Skip to Main content Skip to Navigation

Étude préparatoire à l'interprétation des données du radar WISDOM pour la mission ExoMars 2018

Abstract : Mars has become one of the most visited planet in the past few decades. The data collected by instruments allowed to infer theplanet evolution, and it is now admitted that inthe past, Mars had a relatively warm and wetenvironment, auspicious for the emergence oflife as we know it. This is why one of the currentobjective of the missions to Mars is to study theplanet from an exobiological point of view: iflife arose on Mars, potential traces could befound into the subsurface, sheltered from thehostile surface. The ExoMars 2018 space mission will land onMars’ surface a rover, which will be equippedwith a complete instrumental payload for thesearch of life traces, as well as a drill capable ofcollecting samples at a depth of 2 meters. Thegeological context characterization willtherefore be essential to identify the mostinteresting places for potential life tracespreservation. The Ground Penetrating Radar (GPR)WISDOM (Water Ice Subsurface DepositObservation on Mars) and the neutron detectorADRON will be the only instruments capable ofobtaining information about the shallowsubsurface before the drilling operations. Thedata collected by WISDOM will provide thegeological deposits identification, which willhelp reconstructing the local history of thelanding site. This instrument developed in theFrench laboratory LATMOS (LaboratoireATmosphères, Milieux, Observations Spatiales)in collaboration with the LAB is a stepfrequencyradar that operates on a wide frequency band, from 0.5 GHz to 3 GHz: it wasdesigned to investigate the first 3 meters of thesubsurface with a vertical resolution of a fewcentimeters, and is currently tested in variousenvironments. This PhD thesis objective is to develop theinterpretation tools for WISDOM data by takingadvantage of the specific capacities of theinstrument to characterize the nature andstructure of the shallow subsurface, and to guidethe drill to suitable locations where potentialtraces of life could be preserved. This workconsequently requires both practical andtheoretical approaches, with the development ofprocessing chains, analytical and numericalmodels to simulate the instrument, but also todefine tests in well-known environments as wellas field tests in various natural places. The ideais to create a WISDOM database in a variety ofgeological contexts to allow the comparisonwith Martian data. A full interpretation of the WISDOM data alsorequires the estimation of the geological units’dielectric characteristics. We thereforedeveloped two “quantitative” methods thatallow the retrieval of the dielectric constantvalue at the surface and at various depths. Ageometrical approach to reconstruct the shallowsubsurface was also initiated to help tounderstand the deposits processes. A methodtaking advantage of the GPR specific antennasystem was developed to estimate the scatterers’relative position compared to the radar trajectoryalong profiles, allowing the subsurfacereconstruction in 3 dimensions for an optimalguidance of the ExoMars rover drill.
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Monday, February 6, 2017 - 12:55:08 PM
Last modification on : Saturday, December 12, 2020 - 12:10:05 PM
Long-term archiving on: : Sunday, May 7, 2017 - 1:31:34 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01457229, version 1


Sophie Dorizon. Étude préparatoire à l'interprétation des données du radar WISDOM pour la mission ExoMars 2018. Astrophysique [astro-ph]. Université Paris-Saclay, 2016. Français. ⟨NNT : 2016SACLV012⟩. ⟨tel-01457229⟩



Record views


Files downloads