P. P. Boix, G. Larramona, A. Jacob, B. Delatouche, J. Bisquert et al., CuInS 2-Sensitized Quantum Dot Solar Cell Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance Infrared Photovoltaics Made by Solution Processing Quantum Dot Solar Cells Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals Experimental Determination of the Extinction Coefficient of CdTe , CdSe , and CdS Nanocrystals Hot-Electron Transfer from Semiconductor Nanocrystals Tandem-Structured, Hot Electron Based Photovoltaic Cell with Double Schottky Barriers Ultrafast Dynamics of Multiple Exciton Harvesting in the CdSe-ZnO System: Electron Injection versus Auger Recombination Molecule-like CdSe Nanoclusters Passivated with Strongly Interacting Ligands: Energy Level Alignment and Photoinduced Ultrafast Charge Transfer Processes Phosphine-Free Synthesis of CdSe Nanocrystals (40) Ithurria, S.; Dubertret, B. Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level (41) Li, Z.; Peng, X. Size/shape-Controlled Synthesis of Colloidal CdSe Quantum Disks: Ligand and Temperature Effects Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe High-Efficiency Carrier Multiplication and Ultrafast Charge Separation in Semiconductor Nanocrystals Studied via Time- Resolved Photoluminescence High-Efficiency Carrier Multiplication and Ultrafast Charge Separation in Semiconductor-, and NH2-as Surface Ligands, Hole Transport and Recombination in All-Solid Sb 2 S 3 -Sensitized TiO 2 Solar Cells Using CuSCN As Hole Transporter. J. Phys. Chem. C 2012 Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection. Angew. Chemie 200544) Franceschetti, A.; Zhang, Y. Multiexciton Absorption and Multiple Exciton Generation in CdSe Quantum Dots Talapin, D. V. Metal-Free Inorganic Ligands for Colloidal Nanocrystals Geissler, P. L.; Alivisatos, A. P. Device-Scale Perpendicular Alignment of Colloidal Nanorods. Nano Lett. Single-Crystal CdSe Nanoribbon Field-Effect Transistors and Photoelectric Applications. Controlled Growth of Tetrapod- Branched Inorganic Nanocrystals. Nat. Mater et al. Large-Scale Soft Colloidal Template Synthesis of 1.4 Nm Thick CdSe Nanosheets. Angew. Chemie, pp.8381-8407, 2003.

S. Wang, Q. Zhang, Y. Xu, D. Li, Y. Luo et al., Single-step in-situ preparation of thin film electrolyte for quasi-solid state quantum dot-sensitized solar cells, Journal of Power Sources, vol.224, pp.152-157, 2013.
DOI : 10.1016/j.jpowsour.2012.09.044

D. Karageorgopoulos, E. Stathatos, and E. Vitoratos, Thin ZnO nanocrystalline films for efficient quasi-solid state electrolyte quantum dot sensitized solar cells, Journal of Power Sources, vol.219, issue.101, pp.9-15, 2012.
DOI : 10.1016/j.jpowsour.2012.07.034

T. Loucka, Adsorption and oxidation of organic compounds on a platinum electrode partly covered by adsorbed sulphur, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.36, issue.2, pp.355-367, 1972.
DOI : 10.1016/S0022-0728(72)80258-4

I. Mora-sero, S. Gimenez, F. Fabregat-santiago, R. Gomez, Q. Shen et al., Recombination in Quantum Dot Sensitized Solar Cells, Accounts of Chemical Research, vol.42, issue.11, pp.42-1848, 2009.
DOI : 10.1021/ar900134d

J. G. Radich, R. Dwyer, and P. Kamat, at the Counter Electrode, The Journal of Physical Chemistry Letters, vol.2, issue.19, pp.2453-2460, 2011.
DOI : 10.1021/jz201064k

S. Giménez, I. Mora-seró, L. Macor, N. Guijarro, T. Lana-villarreal et al., Improving the performance of colloidal quantum-dot-sensitized solar cells, Nanotechnology, vol.20, issue.29, pp.20-295204, 2009.
DOI : 10.1088/0957-4484/20/29/295204

Z. Yang, C. Chen, C. Liu, and H. Chang, Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells, Chemical Communications, vol.164, issue.30, pp.46-5485, 2010.
DOI : 10.1039/c0cc00642d

Z. Tachan, M. Shalom, I. Hod, S. Ru?-hle, S. Tirosh et al., PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells, The Journal of Physical Chemistry C, vol.115, issue.13, pp.115-6162, 2011.
DOI : 10.1021/jp112010m

X. Zeng, W. Zhang, Y. Xie, D. Xiong, W. Chen et al., Low-cost porous Cu2ZnSnSe4 film remarkably superior to noble Pt as counter electrode in quantum dot-sensitized solar cell system, Journal of Power Sources, vol.226, pp.359-362, 2013.
DOI : 10.1016/j.jpowsour.2012.11.023

P. P. Boix, Y. H. Lee, F. Fabregat-santiago, S. H. Im, I. Mora-sero et al., From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells, ACS Nano, vol.6, issue.1, pp.873-880
DOI : 10.1021/nn204382k

Z. Yu, Q. Zhang, D. Qin, Y. Luo, D. Li et al., Highly efficient quasi-solid-state quantum-dot-sensitized solar cell based on hydrogel electrolytes, Electrochemistry Communications, vol.12, issue.12, pp.12-1776, 2010.
DOI : 10.1016/j.elecom.2010.10.022

A. Zaban, O. Micic, B. A. Gregg, and A. J. Nozik, Electrodes with InP Quantum Dots, Langmuir, vol.14, issue.12, pp.3153-3156, 1998.
DOI : 10.1021/la9713863

P. K. Santra and P. Kamat, Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%, Journal of the American Chemical Society, vol.134, issue.5, pp.2508-2511
DOI : 10.1021/ja211224s

J. Du, Z. Du, J. Hu, Z. Pan, Q. Shen et al., Zn???Cu???In???Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%, Journal of the American Chemical Society, vol.138, issue.12, pp.4201-4209, 2016.
DOI : 10.1021/jacs.6b00615

P. K. Santra, A. F. Palmstrom, J. T. Tanskanen, N. Yang, and S. F. Bent, Improving Performance in Colloidal Quantum Dot Solar Cells by Tuning Band Alignment through Surface Dipole Moments, The Journal of Physical Chemistry C, vol.119, issue.6, p.150115141647007
DOI : 10.1021/acs.jpcc.5b00341

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee et al., Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine, Journal of the American Chemical Society, vol.134, issue.49, pp.134-20160
DOI : 10.1021/ja309783v

C. H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, Journal of Applied Physics, vol.51, issue.8, pp.51-4494, 1980.
DOI : 10.1063/1.328272

G. Wang, H. Wei, Y. Luo, H. Wu, D. Li et al., A strategy to boost the cell performance of CdSexTe1???x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer, Journal of Power Sources, vol.302, issue.120, pp.266-273, 2016.
DOI : 10.1016/j.jpowsour.2015.10.070

Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang et al., Amorphous TiO2 Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%, Chem. Mater, vol.2015, issue.24, pp.27-8398

J. Yang, J. Wang, K. Zhao, T. Izuishi, Y. Li et al., CdSeTe/CdS Type-I Core/Shell Quantum Dot Sensitized Solar Cells with Efficiency over 9%, The Journal of Physical Chemistry C, vol.119, issue.52, pp.119-28800, 2015.
DOI : 10.1021/acs.jpcc.5b10546

C. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, Improved performance and stability in quantum??dot solar cells through band alignment??engineering, Nature Materials, vol.13, issue.8, pp.13-14
DOI : 10.1021/jp050745x

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi et al., Bulovi??, V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange, ACS Nano, vol.2014, issue.86, pp.5863-5872

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, 19.8% efficient ???honeycomb??? textured multicrystalline and 24.4% monocrystalline silicon solar cells, Applied Physics Letters, vol.73, issue.14, pp.73-1991, 1998.
DOI : 10.1063/1.122345

URL : https://hal.archives-ouvertes.fr/pasteur-01130845

R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka et al., Improvement of the Conversion Efficiency of a Monolithic Type Dye-Sensitized Solar Cell Module, Technical Digest, 21st International Photovoltaic Science and Engineering Conference, 2011.

D. Bozyigit, W. M. Lin, N. Yazdani, O. Yarema, and V. Wood, A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells, Nature Communications, vol.135, pp.2015-6180
DOI : 10.1038/ncomms7180

O. Voznyy, Mobile Surface Traps in CdSe Nanocrystals with Carboxylic Acid Ligands, The Journal of Physical Chemistry C, vol.115, issue.32, pp.15927-15932, 2011.
DOI : 10.1021/jp205784g

R. Nadler and J. Sanz, Simulating the Optical Properties of CdSe Clusters Using the RT-TDDFT Approach, Theor. Chem. Acc, vol.2013, issue.1324, p.1342

O. Voznyy, J. H. Mokkath, A. Jain, E. H. Sargent, and U. Schwingenschlögl, Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands, The Journal of Physical Chemistry C, vol.120, issue.18, pp.10015-10019, 2016.
DOI : 10.1021/acs.jpcc.5b10908

Y. Cui, Z. Lou, X. Wang, S. Yu, and M. Yang, A study of optical absorption of cysteine-capped CdSe nanoclusters using first-principles calculations, Phys. Chem. Chem. Phys., vol.136, issue.14, pp.9222-9230, 2015.
DOI : 10.1039/C4CP06103A

L. Protesescu, M. Nachtegaal, O. Voznyy, O. Borovinskaya, A. J. Rossini et al., Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry, Journal of the American Chemical Society, vol.137, issue.5, pp.1862-1874
DOI : 10.1021/ja510862c

URL : https://hal.archives-ouvertes.fr/hal-01187354

J. T. Margraf, A. Ruland, V. Sgobba, D. M. Guldi, and T. Clark, Theoretical and Experimental Insights into the Surface Chemistry of Semiconductor Quantum Dots, Langmuir, vol.29, issue.49, pp.29-15450
DOI : 10.1021/la403633e

S. M. Thon, A. H. Ip, O. Voznyy, L. Levina, K. W. Kemp et al., Role of Bond Adaptability in the Passivation of Colloidal Quantum Dot Solids, ACS Nano, vol.7, issue.9, pp.7680-7688, 2013.
DOI : 10.1021/nn4021983

R. Benchamekh, N. Gippius, J. Even, M. O. Nestoklon, J. Jancu et al., Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe, Electronic and Optical Properties of Colloidal CdSe Nanoplatelets. Nanosctructures Phys. Technol. 2012, 56. (141) Even Electronic Surface States and Dielectric Self-Energy Profiles in Colloidal Nanoscale Platelets of CdSe, pp.35307-35323
DOI : 10.1103/PhysRevB.89.035307

URL : https://hal.archives-ouvertes.fr/hal-00942566

F. Labat, I. Ciofini, and C. Adamo, Modeling ZnO phases using a periodic approach: From bulk to surface and beyond, The Journal of Chemical Physics, vol.131, issue.4, p.44708, 2009.
DOI : 10.1063/1.3179752

. Chapter, Context (143) De Angelis, F.; Armelao, L. Optical Properties of ZnO Nanostructures: A Hybrid DFT/TDDFT Investigation, Phys. Chem. Chem. Phys, vol.13, issue.2, pp.467-475, 2011.

F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo, Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals, The Journal of Chemical Physics, vol.126, issue.15, p.154703, 2007.
DOI : 10.1063/1.2717168

F. Labat, P. Baranek, and C. Adamo, Surfaces:?? An ab Initio Investigation, Journal of Chemical Theory and Computation, vol.4, issue.2, pp.341-352, 2008.
DOI : 10.1021/ct700221w

Y. Bai, I. Mora-sero, F. De-angelis, J. Bisquert, and P. Wang, Titanium Dioxide Nanomaterials for Photovoltaic Applications, Chemical Reviews, vol.114, issue.19, pp.114-10095
DOI : 10.1021/cr400606n

C. E. Patrick and F. Giustino, Structural and Electronic Properties of Semiconductor-Sensitized Solar-Cell Interfaces, Advanced Functional Materials, vol.14, issue.24, pp.4663-4667, 2011.
DOI : 10.1002/adfm.201101103

J. M. Azpiroz and I. Infante, De Angelis, F. First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells, J. Phys. Chem. C, vol.2015, issue.22, pp.119-12739

J. M. Azpiroz, E. Ronca, and F. De-angelis, : A First-Principles Analysis, The Journal of Physical Chemistry Letters, vol.6, issue.8, pp.1423-1429
DOI : 10.1021/acs.jpclett.5b00393

L. Wang, R. Long, and O. Prezhdo, Time-Domain Ab Initio Modeling of Photoinduced Dynamics at Nanoscale Interfaces, Annual Review of Physical Chemistry, vol.66, issue.1, pp.549-579, 2015.
DOI : 10.1146/annurev-physchem-040214-121359

D. N. Tafen, R. Long, and O. Prezhdo, Dimensionality of Nanoscale TiO2 Determines the Mechanism of Photoinduced Electron Injection from a CdSe Nanoparticle, Nano Lett, vol.2014, issue.144, pp.1790-1796

D. N. Tafen and O. Prezhdo, Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO2 Nanobelt, J. Phys. Chem. C, vol.2015, issue.11910, pp.5639-5647

R. Nadler and J. Sanz, Effect of Capping Ligands and TiO2 Supporting on the Optical Properties of a (CdSe)13 Cluster, J. Phys. Chem. A, vol.2015, issue.1197, pp.1218-1227

C. Dong, X. Li, and J. Qi, Nanotubes, The Journal of Physical Chemistry C, vol.115, issue.41, pp.20307-20315, 2011.
DOI : 10.1021/jp203807t

URL : https://hal.archives-ouvertes.fr/hal-00648516

J. M. Azpiroz, J. M. Ugalde, and L. Etgar, Infante, I.; De Angelis, F. The Effect of TiO2 Surface on the Electron Injection Efficiency in PbS Quantum Dot Solar Cells: A First-Principles Study, Phys. Chem. Chem. Phys, vol.2015, issue.8, pp.17-6076

R. Long and O. Prezhdo, Dopants Control Electron À Hole Recombination at Perovskite À TiO 2, ACS Nano, vol.2015, issue.911, pp.11143-11155
DOI : 10.1021/acsnano.5b05843

Z. Guo, O. V. Prezhdo, T. Hou, X. Chen, S. Lee et al., Nanotubes: Time-Domain Ab Initio Analysis, The Journal of Physical Chemistry Letters, vol.5, issue.10, pp.1642-1647, 2014.
DOI : 10.1021/jz500565v

D. N. Tafen and O. Prezhdo, Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO2 Nanobelt, J. Phys. Chem. C, vol.2015, issue.11910, pp.5639-5647

S. Buhbut, S. Itzhakov, I. Hod, D. Oron, and A. Zaban, Photo-Induced Dipoles: A New Method to Convert Photons into Photovoltage in Quantum Dot Sensitized Solar Cells, Nano Letters, vol.13, issue.9, pp.13-4456
DOI : 10.1021/nl402360f

P. K. Santra and P. Kamat, Tandem-Layered Quantum Dot Solar Cells: Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides, Journal of the American Chemical Society, vol.135, issue.2, pp.877-885
DOI : 10.1021/ja310737m

G. Díaz, J. Ding, Y. Koitz, R. Seitsonen, A. P. Iannuzzi et al., Hexagonal Boron Nitride on Transition Metal Surfaces, Theor. Chem. Acc, vol.2013, issue.1324, p.1350

C. E. Mohn, M. J. Stein, N. L. Allan, T. Muck, J. W. Wagner et al., Oxide and halide nanoclusters on ionic substrates: heterofilm formation and lattice mismatch, Ivanov, S. V. Vibration Dynamics and Interfacial Chemistry of the CdSe ? BeTe Interface, pp.10403-163, 2004.
DOI : 10.1039/c0jm01864c

R. Salles, B. Kunc, K. Eddrief, M. Etgens, V. H. Finocchi et al., Hexagon-on-Cube versus Cube-on-Cube Epitaxy: The Case of ZnSe, Phys. Rev. B, vol.3, issue.111 00115, pp.79-155312, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00793381

F. Corà, M. Alfredsson, G. Mallia, D. S. Middlemiss, W. C. Mackrodt et al., The Performance of Hybrid Density Functionals in Solid State Chemistry, Structure and Bonding, p.171, 2004.

H. Xiao, J. Tahir-kheli, and W. Goddard, Accurate Band Gaps for Semiconductors from Density Functional Theory, The Journal of Physical Chemistry Letters, vol.2, issue.3, pp.212-217, 2011.
DOI : 10.1021/jz101565j

L. Yu, R. S. Kokenyesi, D. A. Keszler, and A. Zunger, Inverse Design of High Absorption Thin-Film Photovoltaic Materials, Advanced Energy Materials, vol.12, issue.1, pp.43-48
DOI : 10.1002/aenm.201200538

L. Yu and A. Zunger, Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials, Physical Review Letters, vol.108, issue.6, pp.1-5
DOI : 10.1103/PhysRevLett.108.068701

G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger et al., Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals, The Journal of Physical Chemistry Letters, vol.7, issue.7, pp.1254-1259
DOI : 10.1021/acs.jpclett.6b00376

M. R. Filip and F. Giustino, Computational Screening of Homovalent Lead Substitution in Organic???Inorganic Halide Perovskites, The Journal of Physical Chemistry C, vol.120, issue.1, pp.166-173
DOI : 10.1021/acs.jpcc.5b11845

J. Duan, H. Zhang, Q. Tang, B. He, and L. Yu, Recent advances in critical materials for quantum dot-sensitized solar cells: a review, J. Mater. Chem. A, vol.10, issue.34, pp.17497-17510
DOI : 10.1002/aenm.201300775

A. Szemjonov, T. Pauporté, S. Ithurria, N. Lequeux, and B. Dubertret, Ciofini, I.; Labat, F. Ligand-Stabilized CdSe Nanoplatelet Hybrid Structures with Tailored Geometric and Electronic Properties. New Insights from Theory, RSC Adv, vol.2014, issue.99, pp.4-55980

F. Xu, W. Zhou, and A. Navrotsky, Cadmium selenide: Surface and nanoparticle energetics, Journal of Materials Research, vol.25, issue.05, pp.26-720, 2011.
DOI : 10.1021/jp0445573

D. O. Sigle, J. T. Hugall, S. Ithurria, B. Dubertret, and J. J. Baumberg, Probing Confined Phonon Modes in Individual CdSe Nanoplatelets Using Surface-Enhanced Raman Scattering, Physical Review Letters, vol.113, issue.8, pp.113-087402
DOI : 10.1103/PhysRevLett.113.087402

I. Zardo, S. Conesa-boj, F. Peiro, J. R. Morante, J. Arbiol et al., Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects, Physical Review B, vol.80, issue.24, pp.245324-179, 2009.
DOI : 10.1103/PhysRevB.80.245324

L. Bahers, T. Pauporté, T. Scalmani, G. Adamo, C. Ciofini et al., A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells, Physical Chemistry Chemical Physics, vol.107, issue.47, pp.11-11276, 2009.
DOI : 10.1039/b914626a

V. Venkatraman, S. Abburu, and B. K. Alsberg, Artificial evolution of coumarin dyes for dye sensitized solar cells, Phys. Chem. Chem. Phys., vol.20, issue.11, pp.17-27672
DOI : 10.1038/srep04033

R. Jose, N. U. Zhanpeisov, H. Fukumura, Y. Baba, and M. Ishikawa, Structure???Property Correlation of CdSe Clusters Using Experimental Results and First-Principles DFT Calculations, Journal of the American Chemical Society, vol.128, issue.2, pp.629-636, 2006.
DOI : 10.1021/ja0565018

J. Moellmann, S. Ehrlich, R. Tonner, and S. Grimme, A DFT-D Study of Structural and Energetic Properties of TiO2 Modifications, J. Phys. Condens. Matter, vol.2012, issue.42, pp.24-424206

D. J. Cooke, A. Marmier, and S. C. Parker, 10) and (11(-)20) Surfaces of ZnO with Density Functional Theory and Atomistic Simulation, Surface Structure of J. Phys. Chem. B, vol.10, issue.15, pp.110-7985, 2006.

E. Mosconi, E. Ronca, F. Angelis, and . De, /Organohalide Perovskites Interface: The Role of Interfacial Chlorine, The Journal of Physical Chemistry Letters, vol.5, issue.15, pp.2619-2625, 2014.
DOI : 10.1021/jz501127k

F. Odobel, T. L. Bahers, and T. Pauporte, Promising Anchoring Groups for ZnO-Based Hybrid Materials: A Periodic Density Functional Theory Investigation, Int. J. Quantum Chem, vol.2012, issue.1129, pp.2062-2071

L. Bahers, T. Labat, F. Pauporté, T. Lainé, P. P. Ciofini et al., Theoretical Procedure for Optimizing Dye-Sensitized Solar Cells: From Electronic Structure to Photovoltaic Efficiency, Journal of the American Chemical Society, vol.133, issue.20, pp.133-8005, 2011.
DOI : 10.1021/ja201944g

L. Bahers, T. Pauporté, T. Lainé, P. P. Labat, F. Adamo et al., Modeling Dye-Sensitized Solar Cells: From Theory to Experiment, The Journal of Physical Chemistry Letters, vol.4, issue.6, pp.1044-1050, 2013.
DOI : 10.1021/jz400046p

URL : https://hal.archives-ouvertes.fr/hal-01121457

C. C. Roothaan, L. H. Thomas, E. Fermi, P. A. No-title-dirac, P. Hohenberg et al., The Calculation of Atomic Fields Zeitschrift für Phys Note on Exchange Phenomena in the Thomas Atom Self-Consistent Equations Including Exchange and Correlation Effects Accurate Band Gaps for Semiconductors from Density Functional Theory Electronic Structure of TiO2 Surfaces and Effect of Molecular Adsorbates Using Different DFT Implementations The Performance of Hybrid Density Functionals in Solid State Chemistry Global Hybrid Functionals: A Look at the Engine under the Hood Generalized Gradient Approximation Made Simple (16) Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model (17) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, New Developments in Molecular Orbital Theory. Rev. Mod. Phys Fiolhais, C. Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation The X3LYP Extended Density Functional for Accurate Descriptions of Nonbond Interactions, Spin States, and Thermochemical Properties. Proc. Natl. Acad. Sci. U. S. A22) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals, pp.69-542, 1927.

T. M. Henderson, A. F. Izmaylov, G. E. Scuseria, A. Savin, T. M. Henderson et al., The Importance of Middle-Range Hartree- Fock-Type Exchange for Hybrid Density Functionals Assessment of a Middle-Range Hybrid Functional Long-Range-Corrected Hybrids Based on a New Model Exchange Hole Long-Range-Corrected Hybrids Based on a New Model Exchange Hole Hybrid Functionals Applied to Extended Systems Density Functional Theory in Periodic Systems Using Local Gaussian Basis Sets The Performance of Hybrid Density Functionals in Solid State Chemistry, 064201. (27)28) Corà Structure and Bonding, pp.0-4, 1996.

R. Orlando, R. Dovesi, P. Ugliengo, P. W. Tasker, C. Stability-of-ionic et al., Shape Control of CdSe Nanocrystals with Zinc Blende Structure Crystal09 User's Manual Università di Torino: Torino 2013 Pseudopotentials That Work: From H to Pu (37) Vanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism (38) Blöchl, P. E. Projector Augmented-Wave Method Continuous Transition from 3D to 1D Confinement Observed during the Formation of CdSe Nanoplatelets (40) Ithurria Lhuillier, S. Synthèses et Caractérisations de Nanoparticules de Semiconducteurs II-VI de Géométries Contrôlées Excitonics of Semiconductor Quantum Dots and Wires for Lighting and Displays Ultralow-Threshold Multiphoton- Pumped Lasing from Colloidal Nanoplatelets in Solution Ligand-Stabilized CdSe Nanoplatelet Hybrid Structures with Tailored Geometric and Electronic Properties. New Insights from Theory Shape Controllable Synthesis of ZnO Nanorod Arrays via Vapor Phase Growth Surface and Superiorly Photoelectrocatalytic Performance, Elucidating the Fundamental Forces in Protein Crystal Formation: The Case of Crambin. Chem. Sci. 2016 CRYSTAL14 -User's Manual. 2014. (35) Hamann, D.; Schlüter, M.; Chiang, C. Norm-Conserving Pseudopotentials Electronic Structure and Exciton-Phonon Interaction in Two-Dimensional Colloidal CdSe Nanosheets47) Ithurria, S.; Dubertret, B. Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level48) Ithurria, S.; Talapin, D. V. Colloidal Atomic Layer Deposition (c-ALD) Using Self-Limiting Reactions at Nanocrystal Surface Coupled to Phase Transfer between Polar and Nonpolar Media High Yield, and High Solid Loading Synthesis of Metal Selenide Nanocrystals-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition Thermal Evaporation Growth and the Luminescence Property of TiO2 Nanowires54) Berhe, S. a; Nag Influence of Seeding and Bath Conditions in Hydrothermal Growth of Very Thin (?20 Nm) Single-Crystalline Rutile TiO? Nanorod Films, pp.1496-1507, 1979.

A. S. Susha, A. Lutich, C. Liu, H. Xu, R. Zhang et al., Comparative Optical Study of Colloidal Anatase Titania Nanorods and Atomically Thin Wires Heating-Sol-Gel Template Process for the Growth of TiO2 Nanorods with Rutile and Anatase Structure, SPEC. ISS.) One-Step Fabrication of CdS Nanoparticle-Sensitized TiO, pp.1465-1469, 2004.

Y. C. Liang, C. C. Wang, C. C. Kei, Y. C. Hsueh, W. H. Cho et al., Nanotube Arrays via Electrodeposition Photocatalysis of Ag-Loaded TiO2 Nanotube Arrays Formed by Atomic Layer Deposition Formation of Titania Nanofibers: A Direct Sol-Gel Route in Supercritical CO2 Fabrication of Titania Nanofibers by Electrospinning Electrospun TiO2 Nanowires for Hybrid Photovoltaic Cells Fabrication of ZnO Nanorods for NO2 Sensor Applications: Effect of Dimensions and Electrode Position General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds Solution Synthesis of One-Dimensional ZnO Nanomaterials and Their Applications Growth of c-Axis Oriented ZnO Nanowires from Aqueous Solution: The Decisive Role of a Seed Layer for Controlling the Wires' Diameter One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties (70) Song, J.; Lim, S. Effect of Seed Layer on the Growth of ZnO Nanorods Controlled Synthesis of Aligned ZnO Nanowires and the Application in CdSe-Sensitized Solar Cells Preferential Growth of Long ZnO Nanowire Array and Its Application in Dye-Sensitized Solar Cells, Review on Fundamentals and Applications of Electrophoretic Deposition (EPD). Prog. Mater. Sci Morphogenesis of ZnO Nanostructures: Role of Acetate (COOH ? ) and Nitrate (NO 3 ? ) Ligand Donors from Zinc Salt Precursors in Synthesis and Morphology Dependent Photocatalytic Properties. RSC Adv. 2015 Growth Mechanism Studies of ZnO Nanowire Arrays via Hydrothermal Method. Appl. Phys. A 2014 Zaban, A. Importance of Recombination at the TCO / Electrolyte Interface for High Efficiency Quantum Dot Sensitized Solar Cells76) Govender, K.; Boyle, D. S.; Kenway, P. B.; O'Brien, P. Understanding the Factors That Govern the Deposition and Morphology of Thin Films of ZnO from Aqueous Solution Epitaxy of Vertical ZnO Nanorod Arrays on Highly, pp.2438-2442, 2003.

K. Khun, Z. H. Ibupoto, and M. Willander, Development of Fast and Sensitive Ultraviolet Photodetector Using P-Type NiO/n-Type TiO2 Heterostructures Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.8, issue.2101211, pp.4014-4020, 2008.

H. Huang, L. Pan, C. K. Lim, H. Gong, J. Guo et al., Hydrothermal Growth of TiO2 Nanorod Arrays and in Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot-Sensitized Solar Cells Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe Effect of Seed Layer on the Growth of Rutile TiO2 Nanorod Arrays and Their Performance in Dye-Sensitized Solar Cells Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells (84) Huang, Q.; Gao, L. A Simple Route for the Synthesis of Rutile TiO2 Nanorods, Anatase , Brookite , and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions : Phase-Selective Synthesis and Physicochemical Properties86) Wells, A. F. Structural Inorganic Chemistry, pp.3153-3160, 1975.

J. Yum and J. E. Moser, High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer Semiconductor Nanocrystals Covalently Bound to Metal Surfaces with Self-Assembled Monolayers Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition Growth Process and Investigation of Some Physical Properties of CdS Nanocrystals Formed in Polymer Matrix by Successive Ionic Layer Adsorption and Reaction (SILAR) Method Porous CdS-Sensitized Electrochemical Solar Cells CdSe Quantum Dot-Sensitized TiO2 Electrodes : Effect of Quantum Dot Coverage and Mode of Attachment CdSe Quantum-Dot-Sensitized Solar Cell with Similar to 100% Internal Quantum Efficiency Factors Determining the Photovoltaic Performance of a CdSe Quantum Dot Sensitized Solar Cell: The Role of the Linker Molecule and of the Counter Electrode Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films, Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012 Quantum Dot-Sensitized Solar Cells?perspective and Recent Developments: A Review of Cd Chalcogenide Quantum Dots as Sensitizers (99) Bakkers, E. P. a. M.; Roest, a. L.; Marsman, a. W.; Jenneskens, L. W.; de Jong-van Steensel, L. I.; Kelly, J. J.; Vanmaekelbergh, D. Characterization of Photoinduced Electron Tunneling in Gold/SAM/Q-CdSe Systems by Time-Resolved Photoelectrochemistry, pp.591-2412, 1992.

D. M. Adams, L. Brus, C. E. Chidsey, S. Creager, C. Creutz et al., Charge Transfer on the Nanoscale:?? Current Status, et al. Charge Transfer on the Nanoscale: Current Status, pp.6668-6697, 2003.
DOI : 10.1021/jp0268462

Y. R. Wang, C. B. Duke, S. Li, G. W. Yang, I. Phase-transition-of et al., Wannier Function Study of the Relative Stability of Zinc- Blende and Wurtzite Structures in the CdX (X = S, Se, Te) Series Self-Consistent-Charge Density-Functional Tight- Binding Parameters for A First-Principles Study on the Structural, Elastic, Electronic, Optical, Lattice Dynamical, and Thermodynamic Properties of Zinc-Blende CdX (X=S, Se, and Te) The Performance of Hybrid Density Functionals in Solid State Chemistry On the Prediction of Band Gaps from Hybrid Functional Theory Electronic Structure of TiO2 Surfaces and Effect of Molecular Adsorbates Using Different DFT Implementations Accurate Band Gaps for Semiconductors from Density Functional Theory Density Functional Theory in Periodic Systems Using Local Gaussian Basis Sets The Performance of Hybrid Density Functionals in Solid State Chemistry A New Massively Parallel Version of CRYSTAL for Large Systems on High Performance Computing Architectures, Cleavage Faces of Wurtzite CdS and CdSe: Surface Relaxation and Electronic Structure. Phys. Rev Kresse, G. Hybrid Functionals Applied to Extended Systems. J. physics. Condens. matter 064201. (11) Structure and Bonding Crystal09 User's Manual CRYSTAL : A Computational Tool for the Ab Initio Study of the Electronic Properties of Crystals. Zeitschrift für Krist. - Cryst. Mater; Searle, B. G. An Experimental and Theoretical Investigation of the Electronic Structure of CdO17) Towler, M. D.; Zicovich-Wilson, C. Mike Towler's CRYSTAL resources page http, pp.6417-6424, 1988.

W. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, N. P. Labello et al., Energy Band Gaps and Lattice Parameters Evaluated with the Heyd-Scuseria-Ernzerhof Screened Hybrid Functional Ab Initio Molecular Dynamics for Liquid Metals Ab Initio Molecular-Dynamics Simulation Fo the Liquid-Metal-Amorphous- Semiconductor Transition in Germanium Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set A DFT-D Study of Structural and Energetic Properties of TiO2 Modifications (26) Conesa, J. C. The Relevance of Dispersion Interactions for the Stability of Oxide Phases Can (Semi)local Density Functional Theory Account for the London Dispersion Forces ? Density Functional Theory and Molecular Clusters (29) Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction Calculated and Electronic Properties of CdSe under Pressure First-Principles Calculations of the Mean Inner Coulomb Potential for Sphalerite Type II?VI Semiconductors Effect of Increasing Tellurium Content on the Electronic and Optical Properties of Cadmium Selenide Telluride Alloys CdSe1?xTex: An Ab Initio Study Hybrid Functionals Based on a Screened Coulomb Potential (36) Madelung, O. Semiconductors -Basic Data Systematic Study on Structural Phase Behavior of CdSe Thin Films, Relativistic Compact Effective Potentials and Efficient An Augmented Effective Core Potential Basis Set for the Calculation of Molecular Polarizabilities Comput. Mater. Sci. 1996, 6, 15. (25) Ab Initio Calculations of the Electronic Structure of the Wurtzite Compounds CdS and CdSe 4938. (34) Electronic, Optical and Structural Properties of Some Wurtzite Crystals38) Zhuravlev, K. K. PbSe vs. CdSe: Thermodynamic Properties and Pressure Dependence of the Band Gap (39) Meyer, B.; Marx, D. Density-Functional Study of the Structure and Stability of ZnO Surfaces Sarma, D. D. Crystal Structure Engineering by Fine-Tuning the Surface Energy: The Case of CdE (E = S/Se) Nanocrystals-Supporting Information Banos, L. Quantum Confinement and Crystalline Structure of CdSe Nanocrystalline Films. Phys. Status Solidi Zunger, A. Zinc-Blende-Wurtzite Polytypism in Semiconductors. Phys. Rev44) Zunger, A.; Cohen, M. L. Density-Functional Pseudopotential Approach to Crystal Phase Stability and Electronic Structure45) Fedorov, V. A.; Ganshin, V. A.; Korkishko, Y. N. Determination of the Point of the, pp.612-630, 1976.

W. Tahir, F. Aslam, and L. Sham, Shaukat, a. Ab Initio Study of Structural, Electronic and Optical Properties of Be-Doped CdS, CdSe and CdTe Compounds (47) Alahmed, Z. a. Effects of in-Plane Tensile Strains on Structural, Electronic, and Optical Properties of CdSe, Wurtzite Structural Phase Transition in Cadmium Selenide Crystals. Phys. Status Solidi, pp.5-7, 1983.

F. Labat, I. Ciofini, C. Adamo, J. M. Azpiroz, J. M. Ugalde et al., Benchmark Assessment of Density Functional Methods on Group II Te) Quantum Dots Ab Initio Study of Structural, Electronic and Optical Properties of Mg X Cd 1 A Minimal Basis Semi-Ab Initio Approach to the Band Structures of Semiconductors Quasi-Particle Band Structures of Six II-VI Compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe Density Functional Study of 2D Semiconductor CdSe· Hda 0.5 ( Hda = 1,6- Hexanediamine) and Its Excitonic Optical Properties Total Valence-Band Densities of States of III-V and II-VI Compounds from X-Ray Photoemission Spectroscopy (56) Tasker, P. W. The Stability of Ionic Crystal Surfaces et al. Analysis of the Atomic Geometries of the (10-10) and (11-20) Surfaces of CdSe by Low-Energy-Electron Diffraction and Low-Energy-Positron Diffraction Surface Relaxation in CdSe Nanocrystals, Modeling ZnO Phases Using a Periodic Approach: From Bulk to Surface and Beyond59) Csik, I.; Russo, S. P.; Mulvaney, P. Density Functional Study of Non-Polar Surfaces of Wurtzite CdSe61) LaFemina, J. P. Total-Energy Calculations of Semiconductor Surface Reconstructions. Electronic Structure of Wurtzite II-VI Compound Semiconductor Cleavage Surfaces Studied by Scanning Tunneling Microscopy. Phys. Rev, pp.44708-76, 1973.

S. Ithurria, M. D. Tessier, B. Mahler, R. P. Lobo, B. Dubertret et al., Two- Dimensional Growth of CdSe Nanocrystals, from Nanoplatelets to Nanosheets Metal-Free Inorganic Ligands for Colloidal Nanocrystals NH2-as Surface Ligands Crystal09 User's Manual, 2013 Investigation of the Bulk and Surface Properties of CdSe: Insights from Theory Density-Functional Thermochemistry. III. The Role of Exact Exchange Accurate Band Gaps for Semiconductors from Density Functional Theory Relativistic Compact Effective Potentials and Efficient, Shared-Exponent Basis Sets for the Third-, Fourth-, and Fifth-Row Atoms An Augmented Effective Core Potential Basis Set for the Calculation of Molecular Polarizabilities Hybrid Functionals Applied to Extended Systems. J. physics. Condens. matter Density Functional Theory in Periodic Systems Using Local Gaussian Basis Sets The Performance of Hybrid Density Functionals in Solid State Chemistry A New Massively Parallel Version of CRYSTAL for Large Systems on High Performance Computing Architectures (16) Labat, F.; Ciofini, I.; Adamo, C. Modeling ZnO Phases Using a Periodic Approach: From Bulk to Surface and Beyond Consistent Gaussian Basis Sets of Triple-Zeta Valence with Polarization Quality for Solid-State Calculations (19) Tasker, P. W. The Stability of Ionic Crystal Surfaces Calculated and Electronic Properties of CdSe under Pressure Cleavage Faces of Wurtzite CdS and CdSe: Surface Relaxation and Electronic Structure Density Functional Study of Non-Polar Surfaces of Wurtzite CdSe Adsorption and Binding of Ligands to CdSe Nanocrystals Alivisatos, a P. First-Principles Modeling of Unpassivated and Surfactant-Passivated Bulk Facets of Wurtzite CdSe: A Model System for Studying the Anisotropic Growth of CdSe Nanocrystals (28) Li, Z.; Peng, X. Size/shape-Controlled Synthesis of Colloidal CdSe Quantum Disks: Ligand and Temperature Effects Shape Control of CdSe Nanocrystals with Zinc Blende Structure Characterization of Primary Amine Capped CdSe, ZnSe, and ZnS Quantum Dots by FT-IR: Determination of Surface Bonding Interaction and Identification of Selective Desorption First-Principles Studies of the Atomic Reconstructions of CdSe (001) and (111) Surfaces Controlled Growth of Tetrapod- Branched Inorganic Nanocrystals Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films, Colloidal Nanoplatelets with Two-Dimensional Electronic Structure. Nat. Mater Bimolecular Auger Recombination of Electron?Hole Pairs in Two-Dimensional CdSe and CdSe Structure and Bonding Electronic Structure of Wurtzite II-VI Compound Semiconductor Cleavage Surfaces Studied by Scanning Tunneling Microscopy26) Rabani, E. Structure and Electrostatic Properties of Passivated CdSe Nanocrystals Effect of Reaction Media on the Growth and Photoluminescence of Colloidal CdSe Nanocrystals Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine?Trioctylphosphine Oxide?Trioctylphospine Mixture Efros, A. L.; Voisin, P. Tight-Binding Calculations of Image-Charge Effects in Colloidal Nanoscale Platelets of CdSe Voisin, P. Electronic and Optical Properties of Colloidal CdSe Nanoplatelets. In Nanosctructures: Physics and Technology Spectroscopy of Single CdSe Nanoplatelets Gómez, R.; Bisquert, J. Factors Determining the Photovoltaic Performance of a CdSe Quantum Dot Sensitized Solar Cell: The Role of the Linker Molecule and of the Counter Electrode40) Dibbell, R. S.; Watson, D. F. Distance-Dependent Electron Transfer in Tethered Assemblies of CdS Quantum Dots and TiO2 Nanoparticles41) Yang, Y. A.; Wu, H.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection Mechanisms of the Shape Evolution of CdSe Nanocrystals Trudeau, P.-E.; Alivisatos, A. P. Reaction Chemistry and Ligand Exchange at Cadmium-Selenide Nanocrystal Surfaces, pp.936-941, 1976.

H. J. Yun, T. Paik, M. E. Edley, J. B. Baxter, C. B. Murray et al., High- Efficiency " green " quantum Dot Solar Cells Core/shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells Near Infrared Absorption of CdSe X Te 1-X Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability Facile Solution Growth of Vertically Aligned ZnO Nanorods Sensitized with Aqueous CdS and CdSe Quantum Dots for Photovoltaic Applications Ligand Capping Effect for Dye Solar Cells with a CdSe Quantum Dot Sensitized ZnO Nanorod Photoanode, 340. (6) Sun Sensitization of Hydrothermally Grown Single Crystalline TiO2 Nanowire Array with CdSeS Nanocrystals for Photovoltaic Applications Efros, A. L. Colloidal Nanoplatelets with Two-Dimensional Electronic Structure (9) Geurts, J. Raman Spectroscopy from Buried Semiconductor Interfaces: Structural and Electronic Properties. Phys. Status Solidi 201510) Marie, M.; Mandal, S.; Manasreh, O. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods, pp.3721-3728, 2011.

K. Ramamurthi, A. M. Selman, Z. Hassan, N. Tschirner, H. Lange et al., Structural and Photoluminescence Studies of Rutile TiO2 Nanorods Prepared by CBD Method on Si Substrates OH-and NH2-as Surface Ligands (14) Ithurria, S.; Talapin, D. V. Colloidal Atomic Layer Deposition (c-ALD) Using Self-Limiting Reactions at Nanocrystal Surface Coupled to Phase Transfer between Polar and Nonpolar Media Analysis of CdSe/CdS Core-Shell Quantum Dots with Different CdS Shell Thickness, Role of Point Defects on the Enhancement of Room Temperature Ferromagnetism in ZnO Nanorods M. Electron-Phonon Coupling in CdSe/CdS Core/Shell Quantum Dots-and IR-Active Phonons in CdSe/CdS Core/Shell Nanocrystals in the Presence of Interface Alloying and Strain V. Metal-Free Inorganic Ligands for Colloidal Nanocrystals : S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2-as Surface Ligands, pp.4713-4729, 2007.

Y. A. Yang, H. Wu, K. R. Williams, and Y. Cao, (21) Peng, Z. A.; Peng, X. Mechanisms of the Shape Evolution of CdSe Nanocrystals Reaction Chemistry and Ligand Exchange at Cadmium-Selenide Nanocrystal Surfaces, C. Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection. Angew. Chemie J. Am. Chem. Soc. J. Am. Chem. Soc, vol.44, issue.12337, pp.6712-6715, 2001.

S. J. Xu, H. Wang, Q. Li, M. H. Xie, X. C. Wang et al., Minimizing Electron ? Hole Recombination on TiO2 Sensitized with PbSe Quantum Dots: Time-Domain Ab Initio Analysis First-Principles Investigation on Electronic Properties of Quantum Dot-Sensitized Solar Cells Based on Anatase TiO 2 Nanotubes Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO2 Nanobelt Hexagonal Boron Nitride on Transition Metal Surfaces Oxide and Halide Nanoclusters on Ionic Substrates: Heterofilm Formation and Lattice Mismatch Hexagon-on-Cube versus Cube-on-Cube Epitaxy: The Case of ZnSe(111) on SrTiO 3 ( 001 ) Quantifying Geometric Strain at the PbS QD-TiO2 Anode Interface and Its Effect on Electronic Structures The Performance of Hybrid Density Functionals in Solid State Chemistry Ab Initio Nonadiabatic Molecular Dynamics of the Ultrafast Electron Injection from a PbSe Quantum Dot into the TiO2 Surface Probing Confined Phonon Modes in Individual CdSe Nanoplatelets Using Surface-Enhanced Raman Scattering Fontcuberta i Morral, a. Raman Spectroscopy of Wurtzite and Zinc-Blende GaAs Nanowires: Polarization Dependence, Selection Rules, and Strain Effects Density-Functional Thermochemistry. III. The Role of Exact Exchange Can (Semi)local Density Functional Theory Account for the London Dispersion Forces ? Density Functional Theory and Molecular Clusters (26) Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction (27) Becke, A. D. Density-Functional thermochemistry.III. The Role of Exact Exchange Relativistic Compact Effective Potentials and Efficient, Shared-Exponent Basis Sets for the Third-, Fourth-, and Fifth-Row Atoms a. An Augmented Effective Core Potential Basis Set for the Calculation of Molecular Polarizabilities Accurate Band Gaps for Semiconductors from Density Functional Theory A Theoretical Method to Determine Atomic Pseudopotentials for Electronic Structure Calculations of Molecules and Solids Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg Modeling ZnO Phases Using a Periodic Approach: From Bulk to Surface and Beyond The Calculation of the Vibrational Frequencies of Crystalline Compounds and Its Implementation in the CRYSTAL Code Calculation of the Vibration Frequencies of Alpha-Quartz: The Effect of Hamiltonian and Basis Set Coupled Perturbed Hartree-Fock for Periodic Systems: The Role of Symmetry and Related Computational Aspects, Self-Assembled InAs/GaAs Quantum-Dot Superlattices. Appl. Phys. Lett Phonons in ZnSe ? BeSe Mixed Crystals: Raman Scattering and Percolation Model. Phys. Rev Structural and Electronic Properties of Semiconductor-Sensitized Solar-Cell Interfaces. Adv. Funct. Mater 10403. (9) Muck Structure and Bonding (13) Han, P.; Bester, G. Heavy Strain Conditions in Colloidal Core-Shell Quantum Dots and Their Consequences on the Vibrational Properties from Ab Initio Calculations. Phys. Rev. B 2015, 92, 125438. (14) Geurts, J. Raman Spectroscopy from Buried Semiconductor Interfaces: Structural and Electronic Properties. Phys. Status Solidi 2015 Ligand-Stabilized CdSe Nanoplatelet Hybrid Structures with Tailored Geometric and Electronic Properties. New Insights from Theory. RSC Adv. 201422) Szemjonov, A.; Pauporté, T.; Ciofini, I.; Labat, F. Investigation of the Bulk and Surface Properties of CdSe: Insights from Theory LITHIUM SULPHIDE : A HARTREE-FOCK Al3 INITIO APPROACH Dovesi, R. Ab Initio Analytical Raman Intensities for Periodic Systems through a Coupled Perturbed Hartree-Fock/Kohn-Sham Method in an Atomic Orbital Basis. II. Validation and Comparison with Experiments39) Maschio, L.; Kirtman.; Dovesi, R. Ab Initio Analytical Raman Intensities for Periodic Systems through a Coupled Perturbed Hartree-Fock/Kohn-Sham Method in an Atomic Orbital Basis. I. Theory Dovesi, R. Calculation of First and Second Static Hyperpolarizabilities of One-to Three-Dimensional Periodic Compounds. Implementation in the CRYSTAL Code The Calculation of Static Polarizabilities of 1-3D Periodic Compounds. the Implementation in the Crystal Code44) Zuala, L.; Agarwal, P. Effect of Se Concentration on Mixed Phonon Modes and Spin Orbit Splitting in Thermally Evaporated CdSxSe1?x (0 ? X ? 1) Films Using CdS?CdSe Nano-Composites Pressure-Induced Phonon Frequency Shifts Measured by Raman Scattering. Phys. Rev, pp.2130-155319, 1969.

S. N. Behera, P. Nayak, K. Patnaik, R. Cuscó, E. Alarcón-lladó et al., A New Criterion for the Mixed Crystal Behaviour in the Diatomic Linear Chain Model Solids Pramana Ab Initio Simulation of the IR Spectra of Pyrope, Grossular, and Andradite-and IR-Active Phonons in CdSe/CdS Core/Shell Nanocrystals in the Presence of Interface Alloying and Strain Raman Analysis of CdSe/CdS Core-Shell Quantum Dots with Different CdS Shell Thickness, 46) Pejova, B. Phonon Confinement and Related Effects in Three-Dimensional Assemblies of Cubic Cadmium Selenide Quantum Dots Synthesized by Conventional Chemical and Sonochemical Routes. J. Phys. Chem. C 2013 M. Electron-Phonon Coupling in CdSe/CdS Core/Shell Quantum Dots T. Molecular-Beam-Epitaxy Growth of CdTe on InSb (110) Monitored in Situ by Raman Spectroscopy.; Chen, Y. H. Polarized Raman Scattering of Single ZnO Nanorod, pp.255-303, 1977.

A. V. Kozytskiy, O. L. Stroyuk, S. Y. Kuchmiy, V. M. Dzhagan, D. R. Zahn et al., Morphology, Optical, and Photoelectrochemical Properties of Electrodeposited Nanocrystalline ZnO Films Sensitized with Cd X Zn1?x S Nanoparticles Resonant Raman Scattering Studies of Cd 1-X Zn X S Nanocrystals Photoinduced Intramolecular Electron Transfer in Ruthenium and Osmium Polyads : Insights from Theory Photoinduced Processes within Compact Dyads Based on Triphenylpyridinium-Functionalized Bipyridyl Complexes of ruthenium(II). Chem. -A Eur, I. Theoretical Procedure for Optimizing Dye- Sensitized Solar Cells: From Electronic Structure to Photovoltaic Efficiency Ciofini, I. Modeling Dye-Sensitized Solar Cells : From Theory to Experiment, Adamo, C. Insights into Working Principles of Ruthenium Polypyridyl Dye-Sensitized Solar Cells from First Principles Modeling, pp.48-7764, 2004.

H. Lee, H. C. Leventis, S. Moon, P. Chen, S. Ito et al., PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells Old Concepts, New Results Hole-Transporting Materials Based on Twisted Bimesitylenes for Stable Perovskite Solar Cells with High Efficiency Metal-Free Inorganic Ligands for Colloidal Nanocrystals : S2-, HS-, Te2-, HTe-, TeS32-, OH-and NH2-as Surface Ligands Controlled Synthesis of Aligned ZnO Nanowires and the Application in CdSe-Sensitized Solar Cells Well-Aligned Arrays of Vertically Oriented ZnO Nanowires Electrodeposited on ITO-Coated Glass and Their Integration in Dye Sensitized Solar Cells Resonance Raman Spectra of Wurtzite and Zincblende CdSe Nanocrystals The Scherrer Formula for X-Ray Particle Size Determination, Dubertret, B. Raman-and IR-Active Phonons in CdSe/CdS Core/Shell Nanocrystals in the Presence of Interface Alloying and Strain (9) Selman, A. M.; Hassan, Z. Structural and Photoluminescence Studies of Rutile TiO2 Nanorods Prepared by CBD Method on Si Substrates, pp.2735-2742, 1939.

B. Lequeux, T. Dubertret, and . Pauporté, Complementary theoretical/experimental approach for characterizing nanoplatelet-oxide heterostructures in hybrid solar cells, MRS Spring Meeting, pp.2-6, 2016.

. Cdse, SH and c) CdSe.OH systems. Fermi level was set at 0 eV??????????????, p.113