to NB
over three generations. No second molecular event could be

identified in tumoural DNA (Table 1). We detected three

known synonymous base substitutions, 552C > T(S184S),

750G > A (A250A) and 870C > A (P290P). In one patient, the

P290P variant was heterozygous in constitutional DNA and

homozygous in tumoural DNA. LOH was confirmed in this

patient and identified in four other tumours (5/46 tumours,

10.8 %) with fluorescent microsatellite markers.

3.2. PHOX2B expression in NB cell lines and tumours

PHOX2B expression levels were obtained from Affymetrix HG

U133 Plus 2.0 arrays. High level of PHOX2B expression was

found in 10/13 cell lines and 15/17 tumours whereas no expre-

sion could be detected in three cell lines and two tumours

(Table 1). PHOX2B expression was examined by RT-PCR in 13

NB cell lines and eight tumours and two neural crest-derived

tissues: adrenal gland medulla (MSR) and human trunk-level

neural crest cells. These primary, non-transformed cells were

derived from a human embryo at 28 days of development

with a normal karyotype. Loss of expression was confirmed

by the absence of PHOX2B mRNA transcripts in 3/13 cell lines

(SK-N-SH, SK-N-BE and GIMEN) whereas PHOX2B cDNAs were

visualised in all other cell lines and non-cancerous adrenal

(MSR) and neural crest cells (NC) (Fig. 1a). PHOX2B was



1     2      3      4 5      6      7      8 9      10 11      12

Forward primer Reverse primer

SKNSH
CLBGE
CLBBAR
CLBMA
TR14
SKNBE
CLBGA
GIMEN
KCNR
CLBPE
SKNAS
SJNB12
IMR32

NB10
NBAF21
NBAF38
NBAF15
NBAF26
NBAF38
NBAF39
NBAF40
NBAF45
NBAF5
NBAF54
NBAF59
NBAF64
NBAF42
NBAF43
NBAF46
NBAF50
NBAF56

C
el

ll
in

es
T

um
or

sa
m

pl
es

1     2      3      4 5      6      7      8 9      10 11      12

Forward primer Reverse primer

SKNSH
CLBGE
CLBBAR
CLBMA
TR14
SKNBE
CLBGA
GIMEN
KCNR
CLBPE
SKNAS
SJNB12
IMR32

NB10
NBAF21
NBAF38
NBAF15
NBAF26
NBAF38
NBAF39
NBAF40
NBAF45
NBAF5
NBAF54
NBAF59
NBAF64
NBAF42
NBAF43
NBAF46
NBAF50
NBAF56

C
el

ll
in

es
T

um
or

sa
m

pl
es

b

S
K

-N
-S

H

S
K

-N
-B

E

G
IM

E
N

H
2O

M
S

R

N
C

C
L-

B
-G

E

S
K

-N
-A

S

S
J-

N
-B

12

IM
R

 3
2

K
C

-N
-R

C
L-

B
-P

E

C
L-

B
- G

A

T
R

14

C
L-

B
-M

A

C
L

-B
-B

A
R

PHOX2B

Actin
PHOX2B

N
B

A
F

59

N
B

A
F

43

N
B

A
F

45

N
B

A
F

38

N
B

A
F

26

N
B

10

N
B

A
F

46

N
B

A
F

21

S
K

-N
-S

H

S
K

-N
-B

E

G
IM

E
N

H
2O

M
S

R

N
C

C
L-

B
-G

E

S
K

-N
-A

S

S
J-

N
-B

12

IM
R

 3
2

K
C

-N
-R

C
L-

B
-P

E

C
L-

B
- G

A

T
R

14

C
L-

B
-M

A

C
L

-B
-B

A
R

PHOX2B

PHOX2B

N
B

A
F

59

N
B

A
F

43

N
B

A
F

45

N
B

A
F

38

N
B

A
F

26

N
B

10

N
B

A
F

46

N
B

A
F

21

S
K

-N
-S

H

S
K

-N
-B

E

G
IM

E
N

H
2O

M
S

R

N
C

C
L-

B
-G

E

S
K

-N
-A

S

S
J-

N
-B

12

IM
R

 3
2

K
C

-N
-R

C
L-

B
-P

E

C
L-

B
- G

A

T
R

14

C
L-

B
-M

A

C
L

-B
-B

A
R

PHOX2B

PHOX2B

N
B

A
F

59

N
B

A
F

43

N
B

A
F

45

N
B

A
F

38

N
B

A
F

26

N
B

10

N
B

A
F

46

N
B

A
F

21

a

Actin

Fig. 1 – (a) PHOX2B mRNA in NB cell lines. PHOX2B mRNA is detected in 10/13 cell lines as in human adrenal gland medulla

(MSR) and non-transformed human neural crest cells (NC). No expression could be observed in three NB cell lines; SKNSH,

SKNBE and GIMEN. (b) Bisulfite sequencing analysis of the methylation status of the 12 CpG from the start site. One

microgram of tumour DNA was denatured by sodium hydroxide and modified by sodium bisulfite treatment, which converts

unmethylated cytosines to uracil. Bisulfite treated DNA was amplified using specific primers (added in methods). PHOX2B

promotor is 100% methylated in SKNBE and GIMEN but not in other cell lines. All the 12 CpG dinucleotide are methylated in

two primary tumours NBAF21 and NB10. All ten clones showed identical methylation in each sample. •methylated cytosine

s non-methylated cytosine.
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silenced in three tumours: one ganglioneuroma (NBAF21), one

ganglioneuroblastoma (NBAF38) and one NB (NB10) (Fig. 1a).

3.3. Methylation and silencing of PHOX2B in NB cell lines
and tumours

Promoter-associated CpG islands of PHOX2B were analysed

by methyl sequencing in a panel of 13 cell lines, 18 tumours
and two neural crest-derived tissues: adrenal gland medulla

(MSR) and human trunk-level neural crest cells. All 12 CpG

dinucleotides were 100% methylated (10/10 clones) in 2/13

cell lines (SK-N-BE and GIMEN) and in 2/18 tumours (NBAF21

and NB10) (Fig. 1b). As sequencing of the PCR products

showed that cytosines outside the CpG sites were converted

to thymine, an incomplete bisulfite conversion could be ru-

led out.
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3.4. Restoration of PHOX2B expression in negative cell
lines by 5-Aza-dC

5-Aza-dC, a methyltransferase inhibitor, was used to investi-

gate whether PHOX2B expression could be restored cell lines

for which PHOX2B was not expressed. PHOX2B mRNA expres-

sion levels, analysed by RT-PCR, were restored in SK-N-BE and

GIMEN cell lines, while no re-expression was observed for SK-

N-SH.

4. Discussion

This study of a series of 13 cell lines and 46 neuroblastic tu-

mours aimed to determine the role of PHOX2B in sporadic

NB. PHOX2B, not known so far for being either a tumour-sup-

pressor gene or a proto-oncogene, is the first predisposing

gene identified in NB. Most mutations occur in familial and

syndromic NB cases. A heterozygous germline mutation was

found in about 20% of published pedigrees and reached 50%

when HSCR is associated with NB either in the index case

or relatives.2,5,7,4 However, germline PHOX2B mutations are

rare in sporadic isolated NB (1/215 cases in the series reported

by Van Limpt and 2/86 in the series reported by McConville).3,8

Somatic PHOX2B mutations have also been described in NB.3

In the series of 45 sporadic NB cases we report, no PHOX2B

gene mutations were identified either in the coding sequence

or the promoter region. LOH at the PHOX2B locus could be

detected in 5/46 cases. This ratio of about 10% has to be bal-

anced with the known high rate of chromosomal rearrange-

ment in NB. It is worth noting that LOH of the short arm of

chromosome 4 is found in roughly 20% of NB, but PHOX2B is

centromeric to the smallest region of overlap (SRO).15,16

We subsequently asked the question of epigenetic events

at the PHOX2B locus and identified clonal aberrant CpG island

methylation of the promoter in 2/13 NB cell lines and 2/18 tu-

mours (ganglioneuroma in one case and NB stage II in one

case). The demethylating drug 5-Aza-dC re-induced PHOX2B

expression in NB cell lines, suggesting that PHOX2B methyla-

tion correlates with gene silencing. Moreover, it is well estab-

lished that DNA demethylating agents as 5-Aza-dC induce

adrenergic differentiation in NB cell lines17 and have an anti-

proliferative effect in mouse NB models.18 Hypermethylation

and downregulation of potential tumour-suppressor genes

such as genes involved in cell-cycle control or apoptosis is of-

ten associated with a poor outcome in NB.9,19,20

We first considered PHOX2B as a potential tumour-sup-

pressor gene since, i) at least some mutations identified in

syndromic or familial NB cases (i.e. missense mutations of

the homeodomain) are likely loss-of-function mutations, ii)

a ‘second hit’ model has been proposed in NB21 and, iii) some

constitutional LOH at chromosome 4p encompass the

PHOX2B locus.4 However, in patients with germinal PHOX2B

mutation, neither a second mutation nor LOH or aberrant pro-

moter hypermethylation in the tumours have been identified

as reported earlier.2

PHOX2B has been shown to promote differentiation by

controlling G1-S transition during cell cycle of sympathetic

neuroblast precursors22 and is an essential regulator of nor-

mal autonomic nervous system development.23 Mice with a

homozygous inactivation of Phox2b fail in proper differentia-
tion of the sympathetic nervous system. A gain-of-function

or a dominant negative effect of PHOX2B frameshift muta-

tions is not, however, ruled out. When tested, mutant tran-

scripts were present and stable.2 While mutant proteins

localised to the nucleus, we observed some ability to bind

DNA for two of the three PHOX2B frameshift mutations tested

in vitro, although transactivation of the dopamine beta-

hydroxylase promoter was always severely impaired.24 More-

over, Bachetti and coworkers reported an increased transacti-

vation of the PHOX2A promoter for proteins resulting from

frameshift mutations when compared to the wild type pro-

tein.25 PHOX2B is expressed not only in neural crest cells but

also in mature sympathetic tissue of adrenal gland (Fig. 1a

and1). Methylation-associated repression of PHOX2B could re-

sult in a differentiation block of sympathetic neuroblasts.

Interestingly, NB10 patient had HSCR. We found aberrant

homozygous PHOX2B promoter methylation on the tumour

sample DNA while neither a mutation nor a deletion could

be identified on either germinal or tumour DNA. Interestingly,

PHOX2B was not methylated on lymphocyte DNA. We could

speculate that PHOX2B methylation occurred during embry-

onic development and is responsible for both HSCR and NB

development. As malignant transformation of cells could

happen at different stages of tissue maturation, aberrant

methylation may contribute to the diversity that character-

ises NB and other genes of the RET-PHOX2B pathway could

be implicated. Interestingly, aberrations in the p53/MDM2/

p14 (ARF) pathway have recently been described in the two

NB cell lines where PHOX2B was found methylated26; a p53

mutation in SKNBE(2)C and aberrant p14 (ARF) methylation

in GIMEN.

Promoter methylation is not only implicated in silencing

tumour-suppressor genes but also in regulation of develop-

mental pathways during embryogenesis.27 Abnormal methyl-

ation in NB could result from abnormalities in this process in

a self-renewing multipotent stem cell becoming the malig-

nant progenitor of this neural crest cancer. Within a single tu-

mour, cell phenotypes are characteristic of embryonic

structures, particulary neuroblasts, Schwann cells and mela-

nocytes. Cellular heterogeneity and maturation stage corre-

late with clinical stage and prognosis of the disease.

However, down-regulation of PHOX2B was not always associ-

ated with hypermethylation. In SK-N-SH, the mutation is het-

erozygous and no PHOX2B expression could be detected. This

result is discordant with the one reported by van Limpt and

coworkers who observed the expression of both wild-type

and mutant cDNAs in this cell line. However, they observed

a PHOX2B gene silencing in the SHEP cell line, a stable sub-

clone of SK-N-SH and also carrying the frameshift mutation.

One could speculate on aberrant hypermethylation outside

of the promoter region studied. However, it is worth noting

that no expression of H-ASH1 could be detected either in

the SK-N-SH cell line or in NBAF38 tumour (data not shown).

This could also contribute to PHOX2B down-regulation. Final-

ly, one can speculate on the effects of other mechanisms such

as micro RNAs Fig. 2.

Genetic heterogeneity in predisposition to neuroblastic tu-

mours is likely. The high reocurence of loss of heterozygosity

for chromosomes 1p36 and 11q23 supported the existence of

putative tumour-suppressor genes within these regions.



Fig. 2 – (a) RT-PCR: Demethylation of the PHOX2B promoter CpG islands restores expression in PHOX2B-negative NB cell lines,

SKNBE and GIMEN. SKNBE, GIMEN and SKNSH were treated (+) or not treated (–) with 1 lmol/l 5 0-aza-20-deoxycytidine for

three days. (b) Methyl sequencing results of PHOX2B promotor before (1) and after treatment (2) by 5-azacytidine.

E U R O P E A N J O U R N A L O F C A N C E R 4 3 ( 2 0 0 7 ) 2 3 6 6 – 2 3 7 2 2371
However, these loci do not segregate with NB in most familial

cases. On the other hand, linkage analysis has focused atten-

tion on 16p12-13 and 4p16.28,16 Several studies have clearly

demonstrated that PHOX2B is a major predisposing gene in

syndromic NB cases (i.e. associated with other autonomic

dysfunction).6,3,29 Aberrant methylation of the PHOX2B pro-

moter seems to be an alternative mechanism as frequent as

mutation in sporadic NB cases and argues that loss-of-func-

tion by haploinsufficiency is the NB-predisposing

mechanism.
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INTRODUCTION
Developmental defects in pituitary gland formation lead to
hypopituitarism, which can range from mild phenotypes involving
deficiency of a single hormone, through more severe phenotypes
affecting multiple pituitary hormone axes, to panhypopituitarism.
Isolated growth hormone deficiency (IGHD) is the most frequent
form of human hypopituitarism, affecting 1 in 4000-10,000 live
births (Vimpani et al., 1977; Lindsay et al., 1994; Procter et al.,
1998). Combined pituitary hormone deficiency (CPHD), in which
there is a deficiency of more than one pituitary hormone, is less
common, but is associated with considerable morbidity and, if
not treated promptly and adequately, occasional mortality. Septo-
optic dysplasia (SOD; also referred to as de Morsier syndrome)
is a phenotypically and aetiologically heterogeneous disorder in
humans, characterised by hypopituitarism occurring in
conjunction with midline forebrain defects and optic nerve
hypoplasia. This congenital disorder (1 in 10,000 live births) is
characterised by a highly variable phenotype with varying degrees
of abnormalities in the corpus callosum, septum pellucidum, eyes
and pituitary gland (Patel et al., 2006; Kelberman and Dattani,
2007).

Phenotypic analyses of mouse mutants have implicated a number
of genes in pituitary development, some of which have also been
associated with hypopituitarism in human patients with mutations

in orthologous genes (Cushman and Camper, 2001). Several
homeobox genes in particular have been shown to play a crucial
role in both mouse and human pituitary organogenesis (Kelberman
and Dattani, 2007; Cushman and Camper, 2001). One such gene
encodes the paired-like homeodomain protein HESX1, a highly
conserved transcriptional repressor, which is expressed in the early
forebrain primordium and Rathke’s pouch during vertebrate
development (Thomas and Beddington, 1996; Hermesz et al., 1996).
Hesx1-deficient embryos show a significant reduction in anterior
forebrain structures, such as the telencephalic and optic vesicles,
which is caused by a transformation of anterior to posterior
forebrain (Andoniadou et al., 2007). Hesx1–/– mutants also show
severe pituitary gland dysplasia and enhanced cellular proliferation,
but terminal differentiation of the hormone-producing cell types
is not affected at later stages of development (Dasen et al., 2001).
Hesx1-deficient mutants also manifest fully penetrant eye defects,
ranging from microphthalmia to anophthalmia, disturbances in
midline telencephalic commissural tracts (corpus callosum and
anterior commissure) and abnormalities in the olfactory bulbs
(Dattani et al., 1998; Andoniadou et al., 2007).

In humans, mutations in HESX1 have been associated with
phenotypes affecting the midline forebrain structures, the eyes and,
most commonly, the pituitary gland. So far, a total of 13 HESX1
mutations have been identified in association with SOD and/or
hypopituitarism (Dattani et al., 1998; Thomas et al., 2001; Brickman
et al., 2001; Carvalho et al., 2003; Cohen et al., 2003; Tajima et al.,
2003; Sobrier et al., 2005; Sobrier et al., 2006; Coya et al., 2007).
Five of them are recessive and the remaining eight are dominant.
They vary from missense to frameshift mutations and result in
considerable variability in the penetrance and severity of the
phenotype in affected patients. At present, the reasons underlying
this variability are not clear.
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SUMMARY

A homozygous substitution of the highly conserved isoleucine at position 26 by threonine (I26T) in the transcriptional repressor HESX1 has been
associated with anterior pituitary hypoplasia in a human patient, with no forebrain or eye defects. Two individuals carrying a homozygous substitution
of the conserved arginine at position 160 by cysteine (R160C) manifest septo-optic dysplasia (SOD), a condition characterised by pituitary abnormalities
associated with midline telencephalic structure defects and optic nerve hypoplasia. We have generated two knock-in mouse models containing
either the I26T or R160C substitution in the genomic locus. Hesx1I26T/I26T embryos show pituitary defects comparable with Hesx1–/– mouse mutants,
with frequent occurrence of ocular abnormalities, although the telencephalon develops normally. Hesx1R160C/R160C mutants display forebrain and
pituitary defects that are identical to those observed in Hesx1–/– null mice. We also show that the expression pattern of HESX1 during early human
development is very similar to that described in the mouse, suggesting that the function of HESX1 is conserved between the two species. Together,
these results suggest that the I26T mutation yields a hypomorphic allele, whereas R160C produces a null allele and, consequently, a more severe
phenotype in both mice and humans.
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Two previously reported, recessive missense mutations involve
the substitution of highly conserved residues at position 26
(isoleucine) and 160 (arginine) by threonine and cysteine (I26T and
R160C), respectively (Dattani et al., 1998; Carvalho et al., 2003).
I26 maps within the engrailed homology (eh-1) domain, an
octapeptide sequence shown to be involved in the interaction of
HESX1 with the co-repressor TLE1 (transducin-like enhancer of
split 1) that is able to recruit histone deacetylases required for
transcriptional repression (Dasen et al., 2001; Carvalho et al., 2003).
In vitro, the HESX1-I26T mutant protein can bind to DNA, but
its ability to repress transcription is reduced in comparison to wild-
type HESX1. Carvalho and colleagues reported on a patient with
evolving CPHD who was homozygous for the I26T mutation, but
who had normal optic nerves and no telencephalic defects
(Carvalho et al., 2003). The parents of the affected individual were
heterozygous with respect to the mutation and appeared to be
clinically unaffected. The reasons for the lack of ocular and
telencephalic defects are not fully understood.

R160 is localised within the recognition alpha helix of the
homeodomain, which establishes direct contact with target DNA
through the major groove (Wilson et al., 1995; Dattani et al., 1998).
In vitro, the ability of the HESX1-R160C protein to bind to DNA
is abolished by this mutation, but its repressor activity is retained
when fused to the Gal4 DNA-binding domain in a mammalian
one-hybrid system (Brickman et al., 2001). It has been postulated
that HESX1-R160C may have a dominant negative effect, as it is
able to inhibit the DNA binding and repressor activities of wild-
type HESX1 in vitro (Brickman et al., 2001). However, Dattani
and colleagues observed that although two siblings manifesting
panhypopituitarism in association with midline telencephalic
commissural defects and severe optic nerve hypoplasia were
homozygous for the R160C mutation, their heterozygous parents
were phenotypically normal (Dattani et al., 1998). This in vivo
observation is in direct contrast to the in vitro dominant negative
effect of this mutation. The forebrain defects of these two siblings
were mild when compared with the severe abnormalities
frequently observed in Hesx1–/– mice, suggesting that part of the
function of HESX1 may be performed independently of its ability
to bind to DNA (Dattani et al., 1998; Martinez-Barbera et al.,
2000). A more direct analysis of the phenotypic consequences of
the R160C mutation in a mouse model can be used to clarify this
issue.

Here, we have used an in vivo approach to provide insights into
the aetiology, pathogenesis and variable nature of hypopituitarism
and SOD associated with the human HESX1 mutations I26T and
R160C.

RESULTS
Morphological analysis of Hesx1I26T/I26T and Hesx1R160C/R160C

mutants
Homozygous loss of Hesx1 in the mouse has been shown previously
to cause perinatal lethality, possibly because of the severe forebrain
and craniofacial defects, and/or pituitary dysfunction (Dattani et
al., 1998; Andoniadou et al., 2007). However, the phenotypic
consequences of replacing the wild-type allele with specific HESX1
mutations originally identified in human patients with
hypopituitarism and SOD have not been reported previously. To
gain further insight into the in vivo consequences of the I26T and
R160C mutant proteins, we have generated mouse models carrying
these two substitutions (Fig. 1).

Hesx1I26T/+ mice were phenotypically normal, viable and fertile
(n=124). Genotypic analysis of pups and weaners from Hesx1I26T/+

intercrosses showed a slight deviation from the expected Mendelian
ratios. Although this did not reach statistical significance, it may
be indicative of sporadic postnatal lethality (Table 1). Of the
surviving Hesx1I26T/I26T pups, 73.7% exhibited eye defects, usually
unilateral or bilateral microphthalmia (n=19). This phenotype was
not observed in heterozygous or wild-type littermates. Histological
analysis of Hesx1I26T/I26T adult brains revealed normal telencephalic
commissural tracts with no apparent abnormalities in the corpus
callosum or anterior commissure (100%, n=8).

A similar genotypic analysis of embryos from 8.5-17.5 days post
coitum (dpc) showed the expected Mendelian proportions (Table
1). The majority of the Hesx1I26T/I26T embryos analysed from 12.5-
17.5 dpc (n=42) displayed eye abnormalities (76.2%), but
telencephalon development appeared normal in most of these
embryos (97.6%) when compared with wild-type or heterozygous
littermates (Fig. 2C-E; Table 2). The most common forebrain
phenotype observed in Hesx1I26T/I26T homozygous mutants was the
presence of eye defects in the absence of any telencephalic
abnormalities (n=42) (Table 2). Eye defects ranged from unilateral
or bilateral microphthalmia (59.6%) to anophthalmia (16.7%). The
right side was more severely affected, as described previously
(Andoniadou et al., 2007). Only one Hesx1I26T/I26T embryo showed
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Table 1. Genotypes obtained from either Hesx1I26T/+ or Hesx1R160C/+ intercrosses

Genotype

Stage Hesx1I26T/+ Hesx1+/+ Hesx1I26T/I26T Hesx1R160C/+ Hesx1+/+ Hesx1R160C/R160C

Pups 124 (~46%) 97 (~36%)* 50 (~18%)† 94 (~64%) 47 (~32%) 5 (~3%)‡

7851017142cpd 5.8

6431539cpd 5.01

510123613143cpd 5.21

0181281112cpd 5.51

818124314142cpd 5.71

Embryos total§ 112 (~50%) 58 (26%) 52 (23%) 123 (~54%) 48 (~21%) 56 (~25%)

*Chi-square test showed a significant deviation from the expected 25% ratio (P<0.03).
†Chi-square test showed no significant deviation from the expected 25% ratio.
‡Chi-square test showed a significant deviation from the expected 25% ratio (P<0.001).
§Chi-square test showed no significant deviation from the expected Mendelian ratios.
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severe forebrain defects affecting both the eyes and the
telencephalon (2.4%). The remaining embryos displayed no evident
forebrain abnormalities (21.4%). When Hesx1 dosage was reduced
by 50% in Hesx1I26T/– hemizygous embryos, the severity and
penetrance of the ocular and telencephalic defects were increased
(Fig. 2F-H; Table 2). All of the embryos analysed from 12.5-14.5
dpc had developed severe bilateral microphthalmia or
anophthalmia (100%, n=19), some of them in conjunction with
reduced telencephalic tissue (26.3%). Although it is likely that the
enhanced severity is caused by the reduction of Hesx1 gene dosage,
we cannot exclude a contribution from a genetic background effect.

Hesx1R160C/+ mice were normal and fertile. Phenotypic analysis
of 146 pups from Hesx1R160C/+ heterozygous intercrosses indicated
a gross deviation from the expected ratio of genotypes, with a
significant loss of Hesx1R160C/R160C animals (Table 1). Only five
Hesx1R160C/R160C mice were obtained at weaning, which represents
approximately 3% of pups instead of the expected 25% (Table 1).
All of the homozygous animals showed dramatic eye defects,

typically bilateral microphthalmia or anophthalmia. Furthermore,
histological analysis of 17.5 dpc Hesx1R160C/R160C embryos and
surviving adults indicated abnormal development of telencephalic
commissural tracts with agenesis or hypoplasia of the corpus
callosum and anterior commissure (77.8%, n=9) (data not shown).

Deviation from the expected Mendelian ratio was not observed
in Hesx1R160C/R160C embryos from 8.5-17.5 dpc (Table 1). The most
common phenotype in these mutants was anophthalmia, which was
associated with a significant reduction of telencephalic tissue
(67.4%; n=43). This was followed by unilateral or bilateral
anophthalmia in the absence of telencephalic defects (32.6%) (Fig.
2I-K; Table 2). Halving the Hesx1 dosage in Hesx1R160C/–

hemizygous embryos did not increase the severity of the phenotype;
these embryos displayed the same variable expressivity of
telencephalic and eye defects that were observed in Hesx1R160C/R160C

mutants (n=15) (Fig. 2L-N; Table 2). Severe craniofacial defects,
i.e. defective or absent frontonasal mass, were observed in 27.9%
of Hesx1R160C/R160C embryos from 12.5-17.5 dpc (supplementary
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Fig. 1. Generation of the Hesx1-I26T and Hesx1-R160C targeted alleles. (A,B) Top to bottom: structure of the murine Hesx1 locus; Hesx1-I26T (A) and Hesx1-
R160C (B) targeting vectors; targeted alleles prior to and after Cre-mediated excision of the Neo cassette; expected bands for the targeted and wild-type alleles
after Southern blot analysis of DNA samples digested with the indicated restriction enzymes and hybridised with an external probe (dotted line). The position of
the mutation is indicated with an asterisk on exons one (I26T) and four (R160C) of the targeting vectors and targeted alleles. Note that the orientation of the loxP
and Neo cassette has been inverted in the Hesx1-R160C targeting vector. (C) The triplet ATT encoding isoleucine at position 26 was replaced by ACC, which
encodes the amino acid threonine. This mutation introduces a novel Bsu36I restriction site on the mutated allele. (D) The triplet encoding arginine at position
160 was replaced by TGC, which encodes the amino acid cysteine. This mutation introduces a novel FspI restriction site in the mutated allele. (E,F) Southern blot
analysis of DNA samples from wild-type (+/+), Hesx1I26T/+ (E) and Hesx1R160C/+ (F) ES cell clones digested with either BamHI/XhoI (E) or BamHI (F) and hybridised
with an external probe (dotted line in A,B). (G) Representative example of PCR genotyping of DNA samples from the homozygous Hesx1I26T/I26T or Hesx1R160C/R160C

(1), heterozygous Hesx1I26T/+ or Hesx1R160C/+ (2) and wild-type Hesx1+/+ (3) embryos. Note that the primers used for genotyping both targeted alleles are the same
[black arrowheads in (A) and (B)].D
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material Fig. S1D). Similar defects have been observed in Hesx1–/–

animals (Dattani et al., 1998; Andoniadou et al., 2007)
(supplementary material Fig. S1B).

From these analyses, we conclude that the forebrain defects of
Hesx1I26T/I26T and Hesx1R160C/R160C mutants are variable, but that
eye tissue has increased sensitivity to impaired HESX1 function
compared with the telencephalon. The Hesx1-I26T mutation leads
to a less severe forebrain phenotype when compared with both the
Hesx1-R160C and the previously characterised Hesx1 null alleles
(P<0.001, on both severity and penetrance of defects between the
Hesx1I26T/I26T and Hesx1R160C/R160C genotypes). There is a dosage
effect for the Hesx1-I26T mutation, which is evidenced by the
increased frequency and severity of forebrain abnormalities in
embryos carrying one copy of the mutated allele in compound
heterozygosity with a null allele (Hesx1I26T/–), compared with those
bearing two copies (Hesx1I26T/I26T) (P<0.01 for severity and P<0.05
for penetrance). However, there are no significant phenotypic
differences between Hesx1R160C/R160C and Hesx1R160C/– embryos,
and the forebrain defects are identical to those observed in the
Hesx1–/– mutants (Dattani et al., 1998; Andoniadou et al., 2007).

Molecular analysis of forebrain defects in Hesx1I26T/I26T and
Hesx1R160C/R160C embryos
Hesx1–/– embryos show a significant reduction of anterior forebrain
structures, including the telencephalon, ventral diencephalon,
hypothalamus and eyes, which is caused by a posterior
transformation of the anterior forebrain (Andoniadou et al., 2007).
In these mutants, anterior forebrain descendants ectopically
populate posterior forebrain regions and give rise to neural crest
cells that colonise the frontonasal mass and first branchial arch.
This fate transformation is probably the consequence of the ectopic
activation of the Wnt–β-catenin signalling pathway within the
anterior forebrain at 8.0 dpc. We analysed whether phenotypic
differences in forebrain development between the Hesx1I26T/I26T

and Hesx1R160C/R160C embryos could be traced back to early
developmental stages. To determine this, mRNA in situ
hybridisation with several diagnostic markers of brain development
was performed on mutant and normal littermates between 8.0 and
9.0 dpc.

Hesx1I26T/I26T embryos showed a variety of neural patterning
defects, with some showing mild abnormalities in the expression
patterns of diagnostic markers, whereas others exhibited no
apparent defects. Hesx1 is normally expressed in the anterior
forebrain at 8.0 dpc (Fig. 3A), and by 8.5 dpc transcripts become
restricted to the ventral area of the forebrain extending into the
proximal regions of the optic stalks (Fig. 3D). At 8.0 dpc, the Hesx1
expression domain was slightly reduced in the medial part of the
anterior neural plate in a proportion of Hesx1I26T/I26T homozygotes
(three out of five embryos) (Fig. 3B). This was more apparent at
8.5 dpc, when Hesx1 expression was normal in the prospective
ventral forebrain but severely reduced in the developing optic stalks
(Fig. 3E) (four out of six embryos). However, four of the analysed
Hesx1I26T/I26T homozygous embryos (n=11) showed a very similar
expression pattern to wild-type littermates (data not shown),
possibly reflecting embryos that would subsequently develop
normal eyes and a normal telencephalon. The expression of Wnt1,
a marker of the midbrain and posterior forebrain (Fig. 3G,J) and
an important contributor to the fate transformation of anterior

dmm.biologists.org244

Mouse models for hypopituitarismRESEARCH ARTICLE

Fig. 2. Forebrain defects in mutant embryos harbouring the Hesx1-I26T or
Hesx1-R160C alleles. Dark-field photographs of 12.5 dpc embryos of specific
genotypes (indicated on the top of the pictures). (A,B) Wild-type (A) and
Hesx1–/– (B) embryos. Hesx1–/– embryos carry a null allele, in which a Neo
cassette replaces the entire Hesx1 coding region. Note the absence of eyes
(black arrowhead), reduced telencephalic vesicles (white arrowhead) and
impairment of frontonasal mass development (white arrow) in the Hesx1–/–

mutant (B) when compared with the wild-type embryo (A). 
(C-E) Representative examples of Hesx1I26T/I26T mutants displaying
anophthalmia (C), microphthalmia (D) or normal eyes (E). Telencephalic
vesicles are unaffected. (F-H) Representative examples of Hesx1I26T/– mutants.
Note the increased severity in the eye and telencephalic defects in these
embryos when compared with Hesx1I26T/I26T embryos (C-E). (I-K) Representative
examples of Hesx1R160C/R160C mutants showing severe forebrain defects (I) and
either anophthalmia (J) or microphthalmia (K) with normal telencephalic
vesicles. (L-M) Representative examples of Hesx1R160C/– embryos. There is no
obvious increase in the severity of eye and telencephalic abnormalities
between embryos carrying one (L-M) or two (I-K) copies of the Hesx1-R160C
allele. Bar, 940 μm.
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forebrain precursors, was clearly expanded in dorsal regions of the
anterior forebrain in several Hesx1I26T/I26T embryos (three out of
five embryos) (Fig. 3H,K) (McMahon and Bradley, 1990; Lagutin
et al., 2003; Andoniadou et al., 2007). The reduction of presumptive
optic tissue was also evident in some Hesx1I26T/I26T embryos
hybridised with riboprobes against Pax6, a marker of forebrain and
eyes at these stages (two out of five embryos) (Fig. 3M,N) (Walther
and Gruss, 1991). This reduction was further confirmed by
analysing the expression pattern of Pax2, whose transcripts are
confined to the ventral optic vesicle at early developmental stages
(Fig. 3P,Q) (Torres et al., 1996). Bf1 (Foxg1b), a gene essential for
proper telencephalic development, was normally expressed in the
prospective telencephalon in mutant embryos when compared with
wild-type littermates (n=2) (supplementary material Fig. S2I,J)
(Xuan et al., 1995). From this marker analysis, we conclude that
the I26T substitution leads to defective patterning of the anterior
neural plate, with the eye region being more sensitive to impaired
HESX1 function. This is consistent with previous data showing that
the majority of these homozygous embryos have eye abnormalities
but develop a normal telencephalon (Fig. 2C-E; Table 2).

Hesx1R160C/R160C embryos showed more dramatic and consistent
abnormalities in forebrain patterning at early developmental stages,
because anterior forebrain tissue was typically reduced in size. The
Hesx1 expression domain was significantly smaller at 8.0-8.5 dpc
in homozygous mutants compared with wild-type and
heterozygous littermates (n=9) (Fig. 3C,F). The degree of reduction
of the Hesx1 expression domain was variable and correlated with
the amount of anterior forebrain tissue present in the homozygous
mutant, but all embryos analysed showed an evident decrease of
anterior tissue and Hesx1 expression. This reduction in Hesx1
expression is likely to reflect the ongoing transformation of the
anterior forebrain into a posterior fate in the Hesx1R160C/R160C

embryos (Andoniadou et al., 2007). In the Hesx1R160C/R160C embryos,
the expression domain of Wnt1 was anteriorised (Fig. 3I,L) to a
similar extent (n=4) to that observed in Hesx1I26T/I26T mutants (Fig.
3H,K), despite the fact that the Hesx1R160C/R160C embryos show more
severe forebrain defects. This supports the hypothesis that Wnt1
anteriorisation alone cannot account for the anterior defects of
Hesx1-deficient embryos (Andoniadou et al., 2007). The Bf1
expression domain was significantly diminished in homozygous
mutants when compared with wild-type or Hesx1I26T/I26T embryos
(n=2) (supplementary material Fig. S2I-K). Reduction of

telencephalic and optic tissue was further confirmed by an apparent
decrease in the Pax6 expression domain across the entire forebrain
of Hesx1R160C/R160C embryos (n=5) (Fig. 3M,O). Expression of Pax2
was either reduced (n=2) or absent (n=3) in optic vesicles, but
normal at the mid-hindbrain boundary of these embryos (Fig. 3P,R).
As previously suggested (Fig. 2I-K) (Table 2), this mutation leads
to a more severe lack of anterior forebrain tissue, including the
telencephalon and the eyes, which is a phenotype identical to that
observed in Hesx1–/– mutants (Dattani et al., 1998; Andoniadou et
al., 2007).

Finally, we performed cell fate analysis of Hesx1-expressing cells
in mutant embryos carrying either the I26T or the R160C alleles.
We used two previously characterised mouse models: (1) the Hesx1-
Cre mouse line, in which the Cre recombinase gene replaces the
Hesx1 coding region creating a Hesx1 null allele. In Hesx1-Cre
embryos, Cre expression recapitulates the endogenous Hesx1
expression pattern (Andoniadou et al., 2007). (2) ROSA26-floxstop-
lacZ reporter (ROSA26-Cond-lacZ), in which lacZ expression is
permanently activated upon Cre-mediated excision of a loxP-
flanked stop sequence (Soriano, 1999).

Compound embryos of specific genotypes were generated by
genetic crosses of existing models and were analysed by X-Gal
staining at 10.0 dpc. In Hesx1Cre/+;ROSA26Cond-lacZ/+ embryos,
which are phenotypically normal, the majority of lacZ-positive 
cells localised within anterior forebrain structures, including 
the telencephalon, eyes and ventral diencephalon (n=4) 
(Fig. 4A,D). In contrast, Hesx1Cre/I26T;ROSA26Cond-lacZ/+ and
Hesx1Cre/R160C;ROSA26Cond-lacZ/+ compound embryos, both
of which have impaired HESX1 function owing to the presence
of either the I26T or R160C mutations, contained a higher
number of lacZ-expressing cells in both the posterior forebrain
region and the first branchial arch (n=9) (Fig. 4B,C,E,F). In
Hesx1Cre/R160C;ROSA26Cond-lacZ/+ embryos, we observed a greater
contribution of lacZ-positive cells to the frontonasal mass and first
branchial arch than in Hesx1Cre/I26T;ROSA26Cond-lacZ/+ embryos. This
correlates with a higher degree of cell fate transformation, leading
to a more severe phenotype in the former, as also observed in the
Hesx1 null mutants (Andoniadou et al., 2007).

Taken together, the marker and cell fate analyses indicate that
the anterior forebrain area of the early embryo is abnormally
specified in both Hesx1I26T/I26T and Hesx1R160C/R160C embryos.
However, the R160C substitution has a profound effect on anterior
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Table 2. Summary of phenotypes associated with specific genotypes in 12.5-17.5 dpc embryos

Genotype

Phenotype §Hesx1I26T/I26T §Hesx1R160C/R160C ¶Hesx1I26T/– ¶Hesx1R160C/–

92**1*stcefed niarberof ereveS †† 015

Anophthalmia† 4987

Microphthalmia† 15652

No defects‡ 0009

51913424latoT

*Small or absent telencephalic vesicles and anophthalmia (Fig. 2B,I,J,L,M).
†Normal telencephalic vesicles, but unilateral or bilateral anophthalmia (Fig. 2C,G).
‡Embryos were indistinguishable from wild-type littermates (Fig. 2A,E).
§12.5-17.5 dpc embryos.
¶12.5-14.5 dpc.

**17.5 dpc embryo.
††Twelve embryos showed defects in the formation of the frontonasal mass (Fig. 2I).
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neural patterning and affects both the telencephalic and eye
primordia, whereas the I26T mutation allows for better anterior
specification of the neural plate and primarily affects the eye
precursors.

Pituitary defects in Hesx1I26T/I26T and Hesx1R160C/R160C embryos
To assess the development of the pituitary gland in Hesx1I26T/I26T

and Hesx1R160C/R160C embryos, we performed hematoxylin-eosin
(H&E) staining and in situ hybridisation analysis with diagnostic
markers at different stages of embryogenesis (I26T, n=34; R160C,
n=29).

Pituitary defects were clearly evident at 12.5 dpc onwards in all
the embryos analysed, but some phenotypic differences were
observed between Hesx1I26T/I26T and Hesx1R160C/R160C genotypes.
At 12.5 dpc, Hesx1I26T/I26T embryos exhibiting forebrain phenotypes
ranging from normal eyes to bilateral anophthalmia (but normal
telencephalon) displayed a single pituitary phenotype, which was
typically characterised by the presence of an enlarged and bifurcated
anterior pituitary, often connected to the oral cavity (type I
phenotype) (Fig. 5D) (n=8). This phenotype was also observed in
five out of eight Hesx1R160C/R160C embryos analysed at this stage
(Fig. 5G). In the other three embryos, Rathke’s pouch development
was clearly delayed, appearing equivalent to that of an 11.5 dpc
wild-type littermate, and remained embedded within the oral
ectoderm and appeared rostrally expanded (type II phenotype) (Fig.
5J). Invariably, this latter phenotype was observed in embryos with
a significant lack of anterior forebrain tissue, affecting the
telencephalon and eyes (Fig. 2I). The variable phenotype observed
in Hesx1R160C/R160C embryos was reminiscent of that previously
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Fig. 4. Posterior transformation of anterior forebrain precursors in
Hesx1Cre/I26T and Hesx1Cre/R160C mutants. (A-F) X-Gal staining on 10.0 dpc
embryos of the three genotypes (indicated on the top of the columns) reveals
abundant lacZ-positive cells in the posterior forebrain (arrowheads) of the
Hesx1Cre/I26T;R26Cond-lacZ/+ (B,E) and Hesx1Cre/R160C;R26Cond-lacZ/+ (C,F) mutants in
comparison with the Hesx1Cre/+;R26Cond-lacZ/+ control embryo (A,D). Also note
that lacZ-positive cells are present within the first branchial arch of the mutant
embryos (arrows in B,C), whereas, in the control embryo (A), they colonise only
the endodermal lining of the first branchial arch. Bar: 550 μm (A-C), 180 μm 
(D-F).

Fig. 3. Early forebrain patterning defects in Hesx1I26T/I26T and
Hesx1R160C/R160C embryos. Photographs of whole-mount in situ
hybridisations. Probes used are indicated on the left side. (A-F) Frontal views of
8.0 dpc (A-C) and 8.5 dpc (D-F) embryos hybridised with Hesx1 antisense
riboprobes. The expression domain of Hesx1 is reduced in Hesx1I26T/I26T

embryos (B,E) when compared with wild-type embryos (A,D). Note that at 8.5
dpc the reduction is apparent in the proximal region of the developing optic
cups (arrows in E). Reduction of the Hesx1 expression domain is more
accentuated in Hesx1R160C/R160C embryos (C,F). (G-L) Frontal (G-I) and lateral (J-L)
views of embryos hybridised with Wnt1 antisense riboprobes at 8.5 and 9.0
dpc. Note the anteriorisation of the Wnt1 expression domain in Hesx1I26T/I26T

(H,K) and Hesx1R160C/R160C (I,L) mutants when compared with wild-type
embryos (G,J). The arrows in G-L indicate the rostral limit of the Wnt1
expression domain in the dorsal forebrain. (M-O) Lateral views of embryos
hybridised with Pax6 antisense riboprobes at 9.0 dpc. The Pax6 expression
domain is reduced in the Hesx1I26T/I26T mutants (N) as the eyes (ey) are smaller
in size (see text for details). Hesx1R160C/R160C mutants (O) show a more severe
reduction in forebrain tissue (fb) and no eyes compared with Hesx1I26T/I26T

mutants (N). (P-R) Lateral views of embryos hybridised with Pax2 antisense
riboprobes at 8.5 dpc. Pax2 is expressed in the eye (ey) and the mid-hindbrain
boundary in a wild-type embryo (P). Note that reduction or absence of eye
tissue in the Hesx1I26T/I26T (Q) or Hesx1R160C/R160C (R) mutants is concomitant with
a reduction in Pax2 expression in the eye. Bar: 130 μm (A-C,J-O), 170 μm (D-F),
215 μm (G-I), 40 μm (P-R).
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described in the Hesx1–/– mutants (Dasen et al., 2001), further
suggesting that the R160C mutation yields a null allele. At 15.5 and
17.5 dpc, the majority of the Hesx1I26T/I26T and Hesx1R160C/R160C

embryos showed a common phenotype in which the anterior
pituitary developed in its normal location but appeared enlarged,
often interfering with the normal development of the basisphenoid
cartilage, which was fragmented, allowing some pituitary tissue to
invade the nasopharynx (Fig. 5E,F,H). In histological sections from
one Hesx1I26T/I26T (n=15) and three Hesx1R160C/R160C (n=13) mutants
from 15.5-17.5 dpc, all of which exhibited severe craniofacial defects
(supplementary material Fig. S1D), the pituitary gland could not
be recognised as a defined structure in its normal location (Fig.
5K,L). It is likely that these abnormalities represent the progression
of the type II pituitary phenotype described in a proportion of
Hesx1R160C/R160C mutants at 12.5 dpc. Absent pituitary has been
reported previously in a low proportion of Hesx1–/– null mutants
(Dasen et al., 2001).

Rathke’s pouch induction appeared to occur normally in
Hesx1I26T/I26T and Hesx1R160C/R160C embryos. In both homozygous
mutants, the expression domains of both Fgf8, a marker of the
ventral diencephalon, and Lhx3, a marker of the developing Rathke’s
pouch, were very similar to those observed in wild-type and
heterozygous littermates at 10.5 dpc (Crossley and Martin, 1995;
Sheng et al., 1996; Treier et al., 1998) (n=11) (supplementary Fig.
S2A-H). These data conflict with a previous report suggesting that
the Fgf8 expression domain was rostrally expanded in the ventral
diencephalon in 10.5 dpc Hesx1-deficient embryos (Dasen et al.,

2001). The possibility exists that Fgf8 deregulation might occur in
a very small proportion of these embryos. Alternatively, the use of
radioactive (Dasen et al., 2001) versus non-radioactive (this
manuscript) in situ hybridisation may have contributed to this
discrepancy, as radioactive in situ hybridisation is a more sensitive
technique. Taken together, these data suggest that recruitment of
additional oral ectoderm into Rathke’s pouch at 10.5 dpc is not a
major contributor to the enlargement of the anterior pituitary at
subsequent developmental stages. In fact, there is a significant
increase in cellular proliferation in a proportion of Hesx1-deficient
embryos from 12.5 dpc, which may account for the pituitary
hyperplasia (Gaston-Massuet et al., 2008).

Despite the abnormal morphology, the expression of several
diagnostic markers such as Lhx3 (Fig. 6A-I), Pit1 (Fig. 6P-R),
Prop1 (Fig. 6S-U) and Hesx1 (Fig. 6V-X) was normal in the
anterior pituitary of both homozygous mutants from 12.5 to 15.5
dpc, although pituitary hyperplasia was evident (Cohen et al.,
1996; Treier et al., 1998; Nasonkin et al., 2004). The only
significant difference was a reduction in Pomc1 expression in the
developing hypothalamus of both mutant embryos at 12.5 dpc
(Fig. 6J-O) and in the developing Rathke’s pouch of
Hesx1R160C/R160C embryos showing the type II phenotype
(supplementary material Fig. S3). Likewise, no differences were
observed in the expression domains of Sox2, Sox3, Wnt4, Wnt5a
and Axin2 between Hesx1I26T/I26T, Hesx1R160C/R160C and wild-type
littermates (Treier et al., 1998; Rizzoti et al., 2004; Cha et al., 2004;
Kelberman et al., 2006; Olson et al., 2006) (supplementary material
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Fig. 5. Histological analysis of the developing pituitary
gland in Hesx1I26T/I26T and Hesx1R160C/R160C mutants. H&E
staining of embryos (genotypes are indicated on the left
side of the panel) at different stages of development
(indicated on top of the panel). (A-C) Wild-type pituitary
gland. (D-I) Hesx1I26T/I26T (D-F) and Hesx1R160C/R160C (G-I)
pituitary glands showing the type I phenotype, which
typically display anterior pituitary enlargement and
bifurcation with or without defective development of the
basisphenoid cartilage (bs). (J-L) Hesx1R160C/R160C pituitary
gland displaying the type II phenotype, which is
characterised by a delay of Rathke’s pouch development
at 12.5 dpc (J), severe impairment of basisphenoid
cartilage development and ectopic pituitary in the
nasopharynx (np) (K,L). Bar, 110 μm.
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Fig. 6. Rathke’s pouch is dysmorphic but properly specified
in Hesx1I26T/I26T and Hesx1R160C/R160C mutants. In situ
hybridisation (ISH) on sagittal (A-C, G-L and P-X) and frontal (D-
F and M-O) paraffin sections of embryos of different
genotypes (indicated on the top of each column). The probes
used for ISH and the developmental stages of embryos
analysed are indicated on the left and right sides of the panel,
respectively. (A-I) Lhx3 expression is normal, but Rathke’s
pouch is expanded showing aberrant morphology and
contains bifurcated lumens in the Hesx1I26T/I26T (B,E,H) and
Hesx1R160C/R160C (C,F,I) mutants when compared with wild-type
embryos (A,D,G). (J-L) Pomc1 expression in Rathke’s pouch is
not affected (arrowheads), but there is reduced Pomc1
expression in the hypothalamic area (arrows) of the
Hesx1I26T/I26T (K) and Hesx1R160C/R160C (L) embryos in comparison
with the wild-type embryo (J). (M-O) Reduction of Pomc1
expression in the hypothalamic area is apparent in frontal
sections. (P-R) Pit1 expression in ventral progenitors is
indistinguishable between genotypes. (S-U) Prop1 expression
is unaffected in Hesx1I26T/I26T (T) and Hesx1R160C/R160C (U)
embryos, but Rathke’s pouch morphology is aberrant.
(V-X) Hesx1 transcripts are detected in the developing Rathke’s
pouch in a high-dorsal to low-ventral gradient of expression in
the three genotypes. Bar: 155 μm (A-L,P-X), 100 μm (M-O).
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Fig. S4). Differentiation of hormone-producing cells in the
anterior pituitary was unaffected, as shown by the normal
temporal and spatial expression of several diagnostic markers for
specific cell types, such as Gh (somatotrophs) (Fig. 7D-F,P-R), Prl
(lactotrophs) (Fig. 7G-I), Tshb (thyrotrophs) (Fig. 7J-L), Cga
(encoding glycoprotein hormones, alpha subunit; gonadotrophs
and thyrotrophs) (Fig. 7A-C), Lhb (gonadotrophs) (Fig. 7S-U) and
Pomc1 (corticotrophs) (Fig. 7M-O). However, in general, the
number of hormone-producing cells appeared to be increased in
the mutant pituitaries, possibly reflecting the initial enlargement
of Rathke’s pouch observed in the Hesx1I26T/I26T and
Hesx1R160C/R160C embryos at earlier stages. There appeared to be
a decrease in expressing cells in only some embryos (mostly
Hesx1R160C/R160C mutants), possibly because part of the anterior
pituitary tissue is ectopically located in the pharynx and is lost
during processing for histological analysis. Remarkably, in those
Hesx1R160C/R160C mutants where the pituitary was not

morphologically recognisable (Fig. 5L), in situ hybridisation
analysis with terminal differentiation markers revealed the
presence of hormone-producing cells, mostly embedded in the
pharyngeal epithelium (Fig. 8). Therefore, rather than being
absent, the anterior pituitary tissue was ectopically located in the
roof of the nasopharyngeal cavity. A less severe manifestation of
this phenotype was found in some Hesx1I26T/I26T and
Hesx1R160C/R160C embryos, where only part of the anterior pituitary
invaded the nasopharyngeal mucosa (Fig. 5E,F,H; data not shown).

HESX1 expression in human embryos
Expression of human HESX1 has not been reported previously. This
information is relevant to advance our understanding of the
relationship between the phenotypic consequences of particular
mutations in mice and humans. At Carnegie stage (CS) 11 (~8.5-
9.0 dpc equivalent in mouse), HESX1 expression was detected by
in situ hybridisation in the ventral forebrain and in the invaginating
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Fig. 7. Terminal differentiation of hormone-producing cells
occurs normally in the anterior pituitary of Hesx1I26T/I26T and
Hesx1R160C/R160C embryos. In situ hybridisation (ISH) on frontal (A-
O) or sagittal (P-X) paraffin sections of 17.5 dpc embryos.
Genotypes and probes used for ISH are indicated on the top and
left sides of the panel, respectively. (A-X) The levels of expression
for the transcripts Cga, Gh, Prl, Tshb and Pomc1 are normal in all
three genotypes; however, numbers of expressing cells appear
increased in the mutant pituitaries because of the enlargement of
Rathke’s pouch at earlier stages. Bar: 170 μm (A-O), 215 μm (P-X).
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oral epithelium of the developing Rathke’s pouch (Fig. 9A,B). By
CS 12 (~9.5-10.25 dpc), neural expression could not be detected
but HESX1 transcripts were abundant in Rathke’s pouch, mainly
in the dorsal region (Fig. 9C,D). Rathke’s pouch expression persisted
until CS 15 (~11.0-11.5 dpc) (Fig. 9E-H) but was not detected at
CS17 (~12.0-12.5 dpc) (Fig. 9I-J). Two conclusions can be drawn
from this analysis: (1) HESX1 expression is transient in the
developing human embryo and is restricted to the anterior region,
including ventral forebrain and Rathke’s pouch; (2) it establishes
the mouse as an ideal model to study the phenotypic consequences
of HESX1 mutations associated with forebrain and pituitary defects
in humans.

DISCUSSION
The results presented here have revealed some interesting insights
into the function of Hesx1/HESX1 in the aetiology and pathogenesis
of SOD and hypopituitarism. We have shown that the expression
domain of human HESX1 is comparable to that in the mouse, and
includes the ventral forebrain and Rathke’s pouch. Based on cell
fate studies in the mouse and chick, which have shown that Hesx1-
expressing cells colonise the anterior forebrain (including ventral
forebrain) at early somite stages and eyes at later stages (Fernandez-
Garre, 2002; Andoniadou et al., 2007), it is likely that HESX1 is also

expressed in the anterior neural plate (presumptive anterior
forebrain) at earlier stages of human embryogenesis. Unfortunately,
owing to the difficulty of obtaining very early-stage human
embryos, we could not confirm this hypothesis. The human
expression pattern may also provide an explanation for the eye
defects seen in patients carrying HESX1 mutations (Kelberman and
Dattani, 2007).

We have also generated knock-in mouse mutants harbouring
the I26T and R160C substitutions to analyse the phenotypic
consequences of impaired HESX1 function in mice. Our data
indicate that, within the anterior forebrain, eye defects are
more common than telencephalic abnormalities, including
commissural tract defects, in Hesx1I26T/I26T and Hesx1R160C/R160C

mutant embryos. This suggests that the eye precursors are more
sensitive to impaired HESX1 function than the antecedents of
the telencephalon. This conclusion is supported by further
evidence: (1) Hesx1–/– null embryos show fully penetrant eye
defects owing to ectopic activation of the Wnt–β-catenin
signalling pathway within the anterior forebrain (Dattani et al.,
1998; Andoniadou et al., 2007); (2) transgenic overexpression of
Hesx1 within the anterior forebrain of Hesx1–/– mouse embryos
rescues the telencephalic defects at a lower dosage than for eye
abnormalities, which require higher levels of HESX1
(Andoniadou et al., 2007); (3) in Xenopus and zebrafish, activation
of the Wnt–β-catenin signalling pathway within the anterior
forebrain primarily affects eye development (Fredieu et al., 1997;
van de Water et al., 2001). The HESX1-I26T mutant protein
shows diminished repressing activity when compared with wild-
type HESX1, probably because of reduced binding to the co-
repressor TLE1, which requires the highly conserved amino acid
I26 within the eh-1 domain for proper binding (Galliot et al., 1999;
Dasen et al., 2001; Carvalho et al., 2003). Since TLE1 is expressed
across the entire forebrain (Allen and Lobe, 1999; Lopez-Rios et
al., 2003), telencephalic precursors are probably less sensitive to
the lack of HESX1-repressing activity mediated by TLE1. Studies
in zebrafish have shown that TLE1 plays a fundamental role in
eye development, as TLE1 overexpression leads to enlargement
of the eyes with little or no effect on the telencephalon (Lopez-
Rios et al., 2003). Therefore, HESX1-I26T is likely to allow
interactions with other co-repressors within telencephalic
precursors, which may compensate for the impaired HESX1-
I26T–TLE-1 interaction. Among them, nuclear co-repressor (N-
CoR) and some of the recently identified HESX1 interactors may
contribute to the differences in forebrain phenotype between the
I26T and R160C mutations (Dasen et al., 2001; Sajedi et al., 2008)
(data not shown).

The pituitary defects of Hesx1I26T/I26T and Hesx1R160C/R160C are
fully penetrant and usually very similar, although the
morphogenesis of the pituitary gland is more affected in
Hesx1R160C/R160C embryos that show severe forebrain defects. Our
data suggest that the signals controlling terminal differentiation of
anterior pituitary cells are acting at the right place and time, but,
because of an initial enlargement of Rathke’s pouch at 12.5 dpc,
there are more cells that can follow the differentiation pathway.
However, a minority of embryos with ectopic pituitary tissue
showed fewer numbers of hormone-producing cells compared with
wild-type embryos. This is reminiscent of the ectopic pharyngeal
pituitary gland that has been reported in humans in association
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Fig. 8. Ectopic nasopharyngeal pituitary in a proportion of
Hesx1R160C/R160C mutants. In situ hybridisation (ISH) on frontal (A,B,E,F) or
sagittal (C,D,G,H) paraffin sections of 17.5 dpc embryos. Genotypes and probes
used for ISH are indicated on the top and left sides of the panel, respectively.
Note the presence of Gh- (A-D) and Cga- (E-H) positive cells in the roof of the
nasopharynx (np). Bar, 150 μm.
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with craniofacial defects (Kjaer and Hansen, 2000; Osman et al.,
2006).

The fact that Hesx1I26T/I26T embryos display pituitary defects that
are comparable to Hesx1R160C/R160C and Hesx1–/– embryos suggests
a fundamental role for the HESX1-TLE1 interaction during normal

pituitary development that cannot be compensated for by other
HESX1-interacting proteins, as was previously suggested by
overexpression experiments in mice (Dasen et al., 2001). Given the
complete penetrance of pituitary defects in animals harbouring
both the hypomorphic (I26T) and null (R160C) alleles, it is likely
that the pituitary gland is highly sensitive to HESX1 dosage, and
that the high incidence of hypopituitarism in humans with HESX1
mutations is not a consequence of selection bias. Our studies
indicate that the R160C substitution yields a null allele, whereas
I26T is a hypomorphic allele. Additionally, they provide in vivo
evidence that the R160C substitution does not have a dominant-
negative effect as suggested previously by in vitro data (Brickman
et al., 2001) as Hesx1R160C/+ mice are normal, viable and fertile.

We propose that, in the mouse, Hesx1 function is required
primarily in Rathke’s pouch, secondarily in eye precursors and
finally in the antecedents of the telencephalon. It is possible that
this differential sensitivity to HESX1 function is conserved in the
human embryo as the Hesx1/HESX1 expression domains are very
similar between the two species. Furthermore, phenotypic analysis
indicates that anterior pituitary dysfunction, ranging from IGHD
to CPHD, is the most common clinical finding in patients with
HESX1 mutations, followed by optic nerve hypoplasia and midline
commissural defects (Dattani et al., 1998; Thomas et al., 2001;
Brickman et al., 2001; Carvalho et al., 2003; Cohen et al., 2003;
Tajima et al., 2003; Sobrier et al., 2005; Sobrier et al., 2006; Coya
et al., 2007). It is interesting that the human patient carrying the
I26T substitution does not have eye defects (Carvalho et al., 2003),
although more than 75% of the Hesx1I26T/I26T mutant mice exhibited
an eye phenotype. This may be the result of species-specific
differences between mice and humans, or, alternatively, the human
patient may just have a milder phenotype, as approximately 21%
of Hesx1I26T/I26T mouse mutants do not have eye defects.

The reasons underlying perinatal lethality in the majority of
Hesx1R160C/R160C animals and perhaps in a minority of Hesx1I26T/I26T

mutant pups are not clear. As pituitary defects are fully penetrant
and similar in both mutants, it seems unlikely that these
morphological abnormalities alone can cause mortality. The severe
craniofacial defects in the Hesx1R160C/R160C pups are also likely to
contribute to some perinatal death; however, pups without gross
morphological defects in the brain and craniofacial structures also
die soon after birth. Abnormal development of the hypothalamic
region and/or its connection to the pituitary gland might underlie
the observed perinatal death. Indeed, hypothalamic Pomc1
expression is reduced in mice carrying the I26T or the R160C
substitution, with a more severe loss of signal in Hesx1R160C/R160C

embryos. As pituitary function is controlled by the neuroendocrine
hypothalamus, the Hesx1R160C/R160C pups might be expected to show
more severe hypopituitarism than the Hesx1I26T/I26T mice, as
described for human patients carrying these mutations.
Unfortunately, the Hesx1I26T/I26T mice do not show any sign of
hypopituitarism and were viable and fertile, and the Hesx1R160C/R160C

animals die too early to assess any sign of hypopituitarism in the
form of delayed growth. Further investigation will be required to
assess, in more detail, the development of the neuroendocrine
hypothalamic nuclei and their connections to the pituitary gland.
Analysis of a systematic mutational screen has shown that
mutations in HESX1 are a rare cause of SOD and hypopituitarism
(McNay et al., 2007). It is possible that those surviving patients
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Fig. 9. HESX1 is expressed in the ventral forebrain and developing
Rathke’s pouch of human embryos. In situ hybridisation analysis at Carnegie
stages (CS) 11-17. Low- (A,C,E,G,I) and high- (B,D,F,H,J) magnification
photographs of human embryos hybridised with human HESX1 anti-sense
riboprobes. (A,B) HESX1 transcripts are observed in the ventral forebrain
(arrowhead) and the incipient Rathke’s pouch (arrow). The apparent signal in
the hindbrain region is likely to be an artefact, as it was not observed in other
sections or older embryos. (C,D) At CS12, HESX1 transcripts are no longer
detected in neural tissue but they are abundant in Rathke’s pouch (arrow in D).
(E-H) At CS13-15, HESX1 expression is detected in the dorsal region of Rathke’s
pouch (arrows in F). (I,J) HESX1 expression is not detected at CS17. A-D,G,H are
sagittal and E,F,I,J are coronal sections. Bar: 275 μm (A,C,E,G,I), 125 μm
(B,D,F,H,J).
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represent the milder end of the phenotypic spectrum. As with the
low numbers of surviving mice, it is likely that a significant
proportion of HESX1 mutations in humans are not viable and
therefore remain undetected. Although this hypothesis is difficult
to test, the mouse data presented here support this idea.

METHODS
Generation of the Hesx1-I26T and Hesx1-R160C mouse mutants
The Hesx1-I26T and Hesx1-R160C targeting vectors were generated
using homologous regions obtained from plasmids containing the
mouse Hesx1 gene, which have been previously used successfully
(Fig. 1A,B). A PGK-Neo cassette flanked by loxP sequences was
inserted in the EcoRI site located in the first intron of both targeting
constructs. In the Hesx1-I26T targeting vector, the PGK-Neo cassette
was cloned in the same orientation of transcription as the Hesx1
locus. However, the orientation was inverted in the Hesx1-R160C
targeting vector in an attempt to reduce the expression of the mutated
allele, which may have had a dominant negative effect in embryonic
stem (ES) cells since the Hesx1 locus is transcriptionally active in
these cells. The codons for amino acids I26 and R160 of murine wild-
type Hesx1 were mutated by PCR, as indicated in Fig. 1C,D (primer
sequences available on request). The mutated codons introduced
novel restriction sites that are not present in wild-type Hesx1, and
which were very useful as a quick method to identify the presence
of the mutated alleles during generation of the mouse lines. The
linearised targeting vectors were electroporated in CCE ES cells
(129/SvEv) (kindly provided by E. Robertson) and 500 colonies were
picked, expanded and screened by PCR and Southern blot, as
described previously (Andoniadou et al., 2007). For each construct,
two correctly targeted clones were isolated and injected into
blastocysts from C57BL/6J (Harlan) mice. Male chimeras were
backcrossed to C57BL/6J females to establish the F1 generation of
heterozygous mice. F1 animals were crossed with beta-actin-Cre
mice, which were kept on a C57BL/6J background, to excise the PGK-
Neo cassette (Meyers et al., 1998). After backcrossing with C57BL/6J
animals to remove the beta-actin-Cre transgene, Hesx1I26T/+ and
Hesx1R160C/+ heterozygotes were kept on a C57BL/6J background.
The analysis described here used animals and embryos after three
backcrosses to C57BL/6J. The Hesx1+/– mice used in this study had
been maintained on a C57BL/6J background for more than 20
generations (Andoniadou et al., 2007). With the exception of the
opposite orientation of the remaining loxP sequence after Cre-
mediated excision of the PGK-Neo cassette and the specific point
mutation, both Hesx1-I26T and Hesx1-R160C alleles were identical.
This was relevant in order to eliminate any adverse effect of the
remaining loxP site on transcription and splicing efficiency, which
might impact the phenotype.

Genotyping of mice and embryos
Embryos and neonates were genotyped by PCR on DNA samples
prepared from tail tips, yolk sacs or whole embryos (Andoniadou
et al., 2007). Primer sequences and PCR protocols are available on
request.

H&E and X-Gal staining, and whole-mount and section in situ
hybridisation
H&E and X-Gal staining, and whole-mount in situ hybridisation
were performed as described previously (Andoniadou et al., 2007).

For in situ hybridisation on paraffin sections, the following protocol
was used: mouse embryos at 10.5, 12.5, 15.5 and 17.5 days post
coitum (dpc) were dissected and fixed overnight in 4%
paraformaldehyde (PFA) (Sigma), followed by dehydration in a
graded ethanol series and embedding in paraffin. Sagittal and
coronal sections (6-8 mm) were cut using a standard microtome.
Sections were de-waxed, hydrated and fixed in 4% PFA (20
minutes). After proteinase K treatment (8 minutes at room
temperature) and fixation (4% PFA, 5 minutes), they were treated
with 0.1 M triethanolamine plus 0.25% acetic anhydride (10
minutes). Hybridisation was carried out overnight at 55-65°C in
50% formamide, 0.3 M sodium chloride, 20 mM Tris HCl, 5 mM
EDTA, 10% dextran sulphate, 1�Denhardt’s reagent (Sigma)
supplemented with tRNA (Sigma), RNAase inhibitor (Roche) and
the relevant digoxigenin-labelled riboprobe. Stringency washes
consisting of 2�SSC (twice, 30 minutes), 50% formamide:50%
2�SSC (twice, 30 minutes) and then 2�SSC (twice, 30 minutes)
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TRANSLATIONAL IMPACT

Clinical issue
The pituitary gland is regulated by the hypothalamus in the brain and is
essential for controlling growth, reproduction, and stress responses.
Developmental pituitary defects lead to hypopituitarism, which can range
from loss of a single pituitary hormone to loss of multiple or all pituitary
hormones. Isolated growth hormone deficiency (IGHD) is most common,
affecting one in as many as 4000 people. Combined pituitary hormone
deficiency (CPHD), characterised by deficiency of multiple pituitary hormones,
is less common than IGHD, and is associated with considerable morbidity and
mortality. Septo-optic dysplasia (SOD; also referred to as de Morsier syndrome)
is associated with anterior brain and eye defects, and may involve the gene for
HESX1. HESX1 is a transcription factor required for normal development of the
forebrain and pituitary gland in both humans and mice. Mutation of HESX1 is
associated with hypopituitarism, although, the wide range of phenotypes
manifested in these diseases makes it difficult to determine the influence of
these mutations. 

Results
Here, HESX1 expression was identified in the anterior brain and pituitary gland
of mice and humans, establishing the mouse as a physiologically relevant
model for understanding HESX1 mutations associated with human disease.
Mouse mutants were created harbouring two common point mutations found
in human hypopituitarism, which displayed a hierarchy of defects. Hesx1
function had the greatest influence in the pituitary gland, medium effects on
eye precursors and mild effects in the anterior brain (the location of the
developing hypothalamus). In addition, the two mutations examined caused
distinct phenotypes. An R160C substitution produced a non-functional protein
that was lethal, whereas I26T had reduced functionality and a milder
phenotype. This study shows very different effects of two knock-in mutations
of Hesx1. Although eye defects were noted in both mutants, only the R160C
substitution proved lethal, suggesting that the neural control of pituitary
function may be impaired in these mutants.

Implications and future directions
This study advances our understanding of the contributions of HESX1 to
complex and variable manifestations of human hypopituitarism. Consistent
with these findings, pituitary dysfunction is most common in patients with
HESX1 mutations, followed by eye defects and then anterior brain
abnormalities. This work also demonstrates unique consequences of R160C
versus I26T mutations in HESX1, which are commonly associated with human
disease.

doi:10.1242/dmm.001669
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were carried out the following day at 65°C. Slides were then blocked
for 1 hour in 10% foetal calf serum (FCS) and placed in a humid
chamber in a buffer containing: 0.1 M Tris pH 7.6, 0.15 M sodium
chloride, anti-digoxigenin antibody conjugated with alkaline
phosphatase (1:1000 from Roche), and 2% FCS. Staining was
carried out the following day using the NBT/BCIP system (Roche).
Sections were mounted in Vectamount (Vector Laboratories).
Human embryonic/foetal material was obtained from the Human
Developmental Biology Resource (HDBR) and from the M.
Vekemans Research Group at Necker Hospital, Paris with full
ethical approval under both British and French bioethics
regulations. In situ hybridisation was performed on histological
sections of embryos from Carnegie stages (CS) 11 to 18. Embryos
at stages earlier than CS 11 were unavailable.

Statistical analysis on mice and embryos
Deviations from the Mendelian ratios in offspring were analysed
for statistical significance using a chi-square test. The severity and
penetrance of the forebrain defects between: (1) Hesx1I26T/I26T and
Hesx1R160C/R160C; (2) Hesx1I26T/I26T and Hesx1I26T/–; and (3)
Hesx1R160C/R160C and Hesx1R160C/– were analysed using a Fisher’s
exact test. To detect possible differences in severity, only the
proportion of embryos showing the most severe forebrain defects
were compared, and for penetrance we used the proportions of
embryos with/without forebrain defects (Table 2).
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Human neural crest cells display molecular
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The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from
a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop
toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating through-
out the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues.
Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the
dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases.
To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines
from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo
under feeder-free conditions. While cross species comparisons showed extensive overlap between human,
mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlat-
ing with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly simi-
lar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC
derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a
small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular
profile is thus both unique and globally characteristic of uncommitted stem cells.

INTRODUCTION

Widespread proliferation and progressive fate restriction over
time characterize embryonic development. During and after
neural tube closure in vertebrate embryos, neural crest cells
(NCC) detach from the ectoderm at the boundary between
neural and non-neural epithelia, multiply and infiltrate the
mesoderm. The site-appropriate differentiation of NCC is the
result of a combination of extrinsic factors from the embryonic
niche (1,2) and cell-intrinsic properties that modify responsive-
ness to these influences (3). NCC normally yields neurons and
glial cells of the entire peripheral nervous system (PNS),

pigment cells and endocrine cells (4). In the head, they also

give rise to cephalic tendons, cartilage, bone, dermis, meninges,

vascular smooth muscle and adipocytes (5). The original pro-

genitors disappear along with their birthplace as the neural

tube closes and matures. However, such locations as the

enteric ganglia (6), the dorsal root ganglia (7), the hair follicle

(8–10), the tooth (11) and even the bone marrow (12,13)

appear to be later niches for the maintenance of persistent,

oligopotent avian and rodent neural crest-derived stem cells.
Because of its wide range of derivatives and long-term plas-

ticity, the development of the neural crest has been the topic of
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intense study in many vertebrate species. Almost nothing is
known about the endogenous characteristics of human
(h)NCC, as they mix with other cell types almost immediately.
Genetic errors influencing hNCC development seem to be the
basis of such common birth defects as congenital heart defects,
Hirschsprung disease (HSCR), labiopalatine clefting or
cancers such as neuroblastoma and pheochromocytoma, col-
lectively known as neurocristopathies (reviewed in 14). We
set out to identify molecular networks that were activated in
an early hNCC population before they dispersed to their
final sites of differentiation.

To address this issue, we first determined the precise time
window during which hNCC separate from the developing
neural tube. We then derived primary cell lines that self-renew
without a feeder layer and can be propagated and frozen for
many cycles. This had not been accomplished to date with
NCC from any other species. Rather than focus on known
pathways, we examined their entire transcriptome using
SAGE to determine an intrinsic molecular profile. A subset
of transcripts was validated using RT–PCR, immunohisto-
chemistry and in situ hybridization to check representativity.
When compared to published data from murine or avian
counterparts, hNCC activate novel signaling pathways on
top of many evolutionarily conserved modules. Furthermore,
the hNCC transcriptional profile was highly evocative of the
molecular signature of human embryonic stem (hES) cells,

including but not restricted to the expression of the transcrip-
tion factors SOX2, NANOG and POU5F1. These data indi-
cated that after separation from the neuroepithelium, the
plastic hNCC population remains poised to respond to
lineage-inductive cues, using much the same transcriptional
machinery as hES cells to delay differentiation.

RESULTS

Human neural crest cell isolation

In order to study hNCC before they migrated among unrelated
cell types, we first determined the stages during which they emi-
grate from the dorsal neuroepithelium. To this end, 31 human
neural tube fragments from embryos with normal trophoblast
karyotype and ranging between Carnegie stages (C) 10 and
C14 were isolated and plated on collagen I-coated culture
dishes for 16 h (Fig. 1A) in conditions similar to those used in
animal model systems (15,16). Cephalic neural tubes (from pro-
spective diencephalon through the rhombencephalon) yielded a
halo of hNCC spread onto the dish surface between late C10 to
late C12 [23–27 days post-fertilization (dpf); Fig. 1B and C]. A
similar halo formed around lengths of trunk-level neural tube
caudal to somite 5 between the stages C11 and C13 (24–
29 dpf), but not around neural tube fragments taken from
outside these spatiotemporal boundaries (Fig. 1E). The neural

Figure 1. Primary neural crest cells can be isolated from human embryos. (A) Human neural tube (NT) from an embryo at Carnegie stage (C)13. (B) After 16 h,
most hNCC have migrated away from the dorsal NT. (C) The intact NT is detached from the culture dish. (D) An enriched hNCC population remains, pheno-
typically similar to murine or avian NCC. (E) Empirical evaluation of hNCC migration (none to few, some and many) from 31 explanted neural tubes.
Third-order polynomial regressions reflect the rostral-to-caudal temporal maturation gradient of the human NT and maturation of NCC. Peaks occur during
C11 at cephalic levels, and during late C12 at rostral trunk levels (segments extending from somites 5 through the last-formed somite pair).
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tube was then detached and removed (Fig. 1C), leaving a highly
enriched NCC population with a characteristic, fibroblast-like
morphology (Fig. 1D). Four cephalic and eight trunk-level cell
lines were derived and propagated. Cells remained euploid
and morphologically unchanged after more than 20 passages
and multiple freeze/thaw cycles. The population doubling
time of hNCC cell lines is 40–48 h and does not change substan-
tively after 9 months in vitro.

Using immunohistochemistry, we observed that some
hNCC expressed proteins typical of partially committed pro-
genitors in avian and murine NCC cultures, such as alpha
smooth muscle actin, neural cell adhesion molecule
(NCAM) (Fig. 2A) and glial fibrillary acidic protein (not
shown). We never observed the hNCC derivative-specific
markers tyrosine hydroxylase or calcitonin; however,
occasional neurons, revealed by neuron-specific class III beta-
tubulin (TuJ-1) staining, were present in cultures (Fig. 2B).
The SOX9 protein, which is crucial for differentiation of the
full range of NCC derivatives (17), was localized mostly in
the nucleus (Fig. 2C). In contrast, the SOX2 protein, a
marker of both stem cells and uncommitted neuroepithelium
(18), was both nuclear and cytoplasmic (Fig. 2D).

These observations suggest that individual hNCC within a
given cell line are poised at various stages of lineage commit-
ment, as observed in animal models immediately after delami-
nation from the neuroepithelium (19,20).

Serial analysis of gene expression and validation

For complete transcriptional characterization of hNCC, we
used a modification of the Serial Analysis of Gene Expression
(SAGE) technique (21) to generate ‘long’ 21 basepair tags,
representing gene transcripts among the total RNA derived
from trunk-level hNCC. These cells have been isolated from

a C13 female embryo with a normal trophoblast karyotype
and passaged seven times at the time of the analysis. Sequen-
cing of 3546 clones yielded 50 500 tags after exclusion of
duplicated ditags (GEO accession GSM207304). Of these,
22 797 were unique tags, representing 8831 transcripts with
distinct UniGene identifiers. Of the unique tags, 39% could
not be reliably assigned to known mRNAs.

To validate the SAGE data, we examined the expression of
55 genes identified as present in the hNCC library using semi-
quantitative RT–PCR (Fig. 3; Supplementary Material,
Fig. S1). Among the transcripts tested, 50 were represented
by tags with very low (�3) to low (3 , n , 10) abundance,
or less than 0.02% of total transcripts. Nearly all (96.4%)
were confirmed, including all 20 genes with three or fewer
tags (Supplementary Material, Table S1).

Eighteen classical signature RNAs of amniote NCC (22,23)
were expressed in five different trunk-level hNCC lines,
including the one used for SAGE analysis (N5 in Fig. 3).
These included transcription factors such as FOXD3, MSX1,
SNAI2, SOX9, SOX10 and TWIST, as well as signaling mol-
ecules or membrane-bound receptors such as RET, GJA1,
EDN1, EDNRB, NESTIN, NOTCH1, P75, PDGFA, PDGFB
and PDGFRB (Fig. 3A).

All transcripts tested were present in the five hNCC lines as
well as in the stage C12–C13 trunk-level neural tubes from
which the NCC emigrate, with the exception of PAX3 and
PAX6, absent from line N3. The embryonic C13 liver bud also
expressed most of these genes. We examined a subset in
cDNA from adult human liver, and again, many were detected
(Fig. 3A). This expression was not artefactual, as PAX6 was
not expressed by the liver bud, or MSX1 by the adult liver. Tran-
scripts, such as PAX3, FOXD3, NES and TWIST, appeared more
abundant in hNCC than in the embryonic liver, unlike GJA1 or
SMAD2. We confirmed that the sensitivity of the semi-

Figure 2. Protein markers of hNCC indicate a heterogeneously uncommitted phenotype. In vitro, hNCC synthesized (A) a-smooth muscle actin and/or NCAM,
separately and sometimes in the same cells; (B) neuron-specific beta III tubulin; (C) nuclear SOX9; (D) nuclear and cytoplasmic SOX2; and unpolymerized
GFAP (not shown). Pigment or immunoreactivity to calcitonin or tyrosine hydroxylase was never observed in these culture conditions. Inset: negative
control with non-specific primary antibody.
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quantitative approach masked discrete differences in expression
levels by quantitative RT–PCR. PAX3 transcripts were at least
50-fold, and GJA1 at least 3-fold, more abundant in hNCC com-
pared to the embryonic liver bud, when normalized to ACTB
abundance (Fig. 3B). In addition, three genes unrepresented in
the hNCC SAGE bank and characteristic of differentiated
hNCC progeny (Fig. 3C, CHAT and PHOX2B, sympathetic
neurons; TYRP1, melanocytes) were not amplified by semi-
quantitative RT–PCR in the original hNCC line used (N5).
However, the sympathetic markers were detectable in line N2
and TYRP1 in line N4.

We finally examined the spatial expression of a selection of
genes identified by SAGE using in situ hybridization on
human embryo sections at C13 (Fig. 4). SOX11 and MAZ
code for transcription factors and GJA1 for a critical gap junc-
tion protein; other genes we studied (not shown) include the
transcription factors SOX10 (24), ZEB2 (25) and CHD7 (26)
and HEYL; the receptors encoded by NOTCH2 and FGFR2;
and the cytoskeleton-associated CTNNB1 and MID1 (27). All

were expressed in both the neuroepithelium and NCC, with
the exception of SOX10, which only postmigratory hNCC
appeared to express at C13. In addition, SOX11 (Fig. 4B),
GJA1 (Fig. 4C, F and I) and MAZ (Fig. 4D) were transcribed
by mesodermal derivatives: GJA1 by the pronephros, limb
bud mesenchyme and, like SOX11 and MAZ, the dermamyo-
tome. Endodermal epithelia expressed FGFR2, similar to later
stages (28). All genes tested were, therefore, expressed by
other tissues, notably by the source neuroepithelium, in addition
to hNCC at C13. As in animals, SOX10 (24) and FOXD3 (Fig. 3)
appeared to be more expressed by early postmigratory hNCC
than the neural tube.

Overall, these results show that this hNCC SAGE bank
accurately reflects the gene activity of line N5. Its transcrip-
tome is generally representative of hNCC isolated in this
manner, although quantitative expression level differences
indicate that hNCC lines may be individually heterogeneous,
as for other stem cell lines. Moreover, the in situ data
confirm that gene transcripts that are present in the N5

Figure 3. Expression validation of the hNCC SAGE bank. (A) Presence in five distinct hNCC lines (N1–N5) of typical animal NCC gene transcripts, as shown
by RT–PCR. Most of these genes are also expressed in the C12 and C13 human neural tube (T12 and T13) and in the C13 liver bud (L), as well as in the adult
human liver, below. (B) GJA1 (CX43) and PAX3 are expressed more in hNCC than embryonic liver. ACTB expression was used to normalize the data before
calculating the expression ratio of each gene in the five hNCC lines compared to the C13 liver bud. (C) Choline acetyltransferase (CHAT) and paired-like homeo-
box 2b (PHOX2B) are expressed by sympathetic neurons and tyrosinase-related protein 1 (TYRP1) by melanocytes, both hNCC derivatives: none of the five
hNCC lines express all three markers while T12/T13/L samples do. (D) Expression in the five distinct hNCC lines of genes reported in the literature as
highly characteristic of hES cells.
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hNCC SAGE bank after cell enrichment in vitro are represen-
tative of hNCC gene expression in vivo.

Interspecies NCC transcriptome comparisons

Most genes that are commonly used to characterize NCC in
animal studies are expressed by hNCC as well. Of the 58 tran-
scripts identified in an early survey of avian NCC cDNAs (23),

95% were also observed in the hNCC SAGE bank; some of
these have many human paralogues (Supplementary Material,
Table S2). A more comprehensive effort using SAGE on
mouse NCC after 2 (mNCSC) and 7 (mNCP) days of
culture (22) identified approximately 6000 murine gene tran-
scripts. Of these, 67.2% have orthologues in hNCC
(Fig. 5A). However, more than 4000 additional Unigene clus-
ters were present only in the human cells. This correlates with
such phenotypic differences observed in vitro as the adherent
human cell independence from a feeder layer and unlimited
ability (to date) for propagation without large-scale arrest
and differentiation.

The IDEG6 web tool (29) was applied and yielded a list of
more than 6000 genes that were differentially regulated in
hNCC with statistical significance compared to the combined
gene list of mNCSC/NCP. Ontological analysis of the differ-
ential group of genes indicated that the most enriched func-
tional categories in hNCC were cell signaling, cell death,
gene expression, cellular growth and proliferation and cell-
cycle regulation (Fig. 5B). Furthermore, genes annotated as
functioning within the insulin, Shh, Wnt and other growth
factor signaling pathways were enriched in the human cells
(Fig. 5C and D).

Cluster and pathway analyses of whole transcriptomes
show similarity between hNCC and embryonic stem cells

In order to assess the global functional significance of the
hNCC gene list relative to a variety of other human cell and
tissue types, we undertook average linkage hierarchical clus-
tering of the gene lists, using SAGE transcriptome data from
14 other non-transformed samples. This analysis grouped
hNCC at a distance from tissues derived from other germ
layers, such as the kidney or skeletal muscle, but also from
tissues of embryologically closer lineages, such as adult
Schwann cells (30) or most of the central nervous system.
The closest clustering was observed with hES cell lines
hES3 and hES4 (31), in contrast to human mesenchymal
stem cells (32) (Fig. 6A). One interpretation of these obser-
vations is that transcriptomes cluster cell or tissue types by
progenitor commitment rather than embryological origin.

In line with this interpretation, hNCC express many genes
considered to play essential roles in the maintenance of
multi-/pluripotency. NANOG, POU5F1 (OCT3/4) and SOX2
(33–35), considered emblematic of embryonic stem cells,
are all synthesized by hNCC (Fig. 3D). In humans, we
observe widespread transcription of NANOG and POU5F1 at
pharyngula stages (Fig. 6B–D). Expression remains high in
central and PNSs at C15 (Fig. 6E–G) and C17–18 (Sup-
plementary Material, Fig. S2), but decreases dramatically in
most other somatic tissues. Many other established stem cell
markers such as CD24, FOXH1 and LIN28 are transcribed
by hNCC (Fig. 3D), as are MYBL2, HELLS, EPHA1, GPR23
and PHC1 (36).

SOX2, NANOG and POU5F1 co-occupy and appear to posi-
tively regulate 180 promoter targets in hES cell line H9 (37).
Of these targets, 110 are expressed by hNCC, when compared
with the 98 transcribed by hES3 and/or hES4 (Supplementary
Material, Table S3). The comparison of quantitative transcrip-
tional levels of common co-occupied targets between hNCC

Figure 4. In situ expression of SOX11, MAZ and GJA1 in the human embryo.
(A) Hematoxylin-eosin (HE) stain of caudal trunk-level transverse section at
stage Carnegie (C)13. (B) Adjacent section. Presumptive dermatome, neural
tube excluding floorplate, pronephros and splanchnopleural mesoderm and
neural crest cells (arrowheads) express SOX11. (C) The same tissues
express GJA1 in a simultaneously hybridized adjacent section. Expression is
higher in the dermatome, dorsal neural tube and migratory neural crest cells
(arrowheads). (D) MAZ is expressed in an adjacent section in most of the
neural tube aside from the floorplate (indicated as extension of dotted lines),
and lightly in neural crest (arrowheads), dermamyotome and pronephros.
(E) Forelimb-level HE transverse section in separate C13 embryo. (F) GJA1
antisense probe-hybridized adjacent section. Limb bud, dorsal neural tube
and dorsal roots (arrowheads) hybridize more strongly than other tissues,
nearly all of which have some basal GJA1 expression. (G and J) GJA1
sense probe-hybridized adjacent section to previous frame, demonstrating
specificity of antisense hybridizations. (H) Rostral trunk-level HE section of
same embryo as in (A–D). (I) GJA1 is highly expressed in the dorsal
neural tube, the dorsal roots and ganglia, the dermatome and the splanchno-
pleural mesoderm, with basal expression in all other tissues of the section
as compared with (J). Abbreviations: aer, apical ectodermal ridge; am,
amnion; cœ, cœlom; cv, cardinal vein; da, dorsal aorta; dC, duct of Cuvier;
dr/g, dorsal root more or less in plane of ganglion; dt, dermatome; g, gut;
la, left atrium; lb, limb bud; lv, liver bud; my, myotome; ncc, neural crest
cells; nd, notochord; nt, neural tube; pn, pronephros; scl, sclerotome; spl,
splanchnopleura; sv, sinus venosus. Bar ¼ 250 mm.
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and hES3/4 shows that levels of these genes are globally similar
among these three cell lines but differ from bone marrow- or
umbilical cord-derived mesenchymal stem cells, adult liver or
lung (Fig. 6H). Finally, among 280 genes considered to be
stem cell-specific after comparison of seven genetically

independent hES cell lines (38), 120 are co-expressed by
hES3/4 and hNCC (Supplementary Material, Table S4).

Identical broad-category molecular networks were statisti-
cally over-represented (P , 0.001) in hES and hNCC SAGE
libraries (Supplementary Material, Fig. S3), although this

Figure 5. Human and mouse neural crest transcriptomes have much in common but are also species-specific. (A) Venn diagram with common and specific genes
to hNCC, mouse (m)NCSC (early cultures) and mNCP (later cultures) as described by Hu et al. (22). (B and C) Functional annotation of those hNCC genes
differentially expressed (P , 0.001; Fisher’s exact t-test with Benjamini–Hochberg correction for multiple testing) with respect to the combined set of
m(NCSCþNCP). (B) Statistically over-represented functional groups in hNCC with number of molecules assigned to a given group over each bar. (C)
Under- and over-expression of genes assigned to individual pathways in hNCC relative to the mouse represented in green and red, respectively. White represents
those members of a category absent from one or the other dataset. (D) Schematic view of individual components of part of the Notch pathway from (C) with the
same color convention, as expressed in hNCC. In contrast to mNCSC/mNCP, hNCC express many Notch ligands, receptors, co-activators, effectors and tran-
scriptional targets. Abbreviations: a, cell signaling; b, cell death; c, gene expression; d, growth and proliferation; e, cell cycle; f; cytokinesis; g, nervous system
development and function; h, cell morphology; i, cell–cell interaction; j, embryonic development; k, hematological system development and function; AA, eico-
sanoids; EGF, epidermal growth factor; ERK, Microtubule-associated protein kinases; hNCC, human neural crest cells; IGF1, insulin-related growth factor 1; IR,
insulin receptor; ITG, integrins; mNCP, mouse neural crest progenitors; mNCSC, mouse neural crest stem cells; NRG, neuregulins; NT, neurotrophins; PI3K,
Phosphoinositide 3-kinases; SHH, sonic hedgehog; TGFb, transforming growth factor beta family; TLR, Toll-like receptors; VEGF, vascular endothelial growth
factors.
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observation mostly reflects the gross resolution of such onto-
logies. More detailed analysis showed that human NCC and
ES cells synthesized 840 mRNAs in common that are anno-
tated as involved in ‘transcriptional regulation’ (Supplemen-
tary Material, Table S5). Of these, 114 transcription factors
(Supplementary Material, Table S6) included targets of
characterized growth factor (SMAD1/3/4/5, CREBBP,
STAT1/3, SRF, JUN, CUTL1, ELK1 and FOS) and steroid
hormone (RARA, RXRA, RXRB, RARG, NR1D2 and VDR) sig-
naling pathways. When transcriptional regulation genes were
also expressed by the multipotent BM-MSC or the liver,
there was wide fluctuation in expression levels between cell
types, which was not the case for the hNCC–hES comparison.

The second most over-represented classification of gene
products common to hNCC and hES was that of ‘cellular pro-
liferation and growth’. Within the category, hNCC, hES3 and
hES4 expressed 1088 genes in common (out of 1350, 1712 and
1601, respectively, in this category) that regulate cell cycle
progression and encode growth factors, hormone and cytokine
receptors and their effectors (Supplementary Material,
Table S7). In all stem cell lines, more members of the hedge-
hog, fibroblast growth factor, Wnt, transforming growth
factor-b, Notch and vascular endothelial growth factor signal-
ing pathways are expressed than in the adult liver transcrip-
tome. In physiological contrast, only the BM-MSC and liver
transcribed a statistically significant proportion of genes that

are classified as part of the complement system (Supplemen-
tary Material, Fig. S3).

Quantitative transcript levels of individual components
assigned to statistically over-represented signaling pathways
are similar among the hNCC, hES3 and hES4 cells relative
to the MSC, liver and lung (Fig. 7), as indicated by the
cluster analysis (Fig. 6A). In fact, such pathways are function-
ally interconnected, as demonstrated by the expression of
many intracellular components assigned to both integrin-
related and IGF-related cascades (Fig. 8).

In summary, at multiple levels, the type and proportional
representation of RNA transcripts in hNCC are most similar
to the least committed cell types included in these analyses,
the hES cell lines.

Neural crest-specific marker profile

To filter for those transcripts most specific to hNCC that might
reside in postnatal tissues, we performed tissue preferential
expression (TPE) analysis (39), using SAGE data from 14
other normal postnatal human cells or tissues, initially exclud-
ing hES cells. TPE is based both on the number of tissues in
which a gene is present (range of expression) and its quantitat-
ive expression level in each. A score for each gene was plotted
against the number of times that each gene was observed
among the list of all tissues (Supplementary Material,

Figure 6. Pluripotent stem cell markers are expressed by uncommitted hNCC. (A) Hierarchical cluster dendrogram of hNCC-expressed transcript list compared
to 14 publicly available, normal human tissue SAGE banks (uncentered correlation, average linkage). The global transcriptome of hNCC is most similar to two
hES cell lines (hES3 and hES4) relative to the transcriptomes of the substantia nigra (subst nig); mesenchymal stem cells from the umbilical cord (umb MSC) or
bone marrow (BM-MSC), highly similar to each other by this analysis; pulmonary epithelium (lung ep), Schwann cells in vitro, prostate, sciatic nerve, cerebel-
lum, brain white matter (wh matt), kidney, liver or skeletal (sk) muscle. Correlation coefficients are indicated in red. (B) Expression of NANOG mRNA in trans-
verse section of human Carnegie stage 13 (C13) embryo (cf. Fig. 4H) is discrete but present in neural tube, neural crest cells in the dorsal root (arrowhead) and
dermatome, when compared with a sense probe hybridized adjacent section (C). (D) Expression of POU5F1 in simultaneously hybridized adjacent section is
more visible in equivalent structures, and seems to have a widespread basal expression in all tissues. (E) NANOG expression at C15 (cf. Fig. 9F and G). After a
few days’ growth, expression is more distinct in the proliferating neuroepithelium, dorsal root ganglia, the motor horns, stomach, sympathetic ganglia, liver bud
and migrating myotome cells. (F) Adjacent section hybridized with sense probe. (G) POU5F1 is expressed in a similar pattern. Both NANOG and POU5F1
transcripts appear to be excluded from the roofplate of the neural tube at this stage (extension of dotted lines). (H) Heat map of target genes whose promoters
can be co-occupied by SOX2, NANOG and POU5F1 in hNCC, hES3, hES4, BM-MSC, UC-MSC, adult liver and lung cells, respectively. White stands for a
tags-per-million (tpm) value equal to 0, light blue for 1 � tpm � 49, dark blue for 50 � tpm � 100 and magenta for tpm value .100. Global modulation
is similar in hNCC and hES3/4 compared to the more distantly clustered cell types; for example, SOX2 itself, although other genes are expressed differentially,
such as ZIC1 or ZFHX1B. Abbreviations: da, dorsal aorta; dm, dermamyotome; drg, dorsal root ganglion; es, stomach; lv, liver; mn, mesonephros; nt, neural
tube; sg, sympathetic ganglion.
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Fig. S4). Functional annotation of the 1248 genes with TPE
range ¼ 15 correlated their ubiquitous expression with the
finding that �60% are structural ribosome constituents or pro-
teins involved in primary cellular energy metabolism.

The hNCC most-specific gene list (range ¼ 1) contained
119 transcripts (Supplementary Material, Table S8), many of
which are involved in the regulation of transcription and
DNA-histone packaging. Parallel analyses of hES3 or hES4,
excluding the other hES cell line and hNCC, demonstrated
that 48 of these 119 also had a TPE range ¼ 1 in each.
Thus, across the 16 distinct human cell and tissue types exam-
ined, 43 low-abundance transcripts were most specific to
hNCC (Table 1) and 27 of these are also transcribed by
C12–13 embryonic neuroepithelium (results not shown), in
keeping with other expression data (Figs 3, 4, 6 and 9).

Of the 20 TPE ¼ 1 genes that are currently annotated by
Gene Ontology, half encode DNA-binding proteins such as
DBX2 (40), ZNF157, HOXC5 and TIGD3. We confirmed
hNCC expression of HOXC5, C2ORF63 (FLJ31438),
ZNF417 and AMIGO3 by RT–PCR in five distinct hNCC
lines (Fig. 9A). Adult liver also transcribes ZNF417 and
AMIGO3, although transcript abundance was below the
threshold of SAGE detection in a publicly accessible liver
bank with 66861 short (10 bp) tags, accounting for the TPE
result. HOXC5 expression pattern in whole human embryo
sections (Fig. 9B–G) correlates well with trunk-level neural
tube expression (rhombomere 8 and caudal) noted in mouse
embryos (41). Indeed, HOXC5 is one of only three genes
from this list whose orthologue is transcribed by mNCSC/
NCP (22), although many of the other human transcripts are
novel and do not yet have validated orthologues. HOXC5 is
expressed by hNCC entering the dorsal root, within the
neural tube, in hypaxial muscle precursors (Fig. 9D) and in
limb mesenchyme (Fig. 9B). Transcripts are more easily
detected at C15 in the ventral motor horns, median ventricular
zone and floorplate, dorsal root ganglia, as well as in the
forming vertebral bodies, muscle precursors and stomach
wall (Fig. 9F).

On the whole, these results show that hNCC can naturally
be distinguished from hES cells by the expression of a
highly specific and small subset of markers. However, like
hES cells, hNCC keep many molecular characteristics of
their in vivo embryonic phenotype, as well as the capacity
for self-renewal in vitro.

DISCUSSION

The stem cell profile of hNCC

The shared transcriptional signature between hNCC and hES
cells was startling. Trunk-level NCC in animals have been his-
torically described as relatively oligopotent compared to the
cephalic NCC. However, the extent and onset of trunk-level
NCC lineage restriction remains controversial (42). In vivo,
cartilage and bone, smooth muscle and adipocytes (among
other derivatives) come either from the trunk mesoderm or
the cephalic neural crest. Avian trunk-level NCC have the

Figure 7. Growth factor pathways are similarly activated in hNCC and hES
cells, relative to other cell types. Heat map representing expression levels in
hNCC, hES3, hES4, UC-MSC, BM-MSC, adult liver and adult lung cells of
lists of genes attributed by IP software to various signaling pathways. These
include but are not exclusive to the epidermal growth factor (EGF), fibroblast
growth factor (FGF), insulin-like growth factor (IGF), NOTCH, Sonic hedge-
hog (SHH), transforming growth factor (TGF)-beta, vascular endothelial
growth factor (VEGF) and WNT pathways. Gene symbols for the more abun-
dant hNCC tags are listed on the left, with high concomitant hES expression in
red text. White, tags-per-million (tpm) value equal to 0; light blue, 1 � tpm �
49; dark blue, 50 � tpm � 100; magenta, tpm value .100.
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ability in vitro to not only give rise to cartilage and bone (3)
and smooth muscle cells (43), but to adipocytes as well (44).
Cartilage, bone, smooth muscle and adipocytes can of course
also differentiate from BM-MSC, as many studies attest.
Interestingly, Takashima et al. (13) have demonstrated that
some murine BM-MSC in fact are seeded by neuroepithelial-
derived NCC. We expected to find a closer relationship to
BM-MSC or neural crest derivative transcriptomes than to
hES lines.

Our data, therefore, have some provocative implications for
the use of ‘markers’ in developmental biology. For example,
like in hES lines, some early markers of definitive embryonic
endoderm (FOXA2, GPC1, TM4SF2 and CXCR4) are found
in the hNCC bank, but not others (SOX17 and HHEX). This
hints that hNCC may have the potential to add new, non-
physiological progeny to the already extensive list of in vivo
derivatives; an overlapping contingent of these genes is
expressed by the fully pluripotent hES3 line (31). However,
under some initial conditions varying the physical matrix,
seeding density and the proportions of exogenous growth
factors (available upon request), we have not yet successfully
oriented hNCC differentiation in vitro. A novel set of con-
ditions that remains to be tested is a medium free specifically
of blocks to b-catenin signaling and ERK activation, inhibitors
of which are necessary and sufficient for mouse ES cell self-
renewal (45).

The simultaneous transcription of SOX2, NANOG and
POU5F1 is not sufficient to confer ES identity, since we
find all three in the hNCC lines. In addition, hNCC express
LIN28, many members of the KLF gene family and MYCN,
MYCL1 and a number of MYC-binding proteins. Forced
expression of various combinations of members of two of

these gene families with POU5F1 and SOX2 have all led to
pluripotent stem cell induction from human somatic cells
(46,47).

Somatic cells from the pharyngula-stage embryo, such as
these hNCC, may have a closer ground state to a pluripotent
phenotype than do adult somatic cells, with their very low fre-
quency of inducibility. With respect to ‘pluripotency’ markers,
chicken embryonic neuroepithelium and neural folds express
Sox2 from stages preceding NCC formation (48). In contrast
with our findings in human embryos, in situ hybridization
does not demonstrate the presence of Nanog transcripts at
neurula/pharyngula stages of mouse development (49).
However, Pou5f1 (Oct3/4), although best known for its
expression by the murine germ-cell lineage and cell lines
derived therefrom, is also expressed by both embryonic ecto-
derm and neuroepithelium (50), and it plays a permissive role
in all germ layers in zebrafish (51). We interpret the similar
molecular signature of hNCC and hES cells as an unprecedent-
edly detailed example of a homologous developmental process
(52) underlying the state of multipotency. Further studies will
be necessary to test the ability of hNCC in vivo to differentiate
into functional cells representative of any or all tissue types
with a teratoma assay; a better test would be their ability to
contribute to chimeras, in particular to the germ line of such
chimeras, before claims of pluripotency could be supported.
However, for ethical and practical reasons, such experiments
are impracticable by our laboratories.

Comparative embryology

In humans, as in other vertebrates, there is a lag in time between
the peak migration windows for NCC from the cephalic versus

Figure 8. Schematic view of part of the IGF-1 and integrin signaling pathway genes transcribed by hNCC. Pink-tinted symbols are genes expressed by hNCC,
and documented physical interactions exist for each edge depicted.
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Table 1. Novel hNCC markers

Symbol hNCC
(tpm)

GO annotation EST sources (NCBI)
Function Process Component Embryoa Foetusb Adultc

AMIGO3 20 Protein binding Cell adhesion Membrane 0 1 7
C10ORF85 20 nd nd nd 0 3 1
DKFZP761N09121 20 Protein transporter activity Intracellular vesicle-medicated

transport
Golgi-associated

vesicle
nd nd nd

DNAH1 20 Microtubule motor activity Ciliary or flagellar motility Axonemal dynein
complex

2 7 84

FAM70B 20 nd nd Membrane 0 4 12
FLJ16139¼DBX2 20 Transcription factor activity Regulation of transcription,

DNA-dependent
0 0 2

FLJ20345¼MKS1 20 nd nd nd 5 19 52
FLJ31295¼ZNF641 20 DNA binding, metal ion binding Regulation of transcription,

DNA-dependent
Intracellular 4 1 43

FLJ31438 40 nd nd nd 1 9 27
FLJ40126¼C12orf40 20 nd nd nd nd nd nd
GABRR3 20 GABA-A receptor activity Synaptic transmission Postsynaptic

membrane
nd nd nd

HIST1H1D 20 DNA binding, protein binding Nucleosome assembly,
chromosome biogenesis

Nucleosome,
chromosome

0 1 1

HIST1H2BE 20 nd nd nd nd nd nd
HIST1H2BJ 20 DNA binding Nucleosome assembly,

chromosome organization
Nucleosome,

chromosome
0 1 2

HIST1H3B 20 nd nd nd nd nd nd
HIST1H4F 20 nd nd nd nd nd nd
HMFN0672¼C8orf80 40 nd nd nd 0 2 0
HOXC5 99 Transcription factor activity Regulation of transcription

from RNA pol II promoter
Nucleus 1 8 10

HOXD9 20 RNA pol ll transcription factor
activity

Regulation of transcription,
DNA-dependent

Nucleus 0 22 20

KCNG2 20 Potassium channel activity Ion transport, potassium ion
transport

Membrane nd nd Nd

KIAA1822L 20 Catalytic activity nd nd 0 1 4
LOC255177 20 nd nd nd 0 0 0
LOC352909¼C19orf51 20 nd nd nd 4 27 56
LOC400340 20 nd nd nd nd nd nd
LOC401021 20 nd nd nd nd nd nd
LOC401485 20 nd nd nd nd nd nd
LOC440502 20 nd nd nd nd nd nd
LOC440993 20 nd nd nd nd nd nd
LOC441053 20 nd nd nd 0 23 177
LOC493860¼CCDC73 20 nd nd nd nd nd nd
MGC16372¼C2orf39 20 nd nd nd 0 5 6
MGC48915¼C1QTNF9 20 nd Phosphate transport Cytoplasm
PP3856¼NAPRT1 20 Nicotinate

phosphoribosyltransferase
Pyridine nucleotide

biosynthetic process
nd 1 9 64

PRDM12 59 DNA binding, metal ion binding Regulation of transcription,
DNA-dependent

Nucleus 0 2 0

PRH1 20 nd nd nd 1 4 353
RHEBL1 20 GTP binding Small GTPase mediated signal

transduction
Intracellular 0 0 6

SH3GLP2 20 nd nd nd nd nd nd
STOX2 20 nd nd nd nd nd nd
TIGD3 20 DNA binding Regulation of transcription Nucleus 0 5 4
UCN 20 Neuropeptide hormone activity G-protein coupled receptor Extracellular region 0 0 12
WNT7A 40 Receptor binding, signal

transducer activity
Wnt receptor signaling

pathway
Extracellular region 0 4 8

ZNF 157 20 DNA binding, metal ion binding Regulation of transcription,
DNA-dependent

Nucleus 0 0 0

ZNF417 40 DNA binding, metal ion binding Regulation of transcription,
DNA-dependent

Nucleus 1 4 13

Genes most specific to hNCC as shown by TPE analysis (range value ¼ 1) and not expressed in hES cells.
aCount of human expressed sequence tags, out of 125 776 total from embryonic tissues.
bCount of human expressed sequence tags, out of 557 809 total from fetal tissues.
cCount of human expressed sequence tags, out of 1 899 694 total from postnatal tissues (UniGene’s EST ProfileViewer).
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the trunk levels. Species differences appear in the uncoupling
of migration from that of neural tube closure. We observed
that the majority of hNCC migrate after neural fold apposition
along the body axis and continue to do so after fusion, similar
to other amniotes and amphibia but in contrast to the fish (4).
Recent anatomical observations imply that the first cranial

hNCC begin migrating well before closure (53), with fusion
catching up with hNCC delamination by the hindbrain.
These two processes use common molecular mechanisms for
the rearrangement of the actin cytoskeleton necessary for
both convergent extension (54) and epithelio-mesenchymal
transition (EMT)/migration (55), respectively.

Many gene transcripts found in avian or mouse migratory
NCC are present in hNCC under their conditions of isolation.
However, as many or more appeared to be unique to either
mouse or to humans. A larger proportion still was expressed
differentially to a statistically significant level. This is
perhaps unsurprising considering the phenomenal plasticity
of the neural crest lineage and its capacity to engender such
diverse and species-specific structures as the turtle shell (56)
and the deer antler (57). A greater total tag count in the
hNCC bank may also have contributed to the detection of
rarer transcripts relative to the mouse SAGE banks.

Among the human-specific expressed genes were a number
that fell into characterized signaling pathways from other cel-
lular systems, not necessarily suspected to have a role in the
hNCC lineage. One phenotypic difference between human
and animal NCC is that mouse cells are described to have a
self-renewing potential limited to some weeks (22) while
hNCC, cultivated without a feeder layer, can survive many
months in our conditions without division arrest or large-scale
differentiation. Animal NCC populations appear to be a hete-
rogeneous collection of partially committed progenitors in
vitro, be they of avian (16,58) or murine (15,59) origin.
Henion and Weston (20) concluded that nearly half of the
avian NCC from the trunk level was fate-restricted precursors
generating a single cell type. Cluster analysis bears out our
empirical observations by grouping the cultured hNCC tran-
scriptome most closely with pluripotent embryonic stem
cells, rather than with any committed neural crest progeny.

Novel hNCC markers

We have applied TPE to generate two detailed sub-profiles:
that of highly specific hNCC markers and another of shared
hNCC-hES molecules, which may be applied in the future to
cell sorting. Currently, attempts to isolate NCC-like progeni-
tors from human skin have relied on external phenotypic
characteristics (10,60). Cell sorting has been used to enrich
for rat NCC with tissue-restricted stem cell capacities;
however, the marker employed was an elegant but artificial
construct only applicable to genetically modified rodents
(42). As identified, the rat cells had already become
lineage-restricted in their peripheral niche.

Individual transcripts in the most-specific TPE list clearly do
not signify NCC identity. The combination of all or a subset of
them, and perhaps their quantitative levels, may however be suf-
ficient to uniquely identify hNCC with a similar lack of fate
commitment. One advantage of the SAGE approach is illus-
trated by the fact that 39% of unique tags in the hNCC library
could not be reliably assigned to known mRNAs. Some of this
ambiguity must be due to sequencing errors or polymorphisms
(61), but a large subpopulation probably corresponds to novel
transcripts expressed in hNCC. One indication is that 296
(1.3%) of these tags mapped readily to recently predicted
natural antisense RNA (naRNA) sequences (62) (Supplementary

Figure 9. Prediction of mRNA subset specific to hNCC. (A) RT–PCR for four
genes with TPE score¼1 shows that it is possible to amplify AMIGO3 and
ZNF417 from an adult human liver, although below the level of detection
by a publicly available SAGE bank from another sample. HOXC5 and
C2ORF63 were specific to most or all hNCC lines. (B) In situ hybridization
to HOXC5 demonstrates expression in the human embryo at Carnegie stage
13 (C13; cf. Fig. 4E) in most cells at the level of the limb bud, with higher
levels in the neural tube, the neural crest (arrowhead), the limb mesenchyme
and the rest of the somatopleural mesoderm. (C and E) Sense probe-
hybridized adjacent transverse sections to previous frames demonstrate
specificity of signal. (D) HOXC5 in a different C13 embryo section taken at a
more rostral transverse level than in (B); expression appears reduced in the
floorplate relative to the rest of the neural tube. (F) At C15 (cf. Fig. 6E–G),
HOXC5 is expressed by the developing vertebra, muscle precursors, ventricular
zone of the neural tube and motor horns; it is also transcribed by all other tissues
in this section when compared with the sense-hybridized adjacent section (not
shown). (G) Adjacent HE section. Thus, markers are only specific to a particular
cell type within a given spatiotemporal context. Abbreviations: cœ, cœlom; da,
dorsal aortae; h, heart; hm, hypaxial muscle precursors; lb, limb bud; lv, liver;
m, muscle; nd, notochord; nt, neural tube; vt, vertebra.
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Material, Table S9). Others may correspond to primary
microRNA transcripts. New membrane proteins will be
particularly helpful for fluorescence-activated cell sorting
experiments.

The results presented here will help in reliably isolating
highly multipotent NCC from pre- or postnatal human
tissues. These cells could be used for transplantation therapies
in such diseases as peripheral demyelinating neuropathies or
HSCR.

Candidate genes for human disease

As a point of comparison between early hNCC and their
normal or pathological progeny, this hNCC signature can elu-
cidate the molecular underpinnings of additional diseases.
Many genes already known to cause human neurocristopathies
are expressed in the hNCC SAGE library, including PAX3 and
SOX10 (Waardenburg syndrome), KIT and SNAI2 (piebald-
ism), MSX1 (tooth agenesis/orofacial cleft), CHD7
(CHARGE syndrome), and ECE1, EDNRB, ITGB1,
KIAA1279 and ZEB2 (HSCR). Some neurocristopathies arise
from the disruption of hNCC migration and/or the EMT
from the neuroepithelium (14). Currently, a limited number
of such EMT-associated disease genes include EFNB1,
FOXC1, LAMA5, SEMA3C and SNAI2 and are all known
and expressed in this hNCC SAGE bank. The examination
of functional modules such as EMT may be a fruitful strategy
to identify new neurocristopathy genes. For example, the
SNAG corepressor domain of SNAI2, found only in vertebrate
homologues of Drosophila snail, has recently been implicated
in Xenopus NCC specification within the neuroepithelium
(63). Potential co-repressors JUB, LIMD1, TRIP6, WTIP and
ZYX are all transcribed by hNCC, demonstrating the utility
of such species- and tissue-specific expression banks for inte-
grating dispersed functional data and generating new hypo-
theses for candidate genes to correlate with known disease
loci. The use of our self-renewing hNCC lines for functional
analyses of such candidate genes is a particularly appealing
application of their potential in all senses of the word.

MATERIALS AND METHODS

Human embryos

Human embryos were collected from pregnancies legally ter-
minated using the mefiprestone protocol, in concordance with
French bioethics law 2004-800 and with the approval of the
Necker hospital ethics committee.

hNCC isolation

Whole human embryos under 8 weeks’ gestation were dis-
sected away from their annexes in ice-cold phosphate-buffered
saline (PBS). A piece of chorionic villus was treated immedi-
ately for 1 h in colchicine-DMEM before 10 min hypotonic
shock in 0.075 M KCl and 1:3 acetic acid:ethanol fixation for
three changes of 10 min each. Nuclei were spread, stained
for G-bands and chromosomes counted according to standard
karyotype procedure. Cephalic neural tube segments were
isolated by cutting perpendicular to the long axis behind the

optic vesicles and again at somite pair 5, and trunk-level
neural tube segments from somite 5 to the last available
somite pair. Other tissues were trimmed away and the segment
placed in 6 mg/ml pancreatin (Sigma P3292) in PBS for 7 min.
Pieces were transferred into clean PBS to tease away all
tissues, including the tightly adherent notochord and ectoderm,
from neural tubes. The enzymatic reaction was stopped and
neural tubes maintained thereafter in complete hNCC medium.

Initial hNCC migration and replating on collagen I-coated
plates (Becton Dickinson) used the following medium:
Dulbecco’s Modified Essential Medium/BGJb (Fitton-Jackson
modified)/Ham’s F12 [3:1:6 v/v, Sigma] supplemented with
12% complement-inactivated fetal calf serum (PAN
Biotech); 1� penicillin/streptomycin (Invitrogen); 2 mM glu-
tamine, 10 mM HEPES, 0.1 mg/ml hydrocortisone, 10 mg/ml
transferrin, 0.4 ng/ml T3 (3,3,5-thio-iodo-thyronine), 10 pg/
ml glucagon, 100 pg/ml epidermal growth factor, 1 ng/ml
insulin and 200 pg/ml fibroblast growth factor 2 (Sigma).
Tubes were transferred to the centre of 35 mm collagen-I
dishes with 300 ml medium and placed in humidified CO2

incubators at 378C for 8 h to facilitate adhesion. One milliliter
of medium was then added for a further 16 h, during which
cells migrated onto the plastic. Tubes were removed with a
fire-polished Pasteur pipette and primary cultures allowed
to grow for another day before first replating. Passages
were obtained by dissociation from plates using 3 min
trypsin-EDTA treatment and complete hNCC medium to
stop the reaction. No feeder layer cells or other adjuvants
(e.g. leukemia inhibitory factor and embryo extract) were
necessary for long-term maintenance for up to 9 months.

Karyotyping

Standard G-band karyotypes were performed on 10 meta-
phases from fresh trophoblast and thawed embryonic hNCC.

Immunocytochemistry

Cells were prepared for immunostaining by fixation in 4%
paraformaldehyde for 20 min and subsequent permeabilization
for 25 min with 0.1% Tween-20 in PBS. Primary antibodies:
monoclonal anti-a-smooth muscle actin (Cy3-conjugated,
Sigma C6198), monoclonal anti-neuron specific class III
beta-tubulin (TuJ1) (R&D Systems), polyclonal anti-NCAM
(Chemicon), polyclonal anti-tyrosine hydroxylase (Chemicon
AB1542), polyclonal anti-calcitonin (Chemicon AB910),
monoclonal anti-human glial filament acidic protein (GFAP)
(Cymbus Biotechnology), polyclonal anti-SOX9 (Chemicon
AB5535) and polyclonal anti-SOX2 (Abcam AB15830).
Nuclei were counterstained (Hoechst).

Sage library construction and RT–PCR

Standard protocols (64,65) were used to construct a LongSAGE
library from 5 mg total RNA (RNeasy Mini, Qiagen) prepared
from trunk-level hNCC of a C13 embryo after 7 passages. In
brief, NlaIII and MmeI restriction enzymes (New England
Biolabs) were used for tag generation. After 3 h self-ligation,
100 at 658C and 20 on ice, purified concatemers were
subsequently cloned into pZERO-1 (Invitrogen). Individual
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clones were selected and sequenced. LongSAGE tags (17 bp)
were extracted from raw sequence data using SAGE2000
version 4.5 Analysis Software. The LongSAGE tag database
was linked to the SAGE Map database (NCBI) and the ACTG
web tool (http://retina.med.harvard.edu/ACTG/) (66) for tag-
to-gene mapping. The original SAGE data in this paper are
available from the NCBI Gene Expression Omnibus (GEO)
under accession number GSE8368.

Total RNA from five individual hNCC lines, C12 and C13
isolated neural tubes (four and two pooled, respectively) and
four pooled C13 liver buds were prepared using the RNeasy
Mini kit (Qiagen); total adult human liver RNA was obtained
from Clontech. After reverse transcription (Applied Biosys-
tems), PCR amplifications for gene validations were per-
formed in a final volume of 25 ml using 50 ng of
Nanodrop-quantified cDNA and 35 amplification cycles. For
quantitative RT–PCR, LightCycler Fast Start DNA
MasterPLUS SYBR green I (Roche) was used according to
the manufacturer’s protocol. ACTB was used to normalize
data for the calculations of DCt. Primers are listed in Sup-
plementary Material.

In situ hybridization

Intact, euploid human embryos were processed for in situ
hybridization as described elsewhere (67). Primers used for
DNA matrix synthesis by PCR are listed in Supplementary
Material.

Statistical analyses

Hierarchical clustering was performed to create a multi-level
binary cluster tree, linking tissue or cell types by similarity.
In addition to the hNCC bank, data were obtained from 11
banks of the Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo/): GSM676 (brain white matter), GSM761
(cerebellum), GSM762 (lung), GSM708 (kidney), GSM785
(liver), GSM824 (muscle), GSM31931 (substantia nigra),
GSM41359 (hES3), GSM41362 (hES4), GSM48250 (sciatic
nerve), GSM48251 (Schwann cells in vitro); one from the
Cancer Genome Anatomy Project http://cgap.nci.nih.gov/
SAGE/SAGELibraryFinder:SAGE_Prostate_normal_B_2
(prostate); and for bone marrow and umbilical cord vein
mesenchymal stem cells, data from the website http://bit.
fmrp.usp.br/msc_tags/ (32) (current requests for raw data
directly to authors). Counts from all SAGE libraries were nor-
malized to a total of one million for input to Cluster 3.0 free-
ware (http://www.geo.vu.nl/~huik/cluster.htm) (68). Average
distances were classed to link samples into clusters. In order
to compare and validate the robustness of the results, Eucli-
dean (squared), Pearson (uncentered) and Spearman rank
numeric scales were all computed to calculate average dis-
tances. The dendogram was made with TreeView freeware
(http://jtreeview.sourceforge.net/). Data were functionally
annotated using Pathways Analysis 5.0 (Ingenuity Systems)
and DAVID software (69).

The TPE analysis (39) was performed with the following
additional samples (GEO or CGAP accession numbers):
Bone marrow (GSM14784), placenta (GSM14749), muscle
(GSM 824), liver (GSM785), stomach (SAGE_Stomach_nor-

mal_MD_13), kidney (GSM708), lung (GSM762), breast
(SAGE_Breast_normal_myoepithelium_AP_myoepithelial1),
prostate (SAGE_Prostate_normal_B_2), ovary (SAGE_Ovary_
normal_CS_HOSE_4), endometrium (SAGE_Uterus_endome
trium_normal_CS_DI1), brain white matter (GSM676), whole
cerebellum (GSM761) and whole spinal cord (SAGE_Spinal_
cord_normal_B_1).

For the detection of statistically differentially expressed
genes, we used the IDEG6 web tool (http://telethon.bio.
unipd.it/bioinfo/IDEG6_form/). The Fisher exact test (signifi-
cance threshold 0.05) was used with a Bonferroni correction
to account for multiple testing (29).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.

FUNDING

This work was supported by the Avenir program of the
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Supplementary Table 1.

Tag Count Tested RT Positive RT
1 13 13
2 7 6
3 5 5
4 8 8
5 2 2
6 5 5
7 6 5
8 4 4

>10 3 3
>100 2 2

TOTAL 55 53

Validation of  SAGE data by RT-PCR on 55 
genes represented by tags with very low 
(count ≤3), low (3<count<10) and high 

(>10) abundance 



Supplementary Table 2.

AARS
ABCF1
ABCF2
ABCF3
ADD1
AHCY
ALDH9A1
ARHGAP1
ATPAF1
CAPG
CDKN1C
CNAP1
COL1A1
COL18A1
DKC1
DNMT3B
EIF3S1
EIF3S2
EIF3S3
EIF3S4
EIF3S5
EIF3S6
EIF3S7
EIF3S8
EIF3S9
EIF3S10
EIF3S12
EIF3S6IP
EIF4G1
EIF4G2
EIF4G3
FTSJ2
FTSJ3
FUSIP1
GOT2
GSN
HK1
KIAA0174
KIF4A
LAMA5
NOTCH1
NOTCH2
NOTCH3
NRP1
NRP2
PALLD
PCNA

Human orthologues of genes expressed in avian 
migratory NCC (Gammill and Bronner-Fraser, 2002). 

Bold = common to human, mouse and chick



PES1
PRPF3
PRPF19
PUM2
RAP1A
RAP1B
SLC7A1
SLC7A5
SLC7A6
SLC7A11
SNAI2
TAX1BP1
TAX1BP3
TCF3
THOP1
TPD52
UQCR



Supplementary Table 3.

SYMBOL HNCC_TPM HES3_TPM HES4_TPM LIVER_TPM
ANKRD1 277 5 10 0
ARID1B 140 73 30 75
ATAD2 20 29 5 15
ATP6V1G1 20 0 0 0
BAMBI 20 103 53 15
BMP7 60 34 24 30
BUB1B 20 35 24 0
BUB3 59 151 96 30
C13orf7 60 15 39 15
C15orf29 20 0 0 0
C6orf111 278 0 0 0
C9orf74 40 34 38 15
CABLES1 20 10 34 0
CACNA2D1 40 0 0 0
CAPZA2 40 117 96 90
CDC14B 20 59 24 30
CDW92 20 20 10 0
CDYL 60 30 39 15
COL12A1 159 5 19 15
CTGF 494 88 421 120
DHDDS 20 0 15 30
DHRS3 60 20 34 60
DPPA4 40 190 402 15
DPYSL2 456 137 164 45
DPYSL3 198 659 551 0
DTNA 40 5 10 15
DUSP12 20 10 34 15
DUSP6 59 30 120 45
EDD 20 34 39 30
EXOSC9 40 138 116 45
FAM33A 60 98 63 30
FBXW11 80 44 73 0
FGFR1 138 259 265 60
FGFR2 119 122 72 30
FLJ10769 20 0 0 0
FLJ11029 20 0 0 0
FLJ14936 20 0 0 0
FOXO1A 20 77 34 0
FRAT2 20 171 182 30
FUS 436 507 235 60
GJA1 119 2134 1430 30
H2AFJ 40 54 19 75
HN1 138 317 307 90
ICMT 79 102 134 30
IER5L 238 20 5 15
IRX2 40 87 140 0
JARID2 40 287 327 30
JUP 99 195 120 120
KIAA1143 20 0 0 0

Ninety hNCC and hES cell expressed targets whose
promoters are co-occupied by POU5F1 (OCT3/4) , NANOG  and SOX2 
transcription factors (cf. Boyer, L. A. et al. 2005. Cell  122, 947-956).



KIAA1623 40 0 0 0
KIF15 20 10 0 0
KLF5 40 5 5 0
KLHL5 60 10 20 30
LARGE 40 15 29 30
LRRN1 100 133 201 0
LRRN6A 40 73 34 15
MAN2C1 20 29 25 60
MED12 40 10 14 0
MGEA5 139 219 136 45
MLLT10 60 39 29 0
MSC 40 0 0 0
MTM1 40 10 14 15
MYST3 40 15 44 30
NEBL 20 15 38 45
NUCKS 772 387 390 75
ORC1L 20 44 33 0
PARG 20 93 111 0
PFTK1 20 5 10 15
PHF17 20 108 178 30
PIPOX 20 385 464 0
PPAP2A 20 122 153 15
PPP2R1B 40 40 15 15
PPP2R3A 40 15 10 45
PRKCDBP 60 5 19 30
PTPN2 60 35 20 30
RAD54B 20 5 20 0
RIF1 60 40 30 45
RNF24 40 15 10 30
ROR1 20 29 29 0
RPS18 2475 3698 3018 299
RPS3A 1981 3393 3458 314
SALL1 79 44 53 15
SET 912 1749 1415 120
SFRP1 337 401 263 165
SFRP2 59 244 239 0
SFRS4 198 68 100 30
SKIL 60 93 117 0
SNRPN 258 708 1070 120
SOX2 159 337 340 0
SPAG9 60 15 30 0
SPRED1 20 20 24 0
STAT3 20 24 39 344
TAF12 40 15 58 0
TALDO1 59 74 82 75
TBL1XR1 160 59 58 15
TCF20 40 49 44 45
TCF7L1 40 113 72 15
THBS2 40 1651 483 15
TIF1 40 60 48 0
TLE3 40 69 20 45
TNC 60 20 15 15
TNRC6A 60 107 96 0
TOP2A 257 166 187 0
TSC22D1 119 180 129 45
UBE2D3 179 274 265 90



USP7 179 117 72 30
ZFHX1B 159 15 5 75
ZFP36L1 1227 122 181 135
ZIC1 139 0 0 0
ZIC2 40 254 124 15

****Liver count in tag per million (SAGE library total count=66861)
***hES4 count in tag per million (SAGE library total count=209232)
**hES3 count in tag per million (SAGE library total count=205353)
*hNCC count in tag per million (SAGE library total count=50500)

Bold symbols: HNCC specifically expressed NANOG , OCT3/4  and SOX2  target genes



Supplementary Table 4.

hES cells "stemness" genes (Skottman et al. 2005) expressed in hNCC

symbol hNCC  tpm* HES3  tpm**HES4 tpm***
AFF1 20 15 49
ARNT2 40 5 10
ATF3 20 5 10
ATF4 257 19 273
ATF7 20 5 10
ATRX 40 5 5
BRD8 40 24 5
BTAF1 20 5 5
BTG2 20 15 5
CEBPB 40 19 19
CNOT7 59 78 5
CREB1 20 5 5
CREM 20 15 5
CUTL1 20 5 5
DRAP1 257 112 73
E2F1 40 10 5
E2F3 40 29 5
E2F4 20 5 5
E2F5 20 5 5
EGR1 158 49 5
ELF2 20 24 5
ELK1 20 39 39
ELK3 20 5 15
EP300 20 19 19
ERF 139 83 5
ETS1 337 5 15
ETS2 20 29 15
ETV1 20 5 10
ETV6 40 5 5
FOXD3 40 5 10
FOXK2 40 5 15
FOXM1 20 58 5
FOXP1 20 5 5
FOXP4 59 5 487
FUBP1 20 5 5
GABPA 20 29 29
GLI2 20 19 15
GLI3 99 5 5
GTF2I 178 5 5
HCFC1 40 19 34
HDAC1 20 5 39
HDAC2 40 29 5
HES6 416 44 29
HIRA 99 10 24
HSF1 20 34 5
JUNB 20 5 5
JUND 99 68 24
KLF7 40 5 15



LMO4 20 5 10
MBD1 20 19 5
MDS1 20 10 10
MEF2A 20 5 5
MEF2B 20 15 5
MEF2D 20 10 5
MEIS2 20 5 15
MNT 20 5 19
MSX1 139 44 15
MSX2 20 5 5
MTA1 20 170 5
MTF1 20 5 5
MYCN 20 5 5
NFAT5 20 5 5
NFKB2 20 5 10
NFX1 20 5 5
NFYA 20 10 5
NFYC 20 10 15
NR1D2 20 5 5
NR1H2 20 34 19
NR6A1 20 5 5
PA2G4 20 5 15
PAX3 20 5 10
PAX6 40 10 10
PBX1 20 5 5
PCGF2 20 5 15
PHF5A 40 10 5
PITX2 20 10 5
PML 20 15 5
PRDM2 20 5 10
PTTG1 99 5 5
RARA 20 5 5
RXRA 20 5 5
RXRB 40 24 5
SALL1 79 34 54
SALL2 20 5 58
SATB1 40 15 15
SIX5 20 44 58
SMAD1 20 5 10
SMAD3 99 5 5
SMAD4 20 5 19
SMAD5 20 19 5
SOX2 119 175 19
SOX21 20 24 136
SRF 40 10 10
STAT1 59 24 5
STAT2 257 122 93
STAT3 20 5 5
STAT6 20 5 10
TAF11 20 5 102
TAF6L 20 15 19
TAF7 40 10 73



TBX3 20 5 5
TCEA1 158 5 5
TCEA2 40 15 24
TCF19 20 5 5
TCFL5 40 5 10
TEAD1 20 5 5
TEAD2 40 44 5
TEAD3 40 721 195
TEAD4 20 73 10
TGIF2 40 54 49
VDR 40 15 39
XBP1 20 5 5
ZNF24 20 10 5

***hES4 count in tag per million (SAGE library total count=209232)
**hES3 count in tag per million (SAGE library total count=205353)
*hNCC count in tag per million (SAGE library total count=50500)



Supplementary Table 5.

symbol CCN  tpm* HES3  tpm** HES4  tpm***
ABL1 59 10 34
ACTB 436 5 15
ACTR1B 20 5 10
ACVR1B 20 15 5
ACVR2A 0 0 0
ADM 20 29 15
ADORA2A 20 10 5
ADRA2A 20 5 15
ADRBK1 59 19 15
AEBP2 20 44 5
AES 20 10 5
AFF1 20 15 49
AGRIN 0 0 0
AKAP13 20 5 5
AKT1 139 5 5
ANP32A 40 15 10
AP2A2 20 15 5
APBA2 40 10 5
APBB1 40 29 54
APBB2 20 5 5
APC 20 5 5
APEX1 20 443 5
APLP1 139 19 5
APLP2 40 5 15
APP 158 5 15
APPBP1 79 5 5
ARID1A 119 5 78
ARID3A 59 5 19
ARID4B 20 19 10
ARNT2 40 5 10
ASXL1 20 5 5
ATF2 20 19 19
ATF3 20 5 10
ATF4 257 19 273
ATF5 99 15 10
ATF7 20 5 10
ATF7IP 20 5 5
ATM 20 10 29
ATN1 20 34 24
ATP2B4 20 5 5
ATP2C1 40 10 5
ATRX 40 5 5
ATXN3 40 5 5
BASP1 20 44 63
BAZ2A 40 83 5
BCKDHA 20 58 73
BCL10 20 10 34
BCL9L 20 19 5
BCLAF1 20 44 5
BCOR 79 10 24
BCR 79 5 5

Genes annotated as involved in transcription regulation common to 
both hNCC and hES3/4



BHLHB2 59 19 5
BIRC2 99 44 34
BIRC4 40 5 19
BMP7 40 5 24
BMPR1A 20 19 34
BMPR2 20 10 5
BPTF 0 0 0
BRD7 20 44 39
BRD8 40 24 5
BRF2 20 15 10
BTAF1 20 5 5
BTBD14B 40 5 5
BTF3 376 15 10
BTG1 20 15 5
BTG2 20 15 5
BTRC 20 10 15
CALR 455 273 122
CAMK2D 40 5 5
CAMKK2 40 5 5
CARM1 20 24 5
CASK 20 5 5
CASP3 20 49 102
CAV1 20 5 15
CBFB 20 5 5
CBX1 139 5 5
CBX3 20 219 5
CBX5 79 15 5
CCNA2 20 44 58
CCNB1 40 5 5
CCND1 139 10 19
CCND2 297 5 15
CCNDBP1 40 29 34
CCNH 20 5 24
CCNK 59 5 5
CCNT2 20 15 19
CD44 20 5 5
CDC2 158 5 5
CDC25B 40 15 5
CDC42 20 39 5
CDC5L 20 19 19
CDCA4 59 10 5
CDK2 40 29 29
CDK3 59 5 5
CDK7 20 44 5
CDK8 40 15 5
CDK9 20 44 24
CDKN1A 139 5 15
CDKN1B 40 15 5
CDKN1C 20 15 5
CDR2 59 24 24
CEBPB 40 19 19
CEBPZ 20 15 10
CENPF 40 5 10
CHAF1A 20 10 5
CHD1 20 19 5
CHD2 20 24 29



CHD3 20 5 5
CHD4 396 239 54
CHES1 40 5 5
CIAO1 0 0 0
CITED2 59 161 102
CNBP 0 0 0
CNN1 99 19 34
CNOT7 59 78 5
COPS5 20 93 5
CRABP2 20 317 5
CREB1 20 5 5
CREB3L4 40 19 15
CREBBP 20 5 19
CREBL2 20 5 24
CREM 20 15 5
CRK 455 34 88
CRKL 20 5 10
CRSP2 20 15 5
CRSP6 20 5 19
CRSP8 20 54 34
CRTC1 40 5 0
CSDA 40 10 10
CSNK1E 139 5 24
CTBP1 40 39 19
CTBP2 99 5 5
CTDSP1 40 63 10
CTDSP2 20 5 5
CTDSPL 40 10 24
CTNNB1 20 156 58
CTNNBIP1 59 24 10
CUL1 59 112 58
CUL4A 20 10 5
CUTL1 20 5 5
CXCL12 20 404 5
CXORF15 20 5 5
DAP3 99 54 5
DAXX 59 10 39
DCAMKL1 20 5 10
DDB1 119 10 5
DDB2 20 5 10
DDX5 79 29 5
DDX54 40 146 10
DEAF1 40 49 78
DEDD 20 10 5
DEK 356 29 58
DHX9 20 190 15
DIXDC1 20 15 15
DKK3 119 5 34
DLL1 40 15 19
DMTF1 20 5 5
DNAJA3 59 5 5
DNAJB6 59 151 151
DNMT1 79 5 73
DNTTIP1 40 34 15
DR1 20 5 5
DRAP1 257 112 73



DSCR1 20 15 5
DUSP1 79 10 5
DUSP22 20 19 5
DUSP3 20 5 5
DUSP4 20 5 5
DVL1 158 88 73
DYRK1B 59 19 5
E2F1 40 10 5
E2F3 40 29 5
E2F4 20 5 5
E2F5 20 5 5
E2F7 20 10 5
ECT2 79 88 15
EDF1 40 15 5
EEF1D 20 10 5
EGR1 158 49 5
EID1 0 0 0
EIF2S1 20 5 5
EIF4G2 40 5 190
ELF2 20 24 5
ELK1 20 39 39
ELK3 20 5 15
ELL 40 5 5
ELL2 20 5 10
ELP3 20 24 5
ENO1 20 10 122
EP300 20 19 19
EPC1 20 5 5
EPN2 20 5 5
ERBB2 79 88 5
ERBB2IP 20 5 19
ERCC2 59 19 10
ERCC3 79 24 5
ERF 139 83 5
ESRRA 40 44 10
ETF1 20 5 5
ETS1 337 5 15
ETS2 20 29 15
ETV1 20 5 10
ETV6 40 5 5
EWSR1 139 5 19
EZH2 119 63 49
F2R 79 5 10
FADD 79 19 54
FGFR1 20 5 5
FHIT 20 5 19
FKBP1A 20 19 15
FLII 59 5 29
FN1 20 112 5
FOS 59 5 487
FOSB 40 5 0
FOXA2 79 39 10
FOXD3 40 5 10
FOXK2 40 5 15
FOXM1 20 58 5
FOXO1A 20 19 5



FOXO3A 20 10 15
FOXP1 20 5 5
FOXP4 59 5 487
FRAT1 20 5 5
FUBP1 20 5 5
FUBP3 40 5 5
FZD2 59 39 5
FZD3 20 19 15
FZD6 20 5 5
FZD7 20 19 10
GABPA 20 29 29
GABPB2 20 10 10
GAS6 40 19 5
GCN5L2 40 24 10
GJA1 79 15 19
GLI2 20 19 15
GLI3 99 5 5
GLMN 20 5 5
GNA12 59 39 5
GNA13 40 10 15
GNAQ 20 5 15
GRB10 40 19 5
GRB2 40 5 5
GRIP1 20 5 5
GRLF1 20 10 5
GRN 79 5 5
GSK3B 20 5 10
GSTP1 20 5 15
GTF2A1 20 34 10
GTF2A2 20 54 93
GTF2B 119 19 39
GTF2F1 20 29 545
GTF2F2 139 5 5
GTF2H4 20 10 19
GTF2I 178 5 5
GTF3C1 40 5 5
GTF3C2 20 5 5
GTF3C3 99 10 5
GTF3C4 20 10 10
GTF3C5 59 5 5
HCFC1 40 19 34
HDAC1 20 5 39
HDAC10 20 19 10
HDAC2 40 29 5
HDAC3 20 5 5
HDAC5 59 5 5
HDAC7A 59 44 29
HDAC9 40 15 5
HES1 40 10 44
HES6 416 44 29
HGS 20 83 5
HIF1A 20 10 5
HIP1 20 5 10
HIPK2 20 5 10
HIRA 99 10 24
HLTF 0 0 0



HMGA1 40 58 107
HMGA2 20 34 34
HMGB1 119 10 925
HMGB2 950 375 419
HMGN2 79 5 360
HNRPA1 59 5 29
HNRPAB 20 10 39
HNRPK 20 34 175
HOXA2 20 5 5
HRAS 59 54 34
HSBP1 257 24 44
HSF1 20 34 5
HSP90B1 20 467 273
HTATIP2 59 63 5
ID1 337 5 10
ID2 40 78 10
ID3 20 156 5
ID4 40 5 19
IFNAR1 20 5 44
IFRD1 20 29 5
IGF2 20 5 5
IGFBP2 20 394 10
IGFBP3 20 29 5
IGFBP4 20 97 88
IGFBP5 178 10 5
IKBKAP 40 10 10
IKBKB 20 5 10
IL2RA 20 10 5
IL6ST 20 5 3394
ILF2 198 24 5
ILF3 20 5 5
ILK 59 141 63
ING1 20 10 5
INHBE 20 5 5
INPPL1 79 117 58
IQGAP1 20 29 10
IRAK1 337 88 68
ITGA5 158 10 10
ITGA6 20 15 15
ITGAV 59 15 39
ITGB1 59 5 5
ITSN1 20 5 5
IVNS1ABP 20 19 10
JARID2 20 5 112
JAZF1 20 5 10
JMJD1C 20 5 5
JUN 20 10 93
JUNB 20 5 5
JUND 99 68 24
JUP 20 180 112
KHDRBS1 20 5 10
KHDRBS3 40 5 49
KLF16 20 54 5
KLF5 20 5 5
KLF6 40 19 15
KLF7 40 5 15



KPNA2 99 166 19
KRAS 0 44 5
LBH 59 5 15
LEP 1168 297 765
LEPR 20 10 5
LGALS1 20 29 10
LHCGR 59 5 5
LIMD1 40 5 5
LITAF 59 10 146
LMCD1 40 15 10
LMNA 79 15 39
LMO4 20 5 10
LRCH4 20 5 5
LRRFIP2 59 5 5
LYN 20 10 5
MACF1 59 5 5
MAFF 20 156 200
MAGED1 158 5 5
MAML1 20 5 49
MAP2K1 40 39 5
MAP2K1IP1 20 29 78
MAP2K5 20 10 5
MAP2K7 79 10 10
MAP3K1 40 15 10
MAP3K11 119 49 10
MAP3K2 20 5 5
MAP3K7IP1 20 19 5
MAP3K7IP2 20 19 34
MAP4K4 20 29 5
MAPK1 20 5 5
MAPK14 20 29 5
MAPK3 79 5 10
MAPK7 20 5 39
MAPK8 20 10 5
MAPK8IP1 20 39 19
MAPKAPK2 20 68 5
MAPKAPK3 20 5 54
MAX 20 5 10
MAZ 40 44 10
MBD1 20 19 5
MBD2 20 29 10
MBD3 20 5 5
MCM5 99 5 5
MCM7 257 589 10
MCRS1 20 44 5
MDM2 20 24 24
MDM4 59 5 5
MDS1 20 10 10
MECP2 40 10 10
MED12 40 10 15
MED28 20 15 15
MED4 20 10 68
MEF2A 20 5 5
MEF2B 20 15 5
MEF2D 20 10 5
MEIS2 20 5 15



MEN1 20 15 5
MIF 515 5 5
MIZF 40 19 34
MKL2 20 5 5
MLL 20 10 10
MNAT1 20 5 5
MNT 20 5 19
MPG 20 73 34
MSX1 139 44 15
MSX2 20 5 5
MTA1 20 170 5
MTF1 20 5 5
MTPN 79 5 19
MXD3 40 10 5
MXD4 20 5 15
MXI1 20 5 5
MYBBP1A 20 54 5
MYBL2 158 5 5
MYCBP2 40 29 10
MYCN 20 5 5
MYD88 20 10 5
MYEF2 20 10 15
MYH9 20 15 10
MYO6 20 5 5
MYST3 20 10 19
MYST4 20 5 10
MZF1 0 0 0
NAB1 20 5 5
NAB2 79 34 63
NAP1L1 20 39 10
NARG1 59 24 5
NCAM1 20 5 49
NCOA1 20 15 5
NCOA2 20 5 5
NCOA3 20 15 15
NCOA4 20 5 34
NCOA5 40 19 5
NCOA6 40 10 5
NCOR1 79 5 5
NCOR2 20 24 5
NDN 158 5 5
NDNL2 20 5 5
NEK6 20 5 5
NFAT5 20 5 5
NFATC2IP 40 10 54
NFE2L1 59 15 10
NFE2L2 99 10 24
NFKB2 20 5 10
NFKBIA 20 10 5
NFKBIB 40 5 5
NFX1 20 5 5
NFYA 20 10 5
NFYC 20 10 15
NKRF 20 19 15
NME1 20 5 5
NME2 20 321 584



NOLC1 20 5 5
NOTCH1 59 15 10
NOTCH2 59 29 5
NOTCH3 20 73 49
NR1D2 20 5 5
NR1H2 20 34 19
NR2F1 20 5 10
NR2F2 59 5 10
NR2F6 20 117 141
NR6A1 20 5 5
NRAS 99 63 5
NRG1 59 5 10
NRIP1 59 5 5
NRIP2 2020 243 190
NSBP1 20 5 10
NSD1 20 5 5
NUP62 20 10 5
OGT 20 15 15
ORC1L 20 39 34
ORC2L 20 19 5
PA2G4 20 5 15
PABPN1 59 54 200
PAK2 99 15 10
PARD3 20 5 5
PARP1 99 209 34
PATZ1 0 0 0
PAWR 20 15 5
PAX3 20 5 10
PAX6 40 10 10
PBX1 20 5 5
PCGF2 20 5 15
PCOLN3 40 5 5
PCQAP 40 5 5
PDCD11 20 5 5
PDCD4 40 5 10
PDGFA 20 5 10
PDLIM1 20 88 10
PDPK1 20 5 5
PEA15 20 10 19
PEBP1 317 5 200
PEG10 20 10 5
PELP1 20 102 54
PER1 20 44 19
PFDN5 20 336 5
PFN1 238 29 10
PHB 99 24 10
PHF12 40 10 24
PHF5A 40 10 5
PIAS3 40 15 34
PIAS4 20 15 5
PIN1 40 73 49
PITX2 20 10 5
PKN1 20 5 5
PKN2 20 5 5
PKNOX1 20 5 5
PLK2 59 5 5



PMF1 40 5 68
PML 20 15 5
PODXL 59 10 29
POLR1C 20 5 34
POLR2A 20 83 29
POLR2B 20 5 34
POLR2C 20 19 5
POLR2E 59 219 5
POLR2F 139 5 5
POLR2G 59 122 5
POLR2I 40 78 5
POLR2J 20 5 78
POLR2L 20 19 15
POLR3H 40 5 10
POLRMT 59 34 5
POMC 20 5 10
POU2F1 20 10 15
PPARBP 79 5 15
PPARD 40 5 5
PPIE 20 15 5
PPM1D 40 5 10
PPP1CC 475 15 10
PPP1R8 20 39 44
PPP2R5C 20 5 5
PPP3CA 20 5 5
PPP4C 20 131 136
PPP5C 119 5 10
PQBP1 20 54 63
PRDM2 20 5 10
PRDM4 20 10 15
PRDX1 178 24 19
PREB 20 5 44
PRIM1 20 29 15
PRIM2A 40 5 44
PRKAR1A 20 54 78
PRKAR2A 20 5 5
PRKAR2B 20 15 29
PRKCA 20 5 19
PRKCI 40 10 5
PRKDC 79 5 19
PRMT2 40 15 5
PRPF6 0 0 0
PSEN1 20 5 5
PSMC3 139 200 127
PSMC5 40 5 5
PSMD14 40 136 5
PSMD9 40 39 19
PTBP1 475 5 10
PTEN 20 5 5
PTGES2 20 10 5
PTK2 20 5 5
PTMA 376 5 5
PTMS 40 229 219
PTPN1 20 5 39
PTPN11 40 34 5
PTRF 297 10 49



PTTG1 99 5 5
PURB 20 10 5
PXN 79 5 5
PYCARD 79 34 29
PYGO2 59 5 19
RAC1 158 351 331
RAC3 79 5 5
RAF1 59 5 10
RALBP1 20 5 5
RAP1A 20 10 5
RAPGEF1 20 5 49
RARA 20 5 5
RARG 20 29 10
RASA1 20 5 5
RBBP7 20 19 5
RBBP8 40 5 5
RBM14 139 49 24
RBM39 0 0 0
RBM9 79 5 15
RBPSUH 20 10 5
RBX1 178 5 156
RDBP 218 5 141
RELA 20 5 5
RFWD2 59 19 15
RFXANK 99 49 24
RGS12 20 10 5
RHOA 20 19 97
RHOB 356 5 5
RHOC 20 5 44
RING1 20 15 15
RIPK2 20 5 29
RNF11 40 10 5
RNF14 20 5 5
RNF2 20 10 15
RNF6 20 15 15
RNPS1 40 10 5
RPL6 1228 10 5
RPL7A 40 19 5
RRN3 20 15 10
RSF1 0 0 0
RUVBL1 59 5 131
RXRA 20 5 5
RXRB 40 24 5
SAFB 356 102 5
SALL1 79 34 54
SALL2 20 5 58
SALL4 139 5 34
SAP18 20 10 229
SAR1A 99 39 34
SART3 20 34 19
SATB1 40 15 15
SCAP 139 5 29
SEC61A1 20 5 10
SERPINE1 99 10 5
SERTAD1 20 5 5
SET 20 141 19



SF1 79 10 44
SFPQ 20 5 5
SFRP1 20 10 5
SGK 20 19 5
SH3BP2 40 10 5
SHC1 139 19 10
SIN3A 20 5 10
SIN3B 40 5 29
SIRT1 59 63 54
SIRT2 20 19 19
SIX5 20 44 58
SKI 40 10 10
SKIL 79 63 5
SLC19A2 20 5 5
SLC20A1 20 10 5
SLC2A4RG 20 78 5
SLC3A1 20 10 5
SMAD1 20 5 10
SMAD2 40 10 10
SMAD3 99 5 5
SMAD4 20 5 19
SMAD5 20 19 5
SMARCA4 297 10 5
SMARCA5 20 146 5
SMARCC1 20 15 39
SMARCC2 20 5 15
SMARCD1 20 5 5
SMARCD3 40 5 5
SMARCE1 40 29 5
SMURF1 20 10 10
SMURF2 40 5 5
SNAPC3 20 24 10
SNAPC4 20 34 15
SNAPC5 20 15 15
SND1 297 5 5
SNF1LK 20 10 5
SNF1LK2 20 5 5
SNRPC 119 10 141
SNW1 40 34 5
SNX6 20 5 24
SOCS3 79 5 15
SOX10 20 5 15
SOX11 257 5 24
SOX12 139 15 5
SOX2 119 175 19
SOX21 20 24 136
SOX9 40 10 5
SP1 20 5 19
SP2 20 10 5
SP3 59 10 5
SPEN 20 5 10
SPHK2 40 49 5
SQSTM1 20 5 39
SRA1 20 10 10
SREBF1 79 39 39
SREBF2 20 15 5



SRF 40 10 10
SSB 119 5 97
SSRP1 20 200 131
STAG2 20 24 39
STAMBP 20 5 10
STAT1 59 24 5
STAT2 257 122 93
STAT3 20 5 5
STAT5B 40 5 10
STAT6 20 5 10
STATIP1 20 5 19
STK4 20 5 5
STRAP 178 24 409
STUB1 40 44 54
SUFU 40 5 5
SUMO1 20 5 5
SUMO3 59 29 49
SUPT16H 99 5 5
SUPT3H 20 10 15
SUPT4H1 20 10 19
SUPT5H 79 15 10
SURF5 20 54 24
SUV39H1 20 10 24
SUZ12 40 5 10
SYNJ2BP 40 5 5
TADA2L 20 10 0
TADA3L 40 10 19
TAF1 20 19 5
TAF11 20 5 102
TAF15 20 5 73
TAF1B 20 5 5
TAF3 20 5 10
TAF6L 20 15 19
TAF7 40 10 73
TAF9 40 5 5
TAGLN 20 5 15
TARBP2 40 5 34
TARDBP 119 10 5
TAT 40 15 15
TBL1X 20 5 5
TBL1XR1 40 24 24
TBPL1 119 29 34
TBX3 20 5 5
TCEA1 158 5 5
TCEA2 40 15 24
TCEB1 20 127 5
TCEB2 238 263 15
TCEB3 20 24 5
TCERG1 20 10 5
TCF12 79 5 58
TCF19 20 5 5
TCF20 40 5 5
TCF3 40 24 24
TCF4 20 15 5
TCF7 40 10 5
TCF7L1 20 10 68



TCF7L2 20 10 15
TCFL5 40 5 10
TCOF1 178 39 5
TDG 40 24 49
TEAD1 20 5 5
TEAD2 40 44 5
TEAD3 40 721 195
TEAD4 20 73 10
TFAP4 20 10 5
TFCP2 40 15 24
TFDP1 20 15 10
TFDP2 20 19 10
TFG 178 5 5
TGFB1 20 19 24
TGFBR1 20 10 34
TGFBR3 40 10 10
TGIF2 40 54 49
THOC1 40 29 10
THOC4 20 5 5
THRAP1 20 5 15
THRAP3 59 5 5
THRAP4 40 78 24
THRAP5 20 49 5
THRAP6 20 15 29
TIAL1 20 5 44
TIAM1 20 5 15
TIMELESS 20 5 29
TIMP1 59 5 5
TLE1 20 10 10
TLE3 20 34 5
TMF1 40 10 5
TMPO 20 10 5
TNFRSF1A 20 34 19
TNFSF10 79 19 29
TOP1 40 5 5
TOP2A 20 5 10
TOPBP1 20 34 5
TOPORS 40 10 5
TP53 40 5 10
TP53BP1 20 5 19
TP53BP2 79 5 10
TRAF2 20 29 24
TRAF3 20 5 5
TRAPPC2 20 15 24
TRIM13 0 0 0
TRIM16 40 10 10
TRIM24 0 10 5
TRIM27 0 0 0
TRIM28 20 925 5
TRIM38 20 5 0
TRIP11 20 5 5
TRIP13 20 44 5
TRIP4 20 15 5
TROVE2 0 5 5
TRRAP 59 5 10
TSC2 20 15 5



TSC22D1 119 180 131
TSC22D3 59 5 19
TSG101 20 24 44
TTF1 40 5 5
TTF2 20 10 24
TXN 40 10 175
TXNIP 20 10 5
TXNRD1 59 5 5
UBA52 20 730 677
UBE1C 20 73 5
UBE2I 20 5 19
UBP1 20 19 5
UBTF 20 19 24
UCP2 59 73 10
UPF1 79 5 19
VAPA 20 58 5
VDR 40 15 39
VEGFA 0 0 0
VEZF1 0 0 0
VHL 40 34 34
VPS39 59 5 5
VPS4B 20 5 34
VPS72 20 54 44
VRK1 20 5 44
WIPF1 0 0 0
WWP1 20 19 15
WWTR1 20 5 5
XAB2 40 19 24
XBP1 20 5 5
XIST 119 5 19
XRCC6 297 5 628
YAP1 218 5 5
YBX1 59 1188 1281
YWHAH 20 39 63
YWHAQ 20 5 10
YWHAZ 20 5 5
YY1 59 54 5
ZBTB10 20 5 10
ZBTB4 59 5 5
ZBTB7A 20 0 5
ZFP161 40 5 10
ZMYND11 20 10 19
ZNF143 20 19 5
ZNF146 99 10 58
ZNF148 20 5 5
ZNF224 20 5 5
ZNF238 20 10 5
ZNF24 20 10 5
ZNF254 0 0 0
ZNF263 20 39 19
ZNF274 20 19 5
ZNF281 20 5 39
ZNF367 20 5 10
ZNF384 20 5 5
ZNF423 40 19 5
ZNF496 59 10 10



ZNF589 59 10 5
ZNF593 40 19 58
ZNF76 20 5 10
ZNHIT3 20 68 122

*hNCC count in tag per million (SAGE library total count=50500)
**hES3 count in tag per million (SAGE library total count=205353)
***hES4 count in tag per million (SAGE library total count=209232)



Supplementary Table 6.

symbol hNCC  tpm* HES3  tpm** HES4 tpm***
AFF1 20 15 49
ARNT2 40 5 10
ATF3 20 5 10
ATF4 257 19 273
ATF7 20 5 10
ATRX 40 5 5
BRD8 40 24 5
BTAF1 20 5 5
BTG2 20 15 5
CEBPB 40 19 19
CNOT7 59 78 5
CREB1 20 5 5
CREM 20 15 5
CUTL1 20 5 5
DRAP1 257 112 73
E2F1 40 10 5
E2F3 40 29 5
E2F4 20 5 5
E2F5 20 5 5
EGR1 158 49 5
ELF2 20 24 5
ELK1 20 39 39
ELK3 20 5 15
EP300 20 19 19
ERF 139 83 5
ETS1 337 5 15
ETS2 20 29 15
ETV1 20 5 10
ETV6 40 5 5
FOXD3 40 5 10
FOXK2 40 5 15
FOXM1 20 58 5
FOXP1 20 5 5
FOXP4 59 5 487
FUBP1 20 5 5
GABPA 20 29 29
GLI2 20 19 15
GLI3 99 5 5
GTF2I 178 5 5
HCFC1 40 19 34
HDAC1 20 5 39
HDAC2 40 29 5
HES6 416 44 29
HIRA 99 10 24
HSF1 20 34 5
JUNB 20 5 5
JUND 99 68 24
KLF7 40 5 15

Common transcription factors to hNCC and hES3/4 



LMO4 20 5 10
MBD1 20 19 5
MDS1 20 10 10
MEF2A 20 5 5
MEF2B 20 15 5
MEF2D 20 10 5
MEIS2 20 5 15
MNT 20 5 19
MSX1 139 44 15
MSX2 20 5 5
MTA1 20 170 5
MTF1 20 5 5
MYCN 20 5 5
NFAT5 20 5 5
NFKB2 20 5 10
NFX1 20 5 5
NFYA 20 10 5
NFYC 20 10 15
NR1D2 20 5 5
NR1H2 20 34 19
NR6A1 20 5 5
PA2G4 20 5 15
PAX3 20 5 10
PAX6 40 10 10
PBX1 20 5 5
PCGF2 20 5 15
PHF5A 40 10 5
PITX2 20 10 5
PML 20 15 5
PRDM2 20 5 10
PTTG1 99 5 5
RARA 20 5 5
RXRA 20 5 5
RXRB 40 24 5
SALL1 79 34 54
SALL2 20 5 58
SATB1 40 15 15
SIX5 20 44 58
SMAD1 20 5 10
SMAD3 99 5 5
SMAD4 20 5 19
SMAD5 20 19 5
SOX2 119 175 19
SOX21 20 24 136
SRF 40 10 10
STAT1 59 24 5
STAT2 257 122 93
STAT3 20 5 5
STAT6 20 5 10
TAF11 20 5 102
TAF6L 20 15 19
TAF7 40 10 73



TBX3 20 5 5
TCEA1 158 5 5
TCEA2 40 15 24
TCF19 20 5 5
TCFL5 40 5 10
TEAD1 20 5 5
TEAD2 40 44 5
TEAD3 40 721 195
TEAD4 20 73 10
TGIF2 40 54 49
VDR 40 15 39
XBP1 20 5 5
ZNF24 20 10 5

*hNCC count in tags per million (SAGE library total count=50500)
**hES3 count in tags per million (SAGE library total count=205353)
***hES4 count in tags per million (SAGE library total count=209232)



Supplementary Table 7.

Symbol hNCC tpm* HES3 tpm** HES4 tpm***
AATF 20 5 5
ABL1 59 10 33
ABL2 20 10 10
ACACA 20 5 5
ACIN1 59 102 5
ACP1 20 5 5
ACTB 436 5 5
ACTG1 20 15 19
ACTN1 20 5 10
ACTN4 20 5 14
ACVR1B 20 15 5
ADAM10 59 5 5
ADAM15 119 10 19
ADAMTS1 40 15 29
ADAR 59 5 5
ADFP 40 19 91
ADM 20 5 14
ADRA2A 20 5 14
ADRBK1 59 5 14
AFF1 20 15 48
AHCY 59 205 153
AK2 20 5 5
AK3L1 20 34 10
AKAP12 20 5 5
AKAP13 198 10 14
AKT1 139 5 5
AKT2 20 68 5
AKT3 20 5 10
ALDH1A1 20 15 5
AMACR 20 10 5
ANAPC5 20 93 43
ANP32A 40 5 5
ANXA1 59 19 76
ANXA11 20 24 10
ANXA2 20 5 19
ANXA7 20 15 19
APBB1 40 29 53
APBB2 20 10 5
APC 20 5 5
APOE 20 24 10
APP 20 5 5
APRIN 20 19 24
ARAF 59 34 5
ARD1A 99 58 43
ARF1 20 15 5
ARHGAP5 20 5 5
ARHGEF1 20 19 24

hNCC and hES commonly expressed genes involved in 
cell proliferation



ARHGEF2 20 5 14
ARID3A 59 10 19
ARL1 59 19 24
ARL3 20 24 10
ARRB2 20 5 478
ATF2 20 10 19
ATF3 20 5 10
ATF4 40 5 5
ATF5 99 263 201
ATM 20 10 29
ATP5B 733 10 10
ATP5F1 20 243 5
ATP5G1 40 166 100
ATP5G2 20 15 5
ATP6AP1 20 29 24
ATPIF1 20 5 5
AXL 40 5 5
B4GALT2 40 44 57
B4GALT7 40 10 19
BAMBI 20 10 5
BAP1 40 63 5
BARD1 40 10 5
BAX 20 5 10
BCAR1 158 54 38
BCAR3 20 5 5
BCAT1 79 5 5
BCL10 20 10 33
BCL2L1 20 5 14
BCL2L11 20 15 5
BCR 79 5 10
BID 20 78 29
BIN1 99 5 19
BIRC4 20 5 19
BIRC5 20 5 5
BIRC6 20 5 5
BLM 40 5 14
BMP7 40 10 24
BMPR1A 20 5 33
BMPR2 59 10 5
BRD4 20 10 5
BRF2 20 15 10
BSG 515 5 167
BTG1 59 34 53
BTG2 40 15 10
BTG3 20 1641 478
BTRC 20 5 5
BUB1B 20 5 19
BUB3 59 5 5
C19ORF10 20 58 5
C1QBP 20 15 5
C5ORF13 20 5 5
C6ORF108 40 34 24



C6ORF66 20 88 5
C9ORF78 20 5 5
CABLES1 20 5 10
CACNA2D2 40 19 19
CALM1 20 112 5
CALM3 40 58 5
CALR 455 273 119
CAMKK2 40 5 5
CAPN1 59 200 53
CAPNS1 139 10 10
CAPZA1 59 5 24
CASC3 20 68 5
CASP2 40 29 5
CASP3 20 10 100
CAST 20 5 5
CAV1 20 5 5
CBFB 20 5 10
CBLB 59 5 5
CBX1 139 127 5
CCDC6 20 15 5
CCNA2 20 44 5
CCNB1 59 19 10
CCND1 20 19 10
CCND2 20 24 5
CCNF 20 5 38
CCNG1 40 19 5
CCNI 20 151 5
CCNL2 20 5 5
CCT2 257 5 5
CCT3 20 278 292
CCT5 297 195 311
CCT7 158 443 454
CD24 20 5 14
CD44 20 5 5
CD46 59 24 67
CD47 20 5 29
CD63 218 253 5
CD81 20 10 5
CD99 416 5 162
CDC16 20 29 19
CDC2 158 68 62
CDC25B 40 15 5
CDC27 20 15 5
CDC2L1 20 5 5
CDC2L5 20 15 5
CDC2L6 20 5 5
CDC37 178 117 43
CDC42 20 5 24
CDC42BPB 20 29 29
CDCA4 20 5 5
CDCA7 20 15 29
CDH2 40 5 5



CDH4 40 5 5
CDK10 40 5 53
CDK2 40 29 29
CDK2AP1 178 5 14
CDK3 59 5 5
CDK4 158 5 153
CDK5 20 5 5
CDK6 40 5 10
CDK7 20 44 5
CDK9 40 44 24
CDKN1A 139 5 14
CDKN1B 40 15 5
CDKN1C 178 5 5
CDKN3 20 73 14
CDT1 59 15 10
CEBPB 40 19 19
CENPF 59 5 10
CFDP1 178 24 33
CFL1 40 5 5
CHEK1 20 5 5
CHERP 40 10 5
CHKA 20 5 19
CIRBP 20 5 5
CITED2 20 5 10
CKLF 40 10 29
CKS1B 59 5 5
CKS2 218 234 5
CLCN7 20 49 5
CLK1 99 24 10
CLN3 20 341 5
CLTC 79 5 5
CLU 40 5 139
CNN1 99 19 33
CNOT7 20 5 5
CNOT8 20 5 10
CNP 20 15 5
CNTFR 20 1641 5
COL18A1 79 68 62
COL1A1 20 5 14
COL2A1 119 19 14
COL4A1 20 10 5
COL4A2 20 63 48
COL6A1 40 78 29
COL6A2 59 10 10
COL6A3 59 5 48
COPE 20 15 5
COPS5 20 93 53
CORT 20 10 5
COX17 40 5 81
CPSF4 59 5 5
CRABP2 317 317 124
CREB1 20 5 5



CREBBP 20 5 19
CREM 20 15 5
CRIP2 20 10 5
CRK 238 44 86
CSDA 40 10 43
CSE1L 119 112 5
CSF1R 20 10 5
CSNK1D 40 19 5
CSNK1E 20 5 5
CSNK2A1 20 5 10
CSNK2A2 20 29 38
CSNK2B 79 185 5
CSPG2 20 5 5
CST3 218 5 53
CTBP1 40 15 10
CTBP2 20 10 24
CTDSPL 40 5 5
CTGF 59 88 48
CTNNA1 40 19 5
CTNNB1 99 156 57
CTNNBIP1 20 10 14
CTSB 59 5 10
CTSC 20 297 10
CTSD 594 355 201
CTSL 20 63 48
CTSL2 20 141 119
CUL1 59 112 5
CUL3 20 5 10
CUL4A 20 34 5
CUL5 20 10 14
CUL7 40 29 10
CUTL1 20 5 5
CXCL12 20 15 5
CYP20A1 40 10 5
CYR61 20 97 14
DAP 20 5 5
DAP3 99 5 5
DAXX 59 10 38
DBN1 20 5 24
DCBLD2 158 5 14
DCHS1 20 5 10
DCTN2 59 127 5
DDB1 119 5 5
DDR1 59 15 5
DDX11 40 5 14
DDX21 59 10 5
DDX3X 178 5 10
DDX5 20 5 5
DDX56 59 5 5
DERL2 20 93 57
DGKZ 40 29 29
DHCR7 40 54 5



DHFR 20 15 5
DHPS 40 44 53
DIABLO 20 19 10
DICER1 40 5 5
DIRAS1 20 15 5
DKC1 20 5 72
DKK3 119 5 33
DLG1 20 5 5
DLG5 59 49 29
DLG7 20 5 14
DLL1 40 15 19
DMTF1 20 15 29
DNAJA1 317 161 124
DNAJA2 40 5 5
DNAJA3 59 5 5
DNAJB1 178 5 57
DNAJB2 99 19 5
DNAJB6 20 127 105
DNM2 178 5 5
DOK1 20 5 14
DPH1 20 29 24
DSCR1 20 15 5
DSP 59 10 5
DTYMK 40 107 119
DUSP1 79 10 5
DUSP22 20 10 5
DUSP6 59 10 10
DVL1 158 88 72
DYNC1H1 20 1641 478
DYRK1B 59 19 5
E2F1 40 10 5
E2F3 40 5 5
E2F4 20 5 19
E2F7 20 10 5
EBNA1BP2 20 127 105
EDF1 40 15 10
EDG4 20 39 33
EDNRB 59 5 14
EEF1D 238 93 53
EEF1E1 59 5 10
EEF2K 40 5 14
EFEMP2 79 15 5
EFNB1 40 10 5
EFNB3 20 15 5
EGLN3 20 5 10
EGR1 20 29 72
EI24 79 141 72
EIF1AY 20 5 10
EIF2AK1 40 68 86
EIF2C2 20 15 10
EIF3S2 59 15 10
EIF4A1 337 716 10



EIF4B 20 15 5
EIF4E 20 58 62
EIF4EBP1 79 93 110
EIF4G2 139 5 5
EIF5A 99 5 10
ELAVL1 99 5 5
ELK1 20 5 38
ELL 40 5 5
EMP3 40 5 19
ENO1 20 10 10
EP300 20 5 19
EPB41L3 40 10 19
EPHA2 20 5 5
EPHB2 20 5 10
EPHB3 20 10 14
EPHB4 20 24 10
EPS15 20 5 5
ERBB2 79 5 5
ERBB3 99 5 10
ERCC3 79 5 5
ERF 139 83 5
ESPL1 20 15 5
ESRRA 40 44 24
ETFB 40 19 33
ETS1 337 5 14
ETS2 20 5 19
ETV6 20 5 5
EWSR1 139 5 72
EXTL3 40 29 33
EZH2 119 63 48
F11R 257 5 158
F2R 79 5 10
FADD 79 19 53
FADS1 257 5 24
FADS2 317 15 5
FANCA 20 15 5
FANCL 20 10 5
FASN 59 5 33
FBLN1 59 10 5
FBN2 119 5 10
FBXW11 20 29 5
FDXR 20 39 62
FGFR1 20 146 5
FGFR1OP 20 5 5
FGFR2 20 5 5
FGFR3 20 5 67
FGFRL1 40 5 5
FHIT 20 5 19
FKBP1A 20 5 14
FKBP1B 40 107 100
FKBP4 40 15 10
FLOT1 79 5 10



FN1 20 5 5
FOS 59 15 5
FOXA2 79 39 10
FOXM1 20 5 5
FOXO1A 20 19 5
FOXO3A 20 10 5
FRS2 20 5 5
FSCN1 40 34 14
FTH1 20 15 5
FTL 40 44 5
FURIN 40 58 43
FXN 40 5 10
FYN 20 5 5
FZD3 20 19 14
G6PD 20 54 10
GABARAP 20 10 220
GADD45GIP1 99 5 5
GAK 20 19 5
GAP43 40 5 5
GAS1 59 34 14
GAS6 40 19 24
GBF1 139 34 24
GCNT1 20 5 19
GDF11 20 19 10
GDF15 20 15 14
GFM1 59 5 19
GFRA1 20 10 5
GGA1 20 5 5
GGA2 40 5 10
GIPC1 20 29 24
GJA1 40 5 153
GLI2 20 5 14
GLI3 99 5 5
GLMN 20 5 5
GMEB1 20 5 10
GNA11 79 5 24
GNA12 59 39 5
GNAI2 59 219 5
GNAQ 20 5 10
GNB2L1 40 127 57
GNG2 99 5 14
GNG4 20 19 19
GNL3 20 102 148
GPC1 20 5 10
GPC3 20 5 5
GPC4 20 15 76
GPI 40 5 5
GPIAP1 20 10 5
GPX1 218 24 225
GPX3 20 24 10
GPX4 238 769 5
GRB10 40 19 5



GRB2 40 10 5
GRN 79 5 5
GSK3B 20 5 10
GSN 40 34 5
GSTM1 20 29 10
GSTP1 1030 5 5
GTF2B 119 19 38
GTPBP1 20 5 5
HADHA 356 58 5
HADHB 20 24 19
HDAC1 20 15 38
HDAC10 20 5 10
HDAC2 40 19 29
HDAC3 20 5 5
HDAC5 59 63 5
HDAC6 40 44 14
HDGF 20 10 14
HES1 40 5 29
HGS 20 83 29
HIF1A 79 117 91
HIP1 20 49 5
HIPK1 20 5 5
HIPK2 20 5 19
HK1 40 5 5
HLA-DRB1 20 5 10
HMGA1 20 44 19
HMGA2 20 5 5
HMGB1 119 15 5
HMGCR 40 5 14
HMGN1 20 5 5
HMMR 59 10 5
HMOX1 40 5 24
HNRPA0 59 10 14
HNRPA1 40 49 48
HNRPA2B1 20 5 5
HNRPAB 20 29 38
HNRPC 139 497 5
HNRPD 416 677 540
HNRPF 59 10 210
HNRPK 317 15 110
HNRPM 277 10 253
HNRPR 40 19 14
HNRPU 20 73 5
HRAS 59 54 33
HRASLS3 20 29 105
HSD11B2 20 10 29
HSF1 20 5 5
HSH2D 20 5 464
HSP90B1 99 5 10
HSPA1A 356 24 14
HSPA5 277 472 249
HSPB8 79 5 14



HSPD1 59 19 5
HSPG2 178 19 10
ICAM3 20 5 14
ICMT 59 68 5
ID1 337 497 358
ID2 40 5 33
ID3 40 10 5
ID4 40 19 5
IFIT3 40 15 10
IFITM3 59 15 10
IFNAR1 20 10 43
IGBP1 40 10 43
IGF1R 20 5 5
IGF2 20 68 10
IGF2R 20 5 24
IGFBP2 20 394 10
IGFBP3 20 5 5
IGFBP4 20 5 86
IGFBP5 20 10 5
IGFBP7 218 24 14
IGSF4 59 5 5
IHPK2 20 5 5
IK 40 24 5
IKBKB 20 5 10
IL13RA1 40 10 14
IL27RA 40 10 5
IL2RA 20 10 5
IL6ST 20 5 14
ILF2 198 10 5
ILF3 20 29 10
ILK 59 10 62
IMPDH1 20 5 14
IMPDH2 119 5 5
ING1 20 5 5
ING5 20 5 38
INPP4A 20 5 5
INSIG1 40 10 24
INSR 20 5 5
IRS1 20 15 10
IRS2 20 5 5
ITCH 20 5 5
ITGA3 20 5 24
ITGA5 158 10 10
ITGA6 59 73 76
ITGAV 59 15 5
ITGB1 970 5 177
ITGB5 40 10 5
IVNS1ABP 20 19 10
JARID2 20 5 5
JMJD1B 20 39 24
JUB 59 5 14
JUN 20 5 10



JUNB 20 5 5
JUND 99 5 24
JUP 79 180 110
KHDRBS1 139 5 48
KIF11 20 5 48
KIF13A 20 5 5
KIF2C 79 10 48
KLC2 20 24 5
KLF5 20 5 5
KLF6 40 24 5
KRT8 20 15 5
LAMA1 40 29 29
LAMA2 20 5 14
LAMA5 40 68 5
LAMB1 40 63 62
LAMC1 20 5 33
LAPTM4B 59 15 24
LASS1 20 5 5
LATS1 20 10 14
LDHA 20 5 196
LEP 1168 297 750
LEPR 20 10 5
LGALS1 693 29 81
LGALS3 20 5 10
LGR4 20 5 72
LIFR 79 5 10
LIG1 79 34 19
LIMK1 59 58 33
LITAF 20 5 10
LMNA 79 15 14
LOX 139 5 5
LPIN1 20 5 5
LRDD 40 15 19
LRIG1 99 5 5
LRP1 20 5 10
LRP2 40 5 5
LRPAP1 20 5 5
LTBP1 40 24 10
LTBP3 198 5 14
LUM 79 10 29
LY6E 59 170 57
LYN 20 10 5
LZTS1 20 5 14
LZTS2 99 5 5
MAD1L1 40 15 14
MAD2L1 59 5 10
MAFF 20 156 196
MAGED1 158 5 5
MAGED2 119 5 10
MAGED4 20 10 5
MAP2K1 40 5 5
MAP2K2 158 5 5



MAP2K4 20 34 14
MAP2K5 20 10 5
MAP2K7 79 63 10
MAP3K1 40 15 10
MAP3K11 119 5 10
MAP3K2 20 5 5
MAPK1 20 5 5
MAPK12 20 34 19
MAPK14 20 29 24
MAPK3 79 5 5
MAPK6 40 107 53
MAPK7 20 88 38
MAPK8 20 10 24
MAPKAPK2 20 68 38
MAPRE1 119 5 86
MAPRE2 20 10 5
MAX 20 5 5
MAZ 40 78 57
MBD1 20 19 5
MBD2 20 29 10
MBD3 40 88 5
MCAM 119 5 19
MCL1 198 10 5
MCM2 20 10 53
MCM3 20 5 119
MCM5 99 5 5
MCM7 257 5 282
MCTS1 40 97 139
MDK 713 5 5
MDM2 20 24 24
MDM4 20 5 5
MDS1 20 10 10
MECP2 40 10 5
MED28 20 5 5
MEN1 20 15 5
MEST 20 10 5
METAP2 79 44 14
METTL3 40 88 158
MFN2 20 10 24
MGAT4B 337 10 53
MICA 40 10 5
MIF 515 10 10
MKI67 40 5 5
MLL 20 5 5
MMP14 119 10 5
MMP15 20 54 38
MMP2 20 10 14
MMP24 20 10 5
MNAT1 20 5 5
MNT 20 5 5
MOG 990 287 531
MORF4L1 79 131 253



MSI1 59 5 14
MSI2 20 10 5
MST1R 40 10 5
MSX1 139 5 14
MSX2 20 15 5
MT2A 218 34 38
MTA1 198 170 5
MTAP 20 5 10
MTCH1 20 5 5
MTHFD1 20 68 10
MVP 178 15 10
MXD4 20 10 14
MXI1 59 5 10
MYBBP1A 20 54 14
MYBL2 158 5 10
MYCL1 20 5 10
MYCN 40 5 5
MYD88 20 10 5
MYH10 59 5 5
MYL9 238 127 5
MYST4 20 15 10
NAB2 79 5 62
NAP1L1 99 19 268
NASP 99 10 10
NBN 40 10 5
NCAM1 20 229 48
NCK2 59 58 29
NCOA1 20 5 5
NCOA2 713 5 91
NCOA3 20 15 14
NCOA4 20 5 33
NCOA6 40 10 5
NDE1 20 5 10
NDN 158 10 5
NDNL2 20 5 24
NDUFV1 20 5 5
NEU1 20 10 10
NF2 40 5 5
NFAT5 20 5 5
NFKB2 20 29 10
NFKBIA 20 5 5
NFKBIB 40 5 5
NKIRAS2 158 15 24
NME1 20 321 5
NME2 20 5 5
NOL8 40 5 10
NOTCH1 20 15 5
NOTCH2 20 29 14
NP 20 5 48
NPDC1 79 49 33
NPM1 99 15 19
NR1H2 20 34 19



NR6A1 20 19 5
NRAS 99 63 5
NRD1 79 5 5
NRG1 59 5 10
NRG4 20 49 5
NRIP1 20 5 10
NUDC 119 5 5
NUP62 20 10 5
NUP98 59 10 5
OAZ1 40 19 5
ODC1 455 161 5
OGFR 20 15 5
OPTN 40 19 5
PA2G4 40 5 86
PAFAH1B1 20 15 5
PAK4 40 10 38
PALM 337 39 5
PAPPA 40 5 5
PARK7 139 5 119
PARP1 99 5 10
PAWR 20 24 38
PAX3 20 5 10
PAX6 20 10 10
PBEF1 20 5 10
PBX1 119 5 76
PCBP4 158 5 19
PCGF2 20 5 14
PCNA 119 268 105
PCOLN3 40 5 5
PCYT1A 20 5 5
PDAP1 119 151 100
PDGFA 20 34 10
PDGFC 40 5 14
PDIA3 238 5 14
PDLIM2 20 19 19
PDPK1 20 5 14
PEA15 20 5 19
PEBP1 317 307 196
PEG10 20 49 19
PELP1 20 102 53
PEMT 79 73 5
PER1 20 44 19
PFDN5 297 336 5
PFN1 574 15 5
PFN2 79 10 19
PGK1 20 5 24
PHB 99 278 5
PHC1 20 78 158
PHLDA2 99 5 5
PIK3CB 20 29 10
PIK3CD 59 5 19
PIK3R2 20 34 33



PIN1 40 73 48
PITPNA 139 5 14
PITX2 20 10 5
PKM2 119 10 19
PKN1 20 10 5
PLA2G6 20 10 5
PLAUR 20 5 5
PLCD1 20 5 5
PLEC1 139 5 29
PLK1 40 5 5
PLK2 59 5 5
PLP1 40 5 5
PLSCR1 20 5 10
PMAIP1 40 10 5
PML 20 15 5
PNN 20 5 5
PNPT1 20 5 10
POLD4 40 44 5
POLL 20 15 5
POLR2J 20 5 5
POMC 20 5 10
POR 20 29 57
PPARBP 79 5 5
PPARD 40 5 5
PPAT 20 10 5
PPIA 1881 5 2232
PPM1D 40 5 10
PPM1G 40 5 91
PPP1CA 20 5 10
PPP1CC 475 282 14
PPP1R12C 40 10 5
PPP1R15A 20 5 19
PPP1R8 20 5 5
PPP2CA 20 5 33
PPP2R1A 119 5 172
PPP2R5C 20 19 29
PPP3CA 20 5 5
PPP5C 119 5 5
PPT1 40 5 33
PRCC 20 15 5
PRDM4 20 10 14
PRDX1 59 24 5
PRDX3 40 5 24
PRDX4 99 5 72
PREB 20 5 43
PRKAR1A 20 15 33
PRKAR2B 20 5 29
PRKCA 20 5 19
PRKCI 40 10 10
PRKCSH 20 10 5
PRKRA 20 5 19
PRMT5 20 146 119



PRNP 20 5 5
PRPF19 158 122 76
PRPF8 20 5 5
PRRX2 20 10 5
PRUNE 20 10 24
PSAP 20 5 5
PSEN1 20 5 5
PSMB2 59 10 5
PSMC1 40 73 38
PSMC3 139 15 124
PSMC4 40 10 10
PSMC5 40 5 5
PSMD2 317 5 10
PSME2 317 5 143
PSMF1 20 29 5
PTEN 20 5 5
PTK2 59 68 76
PTMA 20 5 5
PTN 40 10 5
PTP4A3 40 5 10
PTPN1 20 34 38
PTPN11 40 34 5
PTPN14 20 136 722
PTPN2 20 15 5
PTPRA 20 34 33
PTPRF 158 146 86
PTPRG 594 15 5
PTPRS 20 5 10
PTTG1 99 5 5
PVR 178 10 10
QSCN6 119 10 29
RAB1A 20 5 10
RABGEF1 40 5 5
RAC1 158 5 5
RAF1 59 5 48
RALA 40 34 29
RALBP1 119 15 5
RALGDS 59 39 5
RAP1B 20 5 5
RAPGEF1 20 5 5
RAPGEF2 40 19 5
RARA 20 5 5
RARG 20 29 10
RASA1 40 5 5
RASSF4 20 10 5
RB1CC1 20 5 5
RBBP4 20 102 33
RBBP7 20 19 5
RBBP9 20 24 14
RBM3 20 5 5
RBM5 20 15 62
RBM6 40 102 38



RBM9 40 5 14
RBP1 198 34 67
RBPSUH 20 5 5
RCE1 20 15 5
RDBP 218 122 139
RELA 20 5 5
RFC1 20 34 10
RGL2 99 5 29
RGS2 20 15 5
RGS4 20 5 10
RHOA 20 5 5
RHOB 356 19 38
RHOC 59 112 43
RING1 20 15 14
RIPK2 20 5 29
RPL23A 40 29 43
RPS19 20 5 29
RPS27 99 5 24
RPS3A 20 19 10
RPS4X 20 10 5
RPSA 1703 8985 19
RRM1 20 5 10
RRM2 20 15 43
RSN 20 5 5
RUVBL1 59 5 129
RUVBL2 20 5 19
RXRA 20 5 5
RXRB 40 24 5
RYK 20 29 24
S100A11 158 5 5
SAE1 20 19 14
SALL2 20 5 57
SART1 40 34 19
SART3 40 34 5
SBF1 20 24 24
SCAMP2 20 10 5
SCAMP3 20 5 48
SCAMP4 20 5 5
SCYE1 20 5 5
SDC2 20 5 14
SEC61A1 198 5 10
SEMA3F 59 49 5
SEMA6A 40 5 5
SENP1 20 15 5
SERPINE1 297 10 5
SERPINF1 40 34 29
SERPINH1 20 15 5
SERTAD1 20 5 5
SESN1 20 5 5
SET 198 687 578
SF1 20 5 43
SF3A2 99 5 76



SF3A3 20 5 19
SF3B2 59 5 5
SF3B3 20 5 29
SFN 20 5 10
SFRP1 20 10 5
SFRP2 59 93 38
SFRS1 20 15 10
SFRS2 20 5 5
SFRS2IP 40 5 10
SFRS3 20 278 210
SFRS5 178 10 5
SGK 20 19 5
SH3BP2 40 15 5
SHB 20 5 10
SHC1 20 19 5
SHFM1 158 224 5
SIN3A 20 5 10
SIRT1 59 63 5
SKI 40 10 5
SKIL 20 5 5
SKP1A 297 5 5
SLC12A4 59 19 19
SLC1A3 20 5 10
SLC29A1 59 5 5
SLC29A2 20 10 14
SLC3A2 20 49 48
SLC7A5 20 63 5
SMAD1 20 5 10
SMAD2 1505 1549 4459
SMAD3 40 5 5
SMAD4 20 44 43
SMAD5 20 19 24
SMARCA4 158 156 48
SMARCA5 198 146 158
SMARCE1 59 5 5
SMO 20 5 5
SMOX 40 5 5
SMYD3 20 5 5
SOCS3 79 15 14
SOD1 99 10 10
SOX9 40 10 10
SP1 20 5 19
SPARC 20 273 206
SPHK2 40 49 5
SPINT2 20 15 19
SPRED1 20 15 14
SPRY4 20 10 5
SPTBN1 79 5 10
SRA1 20 10 14
SREBF1 79 5 38
SRF 40 5 10
SS18 40 44 10



SSR1 20 24 19
STAMBP 20 5 10
STARD10 20 10 14
STARD13 20 5 5
STAT1 59 24 33
STAT3 20 19 5
STAT5B 40 5 10
STAT6 20 5 10
STAU1 59 44 53
STK11 20 5 5
STK17B 99 5 5
STMN1 20 351 411
STRAP 20 24 14
STUB1 40 44 53
SUFU 40 5 5
SUMO1 158 5 5
SUMO2 20 5 10
SUMO3 59 29 10
SURF1 20 88 19
SURF4 40 5 10
SURF6 20 29 14
SUV39H1 20 10 24
SUZ12 40 15 10
SYMPK 20 39 5
TACC1 59 5 5
TAF7 40 10 5
TAX1BP3 337 44 19
TBC1D8 20 10 5
TBPL1 119 29 33
TBRG4 20 5 43
TCEB3 20 24 10
TCF12 79 5 5
TCF19 20 5 5
TCF3 20 24 14
TCF4 20 15 5
TCF7 40 10 5
TCOF1 20 5 14
TCP1 554 5 5
TEAD4 20 73 10
TERF1 20 5 5
TFDP1 20 5 14
TFG 178 161 5
TFRC 20 5 5
TGFB1 20 19 24
TGFBR1 40 10 33
TGFBR3 40 10 10
THBS1 20 5 14
THBS2 20 1641 478
THOC1 40 29 10
THY1 139 97 5
TIAL1 20 24 10
TIAM1 20 5 14



TIMELESS 20 5 5
TIMP1 59 5 5
TIMP2 79 5 10
TIMP3 158 10 5
TJP1 119 5 10
TMSB10 1129 1305 808
TMSB4X 20 19 5
TNC 40 15 10
TNFAIP8 20 49 14
TNFRSF12A 218 102 91
TNFRSF19 20 15 10
TNFRSF1A 20 5 19
TNFRSF21 20 19 5
TNFRSF6B 20 5 10
TNFSF10 79 19 29
TNK2 20 15 5
TNKS 20 5 14
TOB1 20 10 5
TOP1 40 5 5
TOPORS 40 10 29
TP53 20 49 33
TP53BP1 20 5 19
TP53I11 40 5 33
TP53INP1 20 5 5
TPM1 772 5 717
TPM2 1010 44 53
TPM3 1683 2844 2748
TPT1 20 5 5
TPX2 20 24 5
TRAF2 20 29 24
TRAF4 20 58 14
TRAP1 99 5 5
TRIB1 20 39 38
TRIM25 20 5 5
TRIM28 356 5 5
TRIM35 20 15 5
TRIT1 20 15 5
TRO 40 39 29
TRRAP 59 5 10
TSC2 20 15 10
TSC22D1 119 180 129
TSG101 20 24 43
TSN 20 5 5
TSPAN3 178 78 105
TSPAN31 40 29 19
TTK 59 5 19
TUSC2 40 29 5
TXN 40 5 24
TXNIP 20 10 10
TXNL1 20 5 5
TXNRD1 20 10 5
TYMS 20 112 19



TYRO3 20 63 5
UBC 59 5 5
UBE1 20 5 14
UBE2B 20 5 5
UBE2C 99 156 5
UBE2E3 20 10 5
UBE2V2 40 15 5
UBTF 20 5 5
UCHL1 257 5 722
UCP2 59 5 10
UGCG 20 5 10
UNC119 79 73 43
UPP1 20 273 86
USP21 20 19 5
USP3 20 5 10
USP7 119 5 48
USP9X 20 5 10
VDAC1 218 10 5
VDR 40 15 38
VEGFB 139 44 5
VEGFC 20 5 5
VHL 40 5 24
VIL2 20 10 10
VIM 20 5 5
VPS28 59 34 10
VRK3 59 10 5
VTI1B 40 5 5
WARS 79 10 5
WASF2 20 5 10
WEE1 40 5 62
WNT5A 20 5 5
XBP1 20 5 5
XPC 59 24 5
XRCC1 139 15 19
XRCC2 495 5 167
XRCC3 20 49 19
XRCC6 297 5 617
XRN2 79 5 5
YAP1 218 102 33
YBX1 59 5 5
YME1L1 20 5 5
YPEL3 59 39 38
YTHDF2 40 83 129
YY1 59 5 10
ZDHHC17 20 5 14
ZFP36L1 198 5 38
ZFP36L2 99 10 5
ZMYND11 20 10 19
ZNF148 20 5 5
ZNF259 20 5 10
ZNF639 20 5 5
ZRF1 20 5 5



ZYX 59 5 76

*hNCC count in tags per million (SAGE library total count=50500)
**hES3 count in tags per million (SAGE library total count=205353)
***hES4 count in tags per million (SAGE library total count=209232)



symbol hNCC PA score hNCC tpm* HES3 tpm** HES4 tpm***
AMIGO3 6.91 20 0 0
C10ORF85 6.91 20 0 0
DKFZP761N09121 6.91 20 0 0
DNAH1 6.91 20 0 0
FAM70B 6.91 20 0 0
FLJ16139 6.91 20 0 0
FLJ20345 6.91 20 0 0
FLJ31295 6.91 20 0 0
FLJ31438 7.6 40 0 0
FLJ40126 6.91 20 0 0
GABRR3 6.91 20 0 0
HIST1H1D 6.91 20 0 0
HIST1H2BE 6.91 20 0 0
HIST1H2BJ 6.91 20 0 0
HIST1H3B 6.91 20 0 0
HIST1H4F 6.91 20 0 0
HMFN0672 7.6 40 0 0
HOXC5 8.52 99 0 0
HOXD9 6.91 20 0 0
KCNG2 6.91 20 0 0
KIAA1822L 6.91 20 0 0
LOC255177 6.91 20 0 0
LOC352909 6.91 20 0 0
LOC400340 6.91 20 0 0
LOC401021 6.91 20 0 0
LOC401485 6.91 20 0 0
LOC440502 6.91 20 0 0
LOC440993 6.91 20 0 0
LOC441053 6.91 20 0 0
LOC493860 6.91 20 0 0
MGC16372 6.91 20 0 0
MGC48915 6.91 20 0 0
PP3856 6.91 20 0 0
PRDM12 8.01 59 0 0
PRH1 6.91 20 0 0
RHEBL1 6.91 20 0 0
SH3GLP2 6.91 20 0 0
STOX2 6.91 20 0 0
TIGD3 6.91 20 0 0
UCN 6.91 20 0 0
WNT7A 7.6 40 0 0
ZNF157 6.91 20 0 0
ZNF417 7.6 40 0 0
ACBD7 6.91 20 0 5
ADAMTS16 6.91 20 0 5
D21S2088E 6.91 20 0 5
FLJ45079 6.91 20 0 5
HIST1H1E 6.91 20 0 5

Supplementary Table 8.

Genes expressed in hNCC with a Tissue Preferential Expression analysis range value = 1



INSM1 6.91 20 0 5
KIAA0889 7.6 40 0 5
LOC283731 7.6 40 0 5
OR2A9P 6.91 20 0 5
RPRM 6.91 20 0 5
TRIM61 6.91 20 0 5
ZNF426 7.6 40 0 5
LOC390980 7.6 40 0 10
MTMR11 6.91 20 0 10
TMTC4 8.29 79 0 10
C1ORF83 6.91 20 0 14
C20ORF160 6.91 20 5 0
FLJ45850 6.91 20 5 0
FLJ90166 7.6 40 5 0
GDF6 6.91 20 5 0
HOXB9 9.11 178 5 0
KIAA1817 6.91 20 5 0
LOC220074 6.91 20 5 0
MGC4767 6.91 20 5 0
FLJ10560 7.6 40 5 5
FLJ20291 6.91 20 5 5
FLJ45950 7.6 40 5 5
GTF2IP1 6.91 20 5 5
INHBE 6.91 20 5 5
LOC113655 6.91 20 5 5
MGC33867 6.91 20 5 5
PHF21B 6.91 20 5 5
SHRM 6.91 20 5 5
TMEM116 7.6 40 5 5
ZNF454 7.6 40 5 5
CEP68 6.91 20 5 10
FLJ10945 8.01 59 5 10
LOC161527 6.91 20 5 10
RP13-297E16.1 6.91 20 5 10
SPSB4 8.29 79 5 10
ST6GALNAC3 6.91 20 5 10
FGD1 7.6 40 5 14
SETD1B 8.29 79 5 14
ZNF667 9.21 198 5 19
ARL10 8.01 59 5 29
KIF15 6.91 20 10 0
SRG 6.91 20 10 0
UPK2 6.91 20 10 0
C2ORF15 7.6 40 10 5
FAM57B 7.6 40 10 5
IGF2BP1 6.91 20 10 5
SOX3 9.21 198 10 5
TM4SF6 7.6 40 10 5
LOC254848 8.01 59 10 14
MGC35402 8.29 79 10 14
SYT6 6.91 20 10 19
ZNF669 8.01 59 10 38



TCF15 6.91 20 15 0
ARL4D 6.91 20 15 5
C20ORF127 6.91 20 15 10
MPRA 6.91 20 15 10
ZNF660 7.6 40 15 10
PROCR 8.01 59 15 14
MTERFD1 6.91 20 15 24
FOXD3 7.6 40 19 5
RAB42 7.6 40 19 5
C17ORF62 6.91 20 19 10
ADAMTS7 6.91 20 24 5
LOC440395 8.01 59 34 43
FZD2 8.29 79 39 5
C16ORF59 6.91 20 49 33
PAP2D 8.85 139 49 33
SLCO5A1 10.24 554 83 5
LOC339231 8.29 79 88 67
INT1 6.91 20 161 57
LOC400948 8.52 99 234 139

*hNCC count in tag 

per million (SAGE 

library total 

count=50500)

**hES3 count in 
tag per million 
(SAGE library 
total 
count=205353)

***hES4 count 
in tag per million 
(SAGE library 
total 
count=209232)

Bold symbols: hNCC 

most specific genes 

(not expressed in 

HES3 nor HES4)

Red symbols: hNCC 

preferentially 

expressed genes 

also found 

preferentially in hES



Supplementary Table 9.

Orphan hNCC-expressed tags mapping to potential naRNA as predicted by Ge et al., 2006.

CCNRLongTag hNCC coun RefSeq Position From 3' UniGeneID* Symbol
TGGCGGGCAGGGGGTCC 1 NM_006640 1467 Hs.440932 -
AATCTTTAATCATAAGG 1 XM_371175 12 - -
ACCGAAGGACTGCTTGC 2 XM_496146 617 Hs.531536 -
AGTTCTGTAAGTCAGGT 1 XM_371141 471 Hs.512823 -
CAACAAGACACTGGCGT 1 XM_027307 460 - -
CAGTACACACGGAACCA 1 XM_374260 190 Hs.440258 -
CCCCACTGGCAGTGGGA 1 NM_106552 228 - -
CCCCGCGGCCGCATCCG 1 XM_496504 570 Hs.533020 -
CCTGGCGCGGAACAGGC 1 XM_371215 499 - -
GCGGCGGCCAGCGGGGC 1 XM_496848 1385 - -
GCGGCGGCCAGCGGGGC 1 XM_499254 1385 - -
GTAGCCAGGGCACCCGC 1 NM_033346 9612 - -
TACTAAAATAATAGACA 1 XM_495832 326 - -
TCTCTTCACAGTGAAGG 1 XM_371151 1633 Hs.55304 -
TACAAACTCAGGTGGGT 1 NM_153332 1624 Hs.20000 3'HEXO
TGGTCAGTGTGACCAAT 1 NM_005845 1839 Hs.508423 ABCC4
GTGTCCGCACTCCTGGC 1 NM_000033 146 Hs.159546 ABCD1
TCCTGGGGCCGAATAAG 1 NM_001124 1075 Hs.441047 ADM
CAGCGTAGGAAGCAGTA 1 NM_017825 808 Hs.18021 ADPRHL2
GCAACGCCTGCCCCCAA 1 NM_001132 2419 Hs.558297 AFG3L1
ACACAGTCGTTTTCGTA 1 NM_198576 6160 Hs.273330 AGRN
GGGTTGGCACCATTGAG 1 NM_000697 1586 Hs.422967 ALOX12
GCGGCCCGAGACTAAGT 1 NM_016237 2429 Hs.7101 ANAPC5
GGGGTCGCAGACCCAGG 1 NM_015013 2609 Hs.549117 AOF2
TCCCGGCCCTTGCGCCC 1 NM_005166 2313 Hs.74565 APLP1
ATGGCGGCCGGGAGCGA 1 NM_018184 2785 Hs.250009 ARL10C
CAGCTGCAGTGCCTGCC 1 NM_152285 988 Hs.12999 ARRDC1
CTTTTCCCACTCCCATC 1 NM_024095 296 Hs.432699 ASB8

AAAGGCTCGCCTATGAC 1
NM_00100148

7 3130 Hs.567267 ATP2C1
AAAGGCTCGCCTATGAC 1 NM_014382 4399 Hs.567267 ATP2C1

AAAGGCTCGCCTATGAC 1
NM_00100148

6 3160 Hs.567267 ATP2C1

AAAGGCTCGCCTATGAC 1
NM_00100148

5 3035 Hs.567267 ATP2C1
ATACTGGGTTTGTAAAC 1 NM_020452 302 Hs.435700 ATP8B2
ATGTGAGCCAACTTACC 1 NM_030660 360 Hs.526425 ATXN3
ATGTGAGCCAACTTACC 1 NM_004993 360 Hs.526425 ATXN3
ACAGTCCCACAGAGGGG 1 XM_375456 1247 Hs.512651 ATXN7L3
ATGTGCCCAGCCTTGCC 1 NM_013449 3093 Hs.314263 BAZ2A
AAATAAGGGATTTCTCT 1 NM_005504 2900 Hs.438993 BCAT1
TTCCTAATGCTAGACCA 1 NM_005504 4082 Hs.438993 BCAT1
GTAGCCAGGGCACCCGC 1 NM_001204 10892 Hs.471119 BMPR2
GAGGTGAGGGGTGGGGC 1 NM_058243 2199 Hs.187763 BRD4
TACACGATGTATGGGCC 1 NM_015399 717 Hs.100426 BRMS1

TTAACTACTTCTCTGAC 1
NM_00100872

6 2112 Hs.497301 C14orf150
TTAACTACTTCTCTGAC 1 NM_080666 2112 Hs.497301 C14orf150
CCAGAAGTGTATGGTTC 1 NM_016039 147 Hs.534457 C14orf166



AAGGATGCTCGGCTGGA 1 NM_019107 127 Hs.465645 C19orf10
CTGTTGCTTCTTGGGGA 1 NM_201569 1253 Hs.270775 C1orf16
CTGTTGCTTCTTGGGGA 1 NM_201568 1253 Hs.270775 C1orf16
CTGTTGCTTCTTGGGGA 1 NM_014837 1253 Hs.270775 C1orf16
CTGTTGCTTCTTGGGGA 1 NM_173156 1253 Hs.270775 C1orf16
GTTTAATTAAAGGCAAA 1 NM_173156 64 Hs.270775 C1orf16
GTTTAATTAAAGGCAAA 1 NM_014837 64 Hs.270775 C1orf16
GTTTAATTAAAGGCAAA 1 NM_201568 64 Hs.270775 C1orf16
GTTTAATTAAAGGCAAA 1 NM_201569 64 Hs.270775 C1orf16
GGTAGCTGTGGGTCAAC 1 NM_080821 674 Hs.143736 C20orf108
AGTGTCTTGACCAGGAC 2 NM_018462 468 Hs.517792 C3orf10
CTCTTCATCTGTGATGA 1 NM_018132 903 Hs.88663 C6orf139
ATGAGCAGGAACAGGGC 1 NM_015921 100 Hs.520070 C6orf82
GACCTTGTAAAGTTGCT 1 NM_022343 256 Hs.493819 C9orf19
GCCTCCACGGGCGGGGG 1 NM_173691 643 Hs.323445 C9orf75
ACCGCGTGCCAGAAGTC 1 NM_015447 1061 Hs.522493 CAMSAP1
GCACTGCTGTCCCTCTG 1 NM_005188 2144 Hs.504096 CBL
AAGTTATACCAAAGCTA 1 NM_194454 1110 Hs.531987 CCM1
AAGTTATACCAAAGCTA 1 NM_194456 1110 Hs.531987 CCM1
AAGTTATACCAAAGCTA 1 NM_004912 1110 Hs.531987 CCM1
AAGTTATACCAAAGCTA 1 NM_194455 1110 Hs.531987 CCM1
GATATTCCCAAACCATT 1 NM_053056 2102 Hs.523852 CCND1
AGATGCTGGTTAAACTG 1 NM_138477 2877 Hs.437819 CDAN1
CTGATGGCACCGTCGAG 1 NM_004932 4193 Hs.171054 CDH6
GTTACTGCCTCTGGTGC 1 NM_058195 525 Hs.512599 CDKN2A
GTTACTGCCTCTGGTGC 1 NM_058197 525 Hs.512599 CDKN2A
GTTACTGCCTCTGGTGC 1 NM_000077 525 Hs.512599 CDKN2A
TGCTATCATCAAAGGGC 1 NM_014914 817 Hs.435039 CENTG2
TTGATGTAATGCTGGGC 1 NM_032142 402 Hs.100914 Cep192
TTGATGTAATGCTGGGC 1 NM_018069 402 Hs.100914 Cep192
GGCTGGAAGCAGCAGGT 1 NM_018223 1722 Hs.507336 CHFR
CGGGAGACATCTTTGGC 2 NM_007096 330 Hs.522114 CLTA
CGGGAGACATCTTTGGC 2 NM_001833 330 Hs.522114 CLTA
TGGCACAAAATGGGTTG 2 NM_080629 509 Hs.523446 COL11A1
TGGCACAAAATGGGTTG 2 NM_080630 509 Hs.523446 COL11A1
TGGCACAAAATGGGTTG 2 NM_001854 509 Hs.523446 COL11A1
CAATTCCCTCTCTGCAG 1 NM_004370 216 Hs.101302 COL12A1
CAATTCCCTCTCTGCAG 1 NM_080645 216 Hs.101302 COL12A1
ACCTGGCAAACCAGGGG 1 NM_001850 2011 Hs.134830 COL8A1
ACCTGGCAAACCAGGGG 1 NM_020351 2011 Hs.134830 COL8A1
CTGATTTATTACAGGGA 6 NM_016128 52 Hs.518250 COPG
GGCGCCGTGGCCAGGGG 1 NM_016128 1257 Hs.518250 COPG
CTTTGTCGTTCAGTTGG 1 NM_004379 1054 Hs.516646 CREB1
CTTTGTCGTTCAGTTGG 1 NM_134442 1054 Hs.516646 CREB1
AGTCACCAGCAATGACG 1 NM_004380 855 Hs.459759 CREBBP
CACACAAATACTTTTGT 1 NM_016441 1323 Hs.332847 CRIM1
CATCAACTATCCTAGAA 1 NM_001313 619 Hs.135270 CRMP1
TCAAAAGCACTTTAATG 1 NM_001324 4 Hs.172865 CSTF1
CTGGCCCCTGGCTGATC 1 NM_001330 1642 Hs.483811 CTF1
GAAAGTGGCAGTGGTTG 1 NM_017949 141 Hs.46679 CUEDC1
TGGGTCCACTCAGACTT 1 NM_003592 175 Hs.146806 CUL1
GAAGAGACAAGTTAGAA 1 NM_000397 2525 Hs.292356 CYBB
TATCATCTATGGTCCTG 1 NM_015247 975 Hs.432993 CYLD



TTTACTGCTGATGCTTT 1 NM_004938 4696 Hs.380277 DAPK1
AGAGAGGCAGGAATATT 1 NM_022487 835 Hs.524156 DCLRE1C
CTAATGGCTATCCTTTC 1 NM_178153 4981 Hs.34780 DCX
CTAATGGCTATCCTTTC 1 NM_178152 4981 Hs.34780 DCX
CTAATGGCTATCCTTTC 1 NM_000555 4981 Hs.34780 DCX
CTAATGGCTATCCTTTC 1 NM_178151 4981 Hs.34780 DCX
CAGAATATAATGATAGC 1 NM_003887 1759 Hs.555902 DDEF2
GCATAGACTCCCTGGAG 1 NM_018332 2521 Hs.461196 DDX19L
TCAAACATTCTGTCTGC 1 NM_014829 3917 Hs.533245 DDX46
CTGTTTTAATTGCAAAG 1 NM_004397 3845 Hs.408461 DDX6
TTTAAAGTATGTGCTTT 1 NM_019030 103 Hs.444208 DHX29
TGGGATTGCTCTAAATA 1 NM_006729 3565 Hs.226483 DIAPH2

TTATGTGAAATACTTCC 1 NM_018710 596 Hs.202517
DKFZp762O07

6
TGGCTTTCAGGAATGCC 2 NM_182643 1348 Hs.134296 DLC1
TGGCTTTCAGGAATGCC 2 NM_006094 1348 Hs.134296 DLC1
AGTCTGGATGAATCCCA 2 NM_175629 208 Hs.515840 DNMT3A
AGTCTGGATGAATCCCA 2 NM_022552 208 Hs.515840 DNMT3A
AGTCTGGATGAATCCCA 2 NM_153759 208 Hs.515840 DNMT3A
GAGGCTGCAGCGGCGGC 1 NM_001949 4580 Hs.269408 E2F3
TGGGTTGAAAAAAAAGA 1 NM_033083 1166 Hs.474479 EAF1
ACTGCTGGCATCGCTGT 1 NM_024757 4888 Hs.495511 EHMT1
ATGTATAATTTTGACAT 1 NM_001415 937 Hs.539684 EIF2S3
CACTCACAACACTGATC 1 NM_013333 390 Hs.279953 EPN1
GATGACTGCAGTGAATT 1 NM_000127 1148 Hs.492618 EXT1
TGAAGCCGCCAATGGTG 1 NM_000138 2091 Hs.146447 FBN1
GTGGCTGAATGAAACAC 1 NM_133337 4987 Hs.500572 FER1L3
GTGGCTGAATGAAACAC 1 NM_013451 4987 Hs.500572 FER1L3
TATTTGGGAGAGAGACC 1 NM_133337 4539 Hs.500572 FER1L3
TATTTGGGAGAGAGACC 1 NM_013451 4539 Hs.500572 FER1L3
AACCTCTTGGAAAACTT 1 NM_018250 194 Hs.162397 FLJ10871
GCCTATCGAGGACAGCT 1 NM_018357 142 Hs.416755 FLJ11196
CCTTAGACCTCGCGGGC 1 NM_024809 2803 Hs.167165 FLJ12975
CTTCAAGGAGAGAGGGT 1 NM_024598 524 Hs.408702 FLJ13154
CCCCACTGGCAGTGGGA 1 NM_022460 228 Hs.531785 FLJ14249
AAATGGGTGCAGGTTTT 1 NM_022837 1561 Hs.118183 FLJ22833
CGGACAAAAAGCTACAA 1 NM_152493 391 Hs.524248 FLJ25476
TTCCATTGTACTGATCT 1 NM_144643 662 Hs.404000 FLJ30655
CCCCCACTTGCCAGAGC 1 NM_016206 3946 Hs.435013 FLJ38507
GAAACAGAGCCCAGGGC 1 NM_198582 102 Hs.24951 FLJ43374

ACTCCGGCGTCAGTGCC 1
NM_00100530

3 2983 Hs.516603 FLJ46347
GCTGGGCCACTTTGTGG 1 NM_013231 6380 Hs.533710 FLRT2
GCTGTACAGACCCAATT 1 NM_007085 2829 Hs.269512 FSTL1
GTAACAGTCACAAAATT 1 NM_001483 154 Hs.437367 GBAS
ACAAAGTGGAAAAAAGT 1 NM_006496 902 Hs.73799 GNAI3
CTTTCAATACCAAATTA 1 NM_018178 652 Hs.203699 GOLPH3L
GGGACCTGACCAGCAAC 1 NM_002081 349 Hs.328232 GPC1
GCGGCAGGGTGGGCAGC 1 NM_005332 532 Hs.449632 HBZ
GGTCTCCTCCCCCCAGG 1 NM_015094 2619 Hs.517434 HIC2
GAGGAGCTCTTGTGGAA 1 NM_013332 242 Hs.521171 HIG2
ACAGGTAGTTCTGCCCT 1 NM_018200 1099 Hs.69594 HMG20A
GCAAATAGGAAGAAGCT 1 NM_031243 530 Hs.487774 HNRPA2B1



GCAAATAGGAAGAAGCT 1 NM_002137 500 Hs.487774 HNRPA2B1
GGGGGAATTTTTTAAAC 1 NM_031262 904 Hs.522257 HNRPK
GGGGGAATTTTTTAAAC 1 NM_031263 904 Hs.522257 HNRPK
GGGGGAATTTTTTAAAC 1 NM_002140 904 Hs.522257 HNRPK
CCATTCATCATCCGGCA 1 NM_005968 329 Hs.465808 HNRPM
CCATTCATCATCCGGCA 1 NM_031203 329 Hs.465808 HNRPM
CGGCCGGCGAGGCAGGG 1 NM_014620 1189 Hs.820 HOXC6
TCTTTCTCCTGGTAAAA 1 NM_153693 1312 Hs.820 HOXC6
TCTTTCTCCTGGTAAAA 1 NM_004503 1312 Hs.820 HOXC6
TACGAGCAGCCAAGTTC 1 NM_007216 3473 Hs.437599 HPS5
TACGAGCAGCCAAGTTC 1 NM_181507 3473 Hs.437599 HPS5
TACGAGCAGCCAAGTTC 1 NM_181508 3473 Hs.437599 HPS5
CTCTTTGTTCAGCCACT 1 NM_012262 225 Hs.48823 HS2ST1
CCGGTTCCCTGCTCTCT 1 NM_005345 2184 Hs.520028 HSPA1A
CCAAACACTCAAAAGCC 1 NM_000867 1844 Hs.421649 HTR2B
CGCCGCGCGCCACCCGC 1 NM_203434 1238 Hs.529857 IER5L
TTACTCAGGAACAGCTT 1 NM_014214 717 Hs.367992 IMPA2
AACTGCACTCTATCTGG 1 NM_198266 155 Hs.489811 ING3
AACTGCACTCTATCTGG 1 NM_019071 155 Hs.489811 ING3
AGGTAGCGAGGGTACGG 1 NM_001567 3889 Hs.523875 INPPL1
TATGTGGACAGCACCTG 1 NM_152713 1135 Hs.504237 ITM1
AATCAGTGACGGATCAA 1 NM_018433 3843 Hs.531819 JMJD1A
CTGGCGCGCGGGACCAG 1 NM_004982 2190 Hs.102308 KCNJ8
CCTGTAATCCGAGTCAC 1 NM_176816 799 Hs.482372 KENAE
GCCAGCAAGGGATAAAG 1 NM_015330 598 Hs.474384 KIAA0376
TACCCTGAGCAGCTGCC 1 NM_015104 5467 Hs.370671 KIAA0404
GGTGCAAACCCTAGCGG 1 NM_014867 1463 Hs.5333 KIAA0711
ACATCCTTGCAAATCTG 1 NM_020710 1178 Hs.268488 KIAA1185
AATTACAAAGCTAAGAT 1 NM_020782 3903 Hs.505104 KIAA1340
TGTCCAAATGATAAAAG 1 XM_371590 2234 Hs.110489 KIAA1571
TCTCCAGCACTCTCCCC 1 XM_035497 2569 Hs.143067 KIAA1602
TCAACTCCCCCTCCTGA 1 NM_194286 510 Hs.112577 KIAA1853
AAGCCCACTGCCTCCTG 1 NM_004798 194 Hs.369670 KIF3B
GCCCGCTCGGCCGGGCG 1 NM_007246 3088 Hs.388668 KLHL2
GGTGATCAGTTATGTGG 1 NM_012316 743 Hs.470588 KPNA6
GGACCCGGGTTACAGCC 1 NM_016027 1394 Hs.118554 LACTB2
GATACTGTGCCATCTGT 1 NM_005559 2821 Hs.270364 LAMA1
AGGGCTGACTGCTCCAC 1 NM_002291 1441 Hs.489646 LAMB1
GCCGTTAGCACCTAAGG 1 NM_018192 447 Hs.374191 LEPREL1
AGGAGGGGCAGGGAGCC 1 NM_002314 345 Hs.36566 LIMK1
AGGAGGGGCAGGGAGCC 1 NM_016735 345 Hs.36566 LIMK1
GGGCAGAAGCAGGACAG 1 NM_145239 1341 Hs.556007 LOC112476
GGGTCGGCTTAGCCCAG 1 NM_139016 2188 Hs.16936 LOC128439
TACCACTGAGTAGCCAG 1 NM_207325 3688 Hs.194392 LOC147991
TCAGACTTGCAGGCAGG 1 NM_145284 3337 Hs.404706 LOC159090
CTTTCTATAAACTCATT 1 NM_212554 210 Hs.468488 LOC399818
TGAAACCTGGGAACACA 1 XM_378793 136 Hs.438766 LOC400684
TCTTCAATTTCCTTTGC 1 NM_021179 493 Hs.130746 LOC57821
CAGACCAAAGGAGTGTT 1 NM_032603 2317 Hs.469045 LOXL3
ACCCGGGAACACAGGAG 2 NM_018032 57 Hs.16803 LUC7L
ACCCGGGAACACAGGAG 2 NM_201412 55 Hs.16803 LUC7L
CTGAATAAATAATCCCC 1 NM_000081 146 Hs.532411 LYST
GTAAAAGGAAAATGGCA 1 XM_042066 1414 Hs.508461 MAP3K1



AATATATTCATAAAGTA 1 NM_145686 1952 Hs.431550 MAP4K4
AATATATTCATAAAGTA 1 NM_004834 1952 Hs.431550 MAP4K4
AATATATTCATAAAGTA 1 NM_145687 1952 Hs.431550 MAP4K4
ACCGATGCTTTGCTCAG 1 NM_002398 403 Hs.526754 MEIS1
TATTCTATATTGCCCAA 1 NM_006838 857 Hs.444986 METAP2
CTCCTTCCGCAGCGCCT 1 NM_014275 894 Hs.437277 MGAT4B
CTCCTTCCGCAGCGCCT 1 NM_054013 894 Hs.437277 MGAT4B
CCCCAGGTGGAGGACGG 1 NM_024107 1342 Hs.181391 MGC3123
CCCCAGGTGGAGGACGG 1 NM_177441 1605 Hs.181391 MGC3123
GGGGTAAGGCCTGAATG 1 NM_020948 1465 Hs.21757 MI-ER1
GAGGGTGGGGGGACTGA 1 NM_199054 1021 Hs.515032 MKNK2
TTCTGGCAAGCGGTGGA 1 NM_002430 4110 Hs.268515 MN1
CCATAGTCCTGGCTACT 1 NM_024761 2758 Hs.369022 MOBKL2B
GGCGTGAAAATATTGCA 1 NM_024761 2590 Hs.369022 MOBKL2B
GTAGCGGATGCGTTTCA 1 NM_014180 251 Hs.483924 MRPL22
ACAATGTCATTGTTGCC 1 NM_145212 146 Hs.346736 MRPL30
ACAATGTCATTGTTGCC 1 NM_145213 146 Hs.346736 MRPL30
CATTAATGAATAGTATG 1 NM_182640 916 Hs.469537 MRPS9
AGGTCTTCTATGGCATC 1 NM_000179 1781 Hs.445052 MSH6
AAGCCCCAACCTAGGTA 7 NM_002442 810 Hs.158311 MSI1
AAAGGGATAAGGTGGCC 1 NM_000254 4584 Hs.498187 MTR
TGGAAGAACTGGAGGCC 1 NM_152832 331 Hs.25723 MTVR1
GTGACTTATAGCCAGGA 1 NM_002473 7288 Hs.474751 MYH9
TTTAAGAAAACAGAAGC 1 NM_013262 401 Hs.484738 MYLIP
GTGGGGGCAACTCAAAC 1 NM_004539 152 Hs.465224 NARS
GGTAGCCGCCGGGGTCC 1 NM_020170 3675 Hs.501420 NCLN
TCACCCTCCCTTTGGAG 1 NM_006617 241 Hs.527971 NES
ATGGAACTACTCATCCC 1 NM_015384 1437 Hs.481927 NIPBL
ATGGAACTACTCATCCC 1 NM_133433 2506 Hs.481927 NIPBL
GTTCCAAGAATGGTAGG 1 NM_181689 1128 Hs.504703 NNAT
GTTCCAAGAATGGTAGG 1 NM_005386 1209 Hs.504703 NNAT
GGCTCCACAGTCACAGG 4 NM_007363 1854 Hs.533282 NONO
AGTTCCCCCTGGGAGTC 1 NM_024408 6414 Hs.487360 NOTCH2
CTGTTACAAAACTCCTG 1 NM_003297 680 Hs.108301 NR2C1
AGCATCTCTCTCTGTTT 1 NM_022731 716 Hs.213061 NUCKS

AACATTTATTTTTGTTA 1
NM_00100574

5 16 Hs.509909 NUMB

AACATTTATTTTTGTTA 1
NM_00100574

3 16 Hs.509909 NUMB
AACATTTATTTTTGTTA 1 NM_003744 16 Hs.509909 NUMB

AACATTTATTTTTGTTA 1
NM_00100574

4 16 Hs.509909 NUMB
CTGAGAAATGGGCTGAG 1 NM_018230 1312 Hs.12457 NUP133

CCTATGCGTTATTACCT 1
NM_00100856

4 798 Hs.507537 NUPL1
CCTATGCGTTATTACCT 1 NM_014089 798 Hs.507537 NUPL1
ATCCACGTTCCCATCAC 1 NM_016118 1817 Hs.173024 NYREN18
AAGGCCTGGTTATGTCT 1 XM_047995 2058 Hs.155915 ODZ2
CGTTTTATCTGCTTGGA 1 NM_000436 2910 Hs.278277 OXCT1
CAGTAAAATACAAAGTC 1 NM_005109 37 Hs.475970 OXSR1
TCGGACACGGATCAGGC 1 NM_000918 2392 Hs.464336 P4HB
GTGGACGGTGGCAGGGG 1 NM_002584 672 Hs.113253 PAX7
GTGGACGGTGGCAGGGG 1 NM_013945 661 Hs.113253 PAX7



TTATCATCTCTGCTGCT 1 NM_006713 1092 Hs.229641 PC4
GCTCGGCGTCAGCGCTG 1 NM_004708 533 Hs.443831 PDCD5
CTGGGTTTTTCACCAGC 1 NM_003681 4225 Hs.284491 PDXK
CGCAGCCCCCGTCCCGC 1 NM_015946 2263 Hs.519304 PELO
TGAATTTGCTTTGGAGA 1 NM_002857 1258 Hs.517232 PEX19
TACTTGCCCTTGCGCTC 1 NM_007350 1256 Hs.558462 PHLDA1
TAGTGGGAGACTGGACA 1 NM_006099 1402 Hs.435761 PIAS3
TCTCTTGATATAGTCCT 1 NM_002647 2865 Hs.464971 PIK3C3
CGCTTCTCCCAGCCGGG 1 NM_006221 931 Hs.465849 PIN1
CCGCCGCCGCCACCTCC 1 NM_032812 1955 Hs.498939 PLXDC2
ACAGCCTGCAAGTTCAC 1 NM_015425 4327 Hs.26962 POLR1A
CTTCTTGCCACAAATCC 1 NM_000938 3629 Hs.479814 POLR2B
GGCGGCCCCCAGCAGCG 1 NM_052932 3041 Hs.503709 PORIMIN
CACACATTGGAGGATAT 1 NM_002716 1262 Hs.269128 PPP2R1B
GGATACTCAGCAACGCT 1 NM_178013 458 Hs.432401 PRIMA1
GGATACTCAGCAACGCT 1 NM_178004 458 Hs.432401 PRIMA1
CTGGGCTCTGGAGCCGC 1 NM_004697 2704 Hs.374973 PRPF4
TTCTGAATTGTTTCCAG 1 NM_002815 338 Hs.443379 PSMD11
GTGGTACGGGGACAACC 1 NM_080840 152 Hs.269577 PTPRA
GTGGTACGGGGACAACC 1 NM_080841 152 Hs.269577 PTPRA
GTGGTACGGGGACAACC 1 NM_002836 152 Hs.269577 PTPRA
TGTGGCCTCTGTAGCCG 1 NM_080841 636 Hs.269577 PTPRA
TGTGGCCTCTGTAGCCG 1 NM_002836 636 Hs.269577 PTPRA
TGTGGCCTCTGTAGCCG 1 NM_080840 636 Hs.269577 PTPRA
CCTGCTCAGCAGCGCGG 1 NM_004884 3042 Hs.128292 PUNC
TGGGTACCAGGCAGAGG 1 NM_004884 194 Hs.128292 PUNC
ACTGCATACAAGATGGA 1 NM_012414 1550 Hs.558471 RAB3-GAP150
CACTGTATTTATCCCTG 1 NM_002874 2362 Hs.521640 RAD23B
TGTAAAGCTGATAGAGT 1 NM_020850 2013 Hs.368569 RANBP10
GCATTCTCTGCTCTTCA 1 NM_002883 452 Hs.183800 RANGAP1
GAGTGCTGGTTTCTGGC 1 NM_133452 244 Hs.337228 RAVER1
TAGCATTACATTCAACA 1 NM_002893 338 Hs.495755 RBBP7
CAATACTGACAAATTTG 1 NM_016316 139 Hs.443077 REV1L
CGGACGGCAAAGGTCAG 1 NM_020211 2057 Hs.271277 RGMA
ATGATTTAATTCAGTAG 1 NM_018307 2272 Hs.462742 RHOT1
GACCGAAGCAGAGGTCG 1 NM_004292 1500 Hs.1030 RIN1
GCATTTGGTAATTCGTC 1 NM_025065 94 Hs.481202 RPF1
GTGCAAACAGAAATGCA 1 NM_002948 338 Hs.558382 RPL15
CATCCTCCACCCCTGCC 1 NM_003161 673 Hs.463642 RPS6KB1
CCTGAGGTGACTGGCGG 1 NM_004348 343 Hs.535845 RUNX2
ATTTCACATCCAGAAGC 1 NM_014363 81 Hs.159492 SACS
CTGCCTCTCAATGTCGG 1 NM_173551 3249 Hs.558684 SAMD6
ATGAGGCGCTGTGCCAG 1 NM_012235 2416 Hs.531789 SCAP
CTGATGCGACTGAAGCG 1 NM_182895 1898 Hs.474251 SCARF2
CTGATGCGACTGAAGCG 1 NM_153334 1898 Hs.474251 SCARF2
GAGGGAAGGAGGAGCAG 1 NM_019064 402 Hs.435719 SDK2
TCTATGCCACAGCACAG 1 NM_004186 566 Hs.32981 SEMA3F
ATAGAGTAAACAAAAGT 1 NM_020796 1045 Hs.156967 SEMA6A
CACACTGTTTCTGGGGA 1 NM_000602 956 Hs.414795 SERPINE1
TCTGTGGTCAAGGGGCG 1 NM_005066 2984 Hs.355934 SFPQ
TCATTGTACAAGGATAG 3 NM_007373 889 Hs.104315 SHOC2
TAGTGCTCAGCCACACG 1 NM_006749 412 Hs.549066 SLC20A2
GCGGGCGGGAGGCGGGG 1 NM_005984 1518 Hs.111024 SLC25A1



GGGAGTTAGCAAACTGA 1 NM_133496 1310 Hs.533903 SLC30A7
TGTCTGGGCAGCTGTCC 1 NM_003486 2487 Hs.513797 SLC7A5
ATTATGGCAACAATAGG 1 NM_024624 3362 Hs.526728 SMC6L1
GTAGCCATTCATACCAC 1 NM_023071 2209 Hs.146679 SPATS2
CGTGTGAAATATGAAGA 1 XM_031553 302 Hs.529577 SR140
TGCCTGGCAAGACACTT 1 NM_020762 2336 Hs.450763 SRGAP1
ATTGCAGACATTTACAA 1 NM_012446 119 Hs.102735 SSBP2
TTAACTTTTCGGGATAA 1 NM_003957 1120 Hs.170819 STK29
CTATGGGCTGGCCTCAG 1 NM_015690 724 Hs.471404 STK36
GCGCCGCGCGGCACGGC 1 NM_005861 1233 Hs.533771 STUB1
GCACAGACATATGTGGC 1 NM_181491 138 Hs.78354 SURF5
GCACAGACATATGTGGC 1 NM_006752 134 Hs.78354 SURF5
GCACAGACATATGTGGC 1 NM_133640 134 Hs.78354 SURF5
CCGGCCTGGGAGGCCCC 5 NM_003186 487 Hs.503998 TAGLN

CCGGCCTGGGAGGCCCC 5
NM_00100152

2 487 Hs.503998 TAGLN
CTTTCCCTCCTGCAGCT 1 NM_003186 537 Hs.503998 TAGLN

CTTTCCCTCCTGCAGCT 1
NM_00100152

2 537 Hs.503998 TAGLN
CTGTTTAAGAACTCTCA 1 XM_051081 1962 Hs.500598 TBC1D12
TTCTTTGCAGTATCCTG 1 NM_020755 1299 Hs.146668 TDE2
GAGTTGGCCTTGCAGGC 1 NM_014466 258 Hs.127111 TEKT2
CTCCAGCACAGAAGTTG 1 NM_003238 466 Hs.133379 TGFB2
AGTAAGCCACCGATATC 2 NM_012338 1761 Hs.16529 TM4SF12
CTGGCTCTGAGAAATCC 2 NM_015008 899 Hs.477547 TMCC1
CACTTGTCCAGGTCCGC 1 NM_016639 810 Hs.355899 TNFRSF12A
AGATGGTCACTATTTAG 2 NM_001067 784 Hs.156346 TOP2A
CCCTCGAAGCTCCGGTT 1 NM_006670 1360 Hs.82128 TPBG
CACGGGGAGAGAAGTTG 1 NM_177452 1825 Hs.13303 TRAPPC6B
GCTAGTTTCACTTGCAA 1 NM_013381 2249 Hs.199814 TRHDE
CCAGCCAGGGGTGGGGC 1 NM_005762 1051 Hs.467408 TRIM28
ATCATAACTAAGCCTTG 1 NM_021648 924 Hs.284141 TSPYL4
AAACCCAAGCTGAATAG 3 NM_025250 42 Hs.440899 TTYH3
CTTATCTGATGTGGTGC 1 NM_003324 426 Hs.524187 TULP3
TTTCCATCAAAGTAGAG 1 NM_130466 523 Hs.374067 UBE3B
TTTCCATCAAAGTAGAG 1 NM_183414 523 Hs.374067 UBE3B
TTTCCATCAAAGTAGAG 1 NM_183415 519 Hs.374067 UBE3B
GCGCAGGCGGGCCGGGG 1 NM_003565 4958 Hs.47061 ULK1
AAAAATACACATTAGGC 1 NM_014683 1103 Hs.168762 ULK2
GCCCGGCCTGCCGCCGG 1 NM_014683 5530 Hs.168762 ULK2
GGCCTGGCTTTTACGAC 1 NM_023011 1367 Hs.533855 UPF3A
GGCCTGGCTTTTACGAC 1 NM_080687 1367 Hs.533855 UPF3A
GTGCTGTTGTTGACAGG 1 NM_199512 1751 Hs.477128 URB
GTGCTGTTGTTGACAGG 1 NM_199511 1751 Hs.477128 URB
GCTGCCCGTTTCATTGG 1 NM_005153 2894 Hs.136778 USP10
CAAGATATCTTACAAGA 1 XM_042698 2234 Hs.462492 USP22
TCTCTCAGTTCAACCCT 1 NM_032582 5865 Hs.132868 USP32
CAATGTGCTGAGCCAGT 1 NM_021645 2445 Hs.512963 UTP14C
CAACATCAGGGTAGAGA 1 NM_003371 1044 Hs.369921 VAV2
AGCCCGGCTTCCGAGCG 1 NM_003376 870 Hs.73793 VEGF
GCATTTCACATCAATTT 1 NM_022459 1017 Hs.507452 XPO4
GCTTCTGCCTCCCCCGA 1 NM_006106 4877 Hs.503692 YAP1
ACTTGGGCAGTGAGTGG 1 NM_006555 836 Hs.520794 YKT6



ACAAACACCAGACATTA 1 NM_012479 266 Hs.520974 YWHAG
TTAGTAATACAGTGCTG 1 NM_007146 71 Hs.463569 ZNF161
ATTGGCTTGGCAGTGAA 1 NM_005095 1725 Hs.269211 ZNF262
GCAGAGTACTTCTAGGT 1 XM_372267 650 Hs.348963 ZNF275
CAACAAGATAATGGATT 1 NM_020657 156 Hs.287374 ZNF304
TGATAGAAGTCTGGAAG 1 NM_020933 57 Hs.465829 ZNF317
CCCTGCTCTGGCCAAAG 1 NM_203282 3603 Hs.434406 ZNF539
CCCTGCTCTGGCCAAAG 1 NM_004876 1186 Hs.434406 ZNF539
TCCTGCATTAGCTGCTG 1 NM_003461 1058 Hs.490415 ZYX
TGGAAGTTCTTGTCCAG 1 NM_003461 572 Hs.490415 ZYX
*Database Annotating antisense tags UniGeneID
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Microphthalmia and anophthalmia are at the severe end of the spectrum
of abnormalities in ocular development. Mutations in several genes have
been involved in syndromic and non-syndromic anophthalmia.
Previously, RAX recessive mutations were implicated in a single patient
with right anophthalmia, left microphthalmia and sclerocornea. In this
study, we report the findings of novel compound heterozygous RAX
mutations in a child with bilateral anophthalmia. Both mutations are
located in exon 3. c.664delT is a frameshifting deletion predicted to
introduce a premature stop codon (p.Ser222ArgfsX62), and c.909C.G is
a nonsense mutation with similar consequences (p.Tyr303X). This is the
second report of a patient with anophthalmia caused by RAX mutations.
These findings confirm that RAX plays a major role in the early stages of
eye development and is involved in human anophthalmia.
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Toulouse, Hôpital Purpan, Service
d’Ophtalmologie, Toulouse, France

Key words: anophthalmia –
microphthalmia – OAR transactivation
domain – RAX

Corresponding author: Professor Patrick
Calvas, Service de Génétique Médicale,
Pavillon Lefebvre, CHU Purpan, Place du
Dr Baylac, 31059 Toulouse Cedex 9,
France.
Tel.: 133 5 61 77 90 79;
fax: 133 5 61 77 90 73;
e-mail: calvas.p@chu-toulouse.fr

Received 27 March 2008, revised and
accepted for publication 3 July 2008

Microphthalmia and anophthalmia are at the
severe end of the spectrum of abnormalities in ocu-
lar development. The combined occurrence rate for
these two malformations is 1/10,000 births (1, 2).
Mutations in several genes have been isolated in
syndromic and non-syndromic anophthalmia. Het-
erozygous mutations in SOX2 account for approx-
imately 10% of anophthalmia (3, 4). Other genes
have been identified as causing anophthalmia or
extreme microphthalmia in humans (PAX6,
OTX2, CHX10, STRA6, and BMP4) (5, 6). These
latter genes are implicated in a very small propor-
tion of affected individuals, implying wide genetic
heterogeneity to match the phenotypic variability.
The RAX homeobox gene is essential for verte-

brate eye development. RAX transcription begins

in the anterior neural plate and then simulta-
neously in the eye field and in the ventral forebrain
(7). Even before PAX6, its expression is critical to
defining the eye field during early development in
animal models (8). The lack of RAX expression
hampers optic vesicle formation and leads to brain
size reduction in mouse, while ectopic expression
induces the appearance and proliferation of reti-
nal pigment epithelium cells in Xenopus (9). The
function of the RAX gene in eye development is
yet not fully understood, but there is additional
evidence from animal studies that it is involved
in the proliferation of neural and retinal cells
(10). In humans, the role ofRAX in eye formation
is clearly supported by the association of anoph-
thalmia and sclerocornea in a patient bearing
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a truncating mutation and a missense mutation,
both located in the DNA-binding helix of the ho-
meodomain and reducing the DNA-binding abil-
ity of the resulting protein (11). We report in this
study the case of a new patient with bilateral
anophthalmia associated with two distinct and
novel truncating mutations of the RAX gene.

Patient, materials and methods

Patient

The proband, a 2-year-old girl, is the third child
born to non-consanguineous, healthy Algerian
parents. There was no relevant familial history
of ocular malformation or remarkable disease.
The pregnancy was uneventful, and the prenatal
ultrasonography was not suggestive of anomaly.
Delivery occurred at 41 weeks of amenorrhea
without neonatal difficulties. Birth weight was
3200 g. At birth, bilateral small palpebral fissures
were noted without other malformation or dys-
morphic features. Anophthalmia was subsequently
confirmed. Psychomotor development was within
the normal range with head held up at 3 months,
sitting at 10 months, and walking at 1 year.
Speech developed normally. A slight growth
defect was recorded at 14 months, with weight at
20.5 standard deviation (DS) (9020 g), height at
21 DS (72 cm) and head circumference at22 DS
(44 cm). Abdominal and pelvic ultrasonography
detected no visceral anomalies. Orbital and cra-
nial magnetic resonance imaging scan showed
bilateral absence of eyes with only fibrous tissue
in the orbits (Fig. 1). Optic nerves and chiasma
were hypoplastic. Extraocular muscles appeared
to be relatively preserved. The hypothalamus
and pituitary glandwere normal. No cerebralmal-
formation was observed.

Molecular analysis

Parents gave their informed consent, according to
French law, to participate in this study. DNAwas
isolated by standard procedures from peripheral
white blood cells of the proband. Routine exami-
nation ruled out rearrangements or point muta-
tions of SOX2 and PAX6 genes. The three RAX
exons, with exon–intron borders, were amplified
by polymerase chain reaction (PCR) using previ-
ously published primers (11). PCR fragments were
subsequently purified with QIAquick Gel Extrac-
tion Kit (QIAGEN SA, Courtaboeuf, France),
and both strands were sequenced using Big
Dye DNA sequencing kit (Applied Biosystems,
Warrington, UK). Reactions were analyzed in
an ABI 3100 sequencer (Applied Biosystems).

Sequence variations were numbered considering
adenine of the ATG initiation codon as the
first nucleotide (GenBank accession no. NM_
013435.2). The changes were verified by perform-
ing independent PCRand sequencing reactions on
the proband’s DNA.
Exon 3 of the RAX gene was PCR amplified

from the patient’s DNA as above (11). The result-
ing 602-bp fragments were cloned into the pGEM-
T vector (Promega, Charbonnières, France).
JM109 competent cells were transformed and
grown on Luria-Bertani agar plates. DNAs from
10 expanded LacZ-deficient clones were extracted
using Promega Wizard miniprep purification sys-
tem. Further sequencing was performed using the
ABI-Big Dye terminator 3.1 on an ABI 3100
sequencer (Applied Biosystems).

Results

Sequence analysis of the proband’s DNA revealed
two novel mutations, both located in exon 3 of the
RAX gene. c.664delT frameshifting deletion gen-
erates a premature stop codon (p.Ser222-
ArgfsX62). c.909C.G is a nonsense mutation
changing a tyrosine at position 303 to a stop
codon (p.Tyr303X). These mutations were not
found in a panel of 96 control chromosomes. Both
are predicted to lead to a truncated protein so that,
if not submitted to nonsense-mediated mRNA
decay, the predicted RAX proteins lack the puta-
tive otp, aristaless, rax (OAR) transactivation
domain and are non-functional (7).

Fig. 1. Magnetic resonance imaging scan of the proband.
Note absence of ocular structures replaced by fibrous tissue.

RAX mutations in anophthalmia
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As this family left the country, DNA from the
proband’s parents was unavailable, and thus, seg-
regation analysis of these two mutations was
impossible. Nevertheless, the c.664delT and the
c.909C.G mutations were shown to lie in trans
after sequencing of the cloned products of the pa-
tient’s RAX exon 3 (Fig. 2).

Discussion

This is the second report of human anophthalmia-
associated mutations of the RAX homeobox gene
(11). While the parents were not carefully exam-
ined, they did not complain of any visual impair-
ment at the time their child was evaluated. The
probandwas demonstrated to bear composite het-
erozygous mutations on both alleles of the RAX
gene. The parents are thus likely to each be healthy
carriers of a heterozygous mutation, unless one of
these mutations appeared de novo. This would
confirm the recessive inheritance of RAX muta-
tions in ocular dysgenesis.
The phenotype, reported in this study, consist-

ing in bilateral and symmetric anophthalmia is
more severe than the one previously described.
This first patient had right anophthalmia and left
microphthalmia and sclerocornea (11). One of the
causative mutations (p.Gln147X) induced, as pre-
dicted for the two mutations reported in this
study, a truncation of the protein. The other was
a missense p.Arg192Gln, with a milder effect on
the protein, which conserved a low activity. This
could suggest that the observed phenotypic vari-

ability be correlated with the mutation severity.
However, definite conclusions cannot be drawn
in view of the limited number of observations.
In animal models, all truncating mutations have

been reported to have severe effects and lead to the
absence of eye development (9, 12, 13). In con-
trast, antisense or morpholino inhibition in Xen-
opus acts in a dose-dependant manner, leading to
graduated phenotypes ranging from eye reduction
to anophthalmia (14). In this report, the location
of the mutations in the last exon makes nonsense-
mediated mRNA decay unlikely (15). This is in
accordance with the observation that, in the cel-
lular model used by Voronina et al (11), the more
proximal p.Gln147X mutation allowed transla-
tion of a large amount of protein. These facts sug-
gest that the twomutations we report in this study
lead to truncated proteins, both lacking the C-
terminal part containing the critical OAR funct-
ional domain (7). Absence of RAX C-terminus is
known to abolish its proliferative effect in Xeno-
pus (14). Furthermore, regulation of transcrip-
tional activity of several other homeobox genes
by the OAR domain has been suggested in other
studies (7, 16, 17). Thus, p.Ser222ArgfsX62 and
p.Tyr303X are thought to drastically impair RAX
target genes expression. The precise delineation of
the mechanistic effects of these mutations must
therefore await binding studies, and an important
goal for future research will be the identification
of the putative genes that can modulate RAX
activity through direct interaction.
To date, no cerebral malformation has been

associated with RAX mutations in man. This is

Fig. 2. Electropherograms showing the two mutations on RAX exon 3 (a and d) in comparison with wild-type sequence (c and
f). Sequencing of cloned patient’s exon 3 amplimers in a pGEM-T vector (b and e) demonstrated that mutations were not
located on the same alleles. Mutated codons are underlined.

Lequeux et al.
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surprising in the light of the observations in insect,
batracian, fish and rodent models, where RAX
consistently participates in brain development
and homozygous null alleles cause severe cerebral
malformations (9, 14, 18, 19). A similar situation
is seen, however, with respect to theHesx1 homeo-
box-containing transcription factor, which in
mice has a similar early role and an overlapping
domain to that of Rax but is downstream of Pax6
and Otx2 (20) and Rax itself (21). While Hesx1
mouse mutants can demonstrate anophthalmia in
addition to cerebral anomalies, human patients
have either isolated pituitary malformations or
septo-ocular dysplasia, with no further retinal
involvement (22). In a complementary fashion
and unlike SOX2 or OTX2 mutations, no extra-
ocular malformations have been observed inRAX
ocular dysgenesis patients. The patient reported
previously by Voronina et al. (11) was diagnosed
as autistic. The patient reported in this study
seems to have normal psychomotor development,
although she is too young to exclude the possibil-
ity of developmental delay and/or autistic fea-
tures. Thus, RAX phenotypic spectrum is still
unclear, and due to the limited number of cases
reported so far, the existence ofRAX involvement
in syndromic forms of anophthalmia cannot be
excluded.
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Index 

case
Heredity Mutation

G-banding 

karyotype

Skeletal  

X-rays 

(1)

Eye 

examination 

(2)

Cardiac 

echography (3)
Holter-ECG (4)

Brain CT scan 

or MRI (5)

Kidney 

echography 

(6)

Tracheostomy 

(7)

Gastrostomy 

(8)

Polysomnography 

(9)

Hearing 

(10)

Psychomotor 

development 

(11)

JMP F1 del5' N N N                 N VOA N N  +  - Severe UAO N N

GD Sp N N N (+ VEP, ERG) N VOA N N  +  - Severe UAO

 -40db 

(Seromucous 

otitis)

N

TD Sp del3' N N N (+ VEP, ERG) N N N N  +  - Severe UAO N            N

NG Sp N N N (+ VEP) N N  nd N  + NIMV  - Severe UAO

 -30db 

(Seromucous 

otitis)

N

SA Sp del5'  nd N N Atrial SD N N nd  -  - Normal oxymetry nd N

NL F3 N N N (+ VEP, ERG) N VOA N N  +  - Severe UAO

 -30db 

(Seromucous 

otitis)

N

LM Sp N  N N N N
Mild cortical 

atrophy
N  +  - Severe UAO N

Transient 

hyperlaxity

ER F4 N N Astygmatism N N nd nd  -  -
Mild and transitory 

UAO

 -30db 

(Seromucous 

otitis)

N

MF Sp N N N N N nd nd  -  - Normal oxymetry N N

TF F2 mutHCNE N N Mild myopia
Mild septal 

hypertrophy
N  N N  +  + Severe UAO N N

AD Sp N N N N nd N N  -  +
Mild and transitory 

UAO
nd N

MB F5  N
Delayed 

bone age 
N

Retroesophageal 

artery
VOA nd N  +  + Severe UAO

 -30db 

(Seromucous 

otitis)

N

Legend:

(1) In order to eliminate a collagen anomaly, all children get a vertebral and limb X-Ray in the neonatal period

(2) In order to eliminate a congenital myopia or an ocular malformation, all children have an ophtalmologic assessment before 6 months of age. VEP = Visual evoked potential ; ERG = electroretinogram

(3) Cardiac echography is performed in the neonatal period

(4) Holter- ECG is performed between 1 and 2 months of age. VOA = Vagal over-activity is frequently observed at this age and resolves after the age of 1 year. 

(5) Brain imaging is not systematically performed because it is almost always normal if clinical examination is normal.

Nature Genetics: doi:10.1038/ng.329

(6) Kidney and urinary track echography is not systematically performed because it is almost always normal if clinical examination is normal.

(7) Tracheostomy and non-invasive mask ventilation (NIMV) are the 2 treatments of severe upper airway obstruction (UAO) in our center. 

(8) All the children of this series had transient gastric tube feeding but 3 of them needed gastrostomy because their gastro-oesophageal reflux was severe or the duration of their tube feeding was long (over 

1 year).

(9) Oxymetry (transcutaneous O2 and CO2 pressure) is systematically and regularely recorded for all children in the first weeks of life, continued monitoring is then dependant on clinical data. A full 

polysomnography is performed if the oxymetry and clinical observations are not sufficient then the UAO gravity has to be quantified.

(10) Audition is systematically tested between 9 and 12 months of age

(11) Psychomotor and cognitive development is regularely evaluated during infancy

N = normal

nd = not done

Nature Genetics: doi:10.1038/ng.329
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Highly conserved non-coding elements on either side
of SOX9 associated with Pierre Robin sequence
Sabina Benko1,14, Judy A Fantes2,14, Jeanne Amiel1,3, Dirk-Jan Kleinjan2, Sophie Thomas1, Jacqueline Ramsay2,
Negar Jamshidi4, Abdelkader Essafi2, Simon Heaney2, Christopher T Gordon4, David McBride2, Christelle Golzio1,
Malcolm Fisher2, Paul Perry2, Véronique Abadie5,6, Carmen Ayuso7, Muriel Holder-Espinasse8, Nicky Kilpatrick4,
Melissa M Lees9, Arnaud Picard10,11, I Karen Temple12, Paul Thomas4, Marie-Paule Vazquez10,11,
Michel Vekemans1,3,5, Hugues Roest Crollius13, Nicholas D Hastie2, Arnold Munnich1,3,5, Heather C Etchevers1,
Anna Pelet1, Peter G Farlie4, David R FitzPatrick2,14 & Stanislas Lyonnet1,3,5,14

Pierre Robin sequence (PRS) is an important subgroup of cleft
palate. We report several lines of evidence for the existence
of a 17q24 locus underlying PRS, including linkage analysis
results, a clustering of translocation breakpoints 1.06–1.23 Mb
upstream of SOX9, and microdeletions both B1.5 Mb
centromeric and B1.5 Mb telomeric of SOX9. We have also
identified a heterozygous point mutation in an evolutionarily
conserved region of DNA with in vitro and in vivo features of
a developmental enhancer. This enhancer is centromeric to the
breakpoint cluster and maps within one of the microdeletion
regions. The mutation abrogates the in vitro enhancer function
and alters binding of the transcription factor MSX1 as
compared to the wild-type sequence. In the developing mouse
mandible, the 3-Mb region bounded by the microdeletions
shows a regionally specific chromatin decompaction in cells
expressing Sox9. Some cases of PRS may thus result from
developmental misexpression of SOX9 due to disruption of
very-long-range cis-regulatory elements.

Pierre Robin sequence (PRS, OMIM 261800)1, defined by
micrognathia, glossoptosis and a posterior U-shaped cleft palate,
is a complex anomaly resulting in life-threatening feeding
and breathing difficulties in 1/2,000–1/10,000 of neonates. PRS
represents an embryological sequence in which the primary
abnormality is in mandibular growth, with a retropositioned
tongue resulting in a physical obstruction of palatal shelf elevation
and/or fusion. The core triad of features suggests that PRS may be
considered a cranial neurocristopathy2.

We mapped an autosomal dominant and highly penetrant PRS
locus to chromosome 17q24.3–25.1 (the PRS1 locus) by genetic
linkage analysis in 12 affected individuals from a four-generation
PRS-affected family (F1) (Fig. 1a). The maximum lod score of 3.32
(recombination fraction y ¼ 0) for the PRS1 locus was obtained in
between polymorphic DNA markers D17S795 and D17S929. This
genetic interval of 5.4 Mb encompasses a gene desert of 2.46 Mb
(Fig. 1b). SOX9, KCNJ2, KCNJ16 and MAP2K6 were selected as
candidate genes on the basis of expression pattern, their involvement
in molecular pathways relevant to mandibular development, or the
phenotypes of available knockout mice. No gross genomic alterations
or coding-sequence mutations could be detected by direct sequencing
of those genes in six individuals with PRS from family F1.

Concomitantly, we identified three independent families with
autosomal dominant, isolated PRS segregating with different recipro-
cal translocations, each of them sharing one breakpoint at 17q24
(Fig. 1a). Family T1 is a father and daughter with PRS who carry
the translocation t(2;17)(q32;q24), which occurred de novo in the
father. The 2q and 17q breakpoints lie within the BAC clones CTD-
2053I13 and RP11-1003J3, respectively. The 17q breakpoint was
narrowed to 113–149 kb from the centromeric end of RP11-1003J3
(Supplementary Fig. 1a online). In family T2, the breakpoint-span-
ning clones were RP11-420O5 on 17q and RP11-496M2 on 5q
(ref. 3; Supplementary Fig. 1b). In family T3, PRS segregates with
t(2;17)(q24.1;q24.3)4. RP11-510H11 on 2q and RP11-1003J3 (as
above) on 17q spanned the breakpoints. Southern blotting and inverse
PCR localized the breakpoint to Chr17:66,400,448 (NCBI Build 36.1;
Supplementary Fig. 2 online). The 2q32, 5q15 and 2q24.1 breakpoints

Received 19 May 2008; accepted 12 January 2009; published online 22 February 2009; doi:10.1038/ng.329
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in families T1, T2 and T3 did not disrupt any known genes. The 17q24
breakpoints cluster within 160 kb in the gene desert between the genes
KCNJ2 (Chr17:65,677,271–65,687,778) and SOX9 (Chr17:67,628,756–
67,634,155; Fig. 1b). Another PRS-associated translocation in the
same region has been reported5. Comparative genomics analysis
indicated that this region contains over 200 highly conserved non-
coding elements (HCNEs; Fig. 1c) with 475% identity over 350 bp
across humans, rhesus, dog and mouse6–8. The notable clustering of
these breakpoints led us to hypothesize that one or more HCNEs
centromeric to the T3 breakpoint had a critical regulatory function in
mandibular development. We constructed multiple stable reporter
transgenic lines of mice to test the potential enhancer function of an
HCNE immediately centromeric to the T3 breakpoint (9CE4Z,
Chr17:66373309–66376106; Fig. 2a–c). Embryos from these lines
showed reporter expression in the proximal mandibular mesenchyme,
which is compatible with the pathogenesis of PRS (Fig. 2a,b).

As a first step to determine whether specific regulatory mutations at
this chromosomal locus cause PRS, we designed a high-density-tiling-
path comparative genomic hybridization (CGH) array extending
1.94 Mb centromeric (5¢) and 1.76 Mb telomeric (3¢) to SOX9
(Chr17:65,689,756–69,390,437; Fig. 1b), as breakpoints down-
stream of SOX9 have been associated with campomelic dysplasia
featuring PRS9. We observed heterozygous deletions in 3 of 12
unrelated cases of PRS (Table 1, Fig. 1b): a centromeric 75-kb deletion
(Chr17:66,175,000–66,250,000; Fig. 1c, Supplementary Fig. 3a online)
segregating with PRS in family F1, and de novo deletions in two
individuals with sporadic PRS, respectively a centromeric deletion of
4319 kb (Chr17:65,730,750–66,049,600; Supplementary Fig. 3b) in
individual Sp4 and a de novo telomeric 36-kb deletion
(Chr17:69,153,000–69,189,000; Supplementary Fig. 3c) in individual
Sp2. Each of the three alterations comprised at least 1 and up to 427
HCNEs (Table 1).

Subsequent DNA sequencing analysis, in the remaining nine
individuals with PRS who did not carry deletions, of the ten
HCNEs located in the F1 deletion identified a heterozygous T-to-C
transition in PRS-affected family F2 (Fig. 1a)—absent in 440 control
chromosomes—within an HCNE that shows 94% identity between
human and mouse over a distance of 220 bp (HCNE-F2;
Chr17:66,187,898; Table 1, Fig. 1c). To determine whether HCNE-
F2 has tissue-specific enhancer properties, we performed in vivo
reporter assays. A transient transgenic assay using the wild-type
HCNE-F2 showed strong activity in the craniofacial region in
mouse embryos at 11.5 days post coitum (d.p.c.) (Fig. 2c,d). In
addition, transcription-factor binding-site predictions identified
MSX1, EN1 and ZNF628 (ZEC) as potential transcription factors
for which binding to the HCNE-F2 would be altered by the F2
mutation. Although ZNF628 and EN1 were excluded on the basis of
lack of expression within the human first branchial arch, MSX1
(OMIM 142983) is a transcriptional regulator expressed in the
human first pharyngeal arch10 (Supplementary Fig. 4q online) that
is required for the development of craniofacial skeletal elements,
including the palate and mandible, in mice11 and has been found to
be mutated in some families with orofacial clefting. Electrophoretic
mobility shift assay (EMSA) analysis, using in vitro–transcribed and –
translated MSX1, showed significantly greater MSX1 binding (by 33%,
P ¼ 0.031) to the mutant target sequence than to the wild-type
consensus sequence (Fig. 3a). A control EMSA experiment was
performed with the nearby POU2F1 (Supplementary Fig. 4q) binding
site, in which we observed no affinity difference in POU2F1 binding to
either the wild-type or the mutant probes (data not shown). Chro-
matin immunoprecipitation (ChIP) from mouse cell lines derived
from 11.5-d.p.c. embryonic mandibular and maxillary mesenchyme
(mdMEPA and mxMEPA) confirmed that endogenous Msx1 binds
wild-type HCNE-F2 (Fig. 3b). In addition, we performed in vitro
assays using three cell types (HEK293, SKNBE(2c) and mdMEPA)
with wild-type or mutant HCNE-F2 or minimal promoter reporter
constructs12. As compared to the minimal promoter, the wild-type
HCNE-F2 had an enhancer activity only in mdMEPA that was
abolished when the element was mutated (P ¼ 0.017, Fig. 3c).
These findings suggest that the family F2 mutation would abolish
enhancer activity of the HCNE-F2 in a tissue-specific manner.

Finally, further ChIP analysis of the HCNE-F2 using the mdMEPA
cell line showed strong binding of p300, CTCF and K4-methylated
histone H3 (K4Me) to this region (Fig. 4a), a pattern that suggests a
role in both chromatin remodeling and transcriptional activation and
is consistent with the hypothesized active mandibular mesenchymal
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Figure 1 Family trees and highly conserved noncoding element (HCNE)

rearrangements. (a) Segregation of full (black symbols; posterior cleft palate,

micrognathia, glossoptosis) and partial (gray symbols; micrognathia,

glossoptosis) PRS phenotypes with the mutant chromosomes in families T1–

T3 (tc: translocation t(N;17)(N;q24)), family F1 (del: deleted chromosome

17q24.3) and family F2 (m: mutated HCNE). All affected individuals are

heterozygous for the mutant allele. (b) Genomic organization of the SOX9

locus and its 5¢ and 3¢ flanking regions. Black arrows, T1, T2 and T3

translocation breakpoints; green box, human BAC clone RP11-1003J3

(within which translocation breakpoints T1 and T3 were located);

red boxes, deletions found in family F1 and individuals Sp2 and

Sp4 (as detected by CGH and confirmed by semiquantitative PCR;

Supplementary Figs. 4–6 online); red arrow, point mutation detected by

sequence analysis (not shown) in family F2. (c) CGH profile of the F1

deletion, presented with a conservation plot (ECR browser; conservation
throughout human, rhesus monkey, dog and mouse of fragments 4350 bp

at 75% identity indicated in red). Arrow indicates the HCNE harboring the

point mutation in family F2 (HCNE-F2).
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enhancer function. The SP2 region also showed strong binding of
p300, CTCF and K4Me in mdMEPA cells but also showed weaker
binding to acetylated histone H3 (H3Ac) and K4-trimethylated
histone H3 that was not seen in HNCE-F2 (data not shown).

Such enhancer activity is often associated with changes in the
degree of chromatin condensation of the locus13. We reasoned that
an in vivo assay of chromatin alterations during development of the
mandible would help determine which gene(s) is being transcription-
ally regulated by the HCNEs in question. The closest flanking genes
are KCNJ2 and SOX9. We measured the three-dimensional (3D)
distance between pairs of BAC probes from the orthologous genomic
region in mouse embryos using interphase fluorescence in situ
hybridization (FISH; Table 2 and Supplementary Fig. 5 online).
These BACs contained Kcnj2 (RP23-408D5 Chr11:110,809,076–
111,002,979), the breakpoint–HCNE-F2 region (BP-F2; RP23-76P19
Chr11:111,402,479–111,629,783) and the telomeric de novo deletion
detected in individual Sp2 (delSp2; RP23-418P13 Chr11:113,809,869–
114,025,688) (Fig. 4b). Mouse embryos were examined at 13.5 d.p.c.,

just before palate fusion, a stage critical for PRS. The interphase
distance between Kcnj2 and the BP-F2 probe remained unchanged in
all tissues tested (Table 2). However, the distance between the BP-F2
probe and the delSp2 probe was significantly greater in Sox9-expres-
sing mandibular arch cells than in the periocular mesenchyme, which
does not express Sox9 (Table 2); a similar tissue distinction was seen
for the distance between BP-F2 and Sox9, although this was not
statistically significant. This chromatin decompaction implicates Sox9
as the best candidate target of the enhancer activity associated with the
PRS1 locus. Indeed, the pattern of enhancer activity in the transgenic
reporter mice is consistent with the pattern of endogenous SOX9
expression in human embryos (Supplementary Fig. 4a–p), which,
among other locations, is found in the nervous system and skeletal
structures, including Meckel’s and Reichert’s cartilages.

Collectively these data support the deregulation of tissue-specific
SOX9 expression following mutation or disruption of regulatory
HCNEs as a highly plausible pathogenic mechanism at the PRS1
locus. HCNEs located in the gene desert surrounding SOX9, such as
the Sox9Cre1 or E1–E7 regulatory elements14–16, have already been
reported as putative regulators of Sox9 tissue-specific expression.
Heterozygous loss-of-function coding-sequence mutations of the
SOX9 gene cause campomelic dysplasia (CD, MIM114290) a severe,
often lethal skeletal dysplasia associated with sex reversal. PRS is a
feature both of CD and of a milder variant of the condition (acampo-
melic campomelic dysplasia, ACD) caused by hypomorphic intragenic
mutations or ‘position effect’ translocation breakpoints9. Moreover,
Sox9 is an early, direct activator of Col2a1, Col11a1 and Col11a2 in
avian cranial neural crest (CNC) cells17 and mouse chondrocytes18,19.
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Table 1 SOX9 locus alterations in isolated Pierre Robin sequence (PRS)

Position relative to SOX9 Conserved element

Molecular event Genomic position 5¢ 3¢ HCNEs Human/mouse, 4200 bp, 490% Heredity

F1 75-kb deletion Chr17:66,175,000–66,250,000 �1.38 Mb 10 5 +

F2 T4C mutation Chr17:66,187,898 �1.44 Mb +

Sp4 4319-kb deletion Chr17:65,730,750–66,049,600 �1.58 Mb Z27 Z5 De novo

T1 Translocation Chr17:66,431,112–66,467,874 �1.16 Mb 75 29 +

T2 Translocation Chr17:66,518,875–66,602,885 �1.03 Mb 98 39 +

T3 Translocation Chr17:66,400,448 �1.23 Mb 66 25 +

Sp2 36-kb deletion Chr17:69,153,000–69,189,000 +1.56 Mb 1 1 De novo

Nucleotide positions at the SOX9 locus are numbered according to Human NCBI Build 36.1. Position of the genomic alteration reported is given relative to SOX9 start codon.
The number of highly conserved noncoding elements (HCNEs) involved in SOX9 genomic alterations in PRS are indicated, including the elements showing a higher conservation
(4200 bp in length, with a 90% identity between Homo sapiens and Mus musculus). Bold, regions included in deletions or mutated; italics, regions located in between 17q
translocation breakpoints and the 3¢ end of the copy number–polymorphic BAC RP11-300G13 (Chr17:65,725,854).

Figure 2 HCNEs at the PRS1 locus have tissue-specific enhancer activity.

(a) The 9CE4Z element, located just upstream of the translocation break-

point cluster, was cloned 5¢ to an Hsp68 minimal promoter–LacZ reporter

gene cassette and used to make transgenic lines of mice. At 9.5 d.p.c.,

these lines showed consistent LacZ expression in a subset of cells in the

mandibular mesenchyme and some extracraniofacial expression. (b) Left, 3D

digital reconstructions from an OPT scan of the embryo shown in a. Middle,

digital dissection of the craniofacial region viewed from below. Right, digital

section through the plane indicated in the whole-embryo image in a with

expression in the proximal mandible (Md) and otocyst (Oto). (c) Cartoon of

the genomic region, showing the location of 9CE4Z and HNCE-F2 (F2).

(d) Left, LacZ expression at 11.5 d.p.c. in a whole embryo containing three

copies of HCNE-F2 cloned 5¢ into a minimal promoter–LacZ reporter gene

cassette, showing a pattern consistent with a subset of the normal mouse

Sox9 and human SOX9 expression pattern (compare with Supplementary

Fig. 3). Right, digital section from an optical projection tomography (OPT)

scan of the same embryo using the section plane illustrated. This shows

expression in the proximal mandible (Md), the maxilla (Mx) and the

otocyst (Oto).
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Dominant negative mutations in these collagen genes cause Stickler
syndrome, the most common syndromic diagnosis associated with
PRS20. It is possible that a tissue-specific loss of SOX9 enhancer activity
could lead to a coordinated reduction in the transcription of all three
targets during development, cumulatively phenocopying mutations in
the individual genes. Furthermore, conditional inactivation of mouse
Sox9 in CNC cells results in a phenotype of reduced jaw and cleft palate
strongly reminiscent of PRS21.

Still, the expression of other genes in the vicinity may well be
affected by deletions or mutations at the PRS1 locus. The most
obvious alternative candidate is KCNJ2, dominant negative mutations
in which cause Andersen cardiodysrhythmic periodic paralysis syn-
drome22 (OMIM 170390). This condition is occasionally associated
with micrognathia and cleft palate, although not in the context of
PRS. The absence of any detectable alteration in chromatin compac-
tion within the Kcnj2–BP-F2 interval in the developing mouse
mandible would argue against KCNJ2 being a target of the enhancers
reported here. Conversely, we demonstrated chromatin decompaction
in areas normally expressing Sox9, and campomelic and acampomelic
dysplasias are due to SOX9 haploinsufficiency that frequently culmi-
nates in PRS features23. Collectively, these data support SOX9 as a
more likely enhancer target than KCNJ2.

The finding of very distant mutations on both sides of a gene
promoter suggests that cis-regulatory domains of developmental

genes may extend over megabases of DNA flanking its coding
sequences. Long-range regulatory mutations have been identified in
several diseases in humans and animals24. These can be broadly
classed into two groups: those that phenocopy intragenic null
mutations and those that result in a phenotype distinct from that
associated with loss or gain of function. In the first category, the best-
studied disease/gene combinations are aniridia/PAX6 (ref. 24) and
campomelic dysplasia/SOX9 (refs. 9,16). These mutations cause failure
of normal transcriptional activation of the affected allele. The
most clearly defined example of the second category is preaxial
mirror polydactyly/SHH25, in which the disease is due to ectopic
transcriptional activation. We propose that PRS/SOX9 mutations
represent a site- and stage-specific loss of transcription most closely
analogous to a mouse conditional knockout—in this case, of SOX9 in
human CNC cells21,26,27.

In conclusion, disruption of noncoding DNA sequences with site-
and stage-specific enhancer function surrounding master develop-
mental genes14,28 may be regarded as a general mutational mecha-
nism for some human congenital malformations. It is likely that
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Figure 4 Chromatin characteristics of the region around SOX9. (a) ChIP

using mdMEPA cell line combined with quantitative real-time PCR analysis

shows that HCNE-F2 strongly binds K4 methylated histone H3 (K4Me),

CTCF and p300, suggesting that this region has a role in transcriptional

activation and chromatin remodeling consistent with its functioning as a

mandibular mesenchymal enhancer. The Sox9 promoter region shows a

different pattern consistent with a regulated promoter region, with strong

binding RNA polymerase II (Pol II), acetylated histone H3 (H3Ac) and

trimethylated K4 histone H3 (K4Me3) and weaker binding to p300.

K27Me3, trimethyllysine 27 form of histone H3. Error bars are equivalent

to 95% confidence intervals (see Supplementary Methods). (b) Genomic

organization of the SOX9 locus. Family F1 and individuals Sp2 and Sp4
(all carrying deletions) are indicated as red boxes. Blue arrow, HCNE-F2; red

arrow, SOX9 promoter region. Orange boxes below represent orthologous

positions of mouse BAC probes around Sox9 relative to the human SOX9

locus. MMU, M. musculus. Distances between BAC probes in the mouse

genome are indicated in kbp.

Figure 3 HCNE-F2 has enhancer activity. (a) Nucleotide sequences of

normal and mutant transcription-factor binding probes derived from HCNE-

F2 and used in EMSA, with the MSX1 binding site underlined. The mutant

base is enlarged and boxed in red. MSX1 was incubated with biotin-labeled

probes (normal (+) and mutated (m), respectively) with or without an

unlabeled probe for the competition reactions (normal unlabeled probe

for + and mutated unlabeled probe for m). (b) Above, ChIP results showing

that endogenous Msx1 binds HCNE-F2 (301-bp amplicon; F2) but not a

257-bp control amplicon (Chr11:111450487–111450743; Con), in

mandibular (md) and maxillary (mx) mouse embryonic pharyngeal arch

(MEPA) cells. Anti-rabbit IgG antibody was used as a negative control.

Below, quantitative real-time PCR analysis of the same ChIP experiment

revealed a B2.5-fold greater binding of Msx1 to HCNE-F2 compared to the

control region. Errors bars represent the calculated fold change error (see

Supplementary Methods). (c) Enhancer function of HCNE-F2 in mdMEPA
cells. The cells were transfected with reporter constructs containing only the

Sox9 minimal promoter (Promoter) or with either the wild-type HCNE-F2

(wt.HCNE-F2) or the HCNE-F2 harboring the F2 mutation (m.HCNE-F2)

inserted 5¢ to the promoter. The wild-type HCNE-F2 showed enhancer

function, which was abolished when the element harbored the mutation

found in the PRS-affected F2 family (P ¼ 0.001).
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high-resolution genome-wide analyses will identify mutations with
cis-regulatory effects for increasing numbers of diseases. Our study
suggests that these may have a much wider range of action than that
traditionally understood.

METHODS
Sample selection. Only individuals with isolated PRS were selected for study

(see Supplementary Note online for details of inclusion and exclusion criteria).

Controls were healthy, unrelated middle-aged individuals of European ancestry

with no known craniofacial defects. Informed consent was obtained from all

study participants. Studies were approved by the ethical institutional commit-

tees of the Comité Consultatif de Protection des Personnes dans la Recherche

Biomédicale, the Hôpital Necker–Enfants Malades and the Royal Children’s

Hospital and by the UK national Multicentre Research Ethics Committee.

Genetic linkage. Genome-wide microsatellite genotyping was performed in the

PRS-affected family F1 by deCODE Genetics at an average marker density of

4 cM (1,000 markers). We computed two-point LOD score values using the

linkage package (MLINK program). PRS was assumed to behave as an auto-

somal dominant trait with incomplete penetrance (90%) and no gender bias.

Nucleotide variation screening. PCR products were directly sequenced on

both strands on an ABI PRISM 3130XL DNA sequencer (Perkin Elmer–Applied

Biosystems) using the Big Dye Terminator method according to the

manufacturer’s instructions. All primer sequences are listed in Supplementary

Table 1 online.

Metaphase FISH and breakpoint cloning. Metaphase chromosome analysis

using two-color FISH was performed as previously described13 (Supplemen-

tary Methods online). For Southern blots, PCR-amplified probes were

sequenced and verified probes radiolabeled with [a32P]dCTP using Rediprime

II Random Prime Labeling System (Amersham Biosciences) (Supplementary

Methods and Supplementary Table 1).

Production and analysis of reporter transgenic mice. To make the 9CE4Z

reporter construct, a 2.8-kb fragment was PCR amplified from human

BAC RP11-1003J3 using primers containing NotI and EagI restriction sites

(Supplementary Table 1). This fragment was subcloned into the NotI site of

the p610+ reporter construct containing an Hsp68 minimal promoter–LacZ

cassette. To generate the HCNE-F2(3xwt)bZ reporter construct, the wild-type

HCNE-F2 element was PCR amplified with three sets of attB site–containing

primers (Supplementary Table 1) and cloned into the three-way Gateway

(Invitrogen) entry vector, which was then recombined with a vector bearing a

LacZ reporter cassette containing the human b-globin minimal promoter. To

create transgenic animals, linearized 9CE4Z and HCNE-F2(3xwt)bZ constructs

were microinjected using standard procedures (Supplementary Methods).

Embryos were collected at relevant stages, fixed and analyzed for reporter

activity by Xgal staining (Supplementary Methods).

Optical projection tomography. Optical projection tomography (OPT) was

performed as previously described29 (Supplementary Methods).

Table 2 Localized tissue-specific chromatin decompaction at the Sox9 locus

BAC 408D5-76P19 76P19-229L12 76P19-418P13

Region Kcnj2–BP-F2 BP-F2–Sox9 BP-F2–delSP2

Genomic distance (kb) 610 1,120 2,401

Stage Tissue

Sox9

expression Nuclei

Mean 3D

separation

(nm)

95% CI,

± Nuclei

Mean 3D

separation

(nm)

95% CI,

± Nuclei

Mean 3D

separation

(nm)

95% CI,

±

9.5 d.p.c. Pharyngeal arch ++ 107 419 31 130 344 22 – – –

13.5 d.p.c. Meckel’s cartilage ++ 106 418 29 93 332 23 123 705** 59

13.5 d.p.c. Palatal shelf/maxillary mesenchyme + 51 425 43 70 322 31 118 590 42

13.5 d.p.c. Periocular mesenchyme � 91 417 30 99 289 24 133 585 49

Measurements of the 3D distance between interphase FISH signals in sections of embryonic mouse tissues. The mouse BAC probes positions spanning the orthologous regions
around mouse Sox9 relative to human SOX9 locus are shown in Figure 1b. Optical sectioning of individual nuclei in sections of craniofacial tissue was used to determine the
distance between probe signals from interphase 3D FISH. ‘**’ indicates a significant transcription-dependent chromatin decondensation; the lower 95% CI for the BP-F2–delSP2
distance in the high-expressing region does not overlap with the upper 95% CI of either the medium- or low-expressing regions.

Fine-tiling CGH-array analysis. For the fine-tiling CGH (NimbleGen), a tiling

array was designed containing 385,000 probes of 50–75-mer length with a

median probe spacing of 5 bp covering the region Chr17:65,689,756–

69,390,437. Identified microrearrangements were tested by semiquantitative

PCR (Supplementary Table 1 and Supplementary Methods).

SAGE corroboration. Publicly available COGENE SAGE data10 were mined to

examine expression of SOX9, EN1, ZNF628, MSX1 and POU2F1; the ACTG

web tool was used for tag to gene mapping of the two SAGE libraries

(Supplementary Methods).

Electrophoretic mobility shift assays (EMSA). MSX1 and POU2F1 expression

vectors were constructed by insertion of the human MSX1 or POU2F1 cDNA

(Geneservice) into pcDNA3.0/zeo+ (Invitrogen) and used to synthesize MSX1

and POU2F1 protein following the TNT Coupled Reticulocyte Lysate Systems

protocol (Promega). EMSA was performed following the LightShift Chemi-

luminescent EMSA Kit (Pierce) protocol. The results were quantified using

ImageJ software. The applied statistical test was the nonparametric Wilcoxon

test (n ¼ 15, a ¼ 0.05) (Supplementary Methods).

Cell culture. Mandibular and maxillary processes were excised from 11.5 d.p.c.

embryos from CD1 females crossed with a male ‘Immortomouse’. The

mandibular and maxillary tissue was dissociated and plated in medium (1�
DMEM/10% FCS/1% penicillin/streptomycin) containing 100 U ml–1 murine

g-interferon (Peprotech). Cells were cultured at 33 1C in an atmosphere

containing 5% CO2 (Supplementary Methods). The cell lines were designated

MEPA (mouse embryonic pharyngeal arch) with the prefix of mx (maxillary)

and md (mandibular). Adherent HEK293 and SKNBE(2c) cells were cultured

in 1� DMEM/10% FCS (FCS)/1% penicillin/streptomycin at 37 1C in an

atmosphere containing 5% CO2.

Chromatin immunoprecipitation (ChIP). The ChIP protocol was carried out

as previously described30. For the immunoprecipitation of chromatin-bound

proteins, the following antibodies were used: PolII, H3K4me3, H3K4me and

p300 from Abcam; CTCF and H3ac from Upstate. The MSX1 ChIP antibody

was from Santa Cruz Biotechnology (Supplementary Methods).

In vitro enhancer activity assays. To generate the pr.Sox9 reporter construct, the

Sox9 minimal promoter15 was amplified with PCR primers containing

BglII and HindIII restriction sites. This fragment was subcloned into the BglII/

HindIII restriction site upstream of luc+ of the pGL3-basic vector (Promega).

The HCNE-F2 wild-type and mutated elements were amplified using PCR

primers containing MluI and XhoI restriction sites, and were subcloned into the

MluI/XhoI restriction site of the pr.Sox9 reporter construct. This generated the

wtHCNE-F2-pr.Sox9 and m.HCNE-F2-pr.Sox9 reporter constructs, respectively.

Transfection experiments were performed on adherent HEK293 and

SKNBE(2c) cells cultured in the conditions described above, and in mdMEPA

cells cultures at 33 1C in an atmosphere containing 7% CO2. For the

transfection experiment, cells were grown to 80% confluency in 12-well plates.

Cells were transfected with 600 ng of plasmid DNA, 30 ng of pRL-CMV

(Promega) and 3 ml of FuGeneHD (Roche) according to the FuGeneHD
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transfection protocol. Cells were harvested and lysed 24–48 h after transfection.

Firefly and Renilla luciferase activities were measured (Dual-Luciferase Repor-

ter Assay System, Promega). The firefly luciferase activity of each construct was

normalized to the Renilla luciferase internal control, pRL-CMV. The applied

statistical test was the nonparametric Mann-Whitney test (n ¼ 18, a ¼ 0.05).

95% confidence intervals (CI 95%) given as the error bars in Figure 3c were

calculated using the following formula: CI 95% ¼ mean ± t0,25 � s.e.m., where

t ¼ Student t-test value.

Sox9 immunohistochemistry and interphase FISH. Rabbit polyclonal anti-

Sox9 (Chemicon) was used as primary antibody and Alexa Fluor 488–

conjugated goat anti-rabbit F(Ab)2 fragments (Invitrogen) as secondary anti-

body. The slides were counterstained with 4¢,6-diamidino-2-phenylindole

(DAPI) upon mounting (Supplementary Methods).

Interphase FISH used mouse BAC probes obtained from BACPAC resources

of the Children’s Hospital Oakland Research Institute. BAC clones were labeled

with digoxygenin or with the direct fluorescent label Spectrum Orange-dUTP

(Vysis) (Supplementary Methods).

Image capture and analysis were performed using in-house scripts written for

IPLab Spectrum (Scanalytics). Inter-spot distances were calculated using the

custom software IP lab script (available from P. Perry, MRC HGU). 3D distance

means, s.d. and confidence intervals were calculated (Supplementary Methods).

In situ expression pattern study. SOX9 in situ expression was examined in

normal human embryos (CS13, CS15 and CS18) obtained from electively

terminated pregnancies in concordance with French legislation (94-654 and

08-400) and with oversight by a local ethics committee. Tissue fixation,

sectioning and in situ hybridization were carried out according to standard

protocols (Supplementary Methods and Supplementary Table 1).

Accession codes. RefSeq: SOX9, NM_000346; Sox9, NM_011448; KCNJ2,

NM_000891; KCNJ16, NM_170741, NM_018658, NM_170742; MAP2K6,

NM_002758; human chromosome 2, NC_000002.10; human chromosome 5,

NC_000005.8, human chromosome 17, NC_000017.9; rhesus chromosome 16,

NC_007873; mouse chromosome 11, NC_000077; dog chromosome 9,

NC_006591. GenBank: RP11-1003J3, AC005181.1; CTD-2053I13, AC098485.6;

RP11-420O5, AC007642.5; RP11-496M2, AC009126.2; RP11-510H11,

AC092662.2; MSX1 cDNA clone, BC021285; POU2F1 cDNA clone, BC052274.

OMIM: SOX9, *608160; campomelic dysplasia, #114290; Pierre Robin sequence,

261800; KCNJ2, *600681; Andersen syndrome, #170390; MSX1, *142983.

URLs. rVista 2.0, http://rvista.dcode.org/; ECR browser, http://ecrbrowser.dco-

de.org/; eShadow, http://eshadow.dcode.org/; SNP, http://www.ncbi.nlm.nih.

gov/projects/SNP/; Database of Genomic Variants, http://projects.tcag.ca/varia

tion/; DECIPHER, http://decipher.sanger.ac.uk/; Human Genome Structural

Variation Project, http://humanparalogy.gs.washington.edu/structuralvaria

tion/; COGENE, http://hg.wustl.edu/COGENE/SAGE/index.html; ACTG,

http://retina.med.harvard.edu/ACTG.

Note: Supplementary information is available on the Nature Genetics website.
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1a
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Supplementary Figure 1. Family T1 and T2 translocation mapping. a. Karyotype of family T1 with an image of the metaphase

FISH of the 17q breakpoint spanning BAC clone RP11-1003J3. b Family T2 karyotype with the FISH image of the breakpoint-

spanning clone RP11-420O5.

Nature Genetics: doi:10.1038/ng.329

RP11-1003J3
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d
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Supplementary Figure 2 Family T3 Translocation mapping, breakpoint cloning and sequencing. a. Family T3 karyotype with a

FISH image of the breakpoint clone on 17q 1003J3. b. Image of a genomic Southern blot of control (C) and affected (A) lymphoblast

DNA digested with EcoRI and HindIII and probed with a 622bp chromosome 2-specific probe (probe 2.7) corresponding to

nucleotides 155,859,897- 155,860,518 (NCBI Build 36.1) used for identification of the translocation breakpoints. Sizes of predicted

bands are indicated and novel, translocation specific bands are denoted by arrows. c. Diagram illustrating PCR strategy used to

determine location of the breakpoint on chromosome 17. Forward primers 2.7 and 2.7B, designed against sequences in probe 2.7, were

each paired with a series of reverse primers specific to sequences on Chromosome 17. d. Genomic PCR using primer 17.3 in

conjunction with primers 2.7 or 2.7B yielded products from affected (A) but not control (C). DNA. e. Sequences at the 2,17 and 17,2

breakpoints. Numbers refer to the base position of the last nucleotide before the translocation (NCBI Build 36.1). The translocation

was balanced except for the loss of 8 nucleotides from Chromosome 17 (indicated by dashed line).
Nature Genetics: doi:10.1038/ng.329
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Supplementary Figure 3. Deletion of highly conserved non-coding elements in PRS family F1 and PRS sporadic cases Sp4 and

Sp2. a. Quantitative PCR profile of a patient from the PRS family F1 compared to an unaffected control, using the reference gene

MAP2K6 and the genomic region deleted in family F1. b. The CGH profile of the PRS1 locus with an enlarged view of the region

containing the 3’ end of the de novo occurring genomic deletion observed in the sporadic patient Sp4 (indicated del/+; the centromeric

position of this deletion is not yet known since it is located outside the region covered by the CGH array used in this study). Multiple

species conservation plot of the deleted region according to ECR browser (conservation of fragments >350 bp at 75% identity) and the

quantitative PCR profile of PRS patient Sp4 compared to an unaffected control, using the reference gene MAP2K6 and the genomic

region deleted, are shown.  c. CGH profile view of the 36kb deletion that occurs de novo in the sporadic PRS patient Sp2 (indicated

del/+). Multiple species conservation plot of the Sp2 deleted region according to ECR browser (conservation of fragments >350 pb at

75% identity) and the quantitative PCR profile of the PRS patient Sp2 compared to an unaffected control, using the reference gene

MAP2K6 and the genomic region deleted in family Sp2, are shown.

c
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Supplementary Figure 4. Expression of SOX9 during human embryonic development. At Carnegie stage (CS) 13 (not shown; 28 days),

SOX9 expression is observed throughout the central nervous system (CNS), diffuse within early craniofacial mesenchyme. a. Strong

expression is observed in coronal section at CS15 (34 days) within the ventricular zone of the central nervous system (CNS), as well as in

cranial ganglia and the otic vesicles. b. No signal was observed on an adjacent section hybridized with sense probe. c: A more caudal

section shows distinct SOX9 transcription in the maxillary and mandibular primordia, as well as around the larynx. d: Adjacent section with

hematoxylin-eosin stain. e-g: Magnification of two vertebrae from panel o in hematoxylin-eosin stain (e), showing SOX9 transcripts in

cartilage condensations and developing spinal cord gray matter (f) as compared with a negative control probe (g). h. A sagittal section at

C18 (44 days) demonstrates continued SOX9 expression in the CNS with highly intense signal in the ventricular zone, in Rathke’s pouch

and the infundibulum; in the cranial and dorsal root ganglia and otic vesicles; in the epithelial endoderm of the trachea, duodenum and

pancreas; in both tubules and mesenchyme of the early kidney, in developing palate (asterisk) and in the prospective thyroid and cricoid

cartilages of the larynx (enlarged in k – hematoxylin - and l – antisense probe). i. The myocardium expresses SOX9 faintly with localized

stronger signal in the atrioventricular canal (arrowheads). The J-shaped object is a paper fiber. No signal was observed in the sense probe-

hybridized adjacent section (j, n). m. Enlargement of internal organs. o. A parasagittal section from the same embryo in which SOX9 is

expressed weakly in craniofacial mesenchyme as compared to the vertebral, pelvic and the Meckel’s and Reichert’s cartilages (enlarged in

p), and in pulmonary bronchi. Vertebrae in panels e-g indicated in red. q. Serial Analysis of Gene Expression (SAGE) tag counts from

publicly available COGENE SAGE data for SOX9 and potential partner transcription factors. Number of tags (representing transcripts)

normalized to one million transcripts from the human first pharyngeal arch at four (CS12-13) and five (CS15) weeks’ development. Scale

bar: 100 mm for a-d; 50 mm for k, l, p. Abbreviations: at, atrium; apt, aorticopulmonary trunk; avc, atrioventricular canal; cord, umbilicus;

di, diencephalon; drg, dorsal root ganglia; duo, duodenum; gX, vagal ganglion; gV, trigeminal ganglion; gVII, facial ganglion kd, kidney;

lb, (hind)limb; liv, liver; lrx, larynx; lu, lung; mes, mesencephalon; n, intersegmental nerve; nf, nasal fossa; ot, otic vesicle; p, pancreas; plv,

pelvis; ret, retina; rh, rhombencephalon; Rp, Rathke’s pouch; sc, spinal cord; tel, telencephalon; tr, trachea; v, ventricle; vt, vertebra; vx,

blood vessel.
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Supplementary Figure 5. Mouse embryo craniofacial regions at 13.5 dpc used for the analysis in the interphase FISH

experiments. The embryos are shown as fluorescent DAPI-stained images stained with Sox9 antibody, shown as green signal. The

mandibular region circled in blue with high Sox9 expression is Meckel’s cartilage. The regions circled in red are the medium expression

level areas of the palatal shelf and lateral maxillary mesenchyme. The infraorbital region circled in yellow had no obvious Sox9 protein

expression. PS, palatal shelf; To, tongue; Mand, mandible; Mx, maxilla.
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Supplementary Note  

 

Clinical data 

Clinical criteria for PRS were at least 3 among the following features: i) micrognathia 

and/or retrognathia, ii) glossoptosis, iii) posterior U-shaped cleft palate, and iv) functional 

signs related to involvement of IX, X and XII cranial nerves (suction, swallowing, feeding, 

breathing and cardiac rhythm anomalies). In addition, patients were selected for isolated PRS 

(Supplementary clinical table), excluding, in particular, cleft lip, cardiac defects, bone 

dysplasia, eye findings, brain or hindbrain malformations, and mental retardation. In sporadic 

cases, posterior cleft palate was an obligatory criterion; only familial cases with at least 2 

individuals with posterior cleft palate were included. For linkage studies, PRS was assumed to 

behave as an autosomal dominant trait with incomplete penetrance (90%), and no gender-bias. 

Family T2 was originally reported as a Stickler-like syndrome but clinical reassessment 

concluded that this family has autosomal dominant isolated PRS (Vintiner et al., 

Am.J.Med.Genet 1991). The control population used in our study is a middle-aged population 

of European ancestry, unaffected with any craniofacial defects and composed of healthy 

unrelated individuals.  
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ABSTRACT: Pitt-Hopkins syndrome is a severe congenital
encephalopathy recently ascribed to de novo heterozygous
TCF4 gene mutations. We report a series of 13 novel PHS
cases with a TCF4 mutation and show that EEG, brain
magnetic resonance imagain (MRI), and immunological
investigations provide valuable additional clues to the
diagnosis. We confirm a mutational hot spot in the basic
domain of the E-protein. Functional studies illustrate that
heterodimerisation of mutant TCF4 proteins with a tissue-
specific transcription factor is less effective than that
homodimerisation in a luciferase reporter assay. We also
show that the TCF4 expression pattern in human embryonic
development is widespread but not ubiquitous. In summary,
we further delineate an underdiagnosed mental retardation
syndrome, highlighting TCF4 function during development
and facilitating diagnosis within the first year of life.
Hum Mutat 30, 669–676, 2009. & 2009 Wiley-Liss, Inc.

KEY WORDS: Pitt-Hopkins; TCF4; bHLH; E-protein;
mental retardation

Introduction

Pitt-Hopkins syndrome (PHS; MIM] 610954) was originally
described in 1978 in two unrelated patients with mental retardation,
recurrent episodes of hyperventilation, and a wide mouth [Pitt and
Hopkins, 1978]. Only a few additional cases were reported during
the following quarter century [Orrico et al., 2001; Peippo et al.,
2006; Singh, 1993; Van Balkom et al., 1998]. Using a systematic
1-Mb resolution genome-wide BAC-array screening, we and others
recently identified de novo microdeletions on chromosome 18q21.1
in PHS cases [Amiel et al., 2007; Brockschmidt et al., 2007;
Gustavsson et al., 1999; Zweier, et al., 2007]. Fine mapping of the
deleted region led to the identification of heterozygous TCF4 gene
mutation in nondeleted cases. TCF-4 (MIM] 602272), also known
as ITF-2 (for immunoglobulin transcription factor), E2-2, or SEF2
(for SL3-3 enhancer factor 2), belongs to the class I basic helix-
loop-helix (bHLH) or E-protein family. Ubiquitously expressed
class I bHLH factors consist of TCF4, HEB, and the differentially
spliced products of the E2A gene: E12 and E47 (Murre, 2005).
E-proteins contain a common bHLH structural motif that mediates
homo- and heterodimerization between bHLH proteins via their
HLH domain, while the adjacent basic region mediates the binding
of the dimers to a common DNA sequence (CANNTG), known as
an E- BOX [Ross et al., 2003].

Here we report 13 molecularly confirmed novel cases with PHS
and further delineate the syndrome. Although severe mental
retardation and a facial gestalt are the only consistently observed
features, diagnosis can be made in the first year of life.
Electroencephalograms (EEG), magnetic resonance imaging
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(MRI) of the brain, and immunological investigations provide
further evidence to support the diagnosis.

We confirm a mutational hot spot within the basic domain of
TCF4. Although TCF4 is widely expressed in early human embryo,
its spatiotemporal pattern is quite specific. Finally, because certain
features of PHS depend on dimeric interactions with tissue-
specific bHLH proteins, we studied the transactivation induced by
ASCL1/TCF4 wild-type and mutant dimmers in a neuronal cell
line, by using a Delta 1 promoter reporter construct. Overall, we
demonstrate that E-proteins are not fully redundant during
human development, and that TCF4 is required for normal
development of central and enteric nervous systems.

Materials and Methods

Patients

A total of 36 patients were included in the study. Inclusion criteria
were: (1) severe psychomotor delay and (2) facial features compatible
with those previously described in PHS patients. Ten patients were
selected from photographs of a series of about 80 patients previously
suspected of having Rett and/or Angelman syndromes but were
negative for UBE3A and MECP2 mutations. One patient was selected
from the photographs of 30 patients referred for possible Mowat-
Wilson syndrome, negative for ZFHX1B mutation. Twenty-five
patients were directly referred for possible PHS.

TCF4 screening for mutations

Blood samples were obtained with informed consent and DNA
was extracted according to standard protocols. The PCR reaction
mixture (25 ml) contained 100 ng of leukocyte DNA, 20 pmol of
each primer (sequences of primers available on request), 0.1 mM
dNTP, and 1 U Taq DNA polymerase (Invitrogen, San Diego, CA).
DNA sequencing of the 21 coding exons and intronic flanking
regions was performed by the fluorometric method on both
strands (ABI BigDye Terminator Sequencing Kit V.2.1, Applied
Biosystems, Foster City, CA). At least five isoforms of TCF4 are
known; we chose the longer one (GenBank accession number
NM_003199.2) for mutation classification. Nucleotide numbering
reflects cDNA numbering with 11 corresponding to the A of the
ATG translation initiation codon. The initiation codon is codon 1.
In all cases, chromosome analyses showed a normal karyotype.
When no mutations were identified, patients were genotyped with
two intragenic microsatellite DNA markers D18S1119 and
D18S1127, and FISH analyses was performed for homo/hemi-
zygous patients on metaphase nuclei from blood lymphocytes
with the probe RP11-397A16.

Construction of Plasmids and Luciferase Assay

Human cDNA of TCF4 and ASCL1 insert in a pBluescriptR vector
were obtained from the MRC Laboratory and inserted into pcDNA
3.1/zeo (�). Known TCF4 mutations (c.1727G4A p.R576Q,
c.1726C4T p.R576W, c.1714G4A p.R572G, c.1521_1522insC
p.Ser508LeufsX5, c.1498G4T p.G500X) were generated using the
quikChanges XL Site-Directed Mutagenesis Kit (Stratagene, LaJolla,
CA) according to the manufacturer’s protocol. All constructs were
validated by DNA sequencing and subcloned into a pcDNA3.1 vector
(Invitrogen) containing a T7 promoter. The luciferase reporter
construct (F. Guillemot, National Institute for Medical Research, Mill
Hill, Londres) contains the firefly luciferase gene under the control of
a Delta 1 promoter and 6 E-boxes [Castro et al., 2006]. HeLa cells
were grown to 95% confluency in Dulbecco’s minimum essential

medium supplemented with 10% fetal bovine serum in 12-well
plates. Cells were transfected with 300 ng of expression vector, 600 ng
of the firefly luciferase reporter promoter, 30 ng of pRL-CMV Renilla
luciferase internal control (Promega, Madison, WI), and 4ml of
Fugene HD (Roche, Indianapolis, IN) in 100ml of OPTI-MEM
(Invitrogen). Cells were harvested and lysed 24–48 hr after transfec-
tion. Firefly and Renilla luciferase activities were assayed according to
the manufacturer’s protocol. Luciferase activity of each construct was
normalized by the internal control pRL-CMV. Experiments were
repeated three times in duplicate.

Immunological Investigations

Serum immunoglobulin levels were determined by immunoen-
zymatic assays using monoclonal antibodies. B and T lymphocytes
counts were enumerated using specific antibodies to surface
markers on a Fluorescent Analysis Cell Sorter as previously
described [Revy et al., 2000].

In Situ Hybridization and Immunohistochemistry on
Human Tissues

Human embryos were collected from terminated pregnancies
using the mefiprestone protocol in agreement with French
bioethics laws (94–654 and 04–800) and the Necker Hospital
ethics committee. Intact embryos were fixed in either 4%
paraformaldehyde, pH 7.4, or 11% formaldehyde, 60% ethanol,
and 10% acetic acid, embedded in paraffin blocks and sectioned
at 5 mm. Primers were selected for PCR amplification between
exons 7 and 8 (F: ccagactggagatgctgtgg, R: ggagactctgccctgta). A T7
promoter sequence extension (taatacgactcactatagggaga) was added
at the 50 end of each primer; probe synthesis and hybridization
were carried out as described previously [Delous et al., 2007].
Immunohistochemistry was carried out on paraffin sections using
an anti-CD56 (antineural cell adhesion molecule) or antisynapto-
tagmin primary antibody and a standard protocol for signal
staining by diaminobenzidine precipitation with a hematoxylin
counterstain. The gut sample is from a five year old boy who
underwent surgery for Meckel diverticulum.

Results

Clinical Presentation of Patients Harbouring a TCF4
Gene Mutation

All patients had severe mental retardation with speech limited
to a few single words or no speech. Motor delay was also constant
only some patients could walk unaided after 4 years of age. Facial
features consistently included enophthalmia, strabismus, thin
eyebrows with flaring in their midline portion, a large nose with
high bridge and flared nostril, a protruding philtrum, M-shaped
Cupid’s bow, fleshy lips and wide mouth with shallow and broad
palate, widely spaced teeth, dysplastic and thick ear helices
(Table 1 and Fig. 1). With age, traits coarsen and the lower face
protrudes more. Acquired microcephaly was observed in nine
cases, among which growth retardation was present in three
patients only. Stereotypic and restless movements of hands, head,
and trunk was found in eight patients that retained purposeful
hand skills. Relatives described bouts of shouting and aggressive
behavior, being difficult to handle. The ‘‘happy, easy-going’’
temper is not as frequent as initially mentioned. Sleep disorders
were only reported in a minority of patients.

Only six patients suffered from epilepsy, usually of late onset
(after 5 years of age in this series) and of variable severity.
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However, two patients presented with infantile spasms at 4 and 6
months of age, respectively. In one case, this followed enterovirus
meningitis at 4 months of age; del18q21 was diagnosed at 4 years
of age. An EEG performed at 16 months of age showed left
rolandic focal spikes subcontinuous during sleep with several focal
seizures recorded. Episodes of hyperventilation also were not
constant; they tended to be more frequent in epileptic patients and
of earlier occurrence than the epilepsy itself. Frontal Pseudoper-
iodic Delta Waves (FPDW) during wakefulness and sleep were
observed in five of eight cases and preceded the onset of epilepsy
in three cases. MRI of the brain was available for 11 patients. All
but one shown a thin corpus callosum, marked white-matter
hyperintensity in the temporal poles, and small hippocampi.

Minor anomalies of the extremities were frequent and included
small and slender palms with single palmar crease, and slender feet
with pes planus and valgus. Of note, limited flexion of the P1–P2
thumb joint with absent flexion crease was noted in three of four
patients harbouring a deletion encompassing the TCF4 locus and
none of the patients harbouring a TCF4 coding sequence mutation.
This was seen also in the patient reported by Andrieux et al. [2008].
Cryptorchidism and/or small penis was frequently noted (six to
eight males). Severe chronic constipation of early onset (within the
first year of life) was frequently recorded as well as gastrooesopha-
geal reflux and eructation. However, no patient had Hirschsprung
disease or other organ malformations in our series.

Among the patients with no coding sequence mutations and no
deletions detected by FISH analyses none have the PHS facial
gestalt identified among patients with a TCF4 mutation.

TCF4 Mutations

We screened the coding sequence of the 21 exons of the TCF4 gene
for nucleotide variations in a series of 36 PHS patients and identified
13 mutations (Fig. 2). No mutations observed were detected in a
panel of 120 control chromosomes. We identified five putative null
alleles mutations: two splice site mutations (c.923-2A4G and c.1146
11G4A), two frameshift mutations (c.1472_1473insA p.As-

p492GlyfsX21 and c.1521_1522insC p.Ser508LeufsX5), and one
nonsense mutation (c.1498G4T p.G500X). Any polypeptide
translated from transcripts bearing one of these mutations would
be predicted to lack the bHLH domain.

We also identified four missense mutations (c.1471A4G,
p.D535G, c.1714G4A, p. R572G, c.1727C4G, p.R576Q, and
c.1823C4T, p.A610V). All missense mutations modify amino
acids highly conserved in mammalian TCF4 genes (ClustalW
analysis, data not shown). All mutations were de novo except for
the p. R572G, c.1725C4G mutation. It was also identified in the
patient’s mother for DNA extracted from leucocytes and urethral
cells but not for buccal swabs. A mosaic state for the mutation was
confirmed by direct sequencing from buccal swabs that showed a
normal sequence (data not shown). We concluded that the
mother, who was treated for chronic depression and epilepsy from
20 years of age, is somatic mosaic for the mutation. Finally, a
deletion encompassing the TCF4 gene was detected in three cases
by FISH analysis.

Functional Analysis of TCF4 Mutant Alleles

Mutant cDNAs were stable and therefore could be amplified by
RT-PCR extracted from lymphocytes. Cotransfection of TCF4 and
ASCL1 cDNAs with a luciferase reporter construct containing a
Delta1 promoter with six E-boxes in HeLa (data not shown) and
SKNBE(2)C cells (Fig. 5) showed that wild-type TCF4 activates
the reporter construct only when cotransfected with ASCL1. The
activation was significantly and similarly impaired for nonsense,
frameshift, and missense TCF4 mutants, c.1498G4T p.G500X,
c.1727G4A p.R576Q, and c.1726C4T p.R576W (Fig. 3). We
therefore showed a loss of function effect of all mutants. Finally, a
dominant negative effect cannot be ruled out as luciferase activity of
ASCL11/TCF4 mutants is lower than the one of ASCL11/TCF4�.

Immunologic Investigations

As Tcf4 is involved in fetal B lymphocyte development in mice
[Zhuang et al. 1996], we investigated cellular and humoral

Table 1. Clinical Features in the Series of 13 Newly Described PHS Patients, the 4 Patients Previously Reported by Us and the 9
Reported by Others.

This report

(N 5 13)

Amiel et al.

(N 5 4)

Zweier et al.

(N 5 6)

Gustavsson

et al.

Brockschmidt

et al.

Andrieux

et al.

Age at diagnosis (years) 0.8 to 29 4.5 to 10 8 to 29 5 6 12

Sex 10M/3F 2M/2F 4M/2F F F M

Birth parameters 50th c. 50th c. 25 to 50th c. 50th c. 50th c.

Growth retardation (r-2 SD) 3/12 0/4 4/6 � 1

Neurologic findings

Severe mental retardation 13/13 4/4 6/6 1 1 1

Postnatal microcephaly 9/12 4/4 4/6 � � 1

Epilepsy (age at onset) 6/11 (0.2–18y) 3/4 2/6 1 � �

Hyperventilation (age at onset) 4/13 (3–7y) 3/4 5/6 1 1 �

Stereotypic movements 8/11 4/4 (4,2) ? 1 �

Strabismus 11/13 4/4 2/4 1 ?

Facial gestalt 13/13 4/4 6/6 1 1 1

Abormal genitaliaa 7/9M 2/2M ? �

Intestinal manifestations 9/12 4/4 3/6 1 � �

Scoliosis 2/12 1/4 2/6 1 � �

Hands (small, SPC) 5/13 4/4 ? � SPC SPC

Flexion of thumbs 2 1 �

Supernumerary nipple 1 2/4 1 � � 1

EEG abnormalities 8/9 4/4 2

MRI 6/7 3/3 2 CCA � CCH

Results of TCF4 gene screening 3del, 2S, 3T, 4Ms 1del, 3Ms 1del, 1S, 2T, 1Ms, 1Fs del18q21.1q2.3 del 0.5 Mb del 6.2 Mb

aCryptorchidism and/or small penis. GenBank accession number NM_003199.2.

M, male; F, female; SPC, single palmer crease; CCA, corpus callosum agenesia; CCH, corpus callosum hypoplasia; del, deletion; S, slice site mutation; T, trucating mutation;

Ms, missense mutation.

HUMAN MUTATION, Vol. 30, No. 4, 669–676, 2009 671



immunity in eight PHS patients. No susceptibility to infections
was reported, except for one case who experienced one episode of
urinary tract infection and severe chickenpox. Immunologic

investigations revealed normal B (including switched memory)
and T CD41and CD81lymphocyte count, and appropriate
postvaccination or postinfection serology. However, serum

Figure 1. Consistent facial features include enophthalmia, strabismus, thin eyebrows in their midline portion, a large nose with high bridge
and flared nostrils, a protruding philtrum, fleshy lips, wide upper mouth, and dysplastic ear helices in 10 patients with TCF4 mutations (A) and
two patients with TCF4 deletions (B).
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immunoglobulin M levels were in the low normal range according
to age in one case and bellow this range in the seven other cases.
Interestingly, the mother carrying the c.1714G4A p.R572G
mutation had normal immunoglobulin M levels.

TCF4 Expression in Early Human Development

We studied the pattern of expression of TCF4 in early human
development (Fig. 4). TCF4 is highly expressed throughout the
central nervous system (CNS) and sclerotomal component of the
somites (Fig. 4A) from Carnegie stage (C)13 (28–32 days
postfertilization [dpf]). At C15 (35–38 dpf), TCF4 is highly
expressed in the condensing vertebral body (Fig. 4C), as well as

throughout the limb bud and splanchopleural mesenchyme. The
gonadal ridge also expresses TCF4 at this point.

By C18 (44–48 dpf), many but not all additional sites transcribe
TCF4 (Fig. 4F). These include mesenchyme of the developing
digits (Fig. 4G); the primordium of the pituitary gland (Fig. 4I);
NCAM-expressing sympathetic, parasympathetic, and enteric
ganglia (Fig. 3K–P); peribronchial mesenchyme (Fig. 4N), the
gonad, mesonephros and definitive kidney (Fig. 4Q), and
the thyroid and thymus primordial (Fig. 4S). Vertebrae and the
ventricular zone of the CNS continue to strongly express TCF4.

TCF4 expression continues through postnatal life, as we detect
its transcripts by RT-PCR in adult lymphocytes, fibroblasts, gut,
muscle, but not the heart (data not shown). In the small intestine
at 5 years of age, TCF4 mRNA is found in enteric ganglia of the
myenteric plexus (Fig. 5A), which also produce NCAM (Fig. 5B).
However, TCF4 is also transcribed in Paneth cells of the epithelial
crypts (Fig. 5D) as shown by immunoreactivity to synaptotagmin
on an adjacent section (Fig. 5E).

Discussion

PHS is a syndromic encephalopathy with an autosomal
dominant mode of inheritance, due to de novo mutations at the
TCF4 locus. However, genetic counselling should take into
account the possibility of somatic/germinal mosaicism as this
was observed in one case from our series. We confirm in a larger
series than reported previously, a mutational hot spot lying in the
basic domain, with six mutations among 14 coding sequence
mutation PHS cases and four at the same codon ([Amiel et al.,
2007], and this report). The association of severe mental
retardation and facial gestalt allows diagnosis in early life, youngest
being diagnosed at 9 months old in our series. The recognition of a
series of 13 cases over a 12-month period confirms that PHS is more
frequent than implied by the scattered reports made over the past 30
years. Differential diagnoses include Rett (MIM] 312750), Angel-
man (MIM] 105830), and Mowat-Wilson (MIM] 235730)
syndromes. PHS should therefore be systematically considered for
patients with negative molecular screening for MECP2, UBE3A, and/

Figure 2. Schematic representation of deletion and TCF4 gene mutations in our series (top) and in the literature (bottom).

Figure 3. Transcriptional reporter assay with TCF4 wild type (WT)
and mutants. SKNBE(2)C cells were transiently transfected with a
luciferase reporter construct with a Delta1 promoter containing two
E-boxes. TCF4 alone does not increase the activation of the reporter
construct, whereas cotransfection with ASCL1 yields the highest
values of luciferase activity. ASCL1/TCF4 mutant (G500X, R576Q, or
R576W) activity is significantly lower than with ASCL1/TCF4 wild-type
heterodimers (significant p values o0.05 obtained by the Student
t-test are indicated by a star).
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or ZFHX1B. We suggest first screening for TCF4 gene deletion (by
FISH, MLPA, or quantitative PCR) when thumb anomalies are
noted, and to start with direct sequencing when thumbs are normal
(exons 17 and 18 being first). Whether limited flexion of the thumbs
is directly due to TCF4 gene dysfunction or due to adjacent genes in
a contiguous gene syndrome is uncertain. However, we detected a
high level of TCF4 expression in limb buds during foetal
development, whereas no obvious candidate gene is included in
the minimal region of overlap (Fig. 2).

TCF-4 is a downstream target of the WNT/b-catenin/TCF
pathway and, like cMYC and cyclin D1, has been shown to
function as an oncogene when deregulated. Of note, one patient
reported with a TCF4 mutation developed lymphoma [Zweier
et al., 2007]. Recently, Kuiper et al. [2007] identified deletions of
the TCF4 gene in paediatric lymphoblastic leukaemias. The
question of whether PHS patients are predisposed to lymphomas
remains a possibility. Tcf4–/– knockout mice have a reduced
numbers of pro-B cells [Zhuang et al., 1996]. We confirmed TCF4
expression in the thymus and presplenic mesenchyme, and
observed low levels of immunoglobulin M in all patients tested.

These findings help clinical diagnoses of PHS. However, normal B
cell counts (including the more mature, memory-switched B) in
the eight patients tested strongly suggests that either TCF4 is not
involved in B cell differentiation in humans or that TCF4 loss of
function is compensated by other transcription factors. A subtle
humoral defect was nevertheless observed, because all patients
present with a rather low serum IgM level. Of note, mE5/kE2
enhancer sites of immunoglobulin genes are direct targets of TCF4
homodimers as well a TCF3/TCF4 heterodimer [Bain et al., 1993;
Henthorn et al., 1990]. Long-term follow-up should resolve the
question of whether PHS patients are prone to infections,
autoimmune disorders or tumors.

Molecular interaction between TCF4 and ASCL1 has been
demonstrated in humans and mice [Castro et al., 2006; Persson
et al., 2000], and ASCL1 may play a role in the control of
breathing [de Pontual et al., 2003]. We hypothesized that the
breathing anomalies observed in some PHS cases may result from
impaired noradrenergic neuronal development after defective
TCF4 interaction with the ASCL1–PHOX–RET pathway. Zweier
et al. [2007] studied three different TCF4 mutants with a

Figure 4. Pattern of expression of TCF4 in early human development. A: TCF4 is observed throughout the central nervous system (CNS),
sclerotome, and lateral plate mesoderm, and all pharyngeal arch mesenchyme at Carnegie stage (C)13 (28–32 days postfertilization [dpf]). B:
Sense (control) probe hybridization. C: At C15 (35–38 dpf), TCF4 is seen in the condensing vertebral body, throughout the limb bud and
splanchopleural mesenchyme and gonadal ridge. D: Sense probe. E: By C18 (44–48 dpf), many but not all additional sites transcribe TCF4. F:
Hematoxylin-eosin stain of adjacent section indicating magnifications of zones featured in I–T. G: At C19 (49 dpf), precartilaginous (arrow) and
lateral mesenchyme of the developing digits show higher expression of TCF4 than surrounding cells. H: Sense probe. I: At C18 (section in F),
Rathke’s pouch, the diencephalon, pharyngeal arch subectodermal mesenchyme, and the cartilaginous primordia of the sella turcica all show
strong expression. J: Sense probe. K: CD56 (NCAM) immunostain in brown of adjacent section to TCF4 antisense hybridization in blue in L
demonstrates TCF4 transcription in the soma of the sympathetic ganglia. M: CD56 in a parasympathetic ganglion of the lung (arrowhead) and
nerve fibers shows overlap with TCF4 expression (N) only within the ganglion itself. Mesenchymal TCF4 expression surrounds the bronchi. O:
CD56 in mesenchyme (diffuse) and developing enteric plexi of the duodenum. P: The enteric ganglia (arrowheads) coexpress TCF4. Q: The gonad
continues to strongly transcribe TCF4, as do the mesonephrotic tubules and glomeruli and metanephric mesenchyme (kd). R: Sense probe. S:
Mesenchyme of the thyroid and thymic primordial express TCF4 at C18. H: Sense probe. Scale bar: A–B, 1 mm; C–D, 1.3 mm; E–F, 2 mm; G–T,
250 mm.
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transcriptional reporter assay with a herpes simplex thymidine
kinase promoter in JEG-3 cells and showed that the activation of
TCF4/ASCL1 dimer was significantly impaired for all TCF4
mutants tested. We confirmed these results in a more
relevant neural cell line using a Delta 1 promoter reporter
construct (Fig. 3).

Unexpectedly, the TCF4 spatiotemporal expression pattern is
broad but not ubiquitous. For example, TCF4 expression could not
be detected in the myocardium by either in situ hybridization or
RT-PCR. Moreover, TCF4 expression is highest in the central
nervous system, the sclerotome, peribronchial and kidney me-
senchyme, and the genital bud. E proteins have recently been
considered redundant during brain development [Ravanpay and
Olson, 2008]. However, Tcf4 has recently been shown to play an
exclusive role in pontine neuron differentiation via heterodimeriza-
tion with Math1 (also known as Atoh1 and encoding a proneuronal
class II bHLH) [Flora et al., 2007]. These data demonstrate that
TCF4 is specifically required during brain development and sheds
light on the ventilatory and movement disorders observed in PHS
patients. Indeed, the pontine nucleus is involved in the central
autonomic pathway and in storing the memory of intention during
motor activity. Furthermore, Math1 is essential for intestinal
secretory cell differentiation and intestinal secretory cell production
in adult mice [Shroyer et al., 2007]. Although, Tcf4 has not
currently been shown to heterodimerize with Math1 in these cells
also, this could explain the intestinal dysfunction observed in the
vast majority of PHS patients. We show that TCF4 is expressed in
both enteric ganglia and epithelial crypt cells of the intestine.
Therefore, whether HSCR occurred by chance in one patient with
PHS or is a feature to be ascribed to TCF4 dysfunction [Peippo
et al., 2006] is not fully answered; PHS should still be considered for
patients presenting an unexplained combination of HSCR or severe
constipation and mental retardation.

Altogether, clinical, imaging, and immunological data identified
in PHS highlight the dose-sensitive and nonredundant functions
of E-proteins for normal development in humans.
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Matthew-Wood, Spear, PDAC or MCOPS9 syndrome are alternative names used to refer to 
combinations of microphthalmia/anophthalmia, malformative cardiac defects, pulmonary 
dysgenesis, and diaphragmatic hernia. Recently, mutations in STRA6, encoding a membrane 
receptor for vitamin A-bearing plasma retinol binding protein, have been identified in such 
patients. We performed STRA6 molecular analysis in three fetuses and one child diagnosed 
with Matthew-Wood syndrome and in three siblings where two adult living brothers are 
affected with combinations of clinical anophthalmia, tetralogy of Fallot, and mental 
retardation. Among these patients, six novel mutations were identified, bringing the current 
total of known STRA6 mutations to seventeen. We extensively reviewed clinical data 
pertaining to all twenty-one reported patients with STRA6 mutations (the seven of this 
report and fourteen described elsewhere) and discuss additional features that may be part of 
the syndrome. The clinical spectrum associated with STRA6 deficiency is even more variable 
than initially described. © 2009 Wiley-Liss, Inc. 
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INTRODUCTION 

Variable combinations of microphthalmia/anophthalmia, pulmonary agenesis/dysplasia, diaphragmatic hernia 
and malformative cardiac defects have been infrequently reported over the last three decades (Ostor et al., 1978; 
Spear et al., 1987; Smith et al., 1994; Seller et al., 1996; Berkenstadt et al., 1999; Priolo et al., 2004; Lee et al., 
2006; Li and Wei, 2006; Chitayat et al., 2007; Golzio et al., 2007; Pasutto et al., 2007). Such associations have 
been called Matthew-Wood or Spear syndrome, while Chitayat et al. (2007) devised the acronym PDAC 
(Pulmonary hypoplasia/agenesis, Diaphragmatic hernia/eventration, Anophthalmia/microphthalmia and Cardiac 
Defect), and the Mendelian Inheritance in Man database has adopted the term MCOPS9 for “syndromic 
microphthalmia 9” (MIM# 601186). Recently, mutations in STRA6 (MIM# 610745), encoding a membrane 
receptor for the vitamin A-bearing plasma retinol binding protein, have been found in patients with malformations 
in the PDAC spectrum (Golzio et al., 2007; Pasutto et al., 2007; White et al., 2008; West et al., 2009).  

We report herein novel STRA6 mutations in three fetuses and one child diagnosed with Matthew-Wood 
syndrome, and in three siblings where two adult living brothers are affected with combinations of clinical 
anophthalmia, tetralogy of Fallot, and mental retardation. This is the first description of adult patients bearing 
STRA6 mutations. These additional cases emphasize that the clinical spectrum associated with STRA6 mutations is 
extremely variable. 

 

PATIENTS AND METHODS 

Patients 

Case 1 
This male fetus from healthy and unrelated parents was delivered at 23 weeks of gestation after an ultrasound 

scan documented bilateral diaphragmatic hernia, anophthalmia and cardiopathy. Autopsy confirmed the presence 
of bilateral severe microphthalmia (Fig 1A), bilateral diaphragmatic hernia, and a complex heart malformation 
(hypoplastic left heart syndrome with common atrium and dextroposition of the aorta). The lungs were hypoplastic 
and dysplastic. The karyotype was 46, XY.  

Case 2 
This patient has previously been described (Chitayat et al., 2007; patient 7). Briefly, she was the fifth child of 

consanguineous parents, born at term after a normal pregnancy, with normal growth parameters. She displayed an 
association of bilateral anophthalmia (Fig 1B), heart malformation, subglottic laryngeal stenosis, bilateral unilobar 
lungs, hypoplastic left kidney and right vesico-ureteral reflux, supernumerary spleen and hypoplastic uterus. Her 
karyotype was 46, XX. She died at 19 months post-operatively for an unknown reason, after surgery was 
performed to expand ocular orbits.  

Family 3 (Cases 3-1, 3-2, 3-3) 
Case 3-1: 
A 40 year old patient was referred after his healthy sister came in for genetic counseling. He is the first child of 

healthy and unrelated parents. He has moderate mental retardation associated with bilateral anophthalmia and 
tetralogy of Fallot. Facial dysmorphy includes very short palpebral fissures and closed eyelids, a thin nasal bridge 
and broad nasal tip (Fig 1C). The hands are small and broad. His height is 160 cm (-2.25 SD) and his karyotype is 
46, XY. 

 
Case 3-2: 
A sister of case 3-1 died in the first days of life from a tetralogy of Fallot. She reportedly had bilateral clinical 

anophthalmia but did not undergo autopsy. 
 
 
 
Case 3-3: 
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The adult brother of cases 3-1 and 3-2 is more severely mentally retarded than case 3-1, associated with autistic 
features. Cerebral CT scan demonstrates small residual ocular structures and presence of optic nerves, thus 
indicating an extreme bilateral microphthalmia. Cardiac examination shows no malformations. Radiological 
findings show decreased bone mineral density and a spina bifida occulta at L5-S1. 

Family 4 (cases 4-1 and 4-2) 
Case 4-1:  
 This was the third child of consanguineous parents. At 26 weeks of pregnancy, micro/anophthalmia, 

congenital heart disease and diaphragmatic hernia were diagnosed by ultrasound. Karyotype analysis was 
performed fetal blood sample (46,XY). At 38 weeks, an elective cesarean section was performed. The child died 
soon after birth due to respiratory insufficiency. At autopsy, the following observations were made: anophthalmia 
(absent globes but presence of optic nerves), left diaphragmatic hernia with partial herniation of stomach into 
thorax, a complex congenital heart malformation characterized by truncus arteriosus (absence of truncal septum, 
single valvular orifice and short common tract).  Liver, pancreas, and gut were normal both macroscopically and 
histologically.   

 
Case 4-2: 
Brother of case 4-1. At 26 weeks of gestation, ultrasound revealed suspicion of anophthalmia, hypoplastic left 

lung and complex congenital heart disease (left rotation of cardiac axis, and thickened wall of the right heart), 
suggesting the recurrence of a clinical phenotype strikingly similar to the previous pregnancy. The child died soon 
after birth, again due to respiratory insufficiency. Clinical anophthalmia (Fig 1D) and hypoplastic left lung was 
confirmed. Echocardiography showed left rotation of the cardiac axis secondary to lung hypoplasia, but without 
heart malformation. 

 
 
 

 
 
Figure 1. Representative oculofacial phenotypes. A: Case 1 had short palpebral fissures reflecting bilateral severe 
microphthalmia. B: Case 2 presented deep-set orbits, narrow palpebral fissures associated with anophthalmia and wide, diffuse 
implantation of eyebrows. C: Case 3-1 has mild facial dysmorphy with a broad nasal tip. This patient has orbital implants. D: 
Case 4-2 also had a broad nasal bridge and the deep-set orbits associated with clinical anophthalmia. 
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STRA6 molecular analysis 
After informed consent for inclusion in the study was obtained from the parents, DNA was isolated by standard 

procedures from paraffin-embedded blocks of case 1, from frozen tissue samples of case 2, and from peripheral 
blood of cases 3-1, 3-3, 4-2 and their unaffected parents and siblings. STRA6 noncoding and coding exons and 
exon-intron junctions were amplified by PCR using previously published primers (Golzio et al., 2007). 

PCR fragments were subsequently purified with QIAquick Gel Extraction kits (QIAGEN SA France), and 
sequenced using the Big Dye DNA sequencing kit (Applied Biosystems, UK). Reactions were analyzed in an 
ABI3100 sequencer (Applied Biosystems, UK).  

A sequence variant was considered as disease-causing when: (1) the variant cosegregated with the disease 
phenotype; and (2a) the sequence variant resulted in the prediction of a stop codon, or was predicted to lead to 
splice-site alteration (BDGP splice site prediction software); or (2b) the substitution involved an amino acid 
conserved between three vertebrate subclasses (ClustalW software) or (2c) the substitution was predicted to be 
functionally damaging (PolyPhen software); and (3) the sequence variant was absent from a panel of 200 
chromosomes from unaffected, unrelated individuals. 

Sequence variations were numbered based on GenBank accession NM_022369.3. Nucleotide numbering 
reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference 
sequence, according to journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1. 

 
 
 
 
 
 
 

Table 1.  PDAC/MCOPS9 features in STRA6 mutated patients 
 

  Nucleotide 
variation 

Protein  
alteration 

Lung Diaphragm Eyes Heart Other 

1 
c.1090+1G>A 

c.859C>T 
abnormal splicing 

p.Gln287X 
+ + + + - 

2 
c.1662delG 
c.1662delG 

p.Arg555GlufsX16 
p.Arg555GlufsX16 

+ - + + 

Subglottic 
laryngeal stenosis 
Hypoplastic left 

kidney 
Right vesico-
ureteral reflux 
Supernumerary 

spleen 
Hypoplastic uterus 

3-1 
c.1313A>G 
c.1913G>C 

p.Gln438Arg 
p.Arg638Pro 

- - + + Mental retardation 

3-2 
c.1313A>G 
c.1913G>C 

p.Gln438Arg* 
p.Arg638Pro* 

- - + + - 

3-3 
c.1313A>G 
c.1913G>C 

p.Gln438Arg 
p.Arg638Pro 

- - + - 

Mental retardation 
Short stature 
Spina bifida 

occulta 

4-1 
c.1329delC 
c.1329delC 

p.Leu444TrpfsX34* 
p.Leu444TrpfsX34* 

- + + + - 

This 
report 

4-2 
c.1329delC 
c.1329delC 

p.Leu444TrpfsX34 
p.Leu444TrpfsX34 

+ - + - - 
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  Nucleotide 
variation 

Protein  
alteration 

Lung Diaphragm Eyes Heart Other 

5 
c.878C>T 
c.878C>T 

p.Pro293Leu 
p.Pro293Leu 

+ - + + 
Ectopic pelvic 

kidney 

6 
c.878C>T 
c.878C>T 

p.Pro293Leu* 
p.Pro293Leu* 

- - + + - 

7 
c.145-147delC 
c.145-147delC 

p.Gly50AlafsX22 
p.Gly50AlafsX22 

- + + + 
Mental retardation 

Short stature 

8 
c.145-147delC 
c.145-147delC 

p.Gly50AlafsX22 
p.Gly50AlafsX22 

- + + - - 

9 
c.1963C>T 
c.1963C>T 

p.Arg655Cys 
p.Arg655Cys 

+ + + - 
Hypotonia 

Failure to thrive 

10 
c.1963C>T 
c.1963C>T 

p.Arg655Cys* 
p.Arg655Cys* 

- - + + - 

11 
c.1931C>T 
c.1931C>T 

p.Thr644Met 
p.Thr644Met 

+ + + - Hydronephrosis 

12 
c.1931C>T 
c.1931C>T 

p.Thr644Met* 
p.Thr644Met* 

+ - ? + Horseshoe kidney 

13 
c.1931C>T 
c.1931C>T 

p.Thr644Met* 
p.Thr644Met* 

+ - + +  

Pasutto 
et al. 
2007 

14 
c.269C>T 
c.961A>C 

p.Pro90Leu 
p.Thr321Pro 

+ + + + 
Hypoplasic kidneys 
Bicornuate uterus 

15 

c.50_52delACT
insCC 

c.50_52delACT
insCC 

p.Asp17AlafsX55 
p.Asp17AlafsX55 

+ + + - 

Annular pancreas 
Duodenal stenosis 

Intra-uterine 
growth retardation Golzio 

et al. 
2007 

16 
c.527_528insG 
c.527_528insG 

p.Gly176GlyfsX59 
p.Gly176GlyfsX59 

+ + + + 

Multilobed spleen 
Duodenal stenosis 
Pancreatic agenesis 

Intra-uterine 
growth retardation 

White et 
al. 2008 

17 
c.650G>A 
c.1774C>T 

p.Gly217Glu 
p.Gln592X 

- - + - 
Duplicated kidney 
collecting system 

West et 
al. 2009 

18 
c.31_32dupCC 

c.69G>A 
p.Gly13ProfsX72 

p.Trp23X 
+ + + + 

Intra-uterine 
growth retardation 

Cryptorchidism 
Bilateral inguinal 

hernias 
Thin corpus 

callosum 
Total 
(%) 

  
12/21 
(57) 

10/21 
(48) 

20/20 
(100) 

14/21 
(67) 

 

 
+ : presence ; - : absence ; ?: unknown ;  
* These patients had no molecular analysis but their genotype was deduced from that of an affected sib. 
Sequence variations were numbered based on GenBank accession NM_022369.3, with +1 corresponding to the A of ATG 
translation initiation codon. 
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RESULTS AND DISCUSSION 

STRA6 molecular analysis was performed in cases 1, 2, 3-1, 3-3, and 4-2. Case 1 was compound heterozygous 
for a splicing mutation (c.1090+1G>A) and a stop codon (c.859C>T; p.Gln287X), both leading to the prediction of 
premature termination of transcription. Case 2 was homozygous for the mutation c.1662delG 
(p.Arg555GlufsX16), with a predicted premature stop codon. Case 3-1, like case 3-3, was compound heterozygous 
for two missense mutations, c.1313A>G (p.Gln438Arg) and c.1913G>C (p.Arg638Pro). Mutation p.Arg638Pro 
was inherited from the mother and p.Gln438Arg was inherited from the father. Both mutations involved a 
conserved amino acid (Figure 2), and were predicted in silico to be damaging (Polyphen software). Case 4-2, was 
homozygous for the mutation c.1329delC (p.Leu444TrpfsX34) leading to a premature termination of the 
translation. The positions of STRA6 mutations described to date are represented on Figure 3.  

 
 

 
Figure 2: Alignment of part of human, murine, and avian STRA6 
proteins, showing conservation of glutamine 438 and arginine 638 
(shaded) in these species. 

 
 

 
Figure 3: Locations of the different mutations identified to date. Missense mutations are positioned above the representation of 
STRA6 gene, while nonsense and frameshift mutations are positioned underneath. Novel mutations identified in this study are 
indicated with an asterisk (*). 

 
 
 
To date, no correlations between the nature of a STRA6 mutation and phenotypic severity have been found. 

Patients with missense mutations have had severe phenotypes, whereas some patients with truncating mutations 
have had milder clinical involvement (Golzio et al., 2007; Pasutto et al., 2007). In previously reported families, 
there was little intrafamilial variation in severity (Chitayat et al., 2007; Pasutto et al., 2007). Likewise, in the first 
family reported here, all three affected siblings had bilateral severe microphthalmia, while none was described 
having diaphragmatic or lung involvement. However, case 3-2 died in the first days of life in the 1970s without 
further investigation, and a lung defect or diaphragmatic hernia can not be ruled out. In addition, patients 3-1 and 
3-2 had a tetralogy of Fallot while patient 3-3 had no cardiac malformation but rather a neural tube closure defect, 
not previously observed in association with PDAC syndrome.  

Patients 3-1 and 3-3 are the first adult patients described with STRA6 mutations, although other mutated 
children have already been reported (Pasutto et al., 2007; White et al., 2008). It is interesting to note that apart 
from clinical anophthalmia, none of the other principal features of PDAC syndrome (diaphragmatic, pulmonary or 



Chassaing et al. 

cardiac involvement) is systematically present in those patients with STRA6 mutations currently reported. 
Including these seven cases, mutations in STRA6 have been observed in 21 phenotypically diverse patients sharing 
features of the MCOPS9 syndrome (Golzio et al., 2007; Pasutto et al., 2007; White et al., 2008; West et al., 2009). 
Their clinical presentation is summarized in Table 1. Phenotypic variability could be related to vitamin A 
metabolic variability (from absorption to degradation) in either fetuses or their pregnant mothers. 

Bilateral microphthalmia/anophthalmia was constant and cardiopathy frequent (14/21; 67 %); pulmonary and/or 
diaphragmatic involvement were present in about half of the patients. Moreover, additional features appear to be 
associated with STRA6 mutations, such as renal abnormalities (6/21), intra-uterine growth retardation (3/21), 
uterine malformations (2/21), and spleen and/or pancreatic malformations with attendant duodenal atresia (2/21) 
(Martinovic-Bouriel et al., 2007; White et al., 2008; West et al., 2009). Interestingly, mental retardation appears to 
be a constant finding in living patients.  

Considering this phenotypic variability, it remains difficult to conclude whether Matthew-Wood/Spear/PDAC is 
a genetically homogeneous syndrome or an association of distinct syndromes overlapping in their clinical 
presentation. Negative molecular analysis for STRA6 mutations in some PDAC patients suggests that this spectrum 
of anomalies is probably genetically heterogeneous, even though STRA6 screening may ignore some mutations 
(such as exonic rearrangements, splicing mutations distant from the coding sequence, or mutations in regulatory 
sequences) (Chitayat et al., 2007; Golzio et al., 2007; Pasutto et al., 2007). STRA6 was recently identified as the 
cell membrane receptor for plasma retinol binding protein, which transfers circulating vitamin A from the blood 
into target cells (Kawaguchi et al., 2007). All STRA6 mutations associated with human disease to date have been 
shown to largely abolish vitamin A uptake activity (Kawaguchi et al., 2008). It therefore remains likely that other 
genes implicated in the control of vitamin A intracellular levels during embryonic development are causative in 
those MCOPS9 associations not linked to STRA6 mutations. The vitamin A signalling pathway directly regulates 
the levels of over 500 target proteins (Blomhoff and Blomhoff, 2006) and its own metabolism, while imperfectly 
understood, involves dozens of intracellular enzymes.  

Extensive data from teratogenic and genetic animal models, as well as from Donnai-Barrow syndrome (MIM# 
222448) patients with LRP2 mutations, confirm the important role of vitamin A in human diaphragm and lung 
development (Kluth et al., 1990; Kantarci et al., 2007). Case 3.3, with a minor form of spina bifida, has the first 
reported association of STRA6 mutations with a neural tube closure defect, which is a result of vitamin A 
metabolite deficiency in mouse models (Kastner et al., 1995). Splenic, pancreatic, intestinal and urogenital 
malformations sometimes observed in Matthew-Wood patients, as well as the conotruncal nature of the cardiac 
defects, are also effects of lower perceived retinoid levels in the primordia of these organs in embryonic mice 
(Kastner et al., 1995). 

 
In conclusion, we report herein five new patients with MCOPS9 syndrome caused by STRA6 mutations. These 

data contribute to an expanding database of STRA6 mutations and to the delineation of the phenotypic variability in 
patients with such mutations. Further molecular studies on Matthew-Wood/Spear/PDAC/MCOPS9 patients may 
identify mutations in other genes implicated in the retinoic acid signaling pathway. 
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REPORT

Loss-of-Function Mutation in the
Dioxygenase-Encoding FTO Gene Causes Severe
Growth Retardation and Multiple Malformations

Sarah Boissel,1,7 Orit Reish,2,7 Karine Proulx,3,7 Hiroko Kawagoe-Takaki,4 Barbara Sedgwick,4

Giles S.H. Yeo,3 David Meyre,5 Christelle Golzio,1 Florence Molinari,1 Noman Kadhom,1

Heather C. Etchevers,1 Vladimir Saudek,3 I. Sadaf Farooqi,3 Philippe Froguel,5,6 Tomas Lindahl,4

Stephen O’Rahilly,3 Arnold Munnich,1 and Laurence Colleaux1,*

FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family. Although

polymorphisms within the first intron of the FTO gene have been associated with obesity, the physiological role of FTO remains

unknown. Here we show that a R316Q mutation, inactivating FTO enzymatic activity, is responsible for an autosomal-recessive lethal

syndrome. Cultured skin fibroblasts from affected subjects showed impaired proliferation and accelerated senescence. These findings

indicate that FTO is essential for normal development of the central nervous and cardiovascular systems in human and establish that

a mutation in a human member of the AlkB-related dioxygenase family results in a severe polymalformation syndrome.
Fto was originally identified in mice as one of the genes en-

coded by the 1.6 Mb deletion causing the fused toes (Ft)

mutant, an autosomal-dominant mouse mutation gener-

ated by a transgene integration into region D of mouse

Chr 8.1 In addition to Fto, the deleted segment also

contains three members of the Iroquois gene family (Irx3,

Irx5, and Irx6, also known as the IrxB complex) as well as

the Fts/Aktip and Ftm/Rpgrip1l genes. Mice heterozygous

for the Ft mutation are characterized by partial syndactyly

of forelimbs and thymic hyperplasia.1 Ft/Ft embryos die in

midgestation and present many abnormalities including

limb polydactyly and distal truncations, major brain and

heart defects, delay or absence of neural tube closure,

and facial structure hypoplasia.2,3

Interestingly, a human genome-wide search for type 2

diabetes susceptibility genes identified the strong associa-

tion of a series of single nucleotide polymorphisms

(SNPs), in tight linkage disequilibrium with rs9939609

and located in the first intron of the FTO gene (MIM

610966), with higher body mass index (BMI) and obesity

risk in European cohorts.4,5 This association was replicated

in various European cohorts and several studies have been

performed trying to identify association between the

obesity risk allele and energy intake/expenditure or eating

behavior trait.6–8 However, how FTO variants modulate

components of the energy balance remains elusive so far.

FTO has been recognized as a member of the AlkB-related

family of non-haem iron- and 2-oxoglutarate-dependent

dioxygenases.9 These non-heme iron enzymes, which

require Fe2þ as a cofactor and 2-oxoglutarate and dioxygen

as cosubstrates, reverse alkylated DNA and RNA damages
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by oxidative demethylation.10–14 Fto-deficient mice have

been recently described.15 Homozygous mutant mice are

viable but postnatal death occurs frequently and loss of

Fto leads to postnatal growth retardation, significant

reduction in adipose tissue, and lean body mass.

We ascertained a large Palestinian Arab consanguineous

multiplex family in which nine affected individuals pre-

sented with a previously unreported polymalformation

syndrome (Figure 1A). The study was approved by the

supreme Israeli Helsinki Review Board (33/07-08) and

informed consent was obtained from all family members.

All affected individuals had postnatal growth retardation,

microcephaly, severe psychomotor delay, functional brain

deficits, and characteristic facial dysmorphism. In some

patients, structural brain malformations, cardiac defects,

genital anomalies, and cleft palate were also observed

(Table 1). Early lethality resulting from intercurrent infec-

tion or unidentified cause occurred at 1–30 months of age.

Extensive biochemical, metabolic, and genetic analyses

failed to diagnose any previously known inherited disor-

ders. Because the pedigree suggested an autosomal-reces-

sive mode of inheritance, we performed a genome-wide

autozygosity screen with the Perkin Elmer Biosystems

linkage mapping set (version 1) and identified a unique

region of shared homozygosity on chromosome 16q12

(Figure S1 available online). Further genotype and haplo-

type analyses reduced the critical region to a 6.5 Mb interval

between loci D16S411 and D16S3140 (maximum LOD

score Zmax¼ 4.16 at q¼ 0 at the D16S3136 locus). No other

genomic region showed consistent linkage. This genetic

interval encompasses 28 genes that were all systematically
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Figure 1. Genetic Analysis of a Family with Ante- and Postnatal Growth Retardation and a Severe Polymalformative Syndrome
(A) Pedigree of the family. Filled symbols and slashes indicate affected and deceased infants.
(B) Electrophoregrams showing the variation of FTO gene sequence in an affected infant and a healthy control.
(C) Part of the multiple sequence alignment of FTO representative orthologs (H.s, Homo sapiens; Ma.m, Macaca mulatta; R.n, Rattus nor-
vegicus; Mu.m, Mus musculus; C.f, Canis familiaris; E.c, Equus caballus; Or.a, Ornithorhynchus anatinus; Ov.a, Ovis aries; B.t, Bos taurus; M.d,
Monodelphis domestica; G.g, Gallus gallus; D.r, Danio rerio; X.t, Xenopus tropicalis; ABH2 H.s, human ABH2; ABH3 H.s, Human ABH3; AlkB
E.c, E. coli AlkB). The conserved residues are highlighted and the amino acid highlighted in red is the absolutely conserved arginine
involved in the R316Q mutation in patients (Ai, affected infant). Blue strands labeled with roman numerals identify three of the eight
b strands that form the conserved double-stranded b-helix of the 2OG-oxygenases.
analyzed at both DNA and/or RNA levels (Table S1). We

identified a homozygous single-nucleotide variation at

cDNA position 947 (c.947G/A) within the FTO gene

(Figure 1B). The c.947G/A transition predicts a p.R316Q

substitution. Notably, this amino acid residue is absolutely

conserved across all known FTO paralogs and AlkB ortho-

logs (Figure 1C) and is involved in 2-oxoglutarate coordina-

tion by forming stabilizing salt bridges with the carboxyl-

ates of this cosubstrate.9 This variant cosegregated with

the disease and was not found in 730 control chromosomes,

including 378 chromosomes from individuals of Palesti-

nian Arab origin. We subsequently undertook to estimate

the frequency of FTO sequence variants within the general

population. FTO coding exons and intron-exon boundaries

sequence was determined in 1492 controls of European

descent without overt disease or syndromic features. No

nonsense variant was identified and the prevalence of

missense variants was 0.87%. In addition, neither homozy-

gous missense mutation nor composite heterozygous muta-

tions were detected in this large series of control subjects

(data not shown), further supporting the hypothesis that

the R316Q mutation is the disease-causing defect. To esti-

mate the prevalence of FTO mutations, 27 unrelated chil-
The Am
dren with partially overlapping clinical features were tested

but no mutation in the FTO gene was identified, strength-

ening the idea that the new syndrome described here is

a very rare condition.

FTO belongs to the AlkB-related protein family and was

shown to localize in the nucleus.9 Immunofluorescence

experiments performed on patient and control fibroblasts

demonstrated that the mutation did not affect its nuclear

localization (data not shown). Murine and human Fto

have been shown to demethylate 3-methylthymine and

3-methyluracil residues in single-stranded DNA and RNA

in vitro, albeit with a relatively low efficiency. Fto was less

active on the more common forms of methylated DNA base

damage, 1-methyladenine and 3-methylcytosine.9–14,16

Moreover, the recombinant murine Fto protein mutated

in the residue corresponding to human R316 amino acid

displays a much reduced or absent DNA demethylation

activity. To investigate the functional consequences of the

R316Q mutation, we tested the catalytic activity of the

wild-type and mutant R316Q FTO proteins in vitro. Two

different assays were used: the first followed the conversion

of the cosubstrate 2-oxoglutarate to succinate and the

second monitored the ability of FTO to demethylate
erican Journal of Human Genetics 85, 106–111, July 10, 2009 107



Table 1. Major Clinical Features in Affected Individuals with
c.947G/A Mutation in FTO

Clinical Features

Number of Patients Presenting
the Symptom/Number
of Patients Examined

Survival

Death before 3 years of age 8/8

Build

Intrauterine growth retardation 3/7

Failure to thrive (severe) 8/8

CNS

Developmental delay (severe) 8/8

Postnatal microcephaly (severe) 8/8

Hypertonicity 6/6

Hydrocephalus 4/8

Lissencephaly 3/8

Seizures 3/8

Dandy walker malformation 2/8

Brain atrophy 1/8

Heart

Ventricular septal defect,
atrio ventricular defect,
atent ductus arteriosus

6/8

Hypertrophic cardiomopathy 4/8

Dysmorphism

Ante verted nostrils 7/7

Thin vermilion 7/7

Prominent alveolar ridge 6/6

Retrognathia 7/7

Coarse face 7/7

Protruding tongue 3/7

Other

Short neck 7/7

Cutis marmorata 7/7

Drumstick fingers 6/6

Brachydactyly 6/6

Toenail hypoplasia 6/6

Skull asymmetry 6/6

Neuro sensory deafness 5/5

Weak cry 4/6

Umbilical hernia 4/6

Hypertrophy of labia/genital
ambiguity/undescending testis

4/7

Cleft palate/Bifid uvula 3/6

Optic disk abnormality 3/7

Medical information was available from 8/9 patients.
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3-methylthymine in DNA. Most 2-oxoglutarate- and Fe2þ-

dependent dioxygenases slowly catalyze the conversion of

2-oxoglutarate to succinate even in the absence of their

prime substrate,16 and this uncoupled reaction may be

stimulated by substrates or their analogs. We optimized

conditions to assay the ability of human recombinant

FTO protein to convert 14C-2-oxoglutarate to 14C-succinate

and found that this activity was stimulated 6- to 8- fold by

free 3-methylthymidine (Figure 2A). Other nucleosides

such as 1-methyldeoxyadenosine and thymidine or the

base 3-methylthymine did not stimulate the activity (data

not shown). Interestingly, the R316Q FTO mutant protein

had no detectable ability to catalyze the uncoupled reaction

and also was not stimulated by 3-methylthymidine

(Figure 2A). The ability of FTO to demethylate 14C-labeled

3-methylthymine in single-stranded poly(dT) substrate

was assayed by measuring the release of 14C-formaldehyde.

The optimum pH for the demethylation of 3-methylthy-

mine in DNA by AlkB, ABH2 (MIM 610602), and ABH3

(MIM 610603) is 6 to 6.5 and this is also the case for human

FTO. Wild-type FTO11,16,17 actively but slowly demethy-

lated this substrate whereas the mutant R316Q protein

was inactive in the assay (Figure 2B). The defective activity

of FTO, as observed in both assays, is most likely due to

the inability of the mutant protein to interact with the

cosubstrate 2-oxoglutarate.

To gain insight into the function of the FTO gene product

and the pathophysiology of the disease, we investigated the

expression of FTO in human embryos and adult tissues.

RT-PCR showed an ubiquitous expression in all fetal and

adult tissues tested, as has been observed in mice (data not

shown).18 Human embryo sections were hybridized in situ

at stages Carnegie (C)15, 33–36 days postfertilization (dpf)

and C18 (44–46 dpf) with antisense probes against FTO

and sense probes as negative controls. We observed a nearly

ubiquitous expression of FTO, with higher expression in the

central nervous system and the liver. In the heart, the mitral

and semilunar valves and the wall of the pulmonary trunk

stained as did the ventricular myocardium, and a strong

and uniform expression was observed in the developing

pituitary and the frontonasal and mandibular mesenchyme

(Figure S2). It is worth noting that this wide spatiotemporal

pattern of expression is consistent with the broad spectrum

of clinical manifestations of the disease (Table 1).

Interestingly, the cultured skin fibroblasts of patient

III.15 displayed an altered morphology (including hyper-

trophy), an increased number of vacuoles and cellular

debris (Figure 3A), a reduced life span, and decreased prolif-

erative abilities when compared to controls (Figure 3B).

Cellular expression of the senescence-associated b-galacto-

sidase (SA-b-Gal) is thought to be a reliable indicator of

the switch mechanism that occurs when cells enter the

senescent phenotype.19 Notably, a significantly elevated

number of SA-b-Gal-positive cells, increasing with passage

numbers, was found in patient cultured cells compared to

passage-matched control fibroblasts (Figure 3C). Although

further analyses on skin fibroblasts of additional patients
2009



A B Figure 2. Biochemical Analyses of the Wild-Type
and Mutant FTO Proteins
(A) Purified FTO was added to 10 ml reaction mixture
containing 50 mM HEPES.KOH (pH 7), 50 mg/ml
BSA, 4 mM ascorbate, 75 mM Fe(NH4)2(SO4)2, and
20 mM [5-14C]-2-oxoglutarate (30 mCi/mmol from
Moravek Biochemicals) and incubated at 37�C for
various times. To measure stimulation of this activity
by 3-methylthymidine, 1 mM 3-methylthymidine
(Moravek Biochemicals) was included in the assay
mix. The reaction was stopped by adding 5 ml stop
solution containing 20 mM succinate, 20 mM 2-oxo-
glutarate followed by 5 ml 160 mM dinitrophenylhy-
drazine, which precipitates 2-oxoglutarate. This mix
was incubated at room temperature for 30 min. An
additional 10 ml 1M 2-oxoglutarate was added and

incubated for a further 30 min. The precipitate was removed by centrifugation. Clear supernatant (10 ml) was scintillation counted to
monitor the 14C-succinate generated. Time course of activity of 1.5 mM FTO: open and closed squares, wild-type FTO protein; open
and closed triangles, mutant R316Q FTO protein. Open symbols and dotted line: without 3-methylthymidine; closed symbols and solid
line: with 3-methylthymidine (1 mM).
(B) A DNA substrate containing 14C-3-methylthymine was prepared by treating poly(dT) with [14C]-methyl iodide (54 Ci/mmole, Amer-
sham Biosciences) as previously described11 and had a specific activity of 1580 cpm/mg poly(dT). FTO was added to the 14C-methylated
poly(dT) substrate (1000 cpm) in a 100 ml reaction mix containing 50 mM MES-HCl (pH 6), 75 mM Fe(NH4)2(SO4)2, 100 mM 2-oxoglu-
tarate, 2 mM ascorbate, 10 mg/ml bovine serum albumin and incubated at 20�C for various times. All assays were performed in triplicate.
To stop the reaction, EDTA was added to a final concentration of 10 mM. The polynucleotide substrate was then ethanol precipitated in
the presence of carrier calf thymus DNA. Two-thirds of the ethanol-soluble radioactive material was monitored by scintillation counting.
Equal volumes of the protein preparations were assayed. Standard error of the mean is shown for each time point. Closed square, 2 mM
wild-type FTO protein; closed triangle, 2 mM mutant R316Q FTO protein; open circle, ‘‘mock prep’’ prepared in the absence of recombi-
nant FTO expression. Equal volumes of the protein preparations were also examined by SDS-10% PAGE.
are necessary to validate these findings, taken together

these data could yet suggest that the defective FTO activity

may cause premature senescence-like phenotype.

Although repair of alkylated nucleic acid by oxidative

demethylation is crucial to maintain genome integrity, no

AlkB-related protein mutations have been hitherto identi-

fied in human. The results reported here provide therefore

the first example of a human disorder related to the defect

of an AlkB-related protein. The Escherichia coli AlkB protein

catalyzes the oxidative demethylation of 1-methyladenine,

3-methylcytosine, and 3-methylthymine in DNA and RNA.

Eight mammalian orthologs of AlkB have been previously

identified (ABH1 to 8),20 and FTO is the ninth member

of this family. Of this family, only ABH2 and ABH3 have

been demonstrated to be highly active in repairing methyl-

ation damage to DNA.13,14 In comparison, ABH1 (MIM

605345) has a modest activity on 3-methylcytosine in

single-stranded DNA or RNA21 whereas FTO has a similar

low activity on 3-methylthymine in these substrates.9,16

Mice lacking either Abh2 or Abh3 have no overt phenotype

but the Abh2�/� mice accumulate significant levels of

1-methyladenine in their genomes.22 Notably, Abh1�/�

mice are viable but have intrauterine growth retardation

and defects in placental differentiation.23

Surprisingly, although homozygous Fto�/� mice have

postnatal growth retardation, significant reduction in

adipose tissue, and lean body mass, they are not, however,

reported to have any developmental abnormalities in the

central nervous or cardiovascular systems.15 Thus, humans

homozygous for a catalytically inactive FTO and Fto null

mice share the growth retardation phenotype but both

mutations differ in the impact on development of central
The Am
nervous and cardiovascular systems. There are several

possible reasons for the different findings in our patients

versus the Fto�/� mouse. First, major phenotypic differ-

ences between rodent models and humans harboring

identical mutations are well described. For example, matu-

rity-onset diabetes of the young subtype 3 (MODY3 [MIM

600496]) is caused by heterozygous mutations in the tran-

scription factor hepatocyte nuclear factor (HNF)-1a (MIM

142410).24 By contrast, mice with heterozygous mutations

in Hnf-1a gene are phenotypically normal.25 Second, it is

possible that the presence, in the nucleus, of a mutant

catalytically inactive FTO might have biochemical conse-

quences over and above that seen with complete deficiency

of Fto. These could include toxic ‘‘gain-of-function’’ effects

or dominant-negative interference with other related

family members. Finally, it is formally possible that the

phenotype seen in the human subjects is due to a combina-

tion of the mutant FTO and a second, as yet undetected,

mutation in the 6 Mb critical region. The fact that no muta-

tions were detected on sequencing of the coding regions

and splice junctions of all 28 known and putative genes in

that linked region makes the chances of such a second

mutation very small.

A cluster of variants located within the first intron of FTO

has recently been strongly and reproducibly associated with

human adiposity.4,5 Yet, whether these variants influence

the risk of obesity directly, via the altered expression of

FTO or through other mechanisms, remains questionable.

In this regard, it is worth noting that homozygosity for

the R316Q FTO mutation caused severe growth retardation.

Detailed anthropometric measurements are not available

on unaffected family members but, noticeably, none of
erican Journal of Human Genetics 85, 106–111, July 10, 2009 109



the parents were clinically obese. Given the results from the

Fto-deficient mice, it might be hypothesized that humans

heterozygous for a loss-of-function mutation in FTO might

actually be relatively resistant to becoming obese. Future

studies of the body composition of carrier and

noncarrier relatives will be required to clarify the relation-

ship between FTO variant heterozygosity and adiposity.

The molecular mechanisms whereby the mutant FTO

leads to the severe phenotype observed in our patients

remain unknown. The fact that (1) FTO is a member of

the Alk-B-related family of dioxygenases, (2) at least two

of the mammalian members of this family have established

roles in DNA repair, and (3) FTO can demethylate 3-methyl-

thymine in the context of DNA might suggest that FTO

plays a role in the maintenance of genome integrity. If

that were the case, one could easily understand how FTO

defect relates to developmental malformations and the

accelerated senescence observed in cultured fibroblasts

derived from the patients. However, it should also be

pointed out that (1) several members of the mammalian

Alk-B-related family have no established role in DNA repair,

(2) FTO demethylates 3-methylthymine slowly and ineffi-

A 

B 

C 

Figure 3. Cell Morphology and Proliferative Abili-
ties of Cultured Skin Fibroblasts Harboring the
R316Q FTO Mutation
(A) Fibroblast morphology. The arrow shows altered
cell morphology and enlarged cell size of a patient
fibroblast.
(B) Fibroblast growth curves. Fibroblasts were seeded
at a density of 5000 cells/well in 12-well dishes. The
number of cells per dish was determined with
a CASY cell counter on days 2, 5, 7, 9, and 11 after
seeding. Filled and open symbols correspond to
patient and control fibroblasts, respectively. Data
correspond to the mean of three replicates. Standard
error of the mean is shown for each point.
(C) Senescence-associated b-galactosidase assay.
Fibroblasts were seeded on 6-well dishes at a density
of 130,000 cells/well. Senescent fibroblasts were
stained with the Senescence b-Galactosidase Staining
Kit (Cell Signaling Technology). Percentages of
b-galactosidase-positive cells for passages 7, 9, and 13
were calculated on the basis of approximately 100
cells. Data correspond to the mean of three replicates.
Standard error of the mean is shown for each point.

ciently, suggesting that this is not its true phys-

iological substrate, (3) 3-methylthymine is a

very rare lesion in vivo, and (4) defective repair

of rare methylated bases in DNA can hardly be

related to the striking increase in energy expen-

diture observed in Fto-deficient mice. Taken

together, this suggests that FTO roles in the

nucleus are presumably not restricted to DNA

repair.

Because of its association with obesity, FTO is

currently the subject of intense interest. The

finding of obesity resistance in Fto-deficient

mice has led to the suggestion that interference

with Fto enzymatic function might be a novel and inter-

esting antiobesity therapeutic strategy. The discovery that

humans homozygous for an enzymatically inactive mutant

form of FTO havemultiple congenital abnormalities suggests

that any program of research exploring the therapeutic

utility of FTO inhibitors should incorporate a particularly

careful assessment of teratogenicity and other toxic effects.

Supplemental Data

Supplemental data include two figures and one table and can be

found with this article online at http://www.ajhg.org/.

Acknowledgments

We are grateful to the patients for theirparticipation in the study. We

acknowledge Jean Philippe Jais for LOD score calculation, Carron

Sher for participation to clinical evaluation, Uli Rüther for kindly
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Table S1: Positional candidate genes analyzed 

    Genomic position  

Gene Name Accession number OMIM Number Strand Start End Number of exons 

ZNF423 NM_015069 MIM 604557 - 48082021 48418419 9 

TMEM188 NM_153261 - + 48616689 48628500 7 

HEATR3 NM_182922 - + 48657381 48696876 15 

PAPD5 NM_001040284 MIM 605540 + 48745568 48826720 12 

ADCY7 NM_001114 MIM 600385 + 48879323 48909544 25 

BRD7 NM_013263 - - 48910441 48960330 18 

NKD1 NM_033119 MIM 607851 + 49139741 49226142 10 

SNX20 NM_153337 - - 49257711 49272765 4 

NOD2 NM_022162 MIM 605956 + 49288550 49324488 12 

CYLD NM_015247 MIM 605018 + 49333461 49393347 20 

TOX3 NM_001146188 MIM 611416 - 51029418 51139215 8 

CHD9 NM_025134 - + 51646445 51918915 39 

RBL2 NM_005611 MIM 180203 + 52025851 52083061 22 

AKTIP NM_001012398 MIM 608483 - 52082692 52094671 10 

RPGRIP1L NM_015272 MIM 610937 - 52191318 52295272 27 

FTO NM_001080432 MIM 610966 + 52295375 52705879 9 

IRX3 NM_024336 - - 52874712 52877879 4 

IRX5 NM_005853 - + 53522611 53525896 3 

IRX6 NM_024335 MIM 606196 + 53915971 53922173 6 

MMP2 NM_004530 MIM 120360 + 54070581 54098087 13 

LPCAT2 NM_017839 MIM 612040 + 54100413 54178082 14 

CAPNS2 NM_032330 - + 54158084 54159093 1 

SLC6A2 NM_001043 MIM 163970 + 54248056 54295201 14 

CES4 NR_003276 - + 54352011 54366325 6 

CES1 NM_001266 MIM 114835 - 54394264 54424576 14 

CES7 NM_001143685 - - 54437566 54466783 13 

GNAO1 NM_020988 MIM 139311 + 54782751 54948857 9 
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Figure S2: Pattern of FTO expression in early human development. 

 
Adjacent sections of human embryos hybridized in situ against FTO antisense (A,B) 
and sense (C, D) probes at Carnegie stage 18 (44-46 days post fertilization). FTO 
expression is nearly ubiquitous, with higher signal throughout the central nervous 
system and the liver than in other tissues. Sections through the eye in A, C are from 
a distinct embryo from those in B, D. Abbreviations: ag, adrenal gland; at, atrium; fn, 
frontonasal eminence; le, lens; liv, liver; lsvc, left superior vena cava; lu, lung; md, 
mandible; mn, mesonephros; mv, mitral valve; p, pancreas; pros, prosencephalon; pt, 
pulmonary trunk; ret, neurosensorial retina; rh, rhombencephalon; Rp, Rathke’s 
pouch (prospective anterior pituitary); rpe, retinal pigmented epithelium; slv, 
semilunar valve; st, stomach; v, ventricle. Scale bar: 0.5 mm for A, C and 240 μm for 
B, D.  
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Cerebral proliferative glomeruloid vasculopathy (PGV) is a severe disorder of brain angiogenesis,
resulting in abnormally thickened and aberrant perforating vessels, forming glomeruloids with inclu-
sion-bearing endothelial cells. This peculiar vascular malformation was delineated by Fowler in 1972 as
a stereotyped lethal fetal phenotype associating hydranencephaly–hydrocephaly with limb deformities,
called Fowler syndrome (FS) or ‘‘proliferative vasculopathy and hydranencephaly-hydrocephaly’’ or
‘‘encephaloclastic proliferative vasculopathy’’ (OMIM # 2255790). In PGV, the disruptive impact of
vascular malformation on the developing central nervous system (CNS) is now well admitted. However,
molecular mechanisms of abnormal angiogenesis involving the CNS vasculature exclusively remain
unknown, as no genes have been localized nor identified to date.

We observed the pathognomonic FS vascular malformation in 16 fetuses, born to eight families, four
consanguineous and four non-consanguineous. A diffuse form of PGV affecting the entire CNS and
resulting in classical FS in 14 cases, can be contrasted to two cases with focal forms, confined to restricted
territories of the CNS. Interestingly, immunohistological response to a marker of pericytes (SMA, Smooth
Muscle Actin), was drastically reduced as compared to a match control.

Our studies has expanded the description of FS to additional phenotypes, that could be called Fowler-
like syndromes and suggest that the pathogenesis of PGV may be related to abnormal pericyte-depen-
dent remodelling of the CNS vasculature, during CNS angiogenesis. Gene identification will determine
the molecular basis of PGV and will help to know whether the Fowler-like phenotypes are due to the
same underlying molecular mechanisms.

� 2009 Elsevier Ltd. All rights reserved.
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Table 1
Major clinical and neuropathological distribution of the PGV. Keys & abreviations:
PGV: Proliferative glomeruloid vasculopathy, Cons: Consanguinity, H: Hydroceph-
alus, FADS: Fetal akinesia deformation sequence.

Cases Sexe Cons H FADS Extension of PGV Severity of PGV

Fam I þ
Case1 M þ þ Cerebral & Spinal þþþ
Case 2 F þ þ Cerebral & spinal

Fam II þ
Case 3 F þ þ Cerebral & Spinal
Case 4 F þ þ Cerebral & Spinal þþþ
Case 5 M þ þ Cerebral & spinal

Fam III –
Case 6 M þ þ Cerebral & Spinal
Case 7 M þ þ Cerebral & Spinal þþþ
Case 8 F þ þ Cerebral & Spinal

Fam IV –
Case 9 F þ – Cerebral þþ
Case 10 M þ – Cerebral þþ

Fam V þ
Case 11 M þ þ Cerebral & Spinal þþþ
Case 12 F þ þ Cerebral & Spinal þþþ

Fam VI –
Case 13 F þ þ Cerebral & Spinal þþþ
Case 14 F þ þ Cerebral & Spinal þþþ

Fam VII –
Case 15 F þ þ Cerebral & Spinal þþþ

Fam VIII –
Case 16 M þ þ Cerebral & Spinal þþþ

B. Bessières-Grattagliano et al. / European Journal of Medical Genetics xxx (2009) 1–72

ARTICLE IN PRESS EJMG2363_proof � 27 July 2009 � 2/7

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240
U
N
C
O
R
R
E
C
T

(CNS) is now well acknowledged. However, the mechanism of
abnormal angiogenesis that restricts lesions to the CNS vasculature
exclusively remains unknown. Moreover, despite recurrence and
consanguinity in some cases, no genes have been identified nor
localized to date.

FS is considered as rare. Since the first description, only 14 cases
have been reported on the basis of histological criteria of PGV
[2–10]. In 16 fetuses, born to eight unrelated families, our neuro-
pathological analysis allowed to define the FS pathognomonic
vascular malformation. In this series, a diffuse form of EPV, affecting
the entire CNS and resulting in classical FS was observed in 14 cases.
By contrast in two cases a focal form of EPV was observed. In both
forms, response to immunohistological marker of pericytes (SMA,
smooth muscle actin) was drastically reduced. Based on our find-
ings, we postulate that EPV may be linked to abnormal remodelling
of CNS vasculature due to a possible deficit of pericytes.

2. Material & methods

After routine neuropathological analysis, we identified 16
fetuses with characteristic EPV in eight unrelated families (four
consanguineous and four non-consanguineous). Recurrences
occurred in five families, in three consanguineous and in two non-
consanguineous.

2.1. Clinicopathological study

After parental consent and in conformity with French laws and
rules a complete autopsy was performed in each case. It included
an external examination, X-rays, photographs, macroscopical and
histological examination of viscera. Brain, spinal cord and eyes
were studied after fixation in zinc formalin. Paraffin embedded
sections were processed for routine histology. Slices of 7 microns
thick were stained with hematoxylin and eosin (H&E). In index
cases, Periodic acid Schiff (PAS) stain was performed as well as
immunostainings using classical methods. Monoclonal antibodies
from DakoCytomation against CD34, Smooth Muscle Actin (SMA),
and VEGF (Santa Cruz Biotechnology) were used.

3. Results

Our major clinical and neuropathological findings are summa-
rized in Table 1. They are illustrated in composite Fig. 1.

Family I (Ask.): In this family, parents of Turkish origin are first
cousins with double consanguinity. They already had a healthy
daughter. Malformations occurred in the two following pregnancies.

Fetus 1: Routine ultrasound (US) performed at 16 weeks gesta-
tion (WG) disclosed severe hydrocephalus, decreased fetal move-
ments and arthrogryposis, confirmed at 17 WG. Pregnancy
termination was performed at 18 WG. The female fetus had a 46,XX
karyotype. On the external examination, a mild generalized edema,
multiple arthrogryposis with pterygia and muscular hypoplasia
were observed. X-rays revealed scoliosis, numerous intracranial
calcifications, aberrant and ectopic mineralization of basis cranii.
Internal organ examination was unremarkable. Neuropathological
examination disclosed massive EPV in the thin walled, fluctuant
cerebral hemispheres and hypoplastic brainstem, cerebellum and
spinal cord. Optic tracts were thin and contained also vascular
proliferation, but no glomeruloid lesions, nor PAS-positive inclu-
sions. Immunostainings using CD34, VEGF antibodies, showed
strong positivity in PGV, while SMA compare to an age matched,
was weakly and focally positive.

Fetus 2: In this pregnancy, US at 12.5 WG disclosed voluminous
hygroma coli and cerebral abnormality. Spontaneous intrauterine
fetal death occurred rapidly and led to pregnancy termination at
Please cite this article in press as: B Bessières-Grattagliano et al., Refining
European Journal of Medical Genetics (2009), doi:10.1016/j.ejmg.2009.07
13.2 WG. The fetus had a normal 46.XX karyotype. On the external
examination, the fetus displayed severe arthrogryposis with webs.
Despite advanced autolysis, histological screening of the cerebro-
spinal tissues found characteristic EPV.

Family II (Bos.): In this Turkish family parents were distantly
related. They had two healthy children (boy and girl), and three
affected fetuses.

Fetus 3: The pregnancy was terminated at 22 WG for limb
malformations and cystic hygroma. The female fetus had in addi-
tion to cystic hygroma, severe arthrogryposis of four limbs with
pterygia. Karyotype was not performed. Postmortem study was
restricted to neuropathological analysis. It disclosed fluctuant
cerebral hemispheres and massive EPV involving also the brain-
stem, the cerebellum and the spinal cord.

Fetus 4: Pregnancy was terminated at 14 WG for recurrence of
fetal malformations. The female fetus had macrocrania, cervical
hygroma, arthrogryposis of four limbs with pterygia and cleft
palate. Neuropathological study disclosed fluctuant cerebral
hemispheres reduced to 2 mm. Histology of the cerebral and
cerebellar specimen and of the spinal cord disclosed diffuse EPV.

Fetus 5: Recurrence of fetal akinesia with hydrocephalus led to
pregnancy termination at 21 WG. The male fetus had generalized
oedema with macrocrania and arthrogryposis of four limbs with
large cleft palate. X-rays showed diffuse intracranial calcifications.
Neuropathological analysis linked the hydrocephalus to severe EPV
involving the entire CNS.

Family III (Lec.): This consanguineous family (consanguinity1/32)
underwent three terminations of pregnancy for fetal hydrocephalus
and limb deformations, one early miscarriage and one spontaneous
unexplained fetal at 20 WG and a pregnancy with delivery of
a normal girl.

Fetus 6: This first pregnancy was terminated at 20 WG for major
hydrocephalus disclosed on US. The male fetus had normal 46,XY
karyotype and presented with macrocrania, severe arthrogryposis
of the four limbs and microretrognathism. Neuropathological study
the clinicopathological pattern of cerebral proliferative glomeruloid...,
.006
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Fig. 1. l, 2, 3. External features of fetus 1: note macrocrania and severe akinesia deformation sequence and palmure. 4. External features of fetus 9: note isolated macrocrania
without arthrogryposis. 5, 6, 7, 8. Neuropathological findings in case 15: Lateral and basal view and coronal sections of the dilated cerebral hemispheres, showing on the transversal
section of the brainstem a dilated acqueduct of Sylvius, surrounded by whitish calcification. Note the lamination of cerebral wall and calcifications of the basal ganglia (arrows).9, 10,
11. Histological appearance of PGV in case 15 (H&E) at low and higher magnifications : Note the thickened perforating cerebral vessels, ending in glomeruloid formations, devoid of
recognizable lumina. 12, 13. Neuropathological findings in fetus 9: Coronal section of cerebral hemispheres, showing ventricular enlargement and periventricular calcifications, with
characteristic PGV (H&E). 14, 15. Transversal section of the spinal cords (H&E) showing compare to fetus 9 with a well preserved spinal cord, the chaotic organisation with PGV found
in fetus 15.
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confirmed hydrocephalus and disclosed severe EGV, involving the
supra and infratentorial levels. The spinal cord was not examined.
Immunostainings against CD34 showed strong positivity, while
anti-SMA was negative.

Fetus 7: Diagnosis by US of recurrence of hydrocephalus led to
pregnancy termination at 15 WG and 6 days. The male fetus had
normal 46,XY karyotype, macrocrania and deformations of the
four limbs. Neuropathological examination found a cerebral mantle
reduced to 2 mm. Characteristic EPG was identified throughout the
cerebral hemispheres, the brainstem and the cerebellum. The
spinal cord was not examined.

Fetus 8: This 7th pregnancy was terminated at 18 WG and 6 days
for hydrocephalus and limb deformations. The female fetus had
macrocrania, microretrognathism and four limbs arthrogryposis,
without cleft palate. Neuropathological examination confirmed
severe hydrocephalus and found diffuse EPV at the supra- and
infratentorial levels and in the spinal cord. Eyes were normal.

Family IV (Thu.): This non-consanguineous family had a spon-
taneous miscarriage between two pregnancy terminations for fetal
abnormalities.

Fetuse 9: US performed at 17 WG and 4 days, for toxoplasmosis
seroconversion, disclosed a large 4th cerebral ventricle and a small
cerebellar vermis. At 22 WG, US found moderate tetraventricular
dilatation, short corpus callosum, basal ganglia calcifications and
a small cerebellum. It led to pregnancy termination at 23 WG. The
female fetus had normal 46,XX karyotype, microretrognathism and
a small nose with asymmetric ears, abnormal pulmonary lobulation
and unique ombilical artery. He had no limb deformations. Neuro-
pathological examination founds characteristic EPV affecting the
supra and infratentorial levels. Surprisingly, the spinal cord exam-
ined at the cervical level was well organised, and devoid of vascular
malformation. Immunostainings using anti-CD34 confirmed the
endothelial nature of proliferating cells. The SMA was weakly and
focally positive. Infectious assessment (toxoplasmosis) was negative.

Fetus 10: US found the recurrence of hydrocephalus at 18 WG.
A termination of pregnancy was performed at 22 WG. The male
fetus had mild facial dymorphism and no limb contractures.
Neuropathological study disclosed characteristic EPV involving the
cerebral hemispheres, the brainstem and the cerebellum. The
spinal cord was spared.

Family V (Gas.): In this family, the parents of Moroccan
extraction are first cousins with double consanguinity. They have
three healthy children and underwent two pregnancy terminations
for fetal malformations.

Fetus 11: This first pregnancy was terminated at 15WG for
generalized edema, cervical hygroma and hydrocephalus. X-rays
showed advanced bone maturation with intracranial calcifications.
The male fetus had a normal 46,XY karyotype. A severe sequence of
fetal akinesia with enlarged neck, retrognathism, cleft palate,
arthrogryposis of the four limbs, pterygia and muscle hypoplasia
were found. Except for mild ascitis, autopsy was unremarkable.
Neuropathological examination founds in the cerebral hemispheres
diffuse EPV affecting also in the brainstem, the cerebellum and the
spinal cord.

Fetus 12: This fifth pregnancy was terminated at 12WG for
generalized edema, cervical hygroma and hydrocephalus. X-rays
showed advanced bone maturation with intracranial calcifications.
The female fetus had normal 46,XX karyotype. On external exam-
ination, a severe sequence of fetal akinesia with enlarged neck,
retrognathism and cleft palate, arthrogryposis of the four limbs,
pterygia and muscular hypoplasia were found. Autopsy was
otherwise unremarkable. Neuropathological examination showed
dilated cerebral hemispheres and diffuses EPV.

Family VI (Mar.). This non-consanguineous family underwent
two pregnancy terminations for fetal abnormalities.
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Fetus 13: Pregnancy termination was obtained for severe
hydrocephalus disclosed by US at 16WG. The female fetus had
macrocrania with a severe fetal akinesia deformation sequence. It
was characterized by arthrogryposis with pterygia of four limbs,
a small jaw and cleft palate. X-rays were unremarkable. Except for
gut malrotation, autopsy was unremarkable. Neuropatholgical
evaluation found severe hydocephalus and major cerebral mantle
lamination reduced to 1 mm. Histology disclosed characteristic EPV
affecting the supra- and infratentorial structures and the spinal
cord. Immunostaining using antisera against CD34 confirmed the
endothelial nature of proliferating cells and showed punctuate
expression of VEGF, SMA was negative.

Fetus 14. Recurrence of brain malformation found on US led to
pregnancy termination at 14 WG. The female fetus had macrocrania
and limb contracture with pterygia. Autopsy was unremarkable.
Neuropathological examination disclosed a thin cerebral wall
containing characteristic EPV, also found at the infratentorial levels
and in the spinal cord.

Family VII (Hou.): In this non-consanguineous family, preg-
nancy was terminated at 18WG for severe hydrocephalus and
cerebellar hypoplasia disclosed on routine US.

Fetus 15: The female fetus had cervical edema, macrocrania and
arthrogryposis of four limbs, with pterygia and muscular hypo-
plasia. No cleft palate was found. X-rays showed diffuse intracranial
calcifications. At autopsy, internal organs were unremarkable.
Neuropathological study disclosed major tetraventicular dilatation,
and characteristic EPV at all examined levels, including the spinal
cord. The optic tracts contained thickened vessels without glo-
meruloids. Muscles showed neurogenic atrophy. The superficial
layer of leptomeningeal vessels was unremarkable. Immunostain-
ing using CD34 confirmed the endothelial nature of proliferating
cells in PGV, but anti-VEGF was negative. Immunostaining against
SMA was drastically reduced in PGV, while it was positive in the
arachnoidal vessels (internal control).

Family VIII (Laq.): In this non-consanguineous family, US
examination performed at 22 WG revealed hydrocephalus and
ascites. Fetal death occurred and led to pregnancy termination at 23
WG. Karyotype was not carried out.

Fetus 16: The macerated male fetus presented with massive skin
edema, macrocrania, deformations of the upper and lower extrem-
ities. Autopsy found bilateral pleural effusion, ascites and bilateral
adrenal hypoplasia (0.2 g, N ¼ 0.90 at 23 WG). No visceral abnor-
malities were observed. Neuropathological examination disclosed
a thin cerebral mantle, of less than 1 mm, fulfilled with characteristic
EPV. PGV was also found on the infratentorial samples. The spinal
cord was not evaluated. Intracytoplasmic PAS-positive inclusions
were observed in some endothelial cells. Immunmarkers were
positive for CD34 but negative with VEGF SMA.

4. Discussion

Cerebral proliferative glomeruloid vasculopathy (PGV) is
a severe vascular malformation affecting perforating vessels of the
developing central nervous system (CNS) exclusively. Classically,
visceral vasculature is not involved. This peculiar vascular malfor-
mation also called encephaloclastic prolifrative vasculopathy (EPV)
is pathognomonic for the syndrome of proliferative vasculopathy
and hydranencephaly-hydrocephalus (PVH) or Fowler syndrome
(FS) (OMIM#225 790). The etiopathogenesis of PGV is unknown. No
gene have been mapped nor identified to date. The present
neuropathological and molecular analysis of a series of 16 fetuses
expands the spectrum of FS to new phenotypes and mapped the
disease locus. It also links this peculiar malformation to a possible
deficit of pericytes, an important actor of vascular remodelling
during brain angiogenesis.
the clinicopathological pattern of cerebral proliferative glomeruloid...,
.006
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The diagnosis of cerebral PGV is histological. It relies on the
identification of bundles of thick vessels of variable shape with
abnormal orientation, running horizontally or vertically between
glomeruloid formations, containing enlarged inclusion-bearing
(usually PAS-positive) endothelial cells [1–4]. Immunocytological
studies support the endothelial nature of proliferating cells [4].
Using electron microscopy, these inclusions have been described as
highly variable in size, enclosed within a single membrane, coated
externally by ribosomes, and interpreted as dilated rough endo-
plasmic reticulum [4]. Inclusions are localised within cells just
external to the endothelium, possibly in pericytes [1].

Our analysis of cerebral vasculature in PGV shows that the normal
thin walled leptomeningeal superficial vascular channels are fol-
lowed by a deeper sheet of thickened vessels, some containing
PAS-positive bodies. In the brain parenchyma, the wall of abnormal
vessels contained enlarged, spumous, CD34-positive endothelial
cells. VEGF was variously positive. In PGV, the most striking abnor-
mality, best seen in the glomeruloids, is the lack of a single vascular
lumina, replaced by multiple small microcavities, containing few red
blood cells. Interestingly, immunostaining against smooth muscle
actin (SMA), a marker of pericytes (and vascular smooth muscle in
larger vessels), was drastically reduced in PGV, while it was normally
expressed in the normal superficial leptomeningeal vasculature
(used as an internal control) and in age matched controls.

PAS stain showed intracytoplasmic PAS-positive endothelial
cells in PGV and in the emerging perforating vessels of deep lep-
tomeningeal vessels. In addition in PGV, PAS showed a thickened
vascular basement membrane.

PGV is considered to be pathognomonic for the familial, lethal
syndrome of hydranencephaly-hydrocephaly and limb contractures,
identified by Fowler in 1972, in two of five female affected siblings
(Fowler et al., 1972) [1]. Fowler syndrome (FS) is considered to be
rare, but its frequency is probably underestimated because of early
fetal lethality, retention and autolysis, making postmortem identi-
fication of PGV a challenge. On the basis of histological criteria, since
Fowler’s first description, 14 other cases have been documented to
date in the literature [2–10]. We report clinicopathological data and
molecular findings in a series of 16 fetal FS, collected on the basis of
neuropathological criteria.

4.1. Pathogenesis of PGV

Primitive embryonic vessels including those of the head and
hematopoietic cells differentiate during vasculogenesis [11]. Endo-
thelial precursors first migrate from the splanchnopleuric meso-
derm into the head to form through vasculogenesis a capillary-like,
perineural vascular plexus, which surrounds the forming brain as it
grows. Definitive blood vessels, including those of the CNS, are
formed by angiogenesis [12]. Angiogenesis is a distinct mechanism
which permits the extension and formation of a mature vasculature,
by sprouting from pre-existing vessels. Robust endothelial prolifer-
ation accompanies vascular sprouting. Naked capillaries first sprout
from the pial face and penetrate the thickening neurectoderm.
Vascular branching is followed by maturation and remodelling,
which consist in lumen formation, contact with astrocytic processes
and, sometimes, regression. The network then matures in part
thanks to the accrual of leptomeningeal pericytes derived from the
neural crest in the forebrain, but from the mesoderm in the rest of
the CNS [11,13,14].

Angiogenesis requires interactions of endothelial cells with the
extracellular matrix as well as cross-talk with intimately associated
support cells, known as pericytes [12]. Pericytes are essential for
capillary stabilisation and remodelling during brain angiogenesis. [15].
In the brain parenchyma pericytes in addition become important
partners in establishing the blood–brain barrier. These multipotent
Please cite this article in press as: B Bessières-Grattagliano et al., Refining t
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cells can inhibit endothelial proliferation in vitro and are thought to be
the major mediators of blood vessel growth in vivo, in part through the
activity of the VEGF-related platelet-derived growth factor (PDGF)
family [16]. Exogenous VEGF can disrupt pericytic coverage of
blood vessels by inactivating the principal pericytic PDGF receptor.
This experimental imbalance between the VEGF-A and PDGF signals
perceived by endothelial cells and pericytes can lead to reduced
angiogenesis [17]. Surgical removal of the neural crest source of
forebrain pericytes and leptomeninges also leads to regression of the
perineural vascular plexus and severe embryonic neurodegeneration
[14,18]. Targeting only the pericyte population has not yet been per-
formed in animal models. The closest equivalent has been the careful
examination of PDGF-B� and PDGFR-b� null mouse embryos [19].
These endothelial cells undergo uncontrolled hyperplasia, leading to
increased capillary diameters and microaneurysms. However, vessel
branching and length were unaffected by the knockout of the cognate
ligand or receptor. In PGV, the low endothelial expression of VEGF is
concordant with the slowdown of endothelial cell proliferation. Some
zones of endothelial cells can be seen to express actively VEGF. This is
consistent with a known autocrine signalling role [20].

A striking lack of SMA immunostaining in our patients, relative to
internal controls and age-matched cases, suggests a deficit in peri-
cytes, but it is unclear whether this absence is causative or
secondary. It is evocative that all pericytes of the telencephalon have
a distinct neural crest cell origin [13]. The focal cases of PGV we
observed had a regionally restricted distribution that may be linked
to this particular pericyte lineage [21]. Either all or subpopulations of
pericytes may be susceptible to a molecular defect that solely affects
their coverage of intraparenchymal CNS vessels. We have observed
that PGV concerns only the perforating vessels of the CNS, while the
superficial arachnoid and other blood vessels appear unaffected.
Concordantly, SMA was found in the external vascular walls within
leptomeninges, while it was drastically reduced in the PGV within
the CNS. A total or partial absence of pericytes on vessels in terri-
tories of the primitive neural tube appears to correlate with diffuse
or focal forms of PGV, respectively. Further studies or identification
of a responsible gene should elucidate whether the pericytic defect
we observe is the primary cause or an effect in this disease.

4.2. Clinicopathological phenotypes

A diffuse and severe form of PGV, affecting the entire CNS and
resulting in classical FS is found in 14 fetuses of our series. In
contrast two cases with focal forms had authentic PGV, confined to
restricted territories of the CNS.

In the diffuse forms of PGV, fetuses displayed hydranencephaly-
hydrocephalus with a severe phenotype of fetal akinesia deforma-
tion sequence (FADS), also known under the umbrella terms
‘‘Lethal Multiple Pterygium syndromes’’ (LMPS) or ‘‘Lethal Congen-
ital Contracture syndromes’’ (LCCS). These are not syndromes, but
various degrees of a sequence of fetal akinesia, regardless of its
mechanism, which can be myogenic or neurogenic. In neurogenic-
FADS (N-FADS), the common denominator is a deficit of spinal motor
neurons due to primary neurodegeneration or secondary to perfu-
sion failure. Depending on the extension of motor neuron deficit,
lack of movement affects large and/or small joints and leads to
a diffuse or partial arthrogryposis. The early onset of akinesia results
in joint webbing. The motor neurons of the brainstem may be also
affected. Depending on the timing, lesions of the hypoglossal nuclei
(XIIth cranial nerve) may mechanically impair palatal shelf fusion
before 10 weeks’ gestation and later on, fetal swallowing, resulting in
cleft palate and polyhydramnios. Lack of movement explains also
skin edema, serosal effusion ascites and bone hypoplasia.

In our diffuse forms of PGV, fetuses presented with hydra-
nencephaly-hydrocephalus and severe FADS. This association found
he clinicopathological pattern of cerebral proliferative glomeruloid...,
.006
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in 14 of the 16 cases, remains the most frequent autopsy findings in
histologically confirmed PGV. In all cases examined, the cerebral
mantle was reduced to a thin band, containing nests of immature
cells, intermingled with large calcifications between bundles of
vertically and horizontally oriented channels of thickened vessels
and glomeruloid bodies. Ganglionic eminences and basal ganglia
were also involved. No fibres or tracts were identifiable, suggesting
the precocity of lesions. The brainstem contained PGV with
numerous calcifications. In the cerebellum, PGV makes foliation and
lamination chaotic. The ependymal sheet was destroyed all over the
ventricular system. PGV was also found in the chaotic spinal cord. In
family I, the recurrence of PGV in the brain and the spinal cord could
be confirmed on histological examination, despite fetal death and
autolysis. Cerebellar lesions may mimic a Dandy-Walker malfor-
mation phenotype, as in our first case [2,10].

Interestingly, in both fetuses of family IV we found a focal form
of PGV confined to restricted territories of CNS. In this family,
both affected fetuses had hydrocephalus without limb deformities.
Authentic PGV was found exclusively in the cerebral mantle, in the
brainstem and the cerebellum, while the spinal cord well preserved.
Most studies on FS focus on the association of hydranencephaly/
hydrocephaly with polyhydramnios and FADS. Focal forms of PGV
have been mentioned in the literature but received little attention. In
particular, polyhydramnios and hydrocephalus without FADS is
reported in association with characteristic PGV [2,6,10]. Because of the
lack of limb deformity, one might assume that the spinal cord
although not examined has been spared by the vascular malformation.
These cases that could be called Fowler-like phenotypes raise the
question of the lesional spectrum of PGV and its genetic heterogeneity.

Despite recurrence and consanguinity in FS, no gene has been
mapped nor identified to date. An excess of female was noticed in
the first reported cases. However, consanguinity and reports on
affected males (7 males over 16 cases in our series) are concordant
with recessive autosomal inheritance.

In order to conduct a genetic study it is necessary to identify PGV
through a histological study. Our neuropathological examination
allowed to establish a series of 16 affected fetuses, born to eight
Please cite this article in press as: B Bessières-Grattagliano et al., Refining
European Journal of Medical Genetics (2009), doi:10.1016/j.ejmg.2009.07
Dfamilies. Among them, four families were consanguineous. Each
had at least two fetuses affected with a diffuse form of PGV.
A genome wide linkage scan was performed in consanguineous
families I–IV (see Fig. 2 pedigrees Q), using an Affymetrix 250K SNP
chip. This points to two an unique homozygous region of 13 MB
was. Gene identification will determine the molecular basis of PGV
and will help to know whether the Fowler-like phenotypes are due
to the same underlying molecular mechanism.

Acknowledgement

Authors whish to thank Dr V. Hennequin and Dr Alain Miton
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Fig. S2. Human neural crest cells (hNCCs) possess a primary cilium and express BBS genes. (A) RT-PCR showing the expression of BBS genes in NCC lines isolated
from individual human fetuses. (B) Heat map showing the expression (red) or not (black) of confirmed ciliary and basal body/centrosomal proteins in 5 individual
hNCC lines (A, absent; P, present). (C) Immunocytochemistry on hNCC using antiacetylated �-tubulin antibody and showing that hNCC possess primary cilia. (Scale
bar, 5 �m.) (D) Human NCCs labeled with acetylated �-tubulin (red) express RET and SOX9 (green). (Inset) No appreciable staining could be detected in cells not
treated with primary antibody.
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Table S1. Ciliary proteins expressed in cultured human NCC

Protein Cellular localization

BBS1 Basal body/centrosome
BBS10 Basal body/centrosome
BBS2 Basal body/centrosome
BBS3 Basal body/centrosome
BBS4 Basal body/centrosome
BBS5 Basal body/centrosome
BBS6 Basal body/centrosome
BBS7 Basal body/centrosome
BBS8 Basal body/centrosome
BBS9 Basal body/centrosome
CCDC28B Basal body/centrosome
CETN3 Basal body/centrosome
LRRC1 Basal body/centrosome
MKS1 Basal body/centrosome
MKS3 Basal body/centrosome
OFD1 Basal body/centrosome
TUBE1 Basal body/centrosome
TUBG1 Basal body/centrosome
TUBG2 Basal body/centrosome
PPP1CC Central pair
SPAG6 Central pair
CALM3 Ciliary axoneme
CCDC146 Ciliary axoneme
Cys1 Ciliary axoneme
EFHC1 Ciliary axoneme
GLI2 Ciliary axoneme
HSPA1A Ciliary axoneme
HYDIN Ciliary axoneme
PPP2R1A Ciliary axoneme
RIBC1 Ciliary axoneme
SSNA1 Ciliary axoneme
TEKT2 Ciliary axoneme
TEKT3 Ciliary axoneme
HTR1B Ciliary membrane
HTR2C Ciliary membrane
PDGFRA Ciliary membrane
PKD1 Ciliary membrane
PKD2 Ciliary membrane
PKHD1 Ciliary membrane
SMO Ciliary membrane
CROCC Ciliary rootlet
GAS8 Dynein regulatory complex
ACTG1 Inner dynein arm
DNAH7 Inner dynein arm
DNALI1 Inner dynein arm
DYNLT1 Inner dynein arm
WDR63 Inner dynein arm
WDR78 Inner dynein arm
DNCH2 Intraflagellar transport
IFT122 Intraflagellar transport
IFT140 Intraflagellar transport
IFT172 Intraflagellar transport
IFT20 Intraflagellar transport
IFT52 Intraflagellar transport
IFT57 Intraflagellar transport
IFT72 Intraflagellar transport
IFT74 Intraflagellar transport
IFT80 Intraflagellar transport
IFT81 Intraflagellar transport
IFT88 Intraflagellar transport
KIF3A Intraflagellar transport
KIF3B Intraflagellar transport
KIFAP3 Intraflagellar transport
AK5 Outer dynein arm
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Protein Cellular localization

CCDC63 Outer dynein arm
DNAH5 Outer dynein arm
DNAH9 Outer dynein arm
DNAI1 Outer dynein arm
DNAI2 Outer dynein arm
DNAL1 Outer dynein arm
DYNLL2 Outer dynein arm
DYNLRB2 Outer dynein arm
TCTEX1D2 Outer dynein arm
DAAM1 PCP pathway
DVL1 PCP pathway
DVL2 PCP pathway
DVL3 PCP pathway
MAPK8 PCP pathway
ROCK1 PCP pathway
VANGL2 PCP pathway
RSHL3 Radial spoke
RSPH3 Radial spoke
TUBA1A Tubulin
TUBB2C Tubulin
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Hirschsprung disease (HSCR) is a common, multigenic neurocris-
topathy characterized by incomplete innervation along a variable
length of the gut. The pivotal gene in isolated HSCR cases, either
sporadic or familial, is RET. HSCR also presents in various syn-
dromes, including Shah–Waardenburg syndrome (WS), Down (DS),
and Bardet–Biedl (BBS). Here, we report 3 families with BBS and
HSCR with concomitant mutations in BBS genes and regulatory RET
elements, whose functionality is tested in physiologically relevant
assays. Our data suggest that BBS mutations can potentiate HSCR
predisposing RET alleles, which by themselves are insufficient to
cause disease. We also demonstrate that these genes interact
genetically in vivo to modulate gut innervation, and that this
interaction likely occurs through complementary, yet independent,
pathways that converge on the same biological process.

Bardet-Biedl � neural crest cells � genetic interaction � zebrafish

H irschsprung disease (HSCR, MIM 164761) is the most
common (1/5,000 live births) form of structural intestinal

obstruction. It is defined by the absence of neural crest (NC)-
derived enteric ganglia along a variable length of the bowel,
invariably involving the recto-anal junction. This phenotype has
been attributed to defects in migration, proliferation, and/or
survival of the NC cells (NCC) that normally give rise to all
neurons and supporting cells of the enteric nervous system
(ENS), defining HSCR as a neurocristopathy. HSCR is also a
useful model oligogenic disorder; it displays non-Mendelian
modes of inheritance with low, sex-dependant penetrance in
isolated HSCR cases. Although oligogenic multiplicative models
have been proposed, mutations in the RET proto-oncogene have
emerged as pivotal (1–4). Almost all HSCR patients harbor
either a heterozygous mutation in the RET coding sequence or,
more frequently, a hypomorphic allele in a conserved noncoding
element in intron 1 that acts as a spatially restricted transcrip-
tional enhancer (4–6).

In addition to HCSR, some 30% of patients also exhibit other
congenital anomalies as the result of chromosomal rearrangements
[mostly Down syndrome (DS)], monogenic Mendelian disorders
regardless of the mode of inheritance, or undiagnosed associations
(6). In such cases, penetrance for the HSCR trait is 5 to 70%,
suggesting additional predisposing genetic factor(s). Interestingly,
alleles at the RET locus can have a role in modifying the risk of
HSCR to be associated with several HSCR predisposing syndromes
[congenital central hypoventilation, DS, Waardenburg (WS) type
IV due to EDNRB mutations, and Bardet-Biedl (BBS)], but not all
(Mowat-Wilson and Waardenburg type IV due to SOX10 muta-
tions) (6–8). These observations are suggestive of RET-dependent

and RET-independent HSCR cases (9); consistent with RET acting
as a modifier gene in some HSCR predisposing syndromes, no
correlation between the genotype for the syndrome disease causing
gene and the HSCR trait could be drawn in monogenic HSCR
syndromes (9, 10).

Surprisingly, the greatest RET dependence has been observed
in the group of patients with both BBS and HSCR. No interac-
tions between RET and BBS proteins are known; also, whereas
RET is a cell-surface tyrosine kinase receptor essential for
enteric neuron population of the gut (11), BBS is a ciliopathy
caused by mutations in at least 14 genes (ref. 12 and references
therein), with all BBS proteins examined to date localizing in the
basal body and the ciliary axoneme where they likely affect
various signaling processes (13). Nonetheless, despite any obvi-
ous biochemical or subcellular links between RET and the BBS
proteins, a zebrafish model of BBS was shown recently to
manifest a Shh-dependent defect in the migration of neural crest
cells with concomitant defects in the innervation of the ENS
(14), suggesting that the observed enrichment of RET hypomor-
phic alleles in BBS-HSCR patients might underlie a synthetic
interaction at a higher level of systems organization.

Here, we report 2 families and 1 sporadic case with BBS and
HSCR, each with variations at both a BBS locus and RET. Using
both in vitro and in vivo models, we show that each individual
variation has deleterious effects. Importantly, the interaction of
these genetic lesions is tissue dependent, modulating the extent
of intestinal aganglionosis during the development of the ze-
brafish ENS.

Results
BBS Mutations in BBS�HSCR Patients. To investigate a possible
genetic interaction between BBS and HSCR, we searched for
BBS patients also diagnosed with HSCR. We found 2 informa-
tive BBS families, one of Caucasian origin (F1), and one of
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Moroccan origin (F2) (Fig. 1). F1 had 3 sibs, all affected with
short segment HSCR as confirmed by histological criteria that
included absence of enteric plexuses and increased acetylcho-
linesterase histochemical staining in nerve fibers. F2 consisted of
consanguineous parents (f � 1/16) of 5 BBS sibs, 2 of which also
had confirmed HSCR. We also identified a third sporadic case
(SB25) born to healthy unrelated parents of Caucasian origin
and presenting both BBS and HSCR (Fig. 1).

To determine the genetic lesion contributing to these cases, we
first investigated all known BBS loci. We found all affected sibs
in F1 to harbor 2 heterozygous missense mutations in BBS7; a
paternal c.691T�C, p.W230R, and a maternal c.1512 G�A,
p.R504K. Both mutations altered a conserved amino acid and
were not found in 250 control chromosomes. In F2, all 5 sibs had
a homozygous 1-bp deletion in exon 15 (c.1909-1910delT) of
BBS5, causing a frameshift (p.K41fsX52). Both parents were
heterozygous for the mutation, which was also not detected in
controls. Last, the sporadic case SB25 bore a heterozygous
missense BBS4 mutation (1372 C�T; S457I), which was inher-
ited from the father and not found in 195 controls.

Genotyping of RET in Patients. Previous reports have shown that
BBS patients with HSCR are more frequent carriers of a RET
hypomorphic allele than expected from population frequency
(9). Therefore, we hypothesized that the BBS�HSCR patients in
our families might also have a RET variant. To test this
possibility, we sequenced the patients for mutations in RET. The
3 F1 sibs were homozygous for the common intronic hypomor-
phic T allele; both parents were heterozygous. In F2, only the 2
BBS�HSCR, but not the other 3 BBS-only patients were
homozygous for the same RET allele. Last, the sporadic SB25
case was WT for the intron 1 allele, but had a novel, maternally
inherited heterozygous 11-bp deletion (del AAGCAACTGCC).
This deletion lies 106-bp downstream of the known intron 1
hypomorphic allele, maps within the highly conserved enhancer
region, and was not found in over 800 control chromosomes
(Fig. 1; Fig. S1).

Functional Assessment of BBS and RET Mutations. Our genetic data
provide strong evidence that the BBS5 and BBS7 alleles in
families F1 and F2 are sufficient to cause BBS. By contrast, the
pathogenic potential of the BBS4 S457I allele cannot be estab-
lished unequivocally, despite its absence from ethnically
matched controls. Therefore, we investigated the (non)neutral-
ity of this allele using an established zebrafish BBS model. We

have reported previously that suppression of Bbs proteins results
in Wnt-dependent gastrulation movement defects in zebrafish
(15, 16), which can be rescued by coinjection of WT human
mRNA. This system has enabled us establish the pathogenic
potential of several novel BBS-causing alleles (12).

Therefore, we suppressed endogenous bbs4 and evaluated the
ability of a 457I-encoding BBS4 message to rescue the pheno-
type. Approximately 63% of embryos injected with bbs4 mor-
pholino (MO) had broadened somites, kinked notochords, and
shortened body axes (Fig. 2 A and B). The observed phenotypes
not only fully recapitulated our previous observations (15), but
were also shown to be specific to the MO, because coinjection of
mRNA encoding WT human BBS4 efficiently rescued the
morphant phenotypes (Fig. 2B). By contrast, embryos injected
with 457I were indistinguishable from embryos injected with
bbs4 MO alone (n � 96 embryos, scored blind to injection
mixture), suggesting that the introduction of the 457I residue
results in functionally null protein (Fig. 2 A and B); expression
of 457I-encoding mRNA alone yielded modest phenotypes,
indicating that this allele does not act in a dominant-negative
fashion (Fig. 2B). To validate the pathogenic nature of this
mutation further, we investigated the cellular localization of the
457I protein in ciliated mammalian cells. Previous studies have
established the reproducible localization of BBS4 near the 2
centrioles by overexpression of tagged protein in transformed
cell lines (17, 18). Upon transient transfection of a BBS4-MYC
construct, we observed a similar localization pattern (Fig. 2C).
However, expression of a BBS4 S457I mutant protein resulted in
complete mislocalization of the protein (Fig. 2C), with the
mutant protein forming apparent intracellular aggregates away
from the pericentriolar region (visualized by �-tubulin staining),
providing further evidence that the mutation is a likely null.

Next, we turned our attention to the RET alleles in our
patients. Although the functional significance of the intronic
HSCR predisposing allele in RET is known, the pathogenic
potential of the 11-bp deletion within intron 1 is highly sugges-
tive, but not conclusive. We have shown previously that the
multispecies conserved sequence (MCS) within intron 1 (MCS
� 9.7) acts as an enhancer element, and contains the previously
described hypomorphic allele (5); the 11-bp deletion is 106 bp
downstream of this SNP. To investigate the function of the
deletion, we constructed pDSma-RET vectors with luciferase
under the control of an SV40 promoter and the MCS � 9.7
enhancer plus a 1215-bp encompassing region either with (WT)
or without (�11bp) the 11-bp sequence, and assayed relative
luciferase activity in SK-N-SH neuroblastoma cells or HeLa
cells. The WT RET enhancer sequence significantly decreased
reporter gene expression (P � 0.001) compared with the pro-
moter alone, and also as compared with MCS � 9.7, suggesting
that it contains a putative transcription repressor-binding site.
However, the vector harboring the 11-bp deletion significantly
derepresses reporter gene expression compared with WT (P �
0.05) to a level statistically indistinguishable from the promoter
alone (NS), suggesting specific disruption of the repressor
element binding motif (Fig. 3). Reporter assays conducted in
HeLa cells produced similar results. These findings suggest that
deletion of 11 bp within the intronic enhancer results in defects
in transcriptional regulation in vitro, although they do not
abolish the effect of this genomic segment, raising the possibility
that �11bp represents a mild allele. Together, these results
suggest that the individual BBS and RET mutations identified in
the sporadic case of BBS and HSCR are likely detrimental to
gene function. Among putative consensus binding sites encom-
passing the 11-bp deletion, only the zinc finger transcription
factor SNAIL is expressed in hNCC. However, ChIP experiments
in SK-N-SH cells did not detect an interaction with this protein,
suggesting that potentially novel components are associated with
the observed suppression regulatory element.
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Fig. 1. RET and BBS mutations found in BBS�HSCR cases. Segregation of BBS
and RET mutations in 2 BBS families with BBS�HSCR and 1 BBS�HSCR sporadic
case (SB25).
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Genetic Interaction of BBS and RET in Vivo. Our data are consistent
with previous studies, in which a higher-than-expected frequency
of RET hypomorphic alleles were found in BBS-HSCR patients,

and suggest that this property is not restricted to a specific BBS
gene (9), not least because BBS4, BBS5, and BBS7 are 3 of the
least commonly mutated BBS genes (13). To test this possibility
in vivo, we assayed the effects of suppression of each of Ret and
Bbs proteins on enteric neuron migration in the developing
zebrafish gut. As shown previously, suppression of ret by MO
injection results in a reduction of enteric neurons populating the
proximal and distal hindgut, as labeled by in situ hybridization
with a phox2b riboprobe (Fig. 4 B and I) (19). Likewise, and
consistent with recent data for bbs8, suppression of either bbs4,
bbs5, or bbs7 also results in a reduction of enteric neuron
migration, although not as severe (Fig. 4 C, E, G, and I).
However, coinjection of ret MO with any of the 3 bbs genes tested
resulted in a significantly greater decrease in the enteric neurons
in the hindgut, with phenotypic synthesis particularly prominent
in the distal hindgut (Fig. 4 D, F, H, and I). The increased severity
is greater than a mere additive effect, suggesting an epistatic
interaction between ret and bbs function. These findings indicate
that suppression of ret in addition to loss of bbs function results
in more severe defects in ENS development than with loss of
these genes independently.

NCCs as Likely Sites of Epistasis. The finding that ret and bbs genes
interact genetically to produce enteric neuron defects suggests
the possibility that these genes function in overlapping pathways
to regulate ENS development. Several lines of evidence support
this conjecture: the role of RET signaling in NCC migration is
well established (20, 21), whereas suppression of bbs8 has been
shown to result in similar defects, potentially in a Shh-dependent
fashion (14). Also, transcriptional profiling of NCC cells dem-
onstrated the presence of mRNA message for several BBS
proteins, as well as mRNA for genes encoding numerous ciliary
and basal body proteins (Table S1; Fig. S2 A and B). Last,
immunocytochemistry using antiacetylated �-tubulin revealed a
clear presence of monocilia and basal bodies, respectively, in
these cells (Fig. S2 C and D). To confirm that the ciliated NCCs
are, in fact, those that will contribute to enteric innervation, we
performed immunofluorescence using either anti-RET or anti-
SOX9 and observed expression of both proteins in NCCs
positive for antiacetylated tubulin staining (Fig. S2D).

Given these findings, one possibility is that RET signaling
functions through the cilium, because several other paracrine
receptors are known to localize there or to indirectly require the
primary cilium for signal transduction (22). However, RET
immunofluorescence has never detected the protein in the ciliary
axoneme, suggesting that the observed genetic interaction be-
tween RET and the BBS proteins might occur at a higher level
of systems organization. To test this possibility we attempted to
rescue the enteric neuron phenotype of RET knock-down by
coinjecting BBS4 mRNA in embryos injected with ret MO; we
did not observe any amelioration of the gut innervation defect
(Fig. 4I), suggesting that BBS4 is not downstream of RET and
supporting the notion that the 2 pathways likely converge at the
same endpoint.

Discussion
Here, we have described 3 families segregating BBS in concert with
HSCR. Mutation detection in affected individuals revealed muta-
tions in BBS4, BBS5, and BBS7, consistent with their phenotypic
presentation. Also, each affected was also homozygous for the
common RET intronic hypomorphic allele or, in one instance,
harbored a novel heterozygous 11-bp deletion that was absent from
control chromosomes. We verified the functional potential of all
novel alleles identified, integrating in vitro and in vivo approaches
to determine their impact. These data led us to posit that interac-
tions between RET and either BBS4, 5, or 7 in each instance would
explain the coexpression of BBS and HSCR phenotypes. We have

Fig. 2. In vivo assessment of the pathogenic potential of BBS4 S457I variant.
(A) Zebrafish embryos coinjected with a MO against bbs4 and mRNA express-
ing the S457I variant exhibited defects, including short body axes, broad
somites, wider and kinked notochords, and detachment of cells along the
dorsal axis. (B) Compared to rescue with WT BBS4 mRNA, rescue with the
mutated mRNA produced an increase in the proportion of both moderately
(Class I) and severely (Class II) affected embryos, but injection of S457I mRNA
alone does not produce severe defects, suggesting that the variant is func-
tionally null. (C) HeLa cells transfected with either WT or S457I mutant BBS4
protein (red). WT protein localizes to the basal body (�-tubulin, green), but
mutant protein completely mislocalizes to form cytoplasmic aggregates.
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used nonallelic, noncomplementation through MO-based ap-
proaches in zebrafish to test these observations.

We have demonstrated that pairwise compound reduction in
RET and each independent BBS protein product (BBS4, 5, or 7),
which independently yield mild intestinal aganglionosis, severely
exacerbates the observed enteric defects, with particular prom-
inence in the distal hindgut. Interestingly this synergy in muta-
tional effect appears to be tissue dependent, not resulting in an
overt worsening of other associated phenotypes (e.g., conver-
gence extension) suggesting that the pleiotropic activities of
these genes may only be amenable to interaction with each other
in a cell type dependent manner. As with other systems in the
vertebrate organism, nervous system development relies on a
delicate balance of interactions. Importantly, our data also
illuminate interrelated roles for these BBS loci and RET in
buffering the effects of genetic variation during ENS develop-
ment, and between their mutant alleles in the copresentation of
BBS and HSCR phenotypes. Interestingly, HSCR has been
recurrently reported in association with other ciliopathies,
namely Jeune and Joubert syndromes (23, 24).

Complex inheritance is underlined by a requirement for the
combined influence of alleles at �1 locus in the transmission and
expression of a phenotype; homeostatic genetic networks min-
imize the consequence of variation. Both BBS and HSCR are
models of such traits, requiring the interaction of multiple genes
for disease expression.

Just as interactions between different BBS loci explain the risk
of BBS in subsets of families, interactions between RET and
other loci can also explain disease risk in subsets of isolated and
syndromic HSCR cases/families (1–3, 7, 12, 25, 26). Many of the
genes implicated in these disorders display markedly pleiotropic
effects when evaluated independently and occasionally these
effects can coincide.

The interaction of genes involved in the same biochemical
system and the observation of their failure to complement each
other (intrinsic noncomplementation) is well established (3, 27,
28). However, there is no evidence to suggest that RET-

mediated receptor tyrosine kinase signaling, and its role in
neuronal precursor proliferation (21), directly intersects the role
of BBS proteins in the development and function of ciliated cells
and their proposed role in cell migration (13). Thus, their
observed synergy is unlikely to arise from biochemical interac-
tion, but rather from extrinsic noncomplementation raising
predisposition to a common phenotype. Importantly, intrinsic
noncomplementation is the commonly recognized basis of both
HSCR and BBS. Although it cannot at this stage be distinguished
definitively, we speculate that the syndromic copresentation of
BBS and HSCR observed here, as well as similar interactions
between HSCR and WS, support a model of extrinsic non-
complementation, where perturbations in unrelated biochemical
signaling cascades converge at the same biological process
(namely, neuronal migration and specification).

Materials and Methods
Patient Genotyping and Sequencing. Blood samples were obtained with in-
formed consent, and DNA was extracted according to standard protocols.
Genotyping the BBS1-12 loci was performed by using fluorescent microsatel-
lite markers (available on request). Mutation screening of RET and BBS genes
have been described elsewhere (29), and intronic primers designed for BBS
genes are available on request. Direct sequencing on both strands was per-
formed using the Big Dye Terminator Cycle Sequencing kit (Applied Biosys-
tems) and was analyzed on an ABI 3100 automated sequencer (Applied
Biosystems). Also, patients were genotyped for SNP rs2435357 lying in the
intron 1 of the RET gene. Of note, variable allelic frequencies are observed
according to ethnicity and range from �5% in South Africa to �50% in Asia.
The European Caucasian population has been thoroughly investigated in
France, Italy, Spain, the Netherlands, and Germany, allowing approximation
of the frequency of the T HSCR predisposing allele to �25% in the Caucasian
population (30).

Luciferase Reporter Assay. SK-N-SH or HeLa cells were plated in 24-well plates
at a density of 105 cells/well, and were transfected at �60% confluence with
FuGENE6 transfection reagent (Roche) according to manufacturer’s instruc-
tions, using a 2:1 ratio of pDSma vector and pRLSV40 Renilla luciferase control
vector (Promega), respectively. At 48 h posttransfection, cells were lysed and
assayed using the Dual-Luciferase Reporter Assay System (Promega), and a
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Fig. 3. Deletion in the RET regulatory sequence perturbs reporter gene expression in vitro. (A) Schematic representation of vectors used to assay the effect of
the 11-bp deletion on reporter gene expression in vitro. WT or mutated (�11bp) RET enhancer sequence (green) was placed upstream of an SV40 promoter (gray)
driving firefly luciferase expression (yellow). The pDSma-RET MCS � 9.7, described previously (5), was used as a positive control. (B) Relative luciferase activity
of pDSma-RET vectors (depicted in A) in SK-N-SH neuroblastoma cells. Cells were lysed 48 h posttransfection, and relative luciferase activity was normalized to
values obtained from the promoter alone (pDSma-Promoter). The WT RET enhancer sequence significantly decreases reporter gene expression (P � 0.001)
compared with promoter alone, suggesting that it contains a putative transcription repressor-binding site. However, the vector harboring the 11-bp deletion
significantly derepresses reporter gene expression compared with WT (P � 0.05) to a level statistically indistinguishable (NS) from the promoter alone, suggesting
specific disruption of the repressor element binding motif. Assays were performed in triplicate wells and repeated thrice.
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Tecan microplate reader equipped with the XFluor4GENiosPro macro. Assays
were performed on triplicate wells, and were repeated at least twice. Relative
luciferase activity was normalized to values obtained from the promoter alone
(pDSma-Promoter).

Zebrafish Embryo Manipulation and MO Injection. Embryos were injected with
a previously described and validated oligonucleotide MO against bbs4 to
suppress translation of the endogenous protein, resulting in phenotypes
consistent with PCP defects including shortened body axes, broad notochords,
and widened somites (15, 16). They were subsequently coinjected with mRNA
encoding WT human BBS4 or the S457I variant of BBS4. Embryos were classi-
fied as normal, moderately (Class I), and severely (Class II) affected according
to phenotype.

In Situ Hybridization. Embryos were cultured for 4 days in embryo media at
28 °C, fixed in 4% Paraformaldehyde overnight at 4 °C, and stored at �20 °C

in 100% MeOH until in situ hybridization, which was carried out according to
previously described protocols (15). Enteric neurons were labeled using a
phox2b digoxigenin ripoprobe (31).

Human NC Isolation and Culture. Human embryos were collected from preg-
nancies legally terminated using the mefiprestone protocol, in concordance
with French bioethics law 2004-800 and with the approval of the Necker
hospital ethics committee. Human NCCs were isolated from posterior hind-
brain and thoracic-level neural tube and cultured as previously described (32)
to 80% confluency on 8-well collagen I-coated slides (BD BioCoat).

Immunocytochemistry. Twenty-four hours after seeding, hNCC were starved in
DMEM/F12 with 0.4 ng/mL FGF2 for a further 72 h. Cells were fixed for 20 min
in 4% paraformaldehyde, then treated in 50 mM NH4Cl 10 min, 0.3% Triton
X-100 in PBS 15 min, followed by 1 h in a solution of 1% BSA, 0.1% Tween-20,

A

E

B

F

C

G

D

H

I

Fig. 4. Genetic interaction of Ret and Bbs in zebrafish. (A) Migration of enteric neurons in 4-day-old embryos normally proceeds along the developing hindgut
to reach the anus (asterisks). Embryos injected with MO against either (B) ret or (C) bbs4, (E) bbs5, or (G) bbs7 exhibit premature termination of enteric neuron
migration (arrowhead). This defect is exacerbated in embryos injected with a combination of ret MO and either (D) bbs4, (F) bbs5, or (H) bbs7 MO. (I) The extent
of the defect was quantified by assessment of the presence of phox2b expression in the proximal hindgut (somites 4–9) or the distal hindgut (somites 10 and
beyond) as previously described (31).
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10% goat serum in PBS. Cells were then incubated with antiacetylated �-tu-
bulin (TUBA4A; Sigma T6793), anti-RET (SC13104, 1:50; Santa Cruz), or anti-
SOX9 (ab5535, 1:200; Chemicon) for 2 h at room temperature, and rinsed.
SOX9 and RET were revealed using an Alexa Fluor 488 goat anti-rabbit IgG and
TUBA4A with an Alexa Fluor 555 donkey anti-mouse IgG (1:200 each; Invitro-
gen). The slides were mounted with Prolong Gold antifade reagent with DAPI
(Invitrogen).

HeLa cells were grown on glass coverslips in DMEM supplemented with
10% FBS at 37 °C in 5% CO2. Transient transfections of WT or mutant BBS4
constructs were carried out using calcium phosphate (Invitrogen), and cells
processed 24 h later with anti-MYC mouse monoclonal and anti-�-tubulin
rabbit polyclonal antibodies (T3559; Sigma).

Microarray and RT-PCR. Total RNA from 5 human trunk NCCs were extracted
using Rneasy Mini kit (Qiagen). Gene profiling was done using the Affymetrix
Human Genome U133 Plus 2.0 GeneChip array. Hybridization data were
analyzed with dChip software. Heat map was constructed using a list of 75
experimentally confirmed ciliary and basal body/centrosomal proteins de-

fined in ref. 33. Reverse transcription was performed using GeneAmp RNA PCR
core kit (Applied Biosystems), and PCR amplifications were performed using
50 ng of cDNA and 35 amplification cycles. Primers are available on request.
Affymetrix data are available from the National Center for Biotechnology
Information Gene Expression Omnibus under accession number GSE 14340.
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Identification of the IRXB Gene Cluster as Candidate
Genes in Severe Dysgenesis of the Ocular
Anterior Segment

Myriam Chaabouni,*,1,2 Heather Etchevers,3,4 Marie Christine De Blois,1 Patrick Calvas,3

Marie Christine Waill-Perrier,1 Michel Vekemans,1 and Serge Pierrick Romana*,1

PURPOSE. Anterior segment ocular dysgenesis (ASOD) is a broad
heterogeneous group of diseases detectable at the clinical and
molecular level. In a patient with bilateral congenital ASOD
including aniridia and aphakia, a complex chromosomal rear-
rangement, inv(2)(p22.3q12.1)t(2;16)(q12.1;q12.2), was char-
acterized at the molecular level, to identify candidate genes
implicated in ASOD.

METHODS. After negative sequencing of the PAX6, FOXC1, and
PITX2 genes, we used fluorescence in situ hybridization (FISH)
and Southern blot analysis to characterize the chromosomal
breakpoints. Candidate genes were selected, and in situ tissue
expression analysis was performed on human fetuses and em-
bryos.

RESULTS. Molecular analyses showed that the 16q12.2 break-
point in this rearrangement occurs in a 625-bp region centro-
meric to the IRX3 gene, which belongs to the IRXB cluster. In
situ hybridization expression studies showed that during early
human embryonic development, the IRX3 gene is expressed in
the anterior segment of the eye. Of interest, it has been shown
previously that a highly conserved noncoding region (HCNCR)
is located 300 kb centromeric to the IRX3 gene and induces, in
a murine transgenic assay, an expression pattern fitting that of
the IRX3 gene.

CONCLUSIONS. The authors propose that the 16q12.2 break-
point of this complex translocation is causally related to the
ocular anterior segment dysgenesis observed in this patient.
This translocation is assumed to separate the HCNCR from
the IRXB cluster genes, thus deregulating the IRXB cluster
and leading to the ASOD observed by a positional effect.
(Invest Ophthalmol Vis Sci. 2010;51:4380 – 4386) DOI:
10.1167/iovs.09-4111

Broad genetic variability underlies disorders of the anterior
segment of the eye, collectively termed anterior segment

ocular dysgenesis (ASOD). PAX6, a major gene for all stages of
eye development, has been found to be mutated in phenotyp-
ically variable cases of ASOD.1–5 In addition, other transcrip-
tion factors are crucial for the coordinated development of the
cornea, iris, lens, and ciliary bodies, including members of the
forkhead (FOX), PITX, and MAF families.

Several studies have shown that patients with Rieger anomaly,
Peters’ anomaly or iris hypoplasia, which are dominant disorders,
have mutations in FOXC1 and PITX2,6–10 whereas mutations in
PITX3 can cause anterior segment mesenchymal dysgenesis.11–13

FOXE3, with an evolutionarily conserved role in induction of the
lens placode, is mutated in patients with aphakia and in patients
presenting with ASOD clinical features.14–17 MAF has been impli-
cated in congenital cataract.18–20 The number of identified genes
implicated in anterior segment development is increasing, reflect-
ing wide phenotypic as well as genetic heterogeneity. It is likely
that these transcription factors regulate each other’s bioavailabil-
ity in both space and time.

The Iroquois family genes (IRX) encode homeoproteins, con-
served throughout the animal kingdom, that are involved in tissue
patterning and regional differentiation. Various knockdown ex-
periments and the endogenous expression patterns in vertebrate
embryo models have demonstrated the implication, particularly
of IRX3 and IRX5, in ocular morphogenesis.21–23 The six mam-
malian IRX genes are organized in two clusters (IRXA and IRXB)
located on different chromosomes. IRXA and IRXB undoubtedly
underwent duplication over the course of evolution.21,24–27 In
humans, IRX1, IRX2, and IRX4 of the IRXA complex are located
on 5p15.3, whereas IRX3, IRX5, and IRX6 of the IRXB cluster are
localized on 16q12.2. Thus far and despite their involvement in
the development of several organ systems,21,28–39 none of these
IRX genes has been implicated in human disease.

We describe herein a child with bilateral congenital dysgen-
esis of the anterior segment of the eye, including aphakia and
aniridia, associated with a complex chromosomal abnormality:
inv(2)(p22.3q12.1)t(2;16)(q12.1;q12.2). The translocation
breakpoint lies near the IRX3 gene. Moreover, we show that
IRX3 is expressed in the eye anterior segment during early
human embryonic development. We propose that this translo-
cation deregulates by a positional effect the expression of an
IRXB cluster gene(s), leading to the anterior segment dysgen-
esis observed in this patient.

MATERIAL AND METHODS

Case Report

The propositus was born of nonconsanguineous parents after a normal
pregnancy with no history of intrauterine infection or exposure to
teratogenic agents, and delivery at term was uncomplicated. At birth,
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taires et Congénitales, Hôpital Charles Nicolle, Tunis, Tunisia; and
3INSERM (Institut National de le Santé et de la Recherche Médicale)
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bilateral megalocornea, photophobia, and tearing were noticed. A
detailed ophthalmic examination performed with the subject under
anesthesia at the age of 3 months showed bilateral corneal opacifica-
tion with epithelial edema, corneal central thinning, retrodescemetic
pigmentation, aniridia, secondary glaucoma, and vascularization of the
cornea. IOP was 18 mm Hg in the right eye and 10 mm Hg in the left
one. No lens was found. The posterior segment of the eyes were
normal. On ultrasound examination (20 MHz), neither the lenses nor
the irises were observable. No other malformation was detected. The
clinical features in our patient did not seem to fit a particular category.
We conclude that these anomalies are compatible with a dysgenesis of
the anterior segment of the eye with secondary glaucoma. Only the
proband’s mother was examined. She had normal vision and no ab-
normality was found. No ocular abnormalities of the father were
reported.

All analyses performed in this study were made after the parents’
informed consent was obtained. The protocol of the study was in
compliance with the guidelines in the Declaration of Helsinki.

Classic and Molecular Cytogenetic Techniques

Metaphase chromosome spreads of the patient and his parents were
prepared from peripheral blood lymphocytes and analyzed by using
classic banding techniques. An EBV-transformed lymphoblast cell line
of the patient was established for chromosome, DNA, and RNA prep-
arations.

BAC and PAC clones were selected from the UCSC Human Genome
Browser (http://genome.ucsc.edu/ provided in the public domain by
UCSC Genome Bioinformatics, University of California at Santa Cruz).
They were obtained from the French national sequencing center. BAC
DNAs were extracted by using a classic phenol-chloroform method and
labeled using standard nick translation incorporating FITC, cyanine
(Cy)3.5, Cy3, biotin-16-dUTP, and digoxigenin-11-dUTP (Roche Diag-
nostics, Mannheim, Germany). Biotin- and digoxigenin-labeled probes
were subsequently revealed with streptavidin or an anti-digoxigenin
antibody coupled to Cy5 and Cy5.5. Fluorescence in situ hybridization
was performed as described previously.40

To look for a deletion at the translocation breakpoints, we used
BAC array slides (PerkinElmer, Courtaboeuf, France), which offer a
resolution of 0.65 Mb, in CGH array experiments. Hybridization was
performed as described previously.41

Southern Blot Analysis

For molecular cloning, Southern blot analysis was performed us usual,
with the use of different probes located around the IRX3 locus. In
particular, probe H, which allowed us to localize the rearrangement,
was built by PCR with the following primer set: forward (5� TTG TGA
GGC GTG AGC TGT T 3�) and reverse (5� TCT TTT TCC TCT CGC AGT
CA 3�). Probe H hybridizes to nucleotides 79118-79880 of clone RP11-
1146I14 (GenBank accession number AQ776753; http://www.ncbi.
nlm.nih.gov/Genbank; provided in the public domain by the National
Center for Biotechnology Information, Bethesda, MD) localized at
16q12.2.

Expression Analysis

Cytoplasmic RNAs of lymphoblast cell lines from the patient and 15
control individuals were isolated (RNeasy Mini Kit; Qiagen, Courta-
boeuf, France) and reverse transcribed (Superscript II reverse tran-
scriptase; Invitrogen, Cergy Pontoise, France) and random primers
from 200 ng of each RNA. Real-time quantitative RT-PCR analyses of
IRX3 and IRX5 transcripts were performed with predesigned and
optimized gene expression assays (TaqMan; Applied Biosystems, Inc.
[ABI], Foster City, CA) on a real-time PCR system (model 7500; ABI)
according to the manufacturer’s instructions. Relative quantification
was performed by the ��CT method, with the Abelson transcript used
as an endogenous control.

Sequencing

Direct sequencing of the coding regions of genes PITX2a, PITX2b,
PAX6, and FOXC1 in both forward and reverse directions was per-
formed.

In Situ Tissue Expression Pattern

IRX3 expression was examined in situ in human embryos and fetuses
with normal karyotypes between 29 days’ and 14.5 weeks’ develop-
ment, obtained from terminated pregnancies in concordance with
French legislation (Acts 94-654 and 08-400) and with oversight by the
Necker hospital ethics committee. Primers were selected for PCR
amplification of a fragment of IRX3 cDNA. A T7 promoter sequence
extension (TAATACGACTCACTATAGGGAGA) was added to the 5� end
of each primer (forward [F]: agcgatggctggggctcactcg; reverse [R]: TG-
GCCGCGCCGTCTAAGTTCTC), and RNA was synthesized in vitro with
F and T7R for antisense and T7F and R for sense probes, using 35S- or
digoxigenin-labeled UTP. Tissue fixation and sectioning and in situ
hybridization were performed according to standard protocols.42

RESULTS

Classic banding techniques of the patient’s chromosomes
showed an apparently balanced rearrangement between chro-
mosomes 2 and 16 (Figs. 1A, 1B). Parental karyotypes were
normal. Thus, the chromosomal rearrangement occurred de
novo. FISH experiments, with the WCP2 and WCP16 centro-
meric probes of chromosomes 2 and 16 and the 16p/16q and
2p/2q subtelomeric probes, showed two normal chromosomes
2 and 16 and two derivatives of chromosomes 2 and 16,
confirming a translocation between the long arm of chromo-
some 16 and the long arm of chromosome 2 (Fig. 1C). How-
ever, the long arm of the der(2) chromosome was shorter than
expected. We hypothesized that in addition to the transloca-
tion, a chromosome 2 inversion may be present. We inter-
preted the karyotype as: 46, XY, inv(2)(p22.3q12.1)t(2;
16)(q12.1;q12.2). CGH array experiments with a resolution of
1 Mb demonstrated that no microscopic rearrangements
greater than 1 Mb were present at the chromosomal break-
point.

Direct sequencing of currently known genes involved in
human diseases of the anterior segment of the eye showed that
PITX2 (isoforms a and b), PAX6, and FOXC1 were not mu-
tated. Considering these results, we decided to clone the chro-
mosomal breakpoints by FISH. For this purpose, we selected a
panel of 2p22.3, 2q12.1, and 16q12.2 BAC clones as probes for
FISH experiments. RP11-68N21 generated three signals, one at
2p22.3 on the nonrearranged chromosome 2 and two on the
inverted chromosome 2, respectively, at 2p22.3 and 2q12.1,
attesting that this BAC spanned the locus involved in the
chromosome 2 inversion. RP11-315P20 also generated three
signals, one at 2q12.1 on the nonrearranged chromosome 2,
one at 2p22.3 on the rearranged chromosome 2, and one at
16q12.2 on the derivative chromosome (der)16. This finding
suggested that the 2q inversion locus and the translocation
locus were identical and localized within the BAC 315P20 at
2q12.1. Finally, we found that RP11-1061C23, localized at
16q12.2, also gave three signals: one clearly localized on the
nonrearranged chromosome 16, one on the der(16) chromo-
some, and one on the long arm of the der(2) chromosome,
attesting that this BAC was hybridizing at the chromosome 16
breakpoint. Cohybridization of these three BACS showed co-
localization of the BACs RP11-68N21 and RP11-315P20 at
2p22.3, BACs RP11-68N21 and RP11-1061C23 at 2q12.1, and
BACs RP11-315P20 and RP11-1061C23 at 16q12.2 (Fig. 1D).
These findings confirmed the complex chromosomal rear-
rangement. According to the UCSC database (http://
genome.ucsc.edu; NCBI human genome build 36.1), the clones
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spanning the inversion breakpoints 2p22.3 and 2q12.1 are free
of known genes or ESTs. However, RP11-1061C23, which
overlaps the 16q12.2 breakpoint, contains the IRX3 gene,
which belongs to the IRXB cluster.

To better localize the chromosome 16 breakpoint, we per-
formed Southern blot analysis with probes surrounding the
IRX3 locus. As shown in Figure 2, one of these probes, probe
H, allowed us to map the breakpoint located approximately 2

kb from the IRX3 3�UTR within a 625-bp region. Unfortu-
nately, we were not able to clone the breakpoint at a better
resolution by using inverse PCR. UCSC database analysis of this
region showed a 331-bp Alu sequence and no conserved non-
coding element.

Because the evolutionarily conserved Irx genes are involved
in eye development in many animals, from fruit flies to mice,
we performed in situ hybridization with probes against IRX3 in
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FIGURE 1. Cytogenetic and molec-
ular characterization of the inv(2)
(p22.3q12.1)t(2;16)(q12.1;q12.2)
complex translocation. (A, B) Par-
tial karyotype (A) and ideogram (B)
with G-banding technique showing
respectively the normal and deriva-
tive chromosomes 2 and 16. Arrow:
the chromosomal breakpoint localiza-
tion. (C) FISH results using the 2p sub-
telomeric probe RP5-892G20, the 16p
subtelomeric probe CTB-191K2, chro-
mosome 2 and 16 centromeric probes
pBS4D and pZ16.A, respectively, la-
beled with biotin/Cy5 (white), digoxi-
genin/Cy5.5 (yellow), FITC (purple),
and rhodamine (pink). Whole chromo-
some painting of chromosomes 2 (red)
and 16 (green) showing the transloca-
tion between chromosome 2 and 16
and an unexpected aspect of der(2)
leading to a supplementary investiga-
tion as shown in (D). (D) FISH results
using clones spanning the three break-
points: RP11-68N21 (labeled with
FITC; green) at 2p22.3, RP11-315P20
(labeled with rhodamine; red) at
2q12.1, and RP11-1061C23 (labeled
with Cy3.5; blue) at 16q12.2. 2p (RP5-
892G20) and 16p (CTB-191K2) subte-
lomeric probes respectively labeled
with biotin (yellow) and digoxigenin
(white) were used for chromosome
identification. Cohybridization of red
and blue signals on der(16) confirms
the t(2;16); cohybridization of red and
green signals on der(2) demonstrate
the pericentric inversion of chromo-
some 2.
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FIGURE 2. Mapping of the transloca-
tion breakpoint by Southern blot.
Genomic DNA of our patient (P)
compared with control DNA (C), af-
ter digestion with restriction en-
zymes. Additional bands (arrows)
were detected in the P sample for
both BamHI and EcoRI but not for
HindIII. Arrowhead: the breakpoint
localization approximately 2 kb from
the IRX3 3�UTR between the BamHI
and HindIII sites in a 625-bp region.
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human embryonic sections at Carnegie stage (C)13 (29–31
days after fertilization, dpf), C15 (35-38 dpf), and C19 (48-51
dpf) and on fetal sections at 9.5 and 14.5 weeks after fertiliza-
tion (wpf). IRX3 is expressed (Fig. 3) in the central nervous
system, particularly the midbrain, limb mesenchyme, and the
esophageal and tracheal mesenchyme. From C15 on, IRX3 was
expressed in facial mesenchyme involved in eye formation, in
particular anterior segment development. At C19, IRX3 was
expressed in the facial ectoderm of the eyelid. In addition,
IRX3 transcripts could be observed in the mesenchyme of the
gut as well as in the developing limb bud, in particular in the
perichondrium. At 9.5 wpf, IRX3 was clearly expressed again
in the eyelid epidermis, in the cornea, in the ciliary margin and
weakly in the retina. Finally, at 14.5 wpf, we found IRX3
expression in the ciliary margin, lens, cornea, and the neural
retina itself. IRX3 is therefore clearly expressed in regions
involved in the embryologic development of the anterior seg-
ment of the eye.

These results prompted us to use quantitative RT-PCR to
evaluate IRX3 and IRX5 expression in peripheral blood lym-

phocytes of our patient versus that in 15 unaffected control
blood samples. We did not find any difference in IRX3 or IRX5
expression between our patient and the 15 control samples.
IRX3 does not appear to be expressed in postnatal lympho-
cytes. Unfortunately fibroblasts, where the IRX genes may be
expressed, were not available from the patient.

DISCUSSION

We describe the molecular characterization of an
inv(2)(p22.3q12.1)t(2;16)(q12.1;q12.2) complex chromo-
somal rearrangement associated with a congenital, bilateral
malformation of the anterior segment of the eye designated
as severe ASOD with glaucoma. We propose that this rear-
rangement may be responsible for disruption of the expres-
sion of IRX3 or other IRXB genes, leading to the severe
malformation of the anterior segment of the eye.

During the third to fifth weeks of gestation, development of
the anterior segment is in great part due to reciprocal induc-

FIGURE 3. In situ hybridization to probes against IRX3 in human embryonic and fetal sections. (A) Embryo at C13 (29–31 dpf), hematoxylin-eosin
(HE) stain. Sagittal section in the head, transverse in the body. (B) Adjacent section shows signal with antisense probe to IRX3 transcripts (white),
in dorsal cephalic mesenchyme, brain, lateral mesoderm, and the neural tube. (C) Negative control using sense IRX3 probe. (D) Sagittal section
(transverse caudally) of embryo at C15 (35–38 dpf), HE stain. Arrows: esophagus (left); and trachea (right). (E) Adjacent section with antisense
probe signal in the central nervous system except the prosencephalon, lateral mesoderm, tongue, and (arrows) esophageal and tracheal
mesenchyme. (F) Lateral parasagittal section from the same embryo with limbs and developing inner ear structures. (G) IRX3 is expressed in the
midbrain, proximal forelimb and outer hindlimb mesenchyme, and strongly in the facial mesenchyme surrounding the nonexpressing optic
evagination from the forebrain. (H) Sagittal section through the face and distal forelimb of a C19 (48–51 dpf) embryo, HE stain. (I) Adjacent section
showing intense IRX3 expression in the midbrain and facial ectoderm—in particular, of the eyelids and lower ocular mesenchyme—and more
discrete expression in the retina, the temporal bone surrounding the inner ear, and the perichondria of the digits. (J) Coronal section through eyes
of fetus at 9.5 wpf, HE stain. (K) Adjacent section with IRX3 transcripts in retina, cornea, eyelid epidermis, and ciliary margin. (L) Sagittal section
through eye of fetus at 14.5 wpf, HE stain. (M) IRX3 antisense probe shows signal in ciliary margin, lens, neural retina, and diffusely in the cornea.
(N) Compared with sense probe negative control hybridization to this adjacent section, the sclera does not express IRX3 at this stage. cm, ciliary
margin; co, cornea; el, eyelid; fl, forelimb; g, gut; h, heart; hl, hindlimb; lm, lateral mesoderm; lv, liver; mes, mesencephalon; nt, neural tube; opt,
optic evagination; ot, otic vesicle; ph, pharynx; pros, prosencephalon; ret, retina; rh, rhombencephalon; sc, spinal cord; scl, sclera; t, tongue; tb,
temporal bone. Scale bar, 1 mm.
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tions between the neural optic evagination, the overlying ec-
toderm, and intervening neural-crest–derived mesenchyme.
On the basis of clinical data, animal models and temporal
pattern of expression, some genes are particularly important in
coordinating these processes. This is the case for the PAX6,
FOXC1, and PITX2 transcription factor genes. PAX6 is consid-
ered by some to be a “master” gene in eye development that
encodes multiple protein isoforms involved in both cornea and
lens formation.43 Many reports show that in humans, this gene
is implicated in aniridia, isolated cataracts, macular hypoplasia,
keratitis, and Peters’ anomaly.3–5,44 These clinical permuta-
tions are registered in the PAX6 mutation database (http://
pax6.hgu.mrc.ac.uk/ provided in the public domain by the
Human Genetics Unit, Medical Research Council, Edinburgh,
Scotland, UK).45 Similarly, both human disease and murine
models have demonstrated the importance of FOXC1 and
PITX2 in the development of the anterior segment of the eye.
For example, mutations in FOXC1 are associated with Axen-
feld-Rieger anomaly or iris hypoplasia and FOXC1-knockout
mice have anterior segment abnormalities similar to those
reported in humans.46 Rieger syndrome is linked with certain
PITX2 mutations.47–51

In our patient, no mutation of these genes was found.
However, in this complex chromosomal translocation, the
der(16) breakpoint is located close (�2 kb) to the IRX3 3�UTR.
IRX3 belongs to the Iroquois gene family (named after the
Drosophila bristle phenotype), which has been conserved
during animal evolution from at least the time of a common
ancestor with Caenorhabditis elegans (in which there is only
one such gene) to vertebrates, in which there are between 6
and 11 IRX genes subsequent to multiple duplication
events.21,22,24–26,29,52,53 These genes encode for proteins with
a highly conserved homeodomain of the TALE (three amino
acid loop extension) superclass, as well as a 13-amino-acid
domain called the Iroquois domain.54 In all species, Irx pro-
teins are involved in early embryonic organ specification and
patterning—in particular, the head, limbs, and eyes.28,31–39 In
the mouse eye, Irx1, Irx3, Irx5, and Irx6 display very similar
patterns of expression during organogenesis. At E9.5, Irx3 and
Irx5 expression is first observed in the cephalic mesenchyme
of neural crest origin, surrounding the optic vesicle. Irx1 and
Irx6 are only subsequently coexpressed in this region at E10.5.
By E12.5, the Irx genes are still expressed in the mesenchyme
but also begin to be expressed in the neural retina, while
decreasing in intensity in the mesenchyme. Irx genes are finally
expressed exclusively in the neural cell layer of the retina at
E16.5.22 These data are concordant with our results of IRX3

expression in human embryonic and fetal sections. In particu-
lar, we observed IRX3 expression in midfacial mesenchyme
surrounding the nonexpressing optic evagination, in preocular
ectoderm, and later in the ciliary margin and in the lens.
Altogether, these data indicate that the IRX3 gene is function-
ally involved in the development of the anterior segment of the
human eye.

Like other genes implicated in several developmental pro-
cesses, regulation of IRX gene expression is coordinated in a
spatial and temporal manner. Such coordination can be accom-
plished by tissue-specific transcription factors binding of en-
hancers, sometimes at distances ranging over 1 Mb 5� or 3� to
the coding sequences that control either the expression of
individual homeobox genes or the entire cluster. Examples are
the SOX9 gene or the HOXD gene cluster, respectively.55,56

The human IRXA cluster spans 1.8 Mb, and the IRXB cluster
spans 1.3 Mb. No other genes are interspaced between the IRX
genes in the clusters. In the IRXB cluster, IRX3 is located at the
centromeric end and has a 5� telomere to 3� centromere tran-
scriptional orientation, which is opposite that of IRX5 and
IRX6. In 2005, de la Calle-Mustienes et al.,23 using transgenic
Xenopus and zebrafish embryos, demonstrated that 22 highly
conserved noncoding regions (HCNCRs) that lie within the
IrxB cluster (and one located just telomeric to the Irx6 locus)
direct the spatiotemporally specific expression of IrxB genes.
In 2006, Pennacchio et al.57 tested 167 HCNCRs, conserved
between humans and the pufferfish Takifugu rubripes or
ultraconserved between humans and rodents, in a transgenic
mouse assay. A meticulous analysis of these data showed that
21 HCNCRs lay within the IRXB cluster, 17 between IRX3 and
IRX5 and 4 between IRX5 and IRX6 (Fig. 4). Functional tests
showed that only 4 HCNCRs among the 21 have an enhancer
activity in the eye during the mouse’s embryonic development.
Enhancers 26 and 27 are located between IRX5 and IRX6 and
are probably involved in IRX5 and IRX6 expression. Enhancer
157, located 330 kb centromeric to IRX3 in intron 11of the
FTO gene induces in a murine transgenic assay an eye-specific
expression resembling that of IRX3. This gene is involved in
controlling body fat. Its expression during embryonic develop-
ment and its invalidation in mice did not show any activity in
ocular embryogenesis.58,59 Enhancer 59 is located in the first
intron of the RPGRIP1L gene (retinitis pigmentosa GTPase
regulator interacting protein 1–like gene). This gene is ex-
pressed in several types of fetal and adult tissues but mainly in
the brain, kidneys, ovaries, and testes and at the level of the
retinal photoreceptors.60,61 Knockout mice Rpgrip1l�/�

which are not viable, show exencephaly, polydactyly, abnor-

52295272 bp 52705882 bp 52874713 bp 53522612 bp 53917213 bp

pb 68608735pb 83763635pb 13144525pb 71838225

FTO IRX3 IRX5 IRX6

72°N751°N N°26N°59

RPGRIP1L

FTO: Fat mass and obesity-associated gene

Specific eye expression directed by enhancer 157
(http://enhancer.lbl.gov)

Chromosome 16 breakpoint

FIGURE 4. HCNCRs having an en-
hancer activity and driving expres-
sion in the eye during mouse de-
velopment. Double-pointed vertical
arrow: the translocation breakpoint;
star: sequence with enhancer activ-
ity.
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malities of lateralization, and microphthalmia.60 In humans,
mutations of RPGRIP1L are found in patients presenting with
the recessive syndromes oculo-cerebro-renal or type B Joubert
and Meckel syndromes.60,61 This gene is involved in eye em-
bryogenesis. It is reasonable to assume that enhancer 59 is
associated with the control of the expression of RPGRIP1L in
the eye. We therefore hypothesize that enhancer 157 plausibly
plays a role in IRXB gene expression in the developing human
eye. In addition, the chromosomal rearrangement delocalizes
the IRXB cluster at the 2p22.3 region covered by the RP11-
68N21. No known genes or HCNCRs were found. Accordingly,
the translocation separates the IRXB cluster from enhancer
157, which has a specific eye expression thus deregulating the
complex spatiotemporal expression and generating the ASOD
observed in our patient.

In our patient, the translocation separates the IRXB com-
plex from this enhancer, among others, and may deregulate the
spatiotemporal expression of the IRXB cluster gene(s).

Although the evolutionarily conserved IRX genes have been
implicated in various developmental processes in animal mod-
els, so far no human disease linked to an IRX gene has been
reported, perhaps due in part to the existence of functional
compensation between these genes, as has been reported.62

We describe a child with a severe ASOD associated with a
complex chromosomal rearrangement inv(2)(p22.3q12.1)t(2:
16)(q12.1;q12.2) because of the potential deregulation of IRXB
genes by a positional effect.
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de Flandre, Lille, France; 11Laboratoire d’Anatomie Pathologique, Hôpital de Rouen, Rouen, France; 12Service d’Anatomie et de Cytologie

Pathologiques, CHI Poissy, Saint Germain en Laye, France; 13Génétique Médicale, CHI Poissy, Saint Germain en Laye, France; 14Service de
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ABSTRACT: Rare lethal disease gene identification remains
a challenging issue, but it is amenable to new techniques
in high-throughput sequencing (HTS). Cerebral prolif-
erative glomeruloid vasculopathy (PGV), or Fowler
syndrome, is a severe autosomal recessive disorder of
brain angiogenesis, resulting in abnormally thickened and
aberrant perforating vessels leading to hydranencephaly.
In three multiplex consanguineous families, genome-wide
SNP analysis identified a locus of 14 Mb on chromosome
14. In addition, 280 consecutive SNPs were identical in
two Turkish families unknown to be related, suggesting a
founder mutation reducing the interval to 4.1 Mb. To
identify the causative gene, we then specifically enriched
for this region with sequence capture and performed HTS
in a proband of seven families. Due to technical
constraints related to the disease, the average coverage
was only 7�. Nonetheless, iterative bioinformatic analyses
of the sequence data identified mutations and a large
deletion in the FLVCR2 gene, encoding a 12 transmem-
brane domain-containing putative transporter. A striking
absence of alpha-smooth muscle actin immunostaining in
abnormal vessels in fetal PGV brains, suggests a deficit in
pericytes, cells essential for capillary stabilization and

remodeling during brain angiogenesis. This is the first
lethal disease-causing gene to be identified by compre-
hensive HTS of an entire linkage interval.
Hum Mutat 31:1134–1141, 2010. & 2010 Wiley-Liss, Inc.

KEY WORDS: Fowler syndrome; cerebral proliferative
vasculopathy; FLVCR2; hydranencephaly; fetal lethality;
arthrogryposis

Introduction

Cerebral proliferative glomeruloid vasculopathy (PGV) is a
severe autosomal recessive disorder of brain angiogenesis,
resulting in abnormally thickened and aberrant perforating
vessels, forming glomeruloids with inclusion-bearing endothelial
cells. This peculiar vascular malformation was delineated by
Fowler in 1972 in relation to a stereotyped, lethal fetal phenotype
(MIM] 225790), associating hydranencephaly and hydrocephaly
with limb deformities [Fowler et al., 1972]. PGV disrupts the
developing central nervous system (CNS) but the reason for which
abnormal angiogenesis is restricted to the CNS parenchyme
remains unknown. Arthryogryposis, when present, appears to be a
secondary result of CNS motoneuron degeneration, itself one
potential outcome of perfusion failure. Since its earliest descrip-
tion, 42 PGV cases from 26 families have been reported on the
basis of histological criteria [Bessieres-Grattagliano et al., 2009;
Williams et al., 2010].
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Identification of a causative gene for a very rare lethal syndrome
is a challenge at many levels. The first issue is to find a family that
allows the identification of a linkage interval. Such an interval may
contain too many genes to make the classical subsequent strategy
practical, consisting in designing primers that will permit
sequencing of each exon of all the genes of the region. The
second difficulty is that sequencing of all the exons is sometimes
vain in light of the growing number of noncoding regions
identified as pathogenic alleles [Benko et al., 2009; Kleinjan and
van Heyningen, 2005; Lettice et al., 2003]. Finally, for prenatally
lethal syndromes such as PGV, technical constraints such as poor-
quality genomic DNA samples are added. Recent advances in
biotechnology permit the sequencing of all the DNA, including
the noncoding regions, in most genomic intervals. After homo-
zygosity mapping of a 4.1-Mb region, we applied targeted genome
capture by using a NimbleGen array and high-throughput Roche
454 GS FLX sequencing to the genomic DNA of the proband of six
families. Bioinformatic analysis of the data allowed us to identify
FLVCR2 (MIM] 610865) as the gene responsible for Fowler
syndrome (FS). High-throughput sequencing (HTS) generated
false positive and false negative results, in part due to insufficient
sequencing coverage, and unless care is taken, these can engender
the risk of missing mutations during the analysis.

Materials and Methods

Patients

The seven families analysed have been previously reported
(Families I to VII) [Bessieres-Grattagliano et al., 2009]. Genomic
DNA was extracted from frozen tissue or cultured amniocyte cells
in fetal cases and from peripheral blood samples for parents and
unaffected siblings.

Genome Linkage Screening and Linkage Analysis

Genome-wide homozygosity mapping was performed using
250 K Affymetrix single nucleotide polymorphism (SNP) arrays in
five affected and three unaffected individuals of two Turkish and
one French multiplex, consanguineous families. Data were
evaluated by calculating multipoint lod scores across the whole
genome using MERLIN software, assuming recessive inheritance
with complete penetrance.

NimbleGen Sequence Capture and High-Throughput
Sequencing

A custom sequence capture array was designed and manufac-
tured by Roche NimbleGen (Madison, WI). Twenty-one micro-
grams of genomic DNA was used for sequence capture in
accordance with the manufacturer’s instructions (Roche Nimble-
Gen) and a final amount of 3 mg of amplified enriched DNA was
used as input for generating a ssDNA library for HTS; 25% lane of
a Roche 454 GS FLX sequencer with Titanium reagents) yielding
135 Mb of sequence data per sample.

Capillary Sequencing of FLVCR2

Primers were designed in introns flanking the 10 exons using
the ‘‘Primer 3’’ program (http://fokker.wi.mit.edu/primer3/input.htm)
and are listed in Supp. Table S1. PCR were all performed in
the same conditions, with a touchdown protocol consisting of
denaturation for 30 sec at 961C, annealing for 30 sec at a

temperature ranging from 64 to 501C (decreasing 11 during 14
cycles, then 20 cycles at 501) and extension at 721C for 30 sec.
PCR products were treated with Exo-SAP IT (AP Biotech,
Buckinghamshire, UK), and both strands were sequenced with
the appropriate primer and the ‘‘BigDye’’ terminator cycle
sequencing kit (Applied Biosystems Inc., Bedford, MA) and
analyzed on ABI3130 automated sequencers. Mutation numbering
is based on cDNA reference sequence NM_017791.2.

Immunohistochemistry

Immunohistochemistry was carried out on 6-mm selected
sections using antisera directed against smooth muscle actin
(diluted 1:800). Immunohistochemical procedures included a
classical microwave pretreatment protocol in citrate buffer to aid
antigen retrieval. Incubations were performed for 1 hr at room
temperature, using the TECHMATE system (DAKOPATTS,
Trappes, France). After incubation, histological slides were
processed using the LSAB detection kit (DAKOPPATTS).
Peroxidase was visualized by means of either 3-30 diaminobenzi-
dine or amino-ethyl carbazole.

Results

We have collected DNA from fetuses of seven families reported
earlier (Families I to VII) [Bessieres-Grattagliano et al., 2009]. All
14 fetal cases bore the brain-specific angiogenic anomalies
characteristic of PGV, resulting in thickened and aberrant
perforating vessels and glomeruloids, as exemplified in Figure 1A.
Endothelial cells (ECs) were positive for CD34 in both control
fetal brains (Fig. 1B) and in the tortuous glomerular capillaries
(Fig. 1C). VEGF-A, although not normally expressed by small
brain capillaries (Fig. 1D), was strikingly found in the glomerular
ECs of PGV fetuses (Fig. 1E, arrowhead). Like normal ECs
though, PGV ECs expressed VEGFR2 and, weakly, Glut-1 (not
shown). CD68, characteristic of macrophages, was completely
absent (data not shown). Numerous GFAP-positive astrocytes
were observed throughout the cerebral mantle, with immunor-
eactive endfeet justaposed to glomeruloids (Fig. 1F). An antibody
to alpha-smooth muscle actin (aSMA) stained vessels within the
outer leptomeninges and the walls of perforating vessels in normal
fetal brains (Fig. 1G). In contrast, although PGV meningeal vessels
had similar aSMA expression, the dysplastic intraparenchymous
vessels were irregularly stained, if at all (Fig. 1H), while most
glomeruloid vessels were negative for aSMA (Fig. 1I).

To find the molecular basis for this phenotype, we first
undertook a genome-wide SNP analysis using an Affymetrix 250 K
SNP chip with five affected and three unaffected members of two
Turkish and one French multiplex, consanguineous families.
Informed consent was obtained from all patients and their
relatives; clinical data of all families have previously been reported
[Bessieres-Grattagliano et al., 2009]. Genome-wide linkage
analysis conducted with the MERLIN program revealed a 13-Mb
genomic region on chromosome 14 from rs10151019 to
rs12897284, with a lodscore of 5.4. Moreover, four affected sibs
from the two Turkish families shared the same alleles for 280
consecutive SNPs, suggesting a founder effect and reducing the
interval to 4.1 MB, from rs2803958 to rs11159220. These two
families originated from villages 12 km apart in Khramanmaraps
(central Turkey). Microsatellite marker analysis further confirmed
the same disease allele in both families, and showed linkage in
three additional families (Fig. 2).
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To identify the causative gene, we applied array-based sequence
capture of the complete 4.1-MB region followed by high-throughput
sequencing. DNA from one proband of six families, the hetero-
zygous mother from family I, and a healthy brother not carrying the
at-risk allele were selected (Fig. 2). Coverage varied from 2� to 12�
in individuals depending on the integrity of their DNA (Table 1),
with an average coverage depth of 7�; 60% (851,147) of the
enriched reads were located on the targeted regions. Only 25% of the
targeted regions reached 10� coverage depth.

The number of the detected variations was too large to handle
them manually. To facilitate the analysis of these variations a
specific genome browser was set up to visualize the locations of
variations on the genome, and at the same time an analysis tool
has been developed. This analysis tool applied a series of filters to
the identified variations. These filters were based on the following
criteria: (1) the quality of the sequence variant measured as the
number of reads that detected the variant, (2) the presence or
absence of variants in public databases such as dbSNP and
HapMap, (3) the presence or absence of the variants among the
studied samples, (4) annotation of the sequence variants based on
their location (intron, exon, etc.), and the characteristics of the
resulting change such as synonymous, nonsynonymous or stop
mutation. Filtered results were visualized in an interactive table
permitting us to sort and analyze the results. Thus, initial analysis
of the sequence data that met an arbitrary threshold of at least
three reads, of which at least one was required to be in the
opposing orientation, detected a total of 23,262 variations, 17,031
of which were on chromosome 14 (73%, Supp. Table S2). Of these,
3,457 variants were found to not correspond to known SNPs, and
were absent from the normal control individual (E). After initial
exclusion of nonexonic and synonymous variants, 42 variants in
29 candidate genes remained. In 20 of these genes, a single

variation was found in one individual, whereas two and three
variations were found in six and two genes, respectively (Fig. 3).

FLVCR2 was the only gene with variations identified in four out
of seven individuals. In addition, careful examination of the
FLVCR2 locus in the proband of family II revealed a homozygous
deletion of exons 2 to 10, as the absence of both nucleotide
variations and reads over a 46.8-kb genomic region (Fig. 4A). The
deletion was confirmed to segregate in families I and II, and
cloning of the breakpoints revealed the inclusion of the last two
exons of the neighboring C14orf1 gene, with no repeated DNA
sequences at the boundaries. It is noteworthy that this deletion
was not detected by Affymetrix 250 K SNP chip. Indeed, only one
SNP was located in the nondeleted portion of intron 1. Direct
sequencing of the 10 exons of FLVCR2 (Supp. Table S2), identified
mutations in two additional families (Table 1), such that mutant
FLVCR2 alleles were identified in each of the seven families
studied (five homozygotes and two compound heterozygotes;
Table 1 and Fig. 4B).

Reasons for false-negative results using HTS approaches are
summarized in Table 1, and emphasize the need for complemen-
tary confirmation. In particular, in family IV, a second hetero-
zygous mutation was found by direct resequencing, although it
had an apparently homozygous mutation as indicated by the HTS
analysis. In family III, the homozygous mutation found with
Sanger sequencing had only been read two times in the HTS and
had thus been excluded by the stringency of the filter. As a third
example, the second heterozygous mutation in family VII had
been read four times but was excluded for unidirectionality.
Interestingly, in family VI, not known to be consanguineous, the
identical nonsense mutation was found in the three affected sibs
(homozygous in fetuses and heterozygous in parents), suggesting
more distant consanguinity or a founder effect.

Figure 1. Marker analysis in Fowler syndrome fetal brain. A: Cortical plate of Fowler syndrome (FS) fetal brain (family IV) showing abnormal
perforating vessels. Note the characteristic thickened vessels (asterisks), ending in glomeruloid formations (arrowheads), often devoid of
recognizable lumina. CD34 capillary staining in (B) on a brain from a control, stage matched fetus and (C) from a FS fetus (family I). VEGF
immunostaining arround (D) a brain parenchymal capillary from a control fetus in which it is essentially absent, and (E) from a FS fetus in which
it appears markedly increased. F: GFAP astroglial immunostaining on a FS fetal brain. Alpha SMA immunostaining of pericytes on (G) a brain
section from a control fetus versus (H and I) from two FS fetuses.

1136 HUMAN MUTATION, Vol. 31, No. 10, 1134–1141, 2010



FLVCR2 is a member of the major facilitator superfamily (MFS)
of transporter proteins, that shuttle small molecules in response to
ion gradients [Pao et al., 1991]. Like other MFS members, FLVCR2
is predicted to contain 12 membrane-spanning segments and six
extracellular loops. As shown in Figure 5A, the three homozygous
mutations are predicted to alter an amino acid localized to one
transmembrane domain (TM): TM2 in family VI, TM8 in family
III, and TM10 in family V. In family IV, one of the two mutations
alters an amino acid predicted to be localized in TM8 and the
other in the intracellular loop 5.

Amino acid sequence alignment for FLVCR2 from 10 different
species showed that T430 and G412 have been conserved because
our common ancestor with Caenorhabditis elegans, whereas R84
has been conserved in common with Drosophila melanogaster
(Fig. 5B). T352R and L398V alter residues less evolutionary
conserved, especially L398V. However, those mutations are absent
from both the dbSNP and the 1000 Genome database not yet
integrated in dbSNP. Although the L398V mutation was predicted
to be benign by the Polyphen algorithm (http://genetics.bwh.
harvard.edu/pph/), the T352R mutation as well as the other
missense mutations identified in this study were predicted to be
damaging to protein function. Thus, the pathogenicity of these
two last mutations is likely but not totally proven. In total, eight

different mutations including one nonsense mutation (homo-
zygous in family VI), six missense mutations, and one homo-
zygous deletion in two families (I and II) have been found in
FLVCR2.

Discussion

PGV is a very rare and lethal genetic condition. Since its first
description, 42 cases from 26 families have been reported on the
basis of histological criteria of PGV [Bessieres-Grattagliano et al.,
2009; Williams et al., 2010]. In the 16 fetuses of our series born to
eight unrelated families, neuropathological analysis defined a
diffuse form of encephaloclastic prolifrative vasculopathy (EPV),
affecting the entire CNS and resulting in classical PGV with
pterygia and a severe fetal akinesia deformation sequence in 14
cases. In contrast, two cases from the single family IV presented a
more focal form of EPV, without spinal cord involvement and
subsequent arthrogryposis/pterygia. Identification of FLVCR2
mutations in this family suggests that the anteroposterior extent
of CNS degeneration can be variable, and that PGV may be an
extreme phenotype of a broader spectrum of proliferative
vasculopathies. Stabilization of newly formed capillary sprouts
during angiogenesis requires interactions of endothelial cells with

Figure 2. Pedigree and linkage analysis results. Pedigrees of families included in this study. Arrows indicate individuals for whom DNA was available,
and arrowheads indicate the samples sequenced by HTS. Homozygosity or linkage was analyzed by microsatellite markers analysis and confirmed a
founder effect by haplotype identity in two Turkish families (I and II) that were later discovered to carry the same FLVCR2 exon 2 to 10 deletion.
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mural support cells, known as pericytes. The regionally restricted
distribution of PGV in family IV might be linked to the embryonic
lineage of the telencephalic pericytes, of a distinct neural crest cell
origin from those of the spinal cord [Etchevers et al., 2001].
Interestingly, immunostaining for aSMA (a marker for mature
pericytes) in fetal PGV brains was drastically reduced in the PGV
within the CNS while normal aSMA expression was found in the
leptomeninges (Fig. 1I). Further studies should elucidate whether
this observed effect on pericytes is the primary cause or an effect
of this disease.

Recently, FLVCR2 mutations were also reported in five families
with Fowler syndrome [Meyer et al., 2010], with the same
homozygous Thr430Arg mutation in three families, and two
compound heterozygous cases. Interestingely, Thr430Arg is
associated with both forms of the disease, namely, with or
without spinal cord involvement, suggesting no genotype
phenotype correlations. It is noteworthy that the mutation
concerned the same codon (Thr430) as in our family IV, the only
one of our series without spinal cord involvement. More recently,
Lalonde et al. [2010] also reported four FLVCR2 compound
mutations in two FS families with spinal cord involvement.
Interestingly, the only missense mutation predicted to be ‘‘benign’’
in our study (L398V) was identified by two distinct approaches in
a common case reported by both Lalonde et al. [2010] and Meyer
et al. [2010], adding to the likely pathogenicity of this variation.
To sum up, 15 different FLVCR2 mutations (including those
described in our study) have now been reported in 13 cases: one
large deletion, two nonsense mutations, one splice site mutation,
one insertion/deletion change, and 10 missense variations.

The FLVCR2 gene encodes a transmembrane protein that
belongs to the MFS of secondary carriers that transport small
solutes such as calcium [Pao et al., 1991]. It is closely related in
both sequence and topology to the better-known FLVCR1, sharing
60% amino acid identity [Lipovich et al., 2002]. FLVCR1 has been
identified as the receptor for a feline leukemia virus (FeLV-C), and
like FLVCR2 and other MFS members, is predicted to contain 12
membrane-spanning segments and six extracellular loops. A single
mutation in the sixth extracellular loop is sufficient to confer
FeLV-C receptor activity on FLVCR2, which does not otherwise

bind the native virus [Brown et al., 2006]. However, FLVCR2
functions as a receptor for the FeLV-C variant FY981 [Shalev et al.,
2009]. FLVCR1 is found only in hematopoietic tissues, the
pancreas, and kidney [Tailor et al., 1999], but rodent Flvcr2 is
widely expressed during embryonic development, in particular
within the CNS and in the vessels of the maturing retina, and
human FLVCR2, within the fetal pituitary [Brasier et al., 2004].
FLVCR1 has been shown to function as a heme exporter, essential
for erythropoiesis [Quigley et al., 2004]. Interestingly, the five
glutamate residues in the C-terminal putative coiled-coil domain
of FLVCR2, not present in FLVCR1, may serve an analogous
function to the same ferric ion-binding glutamate sequence in
glycine-extended gastrin, by stimulating cell proliferation [He
et al., 2004]. Based on the cell types in which it is expressed and
MFS transport of chelated complexes of divalent metal ions, the
FLVCR2 transporter was postulated to be a gatekeeper for the
controlled entry of calcium into target cell types [Brasier et al.,
2004]. Calcium signaling is involved in virtually all cellular
processes and its homeostasis is tightly regulated. Angiogenic
factors such as VEGF-A and FGF2 induce a transient increase of
endothelial cell intracellular calcium concentrations, which acts as
a second messenger to induce proliferation, among other effects
[Tomatis et al., 2007]. Blood vessels are susceptible to responding
to angiogenic signals and undergoing calcification when their
pericytic coverage has been disrupted [Collett and Canfield, 2005],
both of which signs we have observed in PGV patient brain
sections.

HTS of the entire exome has been used so far to identify
disease-causing genes in the rare Miller and Bartter syndromes,
respectively [Choi et al., 2009; Ng et al., 2010]. Recently, targeted
exon-specific sequencing within a restricted 40 MB linkage
interval allowed the identification of an additional gene for
Familial Exudative Vitreoretinopathy [Nikopoulos et al., 2010].
Our study underlines the use of HTS for the coverage of an entire
linkage interval with no compelling candidate genes and no
justification for the exclusion of noncoding regions. Our nested
analysis approach led rapidly to the identification of a disease-
causing gene. Although it further demonstrates the power of this
new technology, it also highlights other potential risks of missing

Figure 3. Summary of HTS data analysis. This diagram illustrates the flow chart of HTS data analysis. After elimination of variants found
outside of the mapping region (27% of total variants) and those corresponding to known SNPs (29% of on-target variants) or shared with the
control individual E (50% of on-target variants), HTS identified 54 variants in coding sequences, eight of which were synonymous. The remaining
46 variants were located in 29 candidate genes, 20 of which were excluded because only one variant was identified. Finally, only one gene,
FLVCR2, presented four variants.
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Figure 4. FLVCR2 deletion and mutations. A: Genome browser view centered on the FLVCR2 locus (ENSG00000119686) showing all variations
(red dots) and reads coverage (light blue) in individuals A (fetus, family II) and B (fetus, family V). Note the absence of variations and reads in
individual A, suggesting a homozygous deletion of exons 2 to 10, as well as the two final exons of the adjacent c14orf1 transcript
(ENSG00000133935). B: Chromatograms of FLVCR2 homozygous (upper panel) and compound heterozygous mutations (lower panel).

Figure 5. Localization of mutations in FLVCR2 and conservation of mutated FLVCR2 amino acids. A: Localization of mutations on a secondary structure
prediction of the FLVCR2 transporter. The three homozygous mutations are predicted to alter an amino acid localized in one of the 12 transmenbrane (TM)
domains: p.Y134X is located in TM2, p.L359P in TM8, and p.G412R in TM10. Compound heterozygous mutations in family VI alter amino acids at the
N-terminal cytoplasmic end and in the extracellular loop 5 (blue asterisk). Compound heterozygous mutations in family IV alter an amino acid predicted to be
localized in TM8 and in the intracellular loop 5 (green asterisk). B: Alignment and conservation of mutated FLVCR2 amino acids. Sequences for FLVCR2 from
10 different species have been aligned using the Multialin tool (‘‘mnultiple sequence alignment with hierarchical clustering’’) [Corpet, 1988]. Highly conserved
amino acids are represented in red, moderately conserved amino acids are in blue and nonconserved ones are in black. Mutated amino acids are boxed.
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mutations during data analyses. The number of patients,
diagnostic accuracy and genetic homogeneity allowed us to
compensate for low capture efficiency due to suboptimal DNA
quality, and in the future, as the technology develops, furthering
the depth of coverage should ensure a better distinction of
background from true mutations. Finally, identification of the
gene for Fowler syndrome will permit accurate genetic counseling
for PGV and prenatal diagnosis, in particular, for the late-onset
forms of the disease without spinal cord involvement.
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SHORT REPORT

Dissection of the MYCN locus in Feingold syndrome
and isolated oesophageal atresia

Marie Cognet1, Agnés Nougayrede1, Valérie Malan1,9, Patrick Callier2, Celia Cretole3, Laurence Faivre2,
David Genevieve4, Alice Goldenberg5, Delphine Heron6, Sandra Mercier7, Nicole Philip8, Sabine Sigaudy8,
Alain Verloes9, Sabine Sarnaki3, Arnold Munnich1,10, Michel Vekemans1,10, Stanislas Lyonnet1,10,
Heather Etchevers1, Jeanne Amiel1,10 and Loı̈c de Pontual*,1,11

Feingold syndrome (FS) is a syndromic microcephaly entity for which MYCN is the major disease-causing gene. We studied

the expression pattern of MYCN at different stages of human embryonic development and collected a series of 17 FS and

12 isolated oesophageal atresia (IOA) cases. An MYCN gene deletion/mutation was identified in 47% of FS cases exclusively.

We hypothesized that mutations or deletions of highly conserved non-coding elements (HCNEs) at the MYCN locus could lead

to its misregulation and thereby to FS and/or IOA. We subsequently sequenced five HCNEs at the MYCN locus and designed

a high-density tiling path comparative genomic hybridization array of 3.3 Mb at the MYCN locus. We found no mutations or

deletions in this region, supporting the hypothesis of genetic heterogeneity in FS.

European Journal of Human Genetics advance online publication, 12 January 2011; doi:10.1038/ejhg.2010.225

Keywords: Feingold syndrome; MYCN; genetic heterogeneity

INTRODUCTION

Feingold syndrome (FS, MIM164280) combines characteristic digital
anomalies (ie, brachymesophalangy of the second and fifth fingers and
brachysyndactyly of the toes), microcephaly, oesophageal/duodenal
atresia, and variable learning disabilities.1 FS has been mapped to
2p23–242 and is the consequence of MYCN gene (MIM 164840) loss-
of-function either by germline deletions or by coding-sequence
mutations.3,4 Conversely, MYCN amplification is a prognostic factor
for a bad outcome and is found in about 10% of neuroblastomas.5

In this study, we studied the expression pattern of MYCN at
different stages of human embryonic development, and screened a
cohort of 17 patients suspected of FS and 12 patients with isolated
oesophageal atresia (IOA). We identified a heterozygous mutation/
deletion in seven FS cases (47%) and no mutation or deletion in IOA.
Some highly conserved non-coding elements (HCNEs), able to direct
N-myc expression, have been identified in transgenic mice6–8 We
hypothesized that deregulation of tissue- or stage-specific MYCN
expression following mutation or disruption of regulatory HCNEs
at the MYCN locus could lead to FS and/or IOA. We subsequently
sequenced five HCNEs at the MYCN locus and searched for small
deletions in the 3.3-Mb vicinity of MYCN.

PATIENTS AND METHODS
A total of 29 patients were included in the study: 17 patients with possible FS

(Table 1) and 12 patients with IOA. Diagnostic criteria for FS were the presence

of three or more of the core features: (i) microcephaly, (ii) brachymesophalangy

of the second and fifth finger, (iii) 2/3 or 4/5 toe syndactylies, and (iv) oesophageal

or duodenal atresia. Whereas postnatal microcephaly was constant after 3 years of

age, head circumference was normal at birth in three cases. All patients showed

mild-to-moderate mental retardation and eight developed postnatal growth

retardation. Brachymesophalangy of the second and fifth finger was noted in

15 cases, syndactylies in 12 cases, and oesophageal atresia in 14 of the 17 cases

(Figure 1, Table 1). Additional features are listed in Table 1. All IOA cases were

sporadic (10 type III and 2 type I), with no additional malformations.

Blood samples were obtained with informed consent and DNA was extracted

according to standard protocols. DNA sequencing of the three coding exons

and intronic flanking regions was performed by the fluorometric method on

both strands (ABI BigDye Terminator Sequencing Kit V.2.1, Applied Biosys-

tems). Comparative genomics analysis of the MYCN locus indicated five

HCNEs with 475% identity over 350 bp across humans, rhesus, dog, and

mouse (Figure 1). These HCNEs were studied by direct sequencing in all

patients with no coding-sequence mutation (primers available on request).

A 3.3-Mb region extending 1.94 Mb centromeric (5¢) and 1.36 Mb telomeric

(3¢) to MYCN (chr2: 12 800 000–16 590 000; NCBI Build 36.1) was studied by

fine-tiling array-based comparative genomic hybridization (CGH; NimbleGen

Systems, http://www.nimblegen.com/products/cgh/human.html#cnv) on 6 FS

and 10 IOA patients with no MYCN coding-sequence mutation, as well as 550

normal-banded chromosomes on blood karyotype. The average spacing of

probes in Nimblegen fine-tiling array is 52 bp. A deletion was considered when

at least 10 probes were abnormal, giving a deletion detection resolution of

about 500 bp at the MYCN locus. Genome-wide array-CGH with a resolution

of 50 kb was performed in the five FS patients with no MYCN mutation and

normal Nimblegen fine-tiling array, using the Agilent Human Genome CGH

Microarray Kit 244 K (Agilent Technologies, Santa Clara, CA, USA).

To study MYCN expression during human development, embryos were

collected from terminated pregnancies in agreement with French bioethics laws
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(94-654 and 04-800) and the Necker Hospital ethics committee. Probe

synthesis and hybridization were carried out as described previously.9

RESULTS

Direct sequencing and searching for deletion in MYCN locus
We identified a heterozygous coding-sequence mutation in seven
patients (five novel, Table 1). All mutations resulted in a premature
stop codon that removed the basic helix-loop-helix (b-HLH) and the
leucine-zipper (LeuZ) domains or modified a conserved amino acid
essential for DNA binding (Figure 2). One patient had a deletion of
425 kb encompassing the MYCN gene alone. Six mutations occurred
de novo and one was inherited from the affected father (AO28,
Table 1), who showed brachymesophalangy of the second and fifth
fingers, syndactyly between the fourth and fifth toes, microcephaly,

and mild mental retardation. Additional features observed in patients
harbouring a MYCN coding-sequence mutation or deletion were
congenital heart malformations (two cases), kidney hypoplasia (two
cases), asplenia (one case), and diaphragmatic hernia (one case). This
last malformation had never been reported previously and CGH
analysis showed no additional rearrangements in this patient. The
MYCN locus was further investigated in patients with no coding-
sequence mutations; we sequenced five HCNEs identified in the
MYCN locus (Figure 2) and identified no nucleotide variations in
either FS or IOA patients. Fine-tiling array-based CGH identified no
micro-rearrangements in the 3.3-Mb region encompassing MYCN.
Genome-wide array-CGH 244 K was normal in the five patients with
no MYCN coding-sequence mutation and normal Nimblegen fine-
tiling array (Table 1).

Table 1 Clinical features in the series of 17 FS patients with and without MYCN mutation

Mutated patients AO2 AO28 AO37 A056 A060 A065 A067 A068 Total

Sex F F M M F M F M 4M/4F

Familial history � + � � + � + � 3/8

Head circumference at birth �2 �3 �4 �3 �2 �4 �3 �2 8/8

Postnatal microcephaly (SD) �3 �3 �4 �3 �2 �4 �3 �2 8/8

Weight and size at birth 50th c. 25th c. 25–50th c. 2550th c. 25–50th c. 25–50th c. 25–50th c. 25–50th c.

Postnatal growth retardation (SD) �2 �2.5 �2 �2 �1 �2 0 0 5/8

Mental retardation Mild Moderate Mild Mild Mild Moderate Mild Mild 8/8

Micrognatia � � � � � + + � 2/8

Brachymesophalangy II et V + + + + + + + + 8/8

Toe syndactyly 2/3 � + � + + + + � 5/8

Toe syndactyly 4/5 + + + � � + + � 5/8

Oesophageal atresia + + + + + + + � 7/8

Duodenal atresia � � � � � � � � 0/8

Renal hypoplasia + � + � � � � � 2/8

Congenital cardiac defect ASD VSD � � � � � � 2/8

Deafness � � � � � � � � 0/8

Asplenia � + � � � � � � 1/8

Result of MYCN gene screening c.1180G4A c.1293delC c.1110insG c.928-930insGT c.474-514del c.1177C4T c.134dupC del 2p24.3 8/8

Non-mutated patients AO3 AO4 AO22 AO35 AO36 AO39 AO41 AO42 AO43 Total

Sex M F F M M F M F F 4M/5F

Familial history � � � � � +a +b � � 2/9

Head circumference at birth –2.5 0 �2 0 �2.5 0 –3 �4 �1 5/9

Postnatal microcephaly (SD) –2.5 �2 �2.5 �2 �2.5 –3 –3 �4 �2 9/9

Weight and size at birth 25–50th c. 50th c. 50th c. 50th c. 50th c. 50th c. 25–50th c. 50th c. 50th c.

Postnatal growth retardation (SD) �1 �1 � �2 �1.5 0 �2.5 �3 0 3/9

Mental retardation Mild Moderate Mild Mild Mild Mild Moderate Mild Mild 9/9

Micrognatia � + � + � � � � � 2/9

Brachymesophalangy II et V + � + + + + + + � 7/9

Toe syndactyly 2/3 � + + � � + � + � 4/9

Toe syndactyly 4/5 � � � + � + � � � 2/9

Oesophageal atresia + + � + + + � + + 7/9

Duodenal atresia � � � + � � � � � 1/9

Renal hypoplasia � � � � � � � � � 0/9

Congenital cardiac defect � � � � VSD, MA, AC � � � VSD 1/9

Deafness � � � + � � � � � 0/9

Asplenia � � � � � � � � � 0/9

Result of MYCN gene screening � � � � � � � � � 0/9

Result of Nimblegen fine-tiling array Normal Normal Normal Normal Normal Normal NP NP NP 0/6

Result of 244K genome wide array Normal Normal Normal Normal Normal NP NP NP NP 0/5

Abbreviations: AC, aortic coarctation; ASD, atrial septal defect; del, deletion; F, female; M, male; MA, mitral atresia; VSD, ventricular septal defect.
aThe father and a sister of AO39 are microcephalic and have digital anomalies (brachymesophalangy of the second and fifth fingers and brachysyndactyly of the toes). The sister has also learning
disabilities.
bThe mother of AO41 is microcephalic and has anomalies in the hand (brachymesophalangy of the second and fifth fingers).
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Figure 1 Patient AO68 with FS and MYCN deletion. Note the round face, brachymesophalangy of the second and fifth fingers, and short feet with

brachydactyly.
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Figure 2 Schematic representation of the MYCN locus (6647bp). The deletion and mutations identified in five FS patients and HCNEs with 475% identity

over 350 bp across humans, rhesus, dog, and mouse (ECR browser software) are shown.
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MYCN expression in early human development
Additional features observed in patients with an MYCN mutation
motivated the study of MYCN expression at different stages of human
embryonic development (Figure 3). At Carnegie stage (CS) 13, MYCN
appears ubiquitously expressed, with higher expression in the limb-
bud mesenchyme (Figures 2a and b). At CS 15, MYCN is differentially
and highly expressed in the CNS/PNS, the oesophageal and bronchic
epithelia, Rathke’s pouch, sympathetic ganglia, and both ectodermal
and mesenchymal components of the forelimb. At CS 17 and 18,
MYCN is highly expressed throughout the CNS/PNS and in both
Rathke’s pouch and the corresponding precursor of the neurohypo-
physis, the infundibulum (Figures 3t and u), the smooth muscle of the
umbilical arteries, the adrenal gland, and the hindgut as well as other
sites (Figures 3q–u). However, despite low levels of cardiac expression
seen in situ at CS 13, we no longer observed any cardiac expression at
CS 18 (Figures 3v and w).

DISCUSSION

We identified an MYCN mutation in 50% of our cases (8/17). No
major phenotypic differences could be found among the core features
of FS retrospectively, between patients with and without a MYCN
mutation (Table 1). Only syndactyly of toes 4 and 5 was more frequent
in the group with MYCN mutations. The high frequency of oesopha-
geal atresia in our series is due to a recruitment bias through
paediatric surgeons. Importantly, no additional malformations were
present in the group of patients without mutations. Although head
circumference can be normal at birth, postnatal microcephaly is
constant in our series. Most patients were sporadic cases, contrasting
with a previous report.4 This discrepancy could be ascribed to both a
recruitment bias for familial cases before the gene was identified, and
the fact that, clinically, the entity is better recognized since then.
Several additional congenital malformations have been reported in
FS; ie, vertebral malformations, congenital cardiac defects, and renal
hypoplasia.4 Renal hypoplasia needs to be detected early on in order
to prevent renal failure.2 One of our patients presented asplenia.
This has not hitherto been reported in FS but is present in the
N-myc hypomorphic mouse model.10 A diaphragmatic hernia was
detected in the same patient at birth. Facial features reported in FS
are tenuous and combine short palpebral fissures, broad nasal bridge,
and micrognathia.

We studied the pattern of expression of MYCN at different stages of
normal human embryonic development. MYCN is widely expressed in
forelimb mesenchyme at the stages we studied, consistent with the
constant distal bone malformations observed in FS. Expression in
Rathke’s pouch raises the question of involvement of the pituitary
gland in the growth deficit. We observed MYCN expression in both
bronchial tubes and the oesophagus at CS 15, but not in the

diaphragm at CS 17 and 18. N-myc knockout mice had been generated
concomitantly by three independent groups.11–13 Embryonic lethality
was consistently observed between embryonic days E10.5 and E12.5 of
gestation, with developmental delay and small size of mesonephros,
lung, heart, and gut. Interestingly, mutant mice with 25% of wild-type
levels of N-myc protein die at birth and are unable to breathe because
of a severe deficiency in lung-branching morphogenesis.10

The molecular mechanisms underlying the regulation of MYCN
expression have not been totally elucidated. It has been shown, by
replacing endogenous N-myc coding sequences by the c-myc ones, that
c-myc can complement N-myc functions.14 Therefore, the specificity of
both genes resides in their controlled expression patterns. No muta-
tion/deletion of MYCN regulatory elements could be identified in
humans. Altogether, these results are suggestive of genetic heteroge-
neity in FS.
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Figure 3 MYCN expression in early human development. Antisense and sense (negative control, b, d, f) riboprobes are presented side by side in panels a to
p. (a) At CS 13 (37 days’ gestation) MYCN is ubiquitously expressed. (c) CS 15 (36 days’ gestation), transverse section in head, showing MYCN expression

is still widespread but is particularly strong in the brain and craniofacial mesenchyme, as well as in the precursors to the pituitary gland. (e) CS 15,

transverse section through the cervical neural tube. (g) CS 15, section at the level of the forelimb. As compared with the control (h), no expression is

observed in the liver, but is specific to both epithelia and mesenchyme of bronchi, oesophagus (i, j), and forelimb bud (m, n), as well as at levels of the

central and peripheral nervous system (CNS/PNS; i–l, o, p). (q) Hematoxylin–eosin stain of sagittal section at CS 17 and 18 (42–45 days’ gestation). MYCN

expression in an adjacent section (r) shows continued but diminished expression in the CNS/PNS and craniofacial mesenchyme, and presence of transcripts

in the adrenal gland, hindgut, and genital tubercule. (t) MYCN continues to be expressed in the developing pituitary, unlike in the ventricular myocardium

(v vs w). Abbreviations: ad, adrenal gland; aer, apical ectodermal ridge; ao, aorta; br, bronchi; da, dorsal aorta; di, diencephalon; drg, dorsal root ganglia;

eg, enteric ganglia; g, gut; g/IX/X, cranial ganglia IX/X; gt, genital tubercule; h, heart; hg, hindgut; inf, infundibulum; lb, limb bud; lv, liver; mes, mesencephalon;

mx, maxilla; nt, neural tube; oe, oesophagus; rp, rathke’s pouch; rh, rhombencephalon; sc, spinal cord; sg, sympathetic ganglion; st, stomach; tel, telencephalon;

tg, tongue; umb, umbilical cord. Scale bars: 0.5mm, except for q–s, 1mm.
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ABSTRACT: Neuroblastoma (NB) is a frequent embryonal
tumor of sympathetic ganglia and adrenals with extremely
variable outcome. Recently, somatic amplification and gain-
of-function mutations of the anaplastic lymphoma receptor
tyrosine kinase (ALK) gene, either somatic or germline,
were identified in a significant proportion of NB cases. Here
we report a novel syndromic presentation associating
congenital NB with severe encephalopathy and abnormal
shape of the brainstem on brain MRI in two unrelated
sporadic cases harboring de novo, germline, heterozygous
ALK gene mutations. Both mutations are gain-of-function
mutations that have been reported in NB and NB cell lines.
These observations further illustrate the role of oncogenes
in both tumour predisposition and normal development,
and shed light on the pleiotropic and activity-dependent
role of ALK in humans. More generally, missing germline
mutations relative to the spectrum of somatic mutations
reported for a given oncogene may be a reflection of severe
effects during embryonic development, and may prompt
mutation screening in patients with extreme phenotypes.
Hum Mutat 32:272–276, 2011. & 2011 Wiley-Liss, Inc.

KEY WORDS: ALK; neuroblastoma; NB; neurodevelop-
ment; syndrome with cancer

Introduction

Neuroblastoma (NB; MIM] 256700) is the most frequent
extracranial solid tumour in children. Both familial cases with
vertical transmission, and predisposition in chromosomal and

monogenic syndromes, have long supported the involvement of
genetic factors. Several NB predisposing genes were recently
identified, such as PHOX2B, CREBBP, NSD1, HRAS, NF1, and
ALK. The last three genes encode proteins involved in the RAS/
MAPK pathway [Chiarle et al., 2008; Palmer et al., 2009] and ALK
is a downstream target of PHOX2B [Bachetti et al., 2010].

ALK (MIM] 105590), a tyrosine kinase receptor gene of the
insulin receptor family, is activated by fusion with various partners
in anaplastic large cell lymphomas, inflammatory myofibroblastic
tumors, and in some lung cancers [Chiarle et al., 2008]. Recently,
somatic amplification and gain-of-function mutations of ALK
were identified in about 2–4 and 7–10% of NB cases, respectively
[Chen et al., 2008; De Brouwer et al., 2010; Janoueix-Lerosey et al.,
2008; Mosse et al., 2008]. Germline gain-of-function mutations
have also been reported in half of the familial cases of NB tested
thus far [Janoueix-Lerosey et al., 2008; Mosse et al., 2008]. ALK is
preferentially expressed in the central and peripheral nervous
systems during development, but its role in the normal
development of the nervous system remains speculative [Hurley
et al., 2006; Iwahara et al., 1997; Vernersson et al., 2006]. Indeed,
familial ALK gain-of-function mutations predispose to isolated
NB, but are not associated with developmental anomalies, and
Alk�/� mice have no obvious embryonic phenotype. However,
behavioral impairment has been described in the Alk�/� mice, a
phenotype attributed to neurochemical alterations in the
hippocampi and basal cortex [Bilsland et al., 2008].

Here we report two unrelated cases with an association of
congenital NB and severe encephalopathy characterized by a
specific abnormal shape of the brainstem on brain magnetic
resonance imaging (MRI). In both cases we identified a
heterozygous, germline de novo missense mutation located in
the tyrosine kinase domain (TKD) of ALK at positions previously
identified as somatic mutational hot spots in NB and NB cell lines.

Patients and Methods

Case 1, a female, was the second child born to unrelated healthy
parents, aged 29 and 31 years at the time of birth, with no relevant
family medical history. She was born at term by Caesarean section
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with normal birth parameters following an uneventful pregnancy
(birth weight [BW]: 3100 g, body length [BL]: 46 cm, occipito
frontal circumference (OFC): 34 cm). She was hypotonic, hypo-
motile, and presented with major feeding difficulties, no sucking
and swallowing reflexes, episodes of abdominal distension and
apneas. Mechanical ventilation and tube feeding were required. An
adrenal NB with pelvic extension was diagnosed at 3 days of life.
Levels of urinary catecholamine and its metabolites were raised.
Rapid tumor progression led to chemotherapy by vincristine and
cyclophosphamide with no improvement of the tumor mass or
catecholamine excretion. Boli of corticosteroids were delivered and
plasmapheresis performed with the hypothesis of a paraneoplasic
syndrome, but no neurological improvement was seen.

There was no congenital malformation or morphologic
abnormality at clinical examination except for a high arched
palate. Neurologic development was poor. She could fix and
follow with normal eye movements and remained hypotonic with
little spontaneous movements, sucking and swallowing were
absent, she experienced severe episodes of desaturation and
sweating, and she displayed hyperextension of the limbs.
A tracheostomy tube was inserted at 6 weeks of age. Osteotendinous
reflexes were present. A deceleration of the head circumference’s
growth was noticeable with an OFC of 39 cm (fifth centile) at
4 months. She died at age 4.5 months from a severe apnea with no
attempt at resuscitation. Necropsy was not performed.

The tumor was classified as stage 3 by histology [Brodeur et al.,
1993]. Neither MYCN amplification nor 1p36 deletion were
detected by FISH. No antineuronal antibodies were secreted in the
cerebral spinal fluid (CSF). A computerized tomography (CT)
scan showed no spinal cord compression. Meta-iodo-benzyl-
guanidine (MIBG) scintiscan showed no bone fixation. Electro-
myography and muscle histology were within the normal limits.
Electroencephalography (EEG) showed slow activity without

epilepsy. Auditory evoked potential was normal. Histological
examination of a rectal biopsy showed normal enteric plexuses
eliminating Hirschsprung disease as the cause of abdominal
distension. Blood karyotype and a comparative genomic hybridi-
zation (CGH)-array with a 650-kb resolution showed normal
chromosomes 46, XX. Brain magnetic resonance imaging (MRI)
was performed at 3 days and again at 15 weeks of age. At the latter
time point, an abnormal shape of the brainstem was noted with an
enlarged medulla oblongata eclipsing the ovoid form of the pons.
In retrospect, the same image was present from birth (Fig. 1A).

Case 2, a female, was the first child born to unrelated healthy
parents with no relevant family medical history. Intrauterine
growth retardation and sinusoidal cardiotocograph led to
emergency Cesarean section at 31 weeks gestation (BW 1300 g,
and a head circumference of 28.5 cm; both at approximately the
25th centile). Paternal and maternal ages at time of birth were 42
and 37 years, respectively. Hypotonia with little spontaneous
movements, poor sucking, gastrooesophageal reflux, and dis-
tended abdomen were noted at birth. She presented daily episodes
of desaturation and tracheobronchomalacia necessitating respira-
tory support and a tracheostomy tube was inserted at age 3
months. A thoracoabdominal CT scan at age 3 weeks showed
bilateral large heterogeneous and calcified adrenal masses. She
underwent four courses of chemotherapy leading to a reduction in
the size of the tumors, but a MIBG scintiscan showed uptake of
dye in the right hemithorax that was later confirmed by CT scan.
She had a patent foramen ovale with prolonged QT segments on
electrocardiography. Bilateral hernias were surgically repaired at
age 2 months. She was kept on nasogastric feeds for persistent
difficulties in swallowing. Intermittent abdominal distension
remained unexplained; a contrast enema showed no obstruction
and endoscopic intestinal biopsies were normal. Temperature
instability was also observed. At age 5 months, she developed

Figure 1. Brain MRI of the two patients and three controls. Note the abnormal shape of the brainstem with enlarged medulla oblongata
eclipsing the ovoid form of the pons (arrows) on brain MRI (T1-weighted sagittal images) in both cases (top) compared to controls (bottom,
arrowheads). A: Patient 1; B: patient 2; C: antenatal MRI of a control fetus at 34 weeks gestation; D–E: controls.
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abnormal movements of the right arm and leg. Repeated EEGs
failed to show focal epileptiform activity and seizures arising from
the brainstem were hypothesized. Although initially normal,
cranial ultrasound showed an ischaemic cortical lesion on the
right inferior parietal lobe. Growth parameters had all fallen below
the 0.4th centile by age 5 months. At 9 months, she could fix, had
a left convergent squint with normal fundi, and responded to
sound. Sensory motor deficit was suspected. She died at age 9
months following a decision to withdraw intensive care. Necropsy
was not performed.

In retrospect, the brain MRIs performed at age 6 and 15 weeks
showed a brainstem shape very similar to that observed in case 1
(Fig. 1B). At histology, both adrenal biopsies showed infiltrating
islands of undifferentiated neuroblasts. FISH analysis identified
four copies of the MYCN gene, trisomy of chromosomes 1 and 9,
and tetrasomy of chromosome 17.

Blood samples for both cases were obtained with informed
consent and DNA was extracted according to standard
protocols. Direct sequencing of the ALK and PHOX2B genes was
performed on both strands as previously described using the Big
Dye Terminator Cycle Sequencing kit (Applied Biosystems,

Bedford, MA) and was analyzed on an ABI 3100 automated
sequencer.

Results

No nucleotidic variation of the PHOX2B gene was found.
A heterozygous variation of the ALK gene was identified in each case
(c.3733T4G, p.F1245V in case 1 and c.3520T4G, p.F1174V in case 2;
numbering is based on the cDNA sequence from NM_004304.3
(ALK_v001); Fig. 2). Each missense mutation altered a conserved
amino acid within the intracellular TKD of the protein at a position
already found mutated in several NB cell lines and tumours (reviewed
in [Palmer et al., 2009] and [Janoueix-Lerosey et al., 2010]). Both
mutations occurred de novo. A paternal contribution to the child
genotype was confirmed for nine unlinked and polymorphic CA repeat
microsatellite markers in case 1 and 2 (data available on request).

Discussion

In both cases described in this report, we identified a de novo
heterozygous germline ALK gene mutation. Importantly, mutations

Figure 2. ALK gene mutations. A: A constitutional heterozygous missense variation of the ALK gene having occurred de novo was identified
in each case (c.3733T4G, p.F1245V in case 1 and c.3520T4G, p.F1174V in case 2, with numbering based on the cDNA sequence from
NM_004304.3 (ALK_v001). There is no evidence that the ALK mutations are present in mosaic state. Indeed, mutant allele is not
underrepresented compared to wild-type allele. Residue F1245 is located in the catalytic loop and residue F1174 in the C helix of the TKD [Bossi
et al., 2010; Lee et al., 2010]. B: Published ALK mutations in NB (adapted from [Janoueix-Lerosey et al., 2010] with permission). Mutations are
indicated by arrows, with the number of mutations identified at each position to date indicated underneath. The mutations are mainly located
in the TK domain, with two hotspots at positions 1174 and 1275. [Color figure can be viewed in the online issue, which is available at
www.wiley.com/humanmutation.]
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at position p.F1174 and p.F1245 have been reported already (with
substitution for I, C, V, and L amino acids in both cases), but were
invariably somatic [De Brouwer et al., 2010; Janoueix-Lerosey et al.,
2010; Palmer et al., 2009]. However, the missense mutations
p.G1128A, p.R1192P, and p.R1275Q, lying in the TKD of ALK, have
been reported in familial cases segregating NB predisposition with
incomplete penetrance and without presenting any neurological
symptoms, and have not been reported as somatic mutations
[Janoueix-Lerosey et al., 2008; Mosse et al., 2008]. Conversely, both
children reported here presented with multifocal NB of neonatal
onset and, severe, nonepileptic encephalopathy with a fatal out-
come. They were initially referred for possible central congenital
hypoventilation syndrome (CCHS, Ondine’s curse; MIM] 209880)
due to episodes of apnoeas and desaturation, abdominal distension,
and NB. However, these episodes were independent of the
sleep–wake state and direct sequencing of the PHOX2B gene failed
to identify a coding sequence mutation. Opsomyoclonic syndrome
had also been considered but electroencephalographic recordings
showed no epilepsy and eye movements were normal. Moreover,
plasmapheresis and corticosteroids did not lead to neurological
improvement. Compression by the abdominal mass and Hirsch-
sprung disease were also considered as explanations for the episodes
of abdominal distension. An alternative hypothesis is enteric
nervous system dysfunction given that Alk is expressed in the
developing gut in mice [Vernersson et al., 2006]. The brainstem
anomaly in the two patients reported here does not seem
progressive, although this could not be assessed fully, given that
both patients died at an early age. Nonetheless, the medulla
oblongata was enlarged from birth in both cases. The presence of
this feature upon brain MRI may be a good indication of an ALK
germline mutation in a newborn with severe encephalopathy and
brainstem dysfunction of unknown cause with or without NB.
Indeed, whether neonatal NB is a consistent feature of the
syndrome remains to be defined. The differential diagnosis would
be a tumor of the medulla (more often a pylocytic astrocytoma),
but enlargement would be asymmetric and presenting hypointen-
sity on T1-weighted images.

There is a sharp contrast between the brain phenotype of the
patients described in this report, and that of patients with Cardio-
Facio-Cutaneous syndromes, in which germline gain-of-function
mutations in several genes involved in the RAS signaling pathway
have been described, and for whom absolute or relative
macrocephaly is the rule (see [Tidyman and Rauen, 2009] for
review). This is particularly true for Costello syndrome, which is
ascribed to HRAS gain-of-function mutations, with amino acid
substitution hotspots at codons p.G12 and p.G13 [Aoki et al.,
2005]. Interestingly, a progressive enlargement of the cerebellum
leading to posterior fossa crowding and cerebellar tonsilar

herniation has been described in a majority of patients with
Costello syndrome, while the shape of the brainstem remains
normal [Gripp et al., 2010].

ALK is an extremely conserved tyrosine kinase receptor of the
insulin receptor family with Midkine and Pleiotrophin as putative
ligands in mammals. Ligand binding leads to ALK heterodimerisa-
tion, autophosphorylation, and activation of the RAS/MAPK,
phosphoinositide-3 kinase (PI3K)/AKT, JAK/STAT3, or PLCg
pathways, promoting proliferation, differentiation or survival
[Chiarle et al., 2008; Palmer et al., 2009; Wasik et al., 2009]. Fusion
proteins arising from somatic rearrangements have been reported in
anaplastic large cell lymphomas and other tumours (reviewed in
[Palmer et al., 2009]). In NB and NB cell lines, both ALK
amplification and gain-of-function missense mutations of con-
served codons of the TKD have been reported [Chen et al., 2008;
George et al., 2008; Janoueix-Lerosey et al., 2008; Passoni et al.,
2009]. Some experimental data indicate variable oncogenic
potential of ALK mutants with p.F1174L having an increased
transforming capacity compared to p.R1275Q and p.K1062M
[Chen et al., 2008; De Brouwer et al., 2010]. Altogether, these
observations suggest different effects on ALK signalling for different
mutations, with variable biological consequences. An interesting
possibility is that there is an ALK activity threshold, above which
CNS development would be impaired, but which is not reached by
all ALK gain-of-function mutations reported thus far. Animal
models are not yet available but knock-in mice bearing mutations at
codon p.F1174 and p.R1245 are being generated in several groups.
In the CNS of mice, Alk is expressed in several thalamic and
hypothalamic nuclei, the pons, the medulla oblongata, and the
ventral horn of the spinal cord [Vernersson et al., 2006]. It will be of
high interest to explore the consequences of endogenous expression
of mutant ALK on both neurological function and anatomic
development of the pons, medulla, and motor neurons.

There is a growing list of genes for which somatic and germline
gain-of-function mutations have been reported in tumours (of
various types) and syndromes, respectively (Table 1). Interestingly,
tumor predisposition burdens a minority of these syndromes. The
repertoire of mutations and the relative proportion of each
nucleotidic variation (and amino acid substitution) are different
between somatic and germline cases. As a general rule, mutations
exhibiting the highest activating effect in vitro are prevalent in the
somatic repertoire and absent from its germline counterpart. The
HRAS gene stands as a paradigm. Somatic gain-of-function
mutations at codons p.G12, p.G13, and p.Q61 are found in
various tumors, whereas germline mutations at codon p.Q61 have
not been reported in patients with Costello syndrome. Moreover,
when considering amino acid changes at codon 12, p.G12V is far
more frequent somatically than p.G12S (and leading to a greater

Table 1. List of Genes for Which Somatic and Germline Gain-of-Function Mutations Have Been Reported in Tumors and Syndromes,
Respectively

Gene OMIM Somatic mutation/tumour predisposition Germline mutation/Syndromes Reference

RET 164761 Thyroid MEN2A/MEN2B� [Hofstra et al., 1994; Mulligan et al., 1993]

FGFR3 134934 Bladder/Skin/Haematopoietic Achondroplasia/TD [Rousseau et al., 1994]

FGFR2 176943 Uterus/Skin/Testicle Crouzon/Apert/Pfeiffer [Reardon et al., 1994; Wilkie et al., 1995]

HRAS 190020 Bladder/Thyroid/Skin Costello� [Aoki et al., 2005]

KRAS 190070 Colon/Pancreas/Lung Noonan/CFC [Niihori et al., 2006]

BRAF 164757 Colon/Thyroid/Skin CFC [Niihori et al., 2006]

PTPN11 176876 Haematopoietic Noonan [Tartaglia et al., 2001]

IDH2 147650 CNS/Haematopoietic D2 Hydroxyglutaric Aciduria [Kranendijk et al., 2010]

ALK 105590 PNS Congenital encephalopathy This report

Syndromes predisposing to tumors are indicated with an asterisk. Several cases of leukemia have been reported in CFC. A paternal age effect is observed for germline mutations
of RET, FGFR2, FGFR3, HRAS, and PTPN11.
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activation [Fasano et al., 1984]), while in Costello syndrome p.G12S
is the most common substitution, with p.G12V having been
reported only twice; both of these patients had a severe phenotype
[van der Burgt et al., 2007]. Most interestingly, two ‘‘missing
germline mutations’’ at codon 61 (Q61R and Q61K) of HRAS have
been identified in 5/30 spermatocytic seminomas (a rare testicular
germ cell tumor of late-age onset) [Goriely et al., 2009]. We thus
speculate that such mutations are to be found in patients with a
de novo germline mutation but probably lead to an extreme,
possibly foetal lethal phenotype, distinct from Costello syndrome.

Here we report a novel syndrome with predisposition to NB
due to constitutive ALK gain-of-function mutations. In doing so,
we provide evidence that normal CNS development requires
regulation of ALK activity, with a threshold being exceeded for
some mutations only, and therefore we add ALK to the list of
oncogenes with important roles in normal development.
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Abstract 

Purpose. To decipher the biological pathways involved in keratoconus pathophysiology by 

determining the patterns of differential gene expression between keratoconus and control 

corneas. 

Methods. RNA was extracted from surgically removed corneas of 10 keratoconus patients, and 

from normal corneas of 10 control patients who had been enucleated for ocular melanoma. 

Several hundred thousand RNA transcripts were assessed using Affymetrix exon microarrays. 

Statistical comparison and identification of differentially regulated and differentially spliced RNA 

transcripts was carried out by comparing keratoconus cases and controls. In addition, relevant 

biological pathways were identified by information extraction using network biology.  

Results. Eighty-seven genes showed significant differences in expression levels. Among these, 

69 were downregulated in keratoconus patients, particularly partners of the transcription factor 

AP-1. The 18 over-expressed genes include mucins, keratins, and genes involved in fibroblast 

proliferation. In addition, 36 genes were shown to be differentially spliced, including nine among 

those that were differentially expressed. Network biology and analysis using Gene Ontology 

descriptors suggest that many members of both groups belong to pathways of apoptosis and 

the regulation of the balance between cellular differentiation and proliferation. 

Conclusion. This work constitutes the first genome-wide transcriptome analysis of keratoconus 

patient corneas that include all currently known genes and exons. Differential expression 

suggests that mechanisms of cell loss resulting from antiproliferative and hyperapoptotic 

phenotypes may be responsible for the pathogenesis of keratoconus. 

 
Array information, experimental design, raw intensities and processed log2 ratio values were 

deposited at the European Bioinformatic Institute’s ArrayExpress database 

(http://www.ebi.ac.uk/arrayexpress/). Accession number is pending until the embargo date 

(2010-12-23). 

http://www.ebi.ac.uk/arrayexpress/�
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Introduction 

 Keratoconus (KC) is a vision-threatening condition characterized by thinning and 

deformation of the cornea. It is one of the most common indications for  corneal grafting in  

industrialized countries. The disease prevalence is around 1 in 2000, and familial aggregation, 

together with increased familial risk, suggests important genetic influences on its pathogenesis, 

but the etiology of keratoconus is still poorly understood. Aside from genetic determinants, 

environmental stresses such as eye rubbing or atopy have been suggested as possible causes 

or aggravating factors in keratoconus 1. To date, several loci for familial keratoconus have been 

described 2-8. These have been mapped by genome-wide scans of varying resolutions to the 

chromosomal regions 2p24, 3p14-q13, 5q14.3-q21.1, and 16q22.3-q23.1 in familial studies, and 

to the chromosomal regions 4q31, 5q31, 9q34, 12p12, 14p11, 17q24, and 20q12 using an 

affected-only linkage analysis. However, no genes have yet been identified as responsible for 

the development of the vast majority of keratoconus cases. Within these chromosomal regions, 

several candidate genes (COL6A1, SOD1, MMP9, MMP2, COL8A1) have been excluded 2, 3, 9, 

10 while mutations in VSX1 have been reported in a few keratoconus patients 11. In addition, one 

differential expression study pointed to AQP5 encoding aquaporin 5 12. Taken together, these 

data suggest that keratoconus is a complex disease involving multiple susceptibility loci 6. 

 Holistic approaches integrating various “-omics” techniques are promising for  

discovering the molecular bases of genetic disorders with complex patterns of inheritance, such 

as keratoconus 13. Variation in gene expression is an important mechanism underlying the 

susceptibility to complex diseases, and it has been established that the steady-state abundance 

of mRNA transcripts for many human genes is a highly heritable, quantitative phenotypic trait 14. 

Recent technical advances for the profiling of virtually all human or mouse exons on genome-

wide transcriptome microarrays 15, 16 have made the comprehension of molecular disease 

mechanisms possible 17. Thus far, most published analyses have only assessed variations in 

levels of gene expression, without taking into account exon content. However, about 50% of all 

human genes are predicted to be alternatively spliced 18, and disruptions in the balance of 

multiple transcript isoforms have been shown to be at play in conditions ranging from Alzheimer 
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disease to a number of cancers 19, 20. In this study, we therefore aimed to analyze the 

keratoconus corneal transcriptome in a comparison with normal corneas, to identify differentially 

expressed or spliced genes that would highlight the pathophysiological pathways involved in 

keratoconus. Network biology allowed us to assign a number of these gene products to a small 

number of molecular cascades pertaining to proliferation, differentiation, and programmed cell 

death. 

Methods 

Ethics statement 

 This study was carried out in accordance with French regulations following the tenets of 

the Declaration of Helsinki. The samples were assigned a laboratory number and have 

remained anonymous throughout. The experimental protocol was approved by the relevant the 

inter-regional ethics committee, CPP Sud-Ouest Outre-Mer N° 2. Written consent was obtained 

from all participants involved in this study. 

Patients and control tissue collection and storage 

 Ten corneas were collected from non-related patients during a penetrating keratoplasty 

procedure for advanced keratoconus in the Centre National de Référence du Kératocône 

(Toulouse, France). All keratoconus eyes included in the study were stage III (Amsler-krumeich 

classification) with high refractive errors, severe loss of visual acuity, and absence of scarring. 

In addition all patients had contact lens intolerance and none of them weared contact lens since 

at least 6 months. Patients were 34 ± 10.3 years old, 6 were males and 4 females. Ten control 

corneas were obtained in the Institut Curie (Paris, France) from unrelated patients enucleated 

for choroidal melanomas strictly localized to the posterior pole of the eye. These patients did not 

receive antineoplastic treatment before surgery. None were wearing contact lenses. Patients 

were 59 ± 10.1 years old, 5 were males and 5 females.  In addition, for each control cornea, 

anatomical or topographical abnormality was ruled out by careful examination. Excised corneal 

buttons were 8 mm in diameter. They were processed according to identical standard 
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procedures in the two centres, and were immediately stored in 1.5 ml microtubes in liquid 

nitrogen until RNA extraction. 

RNA isolation from whole corneas 

 Corneas were transferred from liquid nitrogen to a 500 µl RLT (RNeasy Mini kit, Qiagen, 

Hilden, Germany)/ß-mercaptoethanol (GE Healthcare Biosciences, Pittsburg, PA) solution, in a 

Lysing Matrix D 2-ml microtube (MP Biomedicals, Irvine, CA), and kept on ice. This mix was 

then subjected to 8 cycles of 20 s. shaking followed by 5 minutes of cooling at 4°C on a 

FastPrep®-24 System (MP Biomedicals). The supernatant was then retrieved, and total RNA 

was extracted and further purified using an RNeasy Mini kit (Qiagen) and RNase-Free DNase 

Set (Qiagen), according to the manufacturer’s protocols. RNA quality was assessed using 

Agilent RNA 6000 Nano Chips (Agilent Technologies, Santa Clara, CA) on the Agilent 2100 

Bioanalyzer. RNA samples were immediately stored frozen at −80°C. RNAs with an Agilent 

RNA integrity number (RIN 21) > 9 were selected for further analysis i.e. above the 8.5 threshold 

recommended by Agilent. RNA concentration and purity was determined immediately before 

reverse transcription through measurement of A260/A280 ratios with a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE).  

Microarray transcriptome hybridization 

 We used the Affymetrix GeneChip® Exon Array platform designed to interrogate 

expression levels at both exon and gene level, querying 1.4 million probesets. To minimize 

background and increase the sensitivity of the assay, ribosomal RNA was removed from 0.7-1 

µg of total RNA from each preparation (RiboMinus Human/Mouse Transcriptome Isolation Kit, 

Invitrogen, Carlsbad, CA). The resulting RNA was then subjected to reverse transcription using 

random hexamers tagged with a T7 promoter sequence followed by second strand cDNA 

synthesis using a DNA polymerase (GeneChip WT cDNA Synthesis Kit, Affymetrix, Santa 

Clara, CA). The resulting double stranded cDNA was then used for amplification of antisense 

cRNA and cleaned using the Gene Chip Sample Cleanup Module (Affymetrix). A second cycle 

of cDNA synthesis was then performed using random primers to reverse transcribe the cRNA 

into sense single stranded DNA. This DNA was then fragmented, labeled, and hybridized to 
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Affymetrix Human Gene Chip Exon 1.0 ST Arrays. Target labeling, array hybridization, washing 

and staining were performed as described in the Affymetrix GeneChip Whole Transcript (WT) 

Sense Target Labeling manual. Arrays were then hybridized, washed and stained using the 

GeneChip® Hybridization, Wash and Stain Kit in a GeneChip® Hybridization Oven 645 and a 

GeneChip® Fluidics Station 450. Arrays were then scanned on a GeneChip Scanner 3000 7G. 

Array information, experimental design, raw intensities and processed log2 ratio values are all 

available through ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) (embargo until 2010-12-

23). 

In silico data filtering for probes, signal normalization, and summarization 

 Standard methods for outlier removal were used, including principal component 

analysis on the sample covariance matrix (V = (yi − y )( yi − y )T /n
j =1

n

∑  where y = y i /n
j =1

n

∑ ) 

and hierarchical clustering by defining a dissimilarity between the expression signatures 

between two samples as 1 − ρ , ρ being the sample correlation 22 as implemented in the 

OneChannelGUI package 23 of the R programming language. A hierarchical clustering tree is 

thus a dendrogram representing the pairwise similarity structure between arrays. A cut-off value 

is given as a proportion of the tree depth in order to remove too divergent arrays as potential 

artifacts. 

 After quantile normalization 24, data from the 20 probes were fitted to a global model of 

expression and probe affinities (model=chip effecti+probe affinityj+_ for the jth probe on the ith 

array). Expression levels were summarized using the Robust Multichip Average (RMA 25) 

model, which is based on the dependence of the measured intensity upon the amount of 

material (chip effect), the probe affinity and a reading error (measurement error). Model fitting 

was performed using the fast median polish algorithm 26. This expression summary provides an 

estimated value for the abundance of the transcript in the sample but does not provide a 

measurement of the reliability of this estimation. Exon arrays lack paired mismatch probes but 

instead comprise a separate pool of ca. 25 000 background probes that allows the computation 

of a Detection Above Background (DABG) score by matching those probes to members of the 

http://www.ebi.ac.uk/arrayexpress/�
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background with the same GC content. It is used to discard poorly performing probesets. In 

addition to this probe-level summary, gene-level summaries (expression levels averaged across 

probes) are calculated as median expression of probes that (i) are not multiply-targeted and (ii) 

hit an exon with all probes in the probeset. 

Mapping to annotation 

 Probesets were mapped to the genome and to gene annotations using various X.to.Y 

functions included in the Exonmap R package 27 and a local MySQL instance of the X:MAP 

database 28. This allowed to discriminate between probesets hitting introns, transcripts or genes 

as well as to interrogate known alternative splicings. 

Identification of differentially expressed genes 

 Linear modeling and tests for differential expression, adjusted for multiple testing, were 

performed by using Limma R package 29. The use of linear modeling allows the borrowing of 

information from all the transcripts in order to assist inference about each transcript individually. 

Briefly, Limma first adjusts a linear model over the systematic part of the data, intending to 

estimate its variability (function lmfit). Then, a contrast step allows the fitted coefficients to be 

compared regardless of their number. For single-channel microarrays such as Affymetrix Exon, 

linear modeling is equivalent to ANOVA but with the fitting of a model for every gene. The fitted 

matrix and a contrast matrix are used to compute fold-changes (FC) and t-statistics (function 

makeContrasts). Change in expression (fold change, FC) was considered biologically relevant 

when the variation was 2-fold or greater (i.e. log2(FC)>1). Differential expression is then 

assessed by empirical Bayes statistics: the eBayes function is used to compute moderated t-

statistics, moderated F-statistic, and log-odds of differential expression by empirical Bayes 

shrinkage of the standard errors towards a common value. « Moderated » means that the 

residual mean squares and degrees of freedom are moderated between probes. An adjustment 

for multiple testing was applied using the decideTests function. The Benjamini-Hochberg 

method for controlling the false discovery rate (FDR) 30 was used. 
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The end result is a list of significant probes within genes of interest. Lastly, we assessed 

whether for each of these genes all their probesets showed the same fold-change, thus 

reflecting gene-level differential expression. For this purpose, we computed for each gene the 

variance of the fold-change for its exonic probeset. This allowed us to filter differentially 

expressed genes, characterized by a low variance (i.e. < 1). 

Identification of differentially spliced variants 

 Detection of alternative splicing events was performed using two parallel approaches, 

the Splicing Index and MiDAS. For both tests, given the much lower number of tests involved 

(equaling the number of probes per gene) as compared to gene-level differential expression, a 

p-value of 0.05 was applied. 

 In the Splicing Index (SI) 15, 31 method, the expression values of the probesets are first 

converted to log2 space. For each probeset examined, the expression value is substracted from 

the mean expression value of all constitutive aligning probesets to create a constitutive 

corrected log2 expression difference. This difference is calculated for each individual in the 

study, using microarray data from that subject only, and is then used to calculate the mean 

expression difference in each of the patient and control groups. The probeset SI value is then 

derived by substracting the keratoconus group mean from the control sample group mean. This 

value represents the change in exon-inclusion (dI). A t-test (two tailed, assuming unequal 

variance) of the means is performed for statistical significance. A dI of -1 indicates a two-fold 

change in the expression of a probeset relative to the mean constitutive expression, with 

expression being higher in the keratoconus patient group than in the control group. 

 The MiDAS (Microarray Detection of Alternative Splicing) approach is a 2-way ANOVA-

based method measuring differences between the exon level and aggregating gene level 

signals, including an error term and possible interactions 31. First, probe logarithmic intensity 

error (PLIER) normalization is performed. This generates both exon-level signals and gene-level 

estimates which are robust against exon-level anomalous signals across samples. Under the 

null-hypothesis of no alternative splicing at an exon level, the expectation is to observe a 

constant difference between the exon and the corresponding gene across all the samples. 



 9

Functional association and network biology analyses 

 The Cytoscape platform 32 was used as a network visualisation and analysis tool for 

differentially expressed and spliced transcripts. We specifically used several plug-ins for 

interaction retrieval, network statistics and Gene Ontology enrichment (below). 

Annotation and interactome characterization 

 To harvest protein–protein physical and functional interactions, we used the STRING 

(Search Tool for the Retrieval of Interacting Genes/Proteins) database which aggregates most 

of the available information on protein–protein interactions, organizing them by scoring and 

weighting 33. The database is queried for interaction matrices derived from data and text mining, 

including experimental data and predicted interactions. STRING querying is characterized by a 

unique scoring-framework based on benchmarks of the different types of associations against a 

common reference set. This results into a single confidence score per prediction. For each type 

of interaction, a different algorithm is used to provide a score (listed in 34). In order to recover 

the proteins belonging to given metabolic maps and so presumed to interact in the same 

metabolic pathways, we also interrogated the KEGG (Kyoto Encyclopaedia of Genes and 

Genomes) database 35. Networks were then represented by a cloud of nodes connected by 

edges. Node connectivity (number of edges of the node) was assessed using the Hubba plug-in 

for Cytoscape 36. 

Identification of molecular pathways 

We used the BINGO plug-in from Cytoscape 37 to identify enriched Gene Ontology (GO) terms 

38 among the differentially expressed genes, as follows: when sampling K genes (set) out of R 

genes (an annotation reference set), we aimed to infer the probability that k or more of these 

genes belonged to a functional category shared by r of the R genes in the reference set. By 

performing a binomial test, sampling with replacement, we were able to provide an approximate 

p-value. Only well-characterized genes (excluding hypothetical proteins) were included in the 

analysis. GO terms that were overrepresented in the analysis set were selected (five or more 

hits, binomial test Pc < 0.05 after Benjamini-Hochberg [BH] correction 39). The enrichment score 

of each term cluster is computed as the geometric mean of each member's -Log(p-value). 
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Reverse transcription and real-time polymerase chain reaction amplification 

In addition to the microarray experiment, quantitation of selected gene transcripts was carried 

out by reverse transcription and real-time quantitative PCR amplification (RT-qPCR). Eight 

keratoconus and 10 control corneas (of which 5 keratoconus and 5 control corneas were shared 

with the microarray hybridizations) were used in this experiment. One microgram of each of the 

total RNA preparations was reverse-transcribed into single stranded cDNA using the 

SuperScript III reverse transcriptase from the SuperScript VILO kit (Invitrogen, Carlsbad, CA 

USA). The following genes were selected to cover a range of fold-changes and gene locations 

within the interaction network considered: JUN, FOS, FOSB, BTG2, EGR1, MCL1, HSP90AA1, 

S100A6, MAT2A, ANO1, and KRT78. Three further genes, TBP, FBRS, and PIH1D1, were 

selected as standard baseline genes because they displayed some of the lowest differences 

between cases and controls in the microarray experiment. Relevant gene-specific PCR primers 

are listed in Supplementary Material S8. qPCR was performed using DNA Master SYBR Green 

I reagents in a LightCycler 480 system (F. Hoffmann-La Roche, Basel, Switzerland). Thermal 

cycling conditions were as follows: 95°C for 5 min (denaturation); 40 cycles at 95°C for 15 s, 

60°C for 10 s (amplification), and 72°C for 20 s.; then melting curve: 95°C for 10 s, 70°C for 20 

s, and 97°C for 0.1 s. qPCR data were analyzed using the comparative CT method using 

geometric averaging of the three internal control genes 40, 41. 

To assess the correlation between the fold-change levels from qPCR and from the microarrays 

(at both gene and probe levels), we computed Spearman's rank correlation coefficient (Rho) 

statistics that estimate a rank-based measure of association. 

Results 

RNA extraction and data quality control 

 On average, 2.3 µg of total RNA was recovered from each of twenty individual whole 

corneas – ten keratoconus corneas, and ten from control donors. The quality control (QC) of 

microarray hybridization data, using exon and gene level signal densities (Supplementary 

Online Material S3), exon-level principal component analysis, and average-linkage hierarchical 
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clustering (with 20% from the tree height as the cut-off) detected one obvious outlier among the 

controls, namely Ctlr7, which was excluded from the subsequent analysis of the data. 

About one hundred transcripts show moderate differential expression between 

keratoconus and non-affected corneas 

 One hundred and sixteen transcripts, represented by 794 probes, displayed significant 

differential expression levels at one or more probesets, with absolute log2(fold-change) > 1, and 

FDR-adjusted p-value < 0.05. Among these transcripts, 87 displayed probeset fold-change 

variance low enough (< 1) to be considered as differentially expressed at the gene level. The 

most significant differential annotations are listed in Table 1, together with their fold changes 

and levels of significance. Of note, the majority of differently expressed transcripts meeting 

these statistical criteria were downregulated in keratoconus (69 downregulated for 18 

upregulated genes). Interestingly, although considered to be a housekeeping gene, ACTB 

belongs to this list. A subset of downregulated genes, namely FOS, JUN, FOSB, MYC, and 

CDKN1A, are involved in cell cycle regulation and varied most significantly in expression 

between keratoconus and control corneas. Figure 1 presents the relative distribution of 

transcript expression levels in keratoconus and control corneas for overexpressed (1a) and 

underexpressed (1b) genes. 

Only 18 genes displayed upregulation by this analysis. Among these are several genes involved 

in the extracellular matrix and the epithelial cell cytoskeleton (PTCH2, KRT5, KRT78, LYPD3), 

in the stress response (HSP90AA1, ALDH1A3), or encoding mucins (MUC4, MUC16). 

Markers considered to be melanoma-specific 42-44 were absent from the differentially expressed 

transcripts, consistent with our screening of the control corneas. 

In parallel, a weighted correlation network analysis using the WGCNA R package 45 identified a 

module of 134 transcripts (Supplementary Online Material S4) that are co-expressed in 

correlation with the disease status across the microarray samples (p = 9.10-4) and globally 

decreased in keratoconus (average log2(fold-change) = -0.68). The correlation network and 

individual gene analyses are convergent in that 33 transcripts in the above set of 69 individually 

underexpressed transcripts belong also to the WGCNA module. 
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Keratoconus patients express different splice isoforms of certain transcripts 

We next set out to identify genes that are differentially spliced in the comparison between the 

keratoconus and control groups. Thirty-six candidates were identified with a threshold of p = 

0.05 with either the Splicing Index or MiDAS methods (Table 2, and see Methods for details on 

significance levels). MUC4, encoding a membrane-tethered sialomucin of the ocular surface 

epithelium 46 is remarkable among these since it displays profound changes in transcript 

regulation at both the gene (over-expression in keratoconus) and splice regulation levels. 

Network biology and Gene Ontology annotations 

 An interaction network was inferred to test whether under-expressed genes were 

involved in one or more biological signaling pathways. This network was obtained after 

retrieving a protein-protein interaction matrix from a high confidence STRING database query 

(score ≥ 0.7). The representation of weighted protein interactions from STRING provides a high-

level view of functional linkage, enhancing the analysis of modularity in biological processes. 

Without the addition  of further molecular partners, we were able to cluster the  majority of both 

differentially expressed and differentially spliced proteins into a single, highly connected network 

(Fig. 2). A core of those genes seems central to this network, as they are the most connected 

nodes. In decreasing order of connectivity, they are: JUN, MYC, FOS, PTGS2, CDKN1A, 

ODC1, HSP90AA1, ALDH3A1, ANXA1, and NQO1.  

 After loading this network into Cytoscape, BINGO plug-in was used to further 

investigate whether specific gene ontologies (GO) or pathways were over-represented in the 

whole network. Within the first cluster of GO terms relative to biological function (enrichment 

score = 3.080), we filtered out several redundant terms (Supplementary Online Material S5), 

mainly within categories related to apoptosis regulation. On the other hand, within clusters 3 to 

5 (scores 2.43, 2.22 and 2.09 respectively), there were many cell-cycle/proliferation-oriented 

categories. More than half of the genes had GO terms within these categories and 

corresponding GO term p-values, after correction, were below 10-6, meaning these categories 

were significantly over-represented relative to their frequency in a randomized sample of 

expressed transcripts. Further examination showed that keratoconus patients had significantly 
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lower expression of genes that fell into a limited number of KEGG signalling pathways: ErbB 

(CDKN1A, JUN, MYC), MAP kinases (FOS, DUSP1, JUN, HSPB1, MYC) and focal adhesion 

(ACTG1, ACTB, CDKN1A, JUN, THBS1) molecular cascades. 

In addition, we mapped the fold-changes (FC) in expression between cases and controls 

(Supplementary Online Material S6) over the loci identified in previously published linkage 

analyses 2-8. In agreement with the genetic heterogeneity of these studies and their difficulty in 

reproducing each others' results, no obvious candidate genes for keratoconus were 

distinguishable, as their FC ranged from -0.45 to +0.58. We also scrutinized the previously 

hypothesized candidate genes for KC (COL6A1, SOD1, MMP9, MMP2 and AQP5). None of 

them showed significance at the bonferroni-corrected threshold of 10-6. 

Validation of gene microarray data 

Relative quantitative real time polymerase chain reaction (qPCR) was conducted as an 

independent technique to validate the expression level changes in the microarray experiment. 

Results in Figure 3 show a good level of correlation between the three empirical assessment of 

expression as shown by Rho values around 0.9. Even considering as a replicate the samples 

used only for the qPCR experiment, the same levels of correlation are observed (data not 

shown). 

 Discussion 

 Using full human trancriptomic microarray, our study is the first comparison of 

expression of all know genes between control and keratoconus whole corneas. The use of 

Affymetrix Exon microarray was motivated because it is a multitarget array including several 

probesets per exon and four neighbor replicates per probeset, allowing a better confidence in 

gene-level expression estimates, and as such also provide the possibility to explore alternative 

RNA splicing. As a matter of fact, quantitative RT-PCR validated the microarray data even 

though this last method reflects the expression of only one portion of the whole transcript (i.e. 

the amplicon). Moreover, the interest of the use of network biology in transcriptome analysis is 

to make use of available limited sampling and to combine it with extant knowledge (interactome) 
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for enhancing meaningful extraction, the global pathway being more meaningful in a first step 

than individual gene expression. Previous comparative transcriptomic studies were performed 

on human keratoconus tissue such as corneal epithelium 47, in vivo 48 and in vitro 49 keratocytes. 

Two studies used restricted microarray chips targeting 5600 genes with a limited number of 

probeset 47, 48 and one study directly targeted the expression of 164 apoptotic genes 49. 

However, none of these studies replicate with each other. This could be due to a limited number 

of corneal sample, as well as the limited probeset distribution and redundancy on micrroarray 

chips used in these studies as compared to currently used microarrays (e.g. the Affymetrix Exon 

array). 

Our own study on human keratoconus tissue was conducted on whole corneas. As controls, we 

used corneas from patients enucleated for posterior pole (i.e. choroidal) melanoma. They were 

considered as a proper control since: i) collection was achieved in similar conditions as 

keratoconus corneas discarding previously treated subjects; ii) anterior segment of the eye was 

free of neoplastic extensions; iii) melanoma extensions is blood-borne 50, cornea is avascular 

and melanoma transmission was not observed after grafting cornea from a melanoma donor 51. 

Consistently, we did not observe overexpression of any melanoma-specific transcript. 

In this context, our aim was to reassess the genetic component of the keratoconus taking into 

account the following hypotheses: a condition characterized by genetic heterogeneity, with 

various loci linked in different populations, and a complex phenotypic trait whose transmission 

appears to deviate from a Mendelian model. Because transcriptomics have helped identify 

molecular pathways and alternatively spliced variants involved in other complex diseases, e.g. 

in oncology 15, 20, 52 and autoimmunity 53, we have transposed this approach to keratoconus. The 

interplay of both experimental and predicted interactions of the annotation database we used 

(STRING), is supposed to offer a more accurate approximation of the interactome than Gene 

Ontology alone. Nevertheless, this analysis infers statistical links between keratoconus 

phenotype and gene expression, and requires experimental validation, perhaps in animal 

models. We identified mice mutants for 29 of the differentially expressed genes, and 27 of the 

differentially spliced ones (Supplementary Online Material S7) in the Mouse Genome 
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Informatics database (http://www.informatics.jax.org/). Some of them display corneal clinical 

phenotypes: the Jun mutant shows eye opacity and increased incidence of corneal 

inflammation, significant in the light of a recent study also implicating a downstream JUN 

effector, JNK2, in abnormal corneal barrier response to dry eyes 54. The THBS1 

(thrombospondin 1) mutant displays abnormal corneal epithelial morphology and Ldlr (low 

density lipoprotein receptor) mutant also has dry eyes. However, their relevance remains to be 

tested, especially in human pathology. JUN is a human proto-oncogene implicated in 

carcinogenesis, while LDLR mutations lead to autosomal dominant hypercholesterolemia. 

 The majority (69 over 87) of the genes highlighted were downregulated in keratoconus 

patient corneas. They include a number of genes globally involved in cellular proliferation and 

the prevention of differentiation (e.g. the AP-1 transcription factor partners FOS, JUN, FOSB) 55 

or MYC, required for proliferation or stem cell mobilization 56. Confirming previous studies, we 

did not find any significant change regarding putative candidate genes previously proposed 

(MMP2, MMP9, COL6A1, SOD1, and AQ5). Another original finding is that the beta-actin ACTB 

is down-regulated thus confirming that, at least in pathological conditions, it cannot be 

considered a good reference gene for expression in cornea. Gene Ontology terms enrichment 

analysis demonstrated, independently of the algorithms used, that these down-regulated genes 

are more widely involved in so-called (cellular) developmental processes or cell differentiation. 

First, we observed a redundancy of GO terms in the first three annotation clusters (GO:0032502 

developmental process, GO:0048869 cellular developmental process , GO:0030154 cell 

differentiation). Their congruence strengthens the conclusion that some keratoconus corneal 

cells are maintained in a less differentiated, proliferative state 57, 58. Simultaneously, decreased 

protection from apoptosis may be implied by the terms GO: 0043066 (negative regulation of 

apoptosis) or GO: 0048468 (cell development). The “gene population background”-based 

enrichment analysis from DAVID's web-based annotation tool 59, which uses both GO terms and 

the Kyoto Encyclopedia of Genes and Genomes (KEGG 60), as well as GO pruning and filtering 

of WikiPathways using GO-Elite 61 gave similar results. The weighted correlation network 

analysis showed significant co-expression of modules containing intermediaries consistent with 

the highlighted pathways. Finally, GO enrichment analysis gave roughly the same results when 
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applied to the p<0.01 and p<0.05 differentially expressed gene lists. Moreover, the qPCR 

results show that for all genes selected for validation, the direction and magnitude of changes 

were consistent with the results obtained from the microarray analysis. 

Finally, we failed to replicate previous differential expression experiments on KC versus normal 

corneas 47-49: none of the differentially expressed genes found in these studies did overlap 

between each other and with ou results. Nevertheless, we performed a network biology analysis 

combining the highlighted genes from these and our studies as well as three genes involved in 

communication between the epithelium and the stroma, namely HGF, KGF and EGF 62, 63 

(Supplementary Online Material S9). We found that while we did not highlight the same genes, 

the same biological pathways seem to be involved. The dataset from Stachs et al. 48 comes 

from freshly isolated keratocytes, while the one of Nielsen et al. 47 comes from fresh epithelial 

cells. Our own dataset composed of both epithelial and stromal components is linked with both 

datasets, showing that these different studies are congruent. In addition, the links observed 

between the majority of our highlighted genes and Nielsen’s ones by means of EGF, KGF and 

EGF, considered to be involved in epithelium/strom signalisation 63, are a further argument that 

there is probably an interplay between both cellular layers in keratoconus. 

Our results implicate both known and novel pathways that may play a key role in the 

pathophysiology of keratoconus. It is noteworthy to mention here that many of the selected 

genes have elsewhere been associated with cancer. Nevertheless, they are also primarily 

involved in developmental processes and cell proliferation. Thus, is is not surprising that a 

change in mRNA expression could be associated with a disease suspected to derive from cell 

loss. In fact, apoptosis has been observed in keratoconus corneas by direct confocal 

microscopy and histology showing decreased lower cell densities in the three corneal layers 58, 

64, as well as  biochemical or expression studies 9, 65-68. This is in full agreement with the over-

representation of GO terms annotation in our dataset. The primary cause for apoptosis in 

keratoconus remains unknown, but it may be a secondary consequence of another molecular 

defect. Several reports have suggested a decreased resistance to environmental aggressions 

by hypersensitivity to oxidative stress in cultivated keratocytes from keratoconus corneas 69 as 
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well as in vivo 57. Cultured keratoconus fibroblasts also may have an inherent, hypersensitive 

response to oxidative stressors that involves mitochondrial damage and the expression of 

intermediate filaments such as vimentin or tenascin or the pro-inflammatory TGF-• and IL-1 70. 

Apoptosis in keratoconus may also result from mechanical trauma or be secondary to the 

production of cytokines after atopy. 

 At this point, the cellular population suffering these network alterations remains 

uncertain. This lack of hypothesis led us to perform, in a first approach, a full thickness corneal 

study. The recovered amounts of mRNAs are largely in favor of epithelial cells and this could 

have biased the results and consequently their interpretation. Nevertheless, one can imagine 

that both epithelial cells and keratocytes may represent key players. Keratocytes are 

specialized fibroblasts, derived from neural crest mesenchyme in common with the cartilaginous 

stromal layer behind the eyeball 71 produce collagen fibres and  proteoglycans constituting the 

corneal stroma. Throughout life, most keratocytes are in a quiescent state 72. By the end of eye 

development a keratocyte network, interconnected through dendritic processes, is established. 

Keratocyte apoptosis, either of quiescent or actively dividing cells, is a process of great interest 

for corneal growth and remodeling. Previous reports have speculated that keratocytes may be 

involved in keratoconus development through increased catabolism, either misregulation of 

metalloprotease activity 67 or a modification of collagen subtype composition 73. We bring here a 

novel hypothesis that keratocytes implication would be mediated by a tissue-specific 

misregulation of apoptosis that may be due to possibly less redundant anti-apoptotic pathways 

in the cornea. In a healthy cornea,  programmed cell death is a rare occasion, but immediately 

after an injury, keratocytes directly below the injury site undergo apoptosis when the basal 

membrane is broken. In the following steps of the healing and scarring process, this cell loss is 

counteracted by mitoses among the remaining adjacent keratocytes 62. In keratoconus corneas, 

impairment of apoptotic signalling pathways upon minor corneal injuries sustained through life 

may impact upon appropriate keratocyte proliferation, itself necessary for the recovery of the 

initial normal cell density. Keratocyte-restricted deficiencies in the regulation of apoptosis may 

lead to the gene expression differences we have observed in this study. This could provide an 

explanation to the loss of cell density and corneal thinning observed in KC. Interestingly, a 
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recent study underlined the role of TWIST2, a bHLH transcription factor, in keratocyte 

proliferation in mouse leading to a corneal thinning 74. Epithelium whose cells are continuously 

renewed may also be affected by the antiproliferative and hyperapoptotic phenotypes. The 

eighteen overexpressed genes we observed to be significantly differentially expressed included 

KRT78, ROR2, S100A6 and MUC4. KRT78 is a structural protein of epithelial cells whose 

cross-linking helps withstand mechanical and chemical stresses 75. ROR2 encodes a nuclear 

orphan receptor in the non-canonical Wnt pathway that appears to trigger, among other effects, 

the maintenance and proliferation of stem cells 76. S100A6 (calcyclin) is involved in the 

fibroblast cell cycle 77 and over-expressed during wound healing after corneal injury. In addition,  

sialomucin (MUC4) is expressed by the corneal epithelium. This raises the question of how 

epithelial cells may also be involved in the pathogenesis of keratoconus. We found increased 

expression of the whole transcript population of MUC4 in keratoconus corneas. The apical 

location of mucins could suggest their general involvement in mechanisms of response to 

epithelial damage 78. In addition, among mucins, MUC4 displays tissue-specific expression 

patterns - notably, a conjunctival-type expression pattern is observed on the corneal surface in 

limbal stem cell deficiency 79. Both mucin-4  (the product of the MUC4 gene) and calcyclin are 

implicated in corneal protection and wound healing by the constitution of the lacrymal film 80, 81. 

In addition, mutations in other mucin genes are already implicated in human pathology, notably 

the dry eye syndromes 82 (Supplementary Online Material S6). Alternatively sialomucin is also 

an activator partner of the epidermal growth factor ErbB2 receptor, potentially implicating its 

overexpression in growth factor signalling pathways leading to either differentiation or increased 

cell proliferation 78. Each of these over-expressed transcripts therefore could conceivably be 

either pathogenic or simply deregulated as a consequence of other causal molecular 

mechanisms. Over-expression of MUC4 might be a protective response, or could be causative 

in keratoconus, and a corneal-specific mouse over-expression model would be welcome to 

resolve this question. 

 Another differentially spliced molecule is annexin A1 (ANXA1). This calcium-dependent 

phospholipid-binding protein has no allelic variants described, regulates phospholipase A2 

activity and promotes membrane fusion. It was previously shown to be upregulated (x1.5) in 
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keratoconus corneal epithelial cells relative to normal epithelial cells 47. ANXA1 is located within 

the chromosomal interval 9q21, which has been suggestively linked to keratoconus using non-

parametric linkage 83. However, it is the only differentially expressed gene that showed 

consensus with the chromosomal regions linked to keratoconus so far. This observation 

confirms that expression analysis is an interesting complementary approach to linkage 

analyses, and that our having included the keratocyte population from whole keratoconus 

versus normal corneas not only found this difference but has implicated broad functional 

pathways in addition to individual molecules. 

 Altogether these results cannot exclude that, whatever the pathways involved, 

keratoconus could result from a distorsion of the cross talk between epithelial and stromal cells 

of the cornea. In the future, more precise, layer specific, expression studies should be 

conducted. Such expression results may be combined with the latest possibilities for genome-

wide association studies in order to identify genomic variants that correlate with both expression 

and keratoconus phenotype. 
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Tables 

Table 1. Transcripts with differentially levels of expression between keratoconus and 

control corneas. 

Gene names (HUGO Gene Nomenclature Committee at the European Bioinformatics Institute) 

are provided alongside their respective fold-change (FC) and the p-value from a Student t test. 

A more complete table (including annotation) is provided as supplementary material S1. 

HUGO Gene Symbol log2 (fold-
change) 

P-value Gene Name Fold-
change 

KRT78 1.21 1.62.10-05 Keratin 78 – Keratin 5B 2.31 
MUC4 0.49 7.46.10-06 Mucin 4 1.40 
S100A6 0.27 7.92.10-06 S100 Calcium Binding Protein A6 (Calcicyclin) 1.21 
ROR2 0.12 9.57.10-05 Receptor Tyrosine Kinas.10-like Orphan Receptor 2 1.09 
SQSTM1 -0.1 4.90.10-05 Sequestosome 1 0.93 
INSIG1 -0.15 4.59.10-05 Insulin induced Gene 1 0.90 
HSPB1 -0.16 4.87.10-05 Heat Shock 27kDa Protein 1 0.90 
NQO1 -0.2 1.51.10-05 NAD(P)H Dehydrogenase, Quinone 1 0.87 
DDX3X -0.2 9.23.10-06 DEAD (ASP-GLU-ALA-ASP) Box Polypeptide 3, X-

linked 
0.87 

KRT5 -0.24 6.86.10-07 Keratin 5A 0.85 
HSP90AA1 -0.27 4.64.10-05 Heat Shock Protein 90kDa alpha (cytosolic), class A 

member 1 
0.83 

FTH1 -0.32 3.45.10-07 Ferritin, heavy polypeptide 1 0.80 
RNF39 -0.35 1.10.10-05 Ring Finger Protein 39 0.78 

DDX5 -0.39 1.33.10-05 Dead (Asp-Glu-Ala-Asp) Box Polypeptide 5 0.76 

ACTB -0.45 3.12.10-06 Actin, Beta 0.73 

SAT1 -0.59 1.56.10-06 Spermidine/Spermine N1-Acetyltransferase 0.66 

DNAJB1 -0.59 1.65.10-05 Dnaj (Hsp40) Homolog, Subfamily B, Member 
1 

0.66 

ZNF750 -0.61 1.54.10-05 Hypothetical Protein Loc79755 0.66 

THBS1 -0.63 6.60.10-06 Thrombospondin 1 0.65 

MYC -0.64 9.27.10-06 V-Myc Myelocytomatosis Viral Oncogene 
Homolog (Avian) 

0.64 

HES1 -0.71 1.13.10-05 Hairy And Enhancer Of Split 1, (Drosophila) 0.61 

CDKN1A -0.76 2.79.10-06 Cyclin-Dependent Kinase Inhibitor 1a (P21, 
Cip1) 

0.59 

MAT2A -0.83 3.16.10-06 Methionine Adenosyltransferase Ii, Alpha 0.56 

ZFP36L1 -0.87 6.85.10-06 Zinc Finger Protein 36, C3h Typ.10-Like 1 0.55 

MCL1 -1.01 9.20.10-06 Myeloid Cell Leukemia Sequence 1 (Bcl2-
Related) 

0.50 

ID1 -1.08 3.59.10-05 Inhibitor Of Dna Binding 1, Dominant Negative 
Helix-Loop-Helix Protein 

0.47 

ODC1 -1.08 3.37.10-06 Ornithine Decarboxylase 1 0.47 

SLC20A1 -1.08 3.56.10-06 Solute Carrier Family 20 (Phosphate 
Transporter), Member 1 

0.47 

NUAK2 -1.16 9.61.10-05 Nuak Family, Snf1-Like Kinase, 2 0.45 

BTG2 -1.52 1.24.10-05 Btg Family, Member 2 0.35 

UBC (RPS27A) -1.84 1.83.10-05 Ubiquitin C 0.28 
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ZFP36 -1.92 1.02.10-05 Zinc Finger Protein 36, C3h Type, Homolog 
(Mouse) 

0.26 

DUSP1 -2.19 2.02.10-05 Dual Specificity Phosphatase 1 0.22 

JUN -3.13 9.98.10-05 V-Jun Sarcoma Virus 17 Oncogene Homolog 
(Avian) 

0.11 

FOSB -3.69 1.87.10-05 Fbj Murine Osteosarcoma Viral Oncogene 
Homolog B 

0.08 

FOS -4.2 2.93.10-05 V-Fos Fbj Murine Osteosarcoma Viral Oncogene 
Homolog 

0.05 

 

Table 2. Genes differentially spliced between keratoconus and control corneas.  

Gene names (HGNC - HUGO Gene Nomenclature Committee at the European Bioinformatics 

Institute) are provided alongside their respective Splicing Index (SI) or MiDAS (Microarray 

Detection of Alternative Splicing) readouts. A more complete table (including annotation) is 

provided as supplementary material S2. 

SI MiDAS HUGO Gene 
Symbol SI p-value p-value Description 

PTGS2 1.58 2.50.10-05 3.93.10-02 Prostaglandin-endoperoxide synthase 2 
(prostaglandin G/H synthase and cyclooxygenase) 

FOSL2 1.24 8.35.10-05 3.71.10-02 FOS-like antigen 2 

MYL6 1.35 1.86.10-04 3.80.10-02 Myosin, light chain 6, alkali, smooth muscle and non-
muscle 

HSPB1 2.72 2.32.10-06 1.54.10-02 Heat shock 27kDa protein 1 
BAG1 1.18 5.88.10-04 4.82.10-02 BCL2-associated athanogene 
ALDH3A1 1.16 8.26.10-05 3.46.10-02 Aldehyde dehydrogenase 3 family, memberA1 
DDX5 1.40 6.13.10-05 3.30.10-02 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5  
ODC1 3.00 8.16.10-05 3.26.10-02 Ornithine decarboxylase 1 
SDC1 1.74 2.65.10-04 3.60.10-02 Syndecan 1 

SLC2A1 1.19 2.25.10-04 4.06.10-02 Solute carrier family 2 (facilitated glucose 
transporter), member 1  

CDKN1A 1.04 2.99.10-05 2.77.10-02 Cyclin-dependent kinase inhibitor 1A (p21, Cip1) 

ID1 1.31 2.26.10-05 2.34.10-02 Inhibitor of DNA binding 1, dominant negative helix-
loop-helix protein 

SAT1 1.30 3.23.10-06 2.21.10-02 Spermidine/spermine N1-acetyltransferase 1  

LDLR 1.72 1.14.10-06 1.86.10-02 Low density lipoprotein receptor (familial 
hypercholesterolemia) 

H3F3B 1.23 8.80.10-05 3.64.10-02 H3 histone, family 3B (H3.3B)  
TPT1 1.82 1.88.10-04 3.37.10-02 Tumor protein, translationally-controlled 1  
 1.77 2.82.10-04 4.21.10-02 -- 
RRAS2 1.54 6.83.10-04 4.04.10-02 Related RAS viral (r-ras) oncogene homolog 2  

BHLHB2/BHLHE40 1.15 4.97.10-07 1.70.10-02 Basic helix-loop-helix domain containing, class B, 
2//Class E basic helix-loop-helix protein 40 

ANXA1 2.80 2.80.10-04 3.39.10-02 Annexin A1 
GLUL 1.10 1.97.10-04 4.36.10-02 Glutamat.10-ammonia ligase (glutamine synthetase) 
CTSL2 1.09 4.41.10-04 4.34.10-02 Cathepsin L2 
JDP2 1.53 4.19.10-04 4.61.10-02 Jun dimerization protein 2  
MUC4 -2.38 2.31.10-04 3.56.10-02 Mucin 4, cell surface associated 

KIAA1754/ITPRIP 1.38 5.19.10-04 4.78.10-02 Inositol 1,4,5-triphosphate receptor-interacting 
protein 

RPS27A/UBC 2.52 9.01.10-07 1.41.10-02 Ubiquitin C 
 2.38 1.90.10-07 1.20.10-02 Ubiquitin C 
NUAK2 1.48 4.37.10-05 3.10.10-02 NUAK family, SNF1-like kinase, 2  
WEE1 1.23 2.18.10-04 4.51.10-02 WEE1 homolog (S. pombe) 
SERTAD3 1.46 3.36.10-05 3.06.10-02 SERTA domain containing 3 
MAT2A 1.31 9.77.10-07 1.44.10-02 Methionine adenosyltransferase II, alpha 
EFNA1 1.30 4.66.10-06 2.36.10-02 Ephrin-A1 
OVOL1 1.18 3.77.10-05 3.38.10-02 Ovo-like 1(Drosophila) 
ACTG1 1.80 2.19.10-04 4.04.10-02 Actin, gamma 1 
TACSTD2 1.49 7.17.10-05 3.35.10-02 Tumor-associated calcium signal transducer 2 



 22

INSIG1 1.39 7.39.10-05 3.26.10-02 Insulin induced gene 1 
PTMA 1.41 4.21.10-05 3.20.10-02 Prothymosin, alpha  

CD55 2.56 2.02.10-05 1.89.10-02 CD55 molecule, decay accelerating factor for 
complement (Cromer blood group) 
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Figure legends 

 Figure 1. Levels of expression of the differentially expressed genes. 

The boxplots represent dispersion among samples. Keratoconus samples are indicated by KC 

while controls are indicated by ctrl. A. Transcripts under-expressed in KC, ordered by 

decreasing absolute fold-change. B. Transcripts over-expressed in KC, ordered by increasing 

absolute fold-change. 
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Figure 2. Interaction network showing links between differentially expressed and 
differentially spliced genes. 

The network includes interactions retrieved from the STRING interactome database. HGNC 

official names are given. The colors of  interaction partners describe the modifications we 

observed between cases and controls in the dataset. Downregulated genes are shown in red, 

upregulated in blue, differentially spliced in yellow, upregulated and differentially spliced in 

green, and downregulated and differentially spliced in orange. Colors of edges between partner 

nodes show the type of interaction. Blue lines represent binding, activation is represented by a 

green line, modification of expression by a yellow line and post-translational modification by a 

pink line. For interactions inferred from text-mining (shown in grey), the level of confidence is 

proportional to line thickness. Unlinked genes are represented by three rows at the top of the 

figure. The first row includes the genes that would be linked by addind one intermediary 

connecting node, the second row, by adding two intermediary connecting nodes and the third, 

other genes. 
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Figure 3. Quantitative Real-Time PCR (qPCR) experiment. 

Results are represented as an histogram, grouped by gene. For each gene, three results are 

presented: in white, the gene level expression estimated by averaging microarray probesets; in 

grey, the level of expression at the microarray probeset corresponding to the region amplified in 

the qPCR experiment; in black, the level of expression as estimated in the qPCR (primer pair 

sequences and location provided in Supplementary Material S8). The pairwise levels of 

correlation between the three estimated is also given as Spearman’s rho statistics. 
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 32 
Abstract 33 

The ectodysplasin/NF-κB and Wnt/β-catenin signalling pathways are central to the development 34 

of skin appendages. Reduced function of either of these pathways results in 35 

anhidrotic/hypohidrotic ectodermal dysplasia (HED). The interaction between these two 36 

pathways, and which factors mediate their crosstalk are poorly understood. We report that the 37 

ectodysplasin receptor (Edar) inhibits the Wnt/β-catenin pathway in an NF-κB dependent 38 

manner. The Edar-mediated negative regulation of the Wnt/β-catenin pathway did not occur via 39 

canonical mechanisms of β-catenin regulation, but instead involved the homeodomain-interacting 40 

protein kinase 2 (HIPK2). We show here that Edar regulates HIPK2 at two distinct levels: i) 41 

through post-translational stimulation of complex formation, between existing HIPK2 and β-42 

catenin and ii) via transcription of HIPK2, an NF-κB target gene. The pattern of HIPK2 43 

expression overlaps that of EDAR pathway components, supporting the idea that Edar/NF-κB 44 

and HIPK2 function in concert to modulate β−catenin action in developing skin appendages. 45 
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 3 

Introduction 46 

Ectodermal appendages (EA), including hair follicles, teeth and sweat glands, form during early 47 

skin development from ectodermal placodes, through complex reciprocal and sequential 48 

signalling interactions between the ectoderm and the underlying mesoderm (1, 2). A wide range 49 

of intercellular signalling pathways are involved in their formation including members of the 50 

Wnt, fibroblast growth factor family, transforming growth factor β (TGFβ), hedgehog, Tumor 51 

Necrosis Factor (TNF) families and their downstream target genes (3). A conserved set of signals 52 

normally control early stages of hair follicle, tooth and glandular development and also account 53 

for a common pattern of phenotypic anomalies when these signals are abrogated by germ-line 54 

mutations in human and mouse.  55 

Anhidrotic/hypohidrotic ectodermal dysplasia (HED) is characterized by developmental defects 56 

at the level of placode initiation (4, 5). HED results from mutations in any of the three genes 57 

controlling the EDA signalling pathway, namely ectodysplasin (EDA), its receptor (EDAR) and 58 

an EDAR-associated death domain adapter protein (EDARADD) (6-8). EDAR, a TNF receptor 59 

family member, is activated by ectodysplasin and employs EDARADD as an adapter to activate 60 

the NF-κB signalling pathway (9). Mouse phenotypes arising from abrogation of this pathway 61 

(tabby, downless, crinkled) are indistinguishable, and share common features, namely misshapen 62 

or absent teeth and hair, and absence of sweat glands (10-12). 63 

Ectodysplasin, the ligand of EDAR, controls several steps of EA formation, principally through 64 

activation of the transcription factor NF-κB (5). In the absence of ectodysplasin/NF-κB 65 

signalling, only unstable pre-placodes form, while overexpression of ectodysplasin increases the 66 

size of placodes and gives rise to supernumerary tooth and mammary placodes (13-15). Edar 67 

signalling is also involved in maintaining the growth phase of the hair cycle and in the hair shaft 68 

structure (16, 17). The genetic variant V370A in the EDAR gene is associated with increased hair 69 

thickness in East Asian human populations, which apparently results from enhanced EDAR/NF-70 

κB signalling (18, 19). 71 

In contrast to the tissue-restricted role of EDAR signalling, the canonical Wnt/β-catenin 72 

signalling pathway, which activates transcription factors of the Lymphoid enhancer factor/T-Cell 73 

Factor family (Lef-TCF), plays an essential role in the development of many organ systems and is 74 

indispensable for EA formation (20-22). In hair follicles, Wnt ligands are required during all 75 

phases of development, from initiation, placode formation and mesenchyme condensation, to hair 76 

shaft differentiation and hair cycling (21, 23-25). β-catenin is also essential for lineage 77 

determination by adult skin stem cells, promoting a follicular, rather than epidermal keratinocyte 78 

fate (26). Wnt/β−catenin signalling is both necessary and sufficient for assumption of a hair 79 
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 4 

follicle fate in developing epidermis, with widespread forced activation of β−catenin causing 80 

ubiquitous adoption of a hair placode fate in embryonic ectoderm (21, 22, 27, 28). However, this 81 

widespread adoption of hair follicle fate is accompanied by a complete failure of placode 82 

morphogenesis, such that no hair follicle is actually constructed under conditions of ubiquitous 83 

epidermal β-catenin activity (27, 28). These findings emphasise that appropriate spatially and 84 

temporally controlled Wnt/β−catenin activity is a prerequisite for appropriate hair follicle 85 

formation, involving positive and negative control over this central regulator. It appears likely 86 

that fine tuning of Wnt/β−catenin activity is achieved, at least in part, through crosstalk with the 87 

other key pathways involved in EA development, such as the EDAR pathway. It has been 88 

demonstrated that the canonical Wnt pathway inhibitor Dkk4, and the Wnt ligand Wnt10b, are 89 

direct transcriptional targets of Edar signalling, and both of these transcripts display prominent 90 

expression in embryonic hair placodes, consistent with a functional role in hair follicle 91 

development (22, 29).  92 

Despite the elucidation of these connections between Edar activity and upstream components of 93 

the Wnt/β-catenin pathway, full knowledge of the relationships between these pathways, and the 94 

probable multiple points of contact between them, remains incomplete. 95 

In this work, we have explored the crosstalk between Edar/NF-κB and Wnt/β-catenin signalling 96 

both in vitro and in vivo during skin appendage development. We show that the homeodomain-97 

interacting protein kinase type 2 (HIPK2) acts as an intermediate between the Edar and Wnt/β-98 

catenin signalling pathways at both the transcriptional and post-translational level. These findings 99 

shed light on the interplay between the widely employed β-catenin pathway and the tissue-100 

specific Edar signalling pathway, which together direct the development of skin appendages. 101 

 102 

 103 

Results 104 

Edar inhibits Wnt/β-catenin signalling 105 

To study the effects of Edar signalling on β−catenin activity, we used transient transfection 106 

assays in immortalized cell lines. Edar and EDARADD are known to promote signalling in a 107 

ligand-independent manner upon overexpression, probably via a multimerisation that allows the 108 

recruitment of downstream proteins required for signal propagation. To investigate whether Edar 109 

influences Wnt/β-catenin transcriptional activity, we studied the transcriptional regulatory 110 

activity of an activated form of β-catenin (carrying the S45Y mutation which impairs β-catenin 111 

phosphorylation and degradation) in HEK293 cells (30, 31). As expected, β-catenin S45Y led to a 112 

high activation of Lef-TCF reporter activity in transfected cells, but this effect was strongly 113 
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 5 

inhibited by co-transfection of Edar or EDARADD (Figure 1A). When a reporter plasmid with 114 

mutated Lef-TCF binding sites was used, no activation or inhibition was observed, demonstrating 115 

the specific inhibition of Lef-TCF transcriptional activity by Edar (data not shown). 116 

β-catenin signalling is initiated by the binding of Wnt ligands to their cognate receptors of the 117 

frizzled (Fz) family, using Lipoprotein Receptor-related Protein (LRP) membrane-bound co-118 

receptors. In order to exclude potential artifacts arising from the constitutive activation of β-119 

catenin, we established conditions in which the β-catenin pathway was activated by signal 120 

transduction initiated by a Wnt ligand-receptor complex at the plasma membrane. For this, we 121 

used a plasmid encoding a previously characterized Wnt-Frizzled fusion protein (Wnt8-Fz5), 122 

known to activate the Wnt/β-catenin pathway (32). In agreement with our previous results, 123 

expression of Wnt8-Fz5 resulted in the transactivation of the Lef-TCF luciferase reporter in 124 

HEK293T cells and this activation was strongly inhibited upon co-transfection of Edar (Figure 125 

1A). 126 

In order to confirm the inhibition of the Wnt/β-catenin pathway by Edar stimulation, we used 127 

SW480 and HepG2 cells, two cancer-derived cell lines in which Wnt signalling is constitutively 128 

active due to mutations affecting proteins acting at distinct levels in the Wnt/β−catenin pathway. 129 

SW480 cells are human colorectal cancer-derived cells carrying a mutation in the APC protein. 130 

HepG2 is a human liver cancer-derived strain carrying an activating mutation in β-catenin itself 131 

(33, 34). Consistently, transfection of Edar and EDARADD strongly inhibited the endogenous 132 

Lef-TCF activity in both cell lines (Figure 1A). These results show that Edar signalling 133 

significantly inhibits the Wnt/β-catenin pathway and suggest, based on the suppression of β-134 

catenin activity in the HepG2 line, that this inhibition operates far downstream in the Wnt/β-135 

catenin pathway. 136 

Edar inhibits Wnt/β-catenin signalling via NF-κκκκB activation 137 

Edar is known to induce NF-κB activity, via activation of Edaradd, Traf6, Tab2, Tak1 and Nemo, 138 

thereby altering gene expression in receiving cells (5, 35, 36). Yet, activation of other pathways, 139 

such as c-Jun-N-terminal kinase (JNK) signalling, may also occur (9). To determine at which  140 

level of Edar signalling the interaction with the Wnt/β−catenin pathway occurs, we used a 141 

dominant negative form of the NF-κB inhibitor Iκ-Bα (Iκ-Bα SS-AA) mutated on two critical 142 

serine residues (S32 and S36), the phosphorylation of which is required for Iκ-Bα degradation 143 

and subsequent NF-κB activation. We performed the transactivation experiments described above 144 

in the presence of Iκ-Bα SS-AA. Depending on the pathway analyzed, either an Igκ-luc 145 

(luciferase under control of NF-κB response elements) or a Topflash reporter plasmid were used 146 

(luciferase under the control of a Lef-TCF responsive promoter). In both HEK293T and SW480 147 
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 6 

cells, transfection of Iκ-Bα SS-AA inhibited Edar-mediated NF-κB activation (Figure 1B). 148 

SW480 cells display a basal NF-κB activity, and this activity was also abolished by expression of 149 

Iκ-Bα SS-AA. The effect of the dominant negative form of Iκ-Bα on the Wnt/β-catenin pathway 150 

was then assessed. Under these conditions, Edar was no longer able to inhibit the Wnt/β-catenin 151 

pathway in the presence of Iκ-Bα SS-AA in either cell type (Figure 1C). Hence, the ability of 152 

Edar to inhibit Wnt/β-catenin signalling is dependent on the nuclear localization of NF-κB. The 153 

same results were obtained in experiments performed using HepG2 cells (data not shown). 154 

Pathological EDAR mutations co-ordinately impair NF-κκκκB activation and Wnt/β-catenin 155 

inhibition 156 

We studied the effects of four dominant (p.R358X, p.I418T, p.L377F and p.T413P) and three 157 

recessive EDAR mutations (p.T403M, p.R375H and p.W434C) identified in HED families on 158 

activation of the NF-κB pathway in HEK293T cells (37). We found that the effects on NF-κB 159 

activation depended on the nature of the specific EDAR mutation. Dominant mutations severely 160 

affected NF-κB activation while recessive ones produced a milder effect (Figure 1D). These 161 

EDAR mutants were then used to quantify Wnt/β-catenin inhibition with respect to NF-κB 162 

activity. A marked inverse trend between EDAR driven NF-κB activation and Wnt/β-catenin 163 

inhibition was observed (Figure 1D and 1E), with dominant EDAR mutations displaying a weaker 164 

effect on suppression of Wnt/β-catenin activity than recessive mutations. 165 

Edar-mediated Wnt/ββββ-catenin/Lef-TCF pathway inhibition does not alter ββββ-catenin level or 166 

subcellular distribution  167 

The canonical Wnt/β−catenin pathway relies on precise regulation of the degradation and 168 

subcellular localization of β−catenin (20). In order to investigate the mechanism of Edar-driven 169 

repression of β-catenin activity, we assessed Edar effects on β−catenin protein levels and 170 

subcellular localization. We found that the level of total β-catenin S45Y protein was not altered 171 

following Edar transfection (Figure 2A). In addition, β-catenin S45Y was found in nuclear 172 

extracts from cells transfected with Edar (Figure 2B). Finally, β-catenin S45Y was 173 

immunocytochemically detected in the nucleus both in the absence and in the presence of active 174 

Edar signalling (Figure 2C). Taken together, these results demonstrate that Edar inhibits the 175 

Wnt/β-catenin/Lef-TCF pathway without altering the total amount or the subcellular location of 176 

β-catenin. 177 

Edar signalling does not disrupt the interaction between ββββ-catenin and TCF4 178 

TCF4 and β-catenin are known to interact physically and the integrity of this complex is required 179 

for its action as a transcriptional regulator (38). Since Edar-mediated Wnt/β-catenin inhibition 180 
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does not alter the bulk amount or subcellular location of β-catenin, we hypothesized that Edar 181 

signalling could disrupt the interaction between β-catenin and the transcription factor TCF4. We 182 

transfected TCF4 into HEK293T cells, as no endogenous TCF4 was detected in this cell line, and 183 

found that the β-catenin/TCF4 interaction was not diminished upon overexpression of Edar 184 

(Figure 2D). We also tested the possibility of an interaction between NF-κB subunits (p50 and 185 

p65) and the β-catenin/TCF4 complex, but did not detect an interaction between these proteins 186 

(data not shown).  187 

HIPK2 is involved in Edar-mediated inhibition of the Wnt/β-catenin pathway 188 

We next hypothesized that the inhibition of Wnt/β-catenin signalling by Edar could be mediated 189 

by a co-repressor protein via a direct interaction with β-catenin/Lef-TCF complexes in the 190 

nucleus. We considered HIPK2 as a candidate molecule for mediating this crosstalk. HIPK2 is a 191 

member of a conserved family of serine/threonine kinases with a wide range of functions 192 

including apoptosis, cell growth and proliferation (39). It can interact with several proteins 193 

containing the high-mobility group I (HMG1) domain, which is highly conserved in Lef-TCF 194 

transcription factors. HIPK2 has been previously shown to be highly expressed in adult hair 195 

follicles and to inhibit the Wnt/β-catenin pathway by interacting with the β-catenin/Lef-TCF 196 

complex (40). We assessed the ability of HIPK2 to form a complex with β-catenin either in the 197 

presence or in the absence of Edar signalling. A weak interaction between endogenous HIPK2 198 

and β-catenin was observed when both TCF4 and β-catenin S45Y were cotransfected in 199 

HEK293T cells (Figure 3A). Interestingly, recruitment of HIPK2 to the β-catenin complex was 200 

strongly enhanced upon Edar transfection, the condition in which Wnt/β-catenin activity is down-201 

regulated. These results were confirmed in SW480 cells on endogenous HIPK2-β-catenin 202 

complexes when Edar and EDARADD were cotransfected (Figure 3B). Thus, β-catenin and 203 

HIPK2 proteins are present in the same protein complex and their association is increased by 204 

Edar signalling. 205 

HIPK2 is necessary for Edar-mediated inhibition of Wnt/ββββ-catenin signalling 206 

In order to determine whether HIPK2 is functionally required for Edar-driven inhibition of 207 

Wnt/β-catenin signalling, we knocked down HIPK2 transcript levels by expression of a short 208 

hairpin RNA (shRNA) targeted against HIPK2. Three stable SW480 cells clones were generated 209 

with different levels of HIPK2 repression quantified by qRT-PCR (Figure 4A). We then 210 

demonstrated that Edar-mediated Wnt/β-catenin inhibition was lost, albeit incompletely, upon 211 

HIPK2 down-regulation (Figure 4B). We confirmed that, under these conditions, the expression 212 

of Edar itself was unaltered (data not shown). These findings demonstrate a functional 213 

contribution of HIPK2 to Edar-mediated inhibition of Wnt/β-catenin signalling. 214 
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HIPK2 is expressed during placode formation and is regulated by EDAR signalling 215 

Having determined that Edar stimulates HIPK2-β−catenin association, and that HIPK2 216 

contributes to EDAR-β−catenin cross talk, we compared the expression pattern of these factors to 217 

question their possible interaction in developing skin in vivo.  218 

We performed whole mount in situ hybridization on developing mouse skin, and found that 219 

Hipk2 is widely expressed in the skin and is upregulated in the primary hair follicle placodes at 220 

embryonic days 14 and 15 (E14-E15) (Figure 5A, C, E). This expression pattern matches that of 221 

Edaradd (Figure 5I, K, M). Sectioning of these embryos revealed prominent expression of Hipk2 222 

in the epidermis (Figure 5G, H), the tissue layer in which Edar/Edaradd signalling is active (8, 223 

41). 224 

Interestingly, and in contrast to wild-type mice, Hipk2 was not focally expressed in Eda
Ta (tabby) 225 

mutant embryos, which carry a loss-of-function mutation in the ectodysplasin gene (Figure 5B, 226 

D, F, H), while widespread expression throughout the epidermis was evident. This absence of 227 

focal Hipk2 expression in the Eda mutant mirrors the absence of focal expression of Eda pathway 228 

components in this line (Figure 5J, L, N).  229 

 230 

Hipk2 expression and ββββ-catenin transcriptional activity occur in non-overlapping follicular 231 

domains 232 

To determine whether Hipk2 could inhibit β-catenin activity in developing skin and EA placodes, 233 

we compared the spatio-temporal pattern of Hipk2 and β−catenin expression in developing 234 

mouse skin. We used various transgenic mouse strains expressing the β-galactosidase gene under 235 

the control of Lef-TCF responsive elements, namely the TOPgal, BATgal and Axin2-lacZ mouse 236 

models (25) (42) (43). All three lines displayed β−catenin activity at the hair placodes, though the 237 

BATgal and Axin2-lacZ lines had a broader spectrum of expression (Figure 6A-C). The TOPgal 238 

line displayed β-catenin activity in hair placodes, but in a much more restricted domain that the 239 

other two strains (Figure 6D). Sectioning showed β− galactosidase  expression in the dermal 240 

compartment of the placode of BATgal and Axin2-lacZ strains, while it was exclusively 241 

epidermal in TOPgal strains. Hipk2 was expressed in the epidermis, particularly in the epithelial 242 

component of incipient hair follicles. Thus Hipk2 expression was detected in the tissue 243 

compartment which displays restricted β−catenin activity. These results are consistent with a role 244 

of Hipk2 in restraining and shaping epidermal β-catenin activity in the skin.  245 

NF-κκκκB regulates HIPK2 expression  246 

As Edar and Hipk2 are co-expressed in embryonic/foetal skin, we hypothesized that Edar 247 

signalling could transcriptionally regulate the expression of HIPK2. We screened the entire 248 
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HIPK2 gene for the presence of putative NF-κB responsive elements and evolutionary conserved 249 

sites by computational analysis using mouse and human sequences (PreMod, ConSite, and 250 

rVISTA programs). The canonical NF-κB DNA binding sequence is a 10-bp consensus DNA 251 

element that has been identified as the following : 5’-GGGRNNYYCC-3’ (44). We found five 252 

distinct putative NF-κB binding sites in HIPK2 introns and decided to analyze three of them 253 

based on their conservation scores (named sites 1, 2 and 3; Figure 7A). 254 

Electrophoretic Mobility Shift Assay (EMSA) was used to validate these predicted NF-κB 255 

binding sites. To obtain maximal activation of NF-κB, we co-transfected plasmids encoding the 256 

NF-κB subunits p65 and p50 into HEK293T cells. We detected a DNA-protein complex between 257 

nuclear extracts and each of the three probes (Figure 7B), the specificity of which was confirmed 258 

by a competition assay. Binding specificity was further confirmed when the NF-κB binding 259 

sequences of HIPK2 were mutated to alter the NF-κB consensus sequence. Super shift 260 

experiments indicated that the two complexes containing p65/p50 heterodimers and p50/p50 261 

homodimers (the most intense shift) are most likely involved in these interactions. 262 

To further test the hypothesis that NF-κB factors bind the putative NF-κB recognition sequences 263 

identified in the HIPK2 gene, we used a chromatin immunoprecipitation assay (ChIP) to 264 

precipitate the NF-κB-DNA complexes from Edar transfected-HEK293T cells with anti-p65 and 265 

anti-p50 antibodies. The NFKBIA (encoding IκBα) promoter, a well-known NF-κB target gene 266 

was used as a positive control (Figure 7C). Interestingly, the fragments containing sites 1 and 3 267 

were amplified following p65 or p50 immunoprecipitation, while no interaction with fragment 2 268 

was detected, suggesting that sites 1 and 3 are recognition sites for Edar-stimulated NF-κB.  269 

To test the regulatory function of the NF-κB binding sequences in the HIPK2 gene, we 270 

constructed a luciferase reporter gene driven by tandem copies of sites 1, 2 or 3 upstream of the 271 

Firefly luciferase gene. Constructs containing site 1 induced a significant transcriptional response 272 

after Edar transfection in HEK293T cells (Figure 7D). The specificity of activation was 273 

confirmed by mutating the NF-κB consensus sequences, or by transfecting cells with the Iκ-Bα 274 

SS-AA encoding vector. No activation was detected for sites 2 and 3. Based on ChIP results 275 

(Figure 7C), site 3 could also be functional in vivo, in its native chromatin configuration. 276 

To confirm the in vivo relevance of this regulation, we determined whether stimulation of Edar 277 

signalling in explant cultured skin would lead to upregulated Hipk2 expression. We stimulated 278 

Edar signalling in embryonic Eda
Ta skin using recombinant ectodysplasin A1 and analysed Hipk2 279 

expression by quantitative RT-PCR. We found that Hipk2 expression was activated within 10 280 

hours of ectodysplasin treatment (Figure 7E). Ectodysplasin caused a mild yet reproducible 281 

change in total Hipk2 levels in the developing skin. This modest increase in bulk transcript level 282 
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is likely due to the widespread expression of Hipk2 observed in the absence of Edar signalling 283 

(Figure 5 J, L). The formation of hair follicle placodes primarily involves the focalization of gene 284 

expression in the skin with little change in total transcript levels across the entire skin, limiting 285 

the fold-changes in gene expression that can be achieved with ectodysplasin supplementation 286 

(13). Thus Hipk2 expression is stimulated by the Edar pathway, consistent with its regulation by 287 

the Edar/NF-κB axis in vivo. 288 

 289 

Discussion 290 

We show here that Edar/NF-κB signalling inhibited the Wnt/β-catenin pathway through a non-291 

classical mechanism. Our results demonstrate the involvement of Hipk2 in Edar-mediated Wnt/β-292 

catenin inhibition, via i) up-regulation of Hipk2 expression, and ii) enhanced interaction of Hipk2 293 

with nuclear β-catenin. This crosstalk between Edar/NF-κB and Wnt/β-catenin signalling 294 

pathways is likely to influence skin appendage development in vivo. 295 

Both Edar/NF-κB and Wnt/β-catenin signalling are known to be positive regulators of skin 296 

appendage formation and play central roles during several stages of hair morphogenesis (3). Thus 297 

it is paradoxical to find negative crosstalk between these two pathways. However, controlled 298 

down-regulation of Wnt/β-catenin signalling in the epidermis has recently been suggested to be 299 

required for normal placode patterning, hair follicle down-growth and adoption of the full range 300 

of follicular fates (27, 28). Accordingly, loss-of-function mutations in the APCDD1 gene, 301 

encoding an inhibitor of Wnt/β-catenin signalling, has been recently associated with hereditary 302 

hypotrichosis simplex disease, characterised by abrogation of hair follicle formation (45). 303 

We have demonstrated that down-regulation of Wnt/β-catenin signalling is mediated in part by 304 

the activation of Edar/NF-κB signalling pathway using HIPK2, which we identified as a new NF-305 

κB target gene. Our findings are consistent with Schmidt-Ullrich et al who demonstrated that 306 

epidermal NF-κB activation is essential for placode down-growth (14). The complexity of β-307 

catenin function in vivo is illustrated by the X-gal staining pattern obtained for the three different 308 

reporter lines TOPgal, BATgal, Axin2-lacZ. These reporter lines show that β-catenin 309 

transcriptional activity is widespread in the dermis. However, the TOPgal line shows a highly 310 

restricted activity of β-catenin in the epidermis, the tissue compartment in which the Edar 311 

pathway operates and in which we showed that Hipk2 is expressed. The TOPgal line is most 312 

similar to our in vitro cellular model as the Topflash-luciferase reporter used in cell transfection 313 

and the TOPgal transgene in mice are driven by the same promoter.  314 
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Several points of crosstalk between the Eda and Wnt/β-catenin pathways have been previously 315 

described, but all involve mechanisms clearly distinct from those that we report here. Edar-316 

mediated inhibition of Wnt/β-catenin signalling was reported by Shindo and Chaudhary to occur 317 

independently of NF-κB (46). More recently, a series of links between Edar and β-catenin have 318 

been inferred based on the identification of new Edar target genes. Dickkopf4 (Dkk4), an inhibitor 319 

of Wnt ligand reception, as well as the Wnt family member Wnt10b were shown to be Edar-320 

inducible NF-κB target genes (22, 29). Thus, Edar is able to induce expression of both activatory 321 

and inhibitory components of Wnt/β-catenin signalling, but the actual impact of these opposing 322 

signals on β-catenin activity was hitherto unknown. As both Wnt10b and Dkk4 are secreted 323 

factors, they likely impact on β-catenin activity at a distance from their site of synthesis. 324 

However, Hipk2 is a non-secreted protein that acts far downstream in the signalling pathway, by 325 

interacting with β-catenin itself, and probably functions in a cell-autonomous manner. Thus we 326 

predict that Hipk2-mediated suppression of β-catenin transcriptional activity occurs in cells 327 

which actively undergo Edar/NF-κB signalling, while secretion of Dkk4 and Wnt10b factors 328 

from these cells modulates β-catenin activity in nearby cells.  329 

The incomplete loss of Edar-β-catenin crosstalk we observed in HIPK2 knockdown cells could 330 

arise from the incomplete inhibition of HIPK2 expression by the shRNA we used, or alternatively 331 

could be a result of the action of HIPK2-independent points (or components) of pathway 332 

crosstalk. 333 

HIPK2 is emerging as a regulator of cell growth and apoptosis in various cell types. Growth-334 

suppressor and growth-promoting functions of HIPK2 probably depend on the cell and tissue 335 

context. For example, HIPK2 was found to be down-regulated in thyroid and breast carcinoma 336 

and to be over expressed in certain brain tumors (pilocytic astrocytomas; (47). Wei et al  337 

demonstrated that Hipk2 represses β-catenin-mediated transcription in mouse skin while Lee et al  338 

demonstrated an opposite function of Hipk2 in Drosophila as a promoter of Wnt/β-catenin 339 

signalling (40, 48). Wei et al have demonstrated that loss of Hipk2 leads to susceptibility to 340 

squamous cell carcinoma development (40). Considering on the one hand, the tumor suppressor 341 

functions of HIPK2, and on the other hand Wnt/β-catenin upregulation in many skin tumors (49), 342 

we believe that HIPK2 should be regarded as an important pathogenic interactor in basal and 343 

squamous cell carcinomas, as well as in skin appendage-derived tumors.  344 

 345 

Materials and methods 346 

Antibodies 347 
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Antibodies used in our experiments were: anti-HA (Santa Cruz, F-7), anti-myc (Neomarkers, 348 

9E10.3), anti-β-catenin (BD Pharmingen, clone 14), anti-TCF4 (Cell Signalling, C9B9), anti-349 

Hipk2 (Abnova, M03), anti-Edar (Abnova, M01), anti-p50, (Upstate, 06-886), anti-p65 (Santa 350 

Cruz, A), anti-β-galactosidase (eBiosciences); anti-mouse and anti-rabbit HRP-conjugated 351 

antibodies (GE Healthcare); Alexa Fluor 488 labelled secondary antibody (Molecular Probes). 352 

Cell lines and plasmids 353 

HEK293T, SW480 and HepG2 cell lines were grown in DMEM supplemented with 10% foetal 354 

bovine serum (Invitrogen). Constructs encoding HA-Edar, Myc-EDARADD were described in 355 

Bal et al., 2007 (50). Dominant negative form of Iκ-Bα (Iκ-Bα SS-AA) has two alanines instead 356 

of the two serines 32 and 36, and cannot be phosphorylated and degraded by the proteasome 357 

machinery. Mutations were introduced into a HA-Edar plasmid by site-directed mutagenesis 358 

using the Quick change XL kit (Stratagene). Topflash and Fopflash reporter plasmids, as well as 359 

Myc-β-catenin S45Y and Myc-TCF4 were obtained from Dr Christine Perret. Wnt8-Fz5 fusion 360 

plasmid was obtained from Dr Bart Williams. Reporter plasmids (pIgk-luc, pRenilla, Topflash, 361 

Fopflash) were described elsewhere (50, 51). 362 

Transfection 363 

Transient transfections of HEK293T cells were performed with standard calcium phosphate 364 

procedure. Transient transfection of SW480 and HepG2 cells were performed using Fugene HD 365 

reagent (Roche). 366 

Luciferase reporter assays 367 

HEK293T, SW480 and HepG2 cells were transfected in triplicate in a 24-well plate with 200 ng 368 

of Firefly luciferase reporter vectors (pIgk-luc, Topflash or Fopflash), 50 ng of pRenilla plasmid 369 

and 250 ng of other plasmids as indicated. The total amount of transfected DNA was kept 370 

constant by adding pcDNA3.1 empty vector. Twenty-four hours later, cells were lysed and 371 

measurement of luciferase activities was conducted with Dual Luciferase Reporter System 372 

(Promega). 373 

Luciferase reporter plasmids containing HIPK2 sequences (wild-type and mutated) were 374 

constructed using complementary short oligonucleotides encompassing the NF-κB binding 375 

sequences,  cloned in tandem repeats upstream to the Firefly luciferase encoding gene into pGL2 376 

vector (Promega) by XhoI digestion. 377 

Immunoblotting analysis 378 

Cells were lysed with total lysis buffer EBC (50 mM Tris–HCl pH 8, 170 mM NaCl, 0.5% NP-379 

40, 50 mM NaF) containing the Complete protease inhibitor cocktail (Roche), or with buffers A 380 

and C, to obtain cytoplasmic and nuclear extracts (buffer A: 10mM Hepes pH7.8, 10mM KCl, 381 
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2mM MgCl2, 0,1 mM EDTA, 1mM DTT; buffer C: 50mM Hepes pH7.8, 50mM KCl, 350mM 382 

NaCl, 0,1mM EDTA, 1mM DTT, 10% glycerol). Immunoblotting was performed classically. 383 

Immunoprecipitation 384 

After preclearing for 1 h with 30 µl of a slurry of protein A– or protein G–Sepharose (Sigma), 385 

200 µg of total lysates were incubated overnight at 4°C with antibodies and then incubated for 1 h 386 

with 30 µl of a slurry of protein A– or protein G–Sepharose. Beads were washed three times in 387 

EBC and resuspended in 30 µl of Laemmli buffer (Sigma) for immunoblotting analysis.  388 

Immunohistochemistry  389 

Following X-gal staining and fixation, mouse embryos were processed, embedded in wax, and 8 390 

µm sections were cut. Slides were dewaxed, rehydrated, H2O2 treated and antigen retrieval was 391 

performed by boiling in 10 mM citrate buffer (pH6) for 10 minutes. Sections were blocked using 392 

the M.O.M. kit (Vector laboratories), then stained with 1 µg/ml mouse anti-Hipk2 monoclonal 393 

antibody (Abnova, clone 1F10) overnight at 4°C. Primary antibody was detected using M.O.M. 394 

biotinylated anti-mouse IgG (Vector laboratories) followed by the ABC peroxidase kit (Pierce) 395 

and then diamino-benzidine (DAB, Sigma). 396 

 397 

Immunocytochemistry was performed on HEK293T cells seeded in labtek (Nalge Nunc 398 

International). Cells were fixed with PFA 4% and permeabilized with PBS/Triton 0,1%. After 399 

hybridization, nuclei were stained using propidium iodure and sections were mounted in 400 

Vectashield (AbCys). Acquisition was performed with a motorized confocal microscope system 401 

(Zeiss LSM5 Pascal) equipped with lasers Argon (488nm) and Helium Neon (543nm), and the 402 

LSM Pascal software (Zeiss). 403 

Electromobility Shift Assay 404 

For EMSA, probes were labeled with biotin using Biotin 3' End DNA Labelling Kit (Pierce). 405 

Samples were prepared using Light Shift Chemiluminescent EMSA Kit (Pierce): 20 µg of nuclear 406 

extracts from HEK293T cells transfected with p50 and p65-encoding plasmids were used for 407 

each reaction. 1µL of glycerol 50% and 1 µL of NP-40 1% were added to the binding reaction 408 

recommended by the manufacturer. Competition and supershift experiments were performed with 409 

pre-incubation with either 4 pmol of unlabeled probe, or 1 µg of antibody for 15 minutes. 410 

Sequences of the probes are available upon request. 411 

Chromatin immunoprecipitation(ChIP) 412 

ChIP was performed using EZ Chip kit (Millipore), according to the manufacturer’s 413 

recommendations. DNA from HEK293T cells transfected with HA-Edar-encoding plasmid was 414 
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sonicated for 20 cycles and 10 µg was used for each immunoprecipitation. Primers used to 415 

amplify purified DNA are available upon request. 416 

 In situ hybridization 417 

Embryos were fixed overnight in 4% paraformaldehyde in PBS at 4°C. Samples were dehydrated 418 

in methanol, bleached using H2O2, rehydrated, treated with 10 µg/mL protease K, post-fixed and 419 

hybridized overnight at 65°C. After washing, embryos were blocked, incubated in 1/2000 420 

alkaline-phosphatase conjugated anti-digoxigenin (Roche) overnight, washed and hybridization 421 

signal detected using BCIP/NBT. 422 

Explant culture 423 

Dorsolateral skins from E14 embryos from an Eda
Ta/Y X Eda

Ta/Ta cross were dissected and 424 

cultured on an MF-millipore filter on a metal grid submerged in DMEM plus 2% FBS in a centre 425 

well dish (Falcon) at 37°C and 5% CO2. Experimental samples were treated with 1 µg/mL 426 

recombinant Fc-EDA-A1 (52) for 10 hours and then experimental and control samples were 427 

homogenised in TRI reagent (Sigma) to isolate total RNA. RNA was reverse transcribed using 428 

random primers and AMV reverse transcriptase (Roche) in a 20 µl reaction. Reactions were 429 

diluted 10-fold and 5 µl were used as template for quantitative PCR. TaqMan probes were 430 

supplied by Applied Biosystems (β-actin probe: 4352341E; Hipk2 probe: Mm00439329_m1). 431 

Twenty-microlitre reactions were performed in triplicate on an Opticon II thermal cycler. 432 

Relative amounts of β-actin and Hipk2 transcripts were calculated from a cDNA standard curve. 433 

shRNA experiments 434 

To generate SW480 cell clones expressing a shRNA against HIPK2, we constructed a pCEP4 435 

vector encoding the shRNA (pCEP4-shHIPK2) by inserting the shRNA-encoding element of the 436 

pSUPER-Hipk2 vector kindly provided by Dr CY Choi (53), after digestion of both plasmids 437 

with SalI and SacI enzymes. We then isolated clones from SW480 cells transfected with pCEP4-438 

shHIPK2, after selection with 200 µg/mL hygromycin. The levels of HIPK2 expression were 439 

assessed for each clone by qRT-PCR, using the SybrGreen System (Applied Biosystems), and 440 

TBP as control gene (primers sequences available upon request). 441 
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Legends to figures 594 

Figure 1 595 

Edar and EDARADD inhibit Wnt/ββββ-catenin signalling pathway via activation of NF-κκκκB. 596 

Two different reporter plasmids were used depending on whether NF-κB (pIgκ-luc) or Wnt/β-597 

catenin activity (Topflash) was measured. Transcriptional activity was measured as Firefly 598 

luciferase activity and normalized to Renilla luciferase activity. Iκ-Bα SS-AA plasmid encodes a 599 

strong repressor of NF-κB activity. The results represent the mean value from three experiments. 600 

A: HEK293T cells were transfected with either myc-β-catenin S45Y plasmid encoding a 601 

constitutively active form of β-catenin, or Wnt8-Fz5 fusion plasmid. Transfection of HA-Edar 602 

plasmid alone or together with Myc-EDARADD inhibited Wnt/β-catenin mediated transcription 603 

in HEK293T, SW480 and HepG2 cells. 604 

B: Iκ-Bα SS-AA strongly inhibited Edar-dependent NF-κB activity in HEK293T and SW480 605 

cells.  606 

C: Iκ-Bα SS-AA transfection prevented Edar-dependent Wnt/β-catenin inhibition in HEK293T 607 

and SW480 cells.  608 

D and E: Effects of EDAR mutations on NF-κB activation and Wnt/β-catenin inhibition. The 609 

dominant mutations (p.R358X, p.I418T, p.L377F and p.T413P) severely impaired NF-κB activity 610 

and had little effect on Wnt/β-catenin mediated transcription, whereas the recessive mutations 611 

(p.T403M, p.R375H and p.W434C) retained a residual ability to stimulate NF-κB and then to 612 

down-regulate Wnt/β-catenin activity. At high doses (500 ng and 1 µg), the recessive mutations 613 

gave similar Wnt/β-catenin activity values as wild-type showing that small activities of NF-κB 614 

were able to inhibit Wnt/β-catenin activity. 615 

 616 

Figure 2  617 

Edar-mediated Wnt/ββββ-catenin downregulation is not achieved through classical 618 

mechanisms of Wnt/ββββ-catenin inhibition. 619 

HEK293T cells were transfected with plasmids as indicated. 620 

A: Total cell lysates used for transactivation experiments were analyzed by immunoblotting using 621 

anti-β-catenin antibody. A faint band was observed corresponding to endogenous β-catenin when 622 

no myc-β-catenin S45Y is transfected. Immunoblotting with anti-actin antibody serves as loading 623 

control. Transfection of Edar in conditions where Wnt/β-catenin activity was completely 624 

abolished is not associated with β-catenin degradation. 625 
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B: Cytoplasmic and nuclear extracts were analyzed separately by immunoblotting. The anti-c-626 

myc antibody only revealed the transfected β-catenin form. The presence of Edar did not affect 627 

the subcellular localization of β-catenin. 628 

C: The cellular distribution of β-catenin was not affected by the presence of Edar, as determined 629 

by confocal microscopy using anti-β-catenin antibody (green) on HEK293T cells transfected 630 

either with myc-β-catenin S45Y alone or together with HA-Edar. Nuclei were stained using 631 

propidium iodide (red). Both nuclear and cytoplasmic β-catenin staining was apparent in both 632 

experimental conditions. 633 

D: Edar transfection did not affect β-catenin/TCF4 interaction. β-catenin was 634 

immunoprecipitated using anti-β-catenin antibody and TCF4 was detected by immunoblotting. 635 

Cell lysates were immunoblotted with anti-β-catenin, anti-HA and anti-TCF4 antibodies. 636 

 637 

Figure 3 638 

Edar transfection enhances association of HIPK2 to ββββ-catenin 639 

A: HEK293T cells were transfected for 24 h as indicated. Lysates were immunoprecipitated using 640 

anti-Hipk2 antibody and analyzed by immunoblotting using anti-β-catenin antibody. The amount 641 

of immunoprecipitated HIPK2 was determined by immunoblotting with anti-Hipk2 antibody. To 642 

control for Edar, β-catenin, and TCF4 transfection, total cell lysates were subjected to 643 

immnuoblotting using corresponding antibodies. Lysates correspond to experiments shown in 644 

figure 2D. 645 

B: SW480 cells were cotransfected with HA-Edar and myc-EDARADD and the interaction 646 

between the endogenous HIPK2 and β-catenin proteins was analyzed as in panel A. 647 

 648 

Figure 4 649 

HIPK2 contributes to Edar-mediated inhibition of Wnt/ββββ-catenin signaling 650 

A: Quantification of HIPK2 expression in 3 distinct stably transfected SW480 clones expressing 651 

short hairpin RNA against HIPK2 transcript. Approximately 35-60% knockdown of HIPK2 652 

expression was achieved in the different lines. 653 

B: The effect of Edar signaling on β−catenin transcriptional activity under conditions of HIPK2 654 

knockdown. In control SW480 cells, Edar transfection strongly suppressed β−catenin function. 655 

Knockdown of HIPK2 reduced this effect, allowing greater β−catenin activity in the presence of 656 

Edar signalling.  657 

 658 
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Figure 5 659 

Hipk2 is co-expressed with Edaradd during hair follicle formation 660 

A-F and I-N: Whole mount in situ hybridizations detecting Hipk2 (A-F) and Edaradd (I-N) 661 

expression during the first wave of hair follicle formation from embryonic day 14 (E14; A-D and 662 

I-L) to E15 (E-F and M-N), in wild-type and Eda
Ta mice. C-D and K-L panels show higher 663 

magnification of the dorsal region of E14 embryos. G and H are sections of E14 embryos; arrow 664 

indicates a hair placode in wild type skin. Both genes displayed elevated expression in primary 665 

hair placodes and developing vibrissae in wild-type embryos, and were moderately expressed 666 

throughout the whole epidermis in the Eda mutant strain. The scale bar is 1 mm for A-F, I-N, and 667 

100 µm for G,H. 668 

 669 

Figure 6 670 

Hipk2 is expressed in a domain distinct from that of ββββ-catenin transcriptional activity.  671 

A-D: Whole mount staining of E14 mouse embryos detecting: A: β-catenin (or CTNNB1) 672 

expression by in situ hybridization and B-D: X-gal staining in β-catenin reporter lines BATgal 673 

Axin2-lacZ and TOPgal. E-K: Immunohistochemistry of E14 embryos from β-catenin reporter 674 

lines TOPgal, BATgal and Axin2-lacZ mouse model. β-galactosidase activity (blue color) was 675 

first stained. The embryos were subsequently processed for Hipk2 immunohistochemistry (brown 676 

color). The BATgal and Axin2-lacZ lines showed that β-catenin transcriptional activity was 677 

mostly present in dermal papilla, from which Hipk2 is absent. The TOPgal line showed restricted 678 

epidermal β-catenin activity within nascent placodes. The scale bar is 100 µm. 679 

 680 

Figure 7 681 

HIPK2 is transcriptionally regulated by NF-κκκκB  682 

A: Schematic organization of the human HIPK2 gene. Positions of the three putative NF-κB 683 

binding sites used in experiments below (sites 1, 2 and 3) are shown with respect to the 684 

exon/intron structure of HIPK2. 685 

B: in vitro NF-κB p65 and p50 binding to the HIPK2 gene. DNA binding to fragments 1, 2 and 3 686 

corresponding to the three putative NF-κB binding sites of HIPK2 was performed with nuclear 687 

extracts from cells co-transfected with plasmids encoding p65 and p50 NF-κB subunits. 688 

 25-pb fragments were used as biotin labeled probes. The same experiments were performed with 689 

labeled probes mutated on conserved nucleotides in the putative binding sequence. A 200 fold 690 

molar excess of unlabelled wild-type or mutated oligonucleotides was added as competitor.  691 

Supershift experiments were performed in the presence of the indicated antibody. 692 
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C: in vivo NF-κB p50 and p65 binding on the three putative NF-κB binding sites in human 693 

HIPK2 gene. Chromatin immunoprecipitation (ChIP) assays were performed on HEK293T cells 694 

transfected with HA-Edar encoding plasmid, and using anti-p50 and anti-p65-antibodies. Mouse 695 

IgG were used as a negative control. The Input corresponds to PCR on DNA extracted and 696 

sonicated without immunoprecipitation (IP). ChIP was prepared and subjected to PCR analysis 697 

using primers flanking putative NF-κB binding sequences of HIPK2 gene. NFKBIA primers 698 

flanking an NF-κB-response binding site were used as a positive control. Amplification was 699 

obtained for both fragments 1 and 3 in unstimulated cells. This amplification was enhanced after 700 

Edar transfection. No amplification was observed for fragment 2. 701 

D: NF-κB binding sequence (site 1) in intron 1 regulates the transcriptional activity of the HIPK2 702 

gene. HEK293T cells were transiently transfected with either empty pGL2 vector or with the 703 

luciferase reporter constructs downstream of multimers of the three NF-κB binding sites of the 704 

HIPK2 gene, together with or without a Ha-Edar encoding plasmid for 24 h, and IκBα SS-AA 705 

super-repressor, as indicated. As a negative control, a construct with mutated site 1 multimers 706 

was also tested for NF-κB transcriptional activity. Transcriptional activity was measured as 707 

Firefly luciferase activity and normalized to Renilla luciferase activity. 708 

E: Quantitative RT-PCR of Hipk2 expression levels in E14.5 Eda
Ta skin. Administration of 1000 709 

ng/ml recombinant EDA-A1 for 10 hours significantly increased Hipk2 levels above the basal 710 

values (p-value < 0.001). 711 

Abbreviations 712 

EA: ectodermal appendages; EDA: Ectodysplasin; HED: hypohidrotic ectodermal dysplasia; 713 
HIPK2: homeodomain interacting protein 2; shRNA: short hairpin RNA. 714 

 715 
 716 
 717 
 718 
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Figure 1 : Edar and EDARADD inhibit Wnt/β-catenin signalling pathway via activation of NF-κB. Two 
different reporter plasmids were used depending on whether NF-κB (pIgκ-luc) or Wnt/β-catenin 

activity (Topflash) was measured. Transcriptional activity was measured as Firefly luciferase activity 
and normalized to Renilla luciferase activity. Iκ-Bα SS-AA plasmid encodes a strong repressor of NF-

κB activity. The results represent the mean value from three experiments. 
A: HEK293T cells were transfected with either myc-β-catenin S45Y plasmid encoding a constitutively 

active form of β-catenin, or Wnt8-Fz5 fusion plasmid. Transfection of HA-Edar plasmid alone or 
together with Myc-EDARADD inhibited Wnt/β-catenin mediated transcription in HEK293T, SW480 

and HepG2 cells. 
B: Iκ-Bα SS-AA strongly inhibited Edar-dependent NF-κB activity in HEK293T and SW480 cells.  

C: Iκ-Bα SS-AA transfection prevented Edar-dependent Wnt/β-catenin inhibition in HEK293T and 
SW480 cells.  

D and E: Effects of EDAR mutations on NF-κB activation and Wnt/β-catenin inhibition. The dominant 
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mutations (p.R358X, p.I418T, p.L377F and p.T413P) severely impaired NF-κB activity and had little 
effect on Wnt/β-catenin mediated transcription, whereas the recessive mutations (p.T403M, 

p.R375H and p.W434C) retained a residual ability to stimulate NF-κB and then to down-regulate 
Wnt/β-catenin activity. At high doses (500 ng and 1 µg), the recessive mutations gave similar 

Wnt/β-catenin activity values as wild-type showing that small activities of NF-κB were able to inhibit 
Wnt/β-catenin activity. 
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Figure 2: Edar-mediated Wnt/β-catenin downregulation is not achieved through classical 

mechanisms of Wnt/-β-catenin inhibition. 
HEK293T cells were transfected with plasmids as indicated. 

A: Total cell lysates used for transactivation experiments were analyzed by immunoblotting using 
anti-β-catenin antibody. A faint band was observed corresponding to endogenous β-catenin when no 

myc-β-catenin S45Y is transfected. Immunoblotting with anti-actin antibody serves as loading 
control. Transfection of Edar in conditions where Wnt/β-catenin activity was completely abolished is 

not associated with β-catenin degradation. 
B: Cytoplasmic and nuclear extracts were analyzed separately by immunoblotting. The anti-c-myc 

antibody only revealed the transfected β-catenin form. The presence of Edar did not affect the 
subcellular localization of β-catenin. 

C: The cellular distribution of β-catenin was not affected by the presence of Edar, as determined by 
confocal microscopy using anti-β-catenin antibody (green) on HEK293T cells transfected either with 

myc-β-catenin S45Y alone or together with HA-Edar. Nuclei were stained using propidium iodide 
(red). Both nuclear and cytoplasmic β-catenin staining was apparent in both experimental 

conditions. 
D: Edar transfection did not affect β-catenin/TCF4 interaction. β-catenin was immunoprecipitated 

using anti-β-catenin antibody and TCF4 was detected by immunoblotting. Cell lysates were 
immunoblotted with anti-β-catenin, anti-HA and anti-TCF4 antibodies. 
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Figure 3: Edar transfection enhances association of HIPK2 to β-catenin 
A: HEK293T cells were transfected for 24 h as indicated. Lysates were immunoprecipitated using 

anti-Hipk2 antibody and analyzed by immunoblotting using anti-β-catenin antibody. The amount of 
immunoprecipitated HIPK2 was determined by immunoblotting with anti-Hipk2 antibody. To control 
for Edar, β-catenin, and TCF4 transfection, total cell lysates were subjected to immnuoblotting using 

corresponding antibodies. Lysates correspond to experiments shown in figure 2D. 

B: SW480 cells were cotransfected with HA-Edar and myc-EDARADD and the interaction between 
the endogenous HIPK2 and β-catenin proteins was analyzed as in panel A. 
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Figure 4: HIPK2 contributes to Edar-mediated inhibition of Wnt/β-catenin signaling 
A: Quantification of HIPK2 expression in 3 distinct stably transfected SW480 clones expressing short 
hairpin RNA against HIPK2 transcript. Approximately 35-60% knockdown of HIPK2 expression was 

achieved in the different lines. 
B: The effect of Edar signaling on β-catenin transcriptional activity under conditions of HIPK2 
knockdown. In control SW480 cells, Edar transfection strongly suppressed β-catenin function. 

Knockdown of HIPK2 reduced this effect, allowing greater β-catenin activity in the presence of Edar 
signalling.  
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Figure 5: Hipk2 is co-expressed with Edaradd during hair follicle formation 
A-F and I-N: Whole mount in situ hybridizations detecting Hipk2 (A-F) and Edaradd (I-N) expression 
during the first wave of hair follicle formation from embryonic day 14 (E14; A-D and I-L) to E15 (E-
F and M-N), in wild-type and Eda mice. C-D and K-L panels show higher magnification of the dorsal 
region of E14 embryos. G and H are sections of E14 embryos; arrow indicates a hair placode in wild 
type skin. Both genes displayed elevated expression in primary hair placodes and developing 

vibrissae in wild-type embryos, and were moderately expressed throughout the whole epidermis in 
the Eda mutant strain. The scale bar is 1 mm for A-F, I-N, and 100 µm for G,H. 
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Figure 6: Hipk2 is expressed in a domain distinct from that of β-catenin transcriptional activity.  
A-D: Whole mount staining of E14 mouse embryos detecting: A: β-catenin (or CTNNB1) expression 
by in situ hybridization and B-D: X-gal staining in β-catenin reporter lines BATgal Axin2-lacZ and 

TOPgal. E-K: Immunohistochemistry of E14 embryos from β-catenin reporter lines TOPgal, BATgal 
and Axin2-lacZ mouse model. β-galactosidase activity (blue color) was first stained. The embryos 

were subsequently processed for Hipk2 immunohistochemistry (brown color). The BATgal and 
Axin2-lacZ lines showed that β-catenin transcriptional activity was mostly present in dermal papilla, 
from which Hipk2 is absent. The TOPgal line showed restricted epidermal β-catenin activity within 

nascent placodes. The scale bar is 100 µm. 
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Figure 7: HIPK2 is transcriptionally regulated by NF-κB  
A: Schematic organization of the human HIPK2 gene. Positions of the three putative NF-κB binding 

sites used in experiments below (sites 1, 2 and 3) are shown with respect to the exon/intron 
structure of HIPK2. 

B: in vitro NF-κB p65 and p50 binding to the HIPK2 gene. DNA binding to fragments 1, 2 and 3 
corresponding to the three putative NF-κB binding sites of HIPK2 was performed with nuclear 

extracts from cells co-transfected with plasmids encoding p65 and p50 NF-κB subunits. 
25-pb fragments were used as biotin labeled probes. The same experiments were performed with 

labeled probes mutated on conserved nucleotides in the putative binding sequence. A 200 fold 
molar excess of unlabelled wild-type or mutated oligonucleotides was added as competitor. 

 Supershift experiments were performed in the presence of the indicated antibody. 
C: in vivo NF-κB p50 and p65 binding on the three putative NF-κB binding sites in human HIPK2 

gene. Chromatin immunoprecipitation (ChIP) assays were performed on HEK293T cells transfected 
with HA-Edar encoding plasmid, and using anti-p50 and anti-p65-antibodies. Mouse IgG were used 

as a negative control. The Input corresponds to PCR on DNA extracted and sonicated without 
immunoprecipitation (IP). ChIP was prepared and subjected to PCR analysis using primers flanking 

putative NF-κB binding sequences of HIPK2 gene. NFKBIA primers flanking an NF-κB-response 
binding site were used as a positive control. Amplification was obtained for both fragments 1 and 3 
in unstimulated cells. This amplification was enhanced after Edar transfection. No amplification was 

observed for fragment 2. 
D: NF-κB binding sequence (site 1) in intron 1 regulates the transcriptional activity of the HIPK2 

gene. HEK293T cells were transiently transfected with either empty pGL2 vector or with the 
luciferase reporter constructs downstream of multimers of the three NF-κB binding sites of the 

HIPK2 gene, together with or without a Ha-Edar encoding plasmid for 24 h, and IκBα SS-AA super-
repressor, as indicated. As a negative control, a construct with mutated site 1 multimers was also 
tested for NF-κB transcriptional activity. Transcriptional activity was measured as Firefly luciferase 

activity and normalized to Renilla luciferase activity. 
E: Quantitative RT-PCR of Hipk2 expression levels in E14.5 EdaTa skin. Administration of 1000 

ng/ml recombinant EDA-A1 for 10 hours significantly increased Hipk2 levels above the basal values 
(p-value < 0.001). 
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Abstract  

Background & Aims: Short Bowel Syndrome usually results from surgical resection of the small 

intestine for diseases such as Crohn’s disease, intestinal atresias, volvulus and necrotizing 

enterocolitis. Patients with Congenital Short Bowel Syndrome (CSBS) are born with a substantial 

shortening of the small intestine with a mean length of 50 cm compared to a normal length at birth of 

190-280 cm. They are also born with intestinal malrotation. Because of the many consanguineous 

families reported CSBS is considered as an autosomal recessive disorder. In this study we aimed at 

identifying and characterizing the gene underlying CSBS. 

Methods: We applied homozygosity mapping using 610 K SNP arrays on five CSBS patients. After 

the identification of the underlying gene we determined the expression pattern of the encoded protein 

in human embryos. Moreover, we overexpressed both wild type and mutant proteins in CHO and T84 

cells and we generated a zebrafish model.   

Results: We identified loss-of-function mutations in Coxsackie- and adenovirus receptor like 

membrane protein (CLMP) underlying CSBS. CLMP, a tight-junction protein, is expressed in the 

intestine of human embryos throughout development. Mutation of CLMP abrogated its normal 

localization at the cell membrane. Knock-down experiments in zebrafish resulted in general 

developmental defects, including shortening of the intestine and absence of goblet cells, which are 

characteristic for the mid-intestine in zebrafish, which resembles the small intestine in humans. 

Conclusions: Loss-of-function of CLMP leads to Congenital Short Bowel Syndrome, likely by 

interfering with tight-junction formation, with intestinal development and with gut length determination. 

 

Keywords:  

Congenital Short Bowel Syndrome, autosomal recessive, CLMP, ASAM, intestinal development. 
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INTRODUCTION  

Patients with Congenital Short Bowel Syndrome (CSBS) are born with a shortened small intestine. 

The mean length of the small intestine in CSBS patients is approximately 50 cm, compared to a 

normal length at birth of 190-280 cm.
1-3

 Patients with CSBS may develop severe malnutrition as a 

result of the hugely reduced absorptive surface of the small intestine. This is similar to acquired Short 

Bowel Syndrome (SBS) from surgical resection of the small intestine for diseases such as Crohn’s 

disease, intestinal atresias, volvulus and necrotizing enterocolitis. CSBS is usually diagnosed by 

barium contrast X-rays and confirmed by exploratory laparotomy. Infants with SBS, whether congenital 

or acquired, need parenteral nutrition to survive, although parenteral nutrition itself causes life-

threatening complications like sepsis and liver failure, and a high rate of mortality early in life. 

However, some long-term survivors of CSBS have been reported.
4-7

 As consanguinity is frequently 

seen in families in which CSBS occurs, an autosomal recessive pattern of inheritance is suspected. 

Untill now, nothing was known about the genetic cause of this disease.  

Here, we report, for the first time, the identification and characterization of CLMP as the gene 

underlying CSBS. 
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METHODS 

Research subjects  

The CSBS patients included in this study, aged 0-26 years, were either previously described in the 

literature or were known to physicians in the field
4-7

. Patients were born with a shortened small 

intestine with a length of 30 to 54 cm (see Table 1). Patients, of which some were seen by an 

experienced clinical geneticist, did not show any other clinical features besides CSBS. All parents 

were reported as normal. Patients 2-1, 3-1 and 3-2 were from consanguineous families. All patients 

were Caucasians, except for patients 3-1 and 3-2 who were of Turkish ancestry. The study protocol 

was approved by the institutional and national ethics review committees at the University Medical 

Centre Groningen (NL31708.042.10), and written informed consent was obtained. 

 

Homozygosity mapping.  

Genomic DNA of all participants was extracted from peripheral lymphocytes by standard methods. A 

genome-wide scan was performed on five patients of families 1 to 4 using the 610K SNP array of 

Illumina according to the manufacturer’s instructions. Homozygosity mapping was performed by an 

automatic search for a minimum of 400 markers in a row (~2-3 MB) which were homozygous in at 

least 3 of the 4 families, and identical for patient 3-1 and 3-2 (as they were from the same 

consanguineous family).  

 

Mutation screening  

Analysis of the seven exons of CLMP (NM_024769.2) and the flanking intronic regions was performed 

in all patients and their parents as well as in 77 Caucasian control individuals (154 control 

chromosomes). For primer sequences see Supplementary Table 1. Sequencing was performed 

(forward and reverse) with dye labelled primers (Big Dye Terminator v3.1 Sequencing Kit, Applied 

Biosystems, Foster City, USA) on an ABI 3730 automated sequencer. 

 

In Silico Analysis of the missense mutation  

CLMP homologous proteins were obtained by blasting the CLMP protein (NP_079045.1). For the 

alignment of these homologues proteins the program Mcoffee was used (http://www.tcoffee.org) 

(Moretti et al., 2007). The effect of the missense mutation was evaluated by the ‘Russell method’ at 

http://www.ncbi.nlm.nih.gov/protein/NP_079045.1
http://www.tcoffee.org/
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EMBL (http://www.russell.embl-heidelberg.de/aas/; Betts and Russell, 2003), the polymorphism 

phenotyping (PolyPhen) algorithm (http://genetics.bwh.harvard.edu/pph/) and the ‘Sort Intolerant From 

Tolerant’ (SIFT) algorithm (http://sift.jcvi.org/). 

 

Functional analysis of the splice site mutation  

To determine the effect of the splice site mutation found in patient 1-1, we performed an exon trapping 

assay. We first generated PCR 2.1-TOPO plasmids (invitrogen), containing the sequences of the exon 

of interest (wild type or mutant) and the flanking intronic sequences.  The sequence of interest was 

PCR amplified using either a control or the patient’s genomic DNA as the DNA template. We used the 

primers GGCG-Ecor1, 5’-AAACCTGCAAATACTCATTC-3’, and GACG-BamH1, 5’-

AAGTGTTTGTTGAGGATAAG-3’. The amplification was performed using Pushion High-fidelity DNA 

polymerase (Finnzymes, Helsinki Finland). The PCR products were inserted into The PCR 2.1 Topo 

constructs and thereafter digested with BamH1 and EcoR. The inserts from control and mutant were 

subsequently cloned into the exon trapping vector pSPL3 (invitrogen). The inserts were checked by 

direct sequencing. 

Human embryonic kidney (HEK) 293 cells were grown in DMEM supplemented with 10% fetal 

calf serum and 1% antibiotic solution (penicillin/streptomycin, Invitrogen) at 37 C in 5% CO2. HEK 293 

cells were plated in 6-wells plates containing 6 x 10
5
 cells/well. After 24 hours the cells were 

transfected with 1 gram of the corresponding plasmid using polyethylenimine (polyscience INC) 

according to manufacter’s instruction. Transfection of both the vector containing the wild-type 

sequences and the empty pSPL3 vector were used as controls. After 48 hours cells were lysed and 

RNA was isolated according to manufacter’s instruction (Qiagen). 5 gram of total RNA was used as a 

template to synthesise cDNA using the cDNA primer pd(N)6 (GE Healthcare). PCR was performed 

using the primers (SD6) 5’-CTGAGTCACCTGGACAACC- 3’ and (SA2) 5’-

ATCTCAGTGGTATTTGTGAGC-3’ and the following amplification program: 5 minutes 94 C, 35 

cycles 1 minute 94 C, 1 minute 60C and 5 minutes 72 C, and a final elongation time of 10 minutes 

at 72 C. 5 microL of cDNA was used for the PCR in a total volume of 50 microL. PCR products were 

checked by gel electrophoresis and the exon trapping results were confirmed by direct sequencing. 

http://www.russell.embl-heidelberg.de/aas/
http://genetics.bwh.harvard.edu/pph/
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Expression of wild-type and mutant CLMP in Chinese Hamster Ovary cells and T84 cells 

A pCMV6-CLMP-GFP vector was obtained from Origene. The missense mutation was introduced in 

this vector by site-directed mutagenesis (stratagene, for primer sequences see Supplementary Table 

2). The WT-  and mutant cDNA were amplified using the primers CCGCC-NheI, 5’-

ATGTCCCTCCTCCTTCTCC-3’, and GGGCGC-XhoI, 5’-TCAGACCGTTTGGAAGGCTCTG-3’. The 

amplification was performed using Pushion High-fidelity DNA polymerase (Finnzymes, Helsinki 

Finland). The PCR products were inserted into PCR 2.1-TOPO plasmid (invitrogen). The PCR 2.1 

Topo constructs were digested by NheI and XhoI restriction enzymes and the fragments were cloned 

into the vector pCMV-IRES-EGFP. The clones were checked by direct sequencing. 

Chinese hamster ovary (CHO-K1) and human intestinal epithelial T84 cells were grown in 

commercially available α-MEM medium (Invitrogen, Carlsbad, CA) and DMEM/F-12 (Invitrogen) 

respectively, supplemented with 4.5 mg/L L-glutamine, 10% heat-inactivated Fetal Bovine serum 

(FBS, Invitrogen) and 1% antibiotic solution (penicillin–streptomycin, Invitrogen). The cells were 

maintained at 37 C in a humidified atmosphere with 5% CO2.  

WT or mutant pCMV-CLMP-IRES-EGFP was transfected in CHO-K1 cells and T84 cells (1.5 x 

10
5
) with Lipofectamine 2000 Transfection Reagent (Invitrogen) in a 1:3 dilution, and transfection 

efficiencies were evaluated by measuring EGFP expression by flow cytometry. 

In order to observe the cell localization of CLMP, transfected CHO-K1 cells were stained by 

immunofluorescence. Cells were cultured on glass coverslips (Becton Dickinson Labware, Franklin 

Lakes, NJ, USA), and fixed with 4% paraformaldehyde (20 minutes). After fixation, cells were treated 

with 50mM NH4Cl for 10 minutes, washed with PBS, and permeablilized with 0.1% Triton X-100 in 

PBS for 5 minutes at room temperature. Non-specific binding was blocked by cell treatment with PBS 

containing 5% BSA, for 30 minutes at room temperature. Cells were then stained with the rabbit 

primary antibody anti-human CLMP (anti-AP000926.6, Sigma HPA002385), during 1 hour and at a 

1:100 dilution. Then anti-rabbit antibody conjugated with Alexa 594 (Invitrogen) was used as 

secondary antibody. After a wash with PBS, each sample was mounted with vectashield with DAPI. 

The cell staining was observed with a Zeiss microscope (Imager Z1) with apotome and images were 

taken using the Axiovision software. 
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Transfected T84 cells were fixed with 4% paraformaldehyde at 37 °C for 30 min. Cells were 

then treated with 0.1 M glycin for 10 minutes, washed with PBS, and permeabilized with 0.1% Triton 

X-100 in PBS at room temperature for 2 min. Non-specific binding sites were blocked by incubating 

the cells with PBS containing 1% BSA and 0.05% tween 20 at room temperature for 1 min. Cells were 

immunolabeled with the rabbit polyclonal antibody for CLMP (anti-AP000926.6, Sigma HPA002385),  

in 1:100 dilution at 37 °C for 1 h. Cells were subsequently washed 5 times with PBS and incubated 

with mouse monoclonal anti-ZO-1 antibodies (Zymed) at 1:100 dilution. Goat anti-rabbit antibody 

conjugated with Alexa-546 (Invitrogen) and goat anti-mouse antibody conjugated with Cy5 were used 

as secondary antibodies (1:500). DAPI (1:1000) and/or DRAQ5 (1:500) were used for nuclear staining. 

After a wash with PBS, samples were mounted and analysed with a Leica SP2 AOBS confocal laser 

scanning microscope. 

 

CLMP expression during human development  

CLMP expression was examined by immunohistochemistry in human embryos and fetal tissue, 

obtained from terminated pregnancies using the mefiprestone protocol in concordance with French 

legislation (94-654 and 08-400) and approved by the Necker Hospital ethics committee. Embryonic 

and fetal tissues were fixed in 4% paraformaldehyde, pH 7.4 or in 11% formaldehyde, 60% ethanol, 

and 10% acetic acid, embedded in paraffin blocks and sectioned at 5 m. Sections were 

deparaffinated, rinsed in PBS and incubated 30 minutes in 0.5 M ammonium chloride, rinsed again, 

and non-specific binding blocked by 10% fetal calf serum (FCS) in PBS for 30 minutes. Classical 

antigen unmasking in citrate buffer was performed for 20 minutes. Slides were incubated overnight at 

4C in a humid chamber with the rabbit primary antibody anti-human CLMP (anti-AP000926.6, Sigma 

HPA002385) 1:50 in PBS with 2% FCS and then rinsed. A secondary goat anti-rabbit-alkaline 

phosphatase (AP) antibody was applied at 1:200 in PBS/2% FCS and AP activity, and thereby 

immunolocalization of CLMP, was revealed by the standard NBT-BCIP chromogenic reaction. 

Adjacent sections stained without the primary antibody anti-human CLMP were used as negative 

controls. 
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Expression pattern of orthologs in zebrafish and knock down experiments  

Zebrafish are kept and bred under standard conditions at 28.5°C (Westerfield, 1993). Embryos were 

staged and fixed at specific hours post fertilization (hpf). To better visualize the phenotype and the in 

situ hybridization results, embryos were grown in 0.2 mM 1-phenyl-2-thiourea (Sigma) to inhibit 

pigment formation (Westerfield, 1993).  

A search for the predicted orthologs was performed in the ensemble database 

(www.ensemble.org). To clone the complete open reading frames of the zebrafish orthologs, multiple 

RT-PCR primers were designed to amplify up 5’ and 3’ overlapping segments of the open reading 

frame based on the predicted sequences. The cDNA segments were subcloned and sequenced. 

Sequencher DNA sequence analysis software was used to assemble the resulting sequences. RACE 

(rapid amplification of cDNA ends) was used to amplify the 5’ and 3’ ends of the open reading frame. 

RACE cDNA was isolated from 72hpf embryos using a Smart RACE cDNA Amplification Kit 

(Clonetech). The resulting PCR products were subcloned and sequenced to complete the open 

reading frame sequence for the orthologs. The continuity of the full length sequence assembled from 

the sequences was confirmed by RT-PCR on single-stranded cDNA isolated from 48-hpf embryos. 

The orthologs were cloned and the sequences were determined by direct sequencing. 

Homology studies were completed using publicly accessible programs from SDSC Biology 

Workbench. ClustalW was used to align the amino acid sequences of both orthologs in zebrafish 

(called CLMPa and CLMPb), rat, and human CLMP (called h.CLMP) (supplementary Figure 2). 

To determine the temporal expression of CLMPa and CLMPb, RT-PCR was performed at 

various time points with primers used to amplify up a segment of the open reading frame spanning 

nucleotides 38-881 of CLMPa and nucleotides -3-851 of CLMPb. The following primers were used: 

CLMPa forward, 5’-GTGATGTCTGCCAGCGCTCG-3’, CLMPa reverse, 5’- 

GGGACGACGACAGAGAGTTC-3’, CLMPb forward, 5’- CTGCAGCTGACTGACTCTGG-3’ and 

CLMPb reverse, 5’- GTCTGAAAGGCCTTGCTTTG-3’ The predicted fragment sizes were as follows: 

for CLMPa, 843 base pairs  and for CLMPb, 854 base pairs. To determine the spatial expression 

patterns of CLMPa and CLMPb, antisense Digoxigenin-labeled probes for both genes were generated 

and whole mount in situ hybridization was performed as described by Thisse et al. (1993). 

http://www.ensemble.org/


 10 

Two different, non-overlapping translation-blocking morpholinos as well as a splice-blocking 

morpholino and a 5-mispair morpholino were designed and generated by gene tools (www.gene-

tools.com, for morpholino sequences see Supplementary Table 3) and injected to determine the 

effects of knocking down CLMPa protein levels (Nasevicius and Ekker, 2000). Morpholino antisense 

oligonucleotides were designed to correspond to the translational start site and splice-blocking 

morpholino antisense oligonucleotides (Gene Tools) were designed to the splice donor site at the 

predicted exon2/ exon3 junction for CLMPa (see for morpholino sequences Supplementary Table 3). 

The morpholinos were diluted in sterile filtered water over a range of concentrations from 1 g/l to 10 

g/l. Approximately 1 nL of diluted morpholino was injected at the one- to two-cell stage using a gas-

driven microinjection apparatus to determine the effects of knocking down CLMPa. We determined the 

dilution of the morpholinos in which we saw a consistent knockdown of CLMPa as follows: CLMPa 

TBMO1 and TBMO2: 2g/l, SBMO: 1 g/l. A p53 translation-blocking morpholino was co-injected in 

a concentration of 1,5 x the morpholino concentration to rule out cytotoxic site effects of the 

morpholinos. A 5–base pair mismatch morpholinos was injected in a concentration of 2g/l as a 

negative control for the experiments with the first translation-blocking morpholino (see Supplementary 

Table 3). The following primers were designed for RT-PCR to verify the effectiveness of the splice-

blocking morpholino: CLMPaRTPCR  forward, 5’- CGCCCTGCTCTTAGTATTGC –3’ and CLMP-

aRTPCR reverse, 5’- GGGGTTTTGATGGCTTCAAG - 3’.  

Both 96 hpf control and SBMO injected embryos were fixed and embedded in paraffin wax, 

and cut in sections of 3 m. Haematoxylin and Eosin staining was performed using standard 

procedures. The sections were heated for 20 minutes at 60C, deparaffinised and hydrated to water. 

The sections were stained in Haematoxylin 7211 (Richard Allan) for 4 minutes, rinsed in water and 

after placing them for 1 minute in Clarifier (Richard Allan) rinsed again in water. Then they were placed 

in Bluing (Richard Allan) for 1 minute, dipped in 95% ethanol, placed in Eosin-Y 7111 (Richard Allan) 

for 45 sec and dehydrated in 95% Ethanol, absolute ethanol, and cleared in xylene and coversliped. 

For the rescue experiment CLMP mRNA was made using a pCS2+ expression vector 

containing the complete Open Reading Frame sequence of CLMPa ortholog. MRNA was synthesized 

from this using the mMessage mMachine kit (Ambion). 

 

 

http://www.gene-tools.com/
http://www.gene-tools.com/
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RESULTS 

Loss-of-function mutations in CLMP cause Congenital Short Bowel Syndrome 

In order to map the disease gene we performed 610K-SNP arrays of Illumina on five patients (1-1, 2-1, 

3-1, 3-2 and 4-1: Figure 1a). We identified a homozygous region shared by four (patients 2-1, 3-1, 3-2 

and 4-1) of them on 11q24.1 comprising approximately 2 MB and containing 20 genes. Furthermore, a 

homozygous deletion in patient 4-1 was identified which involved five SNPs (rs7113273, rs7109445, 

rs4936775, rs7121089 and rs11218981), leading to loss of exonic and flanking intronic sequences of 

exon 2 of CLMP (Coxackie and adenovirus receptor-Like Membrane Protein, also called ASAM, 

Adipocyte Specific Adhesion Molecule). The deletion results in a frameshift and a premature 

stopcodon. Through PCR and direct sequencing we confirmed that 12483 base pairs were deleted. 

Direct sequencing of CLMP in the other patients revealed more mutations. Patient 1-1 was compound 

heterozygous, carrying a paternally derived heterozygous frameshift mutation (c.589delA) in exon 3 

leading to a premature stopcodon, and a maternally derived heterozygous potential splice donor site 

mutation (c.1180G>A). In an in vitro exon trapping assay, we confirmed that c.1180G>A gives rise to 

incorrect splicing resulting in a loss of exon 6 (Supplementary Figure 1a). For the WT sequences the 

exon was trapped, while for the mutant it was not. Patient 2-1 carried a homozygous missense 

mutation (c.730T>A, p.V124D) in exon 3. This highly conserved missense mutation is predicted to be 

pathogenic by the programs Russell, Polyphen and SIFT (Supplementary Figure 1b). In patients 3-1 

and 3-2 we identified a homozygous deletion (on the array) in the first intron of CLMP concerning SNP 

rs7115102. PCR using primer sets flanking the deletion yielded results in the controls, but no PCR 

product was detected in the patients (Supplementary Figure 1C). Finally, in patient 5-1, we found a 

homozygous nonsense mutation (c.1025C>T, p.R222X) in exon 5. The mutations identified are not 

reported in any of the known SNP databases and are all presumably loss-of-function mutations (Table 

1 and Figure 1B), and all were inherited from non-affected heterozygous parents (data not shown). 

None of the mutations were found in 154 control chromosomes of Caucasian origin. 

 

CLMP expression during human development 

As CSBS is a developmental anomaly of the intestine we wondered whether, when and where CLMP 

was expressed in the intestine during human development. Immunostainings on human embryos at 7 

and 8 weeks of development (Figure 2A and B) showed that CLMP was highly abundant in the rapidly 
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dividing cells of the central and peripheral nervous systems, the mesenchyme of the frontonasal and 

mandibular processes and the dermamyotome, and critically it was expressed in the endodermal 

derivatives of the fore-, mid- and hindgut and also in the liver, lung, esophagus and trachea. It was 

less strongly expressed in the prevertebral condensations and extra-embryonic tissues, and the dorsal 

head mesenchyme. During mid-term fetal stages, 18 and 23 weeks of development (Figure 2C and D), 

increased immuno-reactivity for CLMP was observed in the intestinal crypts while expression 

continued to be present in all tissues, with the lowest expression in the muscular and interstitial layers. 

Mid-term liver and kidney tissues strongly express CLMP in the parenchyma of the lobes and cortex 

respectively (Figure 2E and F). CLMP was also observed in the collecting ducts and to a lesser extent 

in the bile ducts and urethra.  

CLMP expression was thus seen in the intestine during different stages of human 

development. As CLMP was also expressed in many other tissues, this argues for functional 

redundancy resulting in a specific function of CLMP during intestinal development.   

 

Mutation of CLMP abrogated its normal localization at the cell membrane 

CLMP encodes for a transmembrane protein belonging to the CTX (cortical thymocyte marker) 

subfamily of the Immunoglobulin superfamily. It acts as an adhesion molecule and co-localizes with 

tight junction proteins.
8
 In order to determine whether the missense mutation (c.730T>A, p.V124D) 

affected the normal cell membrane localization, we transfected CHO and T84 cells with pCMV-CLMP-

IRES-EGFP constructs. We expressed both the wild-type protein (CLMP-WT) and the mutant protein 

(c.730T>A, p.V124D, CLMP-mutant). CLMP was localized at the cell membrane when two 

neighbouring CHO cells expressed the WT protein (Figure 3A). In contrast, the mutant protein was 

localized in the cytoplasm (Figure 3B). Similar results were obtained in a human intestinal epithelial 

cell model (T84 cells) (Figure 3C and D). However, expression of the WT protein in a cell that did not 

have a transfected neighbouring cell resulted in the retention of the protein in intracellular punctate 

structures (Figure 3E). As CLMP has been shown to co-localize with tight junction markers, we 

determined co-localization of CLMP with the tight junction marker ZO-1 (zonula occludens 1). 

Importantly, WT protein showed co-localization with ZO-1, while the mutant protein did not (Figure 3H, 

I, L and K, see arrows). Overexpression of the WT protein did not alter the localization of ZO-1 
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(compare Figure 2J with K). Instead, expression of the mutant protein resulted in an increased 

cytoplasmatic pool of ZO-1 (Figure 2L). 

 Together these results indicate that CLMP plays a role in tight junctions and that the 

mislocalization of the mutant protein influences the localization of the tight junction protein ZO-1. 

 

A zebrafish model for Congenital Short Bowel Syndrome 

To understand the role of CLMP in intestinal development and gut length determination we decided to 

generate a zebrafish model. Analysis of the zebrafish genome (Sanger Zv8) revealed two potential 

zebrafish orthologs of CLMP (ENSDARG00000003145 and ENSDARG00000073678) (Supplementary 

Figure 2). The temporal and spatial expression pattern of both orthologs were determined by in situ 

hybridizaton (Figure 4A). One ortholog (CLMPa) was expressed in the intestine specifically at 48 and 

72 hours post fertilization (hpf), while the expression of the other ortholog in the intestine was not so 

pronounced (see Figure 4A, arrowheads). In order to determine whether loss-of-function of CLMPa 

leads to a similar CSBS phenotype in zebrafish as is observed for loss-of-function mutations of CLMP 

in humans, we performed a knock-down experiment of CLMPa. We injected a splice-blocking 

morpholino (SBMO, Supplementary Table 3). A severe, developmental delayed morphant phenotype 

was seen in more than 60% of the surviving embryos, they were smaller and the length of the intestine 

was shorter (mean length 2.5 mm and 1.9 mm for WT versus morphant respectively, p=7,0637E-06, 

n=10 versus n=9). To confirm the specificity of the morpholino we injected two different translation-

blocking morpholinos for CLMPa (Supplementary Table 3), which induced a similar phenotype (data 

not shown). A 5-mispair morpholino did not show any phenotype (data not shown), supporting 

specificity of the translation-blocking morpholino and cytotoxicity was excluded by co-injection of a 

translation-blocking morpholino for p53 (Supplementary Table 3). Critically, the phenotype was 

rescued by co-injection of CLMP mRNA with the SBMO (Figure 4B). 

 Hematoxylin and eosin staining of sections of both 96 hpf control embryos and SBMO-injected 

embryos showed a gross difference in gut morphology (Figure 4C). Goblet cells, characteristic of the 

mid-intestine in zebrafish, which resembles the small intestine in humans,
9
 were seen in the control 

embryos but these cells were absent in the SBMO-injected embryos (Figure 4C, see arrowheads). 

This suggests that loss-of-function of CLMPa in zebrafish results in a very maldeveloped and 

potentially absent small intestine, that resembles the CSBS phenotype in humans.

http://www.ensembl.org/Danio_rerio/Gene/Summary?db=core;g=ENSDARG00000073678
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Discussion  

Congenital Short Bowel Syndrome is a gastrointestinal disorder of which the cause and incidence is 

unknown. Here we report different loss-of-function mutations in CLMP in patients with CSBS. The 

mutations we found presumably result in a loss-of-function due to nonsense mutations (family 5), 

frameshift/splicing mutations (family 1 and 4) and in mislocalization of the protein due to a missense 

mutation (family 2). In addition, the missense mutation has an influence on the localization of the tight 

junction protein ZO-1. 

 In family 3 we did not find any mutations in the coding sequences of CLMP. We did identify a 

homozygous deletion concerning SNP rs7115102 in the first intron. We confirmed the presence of this 

deletion with PCR and we showed that the deletion co-segregates with the disease phenotype in this 

family (Supplementary Figure 1C). However, we were not able to fine-map the deletion using primers 

in the flanking region, of which we knew they were present as we were able to amplify these 

sequences. This made us hypothesize that an inversion might be present explaining the fact that we 

were not able to amplify the flanking regions. However, using FISH we were not able to identify a large 

inversion (data not shown), a small inversion cannot be excluded. 

 To understand how loss-of function of CLMP leads to CSBS, we performed zebrafish 

experiments. We showed that a zebrafish ortholog (CLMPa) was expressed in the intestine at 48 hpf 

and 72 hpf. Knock-down of CLMPa in zebrafish resulted in a very severe phenotype including an 

affected intestine. A significant reduction of intestinal length was measured in the CLMPa morphants. 

Critically, the absence of goblets cells in the gut of the SBMO-injected embryos indicated that the mid-

intestine was not well developed, suggesting that the function of CLMP in the development of the 

small intestine is conserved. These zebrafish data confirm the phenotype in humans. 

Given the wide expression of CLMP during both human and zebrafish development (as shown 

in Figures 2 and 4A) and the severe phenotype of the zebrafish knock-down, it is intriguing that the 

phenotype in the human families we studied is so discrete (as the patients we included in our study do 

not have additional clinical features besides malrotation and intestinal neuronal dysplasia only 

reported in patients 3-1 and 3-2). This all argues for functional redundancy of CLMP.  

As we have shown that loss-of-function mutations of CLMP underlies CSBS, we can further speculate 

on the pathogenesis of this disease. We and others showed that CLMP co-localizes with tight junction 

proteins. It is known that overexpression of CLMP in CHO cells induces cell aggregation and 
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overexpression of CLMP in MDCK cells enhances trans-epithelial resistance.
8
 Thus CLMP might play 

a crucial role in tight junctions. As tight junction markers like ZO-1 and its interacting protein ZONAB 

play an important role in cell proliferation,
10,11

 loss-of-function of CLMP may also play a crucial role in 

downregulation of proliferation of the small intestinal epithelial cells during human development 

resulting in the CSBS phenotype. As CLMP is also expressed in the small intestine in adults,
8
 CLMP 

might have an important function in adult life too, for example, by playing a role in the elongation 

process which occurs during life (the length of the intestine in adults is 600 cm on average, ranging 

from 260 to 800 cm
12

) and in the intestinal adaptation process after surgical resection. The effect on 

intestinal adaptation of growth factors like growth hormone, keratinocyte growth factor, epidermal 

growth factor, and glucagon-like peptide-2 on intestinal adaptation has been studied.
13-16

 Similar 

studies will elucidate the role of CLMP in intestinal adaptation in adults and its therapeutic potential. 
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Table 1 Clinical and molecular data from all Congenital Short Bowel Syndrome patients. 

 

Figure 1 Identification of loss-of-function mutations in CLMP in Congenital Short Bowel Syndrome 

patients. (a) An overlapping homozygous region (yellow bars) was found in 4 of the 5 patients on the 

array. A homozygous deletion (pointed out in red bars) concerning exon 2 of CLMP was detected in 

patient 4-1. (b) An overview of CLMP with its seven exons and all the identified mutations.  

 

Figure 2 Immunohistochemistry of CLMP on human embryo and fetal tissues shows expression of 

CLMP in the intestine and in many other tissues.  

(a) Carnegie stage 15 (circa 33-36 dpf), cross-section, dorsal to left (and right, for tail bud). CLMP 

protein was expressed strongly by all embryonic tissues and the umbilical cord. Panel A'-F': Adjacent 

sections to Panel A-B and D-F, non-specific immunoglobulin negative controls. (b) Carnegie stage 18 

(circa 44 dpf), parasagittal section, dorsal to right. CLMP protein was abundant throughout the central 

and peripheral nervous systems, through the endodermal layer derivatives of the fore-, mid- and 

hindgut including the liver, lung, esophagus and trachea, and in the mesenchyme of the frontonasal 

and mandibular processes. (c, d) Cross- and tangential sections respectively of the small intestine and 

a portion of the large intestine at 18 wd, with increased immunoreactivity in the crypts. (e) Liver 

parenchyme at 21 wd strongly expressed CLMP, which was also present but to a lesser degree in the 

bile ducts. (f) Cross-section of kidney at 23 wd, showing medullocortical expression gradient with more 

CLMP in the glomerules than the collecting ducts, and only light expression in the urethral smooth 

muscle.  

ao, aorta; bd, bile duct; dpf, days post fertilization; drg, dorsal root ganglion; fn, frontonasal process; h, 

heart; int, midgut intestinal herniation (arrowheads in B); lu, lung; lv, liver; md, mandible; nt, neural 

tube; oe, esophagus; rh, rhombencephalon; sc, spinal cord; st, stomach; tb, tailbud; tel, telencephalon; 

tr, trachea; ua, umbilical arteries; ur, ureter; wd, weeks development. Scale bar: 1 mm. 

 

Figure 3 CLMP-mutant (c.730T>A, p.V124D) abrogated the normal cell membrane localization of 

CLMP when transiently expressed in CHO and human intestinal epithelial T84 cells. (a) CLMP-WT 

localized to the cell-cell contact area of CHO cells. (b) In contrast, CLMP-mutant did not localize at the 

cell membrane but in the cytoplasm. (c) CLMP-WT localized at the cell membrane of human intestinal 
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epithelial T84 cells. (d) While CLMP-mutant did not. (e) Expression of CLMP-WT in a cell that did not 

have a CLMP-expressing neighbor cell caused an intracellular retention of CLMP in punctate 

structures. (f) CLMP-mutant did not show these structures. (g) T84 cells do not express CLMP 

endogenously. (h) CLMP-WT co-localized with the tight junction associated protein ZO-1 (compare 

with k, see arrows). (i) CLMP-mutant failed to co-localize with the tight junction associated protein ZO-

1 (compare with l, see arrows) (j) Endogenous expression of ZO-1 in T84 cells. (k) Expression of 

CLMP-WT did not visibly alter the localization of ZO-1 (compare with j) (l) The intracellular expression 

of CLMP-mutant (shown in i) resulted in an increased cytoplasmic pool of ZO-1 that overlapped with 

CLMP-mutant, but did not inhibit the localization of ZO-1 at the cell membrane (see arrows). 

 

Figure 4 CLMPa ortholog is expressed in the intestine of zebrafish embryos and knock-down of this 

ortholog results in a shortened and maldeveloped intestine. (a) 24hpf (I,II), 48hpf (III, IV), and 72hpf 

(V, VI) whole mount in situ hybridized zebrafish embryos hybridized with either CLMPa (I, III, V) 

or CLMPb (II,IV,VI) antisense riboprobes. Arrowheads (I, III, IV, V, VI) indicate intestinal expression of 

CLMP orthologs. (b) Effect of CLMPa splice blocking morpholino (SBMO) on morphological 

development. Lateral views of control (I, IV, VII) CLMPa SBMO alone (II, V, VIII) and CLMPa SBMO 

plus CLMPa mRNA (III, VI, IX) injected embryos at 48hpf (I, II, III), 72hpf (IV, V, VI) and 96hpf (VII, 

VIII, IX). (c) Hematoxylin and Eosin stained parasagittal cross-sections of 96hpf control (I, III and V) 

and CLMPa morphant (II, IV, VI) embryos.  Arrowheads (V) indicate goblet cells. Intestinal muscle 

layer (m) and intestinal epithelia (e) are indicated (V, VI). (d) Knock-down of CLMPa verified by RT-

PCR. Splice-blocking morpholino injected embryos (S) show alternative RT-PCR products compared 

to the WT embryos (C), meaning that the splice-blocking morpholino targets the exon2/ exon3 junction 

and thereby induces knock-down of CLMPa. (e) The length of the intestine of the SBMO injected 

embryos was significantly shorter.   All scale bars are 50m. 
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eFigure 1. Conservation and intronic deletion in family 3.  

(a) Hek293 cells were transfected with the pSPL3 vector only (V), the pSPL3 vector with the 

wild type sequence of exon 6 and its flanking sequences (W) and the pSPL3 vector containing the 

sequences of exon 6 and the presumed splice site mutation (M). The results of the amplification 

of the cDNA made of the mRNA of these transfected cells using the SA and SD primers are 

shown. The exon has been trapped in the wild type situation (W), but has not been trapped in the 

mutated situation (M). This means that the splice site mutation affects the splice donor site so that 

it is not recognized by the splicing machinery. 

 (b) The missense mutation found in patient 2-1 affects a codon which is evolutionary highly 

conserved. In the figure it can be observed hat this amino acid and all the surrounding amino 

acids are coloured red (labelled as good). Good indicates that highly conserved, bad (blue) means 

not conserved.  

(c) A homozygous deletion in intron 1 was detected in patients 3-1 and 3-2. Using primers 

flanking the deletion (forward, 5’-ATTGGAGGATGTGACCTCTGAGTCTTATGG-3’ and 

reverse, 5’-GGCAGAGAAAGTGGGAAACCTATAGTAAGC-3’) a PCR product of 

approximately 5 kb was expected for the normal situation, while for the patients at least 4 kb 

should be present. PCR yielded results for the parents (f: father, m: mother) as well as for the 

unaffected sibling (s) and for the control (c), but no PCR product was detected in the patients (p). 

Lane b is a PCR without adding DNA. 

 

eFigure 2. CLMP alignment for human, rat and zebrafish.  
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Homo.CLMP   MSL-LLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGN
Rattus.CLMP MS--LFFLWLVTYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGN
Danio.CLMPa MSASARALLLVLLNVLQANGQTEMKRVVGDNATLPCHHQLWQTDIALLDIEWMLQISSSR
Danio.CLMPb MSATYRSLFLLLLSLLSVGAETEMKRVVGDNGTLPCHHQFWQSNGQSLDIEWLLQKPNVK
consensus   MSaslr-LlLvl-yv-tlgthTEiKRV--e-vTLPCHHQl--pekdtLDIEWlL-dnegn

Homo.CLMP   QKVVITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRY
Rattus.CLMP QKVVITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRY
Danio.CLMPa QKVLITYSAGRIYD-TNESEDGRLSLAGDYLKGDASLLISDLSLSDSGDYTCKVKNGGKY
Danio.CLMPb QRVIITFFNNEVY--TNDDHASRLSFAGDYLNGDASLLISDLQLTDSGKYHCKVKTGGKF
consensus   QkVvITyssrhvYnn--eeqkgRv-fA--fLaGDASL-I--Lk-sD-GrYtCKVKn-Gry

Homo.CLMP   VWSHVILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERL
Rattus.CLMP VWSHVILKVLVRPSKPKCELEGEPTEGSDLTLQCESASGTKPIVYYWQRIREKEGEDEHL
Danio.CLMPa IWNTVKLIVLLKPSKPRCWMEGRLLEGSDVRLSCKSTDGSDPISYKWERVLDKGKNAGKL
Danio.CLMPb HWNQVNLIVLVKPSKPRCWADGRLLEGSDVKLSCKSSDGSDPILYKWERVLDKGKSVGKL
consensus   vW-hViL-VLvrPSKPkC-leG-l-EGSDltL-C-Ss-GtdPIvY-W-Ri-eK--ed-kL

Homo.CLMP   PPKSRIDYNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVT
Rattus.CLMP PPKSRIDYNNPGRVLLQNLTMASSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVT
Danio.CLMPa PPLALIDLKNPEIVTLKNLTRESAGVYKCTASNDVGEENCTLEVKVHYVRGMGVVAGAVV
Danio.CLMPb PPLALIDLKNPEIVTLRNLTQDSSGLYKCTASNDVGEENCIIEVTMQYVRGMGVVAGAVV
consensus   PP---ID--nP--V-LqNLTmessGlY-CTA-Ne-G-E-Cvv-VtvqYV--iGmVAGAV-

Homo.CLMP   GIVAGALLIFLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKP-SSSSSGSRSSR
Rattus.CLMP GIVAGALLIFLLIWLLIRRKSKERYEEEDRPNEIREDAEAPRARLVKP-SSSSSGSRSSR
Danio.CLMPa GVSFGVLLIILIVWLVFRKKEKKKYEEEEAPNEIREDAEAPKAKLVKPNSLSSSRSGSSR
Danio.CLMPb GVSFGVLLLILIIWLVFRKKEKKKYEEEETPNEIREDAEAPKAKLVKPNSLSSSRSGSSR
consensus   Gi--G-LLi-LlvWLl-RrKeK-rYEEEerPNEIREDAEAPkArLVKPnS-SSS-S-SSR

Homo.CLMP   SGSSSTRSTAN-SASRSQR-TLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTK-
Rattus.CLMP SGSSSTRSTGN-SASRSQR-TLSSEAAPQPGLATQAYSLIGPEVRGSEPKKAHHTTLTK-
Danio.CLMPa SGASSTQSMVHNSATRGPRPRLPVVAALKESGQPEKFPPVPPPYNHVVPKPPEPSSSPKS
Danio.CLMPb SGASSTQSMVHNSVPRGQRPRPPAVAALKENGQPHGFPQSPPAYTQVVPKTPEPPVTPKF
consensus   SG-SST-S-v-nSasR-qRp-l-tvAA---g---qay-lv-Pe-rg--PKkp--ttl-K-

Homo.CLMP   -------------AETTPSMIPSQSRAFQTV
Rattus.CLMP -------------AETTLSTMPSQSRAFQTV
Danio.CLMPa SPAKLSPGNLARMGATP-VMIPAQTKAFQTV
Danio.CLMPb RPP-VPP---VVIGVPPGVMVPAQSKAFQTV
consensus   -p--l-p-----maet---miP-QsrAFQTV
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Summary 
A highly enriched population of neural crest cells from amniote embryos such as chick, mouse and 

humans is desirable for experiments in fate determination. They are also useful for testing the 

functional effects of molecular changes underlying numerous human diseases of neural crest 

derivatives and for investigating their potential for therapeutic compensation. This protocol details 

embryonic microdissection followed by neural tube explantation. Conditions favoring neural crest 

cell expansion and the maintenance of their stem cell-like properties are described. While neural 

crest-like cells can be derived from a number of sites in the mature organism, full potential is best 

ensured by their purification from their source tissue at the outset of migration. From embryo to 

established cell line takes four days, with the first day being the most labor-intensive and minimal 

intervention required thereafter. 

Introduction 
The neural crest cell (NCC) population is one of the most intriguing in the vertebrate body, because 

of the wide range of tissue derivatives to which it gives rise, and because of the persistence of some 

descendants of these embryonic cells in adult tissues that retain at least some of the multipotency of 

the original population 1. Many fundamental questions in developmental biology can be addressed 

by the study of this group of cells: how do intrinsic and extrinsic influences integrate over time to 

direct their spatially appropriate differentiation? What favors the maintenance of multipotent but 

partially committed progenitors? Can they be exploited as cell replacement therapies in the many 

diseases affecting the proliferation and development of NCC-derived tissues or be used for tissue 

engineering? 

Development of NCC culture methods  

The lineage of tissue and cell culture techniques can be traced back to the turn of the 19th century, 

with the seminal contributions of embryologists Wilhelm Roux and Ross G. Harrison to keeping 

tissues and cells alive ex vivo 2,3. More than a century later, dozens if not hundreds of biologists have 

made their contributions to the study of NCC in culture, both through testing reagents that have 

been co-opted from their original use in other cell types 4, and through direct improvement of 



methods that augment migration, survival or the determination of conditions in which a 

reproducible response to exogenous factors could be studied. Early culture of quail NCC established 

the basic principles of explanting a neural tube enzymatically dissociated from its surrounding tissues 

to tissue culture ware coated with favorable extracellular matrix components5. These dissociation 

enzymes have varied from trypsin to collagenase6 to pancreatin7 and the matrices have included 

collagen I, collagen IV, fibronectin, and laminin among others8-11. 

It is possible to alter certain cell types from other sources so that they differentiate into a number of 

standard NCC derivatives, insofar as the markers used and physical location for in vivo assays 

indicate cellular identity. These sources have included tooth pulp12-14 and periodontal ligaments15, 

peripheral nerve sheaths and ganglia16-18, mouse or human embryonic stem cells19,20, and even the 

bone marrow21. 

In particular, a number of groups have concentrated on the possibility of deriving neural crest-like 

precursors from neonatal22 and later postnatal 23,24 mammalian skin, more specifically from hair 

follicles25 and the dermis thereof26. Cells from these sources vary in their differentiation potential, or 

the palette of derivatives demonstrated was by necessity limited so that their potential is not 

necessarily comparable. It has yet to be shown that a whisker follicle can yield mesectodermal cells 

that will integrate into a tooth bud and secrete enamel, but a human trunk-level, terminal hair 

follicle can yield cells with osteoblast properties27. Consistently, trunk NCC in culture, initially 

distinct, can acquire certain differentiation and molecular properties of cephalic NCC28,29.  

Uses of cultured NCC  

Standard uses for NCC include experimental embryology such as mouse-chick chimeras for fate-

mapping and phenotypic characterization30; clonal analysis in numerous differentiation protocols7; 

examination of the transcriptome and comparison with that of disease states in cancers derived 

from NCC, such as neuroblastoma, or with other stem cell types 31,32. Such investigations can easily 

be extended to include other profiling such as that of genomic or histone covalent modifications, 

lipids, microRNAs or proteins. Cell behaviors such as migration can be followed using 

immunocytochemistry and live imaging, and a wide variety of markers have already been tested in 

these species to differentiate subpopulations within the NCC lines 9,22,33. 

Overview of the Procedure  

Our group developed the protocol described here in order to study the transcriptome of human 

primary pluripotent NCC cultures32, with the idea of favoring a simple, inexpensive matrix if possible 

and defining the medium so that it would not contain chick embryo extract or leukemia inhibitory 

factor (a common adjuvant for murine stem cells but unnecessary for pluripotency in human ES 

cells34) and, initially, deriving transcripts before passages. Small adjustments to the culture medium 

and the absence of irradiated fibroblast feeder cells are the major differences with similar protocols 
7,9,35. The self-renewing potential was unexpected (we kept line N5 cycling for nine months, and have 

frozen and thawed it and other lines many times).  Empirically, we have found this protocol to be 

equally applicable to the derivation and maintenance of avian, rodent and human NCC, permitting a 

laboratory that acquires expertise in isolating cell lines from one species to apply the technique for 

interspecies comparisons or the analysis of experimental chimeras. 



In brief, the technique involves microdissection and isolation of a length of embryonic neural tube at 

stages at or preceding the period of NCC emigration from the desired level. The neural tube is placed 

on a collagen I-coated tissue culture dish under a meniscus of medium to ensure adhesion and 

maximal contact, and then fully submerged in a medium that favors proliferation of undifferentiated 

cells to enable NCC to migrate away from the neural tube. The tube is removed with a customized 

glass tool, the cells detached and re-seeded at low density into a new collagen I-coated plate. These 

cells multiply vigorously and are available for further experimentation. 

 

Key features of NCC cultured using this protocol 

Under the culture conditions described here, human NCC co-express naturally a number of 

transcription factors (NANOG, POU5F1, SOX2, MYC)32 identified as effective for inducing pluripotent 

stem cells from somatic cell types.  Although we have since tried a number of serum substitutes for 

the maintenance of pluripotency, all have led to morphological or molecular changes in the makeup 

of the cultured population. However, such substitutes, and the use of human-derived growth factors 

in the defined medium, may be excellent adjuvants to direct differentiation under controlled 

circumstances and develop animal-free assays for therapeutic testing. 

Although earlier reports have grown avian NCC for short-term cultures, on the order of two-four 

weeks29, we have found it possible to maintain avian cells, like their human equivalents, without a 

fibroblast feeder layer or exogenous immortalization for three months. While we do not have 

experience with mouse cultures beyond a couple of weeks, reportedly these cannot be maintained 

beyond 6-10 passages11 or 3-4 weeks36, although virally administered Myc-immortalized murine NCC 

can be maintained for at least six months37. Perhaps our conditions favor the continued expression 

of Myc in animal as well as in human primary NCC; this remains to be examined. 

Chick NCC, if derived from a pigmented race, sometimes differentiate spontaneously and visibly into 

melanocytes and alpha smooth muscle actin-containing cells; we believe this has to do with 

stochastic signals exchanged among densely maintained cells. On occasion, vacuolated cells also can 

appear in high density cultures of the three species. Otherwise, individual cells in an “immortal” 

culture of human, chick (and quail) undifferentiated NCC express the sulfated glycolipid recognized 

by the HNK1 antibody38,39, the cell adhesion molecule NCAM, and the transcription factors SOX2 and 

SOX9, and usually some cells begin to grow large and express alpha smooth muscle actin in the 

population of cultures beyond 10 passages, without full differentiation of the entire population. Full 

differentiation does happen with greater ease at higher passage numbers or if one of the passages 

becomes too dense, though. If, after replating, all the cells become large and show actin fibers, 

visible under phase contrast, or very thin and bipolar, cultures in our conditions go senescent, 

though they remain viable for weeks without passage. We consider these as “differentiated” 

(although into what is not clear) and no longer useful as lines. Self-renewing human32 and mouse11 

cultures express the p75-NTR protein, a less reliable marker for early avian NCC in our hands. 

Generally, only a handful of descendant cell types have typically been examined among the wide 

range of potential tissues to which NCC give rise1, in part because of the paucity of admissible 

defining markers and distinct morphologies. It is therefore possible that NCC derived from embryos 

have more developmental plasticity relative to their descendants or stem cell cousins that have been 



conditioned ex vivo to give rise to some of the same cell types, and that the former are more 

representative of an endogenous, baseline phenotype.  

Advantages and limitations of this protocol 

Key advantages of the protocol described here include: 

 Successful cultures are easy to establish and passage 

 Inexpensive reagents relative to other derivation techniques 

 No cell sorting required 

 Relatively defined medium 

 No requirement for feeder cells 

 

Key disadvantages of this protocol compared to other culture methods include: 

 Isolates a population with clonally varying degrees of potential for proliferation, 

differentiation and migration 

 Clonal analyses do not work well on a collagen I substrate 

 Self-renewing primary human NCC lines can be refractory to some differentiation protocols 

 Potential variability in primary cultures from individual to individual 

 Tendency to senescence increases over passaging, depending on the line 

 

The selection for certain properties by the current culture conditions may prevent the acquisition of 

others in cells that may otherwise have that potential. For example, immortalized mouse NCC, 

selected by their expression of p75 and infected with a retrovirus for the stable expression of the 

myc oncogene, do not differentiate into pigmented melanocytes37 using similar reagents to those in 

protocols generating these NCC derivatives easily from primary cultures40,41 or embryonic stem 

cells42. Like these immortal mouse NCC, both human NCC resident in adult niches14 and embryonic 

human NCC32 acquire some molecular markers and morphology of melanoblasts under similar 

conditions, without completing pigmentation. An additional inconvenience of deriving primary 

human NCC as opposed to differentiating NC-like cells from hES cells is the necessity to karyotype 

the anonymously donated embryonic tissue so as to exclude rare but occasional aneuploidies, which 

are over-represented relative to live births, although high passage numbers may also contribute to 

their occurrence in the latter43. 

In summary, this is the first detailed protocol describing a successful consensus method to derive 

primary neural crest cell lines from avian or rodent or human embryos. Cell lines can be maintained 

for long periods in a self-renewing state, which renders them amenable to a wide variety of studies 

into molecular function or cellular behavior in response to changes in experimental parameters. 

 

Experimental Design 
Pancreatin preparation and optimization: Because powdered pancreatin is not entirely soluble, 

there may be some variability in lot activity after filtration. A sufficient volume of stock solution 



should be prepared and aliquotted by 1 mL at least the day before, and frozen so as to minimize 

variability from one tube to the next. Digestion that loosens epithelia before dissociating different 

tissue layers from one another is too harsh and more PBS should be used to dilute the stock; optimal 

digestion occurs in more than three but fewer than ten minutes. Pancreatin lots should be tested in 

advance: when the somites fall out intact from between ectoderm and endoderm upon gentle 

agitation by the forceps, the pancreatin concentration is optimal. 

 

Materials 

Reagents 

Gestating mice from commercial sources such as Jackson Laboratories [Bar Harbor, ME, USA], 
Charles River [http://www.criver.com] or Janvier [Genest-Saint-Isle, France]) or fertilized, incubated 
chicken eggs (EARL Morizeau, Dangers, France). (see Reagent Setup) 

!CAUTION Animal embryos must be obtained under controlled conditions in accordance with 
relevant national and institutional authorities’ guidelines and legal regulations for ethical use of 
animals. 

or 
 

Human embryos (see Reagent Setup). 
!CAUTION Embryos must be obtained under rigourous conditions of ethical information and 
consent for participants in biomedical research, and for the control of temperature and 
cleanliness, in accordance with relevant national and institutional authorities’ guidelines and 
legal regulations. Gloves should be worn at all times and similar precautions to handling and 
disposing of blood samples should be taken. 
 

Ethanol (70% (vol/vol) and 100%) 
Phosphate-buffered saline, without Ca2+ or Mg2+ 
Pancreatin 6 mg/ml in PBS (Sigma-Aldrich, P3292) (see Reagent Setup) !CRITICAL Should be prepared 
in advance; will be slightly turbid. 
Fetal Calf Serum (EU Quality) primary human cell culture tested (Promocell, C-37355) 
ESC-qualified Fetal Calf Serum (Promocell, C37388) or ESC-qualified FCS 100 mL from PAN Biotech 
(Dutscher, 500101ES) 
DMEM supplemented with Glutamax-HEPES and 4.5 g/L glucose (Invitrogen, 32430027) 
F12 supplemented with Glutamax (Invitrogen, 31765027) 
Penicillin/Streptomycin (Invitrogen, 15140148) 
HEPES buffer 1M (Invitrogen, 15630049) 
Hydrocortisone 1 mg (Sigma-Aldrich, H0135) (see Reagent Setup) 
Transferrin 10 mg (Sigma-Aldrich, T5391) (see Reagent Setup) 
T3 (3,3,5-thio-iodo-thyronine) 1 mg (Sigma-Aldrich, T5516) (see Reagent Setup) 
Glucagon 2 mg (Sigma-Aldrich, G3157) (see Reagent Setup) 
Epidermal growth factor (EGF) 10 μg (Invitrogen, PHG0314) (see Reagent Setup) 
Fibroblast growth factor 2 (FGF) 10 μg (Invitrogen - PHG0024) (see Reagent Setup) 
Insulin 50 mg (Sigma-Aldrich, I6634) (see Reagent Setup) 
BSA 1 g (Sigma-Aldrich, A8806) (see Reagent Setup) 
Trypsin 0.25% (w/v) with EDTA 1 mM in HBSS (eg. Invitrogen, 25200-056) 



10x Dulbecco’s Phosphate buffered saline (see Reagent Setup) 

Complete culture medium (see Reagent Setup) 

Enzymatic stop medium (see Reagent Setup) Optionally used to dilute and saturate trypsin-EDTA 

during cell collection for passages, or to stop pancreatin digestion. Expired lots of complete culture 

medium can also be used for this purpose. 

Freezing medium (see Reagent Setup) 

Sterile, tissue culture-grade water 
Glacial acetic acid 
Colcemid (10 μg/mL N-methyl-N-deacetyl-colchicine) (Roche, 10295892)Optionally used for 
karyotype analysis of the euploidy of human tissues. 

Equipment 

Stereomicroscope e.g. Leica MZ 7.5 
Swan-neck fiber optic illumination 
Stericup GV 0,22 µm de Millipore (Dutscher, 51249) 
35 mm dish Collagen I Biocoat (Becton Dickinson, 356456) 
100 mm dish Collagen I Biocoat (Becton Dickinson, 354450) 
100 mm sterile tissue culture dishes 
35 mm sterile tissue culture dishes 
Dissecting forceps: 2 pairs Dumont no 5 (Fine Science Tools, 11252-20 or Euronexia SAS) 
Perforated spoon (Fine Science Tools, 10370-17) 
Microsurgery tools: (Figure 1a) CRITICAL: Bake microdissection tools in a dry oven for two hours at 

150°C to sterilize. Let cool before use. 

 Vannas or Pascheff-Wolff spring scissors (Fine Science Tools 15000-00 or 15371-92) 

 Cotton-plugged glass Pasteur pipettes (VWR, 14672-410) (see Equipment Setup) 

 Bunsen burner or other butane flame 
Steel sterilization box for Pasteur pipettes (VWR, 82027-606) 
Rubber bulbs for Pasteur pipettes 
Sterile tissue culture hoods – possible use of a horizontal laminar flow for initial set-up (animals only) 
and vertical flux for human tissues and subsequent passages 
Tissue culture CO2 incubator 
Inverted microscope with phase contrast (eg. Olympus CK2) 
 

Reagent set-up 

Mouse embryo preparation: To attain the stages listed in Table 1, gestating mice (NMRI or other 

Swiss-type strains yield numerous embryos per female eg. Janvier, ref. SN-NM-GE-NG) should be 

plugged 8-10 days earlier.  

Chicken embryo preparation: To attain the stages listed in Table 1, freshly laid eggs, stored at 15°C, 

should then be incubated at 38°C, 60% humidity for 26-55 hours.   



Human embryo preparation: Obtaining human embryos is highly dependent on national bioethics 

laws. Obtaining the necessary approvals and establishing an appropriate protocol for tissue 

donations can take months if not years of advance work. Once in place, intact human embryos 

donated after voluntary interruption of pregnancy with the mefiprestone protocol from the fourth-

fifth weeks of gestation are best from a cell derivation standpoint, but the aspiration technique 

sometimes also spares the neural tube and may be more appropriate for studies specifically focusing 

on the estrogen signaling pathway. Staging is naturally dependent on known days of gestation but 

on morphological criteria 46. Transport in sterile RPMI medium at 4°C if possible. 

 
10x Dulbecco’s Phosphate-Buffered Saline solution Dissolve into 900ml distilled H2O: 80 g of NaCl, 
14.4 g of Na2HPO4•2H2O (or 11.5 g Na2HPO4), 2 g of KCl, 2 g of KH2PO4. Adjust pH to 7.4 with NaOH 
or HCl, then the volume to 1 L with additional distilled H2O. Sterilize by autoclaving. Dilute one part 
of this solution with nine parts sterile distilled H2O, to extemporaneously prepare ready-for-use PBS. 
10x PBS may be stored for a year at 4-23°C; 1x PBS should be made fresh or stored at 4°C and 
discarded at the first sign of turbidity. 
 
Pancreatin 4X Make up at 25 mg/mL in 50 mL PBS, dissolve at room temperature (20-23°C) 
overnight with agitation, centrifuge the remaining deposit, filter-sterilize and aliquot by 1 mL. Store 
at -20°C. Upon thawing, recentrifuge in a microcentrifuge at maximum speed, then dilute the 
supernatant with three parts warmed PBS (37°C) for use. Do not keep dilute pancreatin. 
 
Stock solutions of medium additives: It is best to prepare the stock solutions for the medium the 

day before the embryo dissections, if not earlier, and to make up the working medium the morning 

of the dissection. 

!CRITICAL All solutions and plastic must be sterile and manipulated under sterile conditions when 
open. Thawed working aliquots should not be refrozen.  Concentrations indicated are of the 
aliquots.  

 Hydrocortisone (50 μg/mL): Resuspend  1 mg with 1 mL 100% ethanol. Add 19 mL sterile 
water .  Store as 0.2 mL  aliquots at -20°C.  

 Transferrin (10 mg/mL): Resuspend 100 mg with 10 mL sterile water. Store as 0.1 and 1 mL 
aliquots; keeps up to 12 months at -80°C, up to a month at -20°C, and a week at 4°C.T 

 T3(2 µg/mL): Resuspend 1 mg with 1 mL NaOH 1M. Add 49 mL sterile water for stock at 20 
µg/mL. Aliquot by 1 mL and store at -80°C. To 1 mL T3 stock solution, add 9 mL sterile 
water.. Aliquot by 20 µL and store at -20°C.  

 Glucagon (50 ng/mL): add 4 mL 1M acetic acid to 2 mg to dissolve, then 36 mL water . Dilute 
10 µL of this stock in 10 mL water; aliquot stock by 1 mL and store at -80°C and 20 µL 
working solution aliquots at -20°C.  

 Insulin (10 µg/mL): Add to 5 g powder, 4.95 mL water and 50 µL glacial acetic acid at 10 
mg/mL. Dilute 10 µL of this stock into 10 mL water . Stock is stable for 1 year at 4°C, but 
tolerates freezing.  

 10% (w/v) BSA: Dissolve 1 g BSA in 9 mL PBS with gentle agitation at 4-25°C overnight, 
complete to 10 mL and filter-sterilize.  

 FGF (2.5 µg/mL): Use 4 mL 10% (w/v) BSA solution to dissolve 25 µg FGF. Store aliquots at -
80°C.  

 EGF (10 µg/mL): Use 100 µL BSA solution and 900 µL PBS to reconstitute 10 µg EGF. Store 
aliquots at -20°C or for up to 2 weeks at 2-8C. 

 



Complete culture medium In a filter cup combine the following reagents: 12 mL ESC-qualified 
serum, 34 mL DMEM, 51 mL F12, 1 mL penicillin/streptomycin, 1 mL HEPES, 0.2 mL hydrocortisone, 
100 µL transferrin, 20 µL T3, 20 µL glucagon, 10 µL insulin as prepared above. Sterilize under vacuum 
in vertical laminar-flow hood. Add 1 µL EGF and 8 µL FGF. Store at 4°C. May be kept for up to 2 
weeks at 4°C. 
 
Enzymatic stop medium (optional): DMEM or RPMI with 12% fetal calf serum. Kept as long as it is 

sterile. 

Freezing medium:  8 parts complete culture medium, 1 part fetal calf serum and 1 part DMSO (10% 

(v/v) final concentration); extemporaneous preparation is best. 

Equipment Setup 
Collagen I-coated polystyrene tissue culture ware: manually coat tissue culture plastic with bovine 

or rat tail collagen I by diluting cold solubilized collagen with sterile 17 μM acetic acid in water (111 

μL glacial acetic acid in 100 mL, filter-sterilized) to 60 mg/mL, and soaking plastic in this solution for 

two hours at room temperature in a laminar flow hood before rinsing twice in PBS and drying. 

TROUBLESHOOTING 

Fire-polished Pasteur pipettes Place the tip of a glass pipette just above the flame. When the tip 

begins to close, withdraw from the flame. (Figure 1b) This will polish the sharp end of the glass so 

that tissue will not rasp over the edge when being drawn into the fine part of the pipette. Prepare 

many ahead of time, place into a metal box or glass jar with gauze cotton pads at the bottom, to 

prevent breakage, and sterilize in the autoclave. !CAUTION Take necessary precautions for operating 

an open flame on a surface away from inflammable objects and air currents. Wear safety goggles. 

Pulled Pasteur pipettes: These should be prepared just before use (step 12 of the Procedure). When 

it is necessary to remove the neural tube from the culture dish, grasp the cotton end of a pipette in 

one hand, and the tip in the other, and hold the pipette over the flame at about 4 cm proximal to the 

tip, rotating to heat all sides. As the glass reddens, remove from flame, quickly pull about 40 cm 

apart to make a thin thread, let cool an instant, and then break by bringing hands closer in a sharp 

movement. Bring tip from the larger part back into flame for one second, to round and seal (Figure 

1b). Place immediately into the laminar flow hood and let cool without touching the tip to a surface. 

!CAUTION Take necessary precautions for operating an open flame on a surface away from 

inflammable objects and air currents. Wear safety goggles. 

 

Procedure 

CRITICAL: Wear gloves and maintain hygienic conditions throughout for the protection of both 

scientist and cultures, using fresh plasticware when possible, oven-baked instruments and sterile 

solutions at the outset of each explant series. 

DAY 1 – Embryo isolation, dissection and culture initiation Timing: approximately 3-4 

hours. 



1. Isolate the embryos from extraembryonic tissues and other contaminants. Option A 

describes isolation of mouse tissue, option B describes isolation of chick embryos and option 

C describes isolation of human embryos. 

Option A: Isolation of mouse embryos: 

i. Transfer uterus in ice-cold PBS from animal facility to culture facility.  

ii. With the uterus in a 10 cm dish, remove embryos with blunt forceps and 

scissors from uterus and using a perforated spoon, transfer into a clean 10 cm 

dish with PBS.  

iii. Remove deciduas (Figure 2a), amniotic and yolk sac membranes (Figure 2b), 

and transfer embryos into PBS or RPMI in a new dish for initial dissections. 

 

Option B: Isolation of chicken embryos 

i. Wipe blunt end of egg with 70% ethanol, and cut a 3 cm diameter hole with 

dissecting scissors. 

ii.  Deflect chorion (Figure 2a), and use eggshell-free dissecting scissors to cut 

around embryo, maintaining a corner above the yolk with blunt forceps.  

iii. Wet the perforated spoon in PBS, slide between embryo and yolk, and remove 

to plastic dish with PBS to rinse off any remaining yolk.  

iv. Trim close to embryo, cut and remove amnion if present, and change to a new 

dish with clean PBS or RPMI with spoon or a plastic transfer pipette (Figure 2b). 

Option C: Isolation of human embryos  

i. If karyotyping is to be carried out, remove a few chorionic villi and treat 

these as described in Box 1 before proceeding with step 1C(ii). 

CRITICAL STEP: Keep tissues and solutions cold until dissection.  

For karyotyping: Remove a few chorionic villi, rinse in PBS, and treat these 

immediately for one hour at 37°C in a mix of 2 mL RPMI containing 12% fetal 

calf serum with 1 mL colchicine stock solution, added extemporaneously. After 

that time, subject the tissue to a hypotonic shock for 10 minutes in  0.075 M 

KCl followed by a 1:3 glacial acetic acid:ethanol fixation for 3 changes of 10 

minutes each. Spread nuclei, stain for G-bands and count chromosomes as per 

standard procedures23. 

ii. Remove amniotic and yolk sac membranes with forceps and spring scissors, 

and transfer embryo into clean RPMI for initial dissections. 



!CAUTION Wear gloves at all times for handling human tissues (preferred for animal tissues 

as well), and incinerate contaminated liquids and plasticware. 

PAUSE POINT Multiple embryos can be freed of their annexes and kept in PBS or RPMI on 

ice for up to two hours with no adverse effects. 

 

 

2. Isolate neural tube portions from surrounding tissues under the dissecting binocular 

microscope: 

a. Option A: For cephalic neural crest up to 2-3 pharyngeal arches maximum, insert the 

Vannas scissors through the lateral part of the oral cavity, pointing caudally through 

the pharynx, and make one cut on the right and another on the left, down to the 

level of the heart. Remove the heart tube and the pharyngeal arches with dissection 

forceps. Place the embryo dorsal face up and make a transverse cut with the Vannas 

scissors just posterior to the optic vesicles, through the diencephalon, and again at 

the level of the fifth somite pair. Trim ventrolateral tissues closely to the neural 

tube. 

b. Option B: For vagal/cardiac NCC, cut a rhombencephalic segment between just 

caudal to the otic vesicle, down to the third-to-fifth somite. 

c. Option C: For trunk-level NCC, make transverse cuts at the 6th and last somites, or 

the prospective hindlimb level in older embryos (Figure 2c). Trim lateral tissues to 

the somites (Figure 2d). 

3. Using a Pasteur pipette, transfer segments into 22-37°C prepared pancreatin in a 35 mm 

dish. 

4. Allow segments to incubate at room temperature for 6-7 minutes. The ectoderm may 

appear as a thin veil that is detaching from the somites. When the neural tube becomes 

slightly wavy, it is time to slow the reaction by removing the tubes to clean PBS with minimal 

transfer of the enzyme solution, using the same Pasteur pipette.  

Critical step  Monitor digestion carefully. With experience, the timing is very 

reproducible at a given stage, species and level of neural tube.  

5. Quickly tease away the sticky lateral tissues with fine forceps, without directly touching the 

neural tube so as not to damage the epithelial integrity of the desired tissue. Peel away the 

veil of endoderm, then the ectoderm. Lateral movements along the tube (holding to the 

mesoderm, or to an excess length of neural tube) will detach somites or pharyngeal and 

head mesoderm easily, to yield a clean neural tube (Figure 3a). Lastly, it is possible to grasp 

an end of the notochord and separate it from the neural tube, which may be maintained 

against a forcep tip but not pinched between them, thereby carrying some paraxial 

mesoderm. Transfer cleaned neural tubes to 1 mL complete NCC medium in a 35 mm dish to 

arrest digestion. TROUBLESHOOTING 



Critical step Work quickly during tissue dissociation as digestion continues until 

transfer to complete medium. 

PAUSE POINT Cleaned neural tubes can be kept for up to an hour in enzymatic stop medium 

at room temperature before transfer to culture dishes. 

6. In the tissue culture hood, place 315 µL sterile, complete medium into 35 mm collagen 

dishes or 6-well plates, one dish/well per explant. Wet the entire surface, but do not scrape 

collagen with pipette tip so as to maintain optimal adhesion and outgrowth conditions. 

7. Bring neural tubes from step 9 into hood. Using a fire-polished Pasteur pipette, carefully 

draw one neural tube into the opening with some medium. Let the tube fall to the bottom of 

the liquid within the pipette by gently moving up and down within the thin portion, until it 

abuts the lower meniscus. Gently appose the tip at a 45° angle to the center of a moistened 

dish, apply pressure to the bulb, and draw the tip across a few millimeters with a slight lifting 

movement, to allow tube to be wicked out onto the dish with minimum addition of 

complete medium. The neural tube will flatten and be pinned under the meniscus at the air-

liquid interface. 

Critical step  Accompany the neural tube with a few microlitres of liquid or it will 

stretch and break. 

8. Replace cover of dish and place in incubator at 37°C, 5% CO2 overnight. TROUBLESHOOTING 

DAY 2 – Cell migration Timing: 30 minutes. 

9. The following morning, warm a 10 mL aliquot of complete medium. 

10. Slowly add 1 mL of medium to each explant by moistening first, gently, around the adherent 

neural tube, and avoiding a strong jet.  

11. Critical step  It is essential that explants remain attached to the substrate, and submerged, 

otherwise no NCC will migrate onto the culture dishReplace dishes in incubator and allow 

cells to migrate on undisturbed plates for 24 hours (Figure 3b). 

DAY 3 – Removal of explant Timing: 30 minutes. 

12. Remove the lid from the culture dish and, using a freshly-prepared pulled glass pipette with 

rounded tip (Equipment Setup and Figure 1b), push at one end of the adherent neural tube 

as if gathering the tissue into the center. It should detach readily, along with any adjacent 

ectoderm, from the surface, without fragmentation. Push inwards from the other end as 

well until detached. Tease these epithelia and stray floating debris away from the 

mesenchymal cells and aspirate the medium, replacing with fresh, complete medium pre-

warmed to 37°C. Verify under the inverted microscope that no pieces remain either in the 

center of the explants or float in the medium, as they will re-attach and spread. 

13. Return the dish to the incubator. Cells may be dissociated and re-seeded at this stage, 

although we see better survival rates if we allow them to continue proliferating for an 

additional day before first passage. TROUBLESHOOTING 



DAY 4 AND BEYOND – Passaging and maintenance Timing: 1 hour 

14. To pass cells, remove the medium by aspiration, rinse the culture with sterile PBS pre-

warmed to 37°C, and add 0.5 mL (for 35 mm dishes) or 1 mL (for 10 cm dishes) trypsin-EDTA 

to the dishes. Return dishes to the incubator for 3 minutes. A gentle, lateral shake should 

show most cells to have detached when examined under the inverted microscope. Do not 

incubate more than 5 minutes so as to conserve cell viability. TROUBLESHOOTING 

CRITICAL STEP: Cells will need to be passed every 2-3 days. They must not be more than 70% 

confluent unless spontaneous differentiation and arrest of proliferation is desired. Nonetheless, 

even in highly confluent cultures, some highly proliferative cells often persist and can be 

amplified at a lower density. 

 

15. Use pipette to add 0.5 or 1 mL respectively, PBS pre-warmed to 37°C, so that the jet of liquid 

completes cell detachment. Avoid vigorous up-and-down shearing movements of liquid or 

bubbles that can damage cells. 

16. Transfer liquid to a 15 mL conical centrifuge tube, add 10 mL of enzymatic stop medium or 

PBS, and spin at room temperature at 1,100 g for 5 minutes. 

17. Aspirate supernatant, and gently resuspend pellet in complete medium with an appropriate 

volume for the new matrix-coated vessel, using a fire-polished Pasteur pipette. 

18. Transfer to new dish and replace in 37°C incubator. 

19. Cells may be stored at 5.105 cells per mL of cold freezing medium: freeze cryotubes 

progressively in an isopropanol-filled container at -20°C for two hours, followed by overnight 

at -80°C and long-term banking over liquid nitrogen vapours.  

20. Thaw cells according to standard procedures with a rapid warm-up in a 37°C waterbath, 

immediate transfer to 10 mL warmed complete medium, centrifugation as per step 21, and 

resuspension of the pellet in fresh medium. Seeding density for regrowth can be anywhere 

from 2,000-6,000 cells per cm2. TROUBLESHOOTING 

 

Troubleshooting 
It is not necessary, if working in a clean laboratory environment, to dissect embryos and prepare the 

neural tube explants in a horizontal flow hood, but it reduces the chances of contamination of the 

subsequent cultures. One set of polished Pasteur pipettes can be maintained out of the cell culture 

facility for embryo work. Transfer the neural tubes into freshly-poured medium before bringing into 

the cell culture facility; we keep expired lots of complete medium for this purpose. Further 

Troubleshooting advice can be found in Table 2. 

 



Table 2: Troubleshooting 

Step Problem Possible reason Possible solution 

5 Contamination with non-
neural ectoderm 

Insufficiently close lateral 
dissection 

Trim tissues closely and cleanly with the spring 
scissors for successful explantation. 
Contaminating non-neural ectoderm is easily 
removed with the neural tube, as it remains 
epithelial and keeps its integrity in vitro 
(Figure 2b); however, as NCC must migrate 
over it to reach the collagen, many NCC may 
be removed along with the tube and 
ectoderm, thereby depleting cultures. 

5 Contamination with 
mesoderm 

Insufficient separation of 
pancreatin-dissociated 
tissues 

Visually inspect neural tubes to be explanted 
for any adherent mesenchyme and remove 
with forceps. If endoderm remains, there will 
surely be mesodermal contamination as well. 
Mesoderm is more white and opaque than the 
epithelial neural tube, or the notochord; the 
endoderm is a sticky veil. 

For mouse NCC culture, tissues are stickier 
than human or chick after pancreatin 
treatment. If the application is for cell tracing 
after recombination with other cell types, in 
organotypic culture, in experimental 
chimeras

30
, or simply to determine if there is 

any contamination by non-NCC, it may be 
useful to use the B6CBA-Tg(Wnt1-
lacZ)206Amc/J mouse developed by the 
McMahon group

47
 and available from Jackson 

Laboratories. The Wnt1 promoter activates 
lacZ expression in all premigratory NCC of the 
posterior cephalic, vagal and trunk lineages. 

8 Neural tube wicks to side 
of 35 mm dish upon 
transfer 

Liquid sloshing pushed the 
tube from under the 
meniscus to the edge 

It is possible to replace the tube in the middle 
of the dish using the same gesture without 
damage. Maintain horizontal during transfer 
to incubator. 

13 Few or no NCC migrate 1. The explants may be too 
dry.  

2. The staging may not be 
appropriate for the neural 
tube level explanted. 

3. The collagen substrate is 
uneven on the culture 
plastic. 

4. The neural tube was not 
in close apposition to the 
plastic the first night and 
did not adhere 

1. If the air circulation does not bring enough 
humidity to the early explants, one must place 
each 35 mm dish in a 10 cm dish (or perhaps 
many into a larger, clean recipient) with 
sterile, wet gauze in the larger plate, before 
incubating.  

2. Dissect a more caudal piece of neural tube 
or the same level but from a younger embryo. 

3. Neural crest cells migrate happily on 
collagen I-coated plates. Reduce variability in 
coating by using commercially produced 
coated 35 mm plates for explantation; for 
precious cell cultures, we continue to use 
commercial ware for subsequent passages as 
well. 

4. Ensure that the neural tube does not detach 
upon addition of medium on Day 2. 

Empirically, hundreds of neural crest cells 



migrate away from avian neural tubes (chick 
or quail) while human and mouse neural tubes 
yield 60-150 cells for equivalent length 
fragments.  

14 Trypsinization damages 
cells 

1.  Adherent chicken, 
mouse and human NCC all 
secrete other extracellular 
matrix factors. If the cells 
are approaching 
confluence, they can 
sometimes be refractory to 
detachment after trypsin 
treatment.  

2. The trypsin may have 
been warmed then 
refrigerated more than a 
couple of times. 

1. Pass cells at a lower density 

2. Aliquot trypsin-EDTA by 10 mL, freeze at -
20°C and use within a week of thawing, or use 
the trypsin-like enzyme in the TrypLE-Express 
formulation by Invitrogen (12604-013) which 
remains active after repeated heat-cool cycles. 

20 Cells do not proliferate 1.  Loss of growth factor 
activity. 

2. Contamination. 

3. Unknown additives. 

4. Differentiation. 

1. Supplement the basic medium (DMEM and 
F12) and use it within two weeks, otherwise 
necessary factors may no longer be bioactive. 
Other brands of culture media work well, if 
the catalogue references used here are 
unavailable.  

2. Cell cultures should be checked for bacterial 
or yeast contamination, and if the problem 
persists, then mycoplasma may also be an 
issue. A standard PCR-based test (Sigma-
Aldrich, MP0035) should yield results quickly. 
In our hands, this has never been a problem, 
but we check cultures for mycoplasma at each 
freeze and thaw, and periodically in the 
facility.  

3. Serum lots vary and should be tested. We 
have successfully tested multiple lots for 
chicken NCC proliferation and survival for later 
use with human cells. Serum substitutes have 
not given as satisfactory results to date but do 
often promote survival, and on occasion 
differentiation. 

4. Some cells change morphology over time, 
with the majority favoring an elongated, thin 
spindle shape or a large, stellate form with 
visible polymerized actin fibers under phase-
contrast illumination. These cells will continue 
to proliferate for some time but will stop after 
a certain number of passages. However, if all 
the stem cells have been depleted, the entire 
culture will survive for months, even at low 
cell density, but no longer divide. 

Anticipated results 
The neural tube should be adherent to the bottom of the 35 mm plate by 4-16 hours after 

explantation, but no cells will have migrated away from the tube. After 8-10 additional hours fully 



submerged, the first cells begin to emerge, and a partial or full halo of cells should be visible by 24 

hours, as illustrated in Figure 3 and elsewhere32. 

Once regular passaging is established, it is possible to move cultures into collagen-coated flasks, 

which reduces the possibility of contamination. We have successfully cultured chick and human cells 

on flasks as large as 150 cm2. 

Cells can be prepared for immunostaining by fixation in 4% paraformaldehyde for 20 min and, if 

appropriate, subsequent permeabilization for 25 min with 0.1% Tween-20 in PBS. Figure 2b shows 

immunocytochemistry with the HNK1 antibody (which does not require permeabilization). At the 

stages of NCC derivation, among the three potential cell types in the initial explants, HNK1 

specifically labels a sulfated glycolipid on adhesion molecules present on avian and human NCC, but 

does not work on murine NCC. p75 is a preferred marker for mouse and rat NCC (and also works for 

human NCC, though signal can be low). 

Best results for RNA isolation are obtained by adding 350 L lysis buffer directly to a 35 mm dish, or 

1 mL to a 10 cm dish, directly after removal of medium, and spreading and lysing with a cell scraper. 

We have used this approach to isolate total RNA and examine the transcriptome of multiple human 

NCC lines, both cephalic and trunk-level, which are remarkably similar to each other in their 

profiles31,32 and distinct from multipotent precursors isolated from human embryonic dorsal root 

ganglia and cultured in the same medium (unpublished). 

Like other primary cell cultures, it is possible to inefficiently transfect the cells using transitory 

transfection techniques (calcium phosphate or lipid-based 35 or electroporation [unpublished]). 

Precise conditions remain to be optimized. We have not attempted selection for stable 

transfectants, although this will be one of the more interesting uses of human cells: to compare 

molecular and phenotypic changes between normal hNCC and their equivalents carrying various 

mutations identified in human neurocristopathies or neural crest-related cancers such as 

neuroblastoma and melanoma48. 
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Table 1. A comparison of the developmental stages which are optimal for preparing neural crest 
cultures from chicken, mouse or human embryos. Stages are taken respectively from the 
Hamburger-Hamilton (HH), Theiler and Carnegie series, respectively. h, d = hours or days of 
gestation. 
 
Species Stages for cephalic NCC Stages for cardiac/vagal 

NCC 
Stages for trunk-level 
NCC 

Chick HH8-10 (26-38h) HH9-11 (30-45h) HH11-16 (40-55h) 
Mouse Theiler 12-13 (8.0-8.5d) Theiler 13-14 (8.5-9.0d) Theiler 14-16 (9.0-10.0d) 
Human Carnegie 11-12 (23-28d) Carnegie 12-13 (25-28d) Carnegie 12-14 (25-32d) 

  

 

 

 

 

 

 

 

 

Figure 1  

Some of the equipment required for this protocol. (a) Recommended microsurgery tools and (b) 

custom-made glass tools for neural tube and cell transfer, straight, or for detaching the explants 

after neural crest migration without scratching the dish, curved. Inset: magnification of the tips. 



 

 

 

 

 

 

 

Figure 2 

Dissection of neural tube fragments from mouse and chick for explantation. Top = mouse (human is 

very similar32); bottom = chick. (a) Remove embryo from large decidua or egg yolk. (b) Cut away from 

yolk sac and amnion. (c) Select segment to dissociate in pancreatin (trunk above, cardiac/trunk 

below). (d) Cut away lateral tissues before beginning dissociation. 

 

 

 

 

 

 

 

 

Figure 3 

Examples of explanted neural tubes. (a) Pancreatin-cleaned human neural tube and detached 

somites before placement of tube in culture for NCC derivation. Bar = 0.4 mm. (b) Quail trunk-level 

neural tube and ectoderm explant after step 11. Superposition of phase-contrast photo and HNK1 

immunohistochemistry in red fluorescence, to distinguish neural crest cells from other tissues. The 

HNK1-negative neural tube and epithelial ectoderm have not yet been removed, on the lower left 

and right, respectively, while the neural crest cells fan away from the explant. Better initial yields can 

be obtained from explants free of attached ectoderm. Bar = 120 μm. 
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Abstract 

An unconventional symposium on the subject of pathogenetic, clinical, and 

therapeutic aspects of large and giant congenital melanocytic nevi and 

neurocutaneous melanocytosis, was held at the University of Tübingen, Germany, on 

May 6-7, 2011. Exchanges were made between physicians from a wide range of 

clinical disciplines, including pathology, dermatology, plastic and pediatric surgery, 

neurosurgery, pediatric neurology and genetics; basic scientists in cell and 

developmental biology; psychologists; and an unprecedented gathering of 

international patient advocacy group representatives. This diversity of outlooks 

brought fresh perspectives to the discussions about current scientific and therapeutic 

advances in the field of these rare congenital diseases and their oncogenic 

associations. A roadmap for future actions sketched out promising therapeutic 

developments to follow and fostering of interdisciplinary collaboration among all the 

involved parties. 

Running title: Report from 2011 International GCMN/NCM Meeting



 

 

Introduction 

Nearly 150 participants from 14 countries participated in the multidisciplinary 2011 

Expert Meeting for large and giant congenital melanocytic nevi (GCMN) and 

neurocutaneous melanocytosis (NCM). Congenital cutaneous nevi with a projected 

adult diameter of over 10 or 20 cm are considered “large” or “giant”, respectively 

(Ruiz-Maldonado 2004). Neurocutaneous melanocytosis is a neurological disorder 

characterized by abnormal aggregations of nevomelanocytes within the central 

nervous system, in conjunction with a GCMN. It can be asymptomatic or present as 

variably severe and progressive neurological impairment, sometimes resulting in 

death (Kadonaga & I J Frieden 1991; Burstein et al. 2005). Affected GCMN or NCM 

patients and their families are faced with psychosocial difficulties, complex 

therapeutic management decisions, and the risk of neurological problems and 

malignant degeneration (Krengel, Hauschild & Schafer 2006; Slutsky et al. 2010). 

The goal of this conference was to enrich a traditional academic exchange by actively 

encouraging the participation not only of the speakers but of the audience, in order to 

inform each about relevant advances in fields they may not otherwise follow and to 

accomplish tangible group measures. To attain this goal, we held moderated but 

informal discussions after each talk, extended restorative periods during which 

speakers and physician trainees mingled with an often unwittingly excluded type of 

expert – representatives of patient advocacy groups from around the world, and final 

summary and brainstorming sessions. The conference was conducted in English but 

there were enough multilingual participants to facilitate comprehension and 

exchange. 

 

Twenty-one speakers from Germany, Switzerland, France, the United States, Great 

Britain, and Israel contributed to the scientific programme (Table 1). A parallel and 



 

 

coincident programme was attended by patient association delegates from these 

same countries as well as Portugal, Spain, the Netherlands, Macedonia and 

Australia, for most of whom this was the first opportunity to network in person with 

analogous groups. As an important result of this meeting, the patient associations 

committed to supporting and encouraging their members to participate in a single 

worldwide GCMN/NCM registry, and to spearhead an Internet-based, multilingual and 

curated GCMN/NCM patient information portal through which patients and 

researchers can access the registry. 

 

Molecular, cell and developmental biology 

In his keynote lecture, Miguel Reyes-Múgica (Pittsburgh) reviewed a few of the wide 

range of diseases that are grouped under the term “neurocristopathies”. These 

pathologies include neuroblastoma, the most common malignant solid extra-cranial 

tumor of children; Hirschsprung disease, a deficiency in the development of the 

enteric nervous system; and different forms of cutaneous and neurocutaneous 

melanocytic disorders (Etchevers et al. 2006). Because of the endogenous migratory 

aspect of neural crest cell (NCC) behaviour during embryonic development, the still 

images seen by pathologists of melanocytic proliferations must be placed in a 

dynamic context. For example, the concept of “Abtropfung” that has enjoyed a certain 

vogue for over a century, where (G)CMN would mature from the predominant 

localization of melanocytes in the epidermis down into the deeper layers of the skin, 

has been fully discredited by both histological observations and recent findings that 

melanocytic precursors normally reside in the dermis, the meninges and along 

peripheral nerves. From these locations, they can not only give rise to pigmented nevi 

but also to sometimes extremely bulky proliferations that may resemble 



 

 

neurofibromas, rhabdomyosarcomas or malignant melanoma without necessarily 

presenting all the canonical features (Cajaiba et al. 2008). Defining new cytogenetic 

and histological markers for these GCMN-associated tumors will help determine their 

prognosis and optimal treatment. 

 

Because invasive and proliferative behaviour is a normal characteristic of NCC, 

understanding the effects of timing and embryonic context is crucial to discovering 

the molecular bases of isolated and syndromic forms of GCMN. Heather Etchevers 

(Marseille) in her talk about signaling pathways in neural crest and early melanocyte 

development, addressed the dynamic expression of some of the molecules involved 

in pigment cell fate specification. The temporal progression of melanocyte 

differentiation mobilizes signaling cascades well known for their later implication in 

carcinogenesis. These include tyrosine kinase receptors such as KIT and MET and 

their intracellular effectors of the RAS and RAF families and alternative second 

messenger pathways; influences from  the melanocortin 1 receptor MC1R; and 

transcriptional control exerted in particular by SOX10 on the master pigment cell 

transcription factor, MITF (Sommer 2011). Preliminary data demonstrated the 

persistence of unpigmented, Sox10+ Kit+ precursors in both follicular and dermal 

locations throughout avian skin development, long after the onset of epidermal 

pigmentation. 

 

Bernhard Wehrle-Haller (Geneva) presented both contextual and novel results about 

the role of the membrane-bound isoform of Kit ligand (mb-KitL) in the control of the 

biological properties of melanocytes (Paulhe et al. 2009). Essential, soluble KitL is 

secreted during development by the embryonic dermamyotome, past which 

melanoblasts migrate during their maturation. In addition to maintenance signaling, a 



 

 

dimerized, membrane-bound isoform appears to serve as a mechanical anchor for 

hematopoietic stem cells in their bone marrow niche (Heissig et al. 2002). Results 

presented in this talk demonstrated that melanocyte stem cells and potentially within 

GCMN as well adhere to their niche through mb-KitL/Kit complexes, and that certain 

protein domains of this complex can be susceptible to enzymatic cleavage, leading to 

shedding. Disrupting the interaction of Mb-KitL and Kit is therefore being examined as 

a potential therapeutic strategy for pigmentary proliferative disorders. 

 

In his comprehensive lecture on cytogenetic alterations and BRAF/NRAS mutations 

in GCMN, Pierre Heimann (Brussels) emphasized that, in contrast to malignant 

melanoma, chromosomal abnormalities are rather rare and single in GCMN. He 

described his group’s findings that many more NRAS mutations are observed in 

GCMN, than in medium-small and acquired nevi, where BRAF mutations are 

predominant. Among the few GCMN with involvement of BRAF, gain-of-function was 

shown to arise through chromosomal translocation that removed the auto-inhibitory 

N-terminal regulatory domain of BRAF from its protein kinase domain (Dessars et al. 

2007). Other mutations involving BRAF regulatory domains represent an alternative 

mechanism of RAS-MAPK pathway activation in GCMN that harbor neither a BRAF 

nor an NRAS coding mutation. Comparison of the transcriptomes of nevocytes to 

normal melanocytes demonstrated GCMN upregulation of many genes involved in 

the DNA damage response, and in particular stronger expression of the CDNK2A 

p16INK4A transcript, likely leading to the cellular senescence most often observed in 

GCMN (Dessars et al. 2009). 

 

In his opening address on the genetics of GCMN, Rudolf Happle (Freiburg) presented 

arguments supporting the hypothesis that GCMN represent a superimposed mosaic 



 

 

manifestation of a polygenic trait. Cases of GCMN are very often associated with 

multiple smaller melanocytic nevi involving the entire body, some congenital and 

some acquired during early childhood. These small nevi should no longer be termed 

“satellite nevi”, but Dr. Happle would rather call them “disseminated background 

lesions”. At an early developmental stage, loss of a wild-type allele or a postzygotic 

mutation at a predisposing gene locus may give rise to a segmental distribution of 

descendant cells, on an inherited background of the same or an additional 

predisposing gene locus. The proposed concept would predict that family members of 

patients with GCMN should show increased numbers of small melanocytic nevi, but 

this question has so far not been investigated systematically, although some 

epidemiological work hints at this result (Danarti et al. 2003). In addition, the 

distinction between small and GCMN, and congenital and acquired, may not be so 

much at the level of the type of mutation but rather a question of its timing in the 

melanocyte lineage. 

 

Veronica Kinsler (London) discussed phenotypic and genetic characteristics of 

patients with GCMN. More than a third of affected individuals present with positive 

family history of any sized CMN, and 10% with a family history of adult-onset 

melanoma. The comparison of a cohort of 222 patients with two independent control 

cohorts showed that children with GCMN and their parents exhibit certain phototypic 

characteristics (red hair and freckling in patients and first-degree relatives) 

significantly more often than the control groups. Accordingly, children with GCMN of 

over 60 cm diameter projected adult size, which largest size category covaries with 

the presence of more than 50 additional disseminated nevi, demonstrated highly 

increased frequencies of common variant alleles in MC1R. These alleles were not 

confined in a mosaic pattern to nevus skin, implying a predisposing rather than a 



 

 

cumulative somatic event in this cohort. At the phenotypic level, the examination of 

facial features in children with GCMN by experienced dysmorphologists showed 

interobserver confirmation of typical facial characteristics. Moreover, Dr. Kinsler 

presented as yet unpublished results that indicate changed hormone levels in some 

children with GCMN, correlated with effects on longitudinal growth, body mass index 

and premature thelarque (onset of breast bud growth in girls) in certain individuals. 

Taken together, the results presented show a tendency to other measurable 

phenotypic traits in the GCMN patient population, all potentially caused by the same 

underlying genetic variations, and leading to the proposal of the term “CMN 

syndrome”. 

Clinical management of GCMN and melanoma risk 

In a comprehensive kickoff lecture, Ashfaq Marghoob (New York) asserted that there 

is insufficient evidence in the literature to recommend strongly for or against surgery 

on the basis of risk for developing melanoma. While the main impetus for the 

prophylactic excision of GCMN stems from the knowledge that the relative risk for 

developing melanoma in GCMN is high, the absolute risk for developing melanoma in 

association with GCMN is low (range, 0-10%, thought to be somewhere in the 

middle). Each GCMN patient requires a tailored management plan based on the size, 

thickness, nodularity and location of the nevus, as well as on its potential 

psychosocial impact and the age of the person seeking treatment (J. Slutsky et al. 

2010). Aspects of all these recommendations were taken up and discussed by many 

of the following speakers and audience members throughout the meeting. Dr. 

Marghoob recommended palpation for the detection of tumors in the deep layers of 

the skin that are not detectable through dermoscopy, and brought up the provocative 

observation that as yet, there have been no reports of malignant melanoma in 



 

 

“satellite” (disseminated) CMN. As far as other intralesional tumors, he reports cases 

with diagnosed rhabdomyosarcoma, melanosarcoma/-blastoma, spindle cell or 

nevoid carcinoma, and one associated with neuroblastoma. Absolute risk for 

neurocutaneous melanocytosis as well as oncogenic associations increases with 

CMN size and the numbers of disseminated nevi in a linear, rather than a 

dichotomous, fashion.  

For those patients opting for surgical intervention, the treatment should attempt to 

reduce the risk of developing cutaneous melanoma while simultaneously optimizing 

aesthetic and functional outcomes.  Dr. Marghoob discussed work in preparation for 

publication in which three-quarters of respondents preferred their surgical scar over 

their original nevus because the scar was felt to be more socially acceptable, but 

urged the audience to also assist the other quarter of their patients who regretted 

surgery by associating psychological accompaniment with the management plan.  

 

Alon Scope (Sheba) focussed on the use of non-invasive, in vivo imaging techniques 

in the evaluation of pigmented skin lesions for the early detection of melanoma. 

Dermoscopic structures that can be observed within CMN include milia-like cysts, 

terminal hair, perifollicular pigmentary changes, globules and network-like areas. 

Reflectance confocal microscopy (RCM) allows the examination of skin lesions at a 

cellular-level resolution. With dermoscopy and RCM, effective imaging depth is 

limited to the papillary and upper reticular dermis and thus these methods are 

recommended for the evaluation and monitoring of small to medium CMN that are 

relatively flat and superficial (Brooks et al. 2011). In larger CMN, particularly ones that 

are elevated, thick or nodular, dermoscopic and RCM evaluations are less likely to be 

informative. Nonetheless, these techniques allow the dermatologist to undertake a 



 

 

kind of gross pathology at the bedside and avert unnecessary surgical interventions 

for many cases. 

 

One precondition for a proper assessment of GCMN-associated melanoma risk and 

characteristics is to compare with the full range of melanomas from a similar age 

group. Sven Krengel (Lübeck) summarized current knowledge about childhood 

cutaneous melanoma (ChM). The incidence of ChM is 3 per million per year for 

children under the age of 14, and 2 per 100,000 per year for adolescents between 15 

and 19 years of age (SEER database). For comparison, adults in northern latitudes 

have incidences of 12-15 per 100,000 per year. Clinically, ChM - unlike the prevailing 

adult superficial spreading type - often present as nodular, pedunculated, or 

amelanotic lesions, sometimes simulating pyogenic granuloma. Diagnostic 

uncertainty is worsened by the fact that the histological demarcation from Spitz nevi 

is notoriously tricky. Lymph node metastasis is more frequent in children and may 

occur in cases of atypical, but often benign pediatric melanocytic tumors. Regarding 

overall survival, children with melanoma starting before puberty generally have a 

better prognosis than older children. Only 20% of ChM develop in contiguity to a 

congenital nevus, and only 3% are intralesional to a GCMN. Melanoma in GCMN 

tends to arise from deeper tissue layers and often presents with a dedifferentiated, 

small-cell type histomorphology (“melanoblastoma”) (Krengel, Hauschild & Schäfer 

2006). Dr. Krengel presented preliminary results from a systematic literature review 

indicating that fatal melanomas in GCMN predominantly arise in early infancy 

(median, 2 years), and mostly affect children with multiple disseminated nevi. 

 

Proliferative nodules in GCMN are rapidly growing masses that clinically and 

histopathologically simulate melanoma. Jürgen Bauer (Tübingen) reviewed the 



 

 

patterns of chromosomal aberrations occurring in proliferative nodules associated 

with melanocytic lesions. As demonstrable by comparative genomic hybridization 

arrays using DNA from paraffin-embedded tissue (a technical advantage over 

karyotyping of biopsies), proliferative nodules mostly show only numerical aberrations 

in atypical cellular foci. Melanoma, on the other hand exhibits complex profiles with 

both numerical and structural abnormalities. In comparison, Spitz nevi display typical 

numerical aberrations only in particular chromosomes. The combination of 

histopathologic and cytogenetic criteria represents a highly specific means to 

distinguish proliferative nodules in GCMN from nevus-associated melanoma (Bastian 

et al. 2002). 

 

Alain Taïeb (Bordeaux) presented his perspective on future therapeutic modalities for 

the treatment of GCMN and neurocutaneous melanocytosis (NCM). Spontaneous 

disappearance of pigment cells is observable in certain cases of melanocytic nevi, 

melanoma, and vitiligo. The study of these phenomena may therefore enable the 

development of non-surgical approaches to treating pigmented proliferations. Recent 

evidence suggests that a specific autoimmune/inflammatory response is triggered in 

vitiligo by CD8+ T-cell responses to certain tyrosinase variants (Jin et al. 2010). 

These variants, much like the haptenation of tyrosinase effected by the depigmenting 

agent monobenzone (van den Boorn et al. 2011), enhance immune surveillance, in 

contrast to melanoma-associated variants. This presentation stimulated speculation 

about the role of excess nevomelanocytes in the hair cycle, as follicles can be 

crowded, the cycle accelerated and the terminal hair in CMN of any size, coarser and 

darker. Discussion then turned to the chemotherapeutic use of RAS, RAF or mTOR 

inhibitors in the treatment of neurocutaneous melanocytosis. 



 

 

Neurocutaneous melanocytosis 

Neurocutaneous melanocytosis (NCM) is a rare neurocutaneous syndrome defined 

by the presence of three or more CMN in conjunction with pigmented deposits in the 

central nervous system (CNS), either meningeal melanocytosis or CNS melanoma. 

Yasmin Khakoo (New York) gave us an advance look at her group’s study of central 

nervous system abnormalities in children with NCM. In a retrospective review of NCM 

referrals to the pediatric neurology service at the Memorial Sloan Kettering Cancer 

Center between 2003 and 2010, fourteen NCM patients were identified, of whom 

eight are still alive. Diffuse leptomeningeal deposits or confirmed meningeal 

melanoma were associated with most of the deceased cases. While more than a third 

of the living patients remained asymptomatic at last evaluation, the mean age of 

presentation of neurological symptoms such as epilepsy and hydrocephalus was 

before two years of age. Other observations in these NCM patients include a Dandy 

Walker malformation, a benign spindle cell tumor, dorsal arachnoid cysts (three 

patients who have been asymptomatic and stable over time, but are under three 

years old), and three patients with profound developmental delay. NCM can be 

associated with hamartomous-like disruption of the underlying neuronal architecture. 

 

Marcos Tatagiba (Tübingen), in his presentation of neurosurgical approaches to 

melanocytic neoplasms of the central nervous system, highlighted difficulties in 

determining the malignant potential of any given melanocytic tumor of the 

leptomeninges of the brain or the spine (Rades et al. 2001). The neutral 

denomination “meningeal melanocytoma” reflects the spectrum of these tumors of 

intermediate to low malignant potential, somewhere between melanoma and nevus; 

transformation from a named melanocytoma to a malignant CNS melanoma has 

been described. Spontaneous, circumscribed tumors most frequently occur in the 



 

 

posterior fossa, Meckel’s cave, and the thoracic spinal cord, where normal 

extracutaneous melanocytes congregate, and are usually identifiable by magnetic 

resonance imaging due to their melanin content. Neurological deficits are mainly 

caused by compression of neural structures. Whenever possible, complete tumor 

resection should be performed; a video of one such intervention was projected. 

Postsurgical radiation therapy is strongly recommended based on a retrospective 

review of all published cases. 

Surgical options for GCMN treatment 

Newly developed surgical techniques used for large skin defects after severe burn 

wounds, as well as reconstructive procedures after burns, can partially also be 

applied to children with giant congenital nevi. Clemens Schiestl and Thomas 

Biedermann (Zürich) in their joint talk, presented recent developments from their 

multidisciplinary team in skin tissue engineering. The application of a sophisticated 

two-layered autologous skin substitute to children with burn wounds is at an 

advanced stage of clinical testing. It presents the advantages of a non-cross-linked 

collagen hydrogel dermal equivalent, which is rapidly revascularized, and growth in a 

custom silicon transplant chamber to obtain particularly large surfaces (Braziulis et al. 

2011). With the help of illustrative cases, advantages and limitations of this method 

for the treatment of children with GCMN were presented. 

 

On a case-by-case basis, complete excision of a GCMN may be impossible. Rainer 

Rompel (Kassel) presented his experience with hundreds of patients for whom 

dermabrasion and/or curettage were safe and effective means to reduce the 

nevomelanocytic load of the epidermis and upper dermis, in order to improve 

surveillance (Rompel et al. 1997). Due to optimal wound healing and incomplete 



 

 

maturation of the skin structure at this age, the procedures are best performed from 

the 6th week of life and completed, if iterative, in the first year. An experienced 

interdisciplinary team of dermatological surgeons, pediatricians, and 

anesthesiologists, is crucial for the success of this method. The ablative Erbium YAG 

laser can be a therapeutic alternative for difficult locations such as eyelids, ears, and 

the genital area. Recurrent pigmentation after dermabrasion is often observed, 

especially in smaller or facial nevi, and in older patients, but is preferable to the 

potential hypertrophic scarring that can accompany deeper ablations. Dermabrasion 

may be combined with full-thickness excisional strategies. Some discussion was held 

about a compensatory effect dermabrasion might induce in remaining nevus cells; 

however, among the handful of reports of melanoma arising in hundreds of 

dermabraded GCMN, they were found between two and twenty years following 

intervention. 

 

Helmut Breuninger (Tübingen) presented results from 60 children with GCMN treated 

by early serial excisions and natural enforced skin expansion. A high tension 

technique (“power stretching”) with intracutaneous double butterfly sutures, after 

extensive loosening of the adjacent nevus-free skin, was developed to close long 

wounds. This surgical procedure takes advantage of the small absolute size and the 

high skin elasticity of the first years of life. For a total of 204 excisions (mean, 3.5 per 

child), a good aesthetic and functional outcome was achieved in most of the cases by 

this sutural reinforcement (Rothfuss et al. 2009). 

 

In his keynote lecture, Bruce Bauer (Chicago) USA, demonstrated his results with the 

use of more than 2,300 tissue expanders in over one thousand patients with GCMN, 

with a follow-up as long as 30 years. This vast experience has led to clear regional 



 

 

considerations in the choice of expander size, flap design, and sequence of 

procedures. Expanded transposition and rotation flaps are preferable over 

advancement flaps for many reconstructions (Bauer & Corcoran 2005). Weekly 

expansion over 11-12 weeks is typical. Using an internal remote port allows 

outpatient filling of the expander(s) in most of the cases, and a case was made for 

parental education and involvement in this procedure. Tissue expansion is the 

“workhorse” treatment modality for scalp and forehead nevi and for GCMN of the 

trunk. Nevi that cross multiple facial units may require combination with full-thickness 

skin grafts or serial expansions. Expansion of the extremities is limited by the 

geometry and the difficulty of moving flaps in an axial direction. In GCMN of the upper 

extremity, large expanded flaps from abdomen/flank/back can provide optimal 

aesthetic and functional treatment. Free tissue transfer, and expanded pedicle flaps 

offer unconventional but effective means of dealing with GCMN of the lower 

extremity. Regulatory restrictions on the availability of certain preferred expanders 

across continents were lamented during the discussion, and osmotic expanders not 

recommended until speed of filling can be better regulated. 

 

Better clinical indicators and diagnostic markers in the future will enable more doctors 

and their patients to be comfortable with the proactive choice of no further surgical 

intervention when the decision is based on risk of transformation. However, 

interventions may still play an important role in the psychological growth of affected 

children. For this reason, an interdisciplinary surgical plan should be broached in the 

first months of life, taking in account all established therapeutical methods. 

 



 

 

Patient and family initiatives in medical research and 
psychosocial management 
 

In her keynote address about the psychosocial situation of children with GCMN and 

their families, Ornella Masnari (Zürich) presented preliminary results from the 

“Stigmatization in children and adolescents with facial burns or birthmarks” project 

(http://bit.ly/Stigma-study). Data were obtained from a cohort of 91 children between 

9 months and 16 years with facial burns, port-wine stains, hemangiomas or GCMN, 

through standardized interviews with 31 affected children and adolescents over the 

age of seven, and from 83 parental reports, using standardized questionnaires. A 

large majority of the interviewed children had received expressions of pity, been 

stared at or drawn unwanted attention, and more than one-quarter reported outright 

hostile behaviour from other children. Parental descriptions of stigmatizing 

experiences encountered by their children underestimated numbers of occurrences, 

but significant associations were found in both child and parent groups between 

social rejection and increasing age or size of the facial lesion, and not with gender. Of 

children who did not report feeling stigmatized, these were better adjusted than the 

norm for age-matched children without facial marks, while fully half of the stigmatized 

children demonstrated behavioural problems. Both physicians and patient 

representatives confirmed these findings after the presentation. They discussed how 

much to adjust the child physically, as opposed to adjusting the psychological support 

provided to parents and indirectly or directly to the children, or to adjusting negative 

attitudes in society at large with media campaigns. In particular, there is currently little 

followup from parents to whom psychological counselling is recommended. Perceived 

control over a birthmark may be less than over a scar due to a medical intervention, a 



 

 

hypothesis concordant with earlier studies. General consensus was that much work 

remains to do in this area. 

Mark Beckwith (Bartlesville) briefly recapitulated the history of Nevus Outreach, Inc., 

of which he is executive director, and introduced the other patient association 

attendees present. Nevus Outreach was founded in 1997 by three families affected 

by GCMN.  Over time it has become arguably the largest and most active patient 

association in the world. Because of the federative actions undertaken by Nevus 

Outreach, more than 60 people with a GCMN themselves or with an affected family 

member attended this conference from 11 different countries and as many currently 

constituted advocacy groups (some countries with more than one, some with none). 

 

The study of rare diseases requires the collaboration of physicians, scientists and 

patients. Disease-specific registries are an important means to better study and 

understand these conditions. Pinch hitting, Dr. Marghoob summarized past cohort 

studies and GCMN registry data published in the literature (Price & Schaffer 2010). 

The progress in GCMN research that has already been made by the evaluation of 

existing registries, and the constraints imposed by the lack of statistical power, are 

strong arguments for the unification of the currently existing databases into a 

collaborative and prospective international GCMN registry.   

 

During the final recapitulation, the patient associations put forth two initiatives: the 

first committing to support and participate in the above-mentioned GCMN/NCM 

registry, and a second agreeing on an Internet-based, multilingual and globally 

accessible GCMN/NCM patient information clearinghouse. This platform will serve 

both as a portal to the registry and provide links to each of the worldwide patient 



 

 

associations, serving researchers, physicians and patients alike; more information will 

be made available meanwhile on the progress of this undertaking on 

http://www.nevus.org. Translations will be initially provided by volunteer scientists and 

doctors in these languages: English, German, French, Spanish, Portuguese, Italian 

and Dutch.  A working group was constituted to standardize the data categories and 

resource links to be included in the new registry, with the goal of inaugurating it by 

the next Expert Meeting, projected to take place in 2013. A first brainstorming session 

will take place on the sidelines of the International Pigment Cell Conference in 

Bordeaux, France, on September 24, 2011. 
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Abstract 

Large and giant congenital melanocytic nevi (CMN) are the rarest types of a proliferative malformation affecting 

the pigment cells of the skin. The phenotypic presentation is highly variable and few reports of familial transmission 

exist. Current models favor a somatic mutational event occurring during at or after the end of the first trimester of 

gestation, within the melanocyte precursor lineage, in a predisposing genetic background. The effect of potentially 

implicated signaling molecules on progenitor neural crest and derivative melanocyte development are discussed. 

Candidates include effectors such as NRAS and BRAF of the MAP kinase pathway, but also other pathways that 

converge on transcription factors critical for either multipotent precursor maintenance or melanocyte differentiation, 

and which may predispose cells to inappropriate proliferation in the central nervous system or at other sites. These 

associated proliferations can lead in a patient-dependent manner to a clinically favorable or fatal outcome. 

Continued exploration of the molecular bases of large and giant CMN development will lead to new tools for more 

accurate prognoses in both isolated and syndromic forms. 

Introduction 

Congenital melanocytic nevi (CMN) are visible melanocytic proliferations in the skin that are present at birth. 

CMN can be light brown to black patches or plaques, potentially very heterogeneous, and cover any size surface 

area and any part of the body. The incidence of CMN seems to be independent of skin color or other ethnic factors. 

Common, small CMN are found in 1-6% of the general population and can be distinguished by non-invasive 

dermoscopy (Brooks et al. 2011) from nevi acquired after childhood. Large and especially giant CMN, of which the 

size classification is defined in other chapters (L/GCMN, OMIM 137550) form a far rarer subset, with prevalence 

estimated at around 0.002% of births (Price and Schaffer 2010).  

Unpigmented tardive congenital lesions can also be present; the emergence of so-called "satellite" naevi 

throughout the first few years of life in conjunction with larger CMN probably reflects the postnatal maturation of 

such precursors, and on occasion a primary CMN can appear in a tardive manner. (“Satellite” is a commonly used 

description of discrete small or medium CMN or tardive nevi in the presence of a large/giant CMN, though 

semantically it is subject to some criticism [Kinsler 2011].) Based on size or even histology, the congenital nature of 

such lesions remains somewhat controversial (Barnhill et al. 2010; Tokuda et al. 2010), despite a certain 

embryological justification. 

The epidemiology and nosology of the giant forms of CMN, at anatomical, histological and molecular levels, 

allow us to evoke testable hypotheses as to the underlying developmental and genetic causes of this malformation 

and of its potential attendant complications. Such complications include neurocutaneous melanocytosis (NCM; an 

excess of pigmented melanocytes within the central nervous system), malignant melanoma, and other hamartoma-

like tumors of various classes. When considering non-random associations with certain other congenital 

malformations, it may be more appropriate to discuss apparently isolated versus syndromic forms of large CMN 

(Krengel et al., 2011).  



Histology of normal and CMN skin 

Human skin is made up of two distinct compartments, the epidermis and dermis, which are normally separated by 

a basement membrane. The epidermis, derived from the ectoderm, ensures a semi-permeable barrier function with 

the extracorporeal environment. It contains adnexa that develop from specialized areas of epithelial thickenings 

called placodes into hair follicles, sebaceous and sudoriferous glands. These become embedded into the dermis and 

the underlying adipose hypodermis as the skin develops prenatally and matures postnatally, in such a way that the 

continuous epidermis, made of a highly stratified succession of keratinocyte lipids and extracellular proteins, folds 

and buckles. The dermis is an innervated and vascularized connective tissue, made up of fibroblasts, which secrete 

the collagen and elastin fibers, as well as other proteoglycan elements of the amorphous matrix in which all these 

elements are embedded.  These extracellular elements confer local mechanical properties to the organ as a whole. 

This layer also plays an important role in the homeostasis of the overlying epidermis. 

Normally, melanocytes are distributed around the base of epidermal annexes, most numerous at the base of the 

hair follicles, and in humans, in the basal layer of the interfollicular epidermis, where the keratinocytes self-renew 

(Fig. 1a). Within the epidermis, melanocytes assume a dendritic morphology with their cell membranes in contact 

with an average of thirty keratinocytes, independent of skin phototype. The normal melanocyte will produce 

membrane-bound vesicles containing eumelanin (black) or pheomelanin (red) in varying proportions depending on 

genetic background. These vesicles, known as melanosomes, are conferred on specific recipient keratinocytes 

(Weiner et al. 2007) whereby they are protected from UV and oxidative damage (Im et al. 1998). Most of the 

pigment in mature skin as seen in a histological section is in the recipient cells, rather than in the melanocytes 

themselves. 

In contrast, small CMN show nests or large aggregates of self-pigmented nevomelanocytes (the abnormally 

proliferating counterpart of melanocytes), mostly in the upper third or papillary portion of the dermis. These 

aggregates are often grouped around hair follicles and sweat gland ducts, adopting a “single file” pattern when seen 

in section. Small CMN can histologically appear similar to (postnatally) acquired compound or intradermal 

melanocytic nevi. In contrast, larger CMN show nests not only at the epidermal-dermal junction, but often within 

deeper tissues, including the reticular dermis, subcutaneous fat, muscle fascia, and around vessels and nerves 

(Krengel et al. 2006; Miller 2004) (Fig. 1b, c).  

A pachydermatous, rugous clinical appearance is imparted by the massive growth of nevus cells (the deeper ones 

of which are generally not self-pigmented), pilosebaceous adnexa and partly disorganized dermal elements in a 

“hamartomatous” distribution. These areas are frequently associated with bundled, fibrous neuroid structures that 

have been referred to as Wagner-Meissner-like bodies or lames foliacées, and are more often observed in larger 

CMN specimens (Fig. 1d).  Some authors have historically referred to this aspect as “neurotized”. Growth of coarse, 

highly pigmented terminal hair in CMN areas and their distributed nevi is frequently encountered, with follicular 

crowding. Other epidermal adnexa may but do not systematically develop or function normally (Slutsky et al. 2010), 

which can be associated with clinically refractory eczema and pruritis (Lovett et al. 2009). 

Neural crest migration and differentiation  

Both isolated and syndromic forms of CMN involve anomalies in the development, growth or differentiation of 

derivatives of the neural crest cell (NCC) population (Etchevers et al. 2006). NCC constitute a transitory stem cell 

population that arises in the human embryo between the third and fourth weeks of pregnancy. During the fusion of 

the neural folds, a process that gives rise to a tube that will itself later become the central nervous system (CNS), 

NCC detach by undergoing an initial epithelial-mesenchymal transition (EMT). They migrate throughout the body, 

integrating into nearly every tissue. Over successive divisions, neural crest stem cells give rise to a mix of 

progenitors with varying degrees of potential to become any or some or a single NCC derivative, depending on both 

intrinsic and extrinsic variables (Dupin 2011; Thomas et al. 2008; Trentin et al. 2004). 

 Like all cellular components of the peripheral nervous system, the adrenal medulla, skeletal elements, dermis 

and vascular smooth muscle of the face, forebrain meninges and many other cell types, melanocytes are derived 

from NCC (Le Douarin and Kalcheim 1999). Their unpigmented precursor melanoblasts disperse evenly within the 

mesenchymal dermis and then home to the developing basal keratinocyte layer in human epidermis, whereupon they 

continue to proliferate, self-renew, and differentiate (Wilkie et al. 2002). Both melanoblasts and melanocytes also 

persist and differentiate into self-pigmented cells in a number of other sites including the meninges and heart valves, 

without seeming to interfere with organ function (Yajima and Larue 2008). This phenomenon may explain 

associations between nevi and other complex malformations involving these organs. 



 

The precise developmental timing of the transitions from highly multipotent precursors to restricted progenitors 

to unpigmented melanoblasts has not been determined. (Much more work has been done on the production of 

melanosomes, because of the many forms of albinism that interfere with these last steps of melanocyte 

differentiation, but such work is beyond the scope of this review.) Different cell types co-exist or persist as a 

function of the moment and the environment examined (dermis, nerve sheath or small blood vessels, epidermal 

adnexa, glabrous epidermis, interfollicular epidermis) (Lu et al. 2010; Steel et al. 1992).  

What appear to be fairly constant are the sequence of transitional events and the remarkable evolutionary 

conservation of molecules involved in melanocyte differentiation throughout the vertebrates. Therefore, fish, 

amphibian, avian and multiple mammalian models have all made their useful contributions to understanding the 

signals involved in expansion of the melanocyte progenitor pool during development, its maintenance during 

postnatal life, and terminal differentiation in distinct epidermal compartments. In the mouse embryo, which has long 

been a favored animal model for pigmentation studies, it has been demonstrated that only a few ancestral neural 

crest cells along the body axis are sufficient to give rise to the many thousands of precursors that eventually seed the 

entire surface of the skin (Mort et al. 2010; Thomas and Erickson 2008). 

NCC contribute most visibly to the structure of the skin in their melanocytic progeny, but other cutaneous cell 

types are also derived from NCC. The dermis of the face, scalp and neck, as well as the underlying hypodermic 

adipose tissue, and the cells supporting the arrector pili muscles and accompanying the outer walls of blood vessels 

in these locations differentiate from cephalic NCC (Etchevers et al. 2001; Le Douarin and Kalcheim 1999). Merkel 

cells, a widely distributed mechanosensory receptor type, have been proven after years of controversy and indirect 

evidence of ectodermal origin to in fact derive from NCC, taking a similar route to maturation as melanocytes 

through the maturing dermis (Szeder et al. 2003). Multiple cell types have been shown to be able to differentiate 

from a highly multipotent NCC pool that was initially identified and characterized from the root (bulge) of whisker 

follicles in the rodent model (Sieber-Blum et al. 2004), and recently has been found to also persist in adult human 

epidermis at the base of hair follicles from the ventral abdomen (Clewes et al. 2011). In culture, such cells can be 

induced to express markers typical of glia, melanocytes, cartilage, osteocytes, myofibroblasts, neurons or adrenal 

cells. 

Painstaking work with single-cell clonal cultures of early neural crest established that as soon as NCC can be 

morphologically distinguished from the neural tube, they are equally heterogeneous in their differentiation potential. 

Initially, most but not all are highly multipotent. Rapidly, though, certain lineages were distinguished – among them, 

a common progenitor of peripheral neurons, neural support cells such as myelinating Schwann cells (glia), and 

melanocytes, were identified in both chick and rat embryos (Baroffio et al. 1991; Rao and Anderson 1997). It is 

possible over time to isolate cells that have acquired what appears to be a differentiated phenotype among these and 

to “dedifferentiate” them in culture, such that they divide and some of their progeny will become other derivatives 

among the potential cells coming from the same initial precursor. Glial-melanocyte precursors can self-renew and 

the successive generations of cells continue to give rise to either glia or melanocytes without commitment (Trentin 

et al. 2004).  

Even more strikingly, adult Schwann cells or melanocytes can be induced by the application of a growth factor, 

endothelin-3 (EDN3, discussed below), to revert to such a bipotent precursor. Thereby, after cell divisions, the 

apparently differentiated cell type can continue to engender new melanocytes or Schwann cells after exposure to this 

environmental stimulus (Dupin et al. 2000; Dupin et al. 2003). More recently, peripheral nerves of both chick and 

mouse were shown to represent a pool of naturally maintained precursors for both Schwann cells and melanocytes, 

and those Schwann cells on peripheral nerves that have already begun myelination can be diverted to a melanocyte 

fate by severing the nerve’s provision of a glial growth factor (Adameyko et al. 2009).  Even adult human 

melanocytes in culture can readily be induced to acquire characteristics of their embryonic precursors and to express 

markers of multipotent cells (Kormos et al. 2011). 

Human NCC in the embryo share a surprising 95% of their transcripts with embryonic stem cells, which are 

pluripotent and can give rise to all cell types of the body (including the NCC derivative subset)(Thomas et al. 2008). 

Maintenance of partial stem cell-like potential, or developmental plasticity, appears to be a more general property of 

many of the postnatal progeny of NCC (Real et al. 2005) and may explain the particular sensitivity of NCC 

derivatives to misdirected differentiation or pediatric tumor development (Etchevers et al. 2006). NCC-derived 

progenitors, expressing such developmental plasticity and capable of becoming melanocytes among other cells, have 

only in the last few years been demonstrated to persist throughout life in amniotes. They can be found, among other 

sites, along peripheral nerve sheaths traversing the dermis to innervate the skin (Adameyko et al. 2009), within 



glabrous dermis (Li et al. 2010), and at the base of regularly spaced hair follicles in both facial and body locations 

(Clewes et al. 2011). 

Molecular signaling pathways in melanocyte differentiation and pathology 

Remarkably, the signaling cascades that are involved in melanocyte differentiation, maintenance and proliferation 

are widely used in nearly all organ systems during development. They are once again co-opted in the onset and 

growth of an equally wide variety of tumors and cancers. Because the literature is extensive on the implications of 

these molecules in other systems, hypotheses are straightforward to formulate but less commonly tested as to their 

precise roles in how nevi and melanoma may form, and hardly examined at all for melanocytosis of the central 

nervous system or the growth of hamartoma-like tumors within congenital nevi. 

 
The RAS/MAPK pathway: a unified field theory of development and tumorigenesis? 

The Noonan, cardio-facio-cutaneous, and Costello syndromes are complex congenital syndromes with significant 

phenotypic overlap (Aoki et al. 2005; Aoki et al. 2008). As a class of diseases, each demonstrating genetic 

heterogeneity, they have nonetheless all been found to be caused by autosomal dominant germline mutations of 

molecules necessary for signal transduction from the membrane to the nucleus of the developing and surviving 

melanocyte. Such mutations, by altering the conformation of the resultant enzyme, lead in different ways to excess 

phosphorylation of the ubiquitous ERK1 and ERK2 kinases, in cellular in vitro assays (Niihori et al. 2006; 

Rodriguez-Viciana et al. 2006). At this point, nuclear-translocated ERK1/2 can permanently phosphorylate and 

activate many other protein targets, which though context-dependent can include such transcription factors as MYC, 

involved in the maintenance of the undifferentiated state, or indirectly, CREB, mentioned below. 
This remarkable convergence of nosologically related diseases on one complex, functional signalling pathway 

has led to the proposal of the term “RAS/MAPK syndromes”, to refer to them as a group and to take into account 

their genetic and phenotypic overlap (Aoki et al. 2008). In addition to malformations of craniofacial and cardiac 

neural crest derivatives, the RAS/MAPK syndromes present all pigment anomalies, including dark skin, woolly or 

curly hair, multiple lentigines or café-au-lait spots. Neurofibromatosis 1, also distinguished by multiple café-au-lait 

spots, can occur in conjunction with Noonan syndrome. The causative gene of neurofibromatosis-1, NF1, normally 

also represses RAS enzymatic activity and likewise impacts this pathway (Fig. 2). Inactivation of Nf1 specifically in 

murine Schwann cell progenitors not only favors the development of dermal neurofibromas along peripheral nerves 

but in a significant proportion of cases, either the tumors or the dorsal spinal cord are heavily pigmented – an 

underappreciated potential model for neurocutaneous melanocytosis (Wu et al. 2008). 

 “RAS/MAPK” is a catch-all group term to refer simultaneously to a number of proteins known by the acronyms 
of PTPN11, KRAS, HRAS, NRAS, BRAF, RAF1, SOS1 and MEK1, for those that have been already demonstrated 
to cause human pathology through germline mutations to date. There are many others that are integral components 
of the cascade; for instance, the RAFs come in ARAF, BRAF and CRAF. Many of these enzymes are tyrosine 
kinases, adding covalent modifications to the tyrosine residues of other proteins. They belong to larger families of 
kinases that are highly similar in sequence and structure to one another both across species during evolution and 
within a given organism. Each of these families of related proteins constitute additional candidate genes for disease 
in an appropriate context. 

Reproducible somatic mutations (hotspots) in the BRAF gene, leading to demonstratedly increased kinase activity 

of the resultant protein, are involved in diverse cancers, malignant melanoma in particular (Davies et al. 2002). 

Surprisingly, the same mutations can be found in a number of non-congenital ("acquired") nevi (Pollock et al. 2003). 

In this pioneering study, some 9% of benign nevi demonstrated heterogeneity at the single cell level in the same 

tumor, with coincidence of NRAS and BRAF mutations (Pollock et al. 2003). However, among melanomas, such 

mutations are mutually exclusive and give rise to different phenotypes, with NRAS-mutated cells proliferating more 

and BRAF-mutated cells presenting more invasive capacity (Sensi et al. 2006). This heterogeneity at the cellular 

level has been confirmed for CSPG4-expressing melanoma cells by another group, who stated recently  that 

“precancerous melanocytes already harbouring an unknown first hit may subsequently acquire multiple driver 

mutations; thus, the acquisition of BRAF mutation might be one of these secondary events”  (Lin et al. 2011). The 

single-cell analysis bore out former observations that BRAF mutations are less present in early-stage melanoma and 

the conclusions that such mutations would therefore not be the predisposing cause (Dong et al. 2003). 



Indeed, a specific examination of the prevalence of BRAF and NRAS mutations in confirmed congenital nevi of 

any size, found no BRAF mutations at all in 32 samples, but hotspot, activating NRAS mutations (codon 61) in 26 of 

them (Bauer et al. 2007). This finding was borne out by another study concentrating on large/giant CMN, again 

demonstrating frequent activating mutations in NRAS (70%), but also finding less frequent BRAF mutations at the 

same hotspots as in melanoma (15%) and a few chromosomal rearrangements at the BRAF locus (7.5%, of a cohort 

of 27) (Dessars et al. 2009). One case had a deletion of most of the long arm of chromosome 6 in addition to an 

activating NRAS mutation. While the BRAF mutations may have been acquired postnatally, as postulated by Bauer 

et al. (Bauer et al. 2007), it is striking that they occur only within large/giant CMN that do not already have an NRAS 

mutation, implying some functional redundancy in their effects on melanoblast proliferation and CMN growth that 

is distinct from their roles in carcinogenesis. 

RAS and RAF molecules are positioned at a cytoplasmic signal transduction bottleneck where multiple 

extracellular stimuli effect changes in levels of gene transcription, or directly promote migration or proliferation 

(Fig. 2). Context-dependent effects of their inappropriate activation may be what lead either to congenital nevus 

formation or to tumor development.  

One hint that this may be the case is that deeper melanocytic proliferations in the dermis (so-called “blue” nevi), 

internal organs, uvea or central nervous system tend to have activating mutations in a gene known as GNAQ 

(Küsters-Vandevelde et al. 2009; Van Raamsdonk et al. 2009). GNAQ, discussed more below, codes for a signal 

transduction protein subunit that has been found to activate the MAPK pathway in melanocytes, in addition to its 

more canonical role in cyclic AMP production and activation of the CREB transcription factor (Fitch et al. 2003; 

Van Raamsdonk et al. 2004). In addition, certain cases of NF1 present large cutaneous lesions that resemble 

large/giant CMN (Schaffer et al. 2007; Wu et al. 2008). Conversely, some large/giant CMN patients demonstrate 

cafe-au-lait macules or neurofibromas highly typical of neurofibromatosis, arguing for infrequent impingement on 

nevus development through the loss of NF1 repression of RAS/MAPK signaling (Fig. 2) (Bett 2006; Kinsler et al. 

2008; Reyes-Mugica et al. 1993)  Large/giant CMN can feature extensive neuroid morphology (Fig. 1d). 

Although it is unclear how RAS/MAPK signal transduction might participate in human nevogenesis, some 

animal models of CMN development are genetic mutants in this pathway. Overexpression of Hras specifically in 

mouse melanocytes led to their massive proliferation in both epidermis and dermis, with blue nevus-like 

accumulations, as well as in the meninges, ocular tissues including the uvea, and within the inner ear – where 

hamartoma-like development of the naturally occurring melanocytes led to malformation of the cochlea (Powell et 

al. 1995). In murine melanocytes, activating mutations of Nras induces proliferation but does not induce 

immortalization without the intervention of mutations in other gene products, notably transcription factors (Delmas 

et al. 2007). 

The activating mutation of Braf found most frequently in human pigmented lesions (V600E) has been forcibly 

expressed in zebrafish melanophores, under the control of the promoter for the highly conserved microphthalmia-

associated transcription factor, MITF (also responsible for Waardenburg syndrome; see below). While wild-type 

Braf did not change the fish coloration, the activated form led to the appearance of nevus-like clusters of pigment 

covering large areas of up to 40% of the body surface (Patton et al. 2005).  

Genetic crosses of these fish with those deficient in the tumor suppressor transcription factor p53, also discussed 
briefly below, led to the development of aggressively invasive melanoma in half of the double mutants (Patton et al. 
2005). Primary human melanocytes, transformed with the SV40 virus to induce a similarly malignant melanoma 
phenotype, re-activate a latent molecular program that reflects the capacity of their progenitors to migrate and 
disseminate. These findings dovetailed with the fact that a similar set of genes, associated with the epithelio-
mesenchymal transition of NCC, can be found expressed in benign melanocytic nevi. Such expression may explain 
the ability of histologically normal melanocytes to home to the axillary, cervical and inguinal lymph nodes, outside 
of any metastatic behavior (Gupta et al. 2005). Unsurprisingly, sentinel lymph nodes positive for melanoma 
dissemination are notoriously unreliable as an indicator of tumor aggressiveness and potential for distant metastases 
of early pediatric, as opposed to adolescent or adult, melanoma (Barnhill et al. 2010; Moore-Olufemi et al. 2011). 

At the cell surface – signal transduction through protein receptors and their ligands 

Tyrosine kinase receptor ligands: KITL, HGF, FGF, EGF 
 

Environmental growth factor sensors, among which tyrosine kinase receptors (TKRs), lie upstream of the 

RAS/RAF proteins and their partners. TKRs all share the following physical characteristics: they weave in and out 



of the lipid membrane seven times and at their cytoplasmic tail, they display enzymatic activity which 

phosphorylates tyrosine residues on target intracellular effectors, launching a cascade of modifications that finishes 

in an effect on the availability or processing of mRNA or other proteins. The constitutive activation of many of these 

receptors, even in the absence of ligand, has been implicated in the onset of melanoma, recapitulating in an 

inappropriate context an embryonic program for proliferation, migration and fate restriction (Easty et al. 2011). 

 

The survival and migration of embryonic melanocytes is dependent on their expression and the engagement of 

the TKR Kit, as well as on the keratinocyte-specific expression of Kit-ligand (KitL), also known as stem cell factor 

or SCF (Wehrle-Haller 2003). In addition to a critical role in melanocyte maintenance throughout life, Kit is also 

essential for the survival and expansion of hematopoietic and gamete stem cells. Mouse mutants for Kit are deaf 

from the loss of melanocytes from the stria vascularis of the inner ear, can be anemic, sterile, and their coats, on a 

black background, display large white patches known as spots, which gave rise to the original “W” denomination, 

for white-spotting (Dunn 1937). Transgenic over-expression of KitL in the basal layer of the mouse epidermis 

results in a hyperpigmented phenotype, with increased densities of melanocytes localized at the basal keratinocyte 

layer (Kunisada et al. 1998; Kunisada et al. 2000). Moreover, injection of soluble KITL into human skin xenografts 

increases the number of melanocytes, while the inhibition of the KIT/KITL pathway by blocking antibodies results 

in the loss of melanocytes (Grichnik et al. 1998). These data demonstrate that the KIT signaling pathway is active 

even in adult human skin and critical for the survival of melanocytes in the epidermis, or perhaps their production 

from resident, quiescent melanoblasts, for example during the hair cycle.  

In skin of café-au-lait macules of NF1 patients, more soluble KITL is secreted by dermal fibroblasts than for 

control skin, and KIT-expressing, unpigmented melanocyte precursors are also more numerous in this compartment 

(De Schepper et al. 2006). Because the balance between secreted and membrane-bound isoforms of KITL seems to 

play an important role in the migration, adhesion and continued survival of melanoblasts and melanocytes (Paulhe et 

al. 2009; Wehrle-Haller 2003), altering that balance pharmacologically may be a promising therapeutic avenue for 

many types of melanocytosis, including those associated with large/giant CMN. 

 

Exploration of the roles that hepatocyte growth factor (Hgf) and its receptor, Met, play in development led to the 
first animal model of neurocutaneous melanocytosis. In the earliest transgenic mice, in which HGF was 
overexpressed in all cells of the body (Takayama et al. 1996), pigmented melanocytes accumulated ectopically at the 
interfollicular epidermal-dermal junction and throughout the dermis, at stereotyped locations on the limbs, muzzle, 
belly and tail, and all over the back. Simultaneous melanocytosis developed in the meninges, visible at the dorsal 
spinal cord at postnatal day (P)4, subsequently engaging the cerebellum at P8, and by adulthood massively engaging 
the meninges of the forebrain. Melanocytes were also observed, unusually, in the lymph nodes, and even more 
unusually, skeletal muscle differentiated within the central nervous system. 

A subsequently refined murine model demonstrated that the cutaneous phenotype could be induced by secretion 
of Hgf by the epidermis alone, though normally it is also produced by murine dermal fibroblasts. Targeting Hgf 
overexpression to epidermal keratinocytes with a keratin-14 promoter drove dermal melanocytosis – again, after 
birth, and comprising essentially all of the skin (Kunisada et al. 2000). This demonstrated the paracrine action of 
Hgf on Met-expressing melanocyte precursors. Interestingly, most of the ectopic cells did not co-express Kit at a 
time when normal melanoblasts and melanocytes usually have this receptor as well. Unlike those mice in which Hgf 
was overexpressed in all cells including melanocytes, the many hyperpigmented mice due to epidermal 
overexpression never developed spontaneous melanomas. Cell-autonomous activation of a downstream effector 
common to these pathways could be responsible for localized melanocytosis during development. 

The pleiotropic roles of KITL/KIT and HGF/MET in human cancers affecting the liver, breast or lung translate 

the complexity of characterizing their stimulation of cellular proliferation and fate decisions both during 

development and out of context in the adult. Interestingly, the melanocyte, unlike the epidermal keratinocyte, is 

naturally possessed of a tendency, after neoplastic transformation, to home to the liver and lymph node, among other 

sites (Gupta et al. 2005). This migratory tendency is a vestige of its embryonic origin and the homing sites may 

reflect the normal importance of MET and KIT signaling in the development and growth of these organs. 

 

Summarizing the many roles of over two dozen members of the fibroblast growth factor (FGF) family and its 

four alternatively spliced receptors in neural crest and skin development and homeostasis is far beyond the scope of 

this chapter. However, these are canonical RAS/MAPK cascade-activating receptors that also result in ERK1 and 



ERK2 phosphorylation at the level of the nucleus, with subsequent changes in target gene transcription (Easty et al. 

2011). 

For example, the dermal papilla of hair roots expresses FGF7 protein (Rendl et al. 2005), just below the site of 

terminally differentiated melanocytes that color the hair shaft during the anagen phase. Melanin-receiving 

keratinocytes secrete more FGF2 than their immediate neighbors, which presumably either exerts an effect on 

melanocyte dendritic pathfinding to effect specific epidermal pigment patterns, or potentially on the transfer of 

melanosomes (Weiner et al. 2007). Low concentrations of FGF2 are also a common adjuvant in melanoblast, 

embryonic stem cell and NCC media for the maintenance of multipotency and cell divisions (Motohashi et al. 2009; 

Sviderskaya et al. 2009; Thomas et al. 2008) 

Interestingly, it has been shown recently that Fgf2 promotes uncommitted primary NCC to differentiate into 

Schwann cells in vitro, while epidermal growth factor (Egf) favors the differentiation of neurons and melanocytes 

(Garcez et al. 2009). Both are often added for propagating a number of progenitor cell types, and were shown by 

Garcez et al. to prevent the differentiation effect of the other to maintain bipotent glial-melanocyte cells, a situation 

possibly encountered by dermal melanoblasts or nerve sheath cells – or the nerve sheath cells that subsequently 

become dermal melanoblasts (Adameyko et al. 2009).  

Egfr, like many of the other TKRs mentioned above (Kit, Met), acts through more than one signaling pathway on 

transcriptional events. Egfr responds to more than one ligand, Egf only being the most important of them, and Egf 

can engage any of three other Egfr-like receptors, known respectively as ErbB2, -3 and -4, stimulating them to form 

homo- or heterodimers. Indeed, glial growth factor, or neuregulin, is normally produced by peripheral nerves to 

maintain ErbB3-expressing Schwann cells, ErbB3 being the preferred receptor for this ligand (Adameyko et al. 

2009). ErbB3 is expressed by both keratinocytes and melanocytes in the differentiated epidermis, while a number of 

potential ligands are secreted by proliferating progenitors in the basal portion of the epithelium (Poumay and Mitev 

2009). It would be interesting to test whether stimulation of ErbB3 prevents the engagement of Egfr homodimers 

and vice-versa in bipotent glial/melanocyte progenitors. 

A better-known role for Egfr signaling is its requirement in mature keratinocytes in the basal layer of the 

epidermis. One of numerous mouse models with unusually dark skin, known as Dsk5, carries a mutation that causes 

excess phosphorylation of the Egfr upon ligand binding, leading first to hyperkeratosis and then to excess 

pigmentation during adult life (Fitch et al. 2003). Large acquired melanocytic nevi can develop in conjunction with 

recessive forms of the human genetic disease known as epidermiolysis bullosa (Bauer et al. 2001), where 

dysfunctional collagens fail to keep the epidermis in contact with the dermis. In both situations, melanocytosis was 

induced by postnatal stimuli. 

EGFR binding can lead to cleavage and shedding of the part of the MET receptor that projects from the 

extracellular side of an adenocarcinoma cell model, through tyrosine kinase activity and activation of secreted 

proteases (Nath et al. 2001). It remains to be demonstrated, but appears likely, that integration of such cell signaling 

events is relevant to the maturation of pigment cells in the basal layer of the epidermis. 

G-protein-coupled receptors: KIT, EDNRB, EDNRA 
Kit, as well as a number of receptors that convey lipid- or hormone signals, can associate with G proteins 

anchored to the underside of cell membranes. The conformation of these multi-unit complexes changes upon 

receptor binding and the release of energy associated with the catalytic transfer of a phosphate group away from the 

nucleotide derivative guanosine triphosphate (GTP), yielding guanosine diphosphate (GDP). In this way, G proteins 

act as molecular switch gate-keepers, converting binding of a ligand into a binary on/off signal within the cytoplasm 

and raising intracellular cyclic adenosine monophosphate (cAMP) levels by stimulation of adenylate cyclase.  

Oncogenic activating mutations in the KRAS, HRAS, NRAS molecules lead to the suppression of their GTP 

cleavage activity, locking them “on” and stimulating targets downstream of both G-protein-coupled receptor and 

TKR signaling pathways. The “Phosphatase and Tensin homolog deleted on chromosome 10” gene (PTEN) encodes 

another tumor suppressor enzyme at an intracellular signaling crossroads, which interacts indirectly with the 

RAS/MAPK pathway, and directly with an alternative signaling pathway for Kit not mediated by its intracellular 

kinase activity (Lev et al. 1992). Mutations in PTEN are associated with a broad variety of human cancers. 

Interestingly, mice in which Pten is specifically inactivated within tripotent (neural/glial/melanocytic) NCC 

precursors die of intestinal pseudoobstruction and are hyperpigmented like HGF-overexpressing mice, including 

with olfactory bulb melanocytosis (Puig et al. 2009). 

Perhaps the most important signaling through G proteins for melanocyte development is that of the endothelin 

(EDN) family. Endothelins are a family of three similar, small peptides that were first identified for their 



vasoconstrictive activity and are produced by endothelial cells. EDNs are post-translationally cleaved from large 

precursor proteins. By signaling through either of two receptors in amniotes, they play important roles in the 

homeostasis of many mature organ systems, including the heart and lung, but also in discrete systems during 

development of the nervous system and NCC.  

Edn3 acts through the G-protein coupled receptor, Ednrb. Mutations in either EDN3 or EDNRB that reduce the 

latter’s signaling activity lead to the development of Waardenburg syndrome (WS) type 4. WS4 is the quintessential 

neurocristopathy: a syndromic form of Hirschsprung disease (a form of congenital megacolon due to defects in 

migration, differentiation and survival  of enteric ganglionic precursors during their colonization of the colon) with 

pigmentation and hearing defects due to the non-maintenance of melanoblasts in the skin and inner ear (Bondurand 

et al. 2000). The mutations of genes for essential transcription factors for melanocyte identity and function, that are 

directly activated as a result of Ednrb signaling in NCC, are responsible for other forms of WS and will be discussed 

briefly below. 

The effect of GNAQ activation appears to mimic constitutive Ednrb signaling in melanocytic precursors (Van 

Raamsdonk et al. 2009; Van Raamsdonk et al. 2004). Mutations causing constitutive activation of the G protein 

subunit encoded by GNAQ have been found in the dermal nevi of the “blue nevus” type, but also in uveal 

melanomas – that is, in proliferations of non-cutaneous melanocytes (Van Raamsdonk et al. 2009). This distinction 

is borne out by a similar finding of activating GNAQ mutations in CNS melanocytomas (Küsters-Vandevelde et al. 

2009). An alternative subunit to the one encoded by GNAQ, GNA11, is found to be constitutively activated in many 

metastatic uveal melanomas, but only a few blue nevi (Van Raamsdonk et al. 2010), reminiscent of the 

BRAF/NRAS dichotomy for cutaneous large/giant CMN. 

EDN3 is not the only endothelin with important effects on neural crest development. Edn1, by signaling through 

the Ednra receptor on NCC, has been shown in animal models to be critical for the specification of NCC from the 

neuroepithelium that will later give rise to the CNS (Bonano et al. 2008), and then subsequently for craniofacial 

morphogenesis and particularly the specification of the lower jaw (Brand et al. 1998; Clouthier et al. 2010). 

Mutations in the EDNR signaling pathway could conceivably lead to association of pigmentary with dysmorphic 

features. 

Melanocytes will not only produce more pigment and divide extensively in the presence of exogenous Edn3 in 

vitro or in vivo, but they appear to do so by reverting to a bipotent phenotype and thereafter can also produce glial-

like progeny (Dupin 2000). Ednrb is required for the specification and the dissemination of melanoblasts during 

what is usually a restricted window of development (Shin, Levorse, Ingram, & Tilghman, 1999). However, since 

forced expression of Ednrb is by itself sufficient to direct melanocytic differentiation in non-committed embryonic 

stem cells (Pla et al. 2005), it seems likely that ectopic Ednrb pathway stimulation could lead to new proliferation of 

resident precursors and perhaps to nevogenesis. 

Melanocyte-stimulating hormone 

Alpha-melanocyte-stimulating hormone, MSH, is one of many encoded by the pro-opiomelanocortin (POMC) 

gene (Bicknell 2008). Subtilisin-like proprotein convertases process such neurohormones from a large precursor 

peptide. In this respect MSH is similar to the endothelins. While largely produced by a subsection of the pituitary 

gland, MSH is also made in a tissue-specific manner, particularly by the mature human skin. Part of the spatial 

specificity may be conferred by the localized and dynamic expression of the different processing enzymes. 

Canonical signaling by MSH occurs through the first of the four melanocortin receptors, MC1R. Intracellular 

signal transduction is effected by cAMP (Fig. 2) and results in the activation of the “cAMP response element-

binding” transcription factor (CREB). The release of cAMP by exogenous chemical agents can also provoke 

hyperpigmentation. Other hormone receptors, such as those for estrogen or epinephrine, are not only themselves 

transcriptional targets of CREB in melanocytes, but are also capable of promoting pigmentation through positive 

feedback loops involving G proteins and activating CREB itself (Schallreuter et al. 2008). 

MC1R signaling is what enables the melanocyte to produce additional melanin in response to ultraviolet-B-

induced sublethal DNA damage and to load keratinocytes, which confers some radiation protection by promoting 

tanning. Stereotyped amino acid substitutions within the intracellular domain disable fully effective cAMP 

activation and stimulation of transcription factor availability; these are associated with red hair, freckling and fair 

skin, as well as a higher population risk of developing adult-onset melanoma (Valverde et al. 1996). Intriguingly, 

binding of MC1R can lead to activation of both ERK1 and ERK2 by the transactivation of the KIT receptor, whether 



or not those cAMP-inhibiting variations are present, implying that MC1R may also play a hitherto unsuspected role 

during melanocyte development and differentiation (Herraiz et al. 2011). 

 

Transcription factors: MITF, SOX10, PAX3, CREB, MYB, ETS1/2 

MITF, as mentioned above, is the master transcription factor essential for the assumption of pigmented cell fate -

both for the melanocyte lineage but also for the pigmented epithelium of the retina, a direct derivative of the central 

nervous system. As such, outside of the eye, its expression is considered to be the gold standard for melanoblast 

identity, even when the cells are not yet pigmented. MITF is part of a cascade of transcription factors that regulate 

one another in positive and negative feedback lops. While it affects the melanocyte lineage-specific production of 

both signaling receptors and numerous enzymes involved in melanogenesis, the gene itself is subject to highly 

complex regulation of functionally non-equivalent isoforms from no fewer than nine distinct promoter regions (Hou 

and Pavan 2008). 

Sox10 is a transcription factor with certain DNA-binding modules of the protein that highly resemble the other 

twenty-odd members of the Sox gene family, all involved in cell fate specification and organogenesis . It is critical 

for early NCC development and is again important for survival and differentiation of the glial (Britsch et al. 2001), 

melanocytic (Aoki et al. 2003) and enteric nervous system (Paratore et al. 2001) lineages. 

Pax3, a member of the paired-homeobox transcription factor family, is both a target of CREB and an activator of 

both Sox10 and MITF (Watanabe et al. 1998) transcription, the latter in cooperation with Sox10 (Bondurand et al. 

2000). Similarly, CREB, after MC1R signaling through cAMP, appears to require Sox10 as a co-factor to drive the 

transcription of the melanocyte-specific MITF isoform (Huber et al. 2003). 

Mutations in SOX10, PAX3 or MITF lead to WS types 1-3, in variants with specific features but always 

comprising the pigmentary and secondary auditory phenotype (melanocytes of the inner ear being critical for 

hearing). Because all are transcriptional targets of EDNR signaling, it is not surprising that WS type 4A, with 

additional Hirschsprung disease, can be caused by EDNRB mutations, while WS4B is caused by mutations in its 

ligand, EDN3. Mutations in EDN3/EDNRB can also cause isolated Hirschsprung disease (reviewed in Etchevers et 

al. 2006). 

Remarkably, the same transcription factor genes that with germline mutations lead to WS can be mutated 

somatically in malignant melanoma. Both MITF and SOX10 are mutated in a significant fraction of both metastatic 

melanoma cell lines and primary tumors. While MITF is often amplified in copy number, the mutations in SOX10 

are likely to interfere with its function as a transcriptional activator of MITF (Potterf et al. 2000). 

Among other transcription factors important for melanoblast development, both the Myb and Ets-1 transcription 

factors were found to bind to a promoter element that controls the earliest Sox10 expression in chicken NCC 

(Betancur et al. 2010). Since Myb overexpression increases the presence of Kit in neural crest cells and thereby 

converts them to the melanocyte lineage (Karafiat et al. 2007), coincident signaling through Ras/MAPK receptors to 

Ets1 may be a necessary condition for this fate conversion. Indeed, Myb and Ets2 have already been demonstrated to 

cooperatively bind the promoter and upregulate Kit receptor transcription in vitro (Ratajczak et al. 1998), while in 

the presence of excess Myb, exogenous Fgf2 massively promotes melanocyte proliferation and differentiation, 

probably through Ets1/2 (Karafiat et al. 2007). 

In combination with signaling through the endothelin receptors, which display the appropriate spatiotemporal 

activity, or EGFR/ErbB-type signaling (Bell and Frampton, 1999), Myb and Ets factors may also regulate Sox10 

expression more specifically in the context of melanocyte specification and population expansion. A number of 

other factors, such as Wnt-activated beta-catenin (Aoki et al. 2003), also appear to control Sox10 availability. Like 

other members of the large Sox transcription factor family, Sox10 is regulated at great genomic distances from the 

coding region itself by multiple, highly conserved elements that confer spatial and temporal specificity (Antonellis 

et al. 2008; Benko et al. 2009).  

 

Genetic models  

A female preponderance has been noted in large/giant CMN (male/female ratio of 1 to 1.4 (Bett 2005; Kinsler et 

al. 2009).While reporting bias is a theoretical possibility, the absence of a statistically significant size difference in 

naevi between genders, and large sample sizes, argue in favor of a true if slight skew.  In addition, the segmental 

blue nevi known as nevus of Ito (upper back, chest, neck, shoulder and upper arm) and nevus of Ota (along 



ophthalmic and maxillary branches of the trigeminal nerve, within the domain of anterior rhombencephalic NCC) 

present a true gender bias in Pacific Asian populations. Although a separate entity, the dermal melanocytosis 

characteristic of blue nevi may be caused by other molecular players in the same pathways important for melanocyte 

development, incident to G proteins. For example, on rare occasion, melanotic schwannoma can occur in patients 

with nevus of Ota or Ito (Trufant et al. 2009), as it can in large/giant CMN (Bae et al. 2007); the developmental 

relationship between melanoblasts and Schwann cell precursors is clear. 

The most likely etiology for CMN, or blue nevi for that matter, is that of a somatic mutation anywhere from the 

second month of pregnancy to the perinatal period in either the self-renewing, immediate precursor of the pigment 

cell lineage, the melanoblast, or potentially in the surrounding cell lineages that constitute their "niche". Earlier 

events hypothetically lead to more of the cutaneous surface being implicated than later events. The end result is 

differently sized, clonal contribution(s) to a given area of the body (Hui et al. 2001).  

One group has made use of the high-molecular-weight melanoma-associated antigen (CSPG4) to sort cells from 

small congenital or acquired nevi (Lin et al. 2009) or melanoma (Lin et al. 2011), in order to demonstrate non-

clonality of the lesions with respect to single-cell analyses of BRAF mutations. A significant drawback of the 

technique is that this proteoglycan is not present on normal melanocytes or restricted to melanoma cells but is also 

expressed on keratinocytes (Lin et al. 2009) and in particular, microvascular pericytes (Schlingemann et al. 1990). 

Cell type contamination might therefore contribute to the apparent heterogeneity. These findings were in contrast 

with the conclusions of work in which the distinct cytogenetic profile of congenital nevi analyzed was imputed to 

their clonal homogeneity (Bastian et al. 2002). 

From what is known about the dispersal of melanocytes in animal models and conjectured to be the case in 

humans, it should be possible for later progeny of a single melanoblast precursor carrying a pathogenic second hit to 

be progressively dispersed among non-mutated cells over embryogenesis. These would give rise to small clonal 

proliferations at some distance from one another and from the original and larger concentration of cells that arise 

from the earlier progenitor.  

This hypothesis cannot be tested until the molecular bases of large/giant CMN formation have been identified, 

but it is supported by a few observations. First, smaller CMN associated with a principal large/giant CMN are 

widely distributed around the body, but can also be observed in clusters, while the timing of appearance can be 

either at birth or pigmenting during the first few years of life. Second, some individuals with large/giant CMN have 

what are known as “multiple medium-sized” nevi, where one large lesion does not obviously predominate in size 

over the others, but the total body surface affected approximates that of a large or giant CMN (Krengel et al., 

submitted).  

Finally, there are now more and more examples of scattered but clonal benign cutaneous tumors that appear to 

arise in this staged manner. A precedent exists, as reported by Maertens et al (2007) in the identical biallelic 

inactivation of the NF1 gene that occurs in widely scattered plexiform neurofibromas and café-au-lait macules 

(CALM) of NF1 patients, with identical mutations that point to a common affected cell whose progeny became 

distributed in a segmental manner. The patient described as SNF1-2, appears to have a very pale GCMN over the 

entire right leg, hip and lower back, in which CALMs can be distinguished; the hyperpigmented area has a single 

allelic microdeletion of NF1 exclusively in the melanocytes and not its fibroblasts, while again, only the 

melanocytes derived from the CALMs carried a second hit in the form of a frameshift mutation (Maertens et al. 

2007). A second precedent is that of seborrhagic keratoses, which can also be distributed in a segmental manner, and 

which display identical mutations in any given individual examined despite being multicentric (Hafner et al. 2010). 

The “paradominance” concept was developed to express the idea that a heterozygous individual mutated in a 

particular developmental gene may, within a somatic cell lineage during embryogenesis, acquire a mosaic status in 

which only the affected tissues and their progeny are homozygous or compound heterozygous for the mutation 

(Happle 1999). If the gene product is only usually required during a prenatal window, this may lead to apparently 

sporadic malformations, when in fact the predisposition is inherited, while only an environmental or stochastic 

“second hit” to the other allele reveals pathogenic potential (Danarti et al. 2003).  

This attractive model has now been demonstrated in two syndromic malformation classes that are relevant to 

large/giant CMN. The first is the demonstration that a somatic mutation in the PTEN phosphatase repressor of the 

RAS/MAPK signaling pathway on one allele can accumulate in affected tissues with a germline PTEN mutation on 

the other allele, to give rise to a Proteus-like syndrome. In a seminal paper, the patient was affected with typical 

Proteus-like hemihypertrophy, arteriovenous malformations in the hypertrophic tissue, lipomas, epidermal (not 

melanocytic) nevi and macrocephaly. This presentation is quite distinct from the frequent, numerous hamartomatous 

tumors that develop in patients affected with germline mutations of both alleles of PTEN, or from the wide variety 



of cancers that develop with late biallelic somatic mutations of PTEN, including malignant melanoma (Wu et al. 

2003). 

Congenital vascular malformations can affect all components of the vascular system individually or in 

combination: capillary, arterial, venous and lymphatic. As summarized in the comprehensive review by Limaye et 

al. (Limaye et al. 2009), capillary cavernous malformations (CCM) are an excellent illustration of a paradominant-

type inheritance in sporadic cases. The inherited types of CCM, in which vascular malformations can affect both 

cutaneous and central nervous systems, had been found to be genetically heterogenous, with three genes identified. 

The products of these genes, like for WS, physically interact at a cytoplasmic signaling checkpoint with small 

GTPases. 

Future efforts in identifying the molecular bases of large/giant CMN development will need to focus on the 

comparison of lesional tissues – preferentially, isolated pigment cells from the lesions, although alterations in 

support cell types perhaps should not be excluded – with the genome represented by a germline-representative 

tissue, as well as with parental genomes. For a methodical approach, no less will tease apart the etiology of a 

large/giant CMN as well as its relationship with any associated conditions such as neurocutaneous melanocytosis or 

proliferative nodules within the lesions. 

Neurocutaneous melanocytosis 

Neurocutaneous melanocytosis, cited in earlier literature as neurocutaneous melanosis (NCM), is a neurological 

and cutaneous disorder characterized by abnormal aggregations of nevomelanocytes within the central nervous 

system (Fig. 3) and the skin.  NCM is a complication of large/giant CMN, or multiple smaller CMN, in a fraction of 

patients.  Recent studies using patient registries with many hundreds of registrants find the incidence of NCM to 

range between 5-15% of all persons with large and giant CMN (Agero et al. 2005; Bett 2006; Kinsler et al. 2009). 

A major associated predisposing factor to NCM is more than twenty “satellite” nevi (DeDavid et al. 1996; Lovett 

et al. 2009; Marghoob et al. 2004), which may in fact be a form of multiple CMN (Kinsler 2011). When the 

predisposing and somatic molecular events leading to CMN have been identified, the interlesional clonality of 

distant congenital and/or tardive nevi can be assessed.  

A second predisposing factor identified in univariate analysis and retrospective studies is when the large/giant 

CMN covers the posterior midline axis (Agero et al. 2005; Hale et al. 2005). In other analyses, however, this latter 

risk factor is not so clearly associated (Marghoob et al. 2004; Lovett et al. 2009). Indeed, Lovett et al. concluded that 

either of these two factors “do not predict underlying NCM very well. On the other hand, in [their absence], NCM is 

very unlikely.” 

Unlike for large/giant CMN themselves or nevus of Ota, there appears to be little to no sex bias in NCM, either 

according to earlier reports (DeDavid et al. 1996) or recent examination of the Nevus Outreach patient registry (48% 

male, 52% female, for 67 individuals). Approximately half are neurologically asymptomatic (36/67 for the registry, 

also as reported [Foster et al. 2001]). 

Melanocytes are normally found in the leptomeninges (pia mater) of parts of the hindbrain and cervical spinal 

cord, the basal frontal and temporal lobes of the cerebral hemispheres, the optic chiasm, anterior perforated 

substance and within the Sylvian fissure  (Miller 2004). The telencephalic regions are covered by leptomeninges of 

entirely NCC origin, perhaps offering a pool of precursors susceptible to growth factor signaling (Etchevers et al. 

2001). However, the ventral areas are also in close proximity to the hypophysis, and melanogenesis may be favored 

by the hormone -MSH in the local environment. It is rare for true NCM to occur in the absence of medium-sized or 

larger cutaneous CMN, although a case with no pigmented lesions and another with only café-au-lait spots have 

been reported with symptomatic, eventually lethal NCM (Reyes-Mugica et al. 1993). 

Asymptomatic NCM 

In some cases there appear to be no ill-effects from the presence of melanocytosis in the brain (DeDavid et al. 

1996; Foster et al. 2001; Frieden et al. 1994; Kadonaga and Frieden 1991; Miller 2004) There also exist a number of 

animals with heavily melanocyte-infiltrated muscles, internal organs and/or meninges. These include the 

epidermally over-expressing Hgf mouse (Kunisada et al. 2000), the melanocyte-specific activated Braf zebrafish 

(Patton et al. 2005), and naturally occurring Silky Fowl (Dorshorst et al. 2010; Lecoin et al. 1995; Li et al. 2011) and 

Kadaknath strains of chicken (Thakur et al. 2006), all of which are able to reach an asymptomatic adulthood. 

Spontaneous GCMN with associated massive, but asymptomatic, NCM has even been identified in a macaque (Chen 

et al. 2009).  



There may be subtle neurological problems, more stereotyped in the pediatric population, that are also caused by 

NCM and that could be a clue for the vigilant clinician (V. A. Kinsler et al., 2008), but these are not yet widely 

included in the “symptomatic NCM” subset. It is not straightforward to attribute such non-specific findings as 

speech difficulties, depression or psychoses to the same physical cause as visible neurocutaneous manifestations 

(Azzoni et al., 2001; Koot, de Waard-van der Spek, Peer, Mulder, & Oranje, 2000; Makin et al., 1999; Thompson & 

Kent, 2001; Ye et al., 2008). 

In either asymptomatic or symptomatic NCM, ectopic nevomelanocytes are found in discrete masses within the 

parenchyma and/or within the leptomeninges (Fig. 3b-d). Proliferating nevomelanocytes present variable degrees of 

differentiation, ranging from benign-looking cells, similar to those seen in small CMN, to atypical, melanoma-like 

cells associated with abnormal mitoses, necrosis and other classic histologic signs of malignancy.  However, the 

most frequent appearance is that of a well differentiated small cell population, growing within the leptomeninges 

and focally invading the brain from either the interface with the surface meninges, or from the ingressions of the pia 

mater into the parenchyme, as melanocytes can follow the blood vessels along the Virchow-Robin spaces well into 

the gray matter (Burstein et al. 2005; Chen et al. 2009; Makin et al. 1999; Pavlidou et al. 2008b; Ye et al. 2008, and 

Fig. 3b-d). Their common origin with the pericytes that line those spaces in the forebrain, at least, may favor their 

differentiation and dissemination in situ during meningeal development (Etchevers et al. 2001). It is still unclear to 

date whether it is the total proliferative mass or the location of ectopic melanocytes that interfere with neurological 

function and can lead to fatal NCM.  

NCM can occur in conjunction with Chiari malformation of the brainstem, a non-specific sign. Reported patients 

have been entirely asymptomatic (Bett 2006; Foster et al. 2001) 

Symptomatic NCM 

Symptoms, when they do occur, can include headaches, seizures, vomiting, visual disorders, movement and 

learning disorders, paralysis, mental retardation, papilledema, and hydrocephalus (Miller 2004; Pavlidou et al. 

2008b; Shah 2010).  No patients develop all of these potential neurological signs. Many of them are secondary to 

raised intracranial pressure; anywhere from one-sixth (Kinsler et al. 2008) to two-thirds (Pavlidou et al. 2008a) of 

symptomatic NCM cases develop hydrocephalus. 

At least three possible hypotheses address this association, the first of which being the most popular: the 

nevomelanocytes are passively obstructive to cerebrospinal fluid (CSF) flow (Miller 2004); melanocytes are simply 

found in conjunction with, but are not responsible, for choroid plexus malfunction; pigment metabolites may be 

damaging to the tissues responsible for CSF secretion or reuptake. 

NCM-associated hydrocephalus, like other forms of hydrocephalus, is treated initially with a ventriculo-

peritoneal shunt.  However, this approach can be prone to difficulties, such as clogging of the shunting catheter by 

the proliferating nevomelanocytes (Fig. 3e) or by melanoma developing within the NCM (Shinno et al. 2003). 

Furthermore, several instances of peritoneal dissemination of proliferating cells, facilitated by this shunting, leading 

to massive peritoneal "metastatic" disease, have been observed (Cajaiba et al. 2008; Fig. 3f).  

Syndromic forms of LCMN-NCM-HC 
HC is often reported in conjunction with other brain malformations in symptomatic NCM cases, such as Dandy-

Walker complex (Frieden et al. 1994). More so than NCM itself, this represents a form of syndromic large/giant 

CMN (Cajaiba et al. 2008; Gönül et al. 2009; Livingstone et al. 2009; Makin et al. 1999; Marnet et al. 2009; Walbert 

et al. 2009). Other syndromic forms include a report of ring chromosome 7 in which over 100 small CMN were 

associated with clinodactyly and adducted thumbs, hydrocephalus, microcephaly, mental retardation, and facial 

dysmorphy, but no NCM (Mehraein et al. 2004).  

Another report mentions the association of NCM with transposition of the great arteries and unilateral renal 

agenesis (Köksal et al. 2003). NCM associations with renal anomalies have been described elsewhere (Kadonaga 

and Frieden 1991), including with additional skeletal anomalies (Huang and Lee 2000). The phenotypically and 

genetically heterogeneous association of multiple congenital malformations known by the acronym of VACTERL 

(OMIM 192350) occurs sometimes in conjunction with hydrocephalus (VACTERL-H), suggesting common 

molecular regulation of the development of brain size and the choroid plexus of the fourth ventricle, and the 

morphogenesis of the skeletal, digestive, cardiac outflow tract and renal systems. A missense amino acid 

substitution in the tumor suppressor gene PTEN has been identified in a VACTERL-H patient (bilateral hand 

malformations, 13 pairs of ribs, tracheo-oesophageal fistula, macrocephaly, progressive ventriculomegaly), probably 

abolishing its phosphatase activity and thereby its repressive action on the RAS/MAPK signaling pathway (Reardon 



et al. 2001). Interestingly, cases of GCMN with NCM and features of the PTEN syndrome spectrum (lipomatosis, 

hemihypertrophy) have also been described  (Gönül et al. 2009; Wieselthaler et al. 2002; Won et al. 1993) evoking a 

possible role for PTEN misregulation in syndromic large/giant CMN-NCM-HC patients, in particular those for 

whom the NCM develops into melanoma (Wu et al. 2003). 

Prognosis for symptomatic NCM 
NCM is either diagnosed after a pre-emptive MRI or because a patient presents neurological symptoms. Since 

NCM occurs among a restricted subset of patients affected with an already rare disease, it is not often encountered 

by most physicians. 

The literature offers a grim outlook for those with symptomatic NCM, top-heavy with reports of fatal outcomes. 

Syndromic NCM with hydrocephaly does appear to have a very poor prognosis, although occasional cases have 

been reported with what appears to be stable recovery on long-term follow-up (Lovett et al. 2009; Peters et al. 

2000). Nevomelanocytes may gain access to the CSF and circulate through the brain ventricles and their foramina.  

CSF collected from such patients at either VPS ports or spinal taps can show cells with dendritic prolongations and 

occasional intracytoplasmic melanin granules (Fig. 3c).  In cases with a very atypical morphology showing active 

mitotic proliferation, necrosis and nuclear pleomorphism, the appearance of cells is indistinguishable from 

melanoma arising in any other location. Patients either die from complications of their hydrocephalus (Pavlidou et 

al. 2008a) or from the development of melanocytoma or CNS melanoma (DeDavid et al. 1996; Kadonaga and 

Frieden 1991; Livingstone et al. 2009; Shah 2010) 

Symptomatic NCM can be lethal, but it is not systematically so. This makes it imperative to find better 

biomarkers for distinct clinical entities, and to establish improved clinical or imaging criteria, to offer a more 

accurate prognosis to patients with neurological symptoms. In certain patients, the parenchymal melanocytosis gives 

rise to discrete tumors that appear focal, hyperintense on axial T1-weighted and hypointense on axial T2-weighted 

MRI, without signs of edema or mass effect. Chronic epilepsy may be the primary, and indeed, the only symptom. 

Two distinct reports of epileptogenic, melanocytic hamartomas in the amygdala, where treatment consisted in a 

rather standard temporal lobotomy, have led to absence of subsequent seizures or other symptoms for 15 (Ye et al. 

2008) and 30 post-operative months (Fu et al. 2010), respectively. 

The large prospective registry of currently over a thousand patients with large and giant CMN maintained by 

Nevus Outreach, Inc. in the United States, has ten individuals with symptomatic NCM presenting seizures but no 

other neurological signs. As of this writing, eight of these cases are confirmed to be living and healthy.  Their 

average age is 12 years (range: 1-15 years with one 28-year-old adult).  Their epilepsy was first reported to the 

registry an average of 8 years ago (range: 1-14 years ago; the adult, four years ago).  The remaining two cases have 

not been reported as deceased. Contrary to the impression left by the majority of reports to which practitioners have 

access, this cohort demonstrates that a significant group of those with symptomatic NCM are doing well, in 

agreement with other observations (Khakoo and Marghoob 2009; Kinsler et al. 2008; Peters et al. 2000). 

Tumors arising in LCMN 

A number of heterologous tumors arising in large CMN appear on record in the literature.  Of these, the series 

published by Hendrickson and Ross (Hendrickson and Ross 1981) describes the widest spectrum of lesions and 

clinical behaviors, although it is likely that this collection of tumors combines benign and malignant lesions, 

including some currently defined as proliferative nodules (vide infra).  However, in more recent series, tumors 

arising within CMN have become better defined (Herron et al. 2004; Phadke et al. 2011). The malignancy most 

frequently seen in this context is malignant melanoma, although its incidence has been difficult to define, ranging 

from 2 to 42% due to the disparate definitions and wide variations in methodologies used to study them.  Modern 

analyses have established that its real incidence hovers around 4% for giant CMN.  Other malignant tumors, rarely 

arising within CMN, are dominated by rhabdomyosarcoma (Hoang et al. 2002; Ilyas et al. 2004; Schmitt et al. 

1992), although the features of these lesions are somewhat different from classic rhabdomyosarcoma arising outside 

the context of nevomelanocytic proliferations. Unfortunately, no studies on the biological and genetic features of 

these nevus-related rhabdomyosarcomatous lesions have been published even as single case reports.  

The group of lesions more frequently seen arising within CMN is represented by the so-called proliferative 

nodules, which usually appear during the first years of life if they are not already noted at or before birth (Hösli et al. 

2001). These nodules appear as well defined elevations within the area of the nevus, can vary in size and tend to be 

darker in color than the surrounding nevomelanocytic lesion.  Their macroscopic and histological appearance varies, 



but they are striking lesions (Fig. 3f), frequently leading to biopsy and surgical attempts at removal with “wide 

excision”.  However, most are benign, despite their alarming appearance, both macroscopically and under the 

microscope. In a large series  (Leech et al. 2004) these nodules are described as benign, although an atypical variant, 

with sharp demarcation from the surrounding nevus, no transition between surrounding nevus cells and nodular cells 

(lack of so-called “maturation”) and increased mitotic activity.  Recent studies on these proliferations support the 

notion that at least some of these atypical nodules are nevomelanocytic neoplasias that share morphological and 

genetic features with melanoma, and probably represent an intermediate stage in the progression from a CMN 

toward a malignant melanoma (Phadke et al. 2011).   

It is important to notice that many clinical and histological characteristics accepted as evidence of melanoma in 
adults may occur in benign lesions in infancy (e.g., rapid growth, ulceration, mitotic activity, pagetoid melanocytic 
proliferation) (Zúñiga et al. 1987). Deep dermal or subcutaneous nodules may exhibit cellular features of neural or 
mesenchymal differentiation. Comparative genomic hybridization has shown a high percentage of numerical 
aberrations of one or few whole chromosomes (Bastian et al. 2002). In contrast, in most melanomas, numerical 
aberrations affect only portions of often many individual chromosomes. Recent chromosomal analyses of 27 well-
characterized large and giant CMN demonstrated three rearrangements – two transpositions involving BRAF and 
presumed to remove inhibitory regulation of the gene product because of increased ERK1/2 phosphorylation, and 
one with a deletion of the long arm distal to 6q21 (Dessars et al. 2009). This is a clinically relevant issue, since cases 
in which these proliferative nodules are biopsied, occasionally are subjected to additional, extended and unnecessary 
surgery based on "alarming" histology. However, it is important to stress that even atypical proliferative nodules 
tend to behave in a benign fashion and probably do not warrant aggressive surgical removal (Phadke et al. 2011).  

It is important to note that cutaneous melanomas arising in CMN may differ significantly in clinical and 
histological behaviour. Although in part overlapping, two main categories are recognized (Magaña and Magaña 
2007). First, melanoma arising in CMN may originate from the dermo-epidermal junction or the upper dermis. 
Histologically, these melanomas tend to develop in adolescence and adulthood and exhibit similar changes to the 
conventional superficial spreading or nodular melanomas of adulthood. Second, melanoma may seem to arise from 
deeper tissue structures, i.e., mostly from deeper, dermally located melanocytic (precursor) cells. This type of CMN-
related melanoma is a small-cell neoplasm and has been termed in the past a “dermal congenital tumorous dysplasia-
blastoma” (Reed 1993). In contrast to conventional melanoma, it often develops during infancy or childhood and 
mainly accounts for the fact that the mean age of melanoma in CMN is 15.5 years (median, 7 years; (Krengel et al. 
2006)). It will be worth examining these childhood melanomas for mutations not only in BRAF and NRAS, but in 
GNAQ and GNA11, among even more novel candidates that are likely to emerge in the near future, impinging on 
these intersecting signaling pathways (Broekaert et al. 2010). When costs permit, whole exome (or whole genome) 
sequencing of germline DNA and tumor DNA from patients will finally allow the research community to develop 
more dichotomous classifications and prognoses by simultaneously examining all coding regions (and their 
regulation), and carefully classifying tumors by their clinical and histopathological characteristics. 

 
Besides melanoma, other malignancies have been reported in CMN, probably reflecting the undifferentiated, 

pluripotent state of neural crest-derived melanocytic precursor cells. A number of entities have been mentioned, 
including rhabdomyosarcoma, liposarcoma, malignant spindle cell neoplasm, neuroblastoma, and malignant 
peripheral nerve sheath tumor (DeDavid et al. 1996; Hendrickson and Ross 1981; Schaffer et al. 2007). Many of 
these are likely to represent heterologous elements sometimes associated with proliferative nodules. Given what we 
are now learning about the embryological maturation of normal melanocytes and the effects of modifying genes 
needed for their development, it will be unsurprising to learn that these difficult neoplasms arise as a result of the 
same mechanisms, candidates for similar chemotherapies both within or distinct from the context of a large or giant 
CMN.



 
 

Figure 1. (a) Normal skin with melanocytes (clear cells, arrowheads) and melanin pigment transferred to 

keratinocytes.  Hematoxylin-eosin (H&E) 60X. (b) Giant congenital melanocytic nevus, with nevus cells both 

pigmented and not pigmented throughout the dermis. H&E 4X. (c) CMN with proliferative nodule in the deeper 

portion which appears hypercellular.  Boxed area represents inset, which shows a typical mitotic figure (arrowhead) 

within the nodule. (d) Giant CMN with an area of small, round nevomelanocytes on the left, and heterologous 

adipocyte elements on the right.  Note the marked neuroid (wavy) appearance of the architectural pattern. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Major signaling pathways from extracellular ligands to transcriptional targets, important for neural 

crest and more specifically melanocyte specification, proliferation, maintenance, response to environmental stimuli 

and senescence. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Macroscopic appearance of a brain from a patient with neurocutaneous melanocytosis (NCM; 

anterior to right).  Dark lesions correspond to foci of parenchymal invasion of frontal and temporal lobes by NCM 

cells, some of which are indicated by arrowheads. (b) NCM at surface leptomeninges (top) and along Virschow-

Robin spaces. H&E 20X. (c, d) Brain parenchyma from a previously unreported case of NCM, demonstrating 

ectopic nevomelanocytes and apparent uptake of melanin granules by adjacent neurons. H&E 10X and 40X, 

respectively. This patient is alive at the time of writing. (e) Cerebrospinal fluid specimen from a patient with lethal 

NCM.  Atypical nevomelanocytes with short dendrites recapitulate the morphology of melanocytes. (f) “Metastasis” 

of NCM from same patient to nodules in the peritoneal cavity after ventriculoperitoneal shunting (Cajaiba et al. 

2008).  
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