. La-montée-d-'une-bulle......., Les particules bleues foncées représentent la phase air et les particules jaunes représentent la phase eau. Les interfaces sont comparées avec : la solution de SPH de Grenier et al. [111] (points verts) et la solution de Level-Set de Sussman et al. [121] (points rouges), p.99

. La-montée-d, eau avec prise en compte d'une force de cohésion pour l'interface. Les particules bleues foncées représentent la phase air et les particules jaunes représentent la phase eau. Les interfaces sont comparées avec : la solution de SPH de Grenier et al. [111] (points verts) et la solution de Level, Set de Sussman et al. [121] (points rouges). . . . . . . . . . . . . . . . . 101

.. La-montée-d-la-vitesse, une bulle d'air dans l'eau. Les points noirs indiquent la surface libre et le couleur de particule représente, p.102

.. Vue-schématique-du-domaine-initial, Trois points fixés pour étudier la hauteur d'eau ou la pression pendant la simulation : P A (3; 721H; 0), P B (4; 542H; 0) et P C (d; 0; 192H)

.. Effondrement-d-'une-colonne-d, eau aux trois instants de la simulation En haut : notre résultat, en bas : le résultat obtenu par le modèle de Chen et al. [1]. (cf. les lignes ref, 1 et 1bis du Tableau 5.2), p.106

B. Chen, Z. Zong, M. Liu, L. Zou, H. Li et al., An SPH model for multiphase flows with complex interfaces and large density differences, Journal of Computational Physics, vol.283, issue.1 0, pp.169-188, 2015.
DOI : 10.1016/j.jcp.2014.11.037

. Sabella-d10-la-premiere, Disponible : http://www.sabella.fr [5] [En ligne

T. Whittaker, W. Beattie, M. Folley, C. Boake, A. Wright et al., The limpet wave power project the first years of operation

Y. Torre-enciso, I. Ortubia, L. López-de-aguileta, and E. J. Marqués, Mutriku wave power plant : from the thinking out to the reality, Proceedings of the 8th European Wave and Tidal Energy Conference, pp.319-329, 2009.

C. Consortium, Final publishable summary report, contract no. 213633, Tech. Rep, 2011.

M. Sussman and E. G. Puckett, A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, Journal of Computational Physics, vol.162, issue.2, pp.301-337, 2000.
DOI : 10.1006/jcph.2000.6537

F. Caleyron, Simulation numérique par la méthode sph de fuites de fluide consécutives à la déchirure d'un réservoir sous impact, 2011.

J. Cherfils, Développements et applications de la méthode SPH aux écoulements visqueux à surface libre, 2011.

R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, vol.181, issue.3, pp.375-389, 1977.
DOI : 10.1093/mnras/181.3.375

L. B. Lucy, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, vol.82, pp.1013-1024, 1977.
DOI : 10.1086/112164

J. J. Monaghan, Simulating Free Surface Flows with SPH, Journal of Computational Physics, vol.110, issue.2, pp.399-406, 1994.
DOI : 10.1006/jcph.1994.1034

E. Chan and W. Melville, Deep-water plunging wave pressures on a vertical plane wall, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, pp.95-131, 1988.

E. Chan, Mechanics of deep water plunging-wave impacts on vertical structures, Coastal Engineering, vol.22, issue.1-2, pp.115-1330378383994900507, 1994.
DOI : 10.1016/0378-3839(94)90050-7

M. Hattori, A. Arami, and E. T. Yui, Wave impact pressure on vertical walls under breaking waves of various types, Coastal Engineering, vol.22, issue.1-2, pp.79-1140378383994900493, 1994.
DOI : 10.1016/0378-3839(94)90049-3

D. Peregrine, Water-wave impact on walls Annual review of fluid mechanics, pp.23-43, 2003.

G. Bullock, C. Obhrai, D. Peregrine, and E. H. Bredmose, Violent breaking wave impacts. Part 1: Results from large-scale regular wave tests on vertical and sloping walls, Coastal Engineering, vol.54, issue.8, pp.602-617, 2007.
DOI : 10.1016/j.coastaleng.2006.12.002

J. Monaghan, Smoothed particle hydrodynamics, Reports on Progress in Physics, vol.68, issue.8, pp.17030034-4885, 2005.

A. D. Mokos, Multi-phase modelling of violent hydrodynamics using smoothed particle hydrodynamics (sph) on graphics processing units (gpus), 2014.

O. Kimmoun, Y. Scolan, and ?. Malenica, Fluid structure interactions occuring at a flexible vertical wall impacted by a breaking wave, The Nineteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00454569

F. Kelecy and R. Pletcher, The Development of a Free Surface Capturing Approach for Multidimensional Free Surface Flows in Closed Containers, Journal of Computational Physics, vol.138, issue.2, pp.939-980, 1997.
DOI : 10.1006/jcph.1997.5847

F. H. Harlow and J. E. Welch, Numerical Study of Large-Amplitude Free-Surface Motions, Physics of Fluids, vol.9, issue.5, pp.842-851, 1958.
DOI : 10.1063/1.1761784

C. Hirt and B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, issue.1, pp.201-2250021999181901455, 1981.
DOI : 10.1016/0021-9991(81)90145-5

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.413.5254

F. Alcrudo and P. Garcia-navarro, A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations, International Journal for Numerical Methods in Fluids, vol.XIII, issue.6, pp.489-505, 1993.
DOI : 10.1002/fld.1650160604

E. F. Toro, Shock-capturing methods for free-surface shallow flows, 2001.

D. Zhao, H. Shen, G. Tabios, I. , J. Lai et al., Finite???Volume Two???Dimensional Unsteady???Flow Model for River Basins, Journal of Hydraulic Engineering, vol.120, issue.7, pp.863-883, 1994.
DOI : 10.1061/(ASCE)0733-9429(1994)120:7(863)

M. Tseng, Explicit finite volume non-oscillatory schemes for 2D transient free-surface flows, International Journal for Numerical Methods in Fluids, vol.116, issue.7, pp.831-843, 1999.
DOI : 10.1002/(SICI)1097-0363(19990815)30:7<831::AID-FLD865>3.0.CO;2-6

F. Dias, D. Dutykh, and J. Ghidaglia, A two-fluid model for violent aerated flows, Computers & Fluids, vol.39, issue.2, pp.283-293, 2010.
DOI : 10.1016/j.compfluid.2009.09.005

URL : https://hal.archives-ouvertes.fr/hal-00285037

J. Ghidaglia, A. Kumbaro, and G. L. Coq, Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, pp.981-988, 1996.

O. Ubbink and R. Issa, A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes, Journal of Computational Physics, vol.153, issue.1, pp.26-50, 1999.
DOI : 10.1006/jcph.1999.6276

W. J. Rider and D. B. Kothe, Reconstructing Volume Tracking, Journal of Computational Physics, vol.141, issue.2, pp.112-152, 1998.
DOI : 10.1006/jcph.1998.5906

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.8649

K. Kleefsman, G. Fekken, A. Veldman, B. Iwanowski, and E. B. Buchner, A Volume-of-Fluid based simulation method for wave impact problems, Journal of Computational Physics, vol.206, issue.1, pp.363-393, 2005.
DOI : 10.1016/j.jcp.2004.12.007

C. Mokrani, Impact de vagues déferlantes sur un obstacle vertical. modele théorique et calcul numérique des pics de pression, 2012.

S. Van-der-pijl, A. Segal, C. Vuik, and E. P. Wesseling, A mass-conserving Level-Set method for modelling of multi-phase flows, International Journal for Numerical Methods in Fluids, vol.37, issue.4, pp.339-361, 2005.
DOI : 10.1002/fld.817

Z. Wang, J. Yang, B. Koo, and E. F. Stern, A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves, International Journal of Multiphase Flow, vol.35, issue.3, pp.227-246, 2009.
DOI : 10.1016/j.ijmultiphaseflow.2008.11.004

E. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence et al., Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, Journal of Computational Physics, vol.227, issue.18, pp.8417-8436, 2008.
DOI : 10.1016/j.jcp.2008.06.005

J. P. Hughes and D. I. Graham, Comparison of incompressible and weakly-compressible SPH models for free-surface water flows, Journal of Hydraulic Research, vol.2, issue.sup1, pp.105-117, 2010.
DOI : 10.1016/j.coastaleng.2007.06.001

C. Hirt, A. A. Amsden, and E. J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, Journal of Computational Physics, vol.14, issue.3, pp.227-253, 1974.
DOI : 10.1016/0021-9991(74)90051-5

T. J. Hughes, W. K. Liu, and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.29, issue.3, pp.329-349, 1981.
DOI : 10.1016/0045-7825(81)90049-9

H. Braess and P. Wriggers, Arbitrary Lagrangian Eulerian finite element analysis of free surface flow, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.1-2, pp.95-109, 2000.
DOI : 10.1016/S0045-7825(99)00416-8

J. Vila, ON PARTICLE WEIGHTED METHODS AND SMOOTH PARTICLE HYDRODYNAMICS, Mathematical models and methods in applied sciences, pp.161-209, 1999.
DOI : 10.1142/S0218202599000117

J. Marongiu, F. Leboeuf, J. Caro, and E. E. Parkinson, Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method, Journal of Hydraulic Research, vol.323, issue.sup1, pp.40-49, 2010.
DOI : 10.1142/S0218202599000117

URL : https://hal.archives-ouvertes.fr/hal-00566051

J. Leduc, J. Marongiu, F. Leboeuf, M. Lance, and E. Parkinson, Multiphase sph : a new model based on acoustic riemann solver, Proc of 4th Int SPHERIC Workshop, pp.8-13, 2009.

P. G. Oger, L. Brosset, E. Jacquin, N. Grenier, and D. L. Touzé, Simulation of liquid impacts with a two-phase parallel SPH model, Proceedings of 20th International Offshore and Polar Engineering Conference, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01156348

A. Rafiee, D. Dutykh, and E. F. Dias, Numerical Simulation of Wave Impact on a Rigid Wall Using a Two???phase Compressible SPH Method, Procedia IUTAM, vol.18, 2013.
DOI : 10.1016/j.piutam.2015.11.013

URL : https://hal.archives-ouvertes.fr/hal-00830054

B. Hofland, M. Kaminski, and E. G. Wolters, LARGE SCALE WAVE IMPACTS ON A VERTICAL WALL, Coastal Engineering Proceedings, vol.1, issue.32, p.15, 2011.
DOI : 10.9753/icce.v32.structures.15

M. L. Kaminski and H. Bogaert, Full scale sloshing impact tests, ISOPE conference, 2009.

A. Khayyer and H. Gotoh, Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure, Coastal Engineering, vol.56, issue.4, pp.419-440, 2009.
DOI : 10.1016/j.coastaleng.2008.10.004

S. Koshizuka and Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear science and engineering, vol.123, issue.3, pp.421-434, 1996.

G. Oger, P. Guilcher, E. Jacquin, L. Brosset, J. Deuff et al., Simulations of hydro-elastic impacts using a parallel SPH model, International Journal of Offshore and Polar Engineering, vol.20, issue.3, pp.181-189, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01156310

L. Libersky and A. Petschek, Smooth particle hydrodynamics with strength of materials Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, ser. Lecture Notes in Physics, pp.248-257, 1991.

L. D. Libersky, A. G. Petschek, T. C. Carney, J. R. Hipp, and F. A. Allahdadi, High Strain Lagrangian Hydrodynamics, Journal of Computational Physics, vol.109, issue.1, pp.67-75, 1993.
DOI : 10.1006/jcph.1993.1199

A. Hérault, G. Bilotta, and R. A. Dalrymple, SPH on GPU with CUDA, Journal of Hydraulic Research, vol.181, issue.sup1, pp.74-79, 2010.
DOI : 10.1016/S0045-7825(96)01090-0

P. Maruzewski, D. L. Touzé, G. Oger, and E. F. Avellan, SPH high-performance computing simulations of rigid solids impacting the free-surface of water, Journal of Hydraulic Research, vol.04, issue.sup1, pp.126-134, 2010.
DOI : 10.1142/S0218202599000117

URL : https://hal.archives-ouvertes.fr/hal-01161585

M. Liu and G. Liu, Smoothed particle hydrodynamics (sph) : an overview and recent developments Archives of computational methods in engineering, pp.25-76, 2010.

R. Gingold and J. Monaghan, Kernel estimates as a basis for general particle methods in hydrodynamics, Journal of Computational Physics, vol.46, issue.3, pp.429-453, 1982.
DOI : 10.1016/0021-9991(82)90025-0

M. Liu, G. Liu, and E. K. Lam, Constructing smoothing functions in smoothed particle hydrodynamics with applications, Journal of Computational and Applied Mathematics, vol.155, issue.2, pp.263-284, 2003.
DOI : 10.1016/S0377-0427(02)00869-5

G. Oger, Aspects théoriques de la méthode sph et applications à l'hydrodynamique à surface libre, 2006.

J. Bonet and T. Lok, Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1-2, pp.97-115, 1999.
DOI : 10.1016/S0045-7825(99)00051-1

A. Colagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, vol.191, issue.2, pp.448-475, 2003.
DOI : 10.1016/S0021-9991(03)00324-3

J. Cherfils, G. Pinon, and E. E. Rivoalen, JOSEPHINE: A parallel SPH code for free-surface flows, Computer Physics Communications, vol.183, issue.7, pp.1468-1480, 2012.
DOI : 10.1016/j.cpc.2012.02.007

D. A. Fulk and D. W. Quinn, An Analysis of 1-D Smoothed Particle Hydrodynamics Kernels, Journal of Computational Physics, vol.126, issue.1, pp.165-180, 1996.
DOI : 10.1006/jcph.1996.0128

W. Dehnen and H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Monthly Notices of the Royal Astronomical Society, vol.425, issue.2, pp.1068-1082, 2012.
DOI : 10.1111/j.1365-2966.2012.21439.x

URL : http://arxiv.org/abs/1204.2471

J. P. Morris, A study of the stability properties of sph, " arXiv preprint astro-ph, 1996.

H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, vol.4, issue.1, pp.389-396, 1995.
DOI : 10.1007/BF02123482

M. Robinson, Turbulence and viscous mixing using smoothed particle hydrodynamics, 2009.

L. F. Macia, I. A. Souto, M. Antuono, and E. A. Colagrossi, Benefits of using a wendland kernel for free-surface flows, Proceedings of 6th ERCOFTAC SPHERIC workshop on SPH applications, 2011.

A. Ferrari, M. Dumbser, E. F. Toro, and E. A. Armanini, A new 3D parallel SPH scheme for free surface flows, Computers & Fluids, vol.38, issue.6, pp.1203-1217, 2009.
DOI : 10.1016/j.compfluid.2008.11.012

M. Antuono, A. Colagrossi, S. Marrone, and E. D. Molteni, Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Computer Physics Communications, vol.181, issue.3, pp.532-549, 2010.
DOI : 10.1016/j.cpc.2009.11.002

D. Molteni and A. Colagrossi, A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Computer Physics Communications, vol.180, issue.6, pp.861-872, 2009.
DOI : 10.1016/j.cpc.2008.12.004

P. Randles and L. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and applications, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.375-408, 1996.
DOI : 10.1016/S0045-7825(96)01090-0

J. Monaghan and R. Gingold, Shock simulation by the particle method SPH, Journal of Computational Physics, vol.52, issue.2, pp.374-389, 1983.
DOI : 10.1016/0021-9991(83)90036-0

F. Maciá, M. Antuono, L. M. González, and E. A. Colagrossi, Theoretical Analysis of the No-Slip Boundary Condition Enforcement in SPH Methods, Progress of theoretical physics, pp.1091-1121, 2011.
DOI : 10.1143/PTP.125.1091

A. Colagrossi, A meshless lagrangian method for free-surface and interface flows with fragmentation, 2005.

P. Guilcher, Contribution au développement d'une méthode SPH pour la simulation numérique des interactions houle-structure, 2008.

A. Colagrossi, G. Colicchio, and E. D. Touzé, Enforcing boundary conditions in sph applications involving bodies with right angles, Proc. 2nd SPHERIC Workshop, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01156197

D. Touzé, A. Colagrossi, and E. G. Collichio, Ghost technique for right angles applied to the solution of benchmarks 1 and 2, 2006.

S. D. Chowdhury and S. Sannasiraj, SPH Simulation of shallow water wavepropagation, Ocean Engineering, vol.60, pp.41-52, 2013.
DOI : 10.1016/j.oceaneng.2012.12.036

G. Wu, Fluid impact on a solid boundary, Journal of Fluids and Structures, vol.23, issue.5, pp.755-765, 2007.
DOI : 10.1016/j.jfluidstructs.2006.11.002

C. Mokrani, S. Abadie, and E. K. Zibouche, Lien entre la forme locale de la surface libre et les pressions d'impact générées par une vague déferlante sur un ouvrage, pp.53-57, 2013.

M. Antuono, A. Colagrossi, and E. S. Marrone, Numerical diffusive terms in weakly-compressible SPH schemes, Computer Physics Communications, vol.183, issue.12, pp.2570-2580, 2012.
DOI : 10.1016/j.cpc.2012.07.006

M. Cooker and D. Peregrine, A Model for Breaking Wave Impact Pressures, Coastal Engineering 1990, 1990.
DOI : 10.1061/9780872627765.112

D. G. Goring, Tsunamis?the propagation of long waves onto a shelf, 1978.

I. Svendsen and P. Justesen, Forces on slender cylinders from very high and spilling breakers, Symposium on description and modelling of directional seas, pp.18-20, 1984.

S. Grilli and I. Svendsen, The propagation and runup of solitary waves on steep slopes Center for Applied Coastal Research, 1991.

J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl, vol.17, issue.2, pp.55-108

S. Grilli and I. Svendsen, Computation of Nonlinear Wave Kinematics During Propagation and Runup on a Slope, Water wave kinematics, pp.387-412, 1990.
DOI : 10.1007/978-94-009-0531-3_24

H. Power and A. T. Chwang, On reflection of a planar solitary wave at a vertical wall, Wave Motion, vol.6, issue.2, pp.183-195, 1984.
DOI : 10.1016/0165-2125(84)90014-3

L. Rayleigh, Waves, Phil. Mag, vol.1, issue.5, pp.257-279, 1876.
DOI : 10.1007/978-3-540-45626-1_8

B. Jean, Les houles périodiques simples Institut des Sciences de l'Ingénieur de Toulon et du Var (ISITV) De l, 1993.

J. G. Byatt-smith, An integral equation for unsteady surface waves and a comment on the Boussinesq equation, Journal of Fluid Mechanics, vol.17, issue.04, pp.625-633, 1971.
DOI : 10.1017/S0022112071002295

T. Maxworthy, Experiments on collisions between solitary waves, Journal of Fluid Mechanics, vol.33, issue.01, pp.177-186, 1976.
DOI : 10.1063/1.1666400

R. K. Chan and R. L. Street, A computer study of finite-amplitude water waves, Journal of Computational Physics, vol.6, issue.1, pp.68-94, 1970.
DOI : 10.1016/0021-9991(70)90005-7

C. Su and R. M. Mirie, On head-on collisions between two solitary waves, Journal of Fluid Mechanics, vol.46, issue.03, pp.509-525, 1980.
DOI : 10.1103/PhysRevLett.19.1095

O. Kimmoun, Y. Scolan, and E. Z. Mravak, Minislo -séminaire clarom océano-météo et hydrodynamique, 2008.

O. Kimmoun, A. Ratouis, and E. L. Brosset, Sloshing and scaling : experimental study in a wave canal at two different scales, Proceedings of 20th International Offshore and Polar Engineering Conference, pp.20-26, 2010.

J. Monaghan, R. Cas, A. Kos, and E. M. Hallworth, Gravity currents descending a ramp in a stratified tank, Journal of Fluid Mechanics, vol.379, pp.39-69, 1999.
DOI : 10.1017/S0022112098003280

X. Hu and N. Adams, A multi-phase SPH method for macroscopic and mesoscopic flows, Journal of Computational Physics, vol.213, issue.2, pp.844-861, 2006.
DOI : 10.1016/j.jcp.2005.09.001

N. Grenier, M. Antuono, A. Colagrossi, D. L. Touzé, and E. B. Alessandrini, An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, Journal of Computational Physics, vol.228, issue.22, pp.8380-8393, 2009.
DOI : 10.1016/j.jcp.2009.08.009

E. G. Flekkøy, P. V. Coveney, and G. De-fabritiis, Foundations of dissipative particle dynamics, Physical Review E, vol.62, issue.2, pp.2140-2157, 2000.
DOI : 10.1103/PhysRevE.62.2140

J. Leduc, J. Marongiu, E. Parkinson, M. Lance, and F. Leboeuf, Modélisation d'écoulements multiphasiques sans diffusion d'interface, 19 ème Congrès Français de Mécanique, 2009.

J. Leduc, F. Leboeuf, M. Lance, E. Parkinson, and E. J. Marongiu, Improvement of multiphase model using preconditioned riemann solvers, 5th SPHERIC Workshop Proceedings, p.5, 2010.

S. Korzilius, A. Kruisbrink, T. Yue, W. Schilders, and E. M. Anthonissen, Momentum conserving methods that reduce particle clustering in sph, INSEAN, Tech. Rep, 2014.

R. J. Paredes and L. Imas, Application of multiphase sph to fluid structure interaction problems, 9th International SPHERIC Workshop. CNAM, 2014.

S. Nugent and H. Posch, Liquid drops and surface tension with smoothed particle applied mechanics, Physical Review E, vol.62, issue.4, p.4968, 2000.
DOI : 10.1103/PhysRevE.62.4968

J. J. Monaghan, Smoothed particle hydrodynamics Annual review of astronomy and astrophysics, pp.543-574, 1992.

A. Mokos, B. Rogers, P. Stansby, and E. J. Domínguez, A multi-phase particle shifting algorithm for sph simulations for violent hydrodynamics on a gpu, Proceedings of the 9th SPHERIC, pp.1-8, 2014.

J. M. Valizadeh, M. Shafieefar, and S. S. Neyshaboori, Modeling two-phase flows using sph method, Journal of Applied Sciences, vol.8, pp.3817-3826, 2008.

M. Sussman, P. Smereka, and E. S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.
DOI : 10.1006/jcph.1994.1155

Z. Zhou, J. De-kat, and E. B. Buchner, A nonlinear 3-d approach to simulate green water dynamics on deck, Proc. 7th International Symposium on Numerical Ship Hydrodynamics, pp.82000-82007, 1999.

G. Pinon, E. Rivoalen, X. Lu, and E. C. Rousseau, Impact d'une vague extrême sur une géométrie simplifiée de récupérateur de type colonne d'eau oscillante, Laboratoire Ondes et Milieux Complexes, 2015.