I. Aleksander and H. Morton, An introduction to neural computing, 1990.

I. K. Alt?nel, N. Aras, and K. C. Özk?sac?k, Variable neighbourhood search heuristics for the probabilistic multi-source Weber problem, Journal of the Operational Research Society, vol.17, issue.10, pp.1813-1826, 2011.
DOI : 10.1111/j.1467-9787.1977.tb00472.x

F. R. Angel-bello, J. L. González-velarde, and A. M. Alvarez, Greedy Randomized Adaptive Search Procedures, Metaheuristic Procedures for Training Neutral Networks, pp.207-223, 2006.
DOI : 10.1007/0-387-33416-5_10

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. K. Au and J. L. Beck, A new adaptive importance sampling scheme for reliability calculations, Structural Safety, vol.21, issue.2, pp.135-158, 1999.
DOI : 10.1016/S0167-4730(99)00014-4

T. Bäck, Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms, 1996.

A. A. Balkema, C. Klüppelberg, and S. I. Resnick, Densities with Gaussian Tails, Proceedings of the London Mathematical Society, vol.3, issue.3, pp.568-588, 1993.
DOI : 10.1112/plms/s3-66.3.568

URL : http://ecommons.cornell.edu/bitstream/1813/8791/1/TR000908.pdf

S. K. Bar-lev, D. Bshouty, and P. Enis, On polynomial variance functions. Probability theory and, pp.69-82, 1992.
DOI : 10.1007/bf01222510

O. Barndorff-nielsen, Information and exponential families in statistical theory, 1978.

R. R. Barton, Metamodels for simulation input-output relations, Proceedings of the 24th conference on Winter simulation , WSC '92, pp.289-299, 1992.
DOI : 10.1145/167293.167352

R. R. Barton, Metamodeling: a state of the art review, Proceedings of Winter Simulation Conference, pp.237-244, 1994.
DOI : 10.1109/WSC.1994.717134

D. Benoist, Y. Tourbier, and S. German-tourbier, Plan d'expériences : construction et analyse, 1994.

H. Beyer and H. Schwefel, Evolution strategies?a comprehensive introduction, Natural Computing, vol.1, issue.1, pp.3-52, 2002.
DOI : 10.1023/A:1015059928466

H. Beyer and B. Sendhoff, Robust optimization ??? A comprehensive survey, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.33-34, 2007.
DOI : 10.1016/j.cma.2007.03.003

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, 1987.
DOI : 10.1017/CBO9780511721434

M. Biret, M. Achibi, and M. Broniatowski, Recherche des ensembles de niveaux d'une fonction multi variée à valeurs réelles sous conditions de monotonie. I-Revues CNRS, 2014.
DOI : 10.4267/2042/56160

M. Biret and M. Broniatowski, Safip : a streaming algorithm for inverse problems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371926

M. Biret, M. Broniatowski, and Z. Cao, A Sharp Abelian Theorem for the Laplace Transform, Mathematical Statistics and Limit Theorems, pp.67-92, 2015.
DOI : 10.1007/978-3-319-12442-1_5

URL : https://hal.archives-ouvertes.fr/hal-00865680

M. Biret, M. Broniatowski, and Z. Cao, A gibbs conditional theorem under extreme deviation. arXiv preprint, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01380680

A. Björck, Numerical methods for least squares problems, Handbook of Numerical Analysis, 1990.
DOI : 10.1137/1.9781611971484

C. Blum and A. Roli, Metaheuristics in combinatorial optimization, ACM Computing Surveys, vol.35, issue.3, pp.268-308, 2003.
DOI : 10.1145/937503.937505

URL : https://hal.archives-ouvertes.fr/hal-01224683

E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence : from natural to artificial systems. Number 1, 1999.

A. Borovkov, Tauberian and Abelian theorems for rapidly decaying distributions and their applications to stable laws, Siberian Mathematical Journal, vol.51, issue.4, pp.796-805, 2008.
DOI : 10.1007/s11202-008-0078-9

N. Bousquet, Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.21, issue.3, pp.21-557, 2012.
DOI : 10.5802/afst.1345

URL : https://hal.archives-ouvertes.fr/hal-01101250

G. E. Box, W. G. Hunter, and J. S. Hunter, Statistics for experimenters, 1978.

J. Brimberg, P. Hansen, and N. Mladenovic, Attraction probabilities in variable neighborhood search, 4OR, vol.21, issue.3, pp.181-194, 2010.
DOI : 10.1287/ijoc.3.4.376

M. Broniatowsk and D. M. Mason, Extended large deviations, Journal of Theoretical Probability, vol.19, issue.3, pp.647-666, 1994.
DOI : 10.1007/BF02213574

M. Broniatowski and Z. Cao, Stretched random walks and the behaviour of their summands. arXiv preprint, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701807

M. Broniatowski and V. Caron, Long runs under a conditional limit distribution, The Annals of Applied Probability, vol.24, issue.6, pp.2246-2296, 2014.
DOI : 10.1214/13-AAP975

URL : https://hal.archives-ouvertes.fr/hal-00666182

M. Broniatowski and G. Celant, Some overview on unbiased interpolation and extrapolation designs, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00961611

C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of Computation, vol.19, issue.92, pp.577-593, 1965.
DOI : 10.1090/S0025-5718-1965-0198670-6

F. Burba, F. Ferraty, and P. Vieu, Convergence de l'estimateur ?? noyau des k plus proches voisins en r??gression fonctionnelle non-param??trique, Comptes Rendus Mathematique, vol.346, issue.5-6, pp.339-342, 2008.
DOI : 10.1016/j.crma.2008.01.022

C. A. Coello, D. A. Veldhuizen, and G. B. Lamont, Evolutionary algorithms for solving multi-objective problems, 2002.
DOI : 10.1007/978-1-4757-5184-0

I. Csiszár, Sanov property, generalized i-projection and a conditional limit theorem. The Annals of Probability, pp.768-793, 1984.

R. I. Cukier, H. B. Levin, and K. E. Shuler, Nonlinear sensitivity analysis of multiparameter model systems, Journal of Computational Physics, vol.26, issue.1, pp.1-42, 1978.
DOI : 10.1016/0021-9991(78)90097-9

P. Cunningham, Dimension Reduction, Machine learning techniques for multimedia, pp.91-112, 2008.
DOI : 10.1007/978-3-540-75171-7_4

I. Das and J. E. Dennis, Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems, SIAM Journal on Optimization, vol.8, issue.3, pp.631-657, 1998.
DOI : 10.1137/S1052623496307510

L. S. De-oliveira and S. F. Saramago, Multiobjective optimization techniques applied to engineering problems, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.32, issue.1, pp.94-105, 2010.
DOI : 10.1590/S1678-58782010000100012

E. De-rocquigny, N. Devictor, and S. Tarantola, Uncertainty in Industrial Practice : A Guide to Quantitative Uncertainty Management, 2008.
DOI : 10.1002/9780470770733

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, issue.2, pp.182-197, 2002.
DOI : 10.1109/4235.996017

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Dembo and O. Zeitouni, Refinements of the gibbs conditioning principle. Probability theory and, pp.1-14, 1996.

P. Diaconis and D. A. Freedman, Conditional limit theorems for exponential families and finite versions of de Finetti's theorem, Journal of Theoretical Probability, vol.93, issue.4, pp.381-410, 1988.
DOI : 10.1007/BF01048727

O. Ditlevsen, R. Olesen, and G. Mohr, Solution of a class of load combination problems by directional simulation, Structural Safety, vol.4, issue.2, pp.95-109, 1986.
DOI : 10.1016/0167-4730(86)90025-1

R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm intelligence, 2001.

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, 1996.

K. Fang, D. K. Lin, P. Winker, and Y. Zhang, Uniform Design: Theory and Application, Technometrics, vol.34, issue.3, pp.237-248, 2000.
DOI : 10.1007/978-1-4612-1690-2_31

P. D. Feigin and E. Yashchin, On a strong Tauberian result, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, pp.35-48, 1983.
DOI : 10.1007/BF00534992

W. Feller, An introduction to probability theory and its applications, Volume II, 1971.

I. K. Fodor, A survey of dimension reduction techniques, 2002.
DOI : 10.2172/15002155

J. H. Friedman, Multivariate adaptive regression splines. The annals of statistics, pp.1-67, 1991.

J. H. Friedman, Greedy function approximation : a gradient boosting machine, Annals of statistics, pp.1189-1232, 2001.

J. H. Friedman and W. Stuetzle, Projection Pursuit Regression, Journal of the American Statistical Association, vol.4, issue.376, pp.817-823, 1981.
DOI : 10.1080/03610927508827223

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. M. Furnival and R. W. Wilson, Regressions by Leaps and Bounds, Technometrics, vol.60, issue.4, pp.499-511, 1974.
DOI : 10.1080/00401706.1970.10488636

A. E. Gelfand and A. F. Smith, Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, vol.4, issue.410, pp.398-409, 1990.
DOI : 10.1080/01621459.1986.10478240

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Glover, HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS, Decision Sciences, vol.15, issue.1, pp.156-166, 1977.
DOI : 10.1093/comjnl/16.2.135

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Glover and G. A. Kochenberger, Handbook of metaheuristics, 2003.
DOI : 10.1007/b101874

D. E. Goldberg, V. Corruble, J. Ganascia, and J. Holland, Algorithmes génétiques : exploration, optimisation et apprentissage automatique, 1994.

Y. Grandvalet, Least Absolute Shrinkage is Equivalent to Quadratic Penalization, ICANN 98, pp.201-206, 1998.
DOI : 10.1007/978-1-4471-1599-1_27

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Gu, Smoothing spline ANOVA models, 2013.

S. R. Gunn, Support vector machines for classification and regression, ISIS technical report, vol.14, 1998.

A. György and L. Kocsis, Efficient multi-start strategies for local search algorithms, Journal of Artificial Intelligence Research, pp.407-444, 2011.

A. Haldar and S. Mahadevan, Probability, reliability, and statistical methods in engineering design, 2000.

J. A. Hartigan, Classification and Clustering, Journal of Marketing Research, vol.18, issue.4, 1975.
DOI : 10.2307/3151350

T. J. Hastie and R. J. Tibshirani, Generalized additive models, 1990.

A. S. Hedayat, N. J. Sloane, and J. Stufken, Orthogonal arrays : theory and applications, 2012.
DOI : 10.1007/978-1-4612-1478-6

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, Bayesian model averaging, Proceedings of the AAAI Workshop on Integrating Multiple Learned Models, pp.77-83, 1998.

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.
DOI : 10.1016/0951-8320(96)00002-6

R. Iman and W. Conover, The use of the rank transformation in regression, Technometrics, vol.21, issue.4, p.4997, 1979.

R. L. Iman and J. C. Helton, The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments, Risk Analysis, vol.2, issue.7, pp.591-606, 1991.
DOI : 10.2172/6489792

J. L. Jensen, Saddlepoint approximations. Number 16, 1995.

R. Jin, W. Chen, and T. W. Simpson, Comparative studies of metamodelling techniques under multiple modelling criteria, Structural and Multidisciplinary Optimization, vol.23, issue.1, pp.1-13, 2001.
DOI : 10.1007/s00158-001-0160-4

R. Jin, W. Chen, and A. Sudjianto, On Sequential Sampling for Global Metamodeling in Engineering Design, Volume 2: 28th Design Automation Conference, pp.539-548, 2002.
DOI : 10.1115/DETC2002/DAC-34092

M. E. Johnson, L. M. Moore, and D. Ylvisaker, Minimax and maximin distance designs, Journal of Statistical Planning and Inference, vol.26, issue.2, pp.131-148, 1990.
DOI : 10.1016/0378-3758(90)90122-B

B. Jørgensen and J. R. Martínez, Tauber Theory for Infinitely Divisible Variance Functions, Bernoulli, vol.3, issue.2, pp.213-224, 1997.
DOI : 10.2307/3318587

D. Juszczak and A. Nagaev, Local large deviation theorem for sums of i.i.d random vectors when the cramér condition holds in the whole space, Probability and Mathematical Statistics, vol.24, issue.2, pp.297-320, 2004.

J. R. Kalagnanam and U. M. Diwekar, An Efficient Sampling Technique for Off-line Quality Control, Technometrics, vol.6, issue.3, pp.308-319, 1997.
DOI : 10.1016/0885-064X(90)90009-3

I. Y. Kim and O. L. Weck, Adaptive weighted-sum method for bi-objective optimization : Pareto front generation. Structural and multidisciplinary optimization, pp.149-158, 2005.
DOI : 10.1007/s00158-004-0465-1

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Kirsch, An introduction to the mathematical theory of inverse problems, 2011.

P. Larranaga and J. A. Lozano, Estimation of distribution algorithms : A new tool for evolutionary computation, 2002.
DOI : 10.1007/978-1-4615-1539-5

P. Lascaux and R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingénieur, 1987.

C. L. Lawson and R. J. Hanson, Solving least squares problems, 1974.
DOI : 10.1137/1.9781611971217

J. S. Lehman, T. J. Santner, and W. I. Notz, Designing computer experiments to determine robust control variables, Statistica Sinica, vol.14, issue.2, pp.571-590, 2004.

A. Liaw and M. Wiener, Classification and regression by randomforest, pp.18-22, 2002.

P. Limbourg, E. D. Rocquigny, and G. Andrianov, Accelerated uncertainty propagation in two-level probabilistic studies under monotony, Reliability Engineering & System Safety, vol.95, issue.9, pp.998-1010, 2010.
DOI : 10.1016/j.ress.2010.04.012

H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated Local Search: Framework and Applications, Handbook of Metaheuristics, pp.363-397, 2010.
DOI : 10.1007/978-1-4419-1665-5_12

B. Lucquin, O. Pironneau, and M. Kern, Introduction to scientific computing, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01315454

D. G. Luenberger, Introduction to linear and nonlinear programming, 1973.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp.281-297, 1967.

R. T. Marler and J. S. Arora, The weighted sum method for multi-objective optimization : new insights. Structural and multidisciplinary optimization, pp.41-853, 2010.

M. D. Mckay, Evaluating prediction uncertainty, 1995.
DOI : 10.2172/29432

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

K. Miettinen, Some Methods for Nonlinear Multi-objective Optimization, Evolutionary Multi-Criterion Optimization, pp.1-20, 2001.
DOI : 10.1007/3-540-44719-9_1

C. Miller, Search for level sets of functions using computer experiments, 2005.

R. G. Miller, Beyond Anova: Basics of Applied Statistics., Biometrics, vol.53, issue.3, 1997.
DOI : 10.2307/2533582

V. A. Morozov, Methods for solving incorrectly posed problems, 2012.
DOI : 10.1007/978-1-4612-5280-1

V. Moutoussamy, Contributions to structural reliability : monotonicity constraints in numerical models, Thèse de doctorat, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01272065

R. H. Myers and D. C. Montgomery, Response surface methodology : process and product optimization using designed experiments, 2009.

E. A. Nadaraya, On Estimating Regression, Theory of Probability & Its Applications, vol.9, issue.1, pp.141-142, 1964.
DOI : 10.1137/1109020

G. Nakamura and R. Potthast, Inverse Modeling, pp.2053-2563, 2015.

H. Nakayama and Y. Sawaragi, Satisficing Trade-off Method for Multiobjective Programming, Interactive decision analysis, pp.113-122, 1984.
DOI : 10.1007/978-3-662-00184-4_13

T. Nguyenvan, System engineering for collaborative data management systems : Application to design/simulation loops, 2006.

A. Osyczka and . Document, An approach to multicriterion optimization for structural design, 1981.
DOI : 10.1016/0045-7825(78)90046-4

M. Padulo and M. D. Guenov, Worst-case robust design optimization under distributional assumptions, International Journal for Numerical Methods in Engineering, vol.32, issue.2, pp.797-816, 2011.
DOI : 10.1145/1141885.1141888

R. L. Plackett and J. P. Burman, THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS, Biometrika, vol.33, issue.4, pp.305-325, 1946.
DOI : 10.1093/biomet/33.4.305

A. Popelin, R. Sueur, and N. Bousquet, Encadrement et estimation de probabilités de défaillance dans un cadre monotone d'analyse de fiabilité structurale, Congrès ?µ 18, 2012.

F. Pukelsheim, Optimal design of experiments, 1993.
DOI : 10.1137/1.9780898719109

M. Rajabalinejad, L. E. Meester, P. V. Gelder, and J. K. Vrijling, Dynamic bounds coupled with Monte Carlo simulations, Reliability Engineering & System Safety, vol.96, issue.2, pp.278-285, 2011.
DOI : 10.1016/j.ress.2010.07.006

S. S. Rao and S. S. Rao, Engineering optimization : theory and practice, 2009.
DOI : 10.1002/9780470549124

M. G. Resende, Greedy randomized adaptive search procedures. Encyclopedia of optimization, pp.1460-1469, 2009.

E. D. Rocquigny, Structural reliability under monotony: Properties of FORM, simulation or response surface methods and a new class of Monotonous Reliability Methods (MRM), Structural Safety, vol.31, issue.5, 2009.
DOI : 10.1016/j.strusafe.2009.02.002

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method : a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning, 2013.

D. Ruppert and M. P. Wand, Multivariate locally weighted least squares regression. The annals of statistics, pp.1346-1370, 1994.
DOI : 10.1214/aos/1176325632

R. Sabre, Plans d'expériences : Méthode de taguchi. Techniques de l'ingénieur, Agroalimentaire, vol.1, 1006.

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.
DOI : 10.1016/S0010-4655(02)00280-1

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., Global sensitivity analysis : the primer, 2008.
DOI : 10.1002/9780470725184

URL : http://media.wiley.com/product_data/excerpt/74/04700599/0470059974.pdf

M. Sergent, D. Dupuy, B. Corre, and M. Claeys-bruno, Comparaison de méthode criblage pour la simulation numérique, 41èmes Journées de Statistique, 2009.

P. K. Shukla, On the Normal Boundary Intersection Method for Generation of Efficient Front, Computational Science?ICCS 2007, pp.310-317, 2007.
DOI : 10.1007/978-3-540-72584-8_40

P. Siarry and G. Dreyfus, La méthode du recuit simulé : théorie et applications, 1988.

T. W. Simpson, D. K. Lin, and W. Chen, Sampling strategies for computer experiments : design and analysis, International Journal of Reliability and Applications, vol.2, issue.3, pp.209-240, 2001.

T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, Metamodels for Computer-based Engineering Design: Survey and recommendations, Engineering with Computers, vol.17, issue.2, pp.129-150, 2001.
DOI : 10.1007/PL00007198

. Snecma, Méthodologie Conception Robuste, 2012.

. Snecma, Appliquer le processus de calibration des jauges sur supports axisymétriques, 2014.

I. M. Sobol-', On sensitivity estimation for nonlinear mathematical models, Mathematical Modelling ans Computational Experiments, vol.1, pp.407-414, 1993.

M. L. Stein, Interpolation of spatial data : some theory for kriging, 2012.
DOI : 10.1007/978-1-4612-1494-6

R. E. Steuer and E. Choo, An interactive weighted Tchebycheff procedure for multiple objective programming, Mathematical Programming, vol.19, issue.3, pp.326-344, 1983.
DOI : 10.1007/978-3-642-48782-8_32

C. B. Storlie and J. C. Helton, Multiple predictor smoothing methods for sensitivity analysis: Description of techniques, Reliability Engineering & System Safety, vol.93, issue.1, pp.28-54, 2008.
DOI : 10.1016/j.ress.2006.10.012

C. B. Storlie, L. P. Swiler, J. C. Helton, and C. J. Sallaberry, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliability Engineering & System Safety, vol.94, issue.11, pp.1735-1763, 2009.
DOI : 10.1016/j.ress.2009.05.007

T. Stutzle and H. Hoos, Stochastic local search : Foundations and applications, 2005.

E. Süli and D. F. Mayers, An introduction to numerical analysis, 2003.
DOI : 10.1017/CBO9780511801181

E. Talbi, Metaheuristics : from design to implementation, 2009.
DOI : 10.1002/9780470496916

URL : https://hal.archives-ouvertes.fr/hal-00750681

M. Tenenhaus, La régression PLS : théorie et pratique, 1998.

J. Thévenin, Le turboréacteur, moteur des avions à réaction, 2004.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.
DOI : 10.1111/j.1467-9868.2011.00771.x

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical methods for the solution of ill-posed problems, 2013.
DOI : 10.1007/978-94-015-8480-7

M. W. Trosset, Taguchi and Robust Optimization, 1996.

R. S. Varga, Matrix iterative analysis, 1962.
DOI : 10.1007/978-3-642-05156-2

URL : https://babel.hathitrust.org/cgi/imgsrv/download/pdf?id=mdp.39015000491780;orient=0;size=100;seq=9;attachment=0

N. Villa-vialaneix, M. Follador, M. Ratto, and A. Leip, A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops, Environmental Modelling & Software, vol.34, pp.51-66, 2012.
DOI : 10.1016/j.envsoft.2011.05.003

URL : https://hal.archives-ouvertes.fr/hal-00654753

T. Wagner, M. Emmerich, A. Deutz, and W. Ponweiser, On Expected-Improvement Criteria for Model-based Multi-objective Optimization, Parallel Problem Solving from Nature, PPSN XI, pp.718-727, 2010.
DOI : 10.1007/978-3-642-15844-5_72

G. G. Wang and S. Shan, Review of Metamodeling Techniques in Support of Engineering Design Optimization, Journal of Mechanical Design, vol.129, issue.4, pp.370-380, 2007.
DOI : 10.1115/1.2429697

G. G. Wang, L. Wang, and S. Shan, Reliability Assessment Using Discriminative Sampling and Metamodeling, SAE Technical Paper Series, 2005.
DOI : 10.4271/2005-01-0349

X. Wang, Y. Liu, and E. Antonsson, Fitting functions to data in high dimensional design space, Proceedings of DETC, 1999.

G. S. Watson, Smooth regression analysis. Sankhy¯ a : The Indian Journal of Statistics, Series A, pp.359-372, 1964.

Y. Xie and J. H. Kalivas, Evaluation of principal component selection methods to form a global prediction model by principal component regression, Analytica Chimica Acta, vol.348, issue.1-3, pp.19-27, 1997.
DOI : 10.1016/S0003-2670(97)00035-4

W. H. Zhang and T. Gao, A min???max method with adaptive weightings for uniformly spaced Pareto optimum points, Computers & Structures, vol.84, issue.28, pp.1760-1769, 2006.
DOI : 10.1016/j.compstruc.2006.04.007