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Abstract

This thesis addresses the problem of computing volumetric tessellations
of three-dimensional shapes, i.e ., given a three-dimensional shape that is
usually represented by its boundary surface, how to optimally subdivide the
interior of the surface into smaller shapes, called cells, according to several
criteria related to accuracy, uniformity and regularity. We consider centroidal
Voronoi tessellations, which are uniform and regular volumetric tessellations.

A centroidal Voronoi tessellation (CVT) of a shape can be viewed as an opti-
mal subdivision in the sense that the cells’ centers of mass, called centroids,
are regularly distributed inside the shape. CVTs have been used in computer
vision and graphics because of their properties of uniformity and regularity
that are immune to shape variations. However, problems such as how to
evaluate the regularity of a CVT and how to build a CVT from different
representations of shapes remain.

As one contribution of this thesis, we propose regularity criteria based
on the normalized second order moments of the cells. These regularity
criteria allow evaluating volumetric tessellations and specially comparing
the regularity of different Tessellations without the assumption that their
shape and number of sites should be the same. Meanwhile, we propose
a hierarchical approach based on a subdivision scheme that preserves cell
regularity and the local optimality of CVTs. Experimental results show
that our approach performs more efficiently and builds more regular CVTs
according to the regularity criteria than state-of-the-art methods.

Another contribution is a novel CVT algorithm for implicit shapes and an
extensive comparison between the Marching Cubes, the Delaunay refinement
technique and our algorithm. The keys of our algorithm are to use convex
hulls and local improvements to build accurate boundary cells. We present
a comparison of these three algorithms with different criteria including
accuracy, regularity and complexity on a large number of different data. The
results show that our algorithm builds more accurate and regular volumetric
tessellations than the other approaches.

We also explore applications such as a shape animation framework based
on CVTs that generates plausible animations with real dynamics.
Keywords. Volumetric tessellation • Centroidal Voronoi tessellation • Reg-
ularity
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Résumé

Cette thèse traite du problème du calcul d’une tessellation volumique
d’une forme tridimensionnelle, c’est-à-dire, étant donnée une forme tridimen-
sionnelle qui est habituellement représentée par sa surface frontière, com-
ment subdiviser de manière optimale l’intérieur de la surface en formes plus
petites, appelées cellules, selon plusieurs critères concernant la précision, l’uni-
formité et la régularité. Nous considérons les tessellations de Voronoı̈ cen-
troidales qui sont des tessellations volumiques uniformes et régulières.

Une tessellation de Voronoi centroı̈dale (CVT) d’une forme peut être consi-
dérée comme une subdivision optimale au sens où les centres de masse,
appelés centroides des cellules, sont répartis de manière optimale à l’intérieur
de la forme. CVTs ont été utilisés en vision par ordinateur et en infogra-
phie en raison de leurs propriétés d’uniformité et de régularité qui sont
indépendantes des variations de la forme. Cependant, des problèmes restent
ouverts, comme l’évaluation de la régularité d’une CVT ou la construction
d’une CVT à partir de formes représentées de diférentes manières.

Une contribution de cette thèse est que nous proposons des critères de
régularité basées sur les moments de second ordre normalisés des cellules.
Ces critères de régularité permettent d’évaluer les tessellations volumiques,
et surtout de comparer la régularité des différentes Tessellations sans l’hy-
pothèse que leur forme et leur nombre de sites devraient être les mêmes.
Nous proposons également une approche hiérarchique basée sur un schéma
de subdivision qui préserve la régularité des cellules et l’optimalité locale
des CVTs. Les résultats expérimentaux montrent que notre approche est plus
efficace et construit des CVTs plus régulières que les méthodes de l’état de
l’art selon les critères de régularité.

Une autre contribution est une nouvelle algorithme de calcul de CVT
pour les formes implicites et une comparaison approfondie entre le Mar-
ching Cubes, la technique du raffinement de Delaunay et notre algorithme.
La clé de notre algorithme est d’utiliser des enveloppes convexes et une
amélioration locale pour construire des cellules au bord avec précision. Nous
présentons une comparaison des trois algorithmes avec des critères différents,
comme la précision, la régularité et la complexité sur un grand nombre de
données différentes. Les résultats montrent que notre méthode construit les
tessellations volumiques les plus précises et les plus régulières.

Nous explorons aussi des applications comme, par exemple, une chaı̂ne
de traitement d’animation des formes basées sur les CVTs qui génère des
animations plausibles à partir de dynamique réelle.
Mots-clés. Tessellation volumique • Tessellation de Voronoi centroidale •
Régularité
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Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Context

A shape is usually represented by its boundary surface and is largely
used in computer vision and graphics. However, the information offered
by a shape surface is not always sufficient for several applications [Raviv
et al., 2010] [Allain et al., 2016]. In order to cover more information,
volumetric data that represents the interior of a shape surface, i.e . the shape
volume, is used. The aim of a volumetric tessellation is to build a volumetric
quantization of a shape volume by filling it with small cells as shown in
Figure 1.1. A good volumetric tessellation [Wang et al., 2016b] consists of
uniform and regular cells with a good approximation to the boundary
surface. The analysis of the goodness of a volumetric tessellation and the
construction of a good volumetric tessellation remain a challenge.

A volumetric tessellation can be computed using many approaches
that can be roughly divided into two categories according to the algorithm
they use: Eulerian approaches and Lagrangian approaches. Eulerian ap-
proaches consider a grid discretizing the observation domain that contains
the shape. The grid is usually fixed and composed of the same sized cells
that are identified inside or outside the shape. The volumetric tessel-
lation can be further obtained by computing the intersection between
the grid and the shape. These approaches are fast. However, a large
waste of memory occurs when the observation domain is relatively large

1



2 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1 – (a): A surface. (b): A volumetric tessellation.

compared to the shape and irregular cells are often generated on the
boundary. Instead of discretizing the observation domain containing
the shape, Lagrangian approaches discretize directly the shape that re-
duces the complexity. These approaches usually include an optimization
phase that provides the goodness control of the generated volumetric
tessellations.

Centroidal Voronoi tessellation (CVT) is a Lagrangian approach that
is widely used in many applications due to its good properties. An
example is shown in Figure 1.2. The CVT algorithm distributes points,
called sites, inside the shape and computes the intersection between the
Voronoi tessellation of the sites and the shape. Then the site positions are
updated by minimizing the so-called CVT energy function that measures
the quantification error. The final volumetric tessellation consists of the
cells centered around the sites. A CVT corresponds to a local minimum of
its energy function. However, finding the optimal CVT that corresponds
to the global minimum of its energy function remains a challenge since
the energy function is usually non-linear and non-convex.

This thesis focuses on the construction of CVTs and their analysis
including an evaluation and comparison with other existing approaches.
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Figure 1.2 – An animation based on tracking and morphing on CVTs.

It attempts to answer the following questions: 1. How can the regularity be
defined for a volumetric tessellation ? 2. How to generate a CVT as close
to the optimal as possible ? 3. How to compare different approaches to
compute volumetric tessellations ? 4. What are possible new applications
of regular volumetric tessellations ? The answers are detailed in Chapters
3, 4, 5 and 6, respectively.

1.2 Contributions

The main contributions of this thesis are detailed into Chapters 3, 4, 5
and 6. Before entering these chapters, the state of the art for volumetric
tessellation approaches is reviewed in Chapter 2. Finally, the conclusions
and future work are presented in Chapter 7.

Chapter 3

In this chapter, we build on a theoretical work of Conway and Sloane
[1982] and propose regularity criteria for volumetric tessellations. These
criteria are based on the normalized second order moments of polyhedra.
We show that the regularity criteria are linked to the CVT energy function
but are dimensionless and therefore enable global evaluations as well as
comparisons. We also propose an application of one of these criteria by
considering it as the stopping criterion for CVT computation. This work
has been published in [Wang et al., 2016a];

Chapter 4

In this chapter, we propose a hierarchical approach that provides CVTs
with more regularity than state-of-the-art methods. Our strategy is based
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on a subdivision scheme that preserves cell regularity and the local opti-
mality of CVTs on unbounded domains. This scheme tends to propagate
cell regularity through hierarchy levels when applied to bounded do-
mains. We demonstrate the efficiency of this framework with an in-depth
evaluation that includes sensitivity analysis, comparisons with previous
work and analyses of the convergence speed and computation time. This
work has been published in [Wang et al., 2016a];

Chapter 5

In this chapter, we propose a novel approach that builds CVTs from
implicit forms. These tessellations provide volumetric and surface repre-
sentations with strong regularities in addition to provably more accurate
approximations of the implicit forms considered. In order to compare
with other existing approaches, we present an extensive evaluation that
analyzes various properties of the main approaches for implicit to explicit
volumetric tessellations: Marching Cubes, Delaunay refinement and CVTs,
including accuracy and shape quality of the resulting shape mesh. This
work has been published in [Wang et al., 2016b].

Chapter 6

In this chapter, we propose a novel polyhedra clipping algorithm to
compute clipped Voronoi tessellations. This algorithm reduces the three-
dimensional clipping problem to a two-dimensional triangle-triangle in-
tersection problem. We demonstrate the efficiency and robustness of
our algorithm with a wild range of experiences. This work has been
published in [Wang et al., 2016a]. We also propose a novel system for
animation generation. This system first generates CVTs from a stream of
three-dimensional observations acquired with a video-based capture sys-
tem, then produces animation by combining video-based shape motion
and mechanical effects on the generated CVTs. This work has been made
available in [Allain et al., 2016].
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Chapter 2

Volumetric Tessellation

Contents
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2.1 Introduction

A volumetric tessellation of a shape volume V consists of one or more
smaller shapes that fill V with no overlap and no gap. It is also called
tilling, partition or subdivision of V . These smaller shapes of the volu-
metric tessellation are called cells and noted the {Ωi}. A shape is usually
represented by its boundary that is a surface S . It has to be mentioned
that volumetric tessellations are different from surface tessellations that
are restricted to S . Volumetric tessellations can be generalized to any
dimensions. In this thesis, we focus on tessellations in three dimensions.

Over the last decade, the construction of volumetric tessellations has
been largely studied and used for applications in both computer vision
and computer graphics. Many methods have been proposed for differ-
ent applications. Depending on the input, the methods can be roughly
divided into two categories. When the input is an implicit representation
that identifies a shape volume V as being a region within an observation
domain Ω, the output tessellation is an approximation of V [Lorensen and
Cline, 1987] [Jamin et al., 2015]. Such implicit representation is typically
given as a scalar function f : Ω → R that takes different values inside

7
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Figure 2.1 – An overview of volumetric tessellations.

and outside V , for instance an implicit function, an indicator function or
a distance function. This implicit representation can be characterized by
an implicit surface that is usually obtained for a real object through sur-
face reconstruction methods from point clouds [Berger et al., 2014]. The
conversion from implicit surfaces to explicit volumetric tessellations is
also called polyhedrization or mesh generation [Jamin et al., 2015]. When
the input is an explicit representation, usually a polygonal meshM, the
output tessellation is exact with its associated polygonal surface that is
identical toM [Yan et al., 2013] [Si, 2015]. Without specification,M refers
to a triangle mesh in this thesis. Figure 2.2 gives an illustration of the
difference between the two cases in two dimensions.
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(a) (b)

Figure 2.2 – Two-dimensional volumetric tessellations for different input
shape (in red). (a): Approximated case when the input is an implicit
surface. (b): Exact case when the input is a mesh.

Depending on the algorithms they used, the methods can be roughly
categorized into voxel-based, Delaunay-based and Voronoi-based ap-
proaches. Voxel-based approaches include the Marching Cubes method
[Lorensen and Cline, 1987] and its extensions. They use a fixed grid
that discretizes the observation domain Ω containing the shape volume
V into cells that are usually identical such as cubes or tetrahedra for
instance. Then the intersection between V and the cells is computed.
Delaunay-based approaches, such as [Jamin et al., 2015] and [Si, 2015],
build a three-dimensional Delaunay triangulation, also called tetrahedral-
ization, with the sampling points on the shape surface S . Voronoi-based
approaches compute the intersection between V and the Voronoi diagram,
dual of the Delaunay triangulation, of points {xi}, called sites, that are
sampled inside V. Figure 2.3 visualizes the difference between these three
approaches with the same input in two dimensions.

Figure 2.1 shows the overview of the volumetric tessellation process.
Following this overview, Voxel-based, Delaunay-based and Voronoi-based
approaches are reviewed in details in Section 2.2, 2.3 and 2.4, respectively.
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(a) (b) (c)

Figure 2.3 – Two-dimensional volumetric tessellations with different ap-
proaches for the same input shape (in red). (a): Voxel-based. (b): Delaunay-
based. (c) Voronoi-based, with its associated sites in blue.

2.2 Voxel-based Approaches

Voxel-based approaches for implicit surfaces include the well-known
Marching Cubes (MC) algorithm and its extensions. It has to be mentioned
that the MC has originally been proposed for the isosurface extraction
problem. Most of the improvements on the MC are designed for require-
ments at the surface level, for instance surface simplification. However,
since the essential idea of the MC is to use a volumetric grid to discretize
the domain that contains the input shape, it belongs to the set of volu-
metric tessellation approaches. Besides, the volumetric output generated
by the MC have been used in many applications. For example, Wu et al.
[2015] considered the volumetric output as the input for deep learning of
shape recognition, and Raviv et al. [2010] used it to find volumetric heat
kernel signatures of shapes.

The process of voxel-based approaches consists of two main steps as
follows:

1. Voxelization: use a grid to discretize the domain containing the
input shape.

2. Clipping: compute the intersection between the grid and the input
shape.

Figure 2.4 visualizes these steps using an example in two dimensions.
The grid used for voxelization is usually fixed and constructed with cubes
sharing the same size. However, many extensions using grids with cells
of different shapes, such as multi-resolution or tetrahedra, have been
designed for the purpose of complexity simplification or disambiguation.
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(a) (b) (c)

Figure 2.4 – Overview of voxel-based approaches in two dimensions. (a):
Input shape. (b): Voxelization of the domain containing the shape with
cubic cells. (c) Approximated clipping in pink. The images are from
[Anderson].

These extensions are reviewed in Section 2.2.1. When the input shape is a
mesh, the clipping step boils down to a polyhedron intersection problem
between the mesh and the cells of the grid. Otherwise, it is the typical
approximated clipping of the original MC algorithm. Voxel-based ap-
proaches are widely used because of their time efficiency. However, the
generated cells in the boundary can be very irregular and non-uniform.
We detail the clipping algorithm that uses cubic grid since it is more
interesting in terms of regularity than other grids in Section 2.2.2. Redun-
dancy, correctness and consistency problems arise when the tessellation
is an approximation of an implicit input. Although many solutions have
been proposed, these problems remain a challenge. Improvements are
reviewed in Section 2.2.3.

2.2.1 Voxelization

The voxelization in the original MC algorithm from Lorensen and
Cline [1987] adopts a fixed grid with the same sized cells which are cubes.
This is because cube is one of the simplest space-filling polyhedron and is
easy to construct. However, it causes not only ambiguity problems but
also a waste of memory, especially when the size of cubes is chosen to
be too small compared to the input volume. Many extensions have been
proposed to solve these problems. Depending on the shape of cells, these
methods can be divided into two categories: multi-resolution cells and
non-rectangular cells.

In order to reduce the memory complexity and to generate triangles
with adaptive size on the shape surface, Shu et al. [1995] considered an
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adaptive MC that subdivides the cubes according to the shape surface
smoothness. This method may cause cracks in the generated surface.
Although a crack-patching method is applied for filling the cracks with
polygons of the same shape, loss of finer features may happen when
subdividing the cubes. An octree structure is used in [Shekhar et al., 1996]
that replaces small cells with a larger one instead of subdividing. In order
to patch the cracks, edges of the smaller cells are forced to coincide with
those of their larger neighbors. This crack-patching method does not
generate new triangles. Weber et al. [2003] extended the MC to rectilinear
grid with multi-resolution. The cracks among the cells are then filled with
polyhedra.

Instead of using cubes as cells, tetrahedra are firstly considered in
an algorithm proposed in [Akio and Koide, 1991] that is called March-
ing Tetrahedra. It subdivides each cube cell into four tetrahedra. The
advantage of using tetrahedra is that it simplifies the lookup table and
eliminates the ambiguities of the facetization. However, the complexity
increases and the orientation of each tetrahedron has to be defined. March-
ing Tetrahedra has been widely used in many applications and also been
applied to rectilinear grid and multi-resolution [Elvins, 1992]. Other cell
types such as hexahedron [Carr et al., 2003], octahedron [Carr et al., 2003]
[Takahashi et al., 2004] and other irregular shapes [Newman and Yi, 2006]
have been considered for the purpose of complexity reduction.

These extensions are mainly proposed for improving the generated
surface quality without considering the regularity of the generated volu-
metric tessellation. In the following, we consider the voxelization with
a fixed grid with the cubes of the same size because it generates more
regular tessellations compared to the others.

2.2.2 Clipping

Depending on the type of input shapes, the clipping algorithm is either
approximated or exact. In the exact case where the input shape is a mesh,
the problem becomes a polyhedron intersection problem between the
mesh and the cells. Sutherland’s clipping algorithm [Sutherland and
Hodgman, 1974] can be used. In Chapter 6, we introduce a novel, efficient
and robust clipping algorithm. This work has been published in [Wang
et al., 2016a].

When the input shape is an implicit surface, the standard clipping
algorithm is the MC algorithm. The standard MC algorithm [Lorensen
and Cline, 1987] first identifies the boundary cubes that intersect the
implicit surface by marking the vertices inside the shape. There are 256
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[Lopes and Brodlie, 2003]

Figure 2.5 – The 14 basic intersection topologies. Vertices are marked in
black. The intersections between the implicit surface and the edges of
cubes and their connections are in red.
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(28) possibilities for a cube since a cube has eight vertices that can be
either marked or unmarked. However, if rotational, reflective and mirror
symmetries are considered, the intersection topologies can be reduced
to only 14, as shown in Figure 2.5. For each topology, the approximated
surface is generated by connecting the intersections between the implicit
surface and the edges of cube. This information is stored in a look-up
table that makes the process very fast.

The intersection between the implicit surface and the edges can be
estimated using an interpolation method. Depending on the information
available on the vertices, different methods can be applied. When only
implicit function values are available, linear interpolation is widely used
because it is fast and simple. The false position method gives better results
by locating the intersection iteratively. When both implicit function values
and their derivatives are available, Hermite interpolation is proposed to
give an accurate intersection [Fuhrmann et al., 2015]. When no additional
information than inside or outside is offered, the bisection method can
be used which can iteratively locates the intersection within a precision
defined by user.

It has been pointed out that there are ambiguities in the standard
MC algorithm [Nielson and Hamann, 1991] [Natarajan, 1994]. In Figure
2.5, there are face ambiguities in cases 3, 6, 7, 10, 12 and 13 and interior
ambiguities in cases 4, 6, 7, 10, 12 and 13. Chernyaev [1995] identified that
there are 33 different cases where two of them can be removed because of
reflective and mirror symmetries. Many methods have been proposed for
disambiguation that are reviewed in Section 2.2.3.

2.2.3 Improvements

There are two main issues in approximated volumetric tessellations
using the standard MC algorithm that are topological inconsistency and
non-manifoldness. The topological inconsistency issue comes from the
ambiguities in the standard MC cases as firstly noted by Dürst [1988].
The asymptotic decider method [Nielson and Hamann, 1991] has been
proposed for solving the face ambiguity using bilinear interpolation of
ambiguous faces’ vertices. Then the lookup table of the standard MC algo-
rithm has been extended to 33 cases [Chernyaev, 1995] by adding subcases
for disambiguation. An interior discriminant has also been proposed for
the internal ambiguity subcases by detecting bilinear interpolations over
any plane inside the ambiguous cubes. Nielson [2003] and Lopes and
Brodlie [2003] proposed trilinear interpolation methods that provide an el-
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egant solution to both face and internal ambiguities. The implementation
for [Chernyaev, 1995] is available in [Lewiner et al., 2003].

Manifoldness can be lost if the facetization generates non-manifold
edges. Nielson [2003] and Lopes and Brodlie [2003] proposed to generate
additional points on the boundary and inside cube for preserving both
topological consistency and manifoldness. Etiene et al. [2012] mentioned
that the implementation of [Lewiner et al., 2003] may fail to produce
manifold surface. The method has been then improved by Custodio et al.
[2013]. Recently, a novel method using quadratic equations is proposed
for generating both topological consistent and manifold surface in [Grosso,
2016]. For more detail reviews on this topic, please see [Newman and Yi,
2006].

2.3 Delaunay-based Approaches

The main step of Delaunay-based approaches is the Delaunay trian-
gulation that fills a shape volume V with three-dimensional triangles,
i.e . tetrahedra. The computation of a triangulation of a point set can be
defined as a process of associating the points by forming triangles. Given
a finite set of points X , a triangulation of X is a simplicial complex that
tessellates the convex hull of X and whose vertices belong to X . Several
triangulations may be constructed from the same set of points. Among
them, the Delaunay triangulation is the most interesting one since it pos-
sesses good properties. The Delaunay triangulation and its dual, the
Voronoi diagram, are widely studied and used in many applications of
different areas. After some extensions such as the constrained Delaunay
and the restricted Delaunay triangulations have been proposed, it has
been used for volumetric tessellations of shapes, also called volumetric
mesh generation.

The remainder of this section is organized as follows: We first intro-
duce the background on the Delaunay triangulation of a point set includ-
ing its algorithms and extensions in Section 2.3.1. Then the Delaunay-
based volumetric tessellations in the approximated case and in the exact
case are reviewed in Section 2.3.2 and Section 2.3.3, respectively.

2.3.1 Background on Delaunay Triangulations

The Delaunay triangulation was first proposed by Delaunay [1934].
Given a finite point set X , the Delaunay triangulation of X is the triangu-
lation such that each triangle has a circumsphere which does not contain
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Figure 2.6 – The pipeline of general Delaunay triangulation computation.
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the other points. Among all the triangulations of X , the Delaunay trian-
gulation maximizes the smallest angle of the triangles in the triangulation.
This means that for the maximum minimum angle criterion, the Delaunay
triangulation is the best one of all the triangulations of X . If all the points
in X lie on the same line, there is no Delaunay triangulation. If four or
more points are cocyclic, the Delaunay triangulation is not unique.

A Delaunay triangulation can also be defined by higher dimension em-
bedding. Given a finite point set X = {xi} in an m-dimensional Euclidean
space Em, the parabolic lifting map [Brown, 1979] transforms the Delaunay
triangulation of X into a convex hull in Em+1. Each xi ∈ X corresponds
to x′i = (xi, ‖xi‖2) ∈ X ′ in Em+1 and the Delaunay triangulation of X is
the projection on the m-dimensional plane of the convex hull of X ′ in Em.

Because of its nice properties [Fortune, 1992] [Loera et al., 2010], the De-
launay triangulation is used for graph construction [Chew, 1986], network
optimization [Mitchell, 2000] etc . Over the last decades, many extensions
of the Delaunay triangulation have been proposed for requirements of
different applications. We use the pipeline of the general Delaunay trian-
gulation computation to gather the extensions in a systematic way. Figure
2.6 shows the pipeline that consists of a triangulator, a constrained trian-
gulator and an optimizer. The triangulator takes a finite point set X as
input and computes the Delaunay triangulation of X . When X consists of
points with weights, the weighted Delaunay triangulation or the regular
triangulation methods can be computed. Then the triangulator passes
the triangulation of X to the constrained triangulator which adjusts the
input triangulation according to the given constraints. The constrained
Delaunay triangulation method forces some fixed segments or polygons
to appear in the triangulation and the restricted Delaunay triangulation
method allows removing all the triangles that are outside the given shape.
Since the above process cannot guarantee the triangulation to be Delaunay,
the conforming Delaunay triangulation method in the optimizer splits
the non-Delaunay edges by inserting additional points (Steiner points)
and reconstitutes the triangulation until it satisfies the Delaunay criterion.
The Delaunay refinement method subdivides the triangulation in order to
improve its quality.

In Section 2.3.1.1, we review the algorithms for basic Delaunay trian-
gulation of point sets. The main extensions of the Delaunay triangulation
are listed in Section 2.3.1.2.
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2.3.1.1 Delaunay Triangulation Algorithms

Algorithms for the three-dimensional Delaunay triangulation can be
classified into the following categories: incremental reconstruction, incre-
mental insertion, higher dimensional embedding and divide and conquer.
The incremental reconstruction algorithm [Joe, 1991] starts with a single
tetrahedron without containing any other of input points. Then input
points are inserted successively to the existing Delaunay triangulation
and uses local transformations known as the flip algorithm is used to
build a new Delaunay triangulation. In order to accelerate the algorithm,
the input points can be sorted before or stored in a uniform grid [Joe,
1991]. Unlike the incremental reconstruction algorithm that inserts points
outside the existing triangulation, the incremental insertion algorithm
inserts points inside it. In order to build a new triangulation, one strategy
is to delete the tetrahedra whose circumsphere contains the inserted point
and then to rebuild a triangulation to fill the hole [Bowyer, 1981] [Watson,
1981]. Another strategy is to use local transformations [Facello, 1995].
As mentioned earlier, the Delaunay triangulation can be defined by the
projection of the convex hull in higher dimension. The input points are
firstly embedded into four dimensions by the lifting map. Then their
convex hull and its projection in three dimensions are computed to obtain
the Delaunay triangulation [O’Rourke and Goodman, 2004]. A divide and
conquer algorithm [Cignoni et al., 1998a] divides the input points into
small partitions using splitting planes. Then the Delaunay triangulation
of each partition is computed. The last step is to merge them to the final
Delaunay triangulation. The parallel versions of some of the above algo-
rithms are proposed in [Kohout and Kolingerová, 2003] [Kohout et al.,
2005] [Lo, 2012].

2.3.1.2 Extensions of Delaunay Triangulations

In this section, we review the main extensions of the Delaunay trian-
gulation. As mentioned earlier, the Delaunay triangulation can be defined
in several ways, such as by the requirement that the circumspheres of all
tetrahedra in triangulation do not contain other vertices or by the projec-
tion of convex hull in higher dimensions using the parabolic lifting map.
In order to define the Delaunay triangulation and some of its extensions
such as the weighted Delaunay triangulation or the regular triangulation
in a consistent way, we use the notion of Voronoi diagram, also called
Voronoi tessellation, which is the dual of the Delaunay triangulation.

Given a finite set of n points X = {xi}n
i=1 in three-dimensional Eu-
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clidean space E3, we define a distance function di, also called cost function,
for each xi as follows:

di : E3 −→ R

x 7−→ ‖x− xi‖2,
(2.1)

where ‖ · ‖ is the Euclidean distance. The Voronoi region Ωi, also called
Voronoi cell, of xi is the set of points that are closest to xi than to any other
points of X . That is:

Ωi = {x ∈ E3 ‖ di(x) ≤ dj(x), ∀j 6= i}. (2.2)

xi is called the site of Ωi. The bisector Bij of two Voronoi cells Ωi and
Ωj is the set of points that are shared by these two cells. That is

Bij = {x ∈ E3 ‖ ‖x− xi‖ = ‖x− xj‖}. (2.3)

The Delaunay triangulation of X can be constructed from the Voronoi
diagram by connecting two sites whose corresponding Voronoi cells share
a bisector. We use analogous definitions to define weighted Delaunay
triangulation and regular triangulation in the following paragraphs.

Weighted Delaunay Triangulation

Given a finite set of n pointsX = {xi}n
i=1 ∈ E3 with weights {wi}n

i=1 ∈
R, we define a distance function dw

i for xi as follows:

dw
i : E3 −→ R

x 7−→ ‖x− xi‖ − wi,
(2.4)

where ‖ · ‖ is the Euclidean distance. Using this distance function, we
can define an analog to the Voronoi diagram that is called the additively
weighted Voronoi diagram with its cells defined as follows:

Ωw
i = {x ∈ E3 ‖ dw

i (x) ≤ dw
j (x), ∀j 6= i}. (2.5)

The bisector Bw
ij of two additively weighted Voronoi cells is defined as

follows:

Bw
ij = {x ∈ E3 ‖ ‖x− xi‖ − wi = ‖x− xj‖ − wj}. (2.6)

Recall that the weighted Delaunay triangulation of X can be obtained
from the additively weighted Voronoi diagram by connecting two sites
whose corresponding cells share a bisector.



20 CHAPTER 2. VOLUMETRIC TESSELLATION

Regular Triangulation

Given a finite set of n pointsX = {xi}n
i=1 ∈ E3 with weights {wi}n

i=1 ∈
R, we define a distance function πw

i for xi as follows:

πw
i : E3 −→ R

x 7−→ ‖x− xi‖2 − wi,
(2.7)

where ‖ · ‖ is the Euclidean distance. This function is also called power func-
tion and is used to define the power diagram. Then the regular triangulation
of X can be defined in the same way as the Delaunay triangulation.

It has to be mentioned that although both the weighted Delaunay
triangulation and the regular triangulation use weighted point sets, they
use different distance functions. Intuitively, the bisectors of the regular
triangulation are planes. However, the bisectors of the weighted Delaunay
triangulation may be radical planes.

Constrained Delaunay Triangulation

A constrained Delaunay triangulation (CDT) [Chew, 1989] is an ex-
tension of the Delaunay triangulation that enforces certain geometric
constraints into the triangulation such as segments and polygons in three
dimensions. Usually, the tetrahedra that contain the constraints do not
satisfy the Delaunay triangulation criterion, thus, a CDT is not neces-
sarily Delaunay. The computation of CDTs is the main step of the exact
Delaunay-based volumetric tessellation. The input mesh is considered as
a set of constraints in the tessellation. CDT algorithms are reviewed in
detail in Section 2.3.3.1.

Restricted Delaunay Triangulation

A restricted Delaunay triangulation (RDT) is an extension of the De-
launay triangulation that forces the triangulation to stay inside the input
shape. In the exact case, only the tetrahedra inside the input mesh are
kept. In the approximated case, the center of the circumsphere of the
tetrahedron can be used for checking if the tetrahedron is inside the input
implicit surface [Jamin et al., 2015]. The computation of RDTs is the main
step of the approximated Delaunay-based volumetric tessellation and is
reviewed in detail in Section 2.3.2.2.



2.3. DELAUNAY-BASED APPROACHES 21

Conforming Delaunay Triangulation

A conforming Delaunay triangulation is an extension of the CDT that
subdivides the constraints by inserting additional points (Steiner points).
These points allow to keep the constraints in the triangulation while
satisfying the Delaunay criterion.

Delaunay Refinement

The Delaunay refinement is an optimization process for the purpose of
improving the tetrahedra quality by subdividing the edges, facets or cells
in tessellations. However, it also has several drawbacks. The process may
produce badly shaped tetrahedra and may have non-terminating loops
because of sharp features. Different versions of the Delaunay refinement
are proposed for both the approximated and the exact cases. See the
details in Section 2.3.2.3 and 2.3.3.2.

2.3.2 Approximated Case

The computation of an approximated Delaunay-based volumetric
tessellation considers a shape volume V as input and builds a RDT inside
V . In this case, the input V is usually represented by an implicit surface
S representing its boundary and the constructed RDT is supposed to
approximate V . The computation consists of the following three steps:

1. Initialization: sample a finite set of points X lying on S . If sharp
features are required to be preserved, the points lying on the sharp
edges are sampled and inserted into X .

2. RDT: build the RDT of X inside V .

3. Optimization: subdivide edges, faces or cells of the RDT by inserting
additional points (Steiner points) into X or change the position of
the existing points in X , then rebuild the RDT of the updated X
until certain user-defined mesh quality criteria are satisfied.

Figure 2.7 gives an illustration of the results after different steps. As
we can see, after step 1 and 2, a RDT with badly shaped tetrahedra is
constructed (see Figure 2.7 (a) and (d)). (b) and (e) in Figure 2.7 show
that the triangulation is subdivided by inserting additional points and the
new constructed tetrahedra are better shaped. This subdivision process
is called the Delaunay refinement and the additional points are called
Steiner points. The quality of the triangulation can be further improved by
updating the position of the points using variational methods (see Figure
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(a) (b) (c)

(d) (e) (f)

Figure 2.7 – (a, d): The RDT of an implicit surface representing an elephant.
(b, e): The result of (a) after Delaunay refinement. (c, f): The result of (b)
after a Lloyd optimization.

2.7 (c) and (f)). These three steps are reviewed in detail in Section 2.3.2.1,
2.3.2.2 and 2.3.2.3, respectively.

2.3.2.1 Initialization and Sharp Features

In order to build a RDT inside the input shape volume V , a finite set
of points X is sampled on the implicit surface S during the initialization
step. Several methods can be used for obtaining these initial points such
as random ray shooting for instance. X may be also provided by the user.
It is worth mentioning that the uniform distribution and high density of
X can improve the quality of the RDT so that the tetrahedra are more
regular and the triangulation approximates better to V . However, uniform
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sampling on S can be difficult when S is complex. Instead of generating
an uniform sampling in the intialization step, the quality of regularity
and approximation of the RDT can be improved in the optimization step.
During the computation of the Delaunay refinement, the Steiner points
are inserted inside V or on S according to certain criteria of regularity and
approximation. With the Delaunay refinement, the initialization step can
be simplified to only sample a small set of points on S .

Sharp features can be easily integrated into the Delaunay-based ap-
proach during the initialization step. The protecting-balls approach
[Cheng et al., 2010] is proposed to ensure that the given sharp features
appear in the final tessellation. The approach discretizes the sharp fea-
tures into a set of weighted points that are called protecting balls. These
weighted points are then inserted into X and the weighted Delaunay
triangulation is used instead of the Delaunay triangulation in the whole
triangulation process. The points except for the protecting balls have zero
weight so that the sharp edges can be forced into the final triangulation.

2.3.2.2 Restricted Delaunay Triangulation

(a) (b)

Figure 2.8 – (a): The input shape with the sampling points on its implicit
surface. (b): The RDT. The center of the circumcircle of the triangles is in
blue. The images are from [CGAL].

The RDT is the main step of the approximated Delaunay-based volu-
metric tessellation. It consists of building a Delaunay Triangulation and
restricting this Delaunay triangulation to the input shape volume V . In
order to remove the tetrahedra outside V , the center of the circumspheres
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are used. For each tetrahedron of the Delaunay triangulation, if the center
of its circumsphere is outside V , the tetrahedron is considered as outside
V and has to be removed. Otherwise, the tetrahedron is kept. Figure 2.8
gives a two-dimensional illustration of the RDT. It is important to note
that as a result of the process of removing tetrahedra, it is difficult to
guarantee the topological consistency and the manifoldness of the final
tessellation and its surface, even with a dense sampling [Oudot, 2008].

2.3.2.3 Optimization

The optimization step aims at building a good tessellation that ap-
proximates well the input shape volume V and is composed of regular
tetrahedra. As mentioned earlier, it is difficult to obtain a uniform and
dense sampling on the implicit surface S during the initialization step.
With only the sampling points lying on S , the RDT contains badly shaped
tetrahedra (see Figure 2.7 (a) and (d)). The Delaunay refinement subdi-
vides facets and cells of the triangulation by inserting Steiner points inside
V and on S . Variational methods and local optimization allow removing
degenerate tetrahedra called slivers. Slivers are flat tetrahedra without
large radius-edge ratio.

Delaunay Refinement

Given a RDT, the process of Delaunay refinement [Oudot et al., 2005]
consists of the following steps: find the badly shaped surface facets and
cells according to the user-defined criteria, insert Steiner points, update
the RDT and repeating the above steps until all the faces and cells meet
the criteria. The criteria are composed of facet criteria and cell criteria.
Facet criteria are used for controlling the size, shape and approximation
error of the surface facet. A Steiner point for removing a bad surface facet
is defined as the center of the circumsphere of this facet whose center lies
on the input surface. The cell criteria are used for controlling the size and
shape of the cells. In order to remove a badly shaped cell, a Steiner point
defined as the center of the circumsphere of this tetrahedron is inserted.
With certain constraints on the criteria, the process of Delaunay refinement
can be guaranteed to terminate after inserting a finite set of Steiner points
[Chew, 1993] [Ruppert, 1995] [Shewchuk, 1998b]. However, the Delaunay
refinement is insensitive to the slivers.
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Variational Methods

As mentioned earlier, the Delaunay refinement may produce slivers.
In order to remove the slivers, variational methods including the Lloyd
relaxation [Du et al., 1999] [Du and Wang, 2003] and the optimal Delaunay
triangulation relaxation [Chen and Xu, 2004] [Alliez et al., 2005] are pro-
posed. The main idea of these methods is to define an energy function that
quantifies the tessellation and to minimize this function by updating the
position of the vertices. In the Lloyd relaxation, the function is defined on
the dual Voronoi cells. In the optimal Delaunay triangulation relaxation,
the function is defined directly on the tetrahedra. The minimization of the
energy function allows the vertices to be uniformly distributed and thus
to build a RDT with regular tetrahedra.

Local Optimization

Local optimization methods include vertex perturbation [Li, 2000]
[Tournois et al., 2009] and sliver exudation [Cheng et al., 2000]. Unlike
the variational methods that optimize the tessellation globally, local opti-
mization aims to find the slivers and to remove them locally. The vertex
perturbation method changes the position of vertices of the slivers with a
perturbation until the connectivity of the Delaunay triangulation is up-
dated. On the contrary, the sliver exudation method assigns weights to
the vertices of the slivers and uses the weights to change the connectivity
of the weighted Delaunay triangulation.

2.3.3 Exact Case

In the exact case, the input shape volume V is bounded by a triangle
meshM. The vertices ofM are considered as a set of points used for
building a Delaunay triangulation and the edges and facets ofM are con-
sidered as the constraints for CDT. The process consists of the following
steps: building the DT of the vertices ofM, forcing the edges and facets of
M into the DT, removing the tetrahedra outside of V and optimizing the
quality of the tessellation. Figure 2.9 gives an illustration of the process.

2.3.3.1 Constrained Delaunay Triangulation

The three-dimensional CDT is the main step of the exact Delaunay-
based volumetric tessellation. In two dimensions, the edge constraints
can always be forced into the Delaunay triangulation using an edge flip-
ping algorithm. However, the three-dimensional constrained Delaunay
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(a) (b)

(c) (d)

Figure 2.9 – Overview of the exact Delaunay-based volumetric tessellation.
(a): Input shape represented by a mesh. (b): The Delaunay triangulation of
the vertices of the input mesh. (c): The CDT with the constraints defined
by the edges and the facets of the mesh. (d): Result after the Delaunay
refinement. The images are from [Si, 2015].

triangulation does not always exist, except under the condition that all
constraints are Delaunay [Shewchuk, 1998a]. Otherwise, Steiner points
need to be inserted. The three-dimensional CDT consists of inserting
the edges and the facets of the input mesh M. Si and Gärtner [2005]
introduced an algorithm to insert the edges while adding Steiner points
to ensure the existence of CDT. The facets can be inserted using the flip
algorithm [Shewchuk, 2003] or the cavity retetrahedralization algorithm
[Si and Gärtner, 2011]. The latter is shown to be more robust in [Si and
Shewchuk, 2014].
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2.3.3.2 Optimization

The optimization step aims at generating well shaped tetrahedra as in
the approximated case. Shewchuk and Si [2014] proposed a new version
of the refinement algorithm for CDT. With certain modifications of split-
ting rules in the typical Delaunay refinement, the constrained Delaunay
refinement can recover the sharp features and remove the slivers as well.

2.4 Voronoi-based Approaches

The Voronoi-based approach adopts a Lagrangian strategy that tes-
sellates the shape volume V directly instead of a region Ω containing
V . The interest is to reduce the complexity when modeling large scenes.
The approach builds a centroidal Voronoi tessellation (CVT) of V that is
composed of uniform and regular cells. This can be an important feature
for many applications.

The computation of a CVT consists of the following three steps:

1. Initialization: sample a a user-defined number of points X inside V .
These points are called sites.

2. Clipping: compute the intersection between the Voronoi tessellation
of X and V . The intersection is called clipped Voronoi tessellation.

3. Optimization: update the position of the sites until meeting user-
defined criteria.

Figure 2.10 gives an illustration of the computation in two dimensions.
The three steps are reviewed in detail in Section 2.4.2, 2.4.3 and 2.4.4,
respectively. Background on Voronoi tessellation is first reviewed in
Section 2.4.1 before entering into the details of the steps.

2.4.1 Background on Voronoi Tessellation

2.4.1.1 Voronoi Tessellation

Given a finite set of n pointsX = {xi}n
i=1, called sites, in a m-dimensional

Euclidean space Em, the Voronoi cell or Voronoi region Ωi [Aurenhammer,
1991] [Fortune, 1992] [Okabe et al., 2009] of xi is defined as follows:

Ωi = {x ∈ Em ‖ ‖x− xi‖ ≤ ‖x− xj‖, ∀j 6= i}, (2.8)

where ‖ · ‖ is the Euclidean distance. The partition of Em into Voronoi
cells is called a Voronoi tessellation.
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(a) (b)

(c) (d)

Figure 2.10 – Overview of the computation of a Voronoi-based tessellation
in two dimensions. (a): Initialization: sample the sites inside the input
shape. (b): Voronoi tessellation of the sites. (c): Clipping: compute the
clipped Voronoi tessellation. (d): Optimization: update the position of the
sites by minimizing the CVT energy function.
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The Voronoi cell Ωi of xi is the set of the points whose distance to xi
is smaller than (or equal to) their distance to the other sites in X . This is
the solution to a semi-discrete (from continuous source to discrete target)
optimal transportation problem [Lévy, 2015]. With a general distance
metric, the general Voronoi cell Ωg

i of xi can be defined as follows:

Ωg
i = {x ∈ Em ‖ dg

i (x) ≤ dg
j (x), ∀j 6= i}, (2.9)

where dg
i is the general distance to xi. Extensions of Voronoi tessellation

such as the weighted Voronoi tessellation [Okabe et al., 2009], the power
diagram [Aurenhammer, 1987] and the Lp Voronoi tessellation [Lévy and
Liu, 2010] can be considered as variations of the distance metric. In this
thesis, we focus on the most widely used Voronoi tessellation with the
Euclidean distance.

2.4.1.2 Centroidal Voronoi Tessellation

Voronoi cells intersecting the boundary of the shape are not closed.
However, in many applications, only the intersection of the Voronoi cells
with an input shape volume V are required. A clipped Voronoi tessellation
[Yan et al., 2013] is the intersection between the Voronoi tessellation and
V . A clipped Voronoi cell is thus defined as:

Ωi = {x ∈ V ‖ ‖x− xi‖ ≤ ‖x− xj‖, ∀j 6= i}, (2.10)

A centroidal Voronoi tessellation [Du et al., 1999] is a special type of
clipped Voronoi tessellation where the site of each Voronoi cell is also its
center of mass. Let the clipped Voronoi cell Ωi be endowed with a density
function ρ such that ρ(x) > 0 ∀x ∈ V . The center of mass x̂i, also called
the centroid, of Ωi is defined as follows:

x̂i =

∫
Ωi

ρ(x)x dσ∫
Ωi

ρ(x)dσ
, (2.11)

where dσ is the area differential.
CVTs are used to discretize two-dimensional or three-dimensional

regions. In that respect, CVTs are optimal quantizers that minimize a
distortion or quantization error E : Enm → R defined as:

E(X) =
n

∑
i=1

Fi(X) =
n

∑
i=1

∫
Ωi

ρ(x)‖x− x̂i‖2 dσ. (2.12)
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CVTs correspond to local optima of the above function E, also called
CVT energy function [Du et al., 1999]. By definition, an optimal CVT
achieves the global minimum of this function. Yet finding an optimal
CVT appears difficult since the energy function is usually non linear and
non convex [Liu et al., 2009] [Lu et al., 2012]. The function E measures
the quantization error of a Voronoi tessellation and expresses, to some
extent, the compactness of the cells [Liu et al., 2009]. However, it does not
quantify how regular a tessellation is since it depends on the dimensions
of the original region as well as the number of cells considered. Some
regularity criteria are proposed in Chapter 3.

2.4.2 Initialization

The initial position of the sites has a strong influence on the conver-
gence speed and on the result quality. Different methods have been
considered in the literature.

Random Sampling

The idea is to sample the initial site locations randomly inside the input
shape. This simple and fast method is widely used. However, neither the
speed of convergence nor the quality of the result can be guaranteed.

Other sampling methods can be used to improve these criteria, such
as farthest point sampling or Ward’s method [Moriguchi and Sugihara,
2006].

Greedy Edge-collapsing

Moriguchi and Sugihara [2006] proposed a method which applies
a greedy edge-collapsing decimation on the input shape and uses the
decimated mesh vertices as the initial site positions. As pointed out by
Quinn et al. [2012], this method can be time-consuming, and the sites may
not be regularly positioned if the shape is not described by a regular mesh.
Consequently, the quality of the resulting CVT can be even worse than
using random sampling.

Hammersley Sampling

Quinn et al. [2012] suggested to use Hammersley sequences to gen-
erate the initial site positions. Hammersley sequences have correlated
positions, which means that the probability of a site being at some position
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depends on the positions of its neighbors. Unfortunately, the Hammer-
sley sequence generation algorithm as described in [Quinn et al., 2012]
can only place the sites in a square in two dimensions or a cube in three
dimensions. As a result, the number of sites in the tessellation is difficult
to control in any other cases.

Our Approach

A hierarchical approach will be detailed in Chapter 4.

2.4.3 Clipping

2.4.3.1 Exact Case

Yan et al. [2013] proposed an algorithm to compute the clipped Voronoi
tessellation of three-dimensional shapes described by tetrahedral meshes.
This algorithm consists of two main steps: detection of boundary sites
by computing surface restricted Voronoi tessellation [Edelsbrunner and
Shah, 1994] [Yan et al., 2009] and computation of the intersection between
the Voronoi cells of boundary sites and the input tetrahedral mesh using
Sutherland’s clipping algorithm [Sutherland and Hodgman, 1974]. This
method expresses the clipping problem as a three-dimensional volume
intersection problem but also requires a tetrahedral mesh as input. When
the input shape is given as a closed triangle mesh, a three-dimensional
constraint Delaunay triangulation must be computed first [Shewchuk,
1998a] [Shewchuk, 2008]. This is a complex problem which has many
degenerate cases and usually requires additional (Steiner) points to ensure
the existence of a solution. The complexity highly depends on the quality
of the input surface triangle mesh [Erickson, 2001]. Recently, Lévy [2014]
proposed another efficient method based on iterative convex clipping.

In Chapter 6, we propose a novel algorithm that exploits a two-dimensional
constrained Delaunay triangulation to determine triangles on the input
mesh that intersect a given Voronoi cell without the need of a tetrahedral
mesh inside the shape. This work has been published in [Wang et al.,
2016b].

2.4.3.2 Approximated Case

In Chapter 5, we propose the first clipping algorithm to build the
clipped Voronoi tessellation of implicit shapes.
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2.4.4 Optimization

(a) (b)

(c) (d)

Figure 2.11 – (a, c): Voronoi tessellation of sites randomly placed inside
the shape. (b, d): The CVT after the optimization.

The optimization step aims at building a tessellation with uniform and
regular cells by minimizing the CVT energy function. Figure 2.11 gives
an illustration of Voronoi tessellations with and without optimization.

Most of the strategies update the site positions using the Lloyd’s
gradient descent method [Lloyd, 1982]. At each iteration, this method
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moves the current sites to the centroid positions of the corresponding
clipped Voronoi cells. This is the continuous equivalent to the k-means
clustering algorithm in the discrete case. It has been proved that this
leads the CVT energy function to reach a local minimum [Du et al., 1999].
Convergence speed can anyway be slow since the site positions may
oscillate around a local minimum.

To speed up convergence, Du and Emelianenko [2006] proposed a
Lloyd-Newton method that is equivalent to minimizing the sum distances
between this sites and the centroids of the corresponding Voronoi cells.
Unfortunately, the resulting tessellation is not always a proper CVT since
it is not necessarily a local minimum of the CVT energy function. In an
influential work, Liu et al. [2009] proved that the CVT energy function
has C2 continuity almost everywhere, except for some non-convex parts
of the shape. According to this property, quasi-Newton methods can be
used to minimize the CVT energy function. This leads to fast and effective
updates in practice.

Another strategy worth mentioning here is the stochastic approach of
Lu et al. [2012]. In this iterative approach, the site positions are perturbed
once a local minimum of the energy function is reached and the algorithm
is then launched again. The global minimum can theoretically be reached
after an infinite number of iterations. In practice, convergence is still slow,
as shown in the experimental results in [Wang et al., 2016a].
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Regularity of a tessellation
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3.1 Introduction

A regular volumetric tessellation in the usual sense consists of uniform
and regular cells as defined in the next paragraph. Over the last decades,
regular volumetric tessellations have been required in many applications
of computer vision, computer graphics and other domains. Hausner
[2001] proposed a method based on centroidal Voronoi regions for sim-
ulating decorative tile mosaics. Ringler et al. [2008] and Ju et al. [2011]
applied centroidal Voronoi tessellation on climate modeling. Raviv et al.
[2010] proposed a volumetric heat kernel signature using a quasi-regular
volumetric tessellation obtained by computing the Marching Cubes algo-
rithm. Regular volumetric tessellations have been also used as input data
for three-dimensional tracking [Allain et al., 2015] [Huang et al., 2016],
animation [Allain et al., 2016], shape detection [Wu et al., 2015], etc. Some
of these works are shown in Figure 3.1.

A polytope is a geometric shape enclosed by hyperplans and is a gener-
alized analog in higher dimensions of a polygon that is two-dimensional
and a polyhedron that is three-dimensional. A polytope whose primitive
elements are all symmetric is regular. More formally, a regular polygon

35
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Hausner [2001] Ringler et al. [2008]

Raviv et al. [2010] Allain et al. [2015]

Figure 3.1 – Applications of regular volumetric tessellations.
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is a polygon that is equiangular and equilateral. A regular polytope
[Coxeter, 1968] of dimensions higher than or equal to three is defined
recursively as a polytope with regular faces and regular vertex figures
(see Figure 3.2) where a vertex figure at a vertex is a polytope obtained by
joining the midpoints of edges of this vertex. Figure 3.3 shows examples
of regular polygons and regular polyhedra.

Figure 3.2 – Examples of the vertex figure (colored in blue) at a vertex
(colored in red) of a pentagon and a cube.

Figure 3.3 – Examples of regular polygons and regular polyhedra. The
images are from [STUDYBLUE].

Since the strong symmetry of regular polytopes interests both artists
and scientists, their properties have been well investigated. Some reg-
ularity measures based on area, perimeter, angle, edge, inscribed and
circumscribed circles or spheres for convex polygons and polyhedra have
been studied [Coxeter, 1938] [Zunic and Rosin, 2004] [Schulte, 2004] [Chal-
meta et al., 2013] and methods for regular polygons detection have been
proposed [Shaw et al., 2004] [Barnes et al., 2010] [Chalmeta et al., 2013].
However, these regularity criteria can not be used for comparing different
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types of polytopes. Conway and Sloane [1982] proposed a normalized
second order moment as a regularity criterion for polytopes which allows
evaluating the regularity of any polytope and comparing them.

Nevertheless, the regularity of a tessellation attracts less attention. A
measure is desirable to assess the regularity of a tessellation. This is true
also when comparing different volumetric tessellations of different shapes.
To the best of our knowledge, such a regularity measure has not yet been
proposed. In this chapter, we build on the theoretical work of Conway
and Sloane [1982] and propose regularity criteria based on the normalized
second order moments of the cells. We show that these regularity criteria
are linked to the CVT energy function but are dimensionless and therefore
enable global evaluations as well as comparisons.

The remainder of this chapter is organized as follows. In Section 3.2,
we review related work on dimensionless second moment of polytopes.
We propose our regularity criteria for volumetric tessellation in Section
3.3. Section 3.4 discusses the theoretical relation between CVT and our
regularity criteria.

3.2 Dimensionless Second Moment

The second moment of a polytope P, also called variance, measures
how far the points inside P are spread out relating to its centroid. It can
be defined as follows:

I(P) =
∫

P
‖x− x̂‖2 dx, (3.1)

with x̂ the centroid of P.
If the volume of a polytope is fixed, a small second moment indicates

that its points tend to be close to its centroid. It is easy to imagine that the
two-dimensional polygon which possesses the smallest second moment
tends to a circle, and in three dimensions, the polyhedron tends to a
sphere. The second moment of a polytope can be used as a regularity
criterion. However, it depends on the volume of the polytope.

Quantization has been used for studying the properties of tessellations
over the last decades [Gersho, 1979] [Conway and Sloane, 1982]. Quanti-
zation is the process which maps a continuous or a large discrete set into
a relatively small discrete set [Figueiredo, 2008] [Gersho and Gray, 2012].
Let a finite set of points {x1, ..., xn} in m-dimensional Euclidean space Rm

be a codebook. An m-dimensional quantizer maps each point x ∈ Rm

into its closest codepoint xi. If the density function of the source is p(x),
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the mean-squared error per symbol of this quantizer is defined as follows:

E(m, n, p, {xi}) =
1
m

n

∑
i=1

∫
Ωi

‖x− xi‖2p(x)dx, (3.2)

where Ωi is the Voronoi cell or the Voronoi region [Aurenhammer, 1991]
[Fortune, 1992] [Okabe et al., 2009] of xi.

Given m, n and p(x), let us note the lower bound of E over all choices
of {xi} as follows:

E(m, n, p) = inf
{xi}

E(m, n, p, {xi}).

Under different but quite general assumptions, Gersho [1979], Yamada
et al. [1980], Bucklew [1981], Bucklew and Wise [1982] and Zador [1982]
showed that

lim
n→+∞

n2/mE(m, n, p) = Gm

(∫
Rm

p(x)m/(m+2)dx
)(m+2)/m

, (3.3)

where Gm depends only on m.
Gersho [1979] conjectured that, for a sufficiently large n, any optimal

quantizer is such that all Voronoi cells {Ωi} are congruent to some poly-
tope, with the possible exception of regions touching the boundary of the
tessellated object. The polytope only depends on the dimension m. For
such a quantizer, it can be deduced from 3.2 and 3.3 that, for any polytope
P with uniform density,

G(P) =
1
m

∫
P ‖x− x̂‖2 dx(∫
P dx

)(m+2)/m
, (3.4)

where x̂ is the centroid of P.
G(P) is called the dimensionless second moment of P. It is a measure

which depends neither on the dimension m nor on the volume of P, only
on its shape. With this property, G(P) can be used as a regularity criterion
for any polytope. After some calculations, Conway and Sloane [1982]
gave a comparison of G(P) for various three-dimensional polyhedra, see
Table 3.1.

3.3 Regularity Criteria

We are interested in the regularity of tessellations. Since any quantizer
maps each point x of the input object Ω into its closest codepoint {xi},
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P G(P)
tetrahedron 0.1040042 . . .

cube* 0.0833333 . . .
octahedron 0.0825482 . . .

hexagonal prism* 0.0812227 . . .
rhombic dodecahedron* 0.0787451 . . .
truncated octahedron* 0.0785433 . . .

dodecahedron 0.0781285 . . .
icosahedron 0.0778185 . . .

sphere 0.0769670 . . .

Table 3.1 – Comparison of G(P) for various polyhedra in three dimensions
[Conway and Sloane, 1982]. P* means a space-filling polyhedron.

each xi lies at the centroid of the corresponding tessellated cell Ωi, this
tessellation of Ω can be considered as a Voronoi tessellation and {xi} as
its sites. It has to be mentioned that the CVT energy is usually used for
evaluating the regularity of tessellations [Liu et al., 2009]. However, while
this energy accounts for the compactness of the cells [Liu et al., 2009], it is
a metric that depends both on the number of cells and on the volume of
the shape.

From now on we assume that the density of Ω is uniform and the num-
ber of {xi} is large enough to avoid the boundary effect of Ω. Gersho’s
conjecture was proved in two dimensions [Newman, 1982], the Voronoi
cells being regular hexagons in that case. A weaker version of Gersho’s
conjecture was also proved in three dimensions [Barnes and Sloane, 1983].
It states that among all lattice-based CVTs (i.e., regular CVTs, where sites
are located on a regular grid), the body-centered cubic (BCC) lattice is the
optimal one. The BCC lattice has its sites displayed on a regular cubic grid,
with additional sites at the center of each cube, see Figure 3.4. The Voronoi
tessellation of a BCC lattice is called a bitruncated cubic honeycomb, see
Figure 3.5. Each of its cells is a truncated octahedra. Thus, Voronoi cells
are truncated octahedra for optimal lattice-based CVTs in 3D.

Using Gersho’s conjecture in the unbounded case, Conway and Sloane
showed that the lower bound of G(P) for any space-filling polytope in
two dimensions is that of the hexagon:

G2 =
5

36
√

3
= 0.0801875 . . .
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Figure 3.4 – Cell of a body-centered cubic lattice.

Figure 3.5 – Voronoi tessellation of a body-centered cubic lattice. The
images are from [Blatov et al., 2004].
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Similarly, in three dimensions, and with unbounded lattices, the optimal
lattice-based CVT being the Voronoi tessellation of a BCC lattice, the
optimal quantizer is the truncated octahedron with the lower-bound G3:

G3 =
19

192 3
√

2
= 0.0785433 . . .

Consequently, for a sufficiently large number of sites and with the
exception of the boundary regions, an optimally regular m-dimensional
tessellation should contain cells Ωi with values of G(Ωi) close to the
optimal value Gm. Thus, G is a measure of the regularity of a cell since
in the limit, with an infinite number of sites, all cells should reach the
value Gm. Note here that we assume a large number of cells and that this
reasoning does not apply to the boundary cells, for which the optimal
quantizers are not necessarily hexagons (truncated octahedra in 3D) nor
necessarily space-filling polytopes. However, under the assumption that
the number of boundary cells is substantially lower than interior cells, the
distribution of the values of G is a good indicator of the regularity of cells
for a given tessellation where the regularity is defined with respect to the
dimensionless moment G.

Based on Gersho’s conjecture and the work of Conway and Sloane, we
proposed different criteria for evaluating the regularity of tessellations.
The regularity criteria are defined as follows:

• Gmax = max G(Ωi) : Max value of G.

• G = 1
n ∑n

i=1 G(Ωi) : Average value of G.

• G̃ = median
i∈{1...n}

{G(Ωi)} : Median value of G.

• Grmse =
√

1
n ∑n

i=1(G(Ωi)− Gm)2 : Root-mean-square error
(RMSE) of G.

We now provide an application of our regularity criteria. Figure 3.6
shows a qualitative color-coded evaluation of different tessellations in 2D
and Table 3.2 shows their corresponding numerical results. As we can see,
our regularity criteria allow comparing the tessellations with the same
number of cells (see (a) and (b)), with different number of cells (see (b)
and (c)) and with different input objects (see (c) and (d)). We can also use
the histogram of G to show the regularity distribution of tessellations, see
Figure 3.7.
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(a) (b)

(c) (d)

Figure 3.6 – Example of different tessellations in 2D. The cell regular-
ity measure G2(Ωi) is color-coded from blue (regular) to red (far from
regular).
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(a) (b)

(c)

Figure 3.7 – Example of a tessellation in 3D with its histogram of cell
regularity. (a) Input sphere. (b) A cut of the tessellation. (c) Histogram of
its cells regularity.
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object Gmax × 10−2 G× 10−2 G̃× 10−2 Grmse × 10−3

(a) 10.772 8.677 8.538 8.066
(b) 8.723 8.185 8.152 2.140
(c) 8.828 8.098 8.058 1.254
(d) 10.904 8.130 8.065 2.527

Table 3.2 – Numerical results corresponding to the tessellations in Figure
3.6.

3.4 Relation to the CVT Energy Function

The CVT energy function expresses the sum of compactness of the
cells. It has been used to evaluate CVTs. However, since the CVT energy
function depends on the input object and the number of cells, it can only
be used to compare CVTs of the same input object and the same number
of sites. The computation of a CVT is equivalent to the optimization of its
energy function. The stopping of the algorithm is usually controlled by
number of iterations because the optimal value of a CVT energy function
which is non-convex can not be determined when the number of sites
is large. In this section, we propose a formula of the optimal value of a
CVT energy function by discovering its relation with G and we give an
example which uses the optimal value of a CVT energy function to control
the stop of a CVT computation instead of the number of iterations.

Given a input object Ω with a density function ρ and a set of sites
X = {xi}n, the CVT energy function is defined as follows:

E(X) =
n

∑
i=1

∫
Ωi

ρ(x)‖x− xi‖2 dσ,

where Ω =
n⋃

i=1
Ωi. Under the assumption of a uniform density function ρ

and using the definition 3.4, the CVT energy E can be rewritten as:

E(X) =
n

∑
i=1

mV(Ωi)
(m+2)/mG(Ωi),

where V(Ωi) =
∫

Ωi
dx. Using Gersho’s conjecture with unbounded

lattices, optimal CVTs present in that case similar cells with volumes V/n
and hence:

E(X) ∼ mn
(

V
n

)(m+2)/m
G(X).
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Thus optimizing the CVT energy E is equivalent to optimizing the aver-
age value G of G with infinite lattices. Knowing the theoretical optimal
quantizer Gm in that case, we can even deduce that the value of an optimal
CVT energy:

Em = mn
(

V
n

)(m+2)/m
Gm. (3.5)

Then we propose a relative error defined as follows:

Error(X) =
E(X)− Em

Em
.

This error allows evaluating how close a CVT is to its optimal. We propose
a novel CVT algorithm using this error measure. See Algorithm 1 and
results in Figures 3.8 and 3.9.

Algorithm 1: CVT algorithm controlled by relative error.
Data: object Ω, sites X, relative error e
Result: CVT {Ωi}
e′ := Error(X);
while e′ > e do

X := CVTUpdate(X);
e′ := Error(X);

end
{Ωi} := ClippedVoronoiTessellation(X);

(a) (b) (c)

Figure 3.8 – Results of Algorithm 1 in 2D (square with 1000 sites). (a)
Error(X) = 0.2. (b) Error(X) = 0.05. (c) Error(X) = 0.02. The cell
regularity measure G2(Ωi) is color-coded from blue (regular) to red (far
from regular).
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(a) (b)

(c) (d)

Figure 3.9 – Results of Algorithm 1 in 3D (sphere with 5000 sites). (a)
Input object. (b) Error(X) = 0.2. (c) Error(X) = 0.05. (d) Error(X) = 0.02.
The cell regularity measure G3(Ωi) is color-coded from blue (regular) to
red (far from regular).
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Centroidal Voronoi Tessellations (CVTs) have been used in many ap-
plications because of their strong regularity property. Given the number
of sites and a input shape that is usually represented by its boundary
surface S (a closed polygonal curve in 2D and a manifold mesh M without
boundary in 3D), the CVTs can be characterized by their energy function
E. Each one of these CVTs corresponds to a local minimum of E. The
CVT corresponding to the global minimum of E is called the optimal
CVT and possesses the best regularity among all the CVTs. Over the last
decades, some algorithms to compute CVTs with better local minimum
have been proposed. They can be categorized in two strategies. One is to
find an initialization that leads to a better local minimum, see examples
[Moriguchi and Sugihara, 2006] [Quinn et al., 2012]. Another strategy is
to improve the CVT optimization step. This is the case of the stochastic
approach proposed by Lu et al. [2012]. These algorithms are described in
Sections 2.4.2 and 2.4.4.

In this chapter, we propose a hierarchical approach for computing
CVTs with better regularity than existing approaches. Our algorithm falls
in the first category and is based on a subdivision scheme that preserves
cell regularity and the local optimality of CVTs on unbounded domains.
This scheme tends to propagate cell regularity through hierarchy levels

49
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when applied to bounded domains. The remainder of this chapter is
organized as follows. In Section 4.1, we explain our algorithm in details.
We evaluate our algorithm and compare with others in Section 4.2 using
not only the CVT energy but also the criteria proposed in Section 3.3.
Section 4.3 discusses the advantages and the limitations of our approach
and also possible future work.

4.1 Algorithm

4.1.1 Overview

Figure 4.1 – Overview of our hierarchical approach.

We now explain our algorithm to compute CVTs that exploits regular-
ity aspects. Figure 4.1 shows the overview of our hierarchical approach.
Our input is a 2D or 3D shape, represented by its boundary: a closed
polygonal curve in the first case and a manifold mesh without boundary
in the second case. We also ask the user to provide the target number n of
sites in the final CVT and the desired number s of subdivisions. From n
and s we derive an initial number k0 of sites, as explained in Section 4.1.2.
We elaborate on the choice of these parameters in Section 4.2.

We first create an initial CVT of the shape with k0 sites. We then
subdivide this tessellation, as explained in Section 4.1.2. This generates a
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new tessellation with k1 sites, which is not Centroidal Voronoi. These sites
are then moved towards the centroids of their cells to generate a new CVT
with k1 sites. We iterate the subdivision - CVT update process s times,
until the desired number ks = n of sites has been reached.

4.1.2 Subdivision

The idea behind our subdivision scheme is to preserve the local opti-
mality of the CVT. For example in the 2D case, a CVT is locally optimal
with respect to our regularity criteria when its sites form an hexagonal
lattice (see Figure 4.2 (a)), as explained in Section 3.3. Hence, our goal is to
add sites such that the new set of sites keeps forming an hexagonal lattice.
In this way, the new CVT will also be locally optimal with respect to regu-
larity in the same area. In non-optimal areas, sites will move and possibly
align to form a locally optimal lattice. Thus, iterating the subdivision -
CVT update process tends to increase the area where the CVT is optimal
for regularity, as shown on Figure 4.4. With a large number of subdivision
s, most interior cells are expected to be regular.

Let X be a set of sites of a given CVT. To subdivide this CVT, we
compute its dual Delaunay triangulation and add the center of each
Delaunay edge to X. As shown on Figures 4.2 and 4.3, this preserves the
local optimality of the CVT.

The previous subdivision scheme does not account for the desired
number n of sites. To set up the initial number of sites k0 such that it
reaches the value n after s subdivisions, we proceed in the following way.

Let X be an hexagonal lattice, that is a to say an optimal 2D CVT,
with ki sites. Our subdivision scheme generates a new tessellation with
ki+1 = ki +

6ki
2 = 4ki sites, since a new site is created on each of the

six edges of a cell, an edge is shared by two cells and there are ki cells.
In the optimal 3D case (BCC lattice), the same reasoning shows that
ki+1 = ki +

14ki
2 = 8ki, since a site is added on each of the 14 faces of a

truncated octahedron. The maximum number of iterations to reach n from
a small number k0 of sites in these ideal cases is thus s = blog4(n)c and
blog8(n)c, respectively.

Thus, if s ≥ bloga(n)c, with a = 4 in the 2D case and a = 8 in the 3D
case, we change s to bloga(n)c. We then define s numbers b1, . . . , bs such
that bs = n and bi = bbi+1/ac, 1 ≤ i ≤ s − 1. bi represents the target
number of sites after i iterations. We also define k0 = bb1/ac. After the i-th
subdivision, we check the new number ki of sites. In case of an optimal
CVT, ki = bi. Otherwise, ki ≤ bi. If ki is smaller than bi, we randomly
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(a) (b)

(c) (d)

Figure 4.2 – Subdivision scheme (2D case). (a) Locally optimal CVT: the
sites form an hexagonal lattice. (b) Delaunay triangulation of the sites. (c)
Subdivision: sites are added in the centre of each edge of the Delaunay
triangulation (in red). (d) The new set of sites also forms an hexagonal
lattice.
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(a) (b)

Figure 4.3 – Subdivision scheme (3D case). (a) Delaunay triangulation of
the sites, which form a BCC lattice. (b) Subdivision: sites are added in the
centre of each edge of the Delaunay triangulation (in blue and purple).
The new set of sites also forms a BCC lattice.

sample bi − ki new sites inside the boundary Voronoi cells. When a new
site is inserted into a boundary cell, this cell is then removed from the list
of candidate boundary cells for next insertions. This way, the regularity
is empirically preserved as much as possible since sites are inserted in
different boundary cells, be avoiding many new sites to be neighbours
to each other. We thus have bi sites after the i-th iteration, which are as
regularly sampled as possible. This will improve the speed of the CVT
update computation, which we describe in the next section.

As an example, Table 4.1 gives the number ki of sites obtained after
each subdivision and the number bi − ki of sites added in the boundary
cells, for CVTs depicted in Figures 4.4, 4.5 and 4.6.

4.1.3 CVT update

Once a new set of sites is defined, any CVT computation method can
be used to move these sites towards the centroid of their Voronoi cells. In
practice, we use the L-BFGS quasi-Newton algorithm, since it is known
to be one of the fastest methods [Liu et al., 2009]. As explained in the
previous section, the sites where the previous CVT was optimal are not
moved, thanks to our subdivision scheme. As a consequence, although
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(a) (b) (c)

(d) (e)

Figure 4.4 – Hierarchical CVT computation. From an initial CVT with
k0 = 10 sites (a), successive subdivisions and updates lead to CVTs with
k1 = 40, k2 = 160, k3 = 640 and k4 = 2560 sites (from (a) to (e)). The cell
regularity measure G(Ωi) is colour-coded from blue (regular) to red (far
from regular). Note how regular areas grow.

the number of sites has increased, the CVT computation is very fast (see
Section 4.2.5 for a discussion).

Once the sites are moved to their new positions and the tessellation
is computed, we clip it to the boundary mesh. Our clipping algorithm,
detailed in Section 6.1, guarantees that the boundary of the tessellation is
a triangulated mesh.

4.1.4 Initialization

Before starting the subdivision - CVT update process, we create a
first coarse CVT from the input shape, with a number k0 of sites. Our
aim is to get an initial CVT with as-large-as-possible optimal areas, since
our subdivision scheme can only make these areas grow, as explained in
Section 4.1.2. We propose two different possible initializations, each of
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Shape n s k0 k1 b1 − k1 k2 b2 − k2 k3

b3 − k3 k4 b4 − k4 k5 b5 − k5

Figure 4.5 1033 4 4 5 11 49 15 233
25 995 38 / /

Figure 4.4 2560 4 10 27 13 145 15 609
31 2535 25 / /

Figure 4.6 10025 5 9 23 16 130 26 568
58 2373 133 9780 245

Table 4.1 – Number of sites after each subdivision, and number of sites
randomly inserted in boundary cells.

them having different benefits.
A first straightforward idea to initialise the hierarchical CVT compu-

tation is to create a CVT using random sampling and a L-BFGS quasi-
Newton algorithm to update the positions of the sites. This approach is
fast and easy to implement. However, the constructed CVT with k0 sites
may be far regular.

Another idea to create a coarse but regular CVT is to sample the k0 sites
on a optimal lattice (hexagonal lattice in 2D and BCC lattice in 3D) which
includes the input shape. The density of the lattice should be chosen so
that there are k0 sites inside the shape. As stated by Quinn et al. [2012],
it is very hard to control the number of sites inside the shape because
the density depends on both the size and the shape of the input shape.
However, tuning the density of the lattice to reach the proper number
of sites inside the shape is easier with a small number k0 of sites than
with a large number n sites. When applicable, this leads to an optimal
tessellation, except at the boundary of the shape. In addition, most sites
do not need to be moved to create a CVT. Thus, this approach is fast and
generates regular CVT cells, except on the boundary of the shape.

Both initialization methods are evaluated in the next section. For the
random initialization, 10 runs are performed for each test, and the median
value is taken as the result.

4.2 Evaluation

We now provide a thorough evaluation of our approach. We first
analyse the effect of our hierarchical approach over the regularity of the
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generated CVT, by discussing the influence of the two parameters de-
scribed in Section 4.1: initial number of sites and number of subdivisions.
We compare the regularity of 2D and 3D CVTs generated with our hier-
archical approach to CVTs computed with previous work (see Sections
2.4.2 and 2.4.4). We also provide some details about computation time. In
all figures, CVT cells Ωi are colour-coded according to the cell regularity
measure Gm(Ωi) defined in Section 3.3: cells with a high dimensionless
second moment are coloured in red, while cells with a low dimensionless
second moment are coloured in blue.

4.2.1 Sensitivity to the Initial Number of Sites

As stated in Section 4.1, the idea that drives our hierarchical approach
is to first create a large regular area in a coarse tessellation, and then to
preserve and if possible widen this area when subdividing. An example
is shown in Figure 4.4. The average value and the RMSE of the cell
regularity measure G2(Ωi) over all cells Ωi express that the tessellation
becomes more regular over subdivision, see Table 4.2. If n and s are large
enough, we expect most of the interior cells of a CVT to be regular, see
Figure 4.8 for an example. The max value and the median value do not
give very useful information because all the CVTs have some irregular
boundary cells and most of the cells are optimal.

CVT (a) (b) (c) (d) (e)
Number of sites 10 40 160 640 2560

G2max(Ωi)× 10−2 8.894 8.507 8.746 9.038 8.635
G2(Ωi)× 10−2 8.458 8.246 8.154 8.099 8.066
G̃2(Ωi)× 10−2 8.244 8.231 8.111 8.061 8.041

G2rmse(Ωi)× 10−3 5.234 2.556 1.849 1.366 0.883

Table 4.2 – Regularity criteria described in Section 3.3 for CVTs depicted
in Figure 4.4.

On the same 2D square example, we create two other CVTs with 1033
and 2560 sites, respectively, using also random sampling initialization
and the same number of subdivisions (s = 4). We obtain an average
cell regularity measure of 8.086× 10−2 and 8.066× 10−2 and an RMSE of
1.244× 10−3 and 0.883× 10−3, respectively. This shows that the greater
the number n of sites, the smaller the average cell regularity measure.
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4.2.2 Sensitivity to the Number of Subdivisions

A CVT with a few big cells is likely to contain less different regular
areas than a CVT of the same shape with more, thus smaller, cells. Since
our subdivision scheme preserves regular areas, a CVT generated with a
large number s of subdivisions is more regular than a CVT with the same
number n of sites but generated with a small s, as shown in Table 4.3. As
a consequence, we suggest to set s as large as possible.

s 0 1 2 3 4
G2max(Ωi)× 10−2 8.820 8.684 8.670 8.892 8.637

G2(Ωi)× 10−2 8.079 8.063 8.060 8.056 8.054
G̃2(Ωi)× 10−2 8.051 8.041 8.031 8.030 8.030

G2rmse(Ωi)× 10−4 9.309 8.146 7.070 6.877 6.875

Table 4.3 – Regularity criteria for CVTs of a square with 10000 sites gen-
erated using our hierarchical approach (random sampling initialization)
with different number of subdivisions. Thus different numbers of initial
sites.

When an optimal lattice sampling is used as initialization, it is prefer-
able to start from a small number of subdivisions, since we only have one
large regular area for arbitrary lattice sizes. Actually, s = 0 correspond to
the optimal lattice sampling, as shown for instance in Figures 4.5 (f) and
4.6 (i). However, as stated before, the larger n, the more difficult it is to
build such a lattice with a prescribed number of sites.

4.2.3 Comparison to Previous Work

We test our approach against previously mentioned methods in a
simple 2D square. To check which method gives the most regular CVT,
we first compute a hexagonal lattice with approximately 1000 sites. As
stated above, it is difficult to accurately set the number n of sites. We were
able to set n = 1033. We then compute CVTs with 1033 sites using the
following methods:
• random sampling and L-BFGS update;
• Hammersley sampling [Quinn et al., 2012] and L-BFGS update;
• global Monte-Carlo optimisation [Lu et al., 2012];
• our hierarchical approach with random sampling initialization step

(4 subdivisions, which is the maximum possible);
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• our hierarchical approach with a lattice sampling initialization step
(1 subdivision).

For the global Monte-Carlo optimisation, we have used the parameter
values advised in [Lu et al., 2012]. In particular, 200 updates have been
performed.

Qualitative results are shown on Figure 4.5. The regularity criteria
of the cell regularity measure G2(Ωi) over all cells Ωi, as well as the
CVT energy function values, are given in Table 4.4. Remember that,
as explained in Section 3.3, an optimal cell has a dimensionless second
moment value of G2 = 5

36
√

3
= 0.08018 . . .

(a) (b) (c)

(d) (e) (f)

Figure 4.5 – CVTs with 1033 sites. (a) Random sampling + L-BFGS update.
(b) Hammersley sampling [Quinn et al., 2012] + L-BFGS update. (c) Global
Monte-Carlo [Lu et al., 2012]. (d) Our approach, random sampling initial-
ization. (e) Our approach, lattice sampling initialization. (f) Hexagonal
lattice.

The hexagonal lattice is not optimal because of its boundary cells
which are not hexagonal. Among other methods, the stochastic approach
of Lu et al. [2012] and our hierarchical framework give similar results. The
main difference in practice between these two methods is the computation
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CVT (a) (b) (c) (d) (e) (f)
G2max(Ωi)× 10−2 8.561 8.632 8.534 8.737 8.543 8.772

G2(Ωi)× 10−2 8.101 8.107 8.075 8.086 8.077 8.066
G̃2(Ωi)× 10−2 8.064 8.067 8.021 8.032 8.020 8.018

G2rmse(Ωi)× 10−3 1.160 1.162 1.100 1.131 1.102 1.090
Energy function 25.140 25.160 25.041 25.082 25.045 25.002

Table 4.4 – Regularity criteria measures and CVT energy function value
for CVTs depicted in Figure 4.5.

time: the global Monte-Carlo minimisation is about 100 times slower than
our approach (207.08 seconds instead of 2.16).

We then test a geometrically more complex shape: a five-branches star.
We also increase the number of sites. As in the previous case, we first start
by computing an hexagonal lattice with approximately 10000 sites. The
lattice contains exactly n = 10025 sites. We discard the stochastic approach
of Lu et al. [2012] since it is too slow in this case. For the Hammersley
sampling, we construct a bounding box of the shape, and try different
numbers of sites until we exactly obtain 10025 sites inside the shape. It
must be mentioned that several attempts were necessary since the number
of sites inside the shape does not necessarily increase when more sites
are generated in the bounding box. For the hierarchical approach, we use
5 subdivisions after the random sampling initialization (the maximum
possible) and only one after lattice sampling initialization.

CVT (a) (c) (e) (g) (i)
G2max(Ωi)× 10−1 1.097 1.094 1.094 1.095 1.097

G2(Ωi)× 10−2 8.089 8.074 8.068 8.054 8.049
G̃2(Ωi)× 10−2 8.053 8.041 8.033 8.021 8.019

G2rmse(Ωi)× 10−3 1.192 1.102 1.076 1.012 0.993
Energy function ×10−1 2.234 2.229 2.227 2.222 2.220

Table 4.5 – Regularity criteria measures and CVT energy function value
for CVTs depicted in Figure 4.6.

Results are shown on Figure 4.6 and in Table 4.5. These results are
in accordance with the results for the square. Our hierarchical approach
performs better than the previous initialization methods for all criteria.
Moreover, lattice sampling initialization gives better results than random
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(a) (b) (c)

(d) (e)

Figure 4.6 – (a,c,e,g,i) CVTs with 10025 sites. (b,d,f,h,j) Corresponding
regularity histograms: each bin indicates how many cells share a regu-
larity measure comprised between its boundary values. (a,b) Random
sampling + L-BFGS update. (c,d) Hammersley sampling [Quinn et al.,
2012] + L-BFGS update. (e,f) Our approach, random sampling initializa-
tion. (g,h) Our approach, lattice sampling initialization. (i,j) Hexagonal
lattice.
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sampling initialization by almost reaching the regularity of a clipped
hexagonal lattice.

In Figure 4.7 and Table 4.6 we compare CVTs computed in a simple
closed 3D ball using random sampling, Hammersley sampling, our hierar-
chical approach with random sampling initialization and our hierarchical
approach with lattice sampling initialization. It was not possible, in this
case, to construct a BCC lattice with a prescribed and sufficiently large
number of sites. Two different numbers n of sites were tested. We used
the maximum number of subdivisions for the hierarchical approach with
random sampling initialization: two in the n = 1000 sites case and three
in the n = 5000 sites case.

Remember that in this 3D case, the optimal cell regularity measure
value is G3 = 19

192 3√2
= 0.0785433 . . . This example shows that our hier-

archical approach performs better than other initialization methods, in
case the number n of sites is high enough. In case not, the number of
boundary cells is too high with respect to the number of interior cells for
the Gersho’s conjecture to apply in practice.

CVT (a) (c) (e) (g)
G3max(Ωi)× 10−2 8.436 8.532 8.514 8.479

G3(Ωi)× 10−2 8.025 8.025 8.022 8.022
G̃3(Ωi)× 10−2 7.979 7.978 7.976 7.976

G3rmse(Ωi)× 10−3 1.211 1.211 1.210 1.211
Energy function ×10−3 4.324 4.325 4.324 4.325

CVT (b) (d) (f) (h)
G3max(Ωi)× 10−2 8.430 8.431 8.433 8.435

G3(Ωi)× 10−2 7.980 7.976 7.975 7.965
G̃3(Ωi)× 10−2 7.947 7.941 7.939 7.928

G3rmse(Ωi)× 10−3 1.026 1.026 1.025 1.023
Energy function ×10−3 1.471 1.470 1.470 1.468

Table 4.6 – Regularity criteria measures and CVT energy function value
for CVTs depicted in Figure 4.7.

Other 3D CVTs with 50k, 80k and 100k sites, computed with a stan-
dard random sampling initialization + L-BFGS update, our hierarchical
approach using a random sampling initialization and our hierarchical
approach with a lattice sampling initialization, are shown in Figure 4.9. It
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7 – (a,c,e,g) CVTs with 1000 sites in a sphere. (b,d,f,h) CVTs with
5000 sites. (a,b) Random sampling + L-BFGS update. (c,d) Hammers-
ley sampling [Quinn et al., 2012] + L-BFGS update. (e,f) Our approach,
random sampling initialization. (g,h) Our approach, lattice sampling
initialization.
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was not possible to create an Hammersley initialization and a BCC lattice
with the correct number of sites inside the shapes in these cases.

4.2.4 Convergence Speed

The main parameter in most CVT computation methods is the num-
ber of iterations of the algorithm. A local minimum of the CVT energy
function is asymptotically reached, but little is known about how many
iterations are necessary before convergence. We have investigated this
for the previously described methods, except the global Monte-Carlo
minimisation of Lu et al. [2012]. The evolution of both the average of

cell regularity measures G2 = 1
n

n

∑
i=1

G2(Ωi) and the CVT energy function

value with respect to the number of iterations of the CVT L-BFGS update
are displayed in Figure 4.10 for the star shape. For our hierarchical ap-
proach, this means the number of iterations of the last update (updates for
coarser CVTs were done until the usual stopping criterion ‖g‖

‖X‖ < 10−10

is reached, with g the gradient and X the vector of site coordinates, see
[Quinn et al., 2012]).

As shown in Figure 4.10, all methods behave the same for both mea-
sures. This was expected in our case (see Section 3.4). The hexagonal
lattice converges the fastest and to the smallest value. Then our hierar-
chical approach, combined with a lattice sampling initialization, gives
the best results. It is interesting to notice that, because of the non hexag-
onal boundary cells, no approach reaches the theoretical optimal values
(G2 = 0.08018 . . . and E2 = 0.221 . . . .).

4.2.5 Computation Time

Our algorithm is implemented in C++ and we use the CGAL library
[CGAL] for 2D constrained and 3D Delaunay triangulations, and the
libLBFGS library [Okazaki and Nocedal, 2010] for L-BFGS computation.
All computations were performed on an Intel Xeon E5-2643 with 3.30 GHz
CPU.

Computation times for our hierarchical approach with random sam-
pling initialization (4 subdivisions) and for a standard method combining
a random sampling initialization and L-BFGS updates are shown in Table
4.7. Both methods are computationally equivalent in 2D, but ours is faster
in 3D. This can be explained by the fact that in our approach the first CVT
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(a) (b) (c)

(d) (e)

Figure 4.8 – Hierarchical CVT computation in 3D. (a) Input: a 3D shape
bounded by a triangulated mesh. (b,c,d) Successive CVTs computed
using our approach, with 546, 4375 and 35000 cells respectively. (e) A
cut of Homer shows that most of the interior Voronoi cells present high
regularity values.
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Figure 4.9 – More examples of comparaisons between a standard ap-
proach and our hierarchical one. From top to bottom: Input shape, Ran-
dom sampling + L-BFGS update, Our approach with random sampling
initialization, Our approach with lattice initialization.
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(a)

(b)

Figure 4.10 – Average cell regularity (a) and CVT energy function value (b)
with respect to the number of iterations of the CVT update, for the star
shape displayed in Figure 4.6.
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is computed with a small number of sites, which is very fast, while the
next ones quickly converge since most of the sites do not move much.

Shape Fig. Sites Method Time (s)
Square 4.5 1000 Standard 2.84

Hierarchical 2.16
Square 4.5 5000 Standard 10.85

Hierarchical 9.50
Star 4.6 2000 Standard 3.56

Hierarchical 4.91
Star 4.6 10000 Standard 26.94

Hierarchical 26.97
Ball 4.7 1000 Standard 521.86

Hierarchical 205.82
Ball 4.7 5000 Standard 1484.69

Hierarchical 665.01
Homer 4.8 50000 Standard 15720

Hierarchical 7860

Table 4.7 – Computation times for CVTs of shapes depicted in Figures 4.5,
4.6, 4.7 and 4.8.

Other initialization methods (Hammersley sampling and lattice sam-
pling) are usually more time-consuming since finding the right density
for a given number n of sites inside the shape is difficult in practice. As
stated before, the computation time for the stochastic approach of Liu
et al. [2009] depends on the number K of perturbations allowed. For a
standard value K = 200, we found it to be very time consuming (207.08s
in the case of the 2D square with n = 1000 sites).

4.3 Discussion

We have proposed a hierarchical approach for generating CVTs with
increased regularities. We have performed a thorough evaluation and
comparison to previous work. It shows that our approach performs better
than the others, both in terms of regularity and CVT energy function.
However, since our framework is based on Gersho’s conjecture under the
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hypothesis that there is no boundary, we need the number of sites large
enough to make the boundary effect insignificant. Our approach can be
used for CVTs in higher dimensional spaces, combined with an adapted
Voronoi clipping algorithm such as [Lévy, 2014], although Gersho’s con-
jecture has not been proven in such cases. In future work, it would be
interesting to consider extensions of the approach to generalised CVTs
such as for instance weighted diagrams, power diagrams or Lp CVTs
[Lévy and Liu, 2010].
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In this chapter, we introduce our CVT algorithm for implicit shapes
and provide an extensive comparison of voxel-, Delaunay- and Voronoi-
based strategies to produce volumetric tessellations. Because of the prop-
erties of CVT and our local improvement for the boundary cells recon-
struction, our algorithm performs better than the two others in terms of
accuracy and regularity. The remainder of this chapter is organized as
follows. In Section 5.1, we review related work on evaluation of volumet-
ric tessellations. We explain our algorithm in details and compare it with
voxel- and Delaunay based strategies in Sections 5.2 and 5.3, respectively.

5.1 Context

5.1.1 Eulerian and Lagrangian Strategies

The main Eulerian and Lagrangian strategies such as the MC algorithm
and the Delaunay triangulation have been explained in Chapter 2;

69
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5.1.2 Surface Reconstruction

We focus in this chapter on methods for the polyhedrization of implicit
forms however it is worth mentioning approaches that reconstruct the
zero-set surface of an implicit form, see e.g . [de Araujo et al., 2015] for a
review. Approaches in this category focus on surface tessellation where
we consider volumetric tessellations.

5.1.3 Evaluation

In the literature, 2D and 3D shape reconstruction techniques are mostly
evaluated according to the quality of the constructed cells. This is indeed
crucial for applications such as Finite Element Modeling. Quality is
usually defined with respect to the shape of the cell [Field, 2000]. In
some cases the quality metrics reflect the fact that the cell should stay
away from degenerate configurations. For instance, tetrahedra with at
least one small angle are usually to be avoided [Cheng et al., 2000]. In
other cases, an ideal shape is defined, and the quality metrics are defined
as distance to this ideal. This is the case with CVTs, for which the ideal
cell shape is known to be a truncated octahedron as mentioned in Section
3.3. We have introduced in Chapter 3, the dimensionless second moment
of a polytope is introduced and can be used as a measure of the regularity
of a CVT cell. Metrics have also been proposed for other types of cells,
such as hexahedra [Field, 2000], as well as algebraically for general cells
[Knupp, 2001].

A few works have investigated the geometric accuracy of a given re-
construction. Geometric accuracy can be defined as a distance between the
boundaries of the given input form and of the volumetric reconstruction
obtained. Metro [Cignoni et al., 1998b], introduced in the context of mesh
simplification, is a common tool to evaluate the distance between two tri-
angulated surfaces. More recently and focusing on surface reconstruction,
Berger et al. [2013] have introduced new metrics based on discrete dif-
ferential geometry concepts in order to quantitatively evaluate distances
between an implicit surface and a surface mesh. We build on this work
for accuracy evaluation.

In Section 5.3, we compare the shape tessellations obtained with March-
ing Cubes, Delaunay refinement and CVT approaches using both shape
quality and geometric accuracy criteria. We also discuss the theoretical
guarantees given by each approach, as well as their computation times.
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5.2 Algorithm

Approaches exist that compute CVTs given explicit forms for shapes,
usually meshes as in [Yan et al., 2013] [Lévy, 2014] [Wang et al., 2016a]. We
consider here the case of shapes defined by implicit forms in 3D and also,
more specifically, implicit forms obtained from point clouds, a frequent
case when modeling shapes with visual observations.

5.2.1 Algorithm overview

Implicit form Initialization Clipping (1)

Clipping (2) Clipping (3) Optimization

Figure 5.1 – The different steps of the CVT algorithm. The clipping and
optimization steps are iterated until the sites are stabilized.

Our CVT algorithm considers as input an implicit function f : Ω→ R

defined over a domain Ω ∈ R3 and such that f (x) = 0 on the boundary
surface S of a shape V . In the case of an indicator function, f has zero
values outside V and the value 1 inside. The algorithm takes also as input
the number of sites-cells n and follows the traditional CVT scheme below:

1. Initialization: find initial positions for the n sites inside V .
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2. Clipping: compute the Voronoi tessellation of the sites, then restrict
it to V by computing its intersection with S .

3. Optimization: update the position of the sites by minimizing the
CVT energy function.

Steps 2 and 3 are iterated several times where the number of iterations
is a user-defined parameter. Any initialization can, in principle, be applied
here. In our experiments, the sites are randomly positioned inside V . At
the first iteration, the cells of the clipped Voronoi tessellation constructed
after step 2 are not uniform nor regular (see Figure 5.2 (a)) and do not
minimize the CVT energy. Step 3 optimizes therefore the site locations in
order to minimize E. In the literature, the two main strategies for such
minimization are Lloyd’s gradient descent method and the L-BFGS quasi-
Newton method. In our approach, we choose the latter since it is known
to be faster [Liu et al., 2009]. As shown in Figure 5.2 (b), once convergence
is reached, the clipped Voronoi cells are almost uniform and regularly
spaced. Besides, they yield a better approximation of the shape V , as
shown in Section 5.3.

(a) (b)

Figure 5.2 – Voronoi tessellations of a torus with and without optimization.
(a) A clipped Voronoi tessellation with random initial positions for the
sites. (b) Clipped CVT after optimization.

5.2.2 Clipping

In order to clip a Voronoi tessellation with the implicit function f
describing the shape V , we introduce an algorithm that consists of the
following main steps (see Figure 5.1):

1. Given the unbounded Voronoi tessellation
⋃

i

Ωi of the sites {xi},

identify which cells Ωi intersect the implicit surface S bounding V .
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2. For each of these boundary cells Ωj,
a) Compute the intersection between the edges of Ωj and S , this

intersection being represented as a set of points Pj (red dots in
Figure 5.1 Clipping (1)).

b) Build the boundary clipped Voronoi cell Ω′j as the convex hull
of the intersection points in Pj and the vertices of Ωj that are
inside V (see Figure 5.1 Clipping (1)).

c) (CVT-2 only) Add to each boundary cell the point at the inter-
section between S and the ray along the normal to Ω′j (red dots
in Figure 5.1 Clipping (2)). Rebuild Ω′j by connecting it with
other intersection points of Pj (see Figure 5.1 Clipping (3)).

Step 1 is carried out by first converting infinite Voronoi cells into finite
cells using a bounding surface around V and second by detecting bound-
ary cells as cells with at least one vertex outside V . Step 2 is discussed
below.

5.2.2.1 Intersections of Ωj With S

Boundary cells are convex polytopes composed of bounded polygons
and segments. We first interpolate f values along segments to find their
intersections with f . To this purpose, several strategies can be consid-
ered depending on the information available on f . When both function
values and derivatives are available, Hermite interpolation can be used,
as advocated in [Fuhrmann et al., 2015]. It provides fast and accurate
interpolated values as long as the local approximation is valid. When only
function values are available, linear interpolation, with for instance the
false position algorithm, can be used to iteratively locate the intersection.
In any cases, the bisection method can be applied. It is slower than the
previous strategies but more robust. A combination of the bisection and
Hermite methods can also be considered to first reduce the search space
so that the Hermite approximation becomes more valid. Note that poly-
hedrization approaches are independent of the interpolation scheme and
can all consider any of them. For the purpose of evaluation, and without
loss of generality, we use the bisection method with all approaches in the
comparisons presented in the evaluation section 5.3.

5.2.2.2 Convex Hull

Once the edge intersection points are determined, the clipped Voronoi
cell is computed as the convex hull of the intersection points and the
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cell vertices inside the surface. Since Voronoi cells are convex, this is
guaranteed to provide a boundary surface with a correct topology (see
Figure 5.1 Clipping (1)).

5.2.2.3 Sharp Features

Sharp features, in case they occur, are not preserved by default by the
clipping algorithm CVT1 (see Figure 5.3 (a) for instance). This also true
for Marching Cubes and Delaunay strategies for which specific solutions
have been proposed, e.g . [Kobbelt et al., 2001] and [Cheng et al., 2010]
respectively. CVT easily adapts to sharp features when identified as a list
of points that can be simply assigned to their closest sites before the convex
hull computation. This is a nice feature of the CVT strategy that is flexible
and allows for such additional points without significantly increasing
the complexity (only slightly modifying the convex hull computation)
and while keeping the topological guarantees. This would be difficult
to implement with the Marching Cubes or Delaunay strategies without
fundamentally modifying the associated algorithms. Figure 5.3 (b) shows
an example of such a reconstruction.

(a) (b)

Figure 5.3 – Tessellations of the characteristic function of a cube: (a) CVT1
algorithm without additional points. (b) CVT1 algorithm with sharp
feature points added.

5.3 Evaluation

In order to compare the different strategies for shape modeling men-
tioned different criteria can be considered. As emphasized in [Meyer et al.,
2007] for a similar evaluation, a given method will easily favor one of
these criteria at the cost of the others, depending on the targeted applica-
tion. In this work, our target is the reconstruction from implicit functions.
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This includes theoretical guarantees, the accuracy of the approximation
with respect to the input implicit boundary surface, the quality of the
resulting cells, and the time complexity.

5.3.1 Methodology

5.3.1.1 Methods

The four different methods we compare are the following:

MC: an implementation of the Marching Cubes algorithm with
topological guarantees [Lewiner et al., 2003];

CGAL: the CGAL [CGAL] implementation of the Delaunay tetra-
hedrization based algorithm, which uses the Delaunay refine-
ment technique followed by mesh optimization to remove
degenerated tetrahedra [Jamin et al., 2015];

CVT1: a first proposed implementation of the clipped CVT algo-
rithm, i.e . only Voronoi edge intersections with the surface
are considered as surface points (see Section 5.2.2);

CVT2: an extension of CVT1 where an additional point which is
the intersection between the surface and a ray estimated by
boundary clipped Voronoi cell is added. (see Section 5.2.2).

To compare shape tessellations on a fair basis, similar resolutions, i.e .
cell numbers, are required. While the resolution is easily imposed with
CVT, which can be an advantage when similar shape discretizations are
required, it is less easy with MC and space discretizations. In practice, we
first compute the Marching Cubes tessellation. We then use

√
3/2 times

the length of a cube as the targeted radius of a tetrahedron’s circumsphere
for the Delaunay tetrahedrization approach, in order for the size of this
circumsphere to be similar to the size of the cube’s circumsphere. For
the CVT approaches, we simply sample randomly as many sites as the
number of cubes inside the shape.
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5.3.1.2 Data

Methods are first evaluated on a set of 97 object meshes, from the
Princeton Segmentation Benchmark [Chen et al., 2009], for statistical com-
parisons on the accuracy (see Figure 5.7). We next consider point clouds
obtained from vision reconstructions and from which implicit forms are
built. The DANCER (Figure 5.4) was obtained with a multiview system
followed by a Poisson implicit function estimation [CGAL]. GARGOYLE
(Figure 5.5) was obtained with [Berger et al., 2013] and the three other
shapes, KNEELINGLADY, AQUARIUS and SKULL (Figure 5.6), were ob-
tained with [Furukawa and Ponce, 2010] followed by the same Poisson
estimation [CGAL] (other implicit function estimation could be consid-
ered). DANCER’s MC results are extracted from 50 x 50 x 50 and 100 x 100
x 100 voxel grids for different resolution tests. Other MC results are from
100 x 100 x 100 voxel grids.

5.3.2 Theoretical Guarantees

Two theoretical guarantees are in practice often required: the mani-
foldness of the output volumetric mesh and the topological correctness
with respect to the input form. A k-manifold is a k-dimensional object
which is locally homeomorphic to a k-dimensional disk. A k-manifold
allows for non ambiguous definitions of geometrical quantities such as
the local geodesic neighborhood of any point, which is critical in many
shape processing applications. It allows for instance to smooth and de-
form shapes in a consistent way. Topological correctness is the fact that
input and output shapes present the same topology, for example the same
number of components. This is an important property when considering
properties over sets of shapes.

The original Marching Cubes algorithm [Cubes, 1987] is known to pro-
duce surface meshes which can be non-manifold and which topology can
differ from the input implicit surface. Many methods have been proposed
to solve for non-manifoldness and topological ambiguities, see [Newman
and Yi, 2006] for a survey. 2D Delaunay triangulations are known to be,
under some sampling assumptions, good geometrical and topological
approximations of the input shape [Boissonnat and Oudot, 2005]. This
has been used for instance in order to robustly model surfaces evolving
over time [Pons and Boissonnat, 2007]. However, this is not the case in
higher dimensions [Oudot, 2008]. Thus, an additional post-processing
step, such as [Lhuillier, 2015], is required to guarantee manifoldness in
the case of Delaunay tetrahedrizations. In contrast, a 3D CVT is manifold
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by construction: it is composed of convex 3D cells and on its surface every
edge, either on cell boundaries or within cell, is shared by exactly 2 faces
(up to numerical errors in the interpolation of the implicit function along
edges), because this edge belongs to a bisector of CVT.

5.3.3 Accuracy

The accuracy measures how close the estimated shape approximation
is to the implicit form. To this aim we compare shape surfaces. The ge-
ometric similarity between two surfaces can be defined in several ways.
Following the evaluation in [Berger et al., 2013], we consider distances
between shapes in both directions and the following metrics:

Dmean: the mean of distances between the input shape and the re-
constructed surface in both directions;

Drmse: the root-mean-square error (RMSE) of these distances;

Nmean: the mean angle deviation;

Nrmse: the RMSE angle deviation.

Distances are estimated at points regularly distributed on both shapes
and by searching for the closest point on the other shape in the facet
normal directions. The same principle applies for normal angles that are
estimated between closest points in the evaluation sets on both the input
and the reconstructed surfaces. In order to build regular evaluation point
sets, we use a particle system to sample implicit surfaces [Berger et al.,
2013], and we compute 2D CVTs on the reconstructed boundary surface
to generate sample points regularly distributed on both surfaces. Using
a particle system and 2D CVTs to regularly distribute evaluation points
on the surface ensures that we do not estimate distances between two
discretizations of the input implicit surface at different scales, as can be
the case with Metro [Cignoni et al., 1998b].

5.3.4 Shape Quality

Besides the accuracy of the approximation, tessellations can also be
compared with respect to the cell shape properties. Compactness, that
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ensures regularity, is for instance desirable for, e.g ., local discrete opera-
tions on shapes such as deformations or quantification optimality. We first
assess cell regularity for the Marching Cubes and CVT approaches (De-
launay tetrahedra are not compact by construction). For Delaunay tetra-
hedrizations, we compare them to CVTs using the dual tetrahedrizations
of CVTs and boundary triangle quality metrics. Dual tetrahedrizations
are computed by projecting the sites of the boundary Voronoi cells on the
surface and then optimizing their position as in [Yan et al., 2013].

5.3.4.1 Cell Regularity

Marching Cubes-generated tessellations are mostly made of cubes,
however the boundary cells may be very irregular. In order to assess cell
regularity, we use the criterion G3 defined in Chapter 3.

5.3.4.2 Tetrahedron Quality.

We use four standard quality metrics for tetrahedra [Yan et al., 2013]:

VQ1: minimum dihedral angle of the tetrahedron;

VQ2: maximum dihedral angle;

VQ3: radius-ratio, defined as 3ri
rc

, where ri and rc are the radii of
the inscribed and circumscribed spheres, respectively;

VQ4: meshing quality, defined as 12 3√9V2

∑ l2
i,j

, where V is the volume

of the tetrahedron and li,j is the length of an edge i, j of the
tetrahedron.

5.3.4.3 Boundary Triangle Quality.

Four similar criteria are used for boundary triangles:

SQ1: minimum angle of the triangle;

SQ2: maximum angle;
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SQ3: radius-ratio, defined as 2ri
rc

, where ri and rc are the radii of
the inscribed and circumscribed circles, respectively;

SQ4: meshing quality, defined as 4
√

3S
∑ l2

i,j
where S is the area of the

triangle and li,j is the length of an edge i, j of the triangle.

5.3.5 Results and Discussion

5.3.5.1 Accuracy

We first compare methods on a set of various shapes: 97 meshes taken
from the Princeton Benchmark [Chen et al., 2009]. These meshes belong
to 5 different categories and the algorithms have been run with a fixed
resolution for a given category, which can however vary over categories:
503, 803 and 1003 for the Marching Cubes. The number of sites for CVT is
taken as the number of inner cubes with MC, this for each mesh. Results
in Figure 5.7 show method rankings with respect to the accuracy criteria
defined previously. It demonstrates that CVT approaches are statistically
significantly better than MC and Delaunay.

Quantitative accuracy have also been conducted on the mentioned
vision datasets (see Table 5.1). Additionally, qualitative results are color-
coded in Figure 5.5 and Figure 5.4. In these experiments, 10 iterations
are performed for both Delaunay tetrahedrization and CVT approaches.
CGAL failed to compute a tetrahedrization on the GARGOYLE and SKULL
datasets (the process was stopped after 18 hours of computation). These
results show that CVT2 performs better than other approaches on all our
experiments. On point datasets that describe smooth shapes (DANCER and
GARGOYLE), CVT1 performs better than Marching Cubes even without
the optimization step.

5.3.5.2 Shape quality.

Table 5.1 shows the maximum Gmax and the mean Gmean values
of the cell regularity G3(Ω) over all cells of Marching Cubes and CVTs
tessellations. Qualitative results are also color-coded in Figure 5.6. Not
surprisingly, some cells of the Marching Cubes are far from regularity,
which also affects the mean and median cell regularities. In contrast CVT
cells are more regular. These results also show the benefit of optimizing
site positions to generate more regular cells. The mean tetrahedron and
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(MC) (Del) (CVT1) (MC) (CVT1) (Del) (CVT1)

Figure 5.4 – Accuracy (left), cell regularity (middle) and tetrahedron qual-
ity (right) of 3D implicit form tessellations with MC, Delaunay refinement
(Del) and CVT1.

Figure 5.5 – The Gargoyle multi-view point cloud and the associated
Poisson reconstructions with Marching Cubes and CVT. Distances to the
implicit form are color encoded on the right, from low (blue) to high (red).
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Figure 5.6 – SKULL: Input point cloud (left) and cell regularity for March-
ing Cubes and CVT1.

boundary triangle quality measures are given in Table 5.2 and Table 5.3,
respectively. According to our experiments, the CVT approach gives
better results than the Delaunay tetrahedrization for all of them, which is
consistent with the results shown in [Yan et al., 2013].

5.3.5.3 Computation times.

Timings are shown in Table 5.4. CGAL fails to compute a tetrahedriza-
tion for the GARGOYLE and the SKULL datasets. The Marching Cubes
algorithm is the fastest of the four tested methods, as a result of the in-
creased complexity of Delaunay and Voronoi tessellation computations.
The CVT approach performs anyway always faster than the Delaunay
tetrahedrization.

5.4 Conclusion

We have presented a comparison of different strategies to convert an
implicit form in 3D into an explicit shape representation. This includes
a new strategy that uses Centroidal Voronoi Tessellations to build a 3D
mesh composed of convex Voronoi cells around a pre-defined number of
sites. The evaluation shows that CVTs provide the most accurate and the
most regular shape tessellations when compared to Marching Cubes and
Delaunay refinement strategies. As such, CVTs are a good alternative to
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Dataset Method Dmean Drmse Nmean Nrmse Gmax Gmean CVT2
(nb of sites)

DANCER MC 27.16 29.72 1.31 1.41 3210 19.30
LOW CGAL (10 it.) 27.12 29.72 1.30 1.41 - -

(2365) CVT1 (0 it.) 27.14 29.67 1.31 1.41 1647 11.00
CVT1 (10 it.) 27.13 29.66 1.30 1.41 11.84 8.18
CVT2 (10 it.) 27.05 29.64 1.30 1.41 11.84 8.15

DANCER MC 22.10 25.46 1.14 1.25 5999 14.49
(14474) CGAL (10 it.) 21.72 25.11 1.14 1.25 - -

CVT1 (0 it.) 21.86 25.41 1.13 1.25 75.85 9.75
CVT1 (10 it.) 21.76 25.25 1.12 1.24 9.82 8.07
CVT2 (10 it.) 21.16 25.29 1.12 1.24 9.82 8.03

AQUARIUS MC 21.64 23.99 1.32 1.42 29825 12.17
(64588) CGAL (10 it.) 21.65 23.99 1.32 1.42 - -

CVT1 (10 it.) 21.83 24.14 1.33 1.42 13.17 8.16
CVT2 (10 it.) 21.59 23.94 1.31 1.41 13.02 8.15

KNEELING MC 2.55 3.98 0.40 0.63 5870 11.80
LADY CGAL (10 it.) 2.60 3.83 0.40 0.63 - -

(73150) CVT1 (10 it.) 2.58 4.00 0.40 0.63 19.05 8.16
CVT2 (10 it.) 2.50 3.93 0.39 0.62 19.05 8.15

GARGOYLE MC 0.38 0.54 0.20 0.29 54467 12.65
(106497) CVT1 (10 it.) 0.38 0.54 0.19 0.28 10.20 8.02

CVT2 (10 it.) 0.37 0.53 0.19 0.28 10.19 8.00

SKULL MC 7.12 9.76 0.82 1.00 82716 11.26
(225034) CVT1 (10 it.) 7.15 9.81 0.83 1.00 17.87 8.07

CVT2 (10 it.) 7.07 9.67 0.82 1.00 17.56 8.06

Table 5.1 – Accuracy and regularity results on the datasets. (Dmean,
Drmse, Gmax, Gmean) ×10−2.
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Dataset Method VQ1 VQ2 VQ3 VQ4

DANCER CGAL (10 it.) 50.75 96.48 0.84 0.90
CVT1 (10 it.) 51.32 95.49 0.85 0.91

AQUARIUS CGAL (10 it.) 51.35 95.89 0.83 0.90
CVT1 (10 it.) 51.55 95.33 0.84 0.92

KNEELING CGAL (10 it.) 51.54 95.71 0.83 0.90
LADY CVT1 (10 it.) 51.63 95.16 0.84 0.92

Table 5.2 – Mean tetrahedron quality measures over all cells of the tessel-
lation (best result in bold).

Dataset Method SQ1 SQ2 SQ3 SQ4

DANCER CGAL (10 it.) 47.92 75.13 0.93 0.94
CVT1 (10 it.) 52.56 69.23 0.97 0.97

AQUARIUS CGAL (10 it.) 47.73 75.37 0.92 0.94
CVT1 (10 it.) 52.56 69.23 0.97 0.97

KNEELING CGAL (10 it.) 48.32 74.59 0.93 0.94
LADY CVT1 (10 it.) 50.95 71.27 0.96 0.96

Table 5.3 – Mean triangle quality measures over all boundary triangle of
the tessellation (best result in bold).

Method
DANCER

LOW
DANCER AQUARIUS

KNEELING

LADY
GARGOYLE SKULL

MC 0.1 0.6 1.6 1.1 1.3 1.9
CGAL (10 it.) 1036 1052 162 198 - -
CVT1 (0 it.) 0.4 1.4 7.2 7.4 9.1 18

CVT1 (10 it.) 4.9 25 135 123 160 342
CVT2 (10 it.) 5.1 25 136 125 165 363

Table 5.4 – Computational time (s) for each experiment.
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Dmean Drmse

Nmean Nrmse

Figure 5.7 – Accuracy rankings on 100 meshes from the Princeton Bench-
mark [Chen et al., 2009]. Implicit forms were obtained using Poisson
reconstructions [CGAL] and accuracies measured on samples obtained
using the particle system approach [Berger et al., 2013].

Marching cubes, in particular when modeling dynamic scenes for which
accuracy, regularity and invariance to rigid transformation are desirable
properties of shape tessellation. Delaunay refinement, while providing
boundary surfaces with good triangles does not outperform CVTs nor
Marching cubes in any case. Finally, Marching cubes is always the fastest
strategy, hence a solution for applications requiring fast solutions, though
less accurate and regular than CVTs.
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In this chapter, we introduce applications of CVT. The intersection
between a shape V and a Voronoi tessellation (of space) is called a clipped
Voronoi tessellation of V which is an important step for computing a
CVT. In Section 6.1, we propose a novel clipping algorithm for computing
clipped Voronoi tessellations which is simple, robust and efficient. In
Section 6.2, we propose a pipeline for shape animation from captured
shape motion data using different applications of CVT which include 3D
volumetric reconstruction, tracking, morphing and physical simulations.

6.1 Clipped Voronoi Tessellation

6.1.1 Introduction

Computing a clipped Voronoi tessellation of an arbitrary 3D shape,
usually described by its meshed boundary surface, is not an easy problem.
Yan et al. [2010] have proposed an algorithm to compute clipped Voronoi
diagrams of 3D shapes described by tetrahedral meshes. This algorithm
consists of two main steps: detection of boundary sites by computing
surface restricted Voronoi diagram [Edelsbrunner and Shah, 1994] [Yan
et al., 2009] and computation of the intersection between the Voronoi cells
of boundary sites and the input tetrahedral mesh using Sutherland’s clip-

85
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ping algorithm [Sutherland and Hodgman, 1974]. Recently, Lévy [2014]
proposed another efficient method based on iterative convex clipping.
This method expresses the clipping problem as a 3D volume intersection
problem but also requires a tetrahedral mesh as input. When the input
3D shape is given as a closed triangle mesh, a 3D constraint Delaunay tri-
angulation must be computed first [Shewchuk, 1998a] [Shewchuk, 2008].
This is a complex problem which has many degenerate cases and usually
requires additional (Steiner) points to ensure the existence of a solution.
The complexity highly depends on the quality of the input surface triangle
mesh [Erickson, 2001]. Inspired by [Zaharescu et al., 2011], we overcome
this problem and propose an algorithm that exploits a 2D constrained
Delaunay triangulation to determine triangles on the input mesh that
intersect a given Voronoi cell, without the need of a tetrahedral mesh
inside the shape.

6.1.2 Algorithm

Our algorithm first triangulates the polygonal boundaries of the Voronoi
cells. In case of an infinite Voronoi cell, the infinite rays edging the cell
are replaced by finite length segments, with a length greater than the
diameter of the input shape. The boundaries of the cell, now finites, are
then triangulated. Since the boundary of the 3D shape is given as a trian-
gulated mesh, the clipping problem now reduces to the computation of
triangle-triangle intersections. Once such intersections have been found,
we set them as constraints. Constraints are represented as line segments.
The intersection I of two triangles is processed according to the following
rules:

Case 1: if I is a point, ignore it.

Case 2: if I is a line segment, add it to the constraints.

Case 3: if I is a triangle, add its three edges to the constraints.

Case 4: otherwise, I is a polygon, construct segments using adjacent
vertices of this polygon and add them to the constraints.

These cases are illustrated in Figure 6.1. The interior of each inter-
sected triangle of either the cell boundary or the mesh is then robustly
triangulated using a 2D constrained Delaunay triangulation.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j)

Figure 6.1 – Different intersection cases. Constraints (line segments) are
shown in red. (a, b) Case 1. (c, d, e) Case 2. (f, g, h) Case 3. (i, j) Case 4.
(b,e,h) represent singularities.
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Our clipping algorithm is summarized below (Algorithm 2). Figure
6.2 depicts its main steps.

Algorithm 2: Clipping algorithm.
Data: cell Ω, 3D shape V bounded by a triangulated mesh S
Result: clipped cell Ω′

SΩ := TriangulateBoundary(Ω);
I := Intersection(SΩ, S);
if I not empty then

T := IntersectedTriangles(SΩ, I);
for each triangle t of T do

T1 := ConstrainedDelaunay(t, I);
for each triangle t1 of T1 do

if IsInside(t1, V) then
Add(t1, Ω′);

end
end

end
T := IntersectedTriangles(S , I);
for each triangle t of T do

T2 := ConstrainedDelaunay(t, I);
for each triangle t2 of T2 do

if IsInside(t2, Ω) then
Add(t2, Ω′);

end
end

end
end
else

Ω′ := Ω;
end

6.1.3 Experimental Results

Our algorithm is implemented in C++ and we use the CGAL library
[CGAL] for linear geometry Kernel which defines data structures and
their operations. All computations were performed on an Intel Xeon
E5-2643 with 3.30 GHz CPU.
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(a) (b) (c)

(d) (e)

Figure 6.2 – Clipping algorithm. (a) Input: a Voronoi cell and a 3D shape
(here: a closed ball) bounded by a mesh. (b) Constrained Delaunay
triangulations of the boundary of the cell and of the mesh. (c) In green:
boundary of the cell inside the closed ball. (d) In blue: part of the mesh
inside the cell. (e) Result: the clipped cell is bounded by the green and the
blue triangulations.

Computation times for our clipping method are shown in Table 6.1. In
particular, we have tested this method on complex and badly triangulated
shapes and scenes to show its efficiency and robustness, see Figure 6.3.

6.1.4 Discussion

The advantage of our clipping algorithm is to reduce a 3D problem
to 2D. It eliminates many complicated degenerate case and facilitates the
process. The most costly part of our clipping algorithm is the computation
of intersections between triangles for which we use the CGAL Kernel
Exact predicates exact constructions kernel which is not efficient enough. The
performance of our algorithm would be much improved if an adaptive
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Figure 6.3 – More examples of clipped (non Centroidal) Voronoi diagrams.
Left: input triangulations. Right: clipped Voronoi diagrams.
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Shape Figure Vertices (k) Triangles (k) Sites (k) Time (s)
Homer 4.8 10 20 35 28.66

Ball 4.7 0.5 1 1 0.55
Bunny 4.9 10 20 50 30.06
Kitten 4.9 10 20 80 54.57

Armadillo 4.9 173 346 100 103.06
Ballgame 6.3 12.4 24.8 10 17.92
Dancer 6.3 15.1 30.2 5 10.52
Dragon 6.3 100 200 0.1 1.89
Dragon 6.3 100 200 1 6.14
Dragon 6.3 100 200 10 21.26
Dragon 6.3 100 200 100 99.09

CAD model 6.3 182 364 100 269.67

Table 6.1 – Computation times for clipped Voronoi diagrams.

and more efficient geometry kernel could be used. Furthermore, our algo-
rithm is currently implemented on CPU, a GPU version would probably
be much faster.

6.2 Shape Animation with Combined
Captured and Simulated Dynamics

In this section, we introduce an application of shape animation using
CVTs. A novel framework is proposed to deal with the capture, shape
tracking and animation generation. We consider CVTs in order to apply
combined kinemamtic and physical constraint over cells using rigid body
simulations. Moreover, regular and uniform cells ease the implementation
of local constraints such as physical constraints for simulation or local
deformation constraints when tracking shapes over time sequences.

6.2.1 Introduction

Creation of animated content has become of major interest for many
applications, notably in the entertainment industry, where the ability to
produce animated virtual characters is central to video games and special
effects. Plausibility of the animations is a significant concern for such
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productions, as they are critical to the immersion and perception of the
audience. Because of the inherent difficulty and necessary time required
to produce such plausible animations from scratch, motion capture tech-
nologies are now extensively used to obtain kinematic motion data as a
basis to produce the animations, and are now standard in the industry.

However, motion capture is usually only the first stage in a com-
plicated process, before the final animation can be obtained. The task
requires large amounts of manual labor to rig the kinematic data to a
surface model, correct and customize the animation, and produce the
specifics of the desired effect. This is why, in recent times, video-based
3D performance capture technologies are gaining more and more atten-
tion, as they can be used to directly produce 3D surface animations with
more automation, and to circumvent many intermediate stages in this pro-
cess. They also make it possible to automatically acquire complex scenes,
shapes and interactions between characters that may not be possible with
the standard sparse-marker capture technologies. Still, the problem of
customizing the surface animations produced by such technologies to
yield a modified animation or a particular effect has currently no general
and widespread solution, as it is a lower level representation to begin
with.

In this work, we propose a novel system towards this goal, which
produces animations from a stream of 3D observations acquired with a
video-based capture system. The system provides a framework to push
the automation of animation generation to a new level, dealing with the
capture, shape tracking, and animation generation from end-to-end with a
unified representation and solution. In particular, we entirely circumvent
the need for kinematic rigging and present results in this report obtained
without any manual surface correction.

Although the framework opens many effect possibilities, for the pur-
pose of the demonstration here, we focus our effort on combining the
real raw surface data captured with physics and procedural animation,
in particular using a physics-based engine. To this aim, we propose to
use regular Voronoi tessellations to decompose acquired shapes into vol-
umetric cells, as a dense volume representation upon which physical
constraints are easily combined with the captured motion constraints.
Hence, shape motions can be perturbed with various effects in the anima-
tion, through forces or procedural decisions applied on volumetric cells.
Motion constraints are obtained from captured multi-view sequences of
live actions. We do not consider skeletal or surfacic motion models for
that purpose but directly track volumetric cells instead. This ensures high
flexibility in both the class of shapes and the class of physical constraints
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that can be accounted for. We have evaluated our method with various
actor performances and effects. We provide both quantitative results for
the shape tessellation approach and qualitative results for the generated
3D content. They demonstrate that convincing and, to the best of our
knowledge, unprecedented animations can be obtained using video-based
captured shape models.

In summary, this work considers video-based animation and takes
the field a step further by allowing for physics-based or procedural ani-
mation effects. The core innovation that permits the combination of real
and simulated dynamics lies in the volumetric shape representation we
propose. The associated tessellated volumetric cells can be both tracked
and physically perturbed hence enabling new computer animations.

6.2.2 Related Work

This work deals with the combination of simulated and captured shape
motion data. As mentioned earlier, this has already been explored with
marker based mocap data as kinematic constraints. Following the work
of Popović and Witkin [1999], a number of researchers have investigated
such combination. They propose methods where mocap data can be
used either as reference motion [Popović and Witkin, 1999] [Zordan and
Hodgins, 2002] [Sulejmanpašić and Popović, 2005], or to constrain the
physics-based optimization associated to the simulation with human-like
motion styles [Safonova et al., 2004] [Liu et al., 2005] [Ye and Liu, 2008]
[Wei et al., 2011]. Although sharing conceptual similarities with these
methods, our work differs substantially. Since video-based animations
already provide natural animations, our primary objective is not to con-
strain a physical model with captured kinematic constraints but rather to
enhance captured animations with user-specified animation constraints
based on physics or procedural effects. Consequently, our simulations
are not based on biomechanical models but on dynamic simulations of
mechanical effects. Nevertheless, our research draws inspiration from
these works.

With the aim to create new animations using recorded video-based
animations, some works consider the concatenation of elementary seg-
ments of animations, e.g . [Casas et al., 2013], the local deformation of
a given animation, e.g . [Cashman and Hormann, 2012], or the transfer
of a deformation between captured surfaces, e.g . [Sumner and Popović,
2004]. While we also aim at generating new animations, we tackle a dif-
ferent issue in this research with the perturbation of recorded animations
according to simulated effects.
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Our method builds on results obtained in video-based animations with
multi-camera setups, to obtain the input data of our system. Classically,
multi-view silhouettes can be used to build free viewpoint videos using
visual hulls [Matusik et al., 2000] [Gross et al., 2003] or to fit a synthetic
body model [Carranza et al., 2003]. Visual quality of reconstructed shape
models can be improved by considering photometric information [Starck
and Hilton, 2007] [Tung et al., 2009] and also by using laser scanned mod-
els as templates that are deformed and tracked over temporal sequences
[De Aguiar et al., 2007] [Vlasic et al., 2008] [De Aguiar et al., 2008]. Inter-
estingly, these shape tracking strategies provide temporally coherent 3D
models that carry therefore motion information. In addition to geometric
and photometric information, considering shading cues allows to recover
finer scale surface details as in [Vlasic et al., 2009] [Wu et al., 2012].

More recent approaches have proposed to recover both shapes and
motions. They follow various directions depending on the prior informa-
tion assumed for shapes and their deformations. For instance in the case
of human motion, a body of work assumes articulated motions that can be
represented by the poses of skeleton based models, e.g . [Vlasic et al., 2008]
[Gall et al., 2009] [Straka et al., 2012]. We base our system on a different
class of techniques aiming at more general scenarios, with less constrained
motion models simply based on locally rigid assumptions in the shape
volume [Allain et al., 2015]. This has the advantage that a larger class
of shapes and deformations can be considered, in particular motions of
humans with loose clothes or props. The technique also has the significant
advantage that it allows to track dense volumetric cell decompositions of
shapes, thereby allowing for consistent captured motion information to
be associated and propagated with each cell in the volume, a key property
to build our animation generation framework on.

In the following, we provide a system overview, followed by a detailed
explanation of how we tessellate 3D input observations into regular poly-
hedral cells, to be subsequently tracked and used as primary animation
entity (see Section 6.2.4). In order to recover kinematic constraints from
real actions, our system then tracks polyhedral cells using surface obser-
vations and a locally rigid deformation model (see Section 6.2.5). Finally,
a physics or procedural simulation integrates the animation constraints
over the shape (see Section 6.2.6). To our knowledge, this is the first at-
tempt to propose such an end-to-end system and framework to generate
animations from real captured dynamic shapes.
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6.2.3 System Overview

(a) (b)

(c) (d)

Figure 6.4 – From video-based shape capture to physic simulation. (a)
Original videos. (b) Volumetric shape representations. (c) Volumetric
shape tracking (template in blue). (d) Physics-based simulation. The
approach uses multiple videos and Voronoi tessellations to capture the
volumetric kinematic of a shape motion which can then be reanimated
with additional mechanical effects, for instance volumetric erosion with
gravity in the figure.

We generate a physically plausible animation given a sequence of 3D
shape observations as well as user specifications for the desired effect
to be applied on the animation. 3D observations are transformed into
temporally consistent volumetric models using centroidal Voronoi tessel-
lations and shape tracking. Kinematic and physical constraints are then
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combined using rigid body physics simulation. The approach involves
the following main steps depicted in Figure 6.4.

6.2.3.1 Video Based Acquisition

Input to our system are 3D observations of a dynamic scene. Tra-
ditional and probably most common dynamic scenes in graphics are
composed of human movements; however our system can consider a
larger class of shapes since only local rigidity is assumed to get temporally
consistent shape models. 3D observations are assumed to be obtained
using a multi-camera system and can be in any explicit, e.g . meshes or
implicit, e.g . from point clouds through Poisson function, forms. Our
own apparatus is composed of 68 calibrated and synchronized cameras
with a resolution up to 2048× 2048 pixels. The acquisition space is about
8m× 4m and the camera frame rate can go up to 50 fps at full resolution.
The outputs of this step are point clouds with around 100k points.

6.2.3.2 Volumetric Representation

Input 3D observations are tessellated into polyhedral cells. This volu-
metric representation is motivated by two aspects of our animation goal:
first, the representation is well suited to physical simulation; second, volu-
metric deformation models are more flexible than skeleton based models,
hence enabling non rigid shape deformations. Still, they allow for locally
rigid volumetric constraints, a missing feature with surface deformation
models when representing shapes that are volumes. We adopt centroidal
Voronoi tessellations since they produce regular and uniform polyhedral
cells.

6.2.3.3 Tracking

In this step, incoherent volumetric shape models of a temporal se-
quence are transformed into coherent representations where a single
shape model is evolving over time. This provides kinematic information
at the cell level that will further be used in the simulation. We use a track-
ing method [Allain et al., 2015] that finds the poses of a given template
shape at each frame. The template shape is taken as one of the volumetric
models at a frame. The approach uses a volumetric deformation model,
instead of surface or skeleton based model, to track shapes. It optimizes
the pose of the template shape cells so as to minimize a distance cost to
an input shape model while enforcing rigidity constraints on the local cell
configurations.
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6.2.3.4 Simulation

The tracked cell representation is both suitable for tracking and conve-
nient for solid based physics. We embed the tracked volumetric model in
a physical simulation, by considering each cell to be a rigid solid shape
in mechanical interaction with other cells and scene shapes. We ensure
cohesion of cells by attaching a kinematic recall force in the simulation,
and offer various controls as to how the scene may deform, collide, or
rupture during contacts and collisions. This simple framework allows for
a number of interesting effects demonstrated in 6.2.7.

6.2.4 Volumetric Shape Modeling

As mentioned before, we compute CVTs of input observations because
combined kinematic and physical constraints can be easily applied over
cells using rigid body simulations. Moreover, CVTs provide regular and
uniform cells that ease the implementation of local constraints or deforma-
tion constraints compared with voxel- and Delaunay-based tessellations.
Figure 6.5 shows the comparison of the three approaches. For more details
about the construction of CVTs from implicit shapes and the comparison
of the three approaches, please see Chapter 5.

6.2.5 Volumetric Shape Tracking

With the volumetric decomposition proposed above, we now need
to define a model by which scene dynamics can be captured through
deformations expressed over this decomposition. We consider here as
input a time sequence of inconsistent CVT decompositions independently
estimated at each frame and we look for a time consistent volumetric
decomposition that encode cell motions. We opt for a capture by deforma-
tion approach where a template CVT, taken from the input sequence in
our case, is tracked throughout the sequence. This volumetric strategy is
motivated by two observations. First, attaching the deformation model to
the cell shape representation used for the animation directly provides the
necessary cell dynamic information to the simulation. It avoids therefore
the interpolation between an intermediate motion model, e.g . a skeleton
or a mesh, and the animation model; Such interpolation being difficult to
perform consistently over time. Second, as shown in [Allain et al., 2015],
it provides a simple tool for embedding volume-preservation constraints
that increase the robustness of the tracking over the dynamic scenes we
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5 – (a, b) Input multi-camera observation and point clouds (65386
pts). (c, d) Tessellations generated using voxels [Chernyaev, 1995]. (e, f)
Tetrahedrisations generated using Delaunay refinement [CGAL]. (g, h)
Clipped Centroidal Voronoi Tessellations (14455 sites).
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consider. We describe below the generative approach [Allain et al., 2015]
that we follow.

6.2.5.1 Tracking Formulation

We are given a sequence of CVTs V and a template model V̂. V̂ can
be one model taken from the sequence or any other model (e.g . a 3D
scan) decomposed into a CVT. The tracking consists then in fitting V̂ to
each V ∈ V . This can be formulated as a maximum a posteriori (MAP)
estimation of the deformation parameters Θ̂ that maximizes the posterior
distribution P(Θ|V) of the parameters Θ given the observations V :

Θ̂ = arg max
Θ

P(Θ|V) ' arg max
Θ

P(V|Θ) P(Θ).

Taking the log of the above expression yields the following optimiza-
tion problem:

Θ̂ = arg max
Θ

Edata(V , Θ) + Eprior(Θ), (6.1)

where the data term Edata evaluates the log-likelihood of a set of deforma-
tion parameters Θ given the observations V , and the regularization term
Eprior enforces prior constraints on the deformation, e.g . local rigidity. We
detail below the parameterization Θ we use for the deformation and the
associated energy terms.

6.2.5.2 Motion Parameterization

The deformation model is defined over CVT cells in the shape de-
composition and, for efficiency, on aggregates of cells which reduces the
number of terms and parameters. To this goal, CVT cells are grouped
together as a set of volumetric patches Pk using a k-medoids algorithm, as
shown in Figure 6.6. Such patches can be either adjacent to the surface or
completely inside the template shape’s volume, which is of particular in-
terest to express non-rigid deformation of the model while preserving the
local volume and averting over-compression or dilation. The positional
information of a patch is represented as a rigid transform Tt

k ∈ SE(3)
at every time t. Each position xk,q of a CVT sample is indiscriminately
labeled as a point q. Its position can be written as a transformed version
of its template position x0

q as follows, once the patch’s rigid transform is
applied:
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Figure 6.6 – The template model used to recover the runner sequence
motion, with its CVT decomposition cells, and the cell clusters in different
colors.

xk,q = Tk(x0
q). (6.2)

A pose of the shape is thus defined as the set of patch transforms
T = {Tk}k∈K, which expresses the deformation of every component in
the shape. The parameterization Θ is then the set of pose parameters of
the template over the considered time sequence T :

Θ = {Tt}t∈T .

6.2.5.3 Data Term

We assume the observed shape Vt at time t is described by the point
cloud Yt = {yt

o}. We assume this point cloud to include inner volume
points and surface points, i.e . the CVT sites as well as the outside surface
points.

In order to measure how a deformed version of the template explains
the observed shape, first the associations between the observations and
the template must be determined. This is achieved via a soft ICP strategy
that iteratively reassigns each observation yt

o to the template volumetric
patches. For simplicity, each observation yt

o is associated to the patch
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Pk via the best candidate point xk,q of patch Pk and with an association
penalty αo,k.

The matching penalty E(yt
o, Tt

k) that evaluates how well Pk explains
yt

o is then the weighted distance between yt
o and the best candidate xk,q,

that is the template point x0
q transformed by the current pose Tt

k of the
template model:

E(yt
o, Tt

k) = αt
o,k‖y

t
o − Tt

k(x
0
q)‖. (6.3)

Associations are additionally filtered using a compatibility test. Ob-
served surface points are associated to template surface points with similar
orientations with respect to a user defined threshold θmax; Observed in-
ner points are associated to template inner points that present similar
distances to the surface up to a user defined tolerance ε. If there is no
compatible candidate in a patch Pk, then Pk is discarded for the association
with yt

o, i.e . αt
o,k = 0. Finally:

Edata(Vt, Θt) = ∑
o,k

E(yt
o, Tt

k). (6.4)

6.2.5.4 Regularization Term

The pose of a shape is defined by the set of rigid motion parameters of
the shape volumetric patches. While these parameters hardly constraint
the patch motions, they do not define a coherent shape motion since each
patch moves independently of the others. In order to enforce shape cohe-
sion, soft local rigidity constraints, reflecting additional prior knowledge
on shape deformation parameters, are considered. These constraints rely
on a pose distance function that evaluates how distant from a rigid trans-
formation a deformation between two poses is. Once such a distance is
defined, the regularization term is defined as the sum of distances be-
tween all poses in the sequence and a given pose that can be a reference
pose or an estimated mean pose, as explained below.

Pose Distance

To simplify the estimation, the shape distance is expressed over coor-
dinates of points belonging to patches and not on the parameters of the
pose itself:
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D(Ti, Tj) = ∑
(Pk ,Pt)∈N

Dkl(Ti, Tj), with (6.5)

Dkl(Ti, Tj) = ∑
q∈Pk∪Pl

‖Ti
k−l(x

0
q)− Tj

k−l(x0
q)‖2, (6.6)

where Ti
k−l = Ti−1

l ◦ Ti
k is the relative transformation between patches

Pk and Pl for pose i, and N is the set of neighboring patch pairs within
the shape. Intuitively, this distance measures whether the relatives poses
between neighboring volumetric patches are preserved during motion
between two shape poses.

Deformation Energy

The pose distance above allows to compute a deformation energy
between two poses and with respect to a reference pose from which
the patch transformations Tk

t are expressed. This reference pose can be
taken as the identity pose of the initial template model (see Figure 6.6 for
instance). However such a strategy is biased toward the template pose
and discourage locally rigid motions between poses that are distant from
the template pose. A more appropriate approach is to exploit the pose
distance function to first define a mean pose T̄ over a time window {t}:

T̄ = arg min
T

∑
t
D(Tt, T).

This averaged pose can then be taken as an evolving reference pose
from which non-rigid deformations are measured to define the deforma-
tion energy over the associated time interval:

E({Tt}, T̄) = ∑
t
D(Tt, T̄). (6.7)

This imposes general proximity of poses to a sequence specific ”rest”
pose. These rest poses must also be constrained to some form of inner
cohesion. This is ensured by minimizing the distance from the mean pose
to the identity pose of our initial template:

E(T̄) = D(T̄, Id). (6.8)

This definition of deformation has a number of advantages: first it
enforces geometric cohesion and feature preservation, and second it is
quite simple to formulate and to optimize, as the minimization of (6.7)
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and (6.8) translates to a sum of least square constraints over the set of CVT
sites.The prior energy term finally writes:

Eprior(Θ = {Tt}) = D(T̄, Id) + E({T}, T̄). (6.9)

We jointly extract poses and a sequence mean pose by minimizing the
sum of the data terms (6.4) and the prior term (6.9). Section 6.2.7 shows
results on various sequences and gives run time performances.

6.2.6 Combined Animation

The template representation of the subject now being consistently
tracked across the sequence, we can use the tracked cells as input for
solid physics-based animation. We have purposely chosen CVTs as a
common representation as they can be made suitable for shape and motion
capture as we have shown, while being straightforwardly convenient for
physics-based computations. In fact CVT cells are compact, convex or
easily approximated by their convex hull. This is an advantage for the
necessary collision detection phase of physics models, as specific and
efficient algorithms exist for this case [Gilbert et al., 1988] [Rabbitz, 1994].
We here describe the common principles of our animation model, with
more specific applications being explored and reported on in the following
sections.

As our animation framework is solid-based, we base our description
on commonly available solid-based physics models, e.g . [Baraff, 1997].
Each CVT cell is considered a homogeneous rigid body, whose simulated
state is parameterized by its 3D position, rotation, linear momentum and
angular momentum. The cell motion is determined by Newton’s laws
through a differential equation involving the cell state, the sum of forces
and sum of torques that are applied to the cell.

The animation is thus obtained by defining the set of forces and torques
applied at each instant, and iteratively solving these differential equations
to obtain a new cell position and orientation for a target time step, using
one of many available techniques. For our demonstrator, we use the
simple and efficient off-the-shelf Bullet Physics engine [Coumans et al.,
2013] [Catto, 2005].

6.2.6.1 Ordinary Applied Forces

We classically apply the constant gravity force Fg = Mg. We apply
additional external forces or constraints as needed for the target appli-
cation, as will be detailed in the coming sections. Additionally, contact
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forces such as collisions are handled with scene shapes, as well as between
different cells of the CVT. For this purpose the physics engine first needs
to detect the existence of such contacts. It relies on a hierarchical space
decomposition structure, such as an AABB-tree, for broad-phase collision
detection, i.e . coarse elimination of collision possibilities. A narrow-phase
collision test follows, between shapes lying in the same region of space
as determined by the AABB-tree traversal. In this narrow phase the full
geometry of shapes is examined, e.g . using the GJK algorithm [Gilbert
et al., 1988] for pairs of convex polyhedra. Once the existence of a contact
is established, various strategies exist to deal with the collision, e.g . by
introducing impulse repulsion forces to produce a collision rebound. We
follow the common approach of modeling contacts as a linear complemen-
tary problem (LCP) popularized by [Baraff, 1994], which derives contact
forces as the solution of a linear system that satisfies certain inequality
constraints. These constraints are typically formulated using a constraint
Jacobian over the combined state spaces of rigid bodies. [Catto, 2005]
expose the specific variant applied in the context of the Bullet Physics
engine.

6.2.6.2 Physical Modeling of Kinematic Control

To relate the physical simulation to the acquired non-rigid poses of the
model, we need to introduce coupling constraints. Our goal is to allow
the model to materialize and control the tradeoff between the purely kine-
matic behavior acquired from visual inputs for the cell, and the purely
mechanically induced behavior in the simulation. First it is important to
note that the temporal discretization used for acquisition and for simu-
lation and rendering of the effects are generally different. Consequently
the first stage in achieving our goal is to compute a re-sampling of the
pose sequence, to the target simulation and rendering frequency, using
position and quaternion interpolation. The poses so obtained are here
referred as the acquired cell poses x̂a(t) and Ra(t). Second, we formulate
the coupling by introducing a new kinematic recall force, in the form of
a damped spring between the acquired cell poses and the simulated cell
poses:

Fr(t) = k.(x̂a(t)− x̂(t))− λ.
d
dt

(x̂a(t)− x̂(t)), (6.10)

where k and λ are respectively the rigidity and damping coefficients of the
spring, which control the strength and numerical stability of the coupling.
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6.2.7 Visual Effects

Figure 6.7 – An animation that combines video-based shape motion (left)
and physical simulation (right). Our method allows to apply mechanical
effects on captured dynamic shapes and generates therefore plausible
animations with real dynamics.

This section presents various animation results on three captured ani-
mations of variable nature and speed. RUNNER shows a male character
running in a straight line, during 3 motion cycles. This animation lasts
2.5 s. In CAGEBIRDDANCE a female dancer moves while holding a bird
cage. This sequence is 56 s long and shows a complex sequence of mo-
tions which would be difficult to synthesize without sensors. Finally, in
SLACKLINE a male acrobat evolves on a non rigid line above the ground,
for 25 s. The input sequences of temporally inconsistent 3D point clouds
are made respectively of 126 (RUNNER), 2800 (CAGEBIRDDANCE) and
1240 (SLACKLINE) temporal frames.

Parameters

The interior of all shapes has been tessellated according to 6.2.4 using
5000 cells. 10 iterations of the L-BFGS quasi-Newton algorithm were
applied, except for the template shape where 50 iterations were applied.
We use a temporal window of 10 frames for the tracking, and cluster the
5000 cells into 200 patches. 60 iterations were applied.

We list below examples of visual effects that we were able to generate
using the proposed approach. First, we present animations combining
tracking results with solid dynamics simulation (6.2.7.1). Then we present
other visual effects that also exploit the volumetric tracking information
(6.2.7.2 and 6.2.7.3).
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6.2.7.1 Asynchronous Kinematic Control Deactivation

In order to show the effect of gravity while keeping the dynamic
motion of the input sequence, we deactivate kinematic control forces
independently for each cell. After being deactivated, a cell usually falls
to the ground, since it follows a trajectory determined only by gravity,
collision forces and its initial velocity. Asynchronous cell deactivations
result in an animation combining cells that follow their tracking trajectory
and cells that fall. By choosing diverse strategies for scheduling cell
deactivations, a wide variety of animations can be obtained.

We explore here three possible deactivation strategies that are based
on different criteria. Note that while these effects are straight-forward to
produce with our volumetric framework, it would be difficult to obtain
them if only surface or skeleton-based tracking was available.

6.2.7.1.1 Rupture under Collisions

Collisions with obstacles sometimes deviate a cell from its theoretical
trajectory, which results in an increase of the recall force magnitude (see
Eq. 6.10). This phenomenon can be detected and used for simulating the
rupture of the material: when the recall force magnitude of a cell is above
a given threshold, we deactivate the recall force (for this cell only). This
makes the rupture looks like the consequence of the collision.

Figure 6.8 shows a heavy pendulum that hits the subject and makes
a hole in it. Under the intensity of the collision, several cells are ejected
(rupture) and fall to the ground.

6.2.7.1.2 Heat Diffusion

In order to make the cell deactivation both temporally and spatially
progressive, we rely on a diffusion algorithm. We diffuse an initial temper-
ature distribution inside the volume according to the diffusion equation.
Deactivation is triggered when the cell temperature is above a given
threshold.

Heat diffusion in a CVT

The CVT provides a graph structure on centroids, which is a sub-
graph of the Delaunay tetrahedralization of the cells centroids. The heat
diffusion on a graph structure is expressed by the heat equation:

(∂/∂t + L)Ft = 0,
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Figure 6.8 – Input SLACKLINE Multi-camera observations (left), tracking
result of the SLACKLINE sequence (top) and combination with the effect
of collision with a pendulum (bottom).
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where Ft is the column vector of centroids temperatures at time t, and L is
the combinatorial graph Laplacian matrix (note that a geometric Laplacian
is not necessary since centroids are regularly distributed in space). Given
an initial temperature distribution F0, this equation has a unique solution

Ft = HtF0,

where Ht = etL is the heat diffusion kernel, which can be computed by
means of the spectral decomposition of L.

We compute the temperature evolution on the CAGEBIRDDANCE se-
quence for an initial temperature distribution where all cell temperatures
are zero, except for the dancer’s head top cells (which are set to 1). We
observe in Figure 6.7 that cells fall progressively across time, from the
upper to the lower body parts. Note that the cage cells remain kinemati-
cally controlled since heat is not transferred between different connected
components.

6.2.7.1.3 Morphological Erosion

The discrete cell decomposition of shapes allows to apply morphologi-
cal operators. To illustrate this principle, we have experimented erosion
as shown in Figure 6.4. In this example, cells are progressively eroded
starting from the outside. The morphological erosion is performed by
deactivating each cell after a delay proportional to the distance between
the cell centroid and the subject’s surface. The distance is computed only
once for each cell, on the template shape. Figure 6.4 shows the erosion an-
imation on the RUNNER sequence. Note that the operation progressively
reveals the dynamic of the inner part of the shape.

6.2.7.2 Time Persistence

In this example, we experiment time effects over cell decompositions.
To this aim, dynamic copies of the model are generated at regular time
intervals. These copies are equipped with deceleration and erosion effects
over time and create therefore ghost avatars that vanish with time (see
Figure 6.9). The benefit of the tracked volumetric representation in this
simulation is the ability to attach time effect to the model behavior at the
cell level, for instance lifetime and deceleration in the example.
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Figure 6.9 – Time persistence on the RUNNER sequence: a slower copy of
the shape that erodes over time is generated at regular intervals.

6.2.7.3 Morphing

Our dynamic representations allows to apply volumetric morphing
between evolving shapes, enabling therefore new visual effects with real
dynamic scenes. To this purpose, cells of the source shape are first matched
to the target shape. Second, each cell is individually morphed to its target
cell at a given time within the sequence. Time ordering is chosen such
that cells in the source shape are ordered from the outside to the inside,
and associated with the cells of the target shape ordered from the inside
to the outside. Cells are transformed from the source to the destination
by interpolating their positions and using Kent et al. [1992] to morph
their polyhedral shapes. Figure 6.10 shows the dynamic morphing of the
RUNNER sequence onto the CAGEBIRDDANCE sequence.

6.2.7.4 Run Time Performance

Our approach has been tested on a dual Intel Xeon E5-2665 processor
with 2.40 GHz each. For each animation, the Poisson runs in 0.67 s per
frame on average, and the volumetric decomposition for each frame runs
in 6.27 s, except for the template model for which it runs in 25.52 s since
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Figure 6.10 – Tracking result of the RUNNER and the CAGEBIRDDANCE
sequences (middle) and combination with volumetric morphing with
5000 cells (bottom).
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more iterations are applied. Our tracking algorithm runs in 45 s per
frame on average. The physical simulation usually needs about 350 ms
per simulation step on a single thread. The morphing runs on multiple
threads in about 2.35 s.

6.2.8 Limitations

As shown in the previous examples, our approach generates plausible
results for a variety of captured and simulated motions. However, a
few limitations must be noted. First, the true captured shape must be
volumetric in nature, since we tessellate its interior into 3D cells. Thin
shapes such as clothes may cause some cells to be flat, leading to volume
variation among cells and ill-defined cohesion constraints that would
cause difficulty to the tracking model.

Regarding the physical simulation, our current demonstrator is lim-
ited to rigid body interactions, but could be extended to other physical
models such as soft body physics and fluid simulation. Since a CVT pro-
vides neighboring information, soft body simulation could be achieved
by introducing soft constraints between neighboring cells. This would
lead to animations where cell sets behave more like a whole rather than
independent bodies.

6.2.9 Conclusion

We have proposed a framework that allows video-based animations to
be combined with physical simulation to create unprecedented and plau-
sible animations. Our approach benefits of both regularity and uniformity
of CVTs. Both volumetric shape tracking and animation generation in our
framework rely on CVTs to perform well.
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In this thesis, we have focused on the problem of regular volumetric
tessellation based on centroidal Voronoi tessellations. Our contributions
are threefold: (1) propose criteria to evaluate quantitatively the regularity
of volumetric tessellations; (2) introduce a novel algorithm that build CVTs
with better regularity than the state-of-the-art methods; (3) extend CVT to
implicit shapes and build an extensive comparison of voxel-, Delaunay-
and Voronoi-based approaches for approximated volumetric tessellations.

This chapter is organized as follows: In Section 7.1, we summarize the
contributions of this thesis. Future work perspectives inspired from the
work done in this thesis are provided in Section 7.2.

7.1 Summary of Contributions

In Chapter 3, we have built a theoretical work on the regularity of
volumetric tessellations. Based on the normalized second order moments,
we have proposed criteria that allow to evaluate and compare the regu-
larity of tessellations. We have also shown that these criteria are linked
to the CVT energy function which allows to compute the value of the
optimal CVT energy given a shape and a number of sites. We have also
proposed a novel stopping criterion defined by this optimal value for the
CVT algorithm as an application.

In Chapter 4, we have proposed a hierarchical algorithm for regular
CVTs. The experimental results have shown that the subdivision schema
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of our algorithm preserves the local optimality of CVTs on unbounded
domains. With a relatively large number of inner cells than boundary
cells, our algorithm builds more regular CVTs with better efficiency than
the state-of-the-art algorithms.

In Chapter 5, we have extended the CVT algorithm to implicit shapes.
In order to have a good approximation to the implicit shape, a local im-
provement has been proposed to clip the CVT. We have also presented
an extensive comparison of the existing methods and ours in terms of
accuracy, regularity and computational time. The experimental results
have shown that our algorithm performs the best except for the computa-
tional time. This is because our algorithm includes an unavoidable step of
Delaunay triangulation that is relatively costly compared to the Marching
Cubes algorithm.

In Chapter 6, a novel algorithm has been proposed to clip Voronoi
tessellations. The variant experimental results have shown its robustness.
We have also proposed another application that is a shape animation
framework using CVTs. This framework benefits from the properties
of CVTs so that it allows to combine kinematic and physical constraints
using rigid body simulation.

7.2 Future Research Perspectives

In the following, we gives some perspectives for further research based
on the contributions in this thesis.

Theoretical Work on CVT

CVTs correspond to local minima of the energy function and an opti-
mal CVT achieves the global minimum of this function. However, since
the CVT energy function is non linear and non convex, it appears to be
very difficult to find its global minimum. Lu et al. [2012] have proposed a
stochastic approach that tries to find all local minima of the CVT energy
function in order to find the global minimum. This approach can theoreti-
cally achieve the global minimum in infinite computational time which
leads to inefficient computation in practice. According to our study on the
relation between our regularity criteria and the energy function, we can
compute the global minimum of this function for any three-dimensional
shape. This allows to measure how close a CVT is to its optimal one.
However, our work is based on Gersho’s conjecture [Gersho, 1979] that
has not been proven in three dimensions. We also assume that the effect of
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shape boundary is negligible. It would be worth exploring this theoretical
work. In practice, it would be also interesting to eliminate the effect of
shape boundary or to determine the number of sites necessary to neglect
this effect for a given shape.

Generalized CVT Algorithm

In this thesis, we have proposed a CVT algorithm for implicit shapes.
Since this is the first algorithm to build CVTs of implicit shapes, many
extensions such as weighted Voronoi tessellations and power diagrams
can be investigated. Lévy and Liu [2010] have introduced a generalized
CVT whose energy function uses a Lp distance instead of the Euclidean
distance. This generalized distance allows to change the shape of CVT
cells. It would be interesting to implement a version of this Lp CVT for
implicit shapes.

Another direction is to improve the performance of our CVT algorithm.
For instance, in this thesis, we have also proposed a hierarchical approach
in order to build regular CVTs, this approach could be easily integrated
into our CVT algorithm to improve the regularity of the generated CVTs.
The experimental results have shown that our algorithm is less efficient
than the Marching Cubes algorithm. As mentioned before, this is because
of the unavoidable Delaunay triangulation in our algorithm. One way
to reduce the computational time is to reduce the number of sites. We
believe that applying our algorithm on a shape with non uniform density
may achieve this purpose without losing the accuracy of generated CVTs.
For instance, if we define the density near the boundary is much higher
than the one far from the boundary, our algorithm would build CVTs with
large inner cells and small boundary cells. Thus, we reduce the number
of sites while keeping the accuracy of approximation to the shape.
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H. Si and K. Gärtner. 3d boundary recovery by constrained delaunay
tetrahedralization. International Journal for Numerical Methods in
Engineering, 85(11):1341–1364, 2011. Cited on page 26.

H. Si and J. R. Shewchuk. Incrementally constructing and updating con-
strained delaunay tetrahedralizations with finite-precision coordinates.
Engineering with Computers, 30(2):253–269, 2014. Cited on page 26.

J. Starck and A. Hilton. Surface capture for performance-based animation.
Computer Graphics and Applications, IEEE, 27(3):21–31, 2007. Cited on
page 94.
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D.-M. Yan, W. Wang, B. Lévy, and Y. Liu. Efficient computation of 3d
clipped voronoi diagram. In Advances in Geometric Modeling and
Processing, pages 269–282. Springer, 2010. Cited on page 85.
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