C. Le-cas, lorsque l'on utilise le modèle rigide, présenté avant dans ce chapitre 2. C'est le cas

C. Beauvais, Effet de l'eau sur les propriétés d'adsorption d'un solide nanoporeux : Étude par simulation moléculaire de la Zéolithe Faujasite, 2004.

E. Borissenko, Etude structurale par diffraction, absorption des rayons X et simulations Monte-Carlo de matériaux zéolithiques, 2008.

G. R. Eulenberger, D. P. Shoemaker, and J. G. , Crystal structures of hydrated and dehydrated synthetic zeolites with faujasite aluminosilicate frameworks. I. The dehydrated sodium, potassium, and silver forms, The Journal of Physical Chemistry, vol.71, issue.6, pp.711812-1819, 1967.
DOI : 10.1021/j100865a040

G. Vitale, L. M. Bull, R. E. Morris, A. K. Cheetham, B. H. Toby et al., Combined Neutron and X-ray Powder Diffraction Study of Zeolite Ca LSX and a 2H NMR Study of Its Complex with Benzene, The Journal of Physical Chemistry, vol.99, issue.43, pp.9916087-16092, 1995.
DOI : 10.1021/j100043a058

J. Groust, C. Pommier, L. Stievano, F. Villain, C. Giorgetti et al., Real Time monitoring of the Evolution of Ni 2+ Environment in Faujasite upon Rehydration by in situ Dispersive-EXAFS, Catalysis Letters, vol.102, pp.3-4257, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00020239

R. Bueno-pérez, S. Calero, D. Dubbeldam, C. O. Ania, J. B. Parra et al., Zeolite Force Fields and Experimental Siliceous Frameworks in a Comparative Infrared Study, The Journal of Physical Chemistry C, vol.116, issue.49, pp.11625797-25805, 2012.
DOI : 10.1021/jp307972r

V. A. Ermoshin, K. S. Smirnov, and D. Bougeard, Ab initio force field for aluminosilicates; molecular dynamics simulation of the infrared spectra of zeolites, Journal of Molecular Structure, vol.410, issue.411, pp.371-374, 1997.
DOI : 10.1016/S0022-2860(96)09586-5

M. Jeffroy, A. Boutin, and A. H. Fuchs, Understanding the Equilibrium Ion Exchange Properties in Faujasite Zeolite from Monte Carlo Simulations, The Journal of Physical Chemistry B, vol.115, issue.50, pp.15059-15066, 2011.
DOI : 10.1021/jp209067n

C. Beauvais, A. Boutin, and A. H. Fuchs, A Numerical Evidence for Nonframework Cation Redistribution Upon Water Adsorption in Faujasite Zeolite, ChemPhysChem, vol.103, issue.11, pp.1791-1793, 2004.
DOI : 10.1002/cphc.200400195

A. Di-lella, N. Desbiens, A. Boutin, I. Demachy, P. Ungerer et al., Molecular simulation studies of water physisorption in zeolites, Physical Chemistry Chemical Physics, vol.11, issue.46, p.5396, 2006.
DOI : 10.1039/b610621h

URL : https://hal.archives-ouvertes.fr/hal-00467550

V. Lachet, A. Boutin, B. Tavitian, and A. H. Fuchs, -Xylene Mixtures Adsorbed in NaY Zeolite, The Journal of Physical Chemistry B, vol.102, issue.46, pp.9224-9233, 1998.
DOI : 10.1021/jp980946j

URL : https://hal.archives-ouvertes.fr/hal-00107896

M. Jeffroy, E. Borissenko, A. Boutin, A. D. Lella, F. Porcher et al., Evidence of a framework induced cation redistribution upon water adsorption in cobalt exchanged X faujasite zeolite: A joint experimental and simulation study, Microporous and Mesoporous Materials, vol.138, issue.1-3, pp.1-345, 2011.
DOI : 10.1016/j.micromeso.2010.09.031

M. Wilson, P. A. Madden, and B. J. Costa-cabral, Quadrupole Polarization in Simulations of Ionic Systems:?? Application to AgCl, The Journal of Physical Chemistry, vol.100, issue.4, pp.1227-1237, 1996.
DOI : 10.1021/jp9512319

M. Wilson, P. A. Madden, N. C. Pyper, and J. H. Harding, Molecular dynamics simulations of compressible ions, The Journal of Chemical Physics, vol.104, issue.20, p.8068, 1996.
DOI : 10.1063/1.471523

A. J. Rowley, P. Jemmer, M. Wilson, and P. A. Madden, Evaluation of the many-body contributions to the interionic interactions in MgO, The Journal of Chemical Physics, vol.108, issue.24, p.10209, 1998.
DOI : 10.1063/1.476481

P. A. Madden, R. Heaton, A. Aguado, and S. Jahn, From first-principles to material properties, Journal of Molecular Structure: THEOCHEM, vol.771, issue.1-3, pp.9-18, 2006.
DOI : 10.1016/j.theochem.2006.03.015

M. Salanne, . Rotenberg, . Benjamin, S. Jahn, R. Vuilleumier et al., Including many-body effects in models for ionic liquids, Theoretical Chemistry Accounts, vol.131, issue.3, 2012.

S. Tazi, J. J. Molina, . Rotenberg, . Benjamin, P. Turq et al., based force field for aqueous ions, The Journal of Chemical Physics, vol.136, issue.11, p.136114507, 2012.
DOI : 10.1063/1.3692965

J. J. Molina, . Lectez, . Sébastien, . Tazi, . Sami et al., Ions in solutions: Determining their polarizabilities from first-principles, The Journal of Chemical Physics, vol.134, issue.1, p.14511, 2011.
DOI : 10.1063/1.3518101

URL : https://hal.archives-ouvertes.fr/in2p3-00575117

S. Tazi, Description moléculaire des ions aux interfaces argile-eau, 2012.

S. Tesson, . Salanne, . Mathieu, . Rotenberg, . Benjamin et al., Classical Polarizable Force Field for Clays: Pyrophyllite and Talc, The Journal of Physical Chemistry C, vol.120, issue.7, 2016.
DOI : 10.1021/acs.jpcc.5b10181

URL : https://hal.archives-ouvertes.fr/hal-01488499

F. Porcher, J. Paillaud, L. Gaberova, G. André, S. Casale et al., Monitoring by in situ Neutron diffraction of Simultaneous dehydration and Ni 2+ mobility in partially Exchanged NaY Zeolites, New J. Chem, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263845

P. E. Levitz, Slow dynamics in colloidal glasses and porous media as probed by NMR relaxometry: assessment of solvent levy statistics in the strong adsorption regime, Magnetic Resonance Imaging, vol.21, issue.3-4, pp.177-184, 2003.
DOI : 10.1016/S0730-725X(03)00122-X

P. A. Jacobs, E. M. Flanigen, J. C. Jansen, and H. Van-bekkum, Introduction to Zeolite Science and Practice, 2001.

M. Guisnet and . Fernando-ramôa-ribeiro, Les Zéolithes : Un nanomonde au service de la catalyse, 2006.

F. Alario and M. Guisnet, Para-Xylene Manufacturing : Catalytic Reactions and Processes. Catalytic Science Series, 2002.

E. Guillon, S. Lacombe, T. Sozinho, P. Magnoux, S. Gnep et al., Aromatic Cut Isomerization, Oil & Gas Science and Technology - Revue de l'IFP, vol.64, issue.6, pp.731-744, 2009.
DOI : 10.2516/ogst/2009030

G. Ash, K. Barth, G. Hotier, L. Mank, R. et al., Eluxyl: a New Paraxylene Separation Process, Revue de l'Institut Fran??ais du P??trole, vol.49, issue.5, pp.541-549, 1994.
DOI : 10.2516/ogst:1994035

T. Frising and P. Leflaive, Extraframework cation distributions in X and Y faujasite zeolites: A review, Microporous and Mesoporous Materials, vol.114, issue.1-3, pp.27-63, 2008.
DOI : 10.1016/j.micromeso.2007.12.024

E. Jaramillo, . Auerbach, and M. Scott, New Force Field for Na Cations in Faujasite-Type Zeolites, The Journal of Physical Chemistry B, vol.103, issue.44, pp.9589-9594, 1999.
DOI : 10.1021/jp991387z

C. Mellot-draznieks, S. Buttefey, A. Boutin, and A. H. Fuchs, Placement of cations in NaX Faujasite-Type Zeolite using (N, V, T) Monte Carlo Simulations, Chemical Communications, issue.21, pp.2200-2201, 2001.

J. V. Smith, Faujasite-Type Structures : Aluminosilicate Framework : Positions of Cations and Molecules : Nomenclature. In Molecular Sieve Zeolites-I, pp.171-200, 1974.

A. Dyer, R. B. Gettins, and R. P. Townsend, The mobility of cations in synthetic zeolites with the faujasite framework ??? II, Journal of Inorganic and Nuclear Chemistry, vol.32, issue.7, pp.322395-2400, 1970.
DOI : 10.1016/0022-1902(70)80522-X

E. Dempsey, G. H. Kühl, and D. H. Olson, Variation of the lattice parameter with aluminum content in synthetic sodium faujasites. Evidence for ordering of the framework ions, The Journal of Physical Chemistry, vol.73, issue.2, pp.387-390, 1969.
DOI : 10.1021/j100722a020

S. Calero, D. Dubbeldam, K. , R. Smit, . Berend et al., Understanding the Role of Sodium during Adsorption:?? A Force Field for Alkanes in Sodium-Exchanged Faujasites, Journal of the American Chemical Society, vol.126, issue.36, pp.12611377-11386, 2004.
DOI : 10.1021/ja0476056

A. Di and L. , Méthodes de simulation moléculaire pour l'étude de la distribution des cations et de l'adsorption de molécules polaires dans les zéolithes, 2007.

S. Buttefey, A. Boutin, C. Mellot-draznieks, and A. H. Fuchs, Distribution in Anhydrous NaY and NaX Zeolites, The Journal of Physical Chemistry B, vol.105, issue.39, pp.9569-9575, 2001.
DOI : 10.1021/jp0105903

C. Abrioux, B. Coasne, G. Maurin, F. Henn, A. D. Boutin et al., A molecular simulation study of the distribution of cation in??zeolites, Adsorption, vol.103, issue.4-5, pp.4-5743, 2008.
DOI : 10.1007/s10450-008-9123-z

M. Jeffroy, Molecular simulation of cationic zeolites properties : thermodynamic and structural properties, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00517043

W. J. Mortier, Compilation of extra frameword sites in Zeolites, 1982.

C. E. Kirschhock, B. Hunger, J. Martens, and P. A. Jacobs, Localization of Residual Water in Alkali-Metal Cation-Exchanged X and Y Type Zeolites, The Journal of Physical Chemistry B, vol.104, issue.3, pp.439-448, 2000.
DOI : 10.1021/jp9919112

W. J. Mortier, E. Van-den-bossche, and J. B. Uytterhoeven, Influence of the temperature and water adsorption on the cation location in Na???Y zeolites, Zeolites, vol.4, issue.1, pp.41-44, 1984.
DOI : 10.1016/0144-2449(84)90071-X

L. Gellens, W. Mortier, and J. Uytterhoeven, Oxidation and reduction of silver in zeolite Y: a structural study, Zeolites, vol.1, issue.2, pp.85-90, 1981.
DOI : 10.1016/S0144-2449(81)80020-6

H. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Pr, 1982.

K. Hun, L. , and C. P. Grey, Characterization of Extra-Framework Cation Positions in Zeolites NaX and NaY with Very Fast 23 Na MAS and Multiple Quantum MAS NMR Spectroscopy, Journal of the American Chemical Society, vol.122, issue.40, pp.9768-9780, 2000.

A. M. Harry, . Verhulst, J. J. Wim, G. Welters, L. J. Vorbeck et al., A New Assignment of the Signals in 23 Na DOR NMR to Sodium Sites in Dehydrated Na Y Zeolite, Journal of the Chemical Society, Chemical Communications, issue.5, p.639, 1994.

J. A. Rubio, J. Soria, and F. H. Cano, Influence of the dehydration pretreatment on the cation location in NaY zeolite, Journal of Colloid and Interface Science, vol.73, issue.2, pp.312-323, 1980.
DOI : 10.1016/0021-9797(80)90078-8

W. J. Mortier, H. J. Bosmans, and J. Uytterhoeven, Location of univalent cations in synthetic zeolites of the Y and X type with varying silicon to aluminum ratio. II. Dehydrated potassium exchanged forms, The Journal of Physical Chemistry, vol.76, issue.5, pp.76650-656, 1972.
DOI : 10.1021/j100649a008

L. Jan, L. , M. Wilfried, J. , and K. Chao, Cation Site Energies in High-Silica FAU-Type Zeolites, Journal of Physics and Chemistry of Solids, vol.53, issue.9, pp.1163-1169, 1992.

. Van-dun, J. Jozef, . Mortier, and J. Wilfried, Temperature-dependent cation distribution in zeolites. 1. A statistical thermodynamical model, The Journal of Physical Chemistry, vol.92, issue.23, pp.926740-6746, 1988.
DOI : 10.1021/j100334a050

W. J. Mortier, . Ghosh, K. Swapan, and S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules, Journal of the American Chemical Society, vol.108, issue.15, pp.4315-4320, 1986.
DOI : 10.1021/ja00275a013

J. Geert, O. , B. Bart, G. Toufar-helge, M. Wilfried et al., Comparison of Cluster and Infinite Crystal Calculations on Zeolites with the Electronegativity Equalization Method (EEM), The Journal of Physical Chemistry, issue.10, pp.993251-3258, 1995.

C. P. Herrero, L. Utrera, and R. Ramirez, Statistical thermodynamics of Si,Al ordering in aluminosilicate faujasites, Physical Review B, vol.46, issue.2, pp.787-794, 1992.
DOI : 10.1103/PhysRevB.46.787

C. P. Herrero, Short-range order of the silicon, aluminum distribution on the faujasite framework, The Journal of Physical Chemistry, vol.95, issue.8, pp.3282-3288, 1991.
DOI : 10.1021/j100161a058

C. P. Herrero and R. Ramírez, Energetics of cation ordering in the faujasite framework: Monte Carlo simulations, The Journal of Physical Chemistry, vol.96, issue.5, pp.2246-2253, 1992.
DOI : 10.1021/j100184a041

P. Carlos, L. Herrero, R. Utrera, and . Ramiréz, Long-Versus Short-Range Si, Al ordering in Zeolites X and Y, Chemical Physics Letters, vol.183, issue.3, pp.199-203, 1991.

C. P. Herrero, Monte Carlo simulation of the silicon,aluminum distribution in A-type zeolites, The Journal of Physical Chemistry, vol.97, issue.13, pp.3338-3343, 1993.
DOI : 10.1021/j100115a041

C. M. Soukoulis, Monte Carlo simulations of zeolites, The Journal of Physical Chemistry, vol.88, issue.21, pp.4898-4901, 1984.
DOI : 10.1021/j150665a019

W. Loewenstein, The distribution of Aluminum in the tetrahedra of Silicates and Aluminates, The American Mineralogist, vol.39, issue.12, p.92, 1954.

S. Konstantin, D. Smirnov, and . Bougeard, A Molecular Dynamics Computer Study of Window Fluctuations in Zeolite A. Zeolites, pp.203-207, 1994.

J. Bellat, C. Paulin, M. Jeffroy, A. Boutin, J. Paillaud et al., Unusual Hysteresis Loop in the Adsorption???Desorption of Water in NaY Zeolite at Very Low Pressure, The Journal of Physical Chemistry C, vol.113, issue.19, pp.8287-8295, 2009.
DOI : 10.1021/jp810209t

URL : https://hal.archives-ouvertes.fr/hal-00467827

A. N. Fitch, H. Jobic, and A. Renouprez, Localization of benzene in sodium-Y-zeolite by powder neutron diffraction, The Journal of Physical Chemistry, vol.90, issue.7, pp.1311-1318, 1986.
DOI : 10.1021/j100398a021

H. David and . Olson, The crystal structure of Dehydrated NaX, Zeolites, vol.15, pp.439-443, 1995.

G. L. Marra, A. N. Fitch, A. Zecchina, G. Ricchiardi, M. Salvalaggio et al., Cation Location in Dehydrated Na???Rb???Y Zeolite:?? An XRD and IR Study, The Journal of Physical Chemistry B, vol.101, issue.50, pp.10653-10660, 1997.
DOI : 10.1021/jp971747n

M. Hunger, U. Schenk, and A. Buchholz, Mobility of Cations and Guest Compounds in Cesium-Exchanged and Impregnated Zeolites Y and X Investigated by High-Temperature MAS NMR Spectroscopy, The Journal of Physical Chemistry B, vol.104, issue.51, pp.12230-12236, 2000.
DOI : 10.1021/jp001571g

Z. Jirák, S. Vratislav, and V. Bosá?ek, A neutron diffraction study of H, Na-Y zeolites, Journal of Physics and Chemistry of Solids, vol.41, issue.10, pp.1089-1095, 1980.
DOI : 10.1016/0022-3697(80)90064-5

J. Hunger, I. A. Beta, H. Böhlig, C. Ling, H. Jobic et al., Adsorption Structures of Water in NaX Studied by DRIFT Spectroscopy and Neutron Powder Diffraction, The Journal of Physical Chemistry B, vol.110, issue.1, pp.342-353, 2006.
DOI : 10.1021/jp054636u

URL : https://hal.archives-ouvertes.fr/hal-00012804

W. Shibata and K. Seff, Clusters, The Journal of Physical Chemistry B, vol.101, issue.44, pp.9022-9026, 1997.
DOI : 10.1021/jp971279h

F. Porcher, Cristallographie très haute résolution et propriétés électrostatiques de monocristaux de zéolithes A et X déshydratées, 1998.

J. M. Bennett and J. V. Smith, Positions of cations and molecules in zeolites with the faujasite-type framework I. Dehydrated Ca-exchanged faujasite, Materials Research Bulletin, vol.3, issue.8, pp.633-642, 1968.
DOI : 10.1016/0025-5408(68)90112-8

J. J. Pluth and J. V. Smith, Positions of cations and molecules in zeolites with the faujasite-type framework VII. Dehydrated Ca-exchanged X, Materials Research Bulletin, vol.7, issue.11, pp.1311-1321, 1972.
DOI : 10.1016/0025-5408(72)90111-0

M. J. Kim, M. S. Jeong, Y. Kim, and K. Seff, Crystal structures of fully dehydrated fully Sr2+-exchanged zeolite X and of its ammonia sorption complex, Microporous and Mesoporous Materials, vol.30, issue.2-3, pp.233-241, 1999.
DOI : 10.1016/S1387-1811(99)00012-8

J. M. Kneller, T. Pietraß, K. C. Ott, and A. Labouriau, Synthesis of dealuminated zeolites NaY and MOR and characterization by diverse methodologies: 27Al and 29Si MAS NMR, XRD, and temperature dependent 129Xe NMR, Microporous and Mesoporous Materials, vol.62, issue.1-2, pp.121-131, 2003.
DOI : 10.1016/S1387-1811(03)00400-1

L. Kubelková, Properties of Y-type zeolites with various silicon/aluminium ratios obtained by dealumination with silicon tetrachloride. Distribution of aluminium and hydroxyl groups and interaction with ethanol, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.80, issue.6, pp.1367-1376, 1984.
DOI : 10.1039/f19848001367

L. Wolfgang, Zeolite Y : Synthesis, Modification, and Properties?A Case Revisited, Advances in Materials Science and Engineering Materials Science and Engineering, 2014.

C. Beauvais, X. Guerrault, F. Coudert, A. Boutin, and A. H. Fuchs, Distribution of Sodium Cations in Faujasite-Type Zeolite:?? A Canonical Parallel Tempering Simulation Study, The Journal of Physical Chemistry B, vol.108, issue.1, pp.399-404, 2004.
DOI : 10.1021/jp036085i

URL : https://hal.archives-ouvertes.fr/hal-00367857

S. Buttefey, Modélisation et simulation moléculaire des cations extra-charpentes dans les zéolithes de type Faujasite, 2002.

H. D. Simpson and H. Steinfink, X-ray diffraction study of the zeolite complex 1-chlorobutane-manganese faujasite, Journal of the American Chemical Society, vol.91, issue.23, pp.916229-6231, 1969.
DOI : 10.1021/ja01051a004

E. Dooryhee, C. R. Catlow, J. W. Couves, P. J. Maddox, and J. M. Thomas, A study of cation environment and movement during dehydration and reduction of nickel-exchanged zeolite Y by x-ray absorption and diffraction, The Journal of Physical Chemistry, vol.95, issue.11, pp.4514-4521, 1991.
DOI : 10.1021/j100164a062

W. John, R. H. Couves, J. M. Jones, B. J. Thomas, and . Smith, Charting Cation Migration in a Nickel Exchanged Zeolitic Catalyst : An in situ Rietveld X-Ray Study, Advanced Materials, vol.2, issue.4, pp.181-183, 1990.

H. Guesmi, P. Massiani, H. Nouali, and J. Paillaud, A combined experimental and theoretical study of the simultaneous occupation of SIa and SI??? sites in fully dehydrated K???LSX, Microporous and Mesoporous Materials, vol.159, pp.87-95, 2012.
DOI : 10.1016/j.micromeso.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-01054894

P. Gallezot and B. Imelik, Location of nickel ions in Y zeolites. I. Influence of thermal treatment and exchange level on nickel positions, The Journal of Physical Chemistry, vol.77, issue.5, pp.652-656, 1973.
DOI : 10.1021/j100624a019

P. Massiani, F. Fajula, F. Figueras, and J. Sanz, 29Si and 27Al MAS n.m.r. study of the distribution of Si and Al atoms in various forms of synthetic zeolite omega, Zeolites, vol.8, issue.4, pp.332-337, 1988.
DOI : 10.1016/S0144-2449(88)80132-5

S. Sklenak, J. Dedecek, C. Li, B. Wichterlova, V. Gabova et al., Aluminum siting in Silicon-Rich zeolite frameworks : A combined High-Resolution 27

C. A. Fyfe, G. C. Gobbi, G. J. Kennedy, J. D. Graham, R. S. Ozubko et al., Detailed interpretation of the 29Si and 27Al high-field MAS n.m.r. spectra of zeolites offretite and omega, Zeolites, vol.5, issue.3, pp.179-183, 1985.
DOI : 10.1016/0144-2449(85)90027-2

J. M. Newsam, Aluminum partitioning in Zeolite-L, Journal of the Chemical Society -Chemical Communication, vol.2, pp.123-124, 1987.

J. Dedecek, S. Sklenak, C. Li, B. Wichterlova, V. Gabova et al., Al NMR and DFT/MM Study, The Journal of Physical Chemistry C, vol.113, issue.4, pp.1447-1458, 2009.
DOI : 10.1021/jp8068333

J. A. Van-bokhoven, A. M. Van-der-eerden, and D. C. Koningsberger, Three-Coordinate Aluminum in Zeolites Observed with In situ X-ray Absorption Near-Edge Spectroscopy at the Al K-Edge:?? Flexibility of Aluminum Coordinations in Zeolites, Journal of the American Chemical Society, vol.125, issue.24, pp.1257435-7442, 2003.
DOI : 10.1021/ja0292905

L. A. Bugaev, J. A. Van-bokhoven, V. V. Khrapko, L. A. Avakyan, and J. V. Latokha, Effect of Aluminum on the Local Structure of Silicon in Zeolites as Studied by Si K Edge X-ray Absorption Near-Edge Fine Structure: Spectra Simulation with a Non-Muffin Tin Atomic Background, The Journal of Physical Chemistry B, vol.113, issue.14, pp.4614-4618, 2009.
DOI : 10.1021/jp8098285

J. B. Jones, Al???O and Si???O tetrahedral distances in aluminosilicate framework structures, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.24, issue.3, pp.355-358, 1968.
DOI : 10.1107/S0567740868002360

P. H. Ribbe and G. V. Gibbs, Statistical analysis and discussion of mean Al/Si-O bond distances and the Aluminum content of Tetrahedra in feldspars, American Mineralogist, vol.54, pp.85-94, 1969.

A. Alberti and G. Gottardi, The determination of the Al-content in the tetrahedra of framework silicates, Zeitschrift für Kristallographie, pp.49-61, 1988.

S. Calero, D. Dubbeldam, R. Krishna, B. Smit, T. J. Vlugt et al., Understanding the Role of Sodium during Adsorption:?? A Force Field for Alkanes in Sodium-Exchanged Faujasites, Journal of the American Chemical Society, vol.126, issue.36, p.126, 2004.
DOI : 10.1021/ja0476056

G. Maurin, P. Senet, S. Devautour, P. Gaveau, F. Henn et al., SI NMR Spectroscopy:?? Simulations of Cation Locations in Zeolites with Various Si/Al Ratios, The Journal of Physical Chemistry B, vol.105, issue.38, pp.9157-9161, 2001.
DOI : 10.1021/jp011789i

G. J. Kramer, N. P. Farragher, B. W. Van-beest, and R. A. Van-santen, calculations, Physical Review B, vol.43, issue.6, pp.5068-5080, 1991.
DOI : 10.1103/PhysRevB.43.5068

URL : https://hal.archives-ouvertes.fr/in2p3-00410337

S. Ramos, G. W. Neilson, A. C. Barnes, and M. J. Capitán, Anomalous x-ray diffraction studies of Sr2+ hydration in aqueous solution, The Journal of Chemical Physics, vol.118, issue.12, p.5542, 2003.
DOI : 10.1063/1.1555633

N. A. Ramsahye and R. G. Bell, Cation Mobility and the Sorption of Chloroform in Zeolite NaY:?? Molecular Dynamics Study, The Journal of Physical Chemistry B, vol.109, issue.10, pp.4738-4747, 2005.
DOI : 10.1021/jp046958o

URL : https://hal.archives-ouvertes.fr/hal-00389733

S. Ramdas, J. M. Thomas, J. Klinowski, C. A. Fyfe, and J. S. Hartman, Ordering of aluminium and silicon in synthetic faujasites, Nature, vol.286, issue.5820, pp.292228-230, 1981.
DOI : 10.1038/292228a0

J. Klinowski, S. Ramdas, J. M. Thomas, C. A. Fyfe, and J. S. Hartman, A reexamination of Si,Al ordering in Zeolites NaX and NaY, Journal of the Chemical Society Faraday Transactions, vol.2, issue.7, pp.781025-1050, 1982.

H. Guesmi, D. Costa, D. Berthomieu, and P. Massiani, Nickel Coordination to Lattice Oxygens in Basic LSX, X and Y Sodium Faujasites: A DFT Study, The Journal of Physical Chemistry C, vol.115, issue.13, pp.5607-5618, 2011.
DOI : 10.1021/jp108172t

URL : https://hal.archives-ouvertes.fr/hal-00602938

H. Guesmi and P. Massiani, A combined EXAFS and DFT study of the Ni2+ environment in dehydrated Ni/NaX, Catalysis Today, vol.177, issue.1, pp.25-30, 2011.
DOI : 10.1016/j.cattod.2011.04.047

URL : https://hal.archives-ouvertes.fr/hal-00667400

R. M. Barrer and G. C. Bratt, Non-stoichiometric hydrates???I, Journal of Physics and Chemistry of Solids, vol.12, issue.2, pp.130-145, 1960.
DOI : 10.1016/0022-3697(60)90030-5

F. Brandani and D. M. Ruthven, on Type X Zeolites, Industrial & Engineering Chemistry Research, vol.43, issue.26, pp.8339-8344, 2004.
DOI : 10.1021/ie040183o

D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, and R. Hausler, Advances in principal factors influencing carbon dioxide adsorption on zeolites, Science and Technology of Advanced Materials, vol.9, issue.1, 2008.
DOI : 10.1002/aic.690480604

J. M. Adams, D. A. Haselden, and A. W. Hewat, The structure of dehydrated Na zeolite A () by neutron profile refinement, Journal of Solid State Chemistry, vol.44, issue.2, pp.245-253, 1982.
DOI : 10.1016/0022-4596(82)90370-X

J. M. Bennett and J. V. Smith, Positions of cations and molecules in zeolites with the faujasite-type framework III hydrated Ca-exchanged faujasite, Materials Research Bulletin, vol.3, issue.12, pp.933-940, 1968.
DOI : 10.1016/0025-5408(68)90105-0

H. David and . Olson, Reinvestigation of the Crystal structure of the Zeolite Hydrated NaX, J. Chem. Phys, vol.74, issue.14, pp.2758-2764, 1970.

Y. I. Smolin, Y. F. Shepelev, and A. A. , zeolite dehydration, Acta Crystallographica Section B Structural Science, vol.45, issue.2, p.124, 1989.
DOI : 10.1107/S010876818801376X

J. Martí and J. Soria, Cation location in hydrated NaY zeolites, Journal of Colloid and Interface Science, vol.60, issue.1, p.82, 2004.
DOI : 10.1016/0021-9797(77)90257-0

L. Martin, . Costenoble, J. Wilfried, J. B. Mortier, and . Uytterhoeven, Location of Cations in Synthetic Zeolites X and Y. Part 4.-Exchange Limiting Factors for Ca 2+ in Zeolite Y, J. Chem. Soc., Faraday Trans. 1, vol.72, pp.1877-1883, 1976.

G. Engelhardt, Cation location in dehydrated zeolite NaY revisited: SI position is displaced from the center of the hexagonal prism, Microporous Materials, vol.12, issue.4-6, pp.369-373, 1997.
DOI : 10.1016/S0927-6513(97)00069-2

G. Calestani, G. Bacca, and G. D. Andreetti, Structural study of zeolite X exchanged with ???f??? transition elements. I. Crystal structure of reference hydrated Na???X, Zeolites, vol.7, issue.1, pp.54-58, 1987.
DOI : 10.1016/0144-2449(87)90120-5

A. Scott, R. Q. Mcmillan, L. J. Snurr, and . Broadbelt, Interaction of divalent metal cations with ferrierite : insights from Density Functional Theory, Microporous and Mesoporous Materials, vol.68, issue.1â? 3, pp.45-53, 2004.

Z. Sobalík, J. D?de?ek, I. Ikonnikov, and B. Wichterlová, State and coordination of metal ions in high silica zeolites Incorporation, development and rearrangement during preparation and catalysis, Microporous and Mesoporous Materials, vol.21, issue.4-6, pp.525-532, 1998.
DOI : 10.1016/S1387-1811(97)00062-0

Z. Sobalík, Z. Tvar??ková, and B. Wichterlová, Skeletal T???O???T Vibrations as a Tool for Characterization of Divalent Cation Complexation in Ferrierite, The Journal of Physical Chemistry B, vol.102, issue.7, pp.1077-1085, 1998.
DOI : 10.1021/jp971436c

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, p.1087, 1953.
DOI : 10.1063/1.1699114

G. J. Martyna, M. L. Klein, and M. Tuckerman, Nos?????Hoover chains: The canonical ensemble via continuous dynamics, The Journal of Chemical Physics, vol.97, issue.4, pp.2635-2643, 1992.
DOI : 10.1063/1.463940

R. H. Swendsen and J. S. Wang, Replica Monte Carlo Simulation of Spin-Glasses, Physical Review Letters, vol.57, issue.21, pp.2607-2609, 1986.
DOI : 10.1103/PhysRevLett.57.2607

K. Hukushima and K. Nemoto, Exchange Monte Carlo Method and Application to Spin Glass Simulations, Journal of the Physical Society of Japan, vol.65, issue.6, pp.1604-1608, 1996.
DOI : 10.1143/JPSJ.65.1604

M. Falcioni and M. W. Deem, A biased Monte Carlo scheme for zeolite structure solution, The Journal of Chemical Physics, vol.110, issue.3, pp.1754-1766, 1999.
DOI : 10.1063/1.477812

Q. Yan and J. J. De-pablo, Hyperparallel tempering Monte Carlo simulation of polymeric systems, The Journal of Chemical Physics, vol.113, issue.3, p.1276, 2000.
DOI : 10.1063/1.481905

Q. Yan and J. J. De-pablo, Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model, The Journal of Chemical Physics, vol.111, issue.21, p.9509, 1999.
DOI : 10.1063/1.480282

A. Bunker and B. Duenweg, Parallel excluded volume tempering for polymer melts, Physical Review E, vol.63, issue.1, p.16701, 2000.
DOI : 10.1103/PhysRevE.63.016701

L. Uytterhoeven, D. Dompas, . Mortier, and J. Wilfried, Theoretical investigations on the interaction of benzene with faujasite, Journal of the Chemical Society, Faraday Transactions, vol.88, issue.18, pp.2753-2760, 1992.
DOI : 10.1039/ft9928802753

R. D. Shannon, Dielectric Polarizabilities of Oxides & Fluorides, Encyclopedia of Inorganic and Bioinorganic Chemistry, 2011.

E. David, . Smith, X. Liem, and . Dang, Computer simulations of NaCl association in polarizable water, The Journal of Chemical Physics, vol.100, issue.5, p.3757, 1994.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, p.926, 1983.
DOI : 10.1063/1.445869

T. Chang and L. X. Dang, Recent Advances in Molecular Simulations of Ion Solvation at Liquid Interfaces, Chemical Reviews, vol.106, issue.4, pp.1305-1322, 2006.
DOI : 10.1021/cr0403640

H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick et al., Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew, The Journal of Chemical Physics, vol.120, issue.20, 2004.
DOI : 10.1063/1.1683075

W. Michael, W. L. Mahoney, and . Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, J. Chem. Phys, vol.112, p.8910, 2000.

A. Aguado and P. A. Madden, New Insights into the Melting Behavior of MgO from Molecular Dynamics Simulations: The Importance of Premelting Effects, Physical Review Letters, vol.94, issue.6, 2005.
DOI : 10.1103/PhysRevLett.94.068501

Y. Ishii, K. Sato, . Salanne, . Mathieu, P. A. Madden et al., Thermal Conductivity of Molten Alkali Metal Fluorides (LiF, NaF, KF) and Their Mixtures, The Journal of Physical Chemistry B, vol.118, issue.12, pp.3385-3391, 2014.
DOI : 10.1021/jp411781n

URL : https://hal.archives-ouvertes.fr/hal-00968009

V. Sarou-kanian, A. Rollet, M. Salanne, C. Simon, C. Bessada et al., Diffusion coefficients and local structure in basic molten fluorides: in situ NMR measurements and molecular dynamics simulations, Physical Chemistry Chemical Physics, vol.270, issue.48, 2009.
DOI : 10.1039/b912532a

URL : https://hal.archives-ouvertes.fr/hal-00429441

M. Masia, M. Probst, and R. Rey, On the performance of molecular polarization methods. II. Water and carbon tetrachloride close to a cation, The Journal of Chemical Physics, vol.123, issue.16, p.164505, 2005.
DOI : 10.1063/1.2075107

G. Vitale, C. F. Mellot, L. M. Bull, and A. K. Cheetham, Neutron Diffraction and Computational Study of Zeolite NaX:?? Influence of SIII??? Cations on Its Complex with Benzene, The Journal of Physical Chemistry B, vol.101, issue.23, pp.4559-4564, 1997.
DOI : 10.1021/jp970393x

R. T. Cygan, J. Liang, and A. G. Kalinichev, Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, The Journal of Physical Chemistry B, vol.108, issue.4, pp.1255-1266, 2004.
DOI : 10.1021/jp0363287

A. H. Fuchs, Adsorption of Guest Molecules in Zeolitic Materials: Computational Aspects, The Journal of Physical Chemistry B, vol.105, issue.31, pp.7375-7383, 2001.
DOI : 10.1021/jp010702q

W. Louisfrema, B. Rotenberg, F. Porcher, J. Paillaud, P. Massiani et al., Cation Redistribution Upon Dehydration of Na 58 Y Faujasite Zeolite : A Joint Neutron Diffraction and Molecular Simulation Study, Molecular Simulation, pp.41-57, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01284815

M. M. Treacy and J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, volume fourth revision, 2001.

A. Nicolas, S. Devautour-vinot, G. Maurin, J. C. Giuntini, and F. Henn, Location and Detrapping Energy of Sodium ions in Dehydrated X and Y Faujasites determined by Dielectric Relaxation Spectroscopy, Microporous and Mesoporous Materials, vol.109, pp.1-3413, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00186817

T. Gibbs and D. W. Lewis, Simultaneous occupation of SI and SI??? cation sites in dehydrated zeolite LSX, Chem. Commun., vol.12, issue.22, pp.2660-2661, 2002.
DOI : 10.1039/B207505A

X. Liem, T. Dang, and . Chang, Molecular Dynamics Study of Water clusters, Liquid, and Liquid?vapor interface of water with Many-Body Potentials, The Journal of chemical physics, vol.106, issue.19, pp.8149-8159, 1997.

H. David and . Olson, Crystal structure of the Zeolite Nickel Faujasite, The Journal of Physical Chemistry, vol.72, issue.13, pp.4366-4373, 1968.

B. Boddenberg, G. U. Rakhmatkariev, S. Hufnagel, and Z. Salimov, A calorimetric and statistical mechanics study of water adsorption in zeolite NaY, Physical Chemistry Chemical Physics, vol.4, issue.17, pp.4172-4180, 2002.
DOI : 10.1039/b203088h

A. Gedeon, T. Ito, and J. Fraissard, Study of the H2O/NaY system: An example of the application of 129Xe n.m.r. of the xenon probe to the investigation of the location of adsorbed phases, Zeolites, vol.8, issue.5, pp.376-380, 1988.
DOI : 10.1016/S0144-2449(88)80174-X

J. W. Couvest, S. C. Jonest, P. Parker, C. R. Tschaufeserf, and . Catlow, Experimental verification of A Predicted Negative thermal expansivity of Crystalline Zeolites, J. Phys. Condens. Matter, pp.329-332, 1993.

H. Guesmi and P. Massiani, A combined EXAFS and DFT study of the Ni2+ environment in dehydrated Ni/NaX, Catalysis Today, vol.177, issue.1, pp.25-30, 2011.
DOI : 10.1016/j.cattod.2011.04.047

URL : https://hal.archives-ouvertes.fr/hal-00667400