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It is a good opportunity to thank Eric Gourdin and Nabil Benameur for their trust and

unlimited support, and other colleagues, Pierre Bauguion, Amal Benhamiche, Matthieu

Chardy, Yannick Carlinet, Bruno Kauffmann, Ruby Krishnaswamy, Luca Muscariello,

Philippe Olivier, Nancy Perrot, Alain Simonian, Christian Tanguy, for their constant

help during my stay in Orange Labs.

To all my friends, Vincent Angilella, Paul Beaujean, Mathieu Besson, Antoine Glo-

rieux, Claudio Imbrenda, Thibaut Lefebvre, Wuyang Li, Jakub Mareček, Léonce Mekinda,
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Résumé

Contexte technologique

Le Cloud Computing, ou informatique dans le nuage, est une nouvelle tendance por-

teuse dans les technologies de l’information et de la communication. La virtualisation et

l’utilisation des réseaux sont les technologies clés pour mettre en place une infrastructure

de cloud computing. Le marché du cloud computing, qui permet de payer à l’usage de

ressources de calcul et/ou de stockage connait une croissance forte. Dans ce paradigme,

les serveurs de calcul ou de stockage sont partagés par plusieurs utilisateurs/clients de

manière sécurisée au travers de l’utilisation de machines virtuelles (VM). L’intérêt pour

les clients est la réduction de leurs investissements dans des ressources informatiques

physiques en payant les ressources suivant leur utilisation. Pour l’Opérateur, le partage

d’une infrastructure commune permet de mutualiser les coûts, ce qui se reflète dans des

prix compétitifs. L’économie d’échelle permet aussi à l’Opérateur de réduire ses coûts et

sa capacité à utiliser un nombre minimum de ressources physiques pour assurer un service

à un grand nombre de clients, est essentiel pour lui assurer du profit.

Un problème central pour mettre en place une infrastructure de cloud computing est

la gestion des data centers qui abritent les machines physiques. On considère ici que les

data centers sont constitués d’un certain nombre de machines physiques constituées en

groupes. L’organisation des data centers suit une architecture en trois tiers suivant la

hiérarchie des switchs du réseau (accès, agrégation et core), architecture la plus couram-

ment utilisée de nos jours, voir [83]. Typiquement, un utilisateur demande à exécuter une

application qui consiste en une demande d’un nombre donné de machines virtuelles avec

des demandes de ressources. La première phase du déploiement d’une application est

de décider de l’affectation des machines virtuelles constituant l’application à un certain

nombre de machines physiques. Généralement, ce placement se fait en optimisant un ob-

jectif (maximiser le nombre de machines physiques libres) sous des contraintes exprimant

les besoins des utilisateurs et les contraintes des administrateurs du data center. Cepen-

dant, la définition de ce problème évolue avec les évolutions technologiques (possibilité de

migrer les machines virtuelles dans le data center sans interrompre le service, méthodes

avancées de contrôle de la consommation énergétique, etc), et l’amélioration des pratiques.

De nouvelles préoccupations continuent d’apparâıtre, notamment sur l’évolution des fonc-

tionnalités comme les demandes de VLANs (Virtual Local Area Networks) pour supporter

un groupe de machines virtuelles, Le cloud computing a quatre composantes principales:

utilisateurs, allocations des ressources, machines virtuelles et machine physiques.



Généralement, ce placement se fait en optimisant un objectif (maximiser le nombre de

machines physiques libres) sous des contraintes exprimant les besoins des utilisateurs et les

contraintes des administrateurs du data center. Cependant, la définition de ce problème

évolue avec les évolutions technologiques (possibilité de migrer les machines virtuelles

dans le data center sans interrompre le service, méthodes avancées de contrôle de la con-

sommation énergétique, etc), et l’amélioration des pratiques.De nouvelles préoccupations

continuent d’apparâıtre, notamment sur l’évolution des fonctionnalités comme les deman-

des de VLANs (Virtual Local Area Networks) pour supporter un groupe de machines

virtuelles, Le cloud computing a quatre composantes principales: utilisateurs, allocations

des ressources, machines virtuelles et machine physiques.

L’utilisateur soumet une demande de service qui contient les demandes détaillées

de ressources (puissance de calul, mémoire, etc.). Ces ressources sont ensuite provi-

sionnées en forme de machines virtuelles en temps réel suivant les disponibilités et un

accord sur les niveaux de service selon le SLA (Service Level Agreement). Enfin, les

machines virtuelles sont allouées à un ensemble de machines physiques qui exécutent la

demande. Ce processus prend aussi en compte les facteurs économiques. Ce dernier con-

cerne surtout l’opérateur dont l’objectif est de maximiser son revenu ou bien minimiser

son coût opérationnel. Par exemple, réduire le nombre de serveurs physiques utilisés per-

met d’éteindre ceux qui ne sont pas utilisés, ou bien rentabiliser au maximum l’usage de

ses serveurs physiques. Ici nous nous intéressons en particulier à l’allocation des machines

virtuelles aux machines physiques. En partant d’un placement statique, un modèle de-

vra être construit pour allouer un ensemble donné de machines virtuelles à des machines

physiques. Ce placement devra prendre en compte les ressources de calcul et la capacité

du réseau (mais pas les temps de calcul). L’objectif du problème est de minimiser un

coût d’affectation et de routage en prenant en compte les contraintes matérielles.

Modèle mathématique

Le problème précédemment décrit se modélise sous la forme du programme mixte en

nombre entier avec des contraintes quadratiques. Nous introduisons la notation suivante

pour le développement de formulations mathématiques.

• R ensemble des requêtes virtuelles.

• H = (S,E) H graphe physique.

• Gr = (V r, Lr) le graphe de la requête virtuelle r.

• S ensemble des serveurs.

• E ensemble des arcs du graphe H.

• V r ensemble des machines virtuelles de la requête r.

• Lr ensemble des arcs de Gr.

• Cri demande en ressources de calcul CPU de la VM i de V r.



• M ri mémoire requise pour VM i de V r.

• Ck capacité de calcul du serveur k.

• Mk mémoire disponible au serveur k.

• Fk coût fixe du serveur k.

• Ak coût additionnel linéaire induit par la charge CPU du serveur k.

• F rij demande de débit du lien virtuel (i, j).

• Be capacité de transmission (bande passante) du lien e.

• We coût fixe du lien e.

• Pkp le plus court chemin pour k − p, (k, p) ∈ S × S : k 6= p.

• xrik 1 si le VM i de la requête r est affectée au serveur k.

• θk 1 si le serveur k est utilisé.

• φe 1 si le lien e est utilisé.

Le modèle résultant est donné ci-dessous:

min
∑
k∈S

Fkθk +
∑
k∈S

Ak
∑
r∈R

∑
i∈V r

crixrik +
∑
e∈E

Weφe. (P)

s.t.
∑
k∈S

xrik = 1, ∀r ∈ R, i ∈ V r, (AC)∑
i∈V r

xrik ≤ θk, ∀r ∈ R,∀k ∈ S, (LC)∑
r∈R

∑
i∈V r

crixrik ≤ Ckθk, ∀k ∈ S, (KP)∑
r∈R

∑
i∈V r

mrixrik ≤Mkθk, ∀k ∈ S, (KP’)∑
r∈R

∑
k,p∈S:

k 6=p,e∈Pkp

∑
(i,j)∈Lr

f rijxrik x
rj
p ≤ Beφe, ∀e ∈ E, (QC)

θk, φe, x
ri
k ∈ {0, 1}, ∀r ∈ R, i ∈ V r, k ∈ S, e ∈ E.

L’objectif est de minimiser le coût total additif composé de trois termes: les coûts

fixes encourus par commutation sur les serveurs, le coût supplémentaire provenant de

la charge CPU, et les coûts fixes de l’utilisation des liens. Nous modélisons le coût

supplémentaire induit par la charge CPU comme une fonction linéaire de la charge tandis

que la mémoire est indépendante de la charge. Les Contraintes (AC) signifient que chaque

machine virtuelle doit être affectée à un seul serveur.

(LC) modélise le fait que les machines virtuelles d’une même requête sont généralement

affectées à des serveurs différents pour des raisons pratiques (sécurité, fiabilité). Les con-

traintes (KP, KP’) expriment le fait que la mémoire et le CPU disponibles au niveau



de chaque serveur sont limités. Les contraintes (QC) sont liées à la limitation de la

bande passante. Ce problème est donc clairement un programme en 0,1 à contraintes

quadratiques que nous nous proposons de résoudre.

Notons également que les paramètres du problème peuvent être incertains. Il est en

effet difficile de déterminer à l’avance les débits requis pour chaque demande. Ceci nous

incite donc à envisager les techniques d’optimisation robuste.

Outils mathématiques

Nous nous intéressons donc aux programmes mathématiques du type (1)

min cT0 x

s.t. qi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X ⊂ Rn.

(1)

Où l’ensemble qi(x),X sont donné par qi(x) = xTQix+cTi x+di (i = 0, . . . ,m),X =
{
x ∈

Rn : Ax ≤ b, xj ∈ Z, j ∈ J
}

et J ⊆ {0, . . . , n}. Les ci sont des vecteurs de dimension n,

et les di sont des scalaires.

On suppose que K := X ∩{x : qi(x) ≤ 0 (i = 1, . . . ,m)} est compact et non-vide. Ces

programmes sont notés MIQCP. Il n’est pas trivial de relaxer ces problèmes MIQCP sous

la forme de programmes convexes dans l’espace d’origine. En passant par l’idée du lifting

(élevant le problème dans un espace de plus grande dimension), on peut reformuler (1)

en ajoutant des variables supplémentaires donnant ainsi (2).

min cT0 x

s.t. 〈Qi,X〉 ≤ 0, i = 1, . . . ,m,

x ∈ X ,

X = xxT ,

(2)

Où X est une matrice réelle de taille n × n. Notons que la contrainte X = xxT n’est

pas convexe. Une approche classique consiste à relâcher cette contrainte et rajouter

des inégalités valides pour renforcer la relaxation convexe. Ceci inclut l’approche de

McCormick [119] où la contrainteXij = xixj sur le domaine rectangulaire xi ∈ [li, ui], xj ∈
[lj , uj ] est remplacée par les inégalités

max{uixj + ujxi − uiuj , lixj + ljxi − lilj} ≤ Xij ≤ min{lixj + ujxi − liuj , ljxi + uixj − uilj}

Une autre linéarisation a été proposée par Glover [74] utilisant de l’ordre de O(n) vari-

ables. Citons également la technique de reformulation-linéarisation de Sherali et Adams [145].

D’autres inégalités peuvent être obtenues dynamiquement par les techniques de program-

mation disjonctive [17, 16].

Des relaxations non-linéaires peuvent être également considérées. Il est en effet pos-

sible de relaxer la contrainte X = xxT en la remplaçant par: X − xxT � 0. Cette

relaxation peut être également obtenue par relaxation lagrangienne. Une autre technique



consiste à convexifier les fonctions quadratiques. En effet, en considérant une matrice Ci

semi-définie-positive, la contrainte

qi(x) = qi(x) = xTQix + cTi x + di ≤ 0

est relâchée grâce à

〈xxT ,Ci〉+ cTi x + 〈Qi −Ci,X〉+ di ≤ 0,

X � xxT .

Il est facile de prouver que déterminer la meilleure convexification se ramène à la résolution

d’un programme semi-défini-positif (X− xxT � 0) [39].

Une autre méthode pour obtenir des bornes pour le problème d’origine consiste à

relâcher lagrangiènement certaines contraintes en les intégrant dans la fonction objectif et

leur associant un ensemble de multiplicateurs exprimant le poids donné à ces contraintes

de relâchées. Il s’agit ensuite de résoudre le problème dual qui consiste à trouver les

meilleurs multiplicateurs maximisant la fonction objectif pénalisée. Un compromis est à

trouver entre la difficulté de résoudre le problème d’évaluation (pour des multiplicateurs

données) et la qualité de la borne.

D’autres paradigmes ont été récemment proposés, tel que la programmation copos-

itive. Il s’agit de remplacer la contrainte X − xxT = 0 par une contrainte du type:

S(x,X) ∈ CP, Où S(x,X) =

(
1 xT

x X

)
et CP est le cône des matrices complètement

positives qui sont les matrices qui s’écrivent sous la forme BBT où B est une matrice

réelle non négative. Le cône dual du cône des matrices complètement positives est le cône

des matrices copositives qui sont les matrices X vérifiant vTXv ≥ 0 pour tout vecteur v

non négatif.

Un autre paradigme utilisé dans le contexte de programmation polynomiale (in-

cluant donc la programmation quadratique) est l’approche SoS (somme de carrés) de

Lasserre [101, 102] et Parrilo [135, 136]. Il s’agit de remplacer la contrainte de positivité

d’un polynôme par une contrainte imposant que ce polynôme est la somme de carrés de

polynômes. Or si on se restreint à des sommes de carrés de polynômes de degré inférieur à

une constante, on peut déterminer si un polynôme s’écrit sous la forme d’une telle somme

en résolvant un programme semi-défini-positif.

L’autre outil mathématique que nous utilisons dans cette thèse pour traiter l’incertitude

est l’optimisation robuste. Rappelons que les paramètres de la demande peuvent être in-

certains. Il est en effet difficile de déterminer à l’avance les débits requis pour chaque

demande. Ceci nous incite donc à envisager les techniques d’optimisation robuste.

Nous nous intéressons à des problèmes linéaires incertains

min cTx

s.t. Ax ≤ b,

x ∈ Rn.

Nous supposons que x est divisée en x = (u,v), où u représente les variables non ajusta-

bles et v les variables ajustables. La contrepartie robuste de ce problème incertain à



l’étude s’écrit

min
u,v

cTu

s.t. Uu + Vv(ξ) ≤ b, [U,b] ∈ Ξ,
(FARC)

où les paramètres incertains sont U ∈ Rm×n et b ∈ Rm alors que V et c sont supposées

être connues. On note par ξ ≡ [U,b] ∈ Ξ les paramètres incertains appartenant à

l’ensemble d’incertitude fixé Ξ supposé être compact, convexe et avec un intérieur non

vide. ξ sera considéré comme un vecteur.

Les variables non ajustables sont parfois interprétées comme variables du type“ici et

maintenant”, tandis que les variables ajustables peuvent être considérés comme des vari-

ables “attend et regarde”. Cette contrepartie robuste ci-dessus est généralement appelé

contrepartie robuste entièrement ajustable (FARC). FARC est parfois appelé la contrepar-

tie robuste dynamique puisque v dépend de ξ. FARC peut être considérée comme un

problème d’optimisation à deux étages où u sont les variables de premier étage et v sont

les variables de deuxième étape.

Pour obtenir un problème d’optimisation traitable, plusieurs approches ont été pro-

posées. Si nous limitons v à une fonction constante par rapport aux paramètres incer-

tains, FARC devient simplement la contrepartie robuste standard statique notée SRC. Si

les variables ajustables v dépendent affinement de ξ:

v(ξ) = w + Wξ, ξ ≡ [U,b] ∈ Ξ,

où w et W sont à optimiser, on obtient l’approche (AARC). Si v est exprimé en un

polynôme en ξ ayant une degré ne dépassant pas une constante fixe, le problème de la

contrepartie solide est alors lié au test de positivité d’un polynôme. Ensuite, on peut

utiliser des techniques connexes, par exemple, la hiérarchie sos mentionné précédemment

pour résoudre le problème. Il y a aussi d’autres approches, telles que, les politiques affines

par morceaux, les approches multistatiques [27], l’adaptabilité finie [33].

Même si un grand nombre de propositions en optimisation robuste sont apparues, il

y a encore des défis à relever. Tout d’abord, à notre connaissances, aucune approche

n’est suffisamment générale pour englober la robustesse statique, la robustesse affine et

robustesse entièrement ajustable ou dynamique décrites précédemment. Deuxièmement,

comme observé dans [37], il n’y a pas de façon systématique pour jouer sur le com-

promis entre la performance des politiques qui en découlent et de la complexité de la

politique. Troisièmement, les paramètres incertains d’un problème d’optimisation peu-

vent être parfois difficiles à observer. Dans plusieurs applications, seul un sous-ensemble

de ces paramètres ou certains agrégats d’entre eux peut être observé.

Motivations et Contributions

Motivations

Comme mentionné précédemment, le problème d’affectation des machines virtuelles fait

intervenir des contraintes quadratiques en 0-1. Sa structure combinatoire est assez com-

plexe car il contient l’affectation quadratique et les problèmes de sac à dos quadratique.



La possibilité de traiter ce problème repose en grande partie sur le développement de tech-

niques mixtes de la programmation entière avec contraintes quadratiques. Cependant,

comme mentionné dans [52, 50, 51], même si des progrès importants ont été réalisés, les

résultats ”révolutionnaires” sont encore à venir et de nombreux problèmes fondamentaux

ne sont pas traitées. En effet, la relaxation linéaire standard conduit à un grand écart,

tandis que les techniques comme la relaxation semi-définie est informatiquement coûteuse

dans la procédure de Branch-and-bound. Ainsi, le développement des techniques et des

programmes de relaxation efficaces pour le modèle déterministe est la tâche centrale pour

le problème d’affectation des machines virtuelles de nuages.

MIQCP couvre non seulement le problème d’affectation des machines virtuelles, mais

aussi un large éventail d’autres applications et des problèmes de recherche, par exemple,

des problèmes d’affectation quadratique [81, 153], les problèmes max-cut [92], et d’autres

applications [70, 13, 125]. Nous nous sommes aussi intéressés à revoir les techniques de

relaxation générale et établir des résultats théoriques pour les problèmes MIQCP.

Motivé par le problème d’affectation avec des exigences incertaines, nous déployons des

efforts visant à développer un nouveau paradigme général pour les programmes linéaires

avec paramètres incertains dans le cadre de l’optimisation robuste. Les Programmes

linéaires avec des paramètres incertains peuvent être très difficiles si l’on considère des

approches complètement dynamiques (du type FARC). Ainsi, des politiques plus restric-

tives doivent être proposées. En outre, dans la pratique, les paramètres incertains d’un

problème d’optimisation peuvent être parfois difficiles à observer. Alors, comment intégrer

l’incertitude d’une manière suffisante tout en permettant que des décisions soient prises

sur la base d’informations incomplètes ? Y’a t-il un moyen systématique de faire un

compromis entre la complexité de calcul et la qualité de la solution ?

Contributions

Les principaux résultats de cette thèse sont structurés en trois thèmes, à savoir la procédure

de solution du problème d’affectation des machines virtuelles au chapitre 3, le calcul

d’enveloppe convexe et d’enveloppe concave des fonctions générales bilinéaires au chapitre 4,

une nouvelle hiérarchie générale de relaxations dans le contexte d’optimisation robuste

au chapitre 5.

Plus précisément, le chapitre 3 est consacré à plusieurs techniques de relaxation qui

accélèrent la procédure de solution du problème d’affectation de machines virtuelles.

Dans le chapitre suivant, nous examinons quelques méthodes d’approximation pour la

construction de sous-estimateurs convexes d’une fonction bilinéaire, qui est utile pour la

construction d’une relaxation de la version étendue du modèle d’affectation des machines

virtuelles (P). Pour résoudre le problème de l’incertitude, nous proposons un nouveau

paradigme flexible et efficace appelé optimisation robuste multipolaire dans le chapitre 5.

Dans ce qui suit, nous donnons plus de détails sur les contributions de la thèse.

Dans le Chapitre 3, nous nous concentrons la résolution du problème d’affectation

des machines virtuelles. Tout d’abord, nous proposons de reformuler le problème par le

biais des techniques de linéarisation classiques permettant de le transformer en MILP



(programme linéaire à variables mixtes). Nous avons implémenté le relaxation de Mc-

Cormick ainsi que la relaxation de Glover. Les résultats numériques montrent que, même

si le modèle basé sur la relaxation de Glover a moins variables que celui basé sur la

relaxation de McCormick, ses performances de calcul ne sont pas beaucoup mieux que

ce dernier. La qualité de la relaxation semble être l’élément le plus déterminant. On

remarque que nous pouvons appliquer les inégalités RLT pour renforcer le modèle basé

sur la relaxation de McCormick et de supprimer un certain nombre de contraintes redon-

dantes. D’un autre côté, il peut être compliqué d’appliquer RLTs au modèle basé sur la

linéarisation de Glover. Par conséquent, nous allons nous concentrer sur la linéarisation

McCormick. Ensuite, nous utilisons la RLTs et nous ajoutons des inégalités valides pour

renforcer le modèle McCormick. Notre premier résultat montre que les inégalités RLT

peuvent éliminer de nombreuses inégalités McCormick redondantes. En outre, nous avons

proposé deux types d’inégalités valides en exploitant la structure du problème. Dans

l’ensemble, plusieurs formulations sont proposées et ils sont codés en C ++ et résolus par

CPLEX 12.6.3. Leurs performances de calcul sont évaluées sur certains cas de problème.

Les résultats numériques montrent que la combinaison des types d’inégalités valides peut

accélérer sensiblement la résolution du problème. Nous renvoyons le lecteur au Tableau

3.2 pour plus de détails.

Alors que les inégalités valides sont souvent très efficaces pour le renforcement de la

relaxation linéaire, il y a des cas où l’écart de relaxation peut être de 20%(ce qui peut

rendre le branch-and-bound coûteux en temps de calcul). Ainsi, nous avons proposer des

relaxations lagrangiennes pour décomposer le problème résolvant ainsi le sous-problème

relâché de manière efficace avec des bornes inférieures de bonne qualité. En particulier,

nous proposons une décomposition qui conduit à une séquence de sous problèmes associés

à chaque demande, chaque serveur, et chaque lien. Nous donnons en outre un résultat

géométrique sur la force de la borne lagrangienne montrant qu’elle est généralement

beaucoup plus forte que la borne de la relaxation continue. Une hiérarchie de relaxation

est également proposée en considérant une séquence de couverture de l’ensemble de la

demande. Nous pouvons, par exemple, diviser l’ensemble des demandes (requêtes) en

certains sous-ensembles disjoints et décomposer le problème en fonction de ce partition-

nement. Les bornes de la relaxation lagrangienne résultante est meilleure que celle basée

sur une simple décomposition des demandes. Pour résoudre le problème dual, nous util-

isons l’algorithme in-out proposé par Ben-Ameur et Neto [25] avec un bon choix de des

paramètres, notamment le premier point intérieur.

Nos expériences numériques montrent que: (1) Pour les petites instances de problèmes

que CPLEX peut résoudre à l’optimum en un temps raisonnable, nous montrons que

la décomposition lagrangienne avec in-out peut fournir rapidement des bornes quasi-

optimales. (2) Pour les instances où CPLEX nécessite des heures de temps CPU pour les

traiter, le schéma de décomposition lagrangienne avec in-out peut produire des bornes

de bonne qualité en un temps moindre. De plus, on remarque que, en moyenne, la

décomposition lagrangienne est environ dix fois plus rapide que CPLEX (avec ses paramètres

standards) pour atteindre la même borne. La hiérarchie proposée est très attrayante pour

les instances de problèmes avec un grand nombre de demandes, que CPLEX 12.6.3 ne



peut résoudre dans la pratique.

Ensuite, nous introduisons une nouvelle formulation induite par des questions de

symétries du problème. Cette formulation permet de réduire considérablement le nombre

de termes bilinéaires dans le modèle, et comme prévu, semble plus efficace que les modèles

précédents. On peut traiter le modèle résultant comme une reformulation de l’agrégation

du modèle original. Pour les instances de problèmes qui ne peuvent pas bénéficier di-

rectement de cette nouvelle formulation, nous proposons une heuristique pour générer

des solutions possibles et les bornes supérieures correspondantes.

Notez que, dans la pratique, l’arrivée des machines virtuelles est dynamique et imprévisible.

Le modèle (P) ne peut guère fonctionner dans ce cas. A la fin du Chapitre 3, nous pro-

posons un modèle qui optimise certaines politiques d’affectation.

Dans le chapitre 4, nous discutons de quelques approches pour l’approximation des

enveloppes convexes et enveloppes concaves des fonctions bilinéaires

f(x) =
∑
i<j

Qijxixj , (1 ≤ i < j ≤ n),

en particulier sur les hypercubes en raison de leur généralité. Une propriété de la fonction

bilinéaire f dûe à Sherali [146] et Rikun [140] est que son enveloppe convexe et concave sur

un hypercube sont sommet-polyédriques, à savoir les enveloppes de f sur un hypercube

cöıncident avec les enveloppes de sa restriction aux sommets de l’hypercube. Cela nous

permet de définir l’enveloppe convexe de f comme suit.

min
λi

{
2n∑
i=1

λif(vi) :
2n∑
i=1

λivi = x,
2n∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , 2n

}
,

où vi (i = 1, . . . , 2n) sont les sommets d’un hypercube à n dimensions. Cependant, comme

le nombre de points extrêmes d’un hypercube est exponentiel, la caractérisation complète

de ces enveloppes polyédriques est en général difficile.

Nous examinons tout d’abord un estimateur basé sur un programme SDP, où on

considère l’intersection d’une contrainte de SDP avec un ensemble d’inégalités quadra-

tiques valides pour l’hypercube. Notre contribution est liée aux travaux d’ Anstre-

icher [11]. Nous montrons que les deux variantes suivantes de formulations pour approcher

l’enveloppe convexe des fonctions bilinéaires sont équivalentes.

min
1

2
〈Q,X〉

s.t. Xii ≤ xi, (i = 1, . . . , n),

max{xi + xj − 1, 0} ≤ Xij ≤ min{xi, xj}, i < j,

S(x,X) � 0,

min
1

2
〈Q,X〉

s.t. Xii = xi, (i = 1, . . . , n),

max{xi + xj − 1, 0} ≤ Xij ≤ min{xi, xj}, i < j,

S(x,X) � 0



Ensuite, nous proposons une nouvelle approche en considérant un outil prédéfini pour

approcher les enveloppes convexe et concave de f sur un hypercube. Plus précisément,

pour un hypercube à n dimensions, nous définissons une couverture comme étant une

ensemble C tel que l’ensemble des indices {1, . . . , n} est couvert par set C. Ensuite, le

polytope associé à la couverture C est explicitement caractérisé par

CC =

⎧⎨⎩(x, (Xij)i<j) ∈ [0, 1]n × [0, 1]
n(n−1)

2 : XI =
2|I|∑
l=1

λl
IV

l
I ,xI =

2|I|∑
l=1

λl
Iv

l
I ,

2|I|∑
k=1

λk
I = 1,λI ≥ 0, I ∈ C.

⎫⎬⎭ ,

où Vl
I = vl

I(v
l
I)

T , et vl
I est un sommet de l’hypercube de dimension |I|.

Un estimateur convexe de fonction bilinéaire f pourrait être donné par :

1

2
min

(x,(Xij)i<j)∈CC
〈Q,X〉.

Cette approche conduit à une reformulation linéaire et nous sommes en mesure d’établir

des liens avec diverses inégalités et la méthode reformulation-linéarisation-technique (RLT)

proposée dans [2].

Enfin, on montre que l’enveloppe convexe (resp. Concave) d’une fonction bilinéaire f

est affinement équivalente à l’enveloppe concave (resp. Convexe) d’une fonction enveloppe

polyédrique. Plus précisément, nous considérons la fonction polyédrique

φ : [0, 1]n � x �→ φ(x) =
∑
i<j

Qij |xi − xj |.

Nous avons montré que

f̂(x) =
1

2

∑
i<j

Qij(xi + xj)−
1

2
qφ(x), ∀x ∈ [0, 1]n,

qf(x) =
1

2

∑
i<j

Qij(xi + xj)−
1

2
φ̂(x), ∀x ∈ [0, 1]n,

où qf (f̂) est l’enveloppe convexe (concave) d’une fonction f . Avec ces résultats, nous

montrons que si Qij ≥ 0, l’enveloppe concave d’une fonction bilinéaire f est entièrement

caractérisé par la relaxation de McCormick.

Nos résultats numériques montrent que dans l’ensemble, les estimateurs basés sur la

couverture sont généralement performants.

Après les résultats numériques, nous fournissons quelques idées pour une nouvelle ap-

proche pour approximer l’enveloppe convexe à un point x prédéfini lorsque tous les coef-

ficients de f ne sont pas négatifs. L’approche est motivée par la propriété que l’enveloppe

concave de la fonction φ est sommet-polyédrique sur toutes les polytopes arbitraires si les

coefficients Qij (i < j) sont non négatifs. Nous considérons un polytope qui couvre un

hypercube et a moins de 2n sommets. Ensuite, nous montrons que l’enveloppe convexe f

sur ce polytope (qui peut être obtenu facilement) est une borne inférieure de l’enveloppe

convexe de f . D’autres études sont nécessaires pour trouver un moyen raisonnable de

définir des polytopes appropriés.

Dans le chapitre 5, nous considérons les programmes linéaires impliquant des paramètres

incertains et proposons une nouvelle contrepartie robuste traitable pour approcher la



stratégie dynamique (FARC). Pour introduire le nouveau paradigme, nous introduisons

deux outils, à savoir, la matrice de l’ombre et l’ensemble de pôles. Une matrice de l’ombre

pourrait être utilisée pour représenter le fait que les actions ou décisions sont généralement

prises sur des informations incomplètes de l’incertitude. Si la matrice d’ombre est une ma-

trice d’identité dont la taille est le nombre de paramètres incertains, nous disons que nous

avons une mesure complète de l’incertitude. Désignons par P ∈ Rn0×dim(Ξ) une matrice

d’ombre, où n0 est la dimension de l’ombre (à savoir, l’information partielle résultant) et

dim(Ξ) est la dimension de l’ensemble d’incertitude Ξ. L’information résultante partielle

est définie par

ΞP := PΞ ≡ {Pξ, ξ ∈ Ξ}.

Un élément clé de l’approche multipolaire est un ensemble fini de pôles, qui sont des

vecteurs dans l’espace image de la matrice d’ombre. On note Ω un tel pôle-set. Nous

disons que Ω est un ensemble de pôles ΞP si pour tout ξ ∈ Ξ, Pξ appartient à l’enveloppe

convexe de Ω (une combinaison convexe de pôles) notée conv Ω. Étant donné un ensemble

ΞP , une collection d’ensembles de pôles ΞP est définie comme

FΞP
:= {Ω : ΞP ⊆ conv Ω} .

Évidemment, les points extrêmes de ΞP forment un possible ensemble de pôles, à savoir,

ext(ΞP ) ∈ FΞP
.

Pour un Ω ∈ FΞP
fixé, pour chaque ξ ∈ Ξ un coefficient positif λξω est associé à chaque

pôle ω. Par définition d’un ensemble de pôles, le système suivant a une solution∑
ω∈Ω

λξωω = Pξ,

∑
ω∈Ω

λξω = 1,

λξω ≥ 0, ω ∈ Ω.

Soit Λξ l’ensemble des vecteurs de poids Λξ satisfaisant le système ci-dessus pour une ξ ∈ Ξ

donné. Dans le paradigme considéré, chaque pôle est associé à une action de recours, et

l’action de recours lorsque ξ ∈ Ξ est considéré, est approchée par une combinaison convexe

des opérations de recours associées aux pôles. Plus précisément, soit vω l’action de recours

associée au pôle ω dans le système ci-dessus. Nous avons besoin des variables ajustables

v(ξ) afin de se limiter à

v(ξ) =
∑
ω∈Ω

λξωvω,

Où λξ ∈ Λξ. Nous pouvons facilement présenter la contrepartie robuste multipolaire

définie par

ΠΞ(P,Ω) = min
u,v

cTu

s.t. Uu + V
∑
ω∈Ω

λξωvω ≤ b, ξ ∈ Ξ, λξ ∈ Λξ.



La contrepartie robuste multipolaire cherche une paire de solution non-ajustable u et un

ensemble d’actions de recours liées aux pôles vω, ω ∈ Ω tel que la fonction objectif est

minimisée lorsque les paramètres incertains varient dans l’ensemble d’incertitude Ξ. En

bref, étant donné Ξ, l’approche robuste multipolaire peut être vue comme une fonction

d’ensemble d’un Ω pôle-set et une matrice d’ombre P . On note la fonction par

ΠΞ : Rn0×dim(Ξ) ×FΞP
3 (P,Ω) 7→ ΠΞ (P,Ω) ∈ R

et on désigne par ΠΞ (P,Ω) la valeur robuste par rapport à (P,Ω). En outre, nous

appelons (u,v) solution multipolaire.

Nous avons ensuite prouvé que la contrepartie robuste multipolaire généralise la con-

trepartie robuste statique, contrepartie robuste affine ajustable, ainsi que contrepartie

robuste entièrement ajustable. Par ailleurs, dans le cadre de l’optimisation robuste mul-

tipolaire, on montre que si l’ensemble d’incertitude Ξ est un simplex, la contrepartie

robuste affine ajustable est équivalente à la contrepartie robuste entièrement ajustable

dans le sens où les valeurs des fonction objectif sont égales à l’optimum.

Nous montrons également que la contrepartie robuste multipolaire est traitable soit

par une procédure de génération de coupe ou d’une formulation compacte. Un résultat

important est que, étant donné une matrice d’ombre P, la fonction ΠΞ est monotone

croissante par rapport à l’inclusion de l’enveloppe convexe des ensembles de pôles. En

outre, nous montrons que l’approche multipolaire peut générer une séquence de bornes

supérieure et une séquence de bornes inférieures en même temps et les deux séquences

convergent vers la valeur robuste des FARC sous certaines hypothèses modérées.

Comme indiqué précédemment, l’approche multipolaire est basée sur la définition d’un

ensemble de pôles. Pour le construire, nous commençons par générer un simplex puis

nous calculons la meilleure transformation homothétique de ce simplex lui permettant de

contenir un ensemble convexe donné. Un algorithme efficace est proposé pour calculer

cet ensemble homothétique. En tant que conséquence directe de notre algorithme, nous

offrons une preuve simple des résultats géométriques de [128] liés aux hypercubes. Les

ensembles de pôles obtenus après cette transformation homothétique sont alors améliorés

en utilisant une procédure de raffinement basée sur la génération de coupes qui est utilisée

pour mettre à jour l’ensembles de pôles.

Pour illustrer numériquement l’approche multipolaire, un problème de lobbying est

considéré où un lobby vise à minimiser le budget nécessaire pour convaincre un ensemble

d’électeurs en tenant compte d’un modèle de dynamique d’opinion raisonnable sous une

certaine incertitude. Dans nos expériences numériques, nous utilisons notre contrepartie

robuste multipolaire pour modéliser le problème. Nous considérons des hypercubes ou des

boules comme ensemble d’incertitude. Généralement, la contrepartie robuste multipolaire

ferme de manière significative l’écart entre contrepartie robuste affine et la contrepartie

robuste entièrement ajustable, en particulier pour les incertitudes du type hypercube.

En outre, comme on pouvait s’y attendre, la valeur robuste diminue à mesure que plus

d’informations est utilisée dans la contrepartie robuste multipolaire. Enfin, nous avons

illustré le bénéfice de l’adaptabilité.

Dans l’ensemble, Résumons les principaux résultats de cette thèse comme suit.



• Une formulation exacte et plusieurs reformulations pour le problème d’affectation

de machines virtuelles dans le cloud. Nous utilisons plusieurs inégalités valides

pour renforcer la formulation exacte, accélérant ainsi l’algorithme de résolution de

manière significative. En outre, une décomposition lagrangiennes efficace et une

formulation induite par symétrie sont proposées.

• Deux approches sont proposées pour la construction d’enveloppes convexes et con-

caves pour l’optimisation bilinéaire sur un hypercube. Nous établissons plusieurs

connexions théoriques entre différentes techniques et nous discutons d’autres exten-

sions possibles.

• Un nouveau paradigme sur les problèmes linéaires généraux avec des paramètres

incertains. Nous proposons une hiérarchie convergente de problèmes d’optimisation

robuste - approche robuste multipolaire, qui généralise les notions de robustesse

statique, robustesse affinement ajustable, et la robustesse entièrement ajustable.
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Chapter 1

Introduction

1.1 Summary

Many real life problems are characterized by making decisions with current information to

achieve certain objectives. Mathematical programming has been developed as a successful

tool to model and solve a wide range of such problems. However, many seemingly easy

problems remain challenging. And some easy problems such as linear programs can be

difficult in the face of uncertain inputs. Motivated by a telecommunication problem

where assignment decisions have to be made such that the cloud resources are utilized

in a minimum-cost way, we employ several mathematical programming tools to solve the

problem efficiently and develop new tools for general theoretical problems. In brief, our

work can be summarized as follows.

• An exact formulation and several reformulations on the cloud virtual machine map-

ping problem. We use several valid inequalities to strengthen the exact formulation,

thereby accelerating the solution procedure significantly. In addition, an effective

Lagrangian decomposition and a symmetry-induced formulation are proposed.

• A couple of new perspectives on the construction of convex and concave envelopes

for bilinear optimization over a hypercube. We establish several theoretical connec-

tions between different techniques and provide a novel approach.

• A novel paradigm on general linear problems with uncertain parameters. We pro-

pose a hierarchical and convergent framework of adjustable robust optimization –

multipolar robust approach, which generalizes notions of static robustness, affinely

adjustable robustness, fully adjustable robustness and fills the gaps in-between.

Our goal is to provide a mapping solution of cloud virtual machines to cloud operators

such that the resource of data center networks are utilized economically and efficiently in

a cloud computing environment. This easy-to-state problem however is hard to solve even

for small size problem instances as it is a nonconvex quadratically constrained problem.

Then, several questions arise. How to improve the scalability of computation? How to

model the problem in the face of uncertainty? Can we generalize some techniques or

provide new perspectives to some theoretical problems? This thesis is planned to address

these questions.

1



2 Introduction

1.2 Thesis motivation

This thesis is motivated by an optimization problem in the context of cloud computing

where a number of different sets of virtual machines need to be assigned to servers in

a date-center network. In this section, we present the problem and some background

information. Then, we review some existing work and point out several challenges.

1.2.1 Mapping of cloud virtual machines

Cloud computing paradigm emerges as a combination of many advanced technologies,

e.g., hardware virtualization, Web services, distributed computing and date center au-

tomation. It significantly improves the scalability and flexibility of the utilization of

network resources while cutting the IT cost as a pay-as-you-go service.

In a cloud computing environment, clients of telecommunication operators demand

cloud resources for different applications. Cloud resources primarily include memory and

CPU, which are usually packed as virtual machines (VMs). To meet practical require-

ments (e.g., data transmission, live migration), communications between virtual machines

are required. Therefore, a request from a single client can be described as a set of virtual

machines with associated network throughput.

For each demand from a client, cloud operators organize their activities in a top-down

process. It involves pricing, accounting, resource allocation and mapping procedures. In

the mapping procedure, cloud operators map the virtual requests to physical network

machines by the technology of virtualization, which vertically scales the usage of hardware

resources (CPU and memory).

Today, with an increasing number of demands on cloud services, the utilization of

server virtualization in Infrastructure as a Service (IaaS) and Platform as a Service

(PaaS) grows rapidly. Therefore, improving the scalability and reducing the power con-

sumption of data center networks becomes a practical issue to cloud operators. Several

solutions are available to alleviate this situation. For example, one can change the existing

network architecture and routing protocol. Alternatively, one may consider optimizing

the placement of VMs on the hosts of virtualised servers under multiple constraints while

minimizing the power consumption.

This thesis focuses on the assignment of virtual resource to physical servers. In general,

a Virtual Network Function (VNF) is responsible for the implementation of functionalities

of multiple VMs (a request) on top of the hardware networking infrastructures. Possible

mapping solutions are limited to certain hard constraints, for example, resource capacity

constraints, traffic routing constraints. The solution to this problem is how to map the

cloud resources and which servers and links should be used. Our objective is to minimize

the power consumption cost incurred by the mapping decisions, which will also be called

mapping cost. And henceforth, we will call this problem mapping problem.

To conclude this section, we illustrate the mapping problem by an example in Fig-

ure 1.1. In the example, we have two virtual requests which are also two VNFs. The

left-hand-side one has three VMs and the right-hand-side one has two VMs. Also, VMs

within the same request communicate with each other. One feasible solution is that for
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Figure 1.1: An illustration of the mapping procedure

each request, VMs are mapped to different severs and the communication throughput

between each pair of VMs is routed between the corresponding servers that VMs are

mapped to.

1.2.2 Problem background

In this section, we provide some basic information on virtual requests.

As Cloud Computing is built on the virtualization technologies, VMs are important

components. After a customer’s request is received, a set of VMs will be allocated on

servers to execute a specific program, even on different operating systems. Without special

restrictions, a server can usually run multiple VMs simultaneously. During operating, one

VM is isolated from the other, but some communication throughput will be generated

between VMs within the same request. Note also that in practice, each request involves

a small number of VMs.

Apart from the basic requirements, some additional features are required for advanced

computing services. In order to improve the utility of data center resource, VMs should

be dynamically started or stopped, and sometimes live migration should be conducted,

i.e. move the VM from one physical to another. To ensure the service availability, VMs

of the same request should be separately allocated.

In general, VMs are usually categorized by the type, e.g., small, medium, large,

xlarge [154] (see Table 1.1). In addition, one may estimate the distribution of the through-

put based on real statistics. It has been observed that in practice, while 80% around 800

Kbytes/min, 4% of them have a rate 10 times higher (see [122] for example). Furthermore,

one may need to be aware that all the VMs communications between two corresponding

servers (which host VMs) should route on a single path, as multipath routing may cause

discrepancies among arrivals of data at destination.
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Table 1.1: Virtual machine types

CPU (core) Memory (GB)

Small 1 1

Medium 2 2

Large 4 4

XLarge 8 16

1.2.3 Related work and challenges

Virtualization technology enables the emergence of cloud computing as a flexible and on-

demand service. It has been observed that virtualization can also impact the computation

and communication performance of cloud services. These impacts are greatly due to the

placement of virtual machines in a virtualization based data-center network, which has

attracted a considerable amount of studies. Those studies differ from each other in terms

of the objective function, resource associated constraints, and solution methods. We

review in this section several investigations related to the mapping problem.

Google in 2012 proposed a challenge organized by the French Operational Research

and Decision Aid Society (ROADEF) and the European Operational Research society

(EURO), where a set of VMs assigned to a set of machines needs to be reassigned to

minimize the assignment cost while balancing the usage of physical machines under sev-

eral resource constraints. As reported in [126], the proposal takes into account capacity

constraints of servers regarding CPU, memory, storage as well as location constraints.

However, it does not include bandwidth constraints respecting the throughput require-

ments among VMs. Exact formulations of this problem are mixed integer linear pro-

grams. To deal with large scale problems, different heuristics were proposed. Similar

work has been conducted in [68], where authors constructed a structural representation

of virtual services. The root of the structure holds all the information associated with

the structure and each child is associated with VM type information and constraints.

However, the problem formulation does not concern the constraint of bandwidth incurred

by communication flows. One of the specific challenges on the collaborations among

data centers is that a local cloud site has no information on the specifics of remote sites

(i.e. the amount of available capacity). To address the scalability of data centers, au-

thors in [122] introduced the traffic-aware virtual machine placement model where only

bandwidth constraints are considered and it results in a Quadratic Assignment Problem

(QAP). Rather than solving the problem exactly, a two-tier approximate algorithm was

proposed. Furthermore, traffic patterns and network architectures are taken into account

as some impacts of the scalability.

In the context of virtual network embedding (VNE), similar mapping problems are

also considered. Houidi et al. [86] proposed a general approach to virtual network pro-

vision among multiple substrate networks. The virtual provision process is characterized

by four stages: resource matching, splitting, embedding and binding. In the phase of
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VNE, a mixed integer linear programming model was developed and an exact algorithm

was proposed for the solution. Their global objective is to maximize the acceptance ra-

tio. They also considered the dynamic case, where the arrival of VMs is dynamic and

unpredictable over time. Heuristics on sequential request processing and VM embedding

with parallel request processing where discussed. Note that due to the scalability of

cloud computing, a graph splitting procedure is not necessarily considered in the cloud

environment. Authors in [133] presented a unified resource allocation framework for IaaS

clouds based on VNE techniques. They applied the methodology proposed in [59] to

correlate the node and link mapping phase, leading to a mixed integer program. The

formulation allows splittable traffic flows (i.e., multiple routing paths) for any O-D pair.

Authors considered two phases solution procedure: node mapping and link mapping. In

node mapping phase, they applied random rounding techniques [139] to correlate flow

variables and binary variables. A potential substrate node which maximizes the products

of flow variables and binary variables is then selected. Decision on the mapping of virtual

links are made by solving a Multi-Commodity Network Flow (MCNF) problem.

A dynamic placement model for clustered web applications was proposed in [93].

In their proposal, a placement controller decides to start or stop servers as needed to

control the number and placement of application instances, which reduces overheads

(e.g., configuration file loading), but it does not allow combinations of applications to be

deployed and executed on application servers. They considered multiple objectives, i.e.,

maximize the acceptance ratio, minimize the placement changes, and balance the loads

of servers, while respecting some linear knapsack constraints. To solve the problem, a

heuristic method was proposed.

In the face of uncertain demands of VMs, authors in [54] presented a model to place

VMs across multiple cloud providers, where they assumed four components in the cloud

environment: user, VM repository, cloud provider, and cloud broker. The algorithm was

designed for cloud brokers to allocate VMs onto cloud providers and it assumes that

there are three phases provisioning resources: reservation, utilization and on-demand

plans. Whenever the demand exceeds the amount of reservation resources, additional

prices (usually greater than the sum of the corresponding reservation and utilization

cost) are incurred. They used stochastic integer programming techniques (a two-stage

recursive formulation) to minimize the total cost. The first stage variable is defined as

the number of VM reservation, and the second stage variables are defined as the numbers

of VMs in utilization phrase and on-demand phase. The probability distributions of

uncertain parameters of demands and prices are given. Instead of considering bandwidth

constraints explicitly, authors associated with each VM a bandwidth cost.

A recently related thesis [120] studied the virtual network infrastructure provisioning

in distributed cloud environment, where an exact model taking into account bandwidth

constraints was proposed. To improve the scalability, a heuristic method was proposed

based on graph partition and bipartite graph matching techniques.

While a large number of papers in the mapping problem have appeared, there are

still some challenges. First, to the best of our knowledge, few mathematical program-

ming techniques have developed to the solution procedure of the bandwidth constrained
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mapping problem. Second, parameters of demands are usually uncertain, for example,

the communication throughput between VMs fluctuates largely.

1.3 Content of the PhD

1.3.1 The scope

In this thesis, we address challenges presented at the end of last section. Point by point,

let us identify the focus of our thesis.

• As mentioned earlier, the mapping problem is a 0-1 quadratically constrained prob-

lem. Its combinatorial structure is rather complex as it contains the quadratic

assignment and the quadratic knapsack problems. The tractability of this prob-

lem relies heavily on the development of techniques on Mixed-Integer Quadratically

Constrained Programming (MIQCP). However, as mentioned in [52, 50, 51], even

though significant progress has been made, the “breakthrough” results are yet to

come and many fundamental problems have not been handled. Indeed, standard

linear relaxations bring large gaps, while techniques such as semi-definite relaxation

is computationally costly in the branch-and-bound procedure. Thus developing ef-

fective relaxation techniques and schemes for the deterministic model is the central

task of the mapping problem.

• As MIQCP covers not only the mapping problem, but also a wide range of other ap-

plications and research problems, for example, quadratic assignment problems [81,

153], pooling and blend [70, 13, 125], max-cut problems [92], we are also interested

in revisiting general relaxation techniques and establish some theoretical results for

MIQCP problems.

• Motivated by the mapping problem with uncertain demands, we devote efforts to

developing a general novel paradigm for linear programs with uncertain parameter in

the framework of robust optimization. Linear programs with uncertain parameters

can be very difficult when we consider adaptability of recourse actions. Thus,

relaxation techniques need to be proposed. Moreover, in practice, the uncertain

parameters of an optimization problem can be sometimes difficult to observe. So

how to incorporate sufficient uncertainty to a model while allowing decisions to be

made upon incomplete information? And is there a systematical way to make a

trade-off between the computational complexity and the quality of the solution?

1.3.2 Outline and contributions

The remainder of this thesis is organized in five chapters. Chapter 2 provides an overview

on relaxation techniques of MIQCPs. Chapter 3 and Chapter 4 focus on relaxations tech-

niques on MIQCPs from an industrial perspective and a research perspective. Chapter 5

is devoted for developing novel approaches dealing with uncertainty in the framework of

robust optimization.
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In Chapter 2, we review some relaxation techniques on MIQCP. These techniques

include general algorithmic frameworks, polyhedral relaxations, nonlinear relaxations,

Lagrangian relaxation, as well as copositive programming and moment-SoS hierarchies.

Derivations on some important results are given.

In Chapter 3, we firstly present several ideas to reformulate the mapping problem

to get the problem solved efficiently. Further, a Lagrangian-based decomposition is pro-

posed, reducing the problem into a number of subproblems of small sizes, which are then

solved by a cutting plane algorithm. A set of experiments is carried out by implementing

the branch-and-cut procedure and the accelerated cutting plane algorithm (a.k.a. in-out

algorithm) with CPLEX 12.6.3 routines. The numerical results show that several global

optima and lower bounds of good quality can be found in a reasonable time by the pro-

posed approaches. Finally, we proposed a reformulation exploiting symmetries of virtual

requests, which can handle some larger instances.

Chapter 4 discusses a couple of approaches to approximating the convex and concave

envelopes of bilinear functions, particularly over hypercubes due to its generality. The

first approach is based on a semi-definite program. The second approach considers some

predefined set covers of a hypercube and leads to a linear program. Then we establish a

connection between the convex envelope of a bilinear function and the concave envelope

of a polyhedral function. Numerical experiments are conducted to compare the two

approaches. As a perspective, a novel approach to approximate the envelopes is discussed

and illustrated.

In Chapter 5, we study linear programs involving uncertain parameters and propose

a new tractable robust counterpart which contains and generalizes several other models

including the existing Affinely Adjustable Robust Counterpart and the Fully Adjustable

Robust Counterpart. It consists in selecting a set of poles whose convex hull contains

some projection of the uncertainty set, and computing a recourse strategy for each data

scenario as a convex combination of some optimized recourses (one for each pole). We

show that the proposed multipolar robust counterpart is tractable and its complexity

is controllable. Further, we show that under some mild assumptions, two sequences

of upper and lower bounds converge to the optimal value of the fully adjustable robust

counterpart. To illustrate the approach, a robust problem related to lobbying under some

uncertain opinions of authorities is studied. Several numerical experiments are carried

out showing the advantages of the proposed robustness framework and evaluating the

benefit of adaptability.

Finally, in Chapter 6, we conclude the thesis by evaluating the results and giving some

directions of future research.





Chapter 2

Literature Review

2.1 Summary

In this chapter, we review some relaxation techniques on mixed-integer quadratically

constrained programs. In particular, we focus on cases where quadratic constraints are

nonconvex and survey valid inequalities of different forms to relax the problem. In addi-

tion, we present a geometric view of Lagrangian relaxation, which sheds light on the de-

sign of Lagrangian relaxation schemes. Finally, we review two recent paradigms, namely,

copositive programming and moment-SoS hierarchies in a concise way.

2.2 Introduction

A Mixed-Integer Quadratically Constrained Program (MIQCP) is an optimization prob-

lem of the following form

min cT0 x

s.t. qi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X ⊂ Rn,

(2.1)

where qi(x) = xTQix + cTi x + di (i = 1, . . . ,m),X = {x ∈ Rn : Ax ≤ b, xj ∈ Z, j ∈ J},
and ci (i = 1, . . . ,m) are n-dimensional vectors, di (i = 1, . . . ,m) are scalars. We do not

assume any convexity property of functions qi but explicitly assume that X is a compact

set in an n-dimensional real space. We further assume that the constraint set denoted by

K := X ∩{x : qi(x) ≤ 0 (i = 1, . . . ,m)} is nonempty and compact , so that cT0 x attains

its minimum at some x̂ ∈ K.

Our assumption on set X can be justified by the following reasons. First, it is known

that the decision version of a general MIQCP without restriction on the topological

property of X is undecidable. Jeroslow [88] showed that minimizing a linear form over

quadratic constraints in integer variables is not computable by a recursive function (i.e.,

no computing device can be programmed to compute the optimums of all problems in

the problem class.). One way to address this issue is to ensure the compactness of set

X . Second, for most of practical optimization applications, the compactness of X usually

9
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holds1.

MIQCP constitutes a very general family of problems and there are several ways

to categorize them. Given a problem instance ((q)mi=1,X ), we can categorize it by the

convexity, linearity, and integrality of the problem.

• By convexity. If all Qi (i = 1, . . . ,m) are positive semidefinite (psd) matrices, we

say that (2.1) is a convex MIQCP; otherwise, if there exists one Qi not being psd,

we say that (2.1) is a nonconvex MIQCP.

• By linearity. If Qi (i = 1, . . . ,m) are null matrices (all components are zero),

program (2.1) becomes a Mixed-Integer Linear Program (MILP); otherwise it is a

nonlinear (quadratic) program.

• By integrality. If X does not contain integrality constraints, (2.1) becomes a con-

tinuous quadratically constrained problem.

Note that formulation (2.1) also includes optimization problems with quadratic objective

function as one can move the objective function to the constraint set by introducing an

additional variable. In addition, despite the fact that polynomial optimization contains

the family of MIQCP problems, we notice that any polynomial optimization problem

might be reduced in the form of (2.1) by introducing auxiliary variables.

Since the objective function of (2.1) is linear, the global optima of (2.1) lie among

extreme points of the constraint set. Henceforth, we will focus on the constraint set

of (2.1). It has been commonly acknowledged that convexity plays a fundamental role in

mathematical programming in the tractability of an optimization problem. Rockafellar

in [141] pointed out that “In fact the watershed in optimization isn’t between linearity

and nonlinearity, but convexity and non-convexity.”. However, the definition of convex

optimization varies in the literature. By saying a convex problem in the form of (2.1),

Recockafallar [141] refers to cases where X is convex and qi (i = 1, . . . ,m) are convex

relative to set X (or equivalently, K is convex) as a convex optimization problem, while

Boyd and Vanderghe [45] refers to the situation that qi(i = 1, . . . ,m) are convex functions

and the algebraic representation of X is convex. Following Lasserre [104], we say that (2.1)

is a convex optimization problem if K is convex and we say that (2.1) is a convex program

(or has a convex representation) if qi (i = 1, . . . ,m) and the algebraic representation of

X are convex.

We remark that the development of convex programming, including paradigms (e.g.,

linear programming, conic programming) and algorithms, has brought success in solving

convex MIQCPs. But it appears that breakthroughs for nonconvex MIQCPs are yet to

come.

Outline. In this chapter, we will review convex relaxation techniques handling a

nonconvex MIQCP. In Section 2.3, we present two general algorithmic frameworks deal-

ing with nonconvex MIQCP along with several definitions and basic concepts. Then

we discuss both classical and recent techniques on polyhedral relaxation in Section 2.4.

1Special cases where unbounded variables are necessary, e.g., [111], will not be considered in

model (2.1).
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In Section 2.5, we discuss several semidefinite relaxations and their equivalent reformula-

tions, followed by dynamic strategies of adding valid inequalities. We also mention several

quadratic convexification techniques and their connection with the standard semidefinite

relaxation. Section 2.6 revisits the classic Lagrangian relaxation from a geometric view,

which sheds light on the strength of the associated Lagrangian bound. Finally, we presents

two novel paradigms briefly.

Notation. Throughout this chapter, for any matrix C, CT denotes its transpose

and Cij represents its ith row jth column component. For a set S, convS stands for its

convex hull; IntS refers to its interior and cl denotes its closure. If S is finite, |S| stands
for its cardinality. For a general function f : S �→ R, we denote by qf (resp.f̂) the convex

(resp. concave) envelope of f over a n dimensional hypercube. The inner product between

two matrices A,B ∈ Rm×n is denoted by 〈A,B〉. For a symmetric matrix X ∈ Sn and

vector x ∈ Rn, S(x,X) refers to

(
1 xT

x X

)
in Sn+1. Sn+ represents the cone of n× n real

positive semidefinite matrices.

2.3 General algorithmic frameworks

It is known that a nonconvex MIQCP is much harder to solve than a convex one. For

a convex MIQCP, dropping the integrality constraints usually leads to a tractable con-

vex program. Methods that address convex MIQCPs include, for example, generalized

Benders’ decomposition [72], outer approximation [66], Non-Linear Programming (NLP)

or Linear Programming (LP) based Branch-and-Bound (BB) algorithms [138]. We refer

readers to excellent surveys [43, 77, 21] for details. In contrast, for a nonconvex MIQCP,

dropping the integrality constraints leads to a nonconvex program, which is essentially a

global optimization problem. To address this issue, one usually considers replacing the

nonconvex functions qi (i = 1, . . . ,m) with their convex underestimators.

Definition 2.1 For a nonconvex function f : X �→ R, its convex underestimator denoted

by f over X is a convex function such that f(x) ≤ f(x), ∀x ∈ X . Its convex envelope

is defined as the supremum functional among the set of all convex underestimators of f .

Likewise, a concave overestimator of f denoted by f over X is a concave function such

that f(x) ≤ f(x), ∀x ∈ X and its concave envelope is the infimum functional among the

set of all concave overestimators.

Another methodology is to find a convex relaxation of set K. Relations between these

two methodologies can usually be established by Lagrangian duality (see, for example,

[107, 117]). Details about these techniques will be discussed in subsequent sections and

we now briefly review two general algorithmic frameworks for exact solutions.

In general, the replacements above will produce a mixed-integer convex program.

Following [110], we call it an auxiliary problem of (2.1). For the following discussion, it

is useful to present definitions below.

Definition 2.2 [110] Let P be auxiliary problem of (2.1) and F(P ) refers to the feasible

region of P . If K � F(P ), we say that P is a relaxation of (2.1). If problem P preserves
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local (resp. global) optimality information of (2.1),i.e., there is a mapping from set F(P )

to set K, such that its restriction the set of all local (resp. global) optima of P is surjective

with respect to local (resp.global) optima of (2.1), then we say that P is a local (resp.

global) reformulation of (2.1). If P is a local and global reformulation of (2.1), we say

that P is an exact reformulation of (2.1).

Note that a relaxation of P might also be an exact reformulation of the original prob-

lem (2.1) even though the feasible region F(P ) is strictly larger than that of the original

problem. A family of such relaxations has been explicitly studied and characterized by

Ben-Ameur and Neto [8] and they call them optimality-equivalent relaxations.

Two general algorithmic frameworks are often employed depending on the type of the

auxiliary problem P . If P is a global reformulation of (2.1), then we can employ any

method dealing with convex Mixed-Integer Non-linear Programs (MINLPs) to solve P

and then recover the optima of the original problem (2.1) by certain mapping function.

Methods reformulating a nonconvex MIQCP to a convex MIQCP include, but not lim-

ited to, conversions to MILP [19], quadratic convex reformulations [40, 38], copositive

reformulation [49]. The efficiency of the solution procedure is heavily influenced by the

strength of reformulations.

If P is a convex relaxation of (2.1), one can rely on global optimization methods, e.g.,

spatial branch-and-bound, branch and reduce. Spatial Branch-and-Bound (sBB) was first

proposed by McCormick [119]. Like standard branch-and-bound methods, sBB method

recursively partitions the searching space in a convergent way, relying on evaluating a

sequence of subproblems. Specifically, sBB first solves the convex relaxation P , which

provides a lower bound. Then, it seeks to solve the (nonconvex) nonlinear problem with a

local solver. If the resulting solution is feasible to (2.1), then it provides an upper bound.

If the gap between upper bound and lower bound is within some predefined tolerance, the

algorithm terminates and outputs the optimal solution. If not, it partitions the domain of

a variable, leading to two new subproblems. Each subproblem is solved to get upper and

lower bound repeatedly. In general, techniques tightening the bound of variables helps

to improve the strength of convex relaxations.

Apart from the strength of convex estimators, the convergence rate also depends

on the partition strategy and bounding techniques of a sBB algorithm. For example,

Linderoth [113] proposed a simplicial sBB algorithm for solving QCQPs over a box, where

searching space is recursively partitioned into triangles and rectangles. The author showed

theoretically and computationally, that the convergence of the proposed sBB algorithm

is generally faster than algorithms that partition a searching space to rectangles.

Another well-known sBB algorithm in global optimization community is the so-called

“αBB” method, which was proposed by Floudas and co-workers [9]. For nonconvex

MIQCPs, the principle idea of “αBB” method is to construct convex underestimator

of nonconvex functions (qi) by adding certain quadratic terms with multipliers α, such

that the resulting Hessian matrix Q(α) is positive semidefinite. Investigations on the

convergence of αBB algorithms and McCormick’s sBB algorithm with respect to the

diameter of searching region have been discussed in [9, 42].

We remark that the both standard BB and sBB frameworks heavily rely on the
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strength of relaxations. In what follows, we will discuss different convex relaxations to

problem (2.1).

It is usually not trivial to relax a nonconvex MIQCP to a convex program in the

original space. By the idea of lifting, one can reformulate problem (2.1) in a higher

dimensional space at the expense of additional variables as follows:

min cT0 x

s.t. 〈Qi,X〉 ≤ 0, i = 1, . . . ,m,

x ∈ X ,

X = xxT ,

(2.2)

where X is an n×n real symmetric matrix. Note that X = xxT is nonconvex in variables

(x,X). Obtaining a relaxation of (2.2) can usually be done by relaxing the constraint

X = xxT with various valid inequalities. Of-course, one can also project valid inequalities

to original space and solve a relaxed problem in the original space (see, e.g., [143, 144]).

In what follows, we review several well-known methods to generate valid inequalities of

different forms.

2.4 Polyhedral relaxations

The most common methods of converting a nonconvex MIQCP to a convex one might be

polyhedral relaxation. Among those, we mention the following.

• McCormick in [119] proposed linear relaxations of quadratic term Xij = xixj over

the rectangular domain xi ∈ [li, ui], xj ∈ [lj , uj ] by the following inequalities

max{uixj + ujxi − uiuj , lixj + ljxi − lilj} ≤ Xij ≤ min{lixj + ujxi − liuj , ljxi + uixj − uilj}

These inequalities are referred to as McCormick inequalities in the literature. Note

that it takes O(n2) variables and constraints. McCormick also pointed out that the

constraints above characterize the exact convex and concave envelope of Xij = xixj

over rectangles. One can also find detailed proof in [6].

• Glover in [74] proposed to linearize the product of a binary variable and a bounded

variable with O(n) variables. For example, let us linearize
n∑
i=1

n∑
j=1

xiDijxj , where

(xi, xj) ∈ {0, 1}2 and D is a square matrix. We introduce n new variables, wi =

xi
∑
j
Dijxj and add 4n constraints, i.e., for each i, we have:

D−i xi ≤ wi ≤ D
+
i xi,∑

j

Dijxj −D+
i (1− xi) ≤ wi ≤

∑
j

Dijxj −D−i (1− xi),

where D−i = max{
∑
j
D−ijxj}, D

+
i = max{

∑
j
Dijxj}.
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• Sherali and Adams in [145] proposed the so-called reformulation-linearization tech-

niques (RLTs) to reformulate general non-convex quadratic problems. One may

treat RLTs as an unified way to generate valid inequalities in variables (x,X) by

some basic algebraic manipulations (i.e., addition and multiplication) on inequalities

in original space. For example, let us generate RLT inequalities for problem (2.2)

by exploiting set X .

First, for interval constraints x ∈ [l,u], we multiple pairs of nonnegative terms

(ui − xi), (xi − li), (uj − xj) and (xj − lj) to get inequalities:

(ui − xi)(uj − xj) ≥ 0, (ui − xi)(xj − lj) ≥ 0,

(xi − li)(uj − xj) ≥ 0, (xi − li)(xj − lj) ≥ 0.

Replacing xixj with variables Xij leads to McCormick constraints mentioned above.

Second, for linear equality aix = bi, we multiply any xj at both sides to obtain

quadratic equalities involving xixj terms; For linear inequality of the form aix ≤ bi,
we can multiply both sides (xj − lj) and (uj − xj) respectively. In addition, one

can multiple pairs of constrains within set X to get constraints involving quadratic

terms.

Later Adams and Sherali [3] showed that a hierarchy of increasingly stronger re-

laxations can be obtained by generating higher order polynomials constraints. In

the light of representations of polynomials in real algebraic geometry, Lasserre [102]

showed that RLT hierarchy falls exactly within the type of linear relaxation hierar-

chies based on Krivine-Stengle’s positivity certificate. Liberti and Pantelides [112]

showed that one can sometimes eliminate unnecessary bilinear terms in MIQCP by

augmenting a subset of RLT constraints.

• For unconstrained 0-1 quadratic programs, there has been a considerable amount of

investigations devoted to generating valid inequalities. Most of them are attempts

to approximate 0-1 polytopes for classical combinatorial problems. Let us mention

cut polytope [61], boolean quadratic polytope [132] (a.k.a. correlation polytope [61])

and quadratic assignment polytope [89, 142]. We refer readers to [61] for details.

Recently, some interesting results have been established between Boolean Quadratic

Polytope (BQP) and the polytope of Quadratic Problem over a Box (QPB), where

QPB = conv
{

(x,y) ∈ Rn × R
n(n+1)

2 : yij = xixj , 1 ≤ i ≤ j ≤ n, x ∈ [0, 1]n
}
,

BQP = conv
{

(x,y) ∈ Rn × R
n(n−1)

2 : yij = xixj , 1 ≤ i < j ≤ n, x ∈ {0, 1}n
}
.

Burer and Letchford [50] proved that the projection of QPB (by ignoring elements

of yii, (i = 1, . . . , n)) is exactly BQP, which implies that all valid inequalities in

variables yij (1 ≤ i < j ≤ n) of BQP is valid for QPB.

There are also many other techniques to generate strong linear valid inequalities in a

specific context. For example, authors in [121] proposed a novel linearization technique

for hub location problems, where they assumed that the unit transport cost between
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hubs is proportional to the distance between them. Specifically, they consider linearizing

yij =
∑

k,l dklxikxjl, where dkl represents the distance between locations k and l, xik, xjl

are 0-1 decision variables assigning hub i, j to location k, l respectively. They decomposed

the distance dkl as the Euclidean norm of two vectors associated with location k and l,

which can then be bounded by linear valid inequalities in a static or dynamic way.

2.4.1 Disjunctive cuts

A family of linear cuts can also be generated dynamically in the framework of disjunctive

programming. Classical disjunctive programming [15] has been studied intensively in

the context of MILPs [16, 17]. It was then generalized by Grossmann and co-workers

for general MINLPs [79, 78]. Following investigations in [16, 20], we review ideas from

disjunctive programming and present a procedure to generate (linear) disjunctive cuts.

Disjunctions are logical operations (composed by basic logical operators “or” ) that

return true if at least one of their operands is true. Classical disjunctive programming [16]

requires a linear relaxation and a disjunction of (2.1). Let us denote by LP a polyhedral

relaxation of K. Regarding problem (2.1), a disjunction can be written as

F =

q⋃
k=1

Fk, and Fk =
{

x ∈ LP : Hkx ≤ hk
}

(k = 1, . . . , q)

where each Hk is a mk×n real matrix, hk ∈ Rmk , mk is the number of linear inequalities.

We say that this disjunction is satisfied if there exists k such that Fk 6= ∅. For any x ∈ K,

disjunction F is satisfied. A single problem may has many disjunctions. For example, a

standard BB procedure partitions the searching space by imposing integer disjunctions

on integer variable x, xi ≤ α ∨ xi ≥ α + 1, α ∈ Z in a finite number of steps [20]. For

a nonconvex MIQCP, disjunctions are usually taken among non-convex constraints. We

postpone related techniques in Section 2.5.1.

Given a current point x̂ ∈ LP, the central task in disjunctive programming is to

generate a cut πTx ≤ π0 for cl convF that is violated by x̂. This cut is referred to as

disjunctive cut. Assume that LP :=
{
x ∈ Rn+ : Bx ≤ β

}
with B ∈ Rm×n and β ∈ Rn.

Balas [16] showed that the cut identified by (π, π0) is valid for cl conv F if and only if π

belongs to the following set

Π :=
{
y ∈ Rn : ∃(uk,vk) ≥ 0, s.t. y ≤ (B)Tuk + (Hk)Tvk,

(uk)Tβ + (vk)Thk ≤ π0, (k = 1, . . . , q)
}

Observe that Π is related to the reverse polar of F . Several properties of reverse polar

and its application in deriving deep disjunctive cuts were given in [53]. Given Π, an

automatic procedure for generating a cut that is maximally violated relies on solving a

so-called Cut Generating Linear Programming (CGLP) problem [17]:

max
(π,π0):π∈Π

πT x̂− π0 (2.3)

If the optimum of (2.3) is nonpositive, x̂ ∈ F , otherwise, we generate a disjunctive cut.
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As remarked by Balas [16] and Saxena et al. [143], a normalization constraint of the

form
q∑

k=1

((uk)T ξ + (vk)T ξk) = 1 is usually added to the constraint set Π to ensure the

strength and numerical stability of the resulting cuts. For details of implementations, we

refer readers to [16, 20, 143, 144].

2.5 Nonlinear relaxations

In addition to polyhedral relaxations, two methodologies are frequently used to relax (2.1),

namely, semidefinite relaxations and quadratic convexifications.

2.5.1 Semidefinite relaxations

It is well-known that semidefinite programming (SDP) can be used to derive strong

relaxations for a wide range of optimization problems. Most SDP relaxations consider

relaxing X = xxT to X− xxT � 0, which is convex with respect to (x,X). Equivalently,

one can replace the constraint X = xxT with S(x,X) � 0 and rank(S(x,X)) = 1 (see,

e.g., [151]), then drop the rank-one constraint. This standard relaxation is often referred

to as Shor’s relaxation. It is easy to verify that this standard SDP relaxation can be

derived by Lagrangian duality on problem (2.1)(see, e.g., [107, 109]).

One can strengthen the SDP relaxations with valid inequalities, e.g., triangle inequal-

ities, McCormick inequalities, and RLT inequalities. Anstreicher [10] showed the benefits

of such combinations in terms of bound strength. Later, Anstreicher and Burer [12]

showed that the combination of SDP relaxation and RLT inequalities describes the con-

vex hull of
{

(x,X) : X = xxT ,x ∈ [l,u] ⊂ Rn
}

if n ≤ 2.

Buchheim and Wiegele [48] investigated SDP relaxations for unconstrained mixed-

integer quadratic programs whose constraint set is of the form X1× · · ·×Xn. In addition

to the standard SDP relaxation, they propose to separate points (xi, Xii) from each

conv{(xi, xii) : xi ∈ Xi} in a branch-and-bound scheme.

Solving large scale SDP problem is much more expensive than solving LPs or SOCPs

with the same number of variables as SDP. On the one hand, special purpose solvers

for conic programming cannot handle arbitrary convex constraints; on the other hand,

general purpose nonlinear solvers (such as Ipopt [152]) are not designed to handle conic

constraints [143]. Alternative to adding SDP constraint explicitly, one can also add convex

quadratic constraints or linear constraints in an iterative way. Kim and Kojima [95]

proposed to rewrite constraint X− xxT � 0 as convex quadratic constraints:

xTCx ≤ 〈C,X〉, ∀C ∈ Sn+, (2.4)

or as linear constraints

〈S(x,X),Z〉 ≥ 0, ∀Z ∈ Sn+1
+ . (2.5)

In addition, they showed that for a given C ∈ Sn+, convex quadratic inequality (2.4) is

stronger than linear inequality (2.5) with matrix Z =

(
β b/2

b/2 C

)
, where β ∈ R,b ∈ Rn.
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Indeed, we have

0 ≤ (1,xT )Z

(
1

x

)
= xCxT + bTx + β

≤ 〈C,X〉+ bTx + β

= 〈S(x,X),Z〉

where the first inequality follows from the positive semi-definiteness of Z ∈ Sn+1
+ and

the second inequality comes from (2.4). Authors in [95] then decompose the matrix

Qi into Q+
i ,Q

−
i by the concept of difference-of-convex programming [85], where Q+

i =
n∑

i=1:λi>0

λiviv
T
i , Q−i =

n∑
i=1:λi<0

λiviv
T
i , and vi is the eigenvector corresponding to eigen-

value λi. Therefore Q+
i ,−Q−i ∈ Sn+ and can be used to replace C in (2.4).

Of-course, there are other ways to choose a proper psd matrix C. For example,

Saxena et al. [143, 144] add valid convex quadratic inequalities of the form (2.4) with

C = vvT in an iterative way, where v is the eigenvector corresponding to negative

eigenvalue of matrix (X̂− x̂x̂T ) at a given point (x̂, X̂). Moreover, they consider adding

constraints enforcing X − xxT � 0 (which is nonconvex) in the spirit of disjunctive

programming. Specifically, with eigenvector v, it holds that (xTv)2 ≥ vTXv, which

reduce to w2 ≥ z by a change of variables. Given point (ŵ, ẑ) and assume that w ∈ [l, u],

a disjunction is taken as F1 ∨F2, where F1 = {l ≤ w ≤ ŵ, z ≤ w(l + ŵ)− lŵ} , and F2 =

{ŵ ≤ w ≤ u, z ≤ w(u+ ŵ)− uŵ}. Then, one can generate a disjunctive cut by solving

problem (2.3). In addition, authors [143] showed that adding disjunctive cuts sequentially

reveals efforts of convexifications of K.

2.5.2 Quadratic convexifications

A number of quadratic relaxation techniques, e.g., α-BB method [4], the smallest eigen-

value method [82], difference-of-convex programming [85], and Quadratic Convex Refor-

mulation (QCR) [40, 38, 39], have been proposed in the literature. Among those methods,

let us present QCR method [39] in detail. Assuming that x ∈ X ⊂ Zn, the so-called QCR

method has two phases, the convexification phase by solving an SDP and the standard BB

solution phase relying on the convex quadratic program as the output of convexification

phase. The key distinction between QCR and other approaches lies in the unconventional

way (to reformulate the original problem) of solving an SDP. Specifically, they rewrite

each qi with a psd matrix Ci

〈xxT ,Ci〉+ cTi x + 〈Qi −Ci,X〉+ di ≤ 0 (2.6)

and X = xxT . Therefore, the resulting formulation is an exact reformulation of (2.2). Au-

thors in [39] then relax X = xxT by some linear inequalities leading to a convex program.

To get the best possible choice of (Ci)
m
i=1, they solve an SDP problem. Interestingly, the

SDP problem is simply Shor’s relaxation strengthened by linear inequalities.

To conclude this section, let us mention that SDP relaxations and quadratic convexi-

fications are in fact two methodologies. On the one hand, SDP relaxations can be looked
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at as attempts to the convexification of X = xxT over set X ; on the other hand, quadratic

convexifications can be regarded as efforts in constructing the convex underestimator for

each qi(x) over X . Anstreicher [11] showed that given the same information (valid in-

equalities), the latter is usually dominated by the former. We remark that the continuous

relaxation of the quadratic convex program obtained by the QCR method gets exactly

the same optimum of an continuous SDP program strengthened by linear inequalities.

2.6 Lagrangian relaxation

Lagrangian relaxation is a powerful tool in optimization, even nonconvex. As advocated

by Lemaréchal, it is an essential method to generate bounds and bring new perspective

on standard relaxations, e.g., SDP relaxation, to combinatorial problems (see, e.g., [109,

108, 107]). Designing a proper Lagrangian relaxation (or decomposition) scheme is not a

trivial task as one would like to have an easier problem (compared with the original (2.1))

while ensuring strong bounds. We present a couple of geometric results on the strength

of Lagrangian relaxation in the literature. Let us assume that qi (i = 1, . . . ,m) are

complicated constraints in problem (2.1). Relaxing these constraints with a dual vector

λ ∈ Rn leads to the following lagrange function

L (x,λ) = cT0 x +

m∑
i=1

λiqi(x)

and the corresponding dual function is

Ψ(λ) :=

 inf
x∈X
L(x,λ) λ ≥ 0,

−∞, otherwise.

Recall the assumption that X is compact, therefore the minimum is attainable.

Let us introduce variables γ ∈ Rm and move the nonlinear components qi (i =

1, . . . ,m) to the constraint set, i.e.,

Ψ(λ) := min

{
cT0 x +

m∑
i=1

λiγi : (x,γ) ∈ S

}
(2.7)

where S =
{

(x,γ) ∈ Rn+m+1 : x ∈ X , qi(x) ≤ γi (i = 1, . . . ,m)
}

. As the objective func-

tion is linear, we can safely replace S with its convex hull convS. Therefore, we have

Ψ(λ) = min

{
cT0 x +

m∑
i=1

λiγi : (x,γ) ∈ convS

}
. (2.8)

Now observe that (2.8) is exactly the dual objective function of

min cT0 x

s.t. (x,γ) ∈ convS,

γ ≤ 0.

(2.9)
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Clearly, Ψ is bounded. If Slater’s condition holds that ∃(x, γ) ∈ convS such that γ < 0,

we can safely define

max
λ≥0

Ψ(λ) (2.10)

By strong duality, the optimal value of (2.10) is equal to the optimal value of (2.9).

Lemaréchal [108] has shown that the constraint set of (2.9) is equivalent to S′ ∩ convS,

where S′ = {(x,γ) ∈ Rn+m : γ = 0}. This reads exactly ∃(x,0) ∈ convS.

Now notice that the original problem (2.1) is equivalent to

min
{
cT0 x : (x,0) ∈ conv {(x,0) ∈ S}

}
(2.11)

Clearly, we can see that the duality gap between (2.10) and (2.1) is introduced due to

the general relation that

conv {(x,0) ∈ S} ⊆ {(x,0) ∈ convS} .

In the light of this geometric result, one can have an intuition on the quality of the bounds

obtained by a Lagrangian relaxation scheme.

Moreover, we can show that the dual bound provided by any Lagrangian relaxation

scheme is no worse than the optimum of the continuous relaxation of the primal problem,

provided that qi (i = 1, . . . ,m) are convex. To formalize this result, let us denoted by X
the polyhedral set obtained by dropping the integrality constraints of X .

Theorem 1 If qi (i = 1, . . . ,m) are convex functions, the optimal value of (2.10) is

greater than or equal to the optimum of the continuous relaxation of problem (2.1) (by

replacing X with X ).

Proof: Let C be the constraint set of continuous relaxation of (2.1), i.e.,

C =
{

(x,0) : x ∈ X , qi(x) ≤ 0 (i = 1, . . . ,m)
}

It is sufficient to show that {(x,0) ∈ convS} ⊆ C. Let (x,0) ∈ convS, then there exists

(n + 2) points (xk,γk) ∈ S, such that (x,0) =
n+2∑
k=1

λk(xk,γk), where λ ∈ Rn+2
+ and

n+2∑
k=1

λk = 1. Obviously, it holds that x ∈ X . For each i = 1, . . . , n, we have

qi(x) ≤
n+2∑
k=1

λkq(xk) ≤
n+2∑
k=1

λkγk = 0,

where the first inequality is due to the convexity of function qi, and the second inequality

comes from the fact that (xk, γk) ∈ S. Therefore (x,0) ∈ C, which completes the proof.

We now consider a special case where qi(x) (i = 1, . . . ,m) are linear functions. With

little trouble, one can derive the following result.

Theorem 2 [108] If all functions qi, 1, . . . ,m are linear functions, the dual optimal

value of Ψ(λ) is equal to the optimal value of the following primal problem

min
{
cT0 x : x ∈ convX , qi(x) ≤ 0, (i = 1, . . . ,m

)
}.

This geometric interpretation of Lagrangian relaxation will be used to design a Lagrangian

decomposition scheme in Chapter 3.
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2.7 Recent paradigms

Recall that relaxing (2.1) amounts to approximating conv
{

(x,X) : X = xxT , x ∈ X
}

.

In convex optimization, there exists an important subclass called conic optimization. It

optimizes a linear form over the intersection of an affine subspace and a convex cone.

Looking at the aforementioned techniques from the perspective of conic optimization, we

may realize that we were actually using polyhedral cone, second-order cone, and psd cone

to strengthen our relaxations. A natural question arises: can we find some other convex

cones that are “smaller”?

To answer this question, we briefly review two recently developed frameworks, namely,

copositive programming and moment-SoS hierarchy that have been used to solve noncon-

vex MIQCPs.

2.7.1 Copositive programming

Copositive programming deals with two convex cones: the cone of copositive matrices

and the cone of completely positive matrices, which are dual to each other. An n × n
real symmetric matrix X is copositive if its quadratic form vTXv is nonnegative for

all v ∈ Rn+. X is a completely positive matrix if it can be factorized as BBT , where

B ∈ Rn×k+ . It is easy to verify that both cones are closed and convex.

The cone of completely positive matrices is smaller than the cone of psd matrices, and

thus one may expect stronger relaxations introduced by enforcing X being completely

positive. Unfortunately, it has been recently proved that checking if a matrix belongs to

the completely positive cone is NP-hard [62]. And it is well-known that the membership

problem of copositive matrix cone is co-NP-complete [127]. We refer readers to excellent

surveys [84, 65] for details about copositive matrices and copositive programming.

Burer [49] showed a quite general result that every quadratic problem with linear and

binary constraints has a copositive representation. More precisely, he showed that if a

quadratic binary problem

min xTQx + 2cTx

s.t. cTi x = di (i = 1, . . . ,m),

x ≥ 0,

xj ∈ {0, 1} (j ∈ J),

(2.12)

satisfies some key condition, i.e., cTi xi = di (i = 1, . . . ,m) and x ≥ 0 implies xj ≤ 1 (j ∈
J), then it can be rewritten as the following completely positive problem:

min 〈Q,X〉+ 2cTx

s.t. cTi x = di (i = 1, . . . ,m),

〈cicTi ,X〉 = d2
i (i = 1, . . . ,m),

xj = Xjj (j ∈ J)

S(x,X) ∈ CP .
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where CP represents the cone of completely positive matrices and J ⊆ {1, . . . , n}. As

pointed in [49], this key condition can be easily satisfied by augmenting the constraint

xj + sj = 1 with slack variable sj ≥ 0 for all j ∈ J . Note that (2.12) encompasses a

number of NP-hard problems, e.g., all 0-1 linear integer programs, all unconstrained 0-1

quadratic programs. It is still unknown if a general MIQCP problem of the form (2.1)

has a copositive representation or not.

Based on the definition of completely positive matrix, one can approximate the com-

pletely positive matrix cone from outside to any precision using a sequence of polyhedral-

semidefinite relaxations [135]. For example, when n ≤ 4, it is known that the so-called

doubly nonnegative matrix cone (the intersection of SDP cone and componentwise non-

negative symmetric matrix cone) characterizes the cone of completely positive matrices

exactly [118]. For more general cases, several approaches have been proposed to approxi-

mate the copositive cone and its dual by testing positivity of polynomials. Some of those

are based on moment-SoS hierarchies, which will be reviewed subsequently.

2.7.2 Moment-SoS hierarchies

In this section, we briefly review the well-known relaxation techniques, moment-SoS hi-

erarchies due to Lasserre [101, 102], Parrilo [135, 136]. For more details, we refer readers

to the survey of Laurent [106].

Let us focus on problems of the form (2.1) and introduce c(x) = cTx. c ∈ R[x] is

a polynomial (with degree 1) in variables x over the real field. We represent a polyno-

mial c by c(x) =
∑
α
cαxα, where α ∈ Nnd :=

{
α ∈ Nn :

n∑
i=1

αi ≤ d
}

and xα stands for

the monomial xαi
1 . . . xαn

n . We identify c by its coefficients (cα)α∈Nn
d
. As observed by

Lasserre [101], it holds that

p∗ := min
x∈K

c(x) = min
µ∈M(K)

∫
K
c dµ. (2.13)

where the second minimum is taken over all the probability measures µ supported by

K (i.e.,
∫
K dµ = 1). Indeed, it holds that

∫
K c dµ ≥

∫
k p
∗dµ = p∗, ∀µ ∈ M(K). On

the other hand, for any x ∈ K, let µ be the Dirac measure at any point x ∈ K, i.e.,

µ := δx, so we will have
∫
K c dµ = c(x) showing that p∗ ≥ min

µ∈M(K)
c dµ. Further,

observe that (2.13) is an infinite-dimensional LP problem. Nevertheless, we have that∫
K c dµ =

∑
α
cα
∫
K xαdµ =

∑
α
cαyα, where yα =

∫
K xαdµ(i = 1, . . . ,m) is called moment

of order α for measure µ supported by K. Let y0 =
∫
K dµ = 1. Problem (2.13) then

becomes a finite dimensional LP problem:

p∗ = min

{∑
α

cαyα : y0 = 1,y ∈Md

}
(2.14)

where Md =
{
yα : ∃µ ∈M(K) s.t. yα =

∫
K xαdµ, ∀α ∈ Nnd

}
. It is easy to verify that

Md is a convex cone. So problem (2.14) is a convex problem.

Next, consider the dual of (2.13)

d∗ := sup
γ∈R
{γ : c(x)− γ ≥ 0, ∀x ∈ K} . (2.15)
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Now, let us introduce the cone of nonegative polynomial with degree d (in our case, d = 1)

over K : 	d = {f ∈ R[x]d : f(x) ≥ 0 ∀x ∈ K}. Therefore (2.15) is equivalent to

d∗ = sup
γ∈R
{γ : c− γ ∈ 	d} . (2.16)

So (2.16) is also a convex problem. In fact, Md and 	d form a dual pair of convex cones.

Assume that the compact set X has an algebraic representation {x : gj(x) ≤ 0 (j = 1, . . . , k)},
then we can use some powerful results from real algebraic geometry to characterize cone

	d and Md. Let us introduce the quadratic module Q(q1, . . . , qm, g1, . . . , gk) generated

by q1, . . . , qm, g1, . . . , gk:

Q(q1, . . . , qm, g1, . . . , gk) :=

f ∈ R[x] : f = −
m∑
i=1

σiqi −
k∑
j=1

σj+mgj + σ0


where (σ)m+k

i=0 are sums-of-squares (SoS) polynomials in variables x. A polynomial f is a

sums of squares of polynomials if it can be written as f =
l∑

j=1
u2
j for some u1, . . . , ul ∈ R[x].

A nice result is that any nonnegative quadratic polynomial is a sum of squares, which

follows from celebrated results of Hilbert (see, e.g., [106]).

Putinar’s Positivstellensatz (See [106, 101]) provides a positivity certificate for a poly-

nomial over set K.

Theorem 3 [137] Under the assumption that ∃M > 0, s.t. M−
n∑
i=1

x2
i ∈ Q(q1, . . . , qm, g1, . . . , gk),

for f ∈ R[x], if f > 0 on K, then f ∈ Q(q1, . . . , qm, g1, . . . , gk).

If we replace the constraint (c − γ) ∈ 	d with Putinar’s positivity certificate (c − γ) ∈
Q(q1, . . . , qm, g1, . . . , gk), we get a lower bound of the dual problem (2.16). In addition,

the membership problem of the quadratic module reduces to solving an SDP, provided

that the degree of SoS is bounded.

Indeed, let us denote by zd := (xα = xα1
1 . . .xαn

n :
n∑
i=1

αi ≤ d) the vector that contains

all monomials of degree at most d. Then for any uj ∈ R[x]d (a polynomial with degree

at most d), we have that uj(x) = uTj zd and thus
l∑

j=1
u2
j = z2

d(
∑
j

uTj uj)zd. Therefore

σ is an SoS polynomial if and only if ∃L ∈ Sn+, σ = zdLzd. The size of the matrix

L is
(
n+d
d

)
. The strength of the relaxation is increased as the bounded degree number

increases. Similar arguments can also be derived for the primal side (see [101, 135]).

Consequently, the sequence of the primal side relaxations is called moment hierarchy and

the sequence of the dual side relaxations is called SoS hierarchy. Notice that one can use

different positivity certificates to replace Putinar’s Positivstellensatz, which may reduce

to different forms of convex problems, e.g., LP, SOCPs [103].



Chapter 3

Optimal Mapping of Cloud

Virtual Machines

3.1 Summary

One of the challenges of cloud computing is to assign virtual machines to physical ma-

chines optimally and efficiently. The aim of cloud operators is to minimize the mapping

cost while respecting constraints regarding location, assignment and capacity. After es-

tablishing the exact MIQCP model, we propose several ideas to reformulate the problem

in order to accelerate solution procedure. Further, a Lagrangian-based decomposition is

proposed, reducing the problem to a number of subproblems that are significantly easier

to handle and maintaining a theoretical guarantee on the quality of bounds. Also, a

reformulation exploiting symmetries of virtual requests is presented to reduce the num-

ber of bilinear terms involved in the formulation. Numerical experiments are conducted

showing the effectiveness of the proposed approaches.

3.2 Introduction

Since the background and a brief history of the mapping problem have been introduced

in Chapter 1, we focus on the solution procedure in this chapter. The organization of

this chapter and its contributions are summarized below.

In Section 3.3, we provide an exact formulation which falls within the realm of

MIQCPs. To solve the problem, we propose to reformulate the problem via classical

linearization techniques, thereby handling the problem in the framework of MIP. Then

we employ the Reformulation-Linearization-Technique (RLT) and various valid inequal-

ities to strengthen the model. Some numerical experiments are conducted to show the

effectiveness and limitations of these methods.

Section 3.4 considers a Lagrangian decomposition scheme based on each virtual re-

quest to achieve lower bounds of good quality for relatively larger problem instances. We

show, both theoretically and numerically, these bounds are generally much stronger than

those obtained via continuous relaxations.

In Section 3.5, we introduce a novel formulation that exploits symmetries of each

23
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virtual request and allows a reduction of bilinear terms. Numerical experiments suggest

that the resultant model is more scalable than the aforementioned ones. To leverage the

usage of the new formulation, a heuristic is proposed.

Followed by concluding remarks, we discuss a possible formulation that optimizes

certain mapping polices as a future research direction to capture the dynamic arrival of

virtual requests.

3.3 A general model

Remember that a virtual request consists of a set of virtual machines and virtual commu-

nications between them. Therefore, we may represent each virtual request as a directed

graph. Our goal is to map such graphs to a physical network. Henceforth, we will use

the following notation to construct the mathematical model.

• Sets

– R set of virtual request.

– H = (S,E) graph of a physical network.

– Gr = (V r, Lr) a graph of virtual network for request r ∈ R.

– S set of servers in the physical network.

– E set of directed edges in the physical network.

– V r set of VMs of request r.

– Lr set of directed virtual links of request r.

• Parameters

– cri required CPU of VM i ∈ V r.

– mri required memory of VM i ∈ V r.

– Ck CPU capacity of server k.

– Mk memory capacity of server k.

– Fk fixed cost of server k ∈ S.

– Ak additional cost of server k imposed from CPU loads.

– f rij required throughput associated with logical link (i, j) ∈ Lr.

– Be bandwidth of edge e ∈ E.

– We fixed cost of edge e ∈ E.

– Pkp shortest k − p path, (k, p) ∈ S × S : k 6= p.

• Variables

– xrik ∈ {0, 1} 1 if VM i of request r is mapped to server k.

– θk ∈ {0, 1} 1 if server k is used (switched on).

– φe ∈ {0, 1} 1 if edge e is used (switched on).
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To help readers bear in mind the notation, we remark that for a parameter or a variable,

its subscripts (if it has) are associated with physical resources and its superscripts (if it

has) are associated with virtual resources.

In computer networks, the traffic between an O-D pair is usually routed on a single

path. As will be shown soon, the resulting formulation contains rather complicated

(nonconvex quadratic) constraints. Hence, we make the following assumption in order to

reduce the complexity of the problem.

Assumption 1 The traffic between any O-D pair is routed on the shortest path in terms

of hops.

With the above notations, we construct the exact mathematical model of the mapping

problem as follows.

min
∑
k∈S

Fkθk +
∑
k∈S

Ak
∑
r∈R

∑
i∈V r

crixrik +
∑
e∈E

Weφe. (P)

s.t.
∑
k∈S

xrik = 1, r ∈ R, i ∈ V r, (AC)∑
i∈V r

xrik ≤ θk, r ∈ R, k ∈ S, (LC)∑
r∈R

∑
i∈V r

crixrik ≤ Ckθk, k ∈ S, (KP)∑
r∈R

∑
i∈V r

mrixrik ≤Mkθk, k ∈ S, (KP’)∑
r∈R

∑
k,p∈S:

k 6=p,e∈Pkp

∑
(i,j)∈Lr

f rijxrik x
rj
p ≤ Beφe, e ∈ E, (QC)

θk, φe, x
ri
k ∈ {0, 1}, r ∈ R, i ∈ V r, k ∈ S, e ∈ E. (BC)

In what follows, we refer to (P) as the above model with the interpretation below.

• The objective is to minimize the total cost, which is additively composed of three

terms: the fixed cost incurred by switching on servers, the additional cost coming

from the CPU load, and the fixed cost from the usage of links. We model the

additional cost induced by CPU load as a linear function to represent the fact

that CPU is usually categorized as load dependent resource, while memory is load

independent [93].

• Constraints (AC) mean that each virtual machine must be mapped to a single

server. Constraints (LC) model the fact that virtual machines are usually mapped

separately in a cloud environment due to some practical issues, e.g., security, relia-

bility.

• Constraints (KP, KP’) ensure that for each server, the aggregated required CPU,

memory resource cannot exceed its limits. Constraints (QC) emphasis the fact that

for each edge, the aggregated throughputs on the edge cannot exceed the bandwidth.
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Before the solution procedure, we analyze the difficulties and structure of the problem

briefly. From the perspective of mathematical programming, the combination of integral-

ity constraints and bilinear constraints (nonconvex) makes the problem rather difficult.

In terms of the problem structure, it shares features of several well-known combinatorial

problems, e.g., the multiple knapsack problem and quadratic assignment problem. Au-

thors in [7] have proved that the mapping problem of the form (P) is strongly NP-hard

even if |R| = 1 by showing a polynomial time reduction from the maximum stable set

problem.

3.3.1 McCormick inequalities and Glover’s linearization

Model (P) is a 0-1 non-convex quadratically constrained problem. A fundamental idea to

deal with such problems is lifting it to a higher dimensional space [51, 52]. By introducing

new variables yrijkp and enforcing yrijkp = xrik x
rj
p for each (r, i, j, k, p) : i 6= j, k 6= p, we lift

the problem to a higher dimensional space and thus results in a MIP problem. This

comes at a price of introducing non-convex equations. Simple convex relaxations can be

achieved by linearization techniques. In our thesis, we use two linearization techniques:

McCormick inequalities [119] and Glover’s linearization [74].

A direct use of McCormick’s inequalities produces an approximation for the non-

convexity, i.e., for each (r, i, j, k, p) : i 6= j, k 6= p, we add four inequalities,

xrik + xrjp − 1 ≤ yrijkp , (3.1a)

yrijkp ≤ x
ri
k , (3.1b)

yrijkp ≤ x
rj
p , (3.1c)

yrijkp ≥ 0. (3.1d)

With this relaxation, we can solve problem (P) by a MIP model:

PMC : {P} ∩ {(3.1a− 3.1d)} (PMC)

Notice that McCormick relaxation introduces
∑
r∈R
|Vr|(|Vr| − 1)|S|(|S| − 1) variables. In

contrast, Glover’s linearization requires
∑
r∈R
|Vr||S|(|S|− 1) additional variables. For each

(r, k, p, i), it enforces wrikp = xrik
∑
j:j 6=i

xrjp f rij by constraints

0 ≤ wrikp ≤ max
j:j 6=i
{f rij}xrik , (3.2a)∑

j:j 6=i
xrjp f

rij + (xrik − 1) max
j:j 6=i
{f rij} ≤ wrikp ≤

∑
j:j 6=i

f rijxrjp . (3.2b)

Consequently, constraints (QC) become,∑
(k,p):k 6=p,e∈Pkp

∑
r∈R,i∈Vr

wrikp ≤ Deφe, e ∈ E. (3.3)

The resultant model is

min {f(θ, φ, x) : (AC), (LC), (KP), (KP’), (BC), (3.2a), (3.2b), (3.3)} . (PGL)
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Our numerical experiments indicate that model (PGL) outperforms McCormick’s relax-

ation for some small instances. However for most instances, even though model (PGL)

introduces much less continuous variables than McCormick’s relaxation, its overall com-

putational performance are generally no better than those of model (PMC). Thus we

believe that the main difficulty is not the number of variables and constraints. Besides,

we can apply RLT inequalities to strengthen (PMC) and remove a number of redun-

dant constraints (see Lemma (3.1)), whereas it appears complicated to apply RLTs to

model (PGL). Hence, we will focus on techniques strengthening the McCormick lineariza-

tion. One may refer to Appendix of this chapter for some numerical results on the

comparison between two models.

3.3.2 Polyhedral relaxations

In this section, we propose several valid linear inequalities to strengthen (PMC).

One of the most straightforward and powerful methods is to add valid linear inequal-

ities. An important subset of those can be derived by the RLTs which is known to

strengthening non-convex discrete and continuous formulations [145]. We apply the RLT

to constraints (AC), which produces
∑
r∈R
|V r|(|V r| − 1)|S| additional constraints,

∑
k∈S:k 6=p

yrjipk = xrjp , r ∈ R, i, j ∈ V r : i 6= j, p ∈ S. (ACRLT)

Let us denote the formulation in the sequel as

PRLT1 : {(P)} ∩ {(ACRLT), (3.1d)} . (PRLT1)

Note that constraints (3.1a-3.1c) are implied by (ACRLT) and model (PRLT1) is indeed

stronger than formulation (PMC). Let F (PRLT1) be the feasible region of (PRLT1) and

F (PMC) be the feasible region of (PMC).

Lemma 3.1 conv F (PRLT1) ⊆ conv F (PMC).

Proof: It is sufficient to show that McCormick inequalities (3.1a), (3.1b), (3.1c) are im-

plied by constraints of (PRLT1). It is obvious that (3.1b), (3.1c) are implied by (ACRLT).

For each (r, i, j, k, p) : k < p, i 6= j, we have

xrik + xrjp − 1 = yrijkp +
∑

p′>k:p′ 6=p
yrijkp′ +

∑
p′<k

yrjip′k + xrjp − 1

= yrijkp +
∑

p′>k:p′ 6=p
yrijkp′ +

∑
p′<k

yrjip′k −
∑
s:s6=p

xrjs

= yrijkp − x
rj
k +

∑
p′>k:p′ 6=p

(yrijkp′ − x
rj
p′ ) +

∑
p′<k

(yrjip′k − x
rj
p′ )

≤ yrijkp − x
rj
k

≤ yrijkp .

The first equality and the first inequality follows from (ACRLT). The second equality

comes from (AC).
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Of-course we can also apply the RLTs to (LC), which adds 2
∑
r∈R
|V r||S|(|S| − 1) con-

straints. ∑
i∈V r:i6=j

yrijkp − x
rj
p θk ≤ 0, r ∈ R, j ∈ V r, (k, p) ∈ S2 : k 6= p, (LCRLT)

∑
i∈V r

xrik −
∑

i∈V r:i6=j
yrijkp − θk + xrjp θk ≤ 0, r ∈ R, j ∈ V r, (k, p) ∈ S2 : k 6= p. (LCRLT′)

Notice that we can simply replace the left-hand-side constraints with their convex en-

velopes which are readily identified by McCormick inequalities (see Section 2.4 for de-

tails). Specifically, we replace xrjp θk in (LCRLT) with min
{
θk, x

rj
p

}
. Likewise, we replace

xrijp θk in (LCRLT′) with max
{

0, θk + xrjp − 1
}

.

PRLT2 : {(P)} ∩ {(ACRLT), (LCRLT), (LCRLT′), (LC), (3.1d)} . (PRLT2)

Clearly, the continuous relaxation of (PRLT1) is stronger than that of (PMC), but is weaker

than that of (PRLT2). In practice, it entails a trade-off between the strength of relaxations

and their sizes to determine a modest model that is robust to the inputs.

Apart from linear valid inequalities coming from the RLT, some strong valid in-

equalities can be derived by exploiting the problem structure. Specifically, for each

r ∈ R, (i, j) ∈ Lr, if there is a required throughput between i and j, i.e., f rij > 0,

then for each link e, we have ∑
(k,p)∈S2:k 6=p,e∈Pkp

yrijkp ≤ φe. (Cut)

The number of such additional constraints is just O(|R||E|), but surprisingly, these simple

constraints can often accelerate the solution process of a standard MIP solver. Similarly,

for each r ∈ R, (k, p) ∈ S2 : e ∈ Pkp, if there exists some throughput mapped to Pkp, then

for each link e, we have ∑
(i,j)∈Lr

yrijkp ≤ φe. (Cut’)

Notice that the number of such constraints is O(|R||S|2|E|), a quartic polynomial in

the number of physical servers, so it might be computationally beneficial to add them

dynamically.

To conclude this section, we present two MIP models for the solution procedure of

problem (P).

PV1 : {(PRLT1)} ∩ {(Cut), (Cut’)} , (PV1)

PV2 : {(PRLT2)} ∩ {(Cut), (Cut’)} . (PV2)

3.3.3 Numerical experiments

In this section, we evaluate the effectiveness and limitations of the formulations by con-

ducting some numerical experiments on formulations (PMC), (PRLT1), (PRLT2), (PV1)

and (PV2). Regarding the problem instances, we assume that all the VMs in a request
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communicate with each other and fix the number of VMs for each request to be 5. The

small physical network instance with 8 nodes is generated randomly. Other instances are

taken from SND library [129]. All the models are coded in C++ and solved via CPLEX

12.6.3 on a Mac with Inter Core i5 clocked at 2.7 GHz and with 8 GB of RAM.

As CPLEX 12.6.3 can handle MIQCPs where quadratic terms are multiplications of

binary variables, we also use it to solve (P) directly as a benchmark to (PMC). Results

are summarized in Table 3.1. For each problem instance, the size of the physical network

(number of servers, number of edges), the number of requests, the number of binary

variables, as well as CPU time and the number of branching nodes are reported. As

might be expected, the computational time increases exponentially for both formulations

as the size of the problem instances increase. Clearly, the simple McCormick relaxation

based model outperforms the routines of CPLEX solver for this mapping problem.

Table 3.1: Numerical results for P and PMC

Branch-and-Cut statistics

(|S|, |E|) #Req. #Bin. P PMC

#CPU(s) #Nodes #CPU(s) #Nodes

(8, 20) 1 68 3.33 88 0.03 0

(8, 20) 2 108 10.00 1704 0.45 229

(12, 30) 1 102 371 53305 1.18 16

(12, 30) 2 162 - - 134 8897

(12, 30) 4 282 - - 4180 10766

–Time limit: 36000 Seconds (10hs)

Let us now focus on the performance of models (PRLT1), (PRLT2), (PV1) and (PV2).

To show the effectiveness of RLT-based and additional valid inequalities, we first solve

the continuous relaxations of different formulations. Then we solve each problem using

standard CPLEX 12.6.3 Branch-and-Cut with default settings. Results are summarized

in Table 3.2.

Continuous relaxation figures in the table show that for each problem instance, the

strength of formulations increases as more valid inequalities are added, which is within

our expectation. However notice that the differences w.r.t. the optimality gap between

(PRLT1) and that of (PRLT2) is negligible while the computational cost of solving (PRLT2)

can be ten times higher than that of solving (PRLT1). This is probably because the

former has 2
∑

r∈R |V r||S|(|S|−1) more constraints than the latter. Another observation

is that adding (Cut),(Cut’) to models (PRLT1) and (PRLT2) reduces around 40% gap,

which confirms the necessity of exploring additional valid inequalities in addition to the

RLT based ones.

To balance the strength of (PV1) and (PV2) and their problem sizes, we put constraints
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(Cut’), (LCRLT), (LCRLT′) to the user-cut pool of CPLEX. The B&B results imply that

compromises have to be made between the strength of some valid inequalities and their

computational costs. For example, both (PRLT2) and (PV2) are stronger (cf. Columns

’#Nodes’) than (PMC), but they are also computationally more costly. On the other hand,

model (PRLT1) and (PV1), that are slightly weaker than model (PRLT2) and (PV2), are

computationally five times as efficient as model (PMC). For the largest instance, (PRLT1)

reduces the computation time from 13hs to 3.74hs, and (PV1) performs best if we add

constraints (Cut’) in an iterative way. In addition, the results also suggest two factors

that influence the computational performance: the number of virtual requests and the size

of the physical network. For a fixed number of requests, the computation time increases

gradually as the size of the physical network increases; on the other hand, given a fixed

physical network, the computation time rises significantly as the number of requests

grows. Generally, the size of virtual requests might affect computational performance

heavier than that of a physical network. Overall, the computational experiments indicate

that model (PV1) performs best among all models.
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3.4 A Lagrangian decomposition

The previous numerical results show that the gap incurred by some convex relaxation of

the mapping programs is typically large. While several proposed linear valid inequalities

are quite effective in strengthening the linear relaxation, there are cases where the gap

can be 20%. The goal of this section is to use Lagrangian relaxation to decompose the

problem thereby solving the relaxed problem efficiently along with lower bounds of good

quality. Of-course, there are plenty of ways to decompose the problem and we have tried

many. In this section, we present a request based decomposition scheme, which has a nice

interpretation in the context of cloud computing. It also guarantees that the resultant

lower bound dominates the optimum of the continuous relaxation of formulation (PV1)

which is numerically the strongest one among the aforementioned models. Numerical

experiments suggest that the proposed scheme can computationally be attractive for

large scale problems. Let us recall (PV1) below.

min
∑
k∈S

Fkθk +
∑
k∈S

Ak
∑
r∈R

∑
i∈V r

crixrik +
∑
e∈E

Weφe (PV1)

s.t.
∑
k∈S

xrik = 1, r ∈ R, i ∈ V r, (AC)∑
p∈S:p6=k

yrijkp = xrik , r ∈ R, i, j ∈ Lr, k ∈ S, (ACRLT)

∑
i∈V r

xrik ≤ θk, r ∈ R, k ∈ S, (LC)∑
r∈R

∑
i∈V r

crixrik ≤Mkθk, k ∈ S, (KP)∑
r∈R

∑
i∈V r

mrixrik ≤ Ckθk, k ∈ S, (KP’)∑
r∈R

∑
i,j∈V r:
i6=j

∑
k,p∈S:

k 6=p,e∈Pkp

f rijyrijkp ≤ Beφe, e ∈ E, (QC)

∑
(k,p)∈S2:k 6=p,e∈Pkp

yrijkp ≤ φe, e ∈ E, r ∈ R, i, j ∈ V r : f rij > 0,

(Cut)∑
(i,j)∈Lr

yrijkp ≤ φe, e ∈ Pkp, k 6= p ∈ S, r ∈ R, (Cut’)

yrijkp ≥ 0, r ∈ R, i, j ∈ V r : i 6= j, k 6= p ∈ S,
(3.1d)

θk, φe, x
ri
k ∈ {0, 1}, r ∈ R, i ∈ V r, k ∈ S, e ∈ E.

3.4.1 A request based decomposition

We first present a decomposition leading to a sequence of subproblems associated with

each request, each sever, and each link. To this end, we disaggregate constraints (KP),

(KP’), (QC) by reformulating them with a handful of auxiliary variables with correspond-

ing interpretations.
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• wrk reserved CPU for request r on server k.

• zrk reserved Memory for request r on server k.

• κre reserved bandwidth for request r on link e.

The equivalent counterpart of (KP), (KP’), (QC) is then

∑
i∈Vr

crixrik ≤ wrk, r ∈ R, k ∈ S, (3.5)

∑
i∈Vr

mrixrik ≤ zrk, r ∈ R, k ∈ S, (3.6)

∑
i,j∈Vr:
i6=j

∑
k,p∈S:

k 6=p,e∈Pkp

f rijyrijkp ≤ κ
r
e, r ∈ R, e ∈ E, (3.7)

∑
r∈R

wrk ≤ Ckθk, k ∈ S, λ ∈ R|S|+ (3.8)∑
r∈R

zrk ≤Mkθk, k ∈ S, µ ∈ R|S|+ (3.9)∑
r∈R

κre ≤ Beφe, e ∈ E. σ ∈ R|E|+ (3.10)

To make the problem separable by request while ensuring the strong lower bounds, we

proceed the following. First, we copy variables θ and φ by introducing following con-

straints:

θrk = θk, r ∈ R, k ∈ S, η ∈ R|R|×|S| (3.11)

φre = φe, r ∈ R, e ∈ E. ζ ∈ R|R|×|E| (3.12)

Then, we replace θk with θrk in constraints (LC). Likewise, we replace φe with φre in

constraints (QC). Finally, we denote the resulting reformulation of (PV1) as

P′v1 : {(PV1)} ∩ {(3.8), (3.9), (3.10), (3.11), (3.12)} . (P′v1)

Lemma 3.2 The projection of the continuous relaxation of F(P′v1) in variables (x,y,θ,φ)

is exactly the continuous relaxation of set F(PV1).

Proof: It holds that the Proj(x,y,θ,φ) F(P′v1) ⊆ F(PV1). The reverse also holds by letting

wrk =
∑
i∈Vr

crixrik ≤ wrk, z
r
k =

∑
i∈Vr

mrixrik , κ
r
e =

∑
i,j∈Vr:
i6=j

∑
k,p∈S:

k 6=p,e∈Pkp

f rijyrijkp for each r ∈ R, k ∈

S, e ∈ E.

Relaxing the five constraints with associated Lagrangian multipliers λ,µ,σ,η, ζ leads

to the Lagrangian over variables (λ,µ,σ,η, ζ; w, z,κ,θ,x,φ). For ease of notation, let
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v∗ = (λ,µ,σ,η, ζ), v = (w, z,κ,θ,x,φ). The Lagrangian is then

L (v∗,v) =
∑
r∈R

(∑
k∈S

(
Ak
∑
i∈Vr

crixrik + wrkλk + µkz
r
k + θrkη

r
k

)
+
∑
e∈E

(σeκ
r
e + ζreφ

r
e)

)

+
∑
k

(
Fk − Ckλk −Mkµk −

∑
r∈R

ηrk

)
θk

+
∑
e

(
We −Beσe −

∑
r∈R

ζre

)
φe.

The Lagrangian problem reduces to |R|+ |S|+ |E| subproblems, i.e., for each r ∈ R, we

obtain Lr(v∗) by solving

min
∑
k∈S

(
Ak
∑
i∈Vr

xrik ari + λkw
r
k + µkz

r
k + θrkη

r
k

)
+
∑
e∈E

(σeκ
r
e + ζreφ

r
e) (Subr)

s.t.
∑
k∈S

xrik = 1, i ∈ V r,∑
p∈S:p6=k

yrijkp = xrik , i, j ∈ Lr, k ∈ S,

∑
i∈V r

xrik ≤ θrk, k ∈ S,∑
i∈Vr

crixrik ≤ wrk, k ∈ S,

∑
i∈Vr

mrixrik ≤ zrk, k ∈ S,

∑
i,j∈Vr:
i6=j

∑
k,p∈S:

k 6=p,e∈Pkp

f rijyrijkp ≤ κ
r
e, e ∈ E,

∑
(k,p)∈S2:k 6=p,e∈Pkp

yrijkp ≤ φ
r
e, e ∈ E, i, j ∈ V r : f rij > 0,

∑
(i,j)∈Lr

yrijkp ≤ φ
r
e, e ∈ Pkp, k 6= p ∈ S,

yrijkp ≥ 0, i, j ∈ V r : i 6= j, k 6= p ∈ S,

θrk, φ
r
e, x

ri
k ∈ {0, 1}, i ∈ V r, k ∈ S, e ∈ E.

Note that one can even relax the integrality of θr and φr to reduce the complexity of

solving a subproblem associated with each request. For each k ∈ S, and e ∈ E, we solve

the following problems analytically by checking the coefficients.

Lk(λ,µ,η) = min
θk∈{0,1}

(
Fk − Ckλk −Mkµk −

∑
r∈R

ηrk

)
θk,

Le(σ, ζ) = min
φe∈{0,1}

(
We −Beσe −

∑
r∈R

ζre

)
φe.

Consequently, the dual objective denoted by Ψ(v∗) is

Ψ(v∗) =
∑
r∈R

Lr(v∗) +
∑
k∈S

Lk(λ,µ,η) +
∑
e∈E

Le(σ, ζ).
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And the dual problem is then

max
v∗

Ψ(v∗). (3.13)

Before the solution procedure of (3.13), we verify that evaluating Ψ(v∗) is relatively

easier than solving (PV1) itself. In particular, when the number of requests is large

such that CPLEX cannot handle (due to the increasing number of binary variables), this

decomposition scheme might be attractive. In addition, the lower bound achieved by this

decomposition is stronger than the bound obtained by solving the continuous relaxation

of (PV1). We formalize this result below.

Theorem 4 The optimum of (3.13) dominates that of continuous relaxation of (PV1).

Proof: According to Theorem 2, the optimum of (3.13) is equivalent to the optimum of

minimization of the objective function of (PV1) over S, where

S = conv{×
r∈R

Sr}
⋂
{(v,y) : (3.8), (3.9), (3.10), (3.11), (3.12)} .

×r∈R S
r represents the Cartesian product of (Sr)r∈R, where Sr represent the constraint

set of each subproblem (Subr). It also holds that conv{×r∈R S
r} =×conv{Sr}. More-

over, it holds that S is “smaller” than the continuous relaxation of F(P′v1), which com-

pletes the proof in conjunction with Lemma 3.2.

Theorem 4 also indicates a hierarchy of request based Lagrangian relaxations. We may

consider a sequence of covers of set {Sr}r∈R. For example, we can partition set {Sr}r∈R
into disjoint subsets and each subset is associated with two requests. The resulting

Lagrangian relaxation bound will be larger than the one based on single request decom-

position. When the size of each subset is |R|, we get problem (P′v1).

3.4.2 The solution procedure

In this section, we develop a solution procedure of (3.13). Ben-Ameur and Neto [25]

proposed the so-called in-out algorithm for convex programs, which is treated as an ac-

celeration of cutting-plane and column generation algorithms. We employ this algorithm

to solve a Lagrangian dual problem. Let us recall several features of problem (3.13).

• The objective function Ψ(v∗) is additively composed of functions Lr, Lk, Le and all

functions are concave functions in variables v∗.

• For each input v∗, we have evaluations of functions Lr, Lk, Le and access to their

subgradients at v∗.

Therefore, we are able to construct the following master problem by approximating each

concave function with a sequence of subgradients and evaluations.

max
∑
r∈R

γr +
∑
k∈S

γk +
∑
e∈E

γe (M)
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s.t. γr ≤ Lr(v∗) +
∑
k∈S

wrnk (λk − λnk)

+
∑
k∈S

zrnk (µk − µnk) +
∑
k∈S

θrnk (ηrk − ηrnk )

+
∑
e∈E

κrne (σe − σne ) +
∑
e∈E

φrne (ζre − ζrne ), r ∈ R,n = 1, . . . , N,

γk ≤ Lk(λ,µ,η)− αkθnk (λk − λnk)

− βkθnk (µk − µnk)− θnk
∑
r∈R

(ηrk − ηrnk ), k ∈ S, n = 1, . . . , N,

γe ≤ Le(σ, ζ)−Deφ
n
e (σe − σne )− φne

∑
r∈R

(ζre − ζrne ), e ∈ E,n = 1, . . . , N,∑
r∈R

γr +
∑
k∈S

γk +
∑
e∈E

γe ≤ U

λk,µk, σe ≥ 0, r ∈ R, k ∈ S, e ∈ E.

where U is an upper bound of Ψ(v∗). A trivial choice of U can be an upper bound of the

primal cost function, e.g.,
∑
k∈S

Fk +
∑
e∈E

Weφe +
∑
k∈S

Ak
∑
r∈R

max
i∈V r

cri.

To use the in-out algorithm, we need to choose a feasible point of the dual prob-

lem (3.13). A key observation is that any v∗ defined before is feasible to (3.13). For each

v∗, let us denote by L(v∗) ∈ R|R|+|S|+|E| the vector ((Lr(v∗))r∈R, (L
k(λ,µ,η))k∈S , (L

e(σ, ζ))e∈E).

Correspondingly, any (v∗, L(v∗)) is a feasible point to the master problem (M). The

in-out algorithm usually outperforms the standard cutting-plane (or column generation)

algorithms since it allows relatively flexible choose of the subsequent evaluation points.

Following Ben-Ameur and Neto [25], let us call the evaluation point separation point, the

optimal solution of (M) out-point, and call the feasible point in-point. The separation

point is chosen as a convex combination of the in-point and out-point. Next, we state

the in-out Algorithm when applied to problem (3.13).

The choice of the initial in-point: Even though each subproblem (Subr) (a MILP)

is easier than problem (PV1), it is still computationally costly. This motivates us to reduce

the number of iterations of Algorithm 1. To this end, we may need to select a good in-

point with some cost. Specifically, we first solve the continuous relaxation of (P′v1) to

optimality and take the dual multipliers corresponding to constraints (3.8), (3.9), (3.10),

(3.11) and (3.12) respectively as the initial values of v∗in. Then we solve the subproblems

with v∗in ∈ R|R|+|S|+|E|, which outputs γin. In the sequel, we shall denote by v∗0in and γ0
in

the respective initial values of v∗in and γin. We show that at the initialization procedure,

we obtain a lower bound that dominates the continuous relaxation of (PV1).

Lemma 3.3 The value of
∑
r∈R

γr0in +
∑
k∈S

γk0
in +

∑
e∈E

γe0in dominates the optimal objective

value of the continuous relaxation of (PV1)

Proof: First, by Lemma 3.2 and strong duality, the optimum of the continuous relaxation

of (PV1) is equal to the minimization of L(vr0in , ·) over continuous relaxation of (P′v1). Sec-

ond, observe that all the integrality constraints are not relaxed in subproblems associated

with Lr, Lk, Le. Combining the above observations completes the proof.
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Algorithm 1: In-out Algorithm

Let (v∗in,γin), (v∗out,γout) be the initial in-point and out-point

choose an α ∈ (0, 1]

while
∑
r∈R

γrout +
∑
k∈S

γkout +
∑
e∈E

γeout >
∑
r∈R

γrin +
∑
k∈S

γkin +
∑
e∈E

γein + ε do

define the separation point (v∗sep,γsep) = α(v∗out,γout) + (1− α)(v∗in,γin)

evaluate function Lr, Lk, Le with input v∗sep
if
∑
r∈R

Lr(v∗sep) +
∑
k∈S

Lk(v∗sep) +
∑
e∈E

Le(v∗sep) <
∑
r∈R

γrsep +
∑
k∈S

γksep +
∑
e∈E

γesep

then

add cuts at point v∗sep by concavity

if
∑
r∈R

Lr(v∗sep) +
∑
k∈S

Lk(v∗sep) +
∑
e∈E

Le(v∗sep) >
∑
r∈R

γrin +
∑
k∈S

γkin +
∑
e∈E

γein

then
(v∗in,γin)←− (v∗sep,L(v∗sep))

end

solve (M)

else

end

(v∗in,γin)←− (v∗sep,L(v∗sep))

end

Remark 3.1 Our numerical results show that the lower bound at the initialization pro-

cedure, i.e.,
∑
r∈R

γr0in +
∑
k∈S

γk0
in +

∑
e∈E

γe0in , is generally close to the dual optimum, i.e, the

optimal objective value of (3.13). Therefore, for computational benefits, one can ter-

minate Algorithm 1 at the early stage of the algorithms or even after the initialization

procedure.

3.4.3 Numerical experiments

In this section, we carry out some numerical results to evaluate the effectiveness of the

proposed decomposition scheme. All test instances have a moderate number of small

request (i.e., each request has 5 VMs). Model (PV1) is used as the benchmark to the

request based decomposition. Algorithm 1 is implemented in C++. Numerical results

are summarized in Table 3.3.

For each problem instance, we solve model (PV1) exactly and solve Lagrangian dual

problem (3.13) by Algorithm 1. MILPs are solved by CPLEX12.63. To keep the size

of model (PV1) moderate, we put valid inequalities of (Cut’) to the user-cut pool of

CPLEX. Optimality gap is quantified by gap = Exact−v
Exact , where v is replaced by the

optimum of the continuous relaxation of (PV1) and the lower bound obtained from Algo-

rithm (1) respectively.

Results in Table 3.3 show that the request based decomposition provides strong lower

bounds efficiently in the following senses.
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1. For small problem instances that CPLEX can solve to optimality in a reasonable

time, Algorithm 1 can provide near optimality bound quickly.

2. For instances that CPLEX takes hours of CPU time (e.g. instances with 5 and 6

requests), Algorithm 1 can produce strong bounds in hundreds of seconds. Addi-

tionally, Algorithm 1 is generally about ten times faster than the standard CPLEX

branch-and-cut algorithm in reaching the same optimality gap (in the last column

of Table 3.3.

Table 3.3: Evaluation of Lagrangian decomposition

(|S|, |E|) #Req. #Bin. PV1 Decomposition 3.13

#CPU(s) Root gap(%) #CPU(s) Gap(%)

(12, 30) 2 162 15.40 9.70 21.38 0

(12, 30) 3 222 65.08 9.26 60.92 0.55

(12, 30) 4 282 125.78 8.52 93.23 1.85

(12, 30) 5 342 3050.21 20.15 139.78 12.72

(12, 30) 6 402 32492.00 (9hs) 24.09 278.56 16.21

Another observation is that as the number of requests increases, the strength of formu-

lation (PV1) and that of Lagrangian decomposition scheme appear weaker. On the one

hand, it implies that the convex relaxation of (PV1) is weaker for instances with relatively

larger number of requests. On the other hand, it reveals the fact that the relaxed coupling

constraints (3.8) and (3.9), (3.10) become more important in (PV1) as the number of

requests goes up.

For problem instances having more than 6 requests, CPLEX cannot solve the to

optimality within the 10 hours time limit. We use the proposed hierarchy in Section 3.4.1

to generate a sequence of strong bounds in a reasonable time. More precisely, we consider

two levels of Lagrangian decomposition. Level 1 refers to the one where the problem (PV1)

is decomposed by each single request, each server, and each link. Level 2 refers to the one

where we decompose the problem by each pair of requests, each server, and each link.

Due to the lack of exact optimal values, we measure the strength of the above two

decomposition schemes by the closed gap defined below

closed gap =
Lagrangian bound− continuous relaxation value

upper bound− continuous relaxation value

where the upper bound is the one provided by CPLEX after 10 hours branch-and-cut. The

numerical results are summarized in Table 3.3. We highlight the following observations.

First, as might be expected, the bound provided by Level 2 decomposition is stronger

than the one obtained by Level 1. Second, it appears that as the number of requests

increases, Level 2 decomposition does not perform significantly better than the Level 1

decomposition.
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Table 3.4: Evaluation of the Lagrangian decomposition hierarchy

(|S|, |E|) #Req. #Bin. Level 1 Level 2

#CPU(s) Closed gap(%) #CPU(s) Closed gap(%)

(12, 30) 8 522 535.12 38.91 907.42 45.01

(12, 30) 10 642 612.71 32.99 1534.88 35.63

(12, 30) 20 1284 1924.31 18.29 3247.95 20.12

–Time limit: 36000 Seconds (10hs)

Finally, it might be interesting to integrate the request based Lagrangian decomposi-

tion scheme into the branch and cut procedure so that the exact solution procedure could

be further accelerated.

3.5 A symmetry-induced model

In this section, we reformulate the initial model (P) by exploiting the symmetric structure

of the virtual requests. To this end, we introduce the definition below.

Definition 3.1 For each request r, a virtual machine i is equivalent to a virtual machine

j if and only if the following conditions hold.

• The frequencies of CPU resource of VM i and j are equal.

• The capacity of memory resource of VM i and j are equal.

• The throughput requirements of logical links between VM i and VM j are equal, i.e.,

f rij = f rji.

• For each VM l where l 6= i, j, the throughput requirements of logical links (i, l) and

(j, l) are same, i.e., f ril = f rjl and f rli = f rlj.

It is clear that the equivalence is well defined as it is a reflective, symmetric, transitive

relation. This definition allows a partition of a request (a set of virtual machines) V r.

Each member of a partition consists of equivalent VMs. We may interpret a member of

a partition as a VM type. A type t is identified by the frequency of CPU ct, the memory

capacity mt, and the throughput f t. We emphasize here that the type we defined here

is also associated with the throughput, whereas in practice, the term “type” is generally

characterized by CPU, memory (see section 2.4). For the sake of further development,

we introduce additional parameters and variables below:

• T r: set of VM types required in virtual request r ∈ R.

• V rt: set of VMs of type t ∈ T r in request r, i.e., V r =
⋃
t∈T r V rt.



40 Optimal Mapping of Cloud Virtual Machines

• xrtk : 1 if we mapping a type t VM of request r to server k, 0 otherwise.

It is clear that for each request, feasible solutions are equivalent among decision variables

associated with same VM type under permutation in the sense that their corresponding

objective values are equal. As will be shown below, this simple feature allows us to deduce

an equivalent model with fewer binary variables and constraints.

We may also exploit symmetries among edges to reduce the number of (QC). It is

obvious that in the context of formulation (P), two edges e and e′ are equivalent if and

only if We = We′ , Be = Be′ , and they are related to the same set of servers in terms of

shortest path routing. As a result, redundant edges do not need to be considered.

Consequently, the objective function becomes∑
k∈S

Fkθk +
∑
k∈S

Ak
∑
r∈R

∑
t∈T r

ctxrtk +
∑
e∈E

Weφe. (3.14)

The assignment constraint (AC) is rewritten as∑
k∈S

xrtk =
∣∣V rt

∣∣, r ∈ R, t ∈ T r. (3.15)

The location constraint (LC) is replaced with∑
t∈T r

xrtk ≤ θk, r ∈ R, k ∈ S. (3.16)

The knapsack constraint associated with CPU and the one associated with memory con-

straints can be rewritten as ∑
r∈R

∑
t∈T r

ctxrtk ≤ Ckθk, k ∈ S, (3.17)∑
r∈R

∑
t∈T r

mtxrtk ≤Mkθk, k ∈ S. (3.18)

The bilinear type knapsack constraint can then be replaced by∑
r∈R

∑
t∈T r

∑
k,p∈S:

k 6=p,e∈Pkp

f txrtk x
rt
p +

∑
r∈R

∑
t,t′∈T r

∑
k,p∈S:

k 6=p,e∈Pkp

f tt
′
xrtk x

rt′
p ≤ Deφe, e ∈ E. (3.19)

In a special case where VMs within a single request are of same type, (3.19) is equivalent

to ∑
r∈R

∑
k,p∈S:

k 6=p,e∈Pkp

f rxrkx
r
p ≤ Deφe, e ∈ E. (3.20)

This symmetry-induced formulation is then

min
x,θ,φ
{(3.14) : (3.15), (3.16), (3.17), (3.18), (3.19), x, θ, φ ∈ {0, 1}} . (SP)

Proposition 1 Formulation (SP) is equivalent to (P) in a sense that for any feasible

solution of (P), there exits a feasible solution of (SP) such that their objective values are

equal.
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As stated before, bilinear terms and binary variables make (P) and (SP) hard to solve.

We compare the sizes of these two problems in terms of the numbers of binary variables

and constraints. Notice that the number of variables associated with linear constraints

and the number of bilinear constraints in both formulations are same. So we just report

in Table 3.5 the number of bilinear variables and bilinear terms and linear constrains.

It is obvious that if |T r| < |V r|, formulation (SP) is probably attractive. In general,

Table 3.5: Problem sizes of (P) and (SP)

Model Bilinear variables Linear constraints Bilinear terms

(P)
∑
r∈R
|V r||S|

∑
r∈R
|V r|+ (2 + |R|)|S| |S||V r|(|S| − 1)(|V r| − 1)/2

(SP)
∑
r∈R
|T r||S|

∑
r∈R
|T r|+ (2 + |R|)|S| |S||T r|2(|S| − 1)/2

this condition holds in the mapping problem. First, in a virtualized environment, the

combination of CPU and memory for virtual machines is designed in an optimal way such

that the computing resource of servers can be allocated efficiently. Second, it is really

tough for clients to quantify exact the requirements of CPU, memory, and throughputs.

Thus cloud operators usually design several VM types. For example, Amazon Elastic

Cloud Computing (EC2) mainly provides “small” VMs configured with 1.7 GB memory

and 1 compute unit [154]. Third, even if throughput between VMs are not strictly

categorized, there exists strong correlations between VM types and throughputs among

them, i.e., the “larger” (regarding CPU and memory) two VMs are, the more throughputs

will be needed in-between.

The partition of a request can be done before the solution procedure. First, we

partition the request graph by characteristics of CPU and memory. Then for each subset

of the partition, we further partition it based on the throughput values.

To conclude this section, we remark that one may employ all the relaxation techniques

proposed previously for (P) apply to model (SP) directly for resolution. Yet, implications

among constraints need to be examined carefully. For example, if one introduce RLT

constraints based on assignment constraints (3.15), the McCormick constraints cannot

be eliminated as (PRLT1). Strong inequalities of the form (Cut) cannot be employed

either. In brief, we will use the following formulation to solve (SP).

SPV1 : {(SP)} ∩ {(ACRLT), (3.1a)− (3.1d), (Cut’)} . (SPV1)

Note also that the strength of formulation (SPV1) is usually weaker than the general

formulation (PV1).

3.5.1 A heuristic

For model (SP), it is clear that when |T r| = 1, the benefits can be significant and

when |T r| = |V r|, the two models are equivalent. However, for problem instances not

satisfying the equivalence conditions defined in 3.1, the advantages of model (SP) can
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hardly manifest. To address this issue, we propose a heuristic to obtain a feasible solution

with an upper bound.

Assume that |T r| is large and we want to find a feasible solution of (P) in a reasonable

time. Clearly the VMs can be easily categorized regarding the requirements of CPU and

memory, thus we elaborate on partitioning VMs by throughput values. Intuitively, VMs

with similar f rij will be grouped in the same set. Meanwhile, we want to minimize

the amount of throughput among two subsets. To this aim, we consider minimizing the

normalized cut (that minimizes the multi-cuts while balancing sizes of each subgraph)

for a virtual request graph Gr. The problem itself is NP-hard, but we might as well to

solve it approximately usng the well-known shi-malik algorithm [147]. To be specific, we

proceed the following. For VMs in the same subset, every throughput value is augmented

to the maximum; for VMs among two different subsets, each mutual throughput value is

shifted to the largest one. This setting allows us to make use of model SP, which outputs

a feasible solution and an upper bound. Intuitively, the upper becomes stronger as the

number of subsets decreases. When the number of subsets is equal to the number of VMs

in Gr, we get the global optimum of the mapping problem.

3.5.2 Numerical experiments

In this section, we test the effectiveness of model (SP) numerically. We choose to test on

problem instances of a single request with 10, 20, 30, 40 VMs respectively. Model (SP)

and the aforementioned heuristic coded in C++.

We carry out experiments on two sets of problem instances. For all problem instances,

VMs are categorized by CPU and Memory. In addition, for the first set of problem

instances, throughput among a same category of VMs are assumed to be the same,

whereas for the second set of problem instances, throughput values are usually different.

Numerical results of the first problem instance set are summarized in Table 3.6. Note

that the optimum of (SPV1) is exactly the optimum of (PV1). As expected, the symmetry-

induced model (SPV1) performs significantly better than (PV1) for all the tested problem

instances. This is mainly due to the reduction of binary variables and bilinear terms.

However, as the size of the physical graph increases, the solution time of (SPV1) also

increases exponentially. For example, for 10 VMs, it takes around 400 seconds for instance

(25, 90) while it just takes 1.22 seconds for instance (12, 30).

Now let us focus on the second problem instance set. Following the observation

from [122] that 80% of throughput values are quite low and 4% of them have a 10 times

higher rate, we generate throughput values with a probability 0.8 being lower than 2

Mbps/min and with a probability 0.2 lying between 10 Mbps/min and 30 Mbps/min.

We employ the heuristic proposed in Section 3.5.1 to partition virtual request Gr to N

subsets. Results are summarized in Table 3.7. The optimality gap induced by an upper

bound is quantified by Gap = Upper bound - Exact value
Exact value . Exact values are computed using

(PV1). We stress two observations:

• For each problem instance, as might be expected, the quality of upper bounds

become better as the size of the partition increases.
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Table 3.6: Performances of (SPV1) and (PV1)

(|S|, |E|) #VMs. (SPV1) (PV1)

Cpu(Sec.) #Nodes #Cpu(sec.) #Nodes

(12, 30) 10 1.22 0 13.68 0

(25, 90) 10 424 121 1216 30068

(25, 90) 20 1080 150 3680 73808

(40, 178) 10 522 0 1024 25197

(40, 178) 20 824 121 13428(3.7hs) 310124

(40, 178) 30 4780 875 - -

(40, 178) 40 4410 1950 - -

Time limit: 36000 Seconds (10hs).

• As the size of the problem instance increases, the gap becomes larger and the

influence of the partition size N becomes more significant.

Table 3.7: Upper bounds of (P)

(|S|, |E|) #VMs. N #Cpu(sec.) #Nodes Gap(%)

(12, 30) 10 2 2.72 0 9.22

(12, 30) 10 4 3.67 0 4.21

(25, 90) 10 2 739 121 11.69

(25, 90) 10 4 1280 187 8.90

(25, 90) 20 4 2182 478 23.70

(25, 90) 20 7 4821 157 15.84

(25, 90) 25 4 1328 952 24.33

(25, 90) 25 10 3120 1253 13.89

To conclude this section, we remark that there is still a large number of symmetries in

model (SPV1). For example, in a physical network, two servers k, p might be equivalent

in the sense that (θk, θp) = (0, 1) or (θk, θp) = (1, 0) leads to the same mapping cost. One

may introduce symmetry breaking constraints statically to the model or dynamically

during a branching-and-cut procedure.

3.6 A perspective

In practice, the arrival of VMs is dynamic and unpredictable. The static mapping

model (P) can hardly work in that case. In this section, we propose a model that optimizes

certain mapping policies as a perspective.
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In a cloud computing environment, requests might be categorized. For example, let

us consider the cloud service of Platform as a Service (PaaS), where platforms might

be Linux, Windows, Unix, etc.. Let set R be set of request types, and let xr denote

the mapping polices for requests of type r. Specifically, we may interpret xrik as the

probability that VM i will be assigned to sever k. The model can be developed simply

by relaxing the integrality constraints of x in model (P). The objective function turns

out to be the expectation of future cost. When requests of type r arrive, cloud provider

will map xrik percent of VM i to server k.

Note that unlike a MILP or a convex MIQCP, relaxing integrality constraints of x

does not lead to an easier problem. In fact, it is computationally more challenging than

problem (P). For problem (P), one can get the optimal solution and objective value using

standard finite branch and bound algorithms. For this model where continuous variables

are involved in bilinear constraints (QC), one may need to consider spatial branch and

bound framework for two reasons. First, the optimal solution to a given relaxation is

not necessarily feasible. Second, the convex underestimators of bilinear constraints may

need to be updated in each subdivision of the search region. Many related fundamental

problems, such as, convex and concave envelopes of a general bilinear function over a

hypercube need to be investigated.

3.7 Conclusion

We proposed a model for the optimal mapping of virtual machines in a cloud environ-

ment, by taking into account link capacity constraints, location constraints, and knapsack

constraints regarding CPU and memory. We then strengthened the model by employing

different levels of RLT and adding strong valid inequalities. Computational results con-

firm the power of valid inequalities, especially those that exploit the problem structure.

To handle relatively larger problem instances, we proposed a request based Lagrangian

decomposition scheme. We show, both theoretically and numerically, that this decom-

position can produce bounds greatly stronger than continuous relaxation bounds. In

addition, a novel model exploiting symmetries of a request was discussed and analyzed.

Finally, we pointed out that it would be interesting to associate each request with certain

mapping policy and investigate related techniques to solve the resulting model.
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Appendix: numerical comparison of model (PMC) and model (PGL)

We provide numerical results on some instances to compare the differences of two different

models (PMC) and (PGL).

Table 3.8: Continuous relaxation statistics of (PMC) and (PGL)

(|S|, |E|) #Req. PMC PGL

Cpu(Sec.) Gap(100%) #Cpu(sec.) Gap(100%)

(8,20) 1 0.00 63.9 0.00 63.9

(8,20) 2 0.02 60.8 0.01 60.8

(12,30) 1 0.02 79.6 0.01 79.6

(12,30) 2 0.07 74.7 0.06 74.7

(12,30) 4 0.38 65.88 0.64 65.88

Table 3.9: Branch and Cut statistics of (PMC) and (PGL)

(|S|, |E|) #Req. PMC PGL

Cpu(Sec.) #Nodes #Cpu(sec.) #Nodes

(8,20) 1 0.29 0 0.53 0

(8,20) 2 0.45 229 0.38 251

(12,30) 1 1.18 16 0.52 284

(12,30) 2 134 8897 129 9016

(12,30) 4 4180 10766 3966 14750





Chapter 4

Convex and concave envelopes of

bilinear functions

4.1 Summary

Convex and concave envelopes of nonconvex functions play an important role in global

optimization. We discuss in this chapter a couple of approaches to approximating the

convex and concave envelopes of bilinear functions, especially over hypercubes due to its

generality. The first approach is based on a semidefinite reformulation. The second ap-

proach considers some predefined set covers of a hypercube and leads to a linear program.

Then we establish a connection between the convex envelope of a bilinear function and

the concave envelope of a polyhedral function. Numerical experiments are conducted to

compare the two approaches. As a possible extension, a novel approach to approximate

the envelopes is discussed and illustrated.

4.2 Introduction

There has been a great amount of studies devoted to developing convex underestima-

tors and concave overestimators of nonlinear functions f(x) over various polyhedral sets.

One of the most important motivations in optimization community is that, one can re-

formulate a complicated usually non-convex problem as an easier problem with convex

representations of the objective function and constraints. Such convex reformulations can

then be solved repeatedly in branch-and-bound algorithms, where searching spaces are

refined in a convergent way. In general, the computational efficiency of branch-and-bound

is greatly influenced by the strength of convex reformulations.

Among such investigations, the construction and approximations of convex and con-

cave envelopes of bilinear functions over boxes draws much attention. This is mainly due

to the following reasons. First, many important problems, for example, quadratic assign-

ment problems [81, 153], pooling and blend [70, 13, 125] involve bilinear terms. Second,

boxes are naturally outer approximations of polytopes and therefore the estimators of

convex and concave envelopes of f over a box are also valid estimators for function f

over polytopes belonging to the box. In addition, most branch-and-bound algorithms

47
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partition the searching space by divisions of the feasible region into boxes, which also

motivates investigations in deriving strong convex and concave estimators over boxes. It

is well known that a n-dimensional box is simply linear transformations of a hypercube.

Therefore, we consider in this chapter the convex (resp. concave) envelope of a bilinear

function (4.1) over a hypercube Hn = [0, 1]n:

f(x) =
∑
i<j

Qijxixj (4.1)

whereQij ∈ R, 1 ≤ i < j ≤ n. There are two main research directions on the construction

of envelopes of f over Hn.

The first direction is motivated by the definition that the convex envelope of any

bounded f over any non-empty compact set P is a function

qf : P � x �→ qf(x) = inf {u : (x, u) ∈ conv epi f} ,

where epi f = {(x, u) : f(x) ≤ u} and conv of a set represents its convex hull. Geometri-

cally, one can interpret the convex envelope of f as the bottom of the convex hull of the

epigraph of f over P . Since P is compact, the definition is equivalent to

min
λi

⎧⎨⎩∑
vi∈P

λif(vi) : λivi = x,
∑
vi∈P

λi = 1, λi ≥ 0

⎫⎬⎭ . (4.2)

The concave envelope f̂(x) of f over P is defined symmetrically by replacing minimization

to maximization. When P = Hn, a nice property of bilinear function f due to Sherali [146]

and Rikun [140] is that its convex and concave envelopes over a hypercube Hn are vertex

polyhedral, i.e., the envelopes of f on Hn coincide with the envelopes of its restriction

to the vertices of Hn. This property allows us to simplify the definition (4.2) to the

following,

qf(x) = min
λi

{
2n∑
i=1

λif(vi) :

2n∑
i=1

λivi = x,

2n∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , 2n

}
, (4.3)

where vi, i = 1, . . . , 2n are vertices of Hn. However, as the number of extreme points of a

hypercube is exponential in the dimension, it is known that a full characterization of such

polyhedral envelopes is in general difficult. The characterizations of convex and concave

envelopes in lower dimensional hypercubes have been studied in [123].

The second research line can be treated as the dual of first research direction since the

convex (resp. concave) envelope is interpreted as the pointwise supreme (resp. infimum)

of an affine under-(resp. over-) estimator of f over P . For example, the convex envelope

is

qf(x) = max
α,γ

{
γ : αT (x− v) + γ ≤ f(v), ∀ v ∈ P

}
, (4.4)

where (α, γ) ∈ Rn+1 defines the supporting hyperplane of the qf at point x. When P =

Hn, one can replace set P with its extreme points due to the vertex polyhedral property

of the convex envelope of f . However, the number of extreme points is exponential. A
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cutting-plane algorithm was proposed in [18] to find a facet of the convex envelope by

separating the supporting function (α, γ) ∈ Rn+1 at a pre-defined point. One of the most

frequently used relaxations to approximate the convex and concave envelopes of f(x) over

a hypercube due to McCormick [119] is the following inequalities

max{xi + xj − 1, 0} ≤ xixj ≤ min{xi, xj}, i < j. (4.5)

We will refer to these inequalities as McCormick inequalities or McCormick relaxation.

McCormick also pointed out that (4.5) characterize the exact convex and concave en-

velope over rectangles. One can also find detailed proof in [6]. However, for higher

dimensional (n ≥ 3) cases, term-wise McCormick relaxation, in general, do not provide

a characterization of the convex and concave envelope over a hypercube. The triangle

inequalities proposed by Padberg [132] in concert with McCormick inequalities provide

an explicit characterization of convex and concave envelopes of f(x) over a cube (n = 3).

As noticed by [123], the number of facets defining the convex and concave envelopes is

indicated by the number of simplices induced by the triangulations of a hypercube and

unfortunately, the number grows super-exponentially in the number of dimension. Lo-

catelli and Schoen [114] utilized the definition (4.4) and derived explicit convex envelopes

for some general bivariate functions over various polytopes in R2.

A number of papers are also dedicated to giving explicit characterizations of convex

and concave envelopes over special polytopes. For example, Locatelli and Schoen [114]

used the definition (4.4) and derived explicit convex envelopes for some general bivariate

functions over various polytopes in R2. Sherali and Alameddine derived the convex en-

velope of a bivariate function over the so-called D-polytope. Linderoth [113] analytically

derived the explicit functions for the disjoint triangular regions of a rectangle via disjunc-

tion x ≤ y or x ≥ y. Tawarmalani et al. [150] derived convex and concave envelopes for

several nonlinear functions via detecting certain polyhedral divisions of a hyper-rectangle.

To deal with the difficulty in (4.3) and (4.4), one natural approach is to consider

extended formulations with moderate sizes thereby obtaining strong convex and concave

estimators. However, as observed by Luedtke et al. [116], extended formulations do not al-

ways bring improvements compared with McCormick relaxations (4.5). A comprehensive

study on the strength of McCormick relaxations of multilinear functions over a hypercube

is provided in [116]. In particular, it is shown that if the coefficients of a bilinear function

f(x) defined as (4.1) are nonnegative, i.e., Qi,j ≥ 0, ∀ i < j, the ratio of the gap be-

tween McCormick’s overestimator and underestimator constructed via (4.5) over the true

gap of the convex and concave envelopes is always less than 2. As proposed by Lasserre

and Thanh [105], one can also construct a convex polynomial pd ∈ R[x] with degree no

greater than d that underestimates f . Based on Putinar’s Positivstellensatz [137], pd can

be approximated as close as desired by solving a hierarchy of semidefinite programs.

We investigate in this chapter the strength of different approaches on approximating

the convex and concave envelopes of the bilinear f over Hn. The outline and contributions

are summarized below.

Outline and contributions. In Section 4.3, we firstly review a semidefinite program

(SDP) based estimator, which is based on the intersection of a SDP constraint and Mc-
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Cormick inequalities. This work has been proposed by Anstreicher [11]. Our contribution

lies in some theoretical results on two variants of formulations on bilinear functions as a

special case of general quadratic functions over a box. As a consequence, an alternative

proof to a result from Burer and Letchford [50] is provided. Then we propose a novel ap-

proach by considering a predefined tool to approximate the convex and concave envelope

of f over Hn. This approach leads to a linear reformulation and we are able to establish

connections with various inequalities and the reformulation-linearization-technique (RLT)

method proposed in [2]. Finally, we show that the convex (resp. concave) envelope of

a bilinear function f is affinely equivalent to the concave (resp. convex) envelope of a

polyhedral function. In Section 4.4, we report a set of numerical results on a number

of problem instances to compare these two approaches. Following the numerical results,

we propose an interesting research direction on approximating the convex envelope valid

over a hypercube when all coefficients of f are nonnegative. Concluding remarks follow

in Section 4.6.

Notation. Throughout this chapter, for any matrix C, CT denotes its transpose

and Cij represents its ith row jth column component. CI,J represents the submatrix

composed by set I of columns of C and set J of rows of C. When I = J , we simply

use CI in place of CI,I . For a set S, we use convS to represent its convex hull. If S is

finite, we use |S| to represent its cardinality. We use Hn to represent an n-dimensional

hypercube, i.e., Hn = [0, 1]n. For a general function f : Hn �→ R, we denote by qf (resp.f̂)

the convex (resp. concave) envelope of f over an n-dimensional hypercube. The inner

product between two matrices A,B ∈ Rm×n are denoted by 〈A,B〉. For a square matrix

A ∈ Rn×n, diag(A) ∈ Rn represents the vector of diagonal elements. Conversely, for a

vector a ∈ Rn, Diag(a) ∈ Sn stands for the n× n diagonal matrix filled by vector a. For

a symmetric matrix X ∈ Sn and vector x ∈ Rn, we use S(x,X) to represent the matrix(
1 xT

x X

)
in Sn+1. We use vector τ(X) = (Xij)1≤i≤j≤n to represent a vector that is the

upper triangular part of the matrix X and τ+(X) = (Xij)1≤i<j≤n to represent the strictly

upper triangular part.

4.3 Main results

In this section, we first review a SDP based convex (resp. concave) underestimator

(resp. overestimator) and establish some connections between two formulations. Then,

we propose a novel way to construct estimators based on a pre-defined cover set. Finally,

we conclude this section by making a connection with the convex and concave envelopes

of a polyhedral function, which implies some results in the literature.

4.3.1 SDP based estimators

Given a vector x, we are interested in constructing a convex under-estimator and a

concave over-estimator that are valid over a hypercube. Towards this aim, we consider

the following assumption.
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Assumption 2 A set of valid inequalities involving quadratic terms is available. For

each k ∈ K,

xTAkx + bTk x + dk ≤ 0, ∀x ∈ Hn, (4.6)

where K is an index set.

Note that Assumption 2 in general holds for bilinear optimization problems over any

compact set. For example, such valid inequalities can be McCormick’s inequalities (4.5),

Padberg’s triangle inequalities [132], RLT based inequalities [2]. The principal idea is to

use these valid inequalities to construct strong estimators. Let us start by constructing

the convex underestimator. We associate nonnegative multipliers α ∈ R|K|+ with the

set of inequalities. Then we add the negative terms
∑
k∈K

αk(x
TAkx + bTk x + dk) to

f(x). For ease of presentation, we define fα(x) = xTQ(α)x + c(α)Tx + p(α), where

Q(α) = 1
2Q+

∑
k∈K

αkAk, c(α) =
∑
k∈K

αkbk and p(α) =
∑
k∈K

αkdk.

Recall that fα is a convex underestimator of f over Hn if and only if fα ≤ f and fα

is convex over the hypercube Hn. Obviously, it holds that fα(x) ≤ f(x), ∀x ∈ Hn. The

convexity of fα can be ensured by restricting Q(α) to be positive semidefinite. Let us

denote by A the set of feasible choices of α:

A :=
{
α ∈ Rn+ : Q(α) ∈ Sn+

}
.

We ensure the non-emptiness of set A by explicitly adding valid inequalities x2
i ≤ xi (i =

1, . . . , n) to inequality system (4.6). As a consequence, it also follows that A has a

nonempty interior. The strongest convex underestimator of the form fα can be obtained

by solving the following problem

sup
α∈A

fα(x). (4.7)

Problem (4.7) is then strictly feasible. The dual problem of (4.7) reads

inf
X

1

2
〈Q,X + xxT 〉

s.t. 〈Ak,X + xxT 〉+ bTk x + dk ≤ 0, ∀k ∈ K,

X ∈ Sn+.

(4.8)

The feasible region of (4.8) is nonempty (e.g., take X as the null matrix of size n). In

addition, as (4.7) is strictly feasible, the dual optimum is attained and is equal to the

primal optimum of (4.7).

Remark 4.1 Note that in model (4.7), we just exploit the information of a set of valid

inequalities in K and we restrict Q(α) ∈ Sn+. Other than using more valid inequalities,

we may replace the SDP matrix cone with “larger” convex cones in geometric sense e.g,

copositive cone, in the hope that the underestimator values will be increased. From its dual

model (4.8), we see that if we replace the SDP matrix cone with a “smaller” convex cone,

e.g., completely positive matrix cone, the underestimator values will be higher. However,

checking the membership of copositive cone is co-NP-complete [127] and checking if a

matrix is completely positive cone is NP-hard [62]. One can approximate the copositive
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matrix cone by doubly nonnegative matrix cone, i.e., the intersection of SDP cone and

componentwise nonnegative symmetric matrix cone. For more details, we refer readers

to [11, 84].

By change of variables X′ = X+ xxT , one can rewrite (4.8) as

min
X′

{
1

2
〈Q,X′〉 : (x,X′) ∈ K

}
, (4.9)

where K :=
{
(x,X′) ∈ Hn × Sn : 〈Ak,X

′〉+ bT
k x+ dk ≤ 0, ∀k ∈ K,S(x,X′) � 0

}
. No-

tice that when x is not fixed, problem (4.9) is exactly the Shor’s relaxation in conjunction

with valid inequalities. Formally, we summarize the foregoing as follows.

Theorem 5 The strength of the SDP relaxation min
(x,X′)∈K

1
2〈Q,X′〉 is equivalent to point-

wise supremum of quadratic convexifications of quadratic functions defined by (4.7).

Theorem 5 clearly implies that any quadratic convexification based underestimator is

dominated by SDP-based estimator. This result in fact coincides with Theorem 2 in [11],

where they claim that the well-known αBB method (c.f., [4, 148]) are dominated by SDP

based relaxation in conjunction with valid inequalities. Recall that convex underestima-

tors of a bilinear function f are usually used to compute lower bounds of good quality

over a hypercube for a nonconvex problem involving f . Therefore, for practical applica-

tions, it might be worth computing a sequence of (α)ki=1 by solving (4.7) approximately.

Then a sequence of underestimators (fαi)
k
i=1 can be obtained. A formula of the convex

underestimator f of a bilinear function f over a hypercube Hn is then

f(x) = max
α1,...,αk

fαi(x).

By definition, K is closed, convex, and bounded. Let us consider a SDP based convex

underestimator defined by

qfsdp(x) := min
X∈F (x)

1

2
〈Q,X〉 (4.10)

where F (x) := {X ∈ Sn : (x,X) ∈ K, Xii ≤ xi (i = 1, . . . , n)}. For the sake of clarity,

Xii ≤ xi (i = 1, . . . , n) are explicitly written out despite the redundancy w.r.t. setK. The

SDP based concave overestimator f̂sdp can be defined symmetrically. An important obser-

vation is that values of f̂sdp(x), qfsdp(x) do not change if we replace Xii ≤ xi with Xii = xi.

To see this, let us introduce set F ′(x) := {X ∈ Sn : (x,X) ∈ K, Xii = xi (i = 1, . . . , n)}
and define F(x) :=

{
τ(X) ∈ R

n(n+1)
2 : X ∈ F (x)

}
and F ′(x) :=

{
τ+(X) ∈ R

n(n−1)
2 : X ∈ F ′(x)

}
.

We show below that by considering the n(n−1)/2 components of τ(X) corresponding

with the strictly upper triangular part of X we get a member of F ′(x).

Theorem 6 For any x ∈ Hn, ProjF(x) = F ′(x).

Proof: It is clear that F ′(x) ⊆ ProjF(x). We now show that the reverse also holds.

Let (Xij)i≤j be any point of F(x). It holds that X − xxT � 0. Since Xii ≤ xi, it holds

that Diag(x−diag(X))+X−xxT � 0. By Schur’s lemma, it means that X+Diag(x−
diag(X)) ∈ F ′(x) and therefore (Xij)i<j ∈ F ′(x). Hence ProjF(x) ⊆ F ′(x).

Theorem 6 immediately yields the desired result.
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Corollary 4.1 If the objective function is bilinear, i.e., diag(Q) = 0, then for each

x ∈ Hn, the following equalities hold

min
X∈F (x)

〈Q,X〉 = min
X∈F ′(x)

〈Q,X〉 and max
X∈F (x)

〈Q,X〉 = max
X∈F ′(x)

〈Q,X〉.

Proof: Since the diagonal associated terms vanish, the support of the objective function

is essentially ProjF(x), which is exactly F ′(x) by Theorem 6.

Now let us consider set QPBn and the polytope BQPn that are explicitly studied in [50],

where

QPBn = conv
{

(x,y) ∈ Rn × R
n(n+1)

2 : yij = xixj , 1 ≤ i ≤ j ≤ n, x ∈ Hn

}
,

BQPn = conv
{

(x,y) ∈ Rn × R
n(n−1)

2 : yij = xixj , 1 ≤ i < j ≤ n, x ∈ {0, 1}n
}
.

The following result due to Burer and Letchford [50] is a consequence of Theorem 6.

Corollary 4.2 Projx,(yij)i<j
QPBn = BQPn

Proof: It is trivial that BQPn ⊆ Projx,(yij)i<j
QPBn. We show that the reverse also

holds. Let all valid inequalities of QPBn be included in set K, then we have QPBn =

{(x, τ(X)) : X ∈ F (x),x ∈ Hn}. By Theorem 6, we have Projx,(yij)i<j
QPBn =

{
(x, τ+(X)) :

X ∈ F ′(x),x ∈ Hn

}
. Let (x, τ+(X)) ∈ Projx,(yij)i<j

QPBn, then there exist some

points (xk) with associated convex combination coefficients λk ≥ 0,
∑
k

λk = 1 such that

x =
∑
k

λkx
k and X =

∑
k

λkx
k(xk)T . In addition, Xii = xi (i = 1, . . . , n) holds. These

facts lead to xki ∈ {0, 1}, ∀λk > 0 (i = 1, . . . , n). Therefore the extreme points of

Projx,(yij)i<j
QPBn are binary, showing that (x, τ+(X)) ∈ BQPn.

4.3.2 Cover based estimators

In this section, we present a novel way to construct convex and concave estimators via

linear programming. To formalize the idea, we introduce definitions below.

Definition 4.1 A cover of a set S is a collection C of subsets of S whose union is the

whole set S, i.e., S =
⋃
c∈C

c.

It is clear that {S} is a cover of itself. Any partition of S is a cover. To highlight the

fact that BQPn defined above is associated with a set J ⊆ {1, . . . n}, we will use BQPJ .

We can lift BQPJ to a higher dimensional space as

CJ =
{

(x,y) ∈ Hn(n+1)/2 : (xJ ,yJ) ∈ BQPJ
}
.

Definition 4.2 The polytope induced by a cover C of {1, . . . , n} is defined as CC =
⋂
c∈C
Cc.

Lemma 4.1 Any cover C-induced polytope is an outer approximation of the BQPn, i.e.,

BQPn ⊆ CC . Moreover, the equality holds if {1, . . . , n} ∈ C.
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Proof: Let (x,y) be an arbitrary point in BQPn. It is easy to verify that (x,y) satisfies

constraints of Cc, for all c ∈ C. Thus it holds that (x,y) ∈ CC and therefore BQPn ⊆ CC .
If {1, . . . , n} ∈ C, it holds that CC ⊆ BQPn, which leads to BQPn = CC .
By Lemma 4.1, the convex underestimator of a bilinear function f can be constructed as

qfC(x) =
1

2
min

(x,τ+(X))∈CC
〈Q,X〉. (4.11)

Note that CC can be explicitly described by

CC =
{
(x, τ+(X)) ∈ Hn(n+1)/2 : Xc =

2|c|∑
l=1

λl
cV

l
c,xc =

2|c|∑
l=1

λl
cv

l
c,

2|I|∑
k=1

λk
c = 1, λc ≥ 0, c ∈ C.

}
where Vl

c = vl
c(v

l
I)

T and vl
c is a vertex of H|c|.

To improve the bound obtained from (4.11), one might consider a partition P as a

cover of {1, . . . , n} and add RLT inequalities to bound XI,J where I, J ∈ P, i.e.,

XI,J =
2|I|∑
k=1

2|J|∑
p=1

γkpVkp
I,J ,

2|I|∑
k=1

γkp = λp
J , p = 1, . . . , 2|J |,

2|J|∑
p=1

γkp = λk
I , k = 1, . . . , 2|I|,

γkp ≥ 0, k = 1, . . . , 2|I|, p = 1, . . . , 2|J |,

(4.12)

where Vk,p
I,J = vk

I (v
p
J)

T , ∀k, p.

Proposition 2 For any I, J ∈ P, BQPI∪J is characterized by

S =
{
(x, τ+(X)) ∈ R|I∪J | × R(

|I∪J|
2 ) : (4.12), CI ∩ CJ

}
Proof: It holds that BQPI∪J ⊆ S since all the inequalities of S are valid inequalities

to BQPI∪J . So it suffices to show that the reverse also holds. Suppose (x, τ(X)) ∈ S.

Then (xI ,xJ) can be written as a finite convex combination of binary points of H|I|+|J |

by imposing γkp = λk
Iλ

p
J . Also notice that

2|I|∑
k=1

2|J|∑
j=1

γkp = 1. Therefore (xI∪J , τ+(X)) can

be written as a finite convex combination of vertices of BQPI∪J ending the proof.

Remark 4.2 Alternative to adding constraint set (4.12) to formulation (4.11) associated

with partition P, one can also generate a new cover set whose members are all possible

unions of two subsets of P, thereby obtaining an equivalent formulation. One can check

that both formulations have the same number of constraints and variables. For example

if P = {p1, p2, p3}, the newly generated cover set can be {p1 ∪ p2, p1 ∪ p3, p2 ∪ p3}.

The concave overestimator f̂C(x) can also be obtained in the same way by maximizing

the objective function. Also, note that one can make a trade-off between the quality of

estimations and computational performance via the choice of the cover C.
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In practice, one can surely combine this cover-based estimators with valid inequalities

to strengthen the formulation. To avoid adding redundant cuts, we now study the strength

of cover-based estimators by establishing connections between various valid inequalities

and the choice of cover sets.

Proposition 3 For BQPn, various sets of inequalities in the same dimensional space

of BQPn can be identified by proper choices of cover set C of the index set {1, . . . , n}
in the sense that the cover-induced polytope CC defined before can be characterized by

some inequalities. For example, McCormick inequalities [119, 6] are identified by a col-

lection of all two subsets. Triangle inequalities [132] joint with McCormick inequalities

are identified by three subsets. When the graph induced by Qij , i < j has no K4 minors,

triangle inequalities and McCormick inequalities are equivalent to the characterization of

BQPn [132, 61].

As mentioned before, we may choose a partition of the index set as a cover. Intuitively,

a partition should be chosen by considering the coefficients of the bilinear function and

the size of each subset. To balance these two criteria, we may consider minimizing

normalized cut defined in [147]. Since it is NP-hard to solve the problem, one may

consider the algorithm of [147] to solve it approximately. Alternatively, one can consider

multiple random partitions of the index set at the same time. However, according to our

numerical experiments, the benefits are not significant.

4.3.3 Extensions

In this section, we show that the convex (rep. concave) envelope of a bilinear function

f(x) =
∑
i<j

Qijxixj is affinely equivalent to the concave (rep. convex) envelope of a

polyhedral function. This connection implies some well-known results in the literature.

Lemma 4.2 For each pair of (xi, xj) ∈ H2, it holds that

xixj ≤
1

2
(xi + xj − |xi − xj |)

with equality at binary points.

Let us define the function below:

φ : Hn 3 x 7→ φ(x) =
∑
i<j

Qij |xi − xj |. (4.13)

It is clear that function φ(x) is polyhedral. In addition, it enjoys the following property.

Lemma 4.3 The convex hull of {(x, φ(x)) : x ∈ Hn} is solely determined by the set of

points {(x, φ(x)) : x ∈ {0, 1}n}, i.e.,

conv{(x, φ(x)) : x ∈ Hn} = conv{(x, φ(x)) : x ∈ {0, 1}n}

Proof: By definition, conv{(x, φ(x)) : x ∈ {0, 1}n} ⊆ conv{(x, φ(x)) : x ∈ Hn}. Let

(x, φ(x)) be an extreme point of conv{(x, φ(x)) : x ∈ Hn}. Suppose that there exists
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x̄k ∈ (0, 1) for some 1 ≤ k ≤ n, and define Sk = {j : x̄j = x̄k, 1 ≤ j ≤ n}. Let ε be a

sufficiently small quantity. Then, define x+ by

x+j =

⎧⎨⎩x̄j j /∈ Sk

x̄j + ε j ∈ Sk

, j = 1, . . . , n.

Similarly, define x− by

x−j =

⎧⎨⎩x̄j j /∈ Sk

x̄j − ε j ∈ Sk

, j = 1, . . . , n,

and φ(x+) , φ(x−) are

φ(x+) = φ(x)− ε
∑

i∈Sk,j /∈Sk:
xi<xj

Qij + ε
∑

i∈Sk,j /∈Sk:
xi>xj

Qij

φ(x−) = φ(x) + ε
∑

i∈Sk,j /∈Sk:
xi<xj

Qij − ε
∑

i∈Sk,j /∈Sk:
xi>xj

Qij .

This implies that (x, φ(x)) = 1
2(x

+, φ(x+)) + 1
2(x

−, φ(x−)), which contradicts the as-

sumption that (x, φ(x)) is an extreme point. Thus ext{conv{(x, φ(x)) : x ∈ Hn}} =

{(x, φ(x)) : x ∈ {0, 1}n}.
Note that Lemma 4.3 holds regardless of the signs of Qij , ∀i < j. With above lemmas,

we arrive at the following result.

Theorem 7 Given a bilinear function f(x) =
∑
i<j

Qijxixj, its convex (resp. concave) en-

velope is affinely equivalent to the concave (resp.convex) envelope of φ(x) =
∑
i<j

Qij |xi − xj |,
i.e.,

f̂(x) =
1

2

∑
i<j

Qij(xi + xj)−
1

2
qφ(x), ∀x ∈ Hn,

qf(x) =
1

2

∑
i<j

Qij(xi + xj)−
1

2
φ̂(x), ∀x ∈ Hn.

Proof: It follows from Lemma 4.2 that

f(x) =
1

2

∑
i<j

Qij(xi + xj)−
1

2
φ(x), ∀x ∈ {0, 1}n.

As mentioned in Section 4.2, convex and concave envelopes of bilinear functions are

vertex polyhedral. Lemma 4.3 show that envelopes φ are also vertex polyhedral. By the

definition of (4.3), one can get the desired result.

Note that Theorem 7 indicates that we can approximate concave and convex envelops

of f by approximating the convex and concave envelope of φ over Hn. Conversely, all

techniques on approximating convex and concave envelopes of f also apply to function φ

over a hypercube. In addition, this relation implies the following.

Corollary 4.3 If Qij ≥ 0, the concave envelope of a bilinear function f is characterized

by McCormick over-estimator.
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Proof: If Qij ≥ 0, φ(x) is convex. Then it holds that for any x ∈ Hn,

f̂(x) =
1

2

∑
i<j

Qij(xi + xj)−
1

2

∑
i<j

Qij |xi − xj |

=
∑
i<j

Qij min {xi, xj} ,

which completes the proof.

Note that this result has been proved independently in [116] and [123]. We may regard

the above result as an alternative proof.

Corollary 4.4 [119] When n = 2, McCormick inequalities characterize the convex and

concave envelopes of a bilinear function f(x) exactly.

Proof: Let n = 2, for each x ∈ H2, it is easy to see that

φ̂(x) =

⎧⎨⎩Q12min{xi + xj , 2− xi − xj} Q12 ≥ 0,

Q12max{xi − xj , xj − xi}, Q12 ≤ 0.

and

qφ(x) =

⎧⎨⎩Q12max{xi − xj , xj − xi}, Q12 ≥ 0

Q12min{xi + xj , 2− xi − xj}, Q12 ≤ 0.

By Theorem 7, we have

qf(x) =

⎧⎨⎩q12max {0, x1 + x2 − 1} , q12 ≥ 0,

q12min {x1, x2} q12 ≤ 0,

and

f̂(x) =

⎧⎨⎩q12min {x1, x2} , q12 ≥ 0,

q12max {0, x1 + x2 − 1} q12 ≤ 0.

which is exactly the McCormick’s under (over-) estimator.

4.4 Numerical experiments

In this section, we compare the strength of the proposed SDP based estimators qfsdp, f̂sdp

and cover based estimators qfC , f̂C by evaluating their values, as well as their gaps on a

set of problem instances. qfsdp is defined in consistent with (4.10), where constraints in

F (x) are

Xii ≤ xi, i = 1, . . . , n,

Xij ≥ max {xi + xj − 1, 0} , 1 ≤ i < j ≤ n

Xij ≤ min {xi, xj} , 1 ≤ i < j ≤ n,

S(x,X) � 0.
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Likewise, f̂sdp is defined symmetrically. The convex hull gap at a pre-defined point x is

quantified as

gap(x) = f̂(x)− qf(x),

where we respectively use f̂sdp(x), qfsdp(x) and f̂C(x), qfC(x) in place of f̂(x), qf(x) for

SDP based estimators and cover-based estimators. The instances are randomly generated

following the rules below.

1. The dimension of the cube n belongs to {10, 20, 30} and the density of the matrix

Q denoted by ρ belong to {0.5, 0.75, 1}.

2. For nonnegative Q, any nonzero component equals 1. For mixed signed entries of

Q, 1
3 of the nonnegative components are −1 and the others are 1.

3. We randomly generate 500 test points within a hypercube with respect to different

dimensions.

4. For the cover based estimators, we use a partition P as a cover. The partition of

each considered index set {1, . . . , n} has been done beforehand using Shi-Malik

algorithm [147]. The size of partition is 4 for dimension 10, 7 for dimension 20, and

10 for dimension 30.

All formulations are formulated by YALMIP [115] and problem instances are solved by

CPLEX 12.62 with default settings on a Mac with Inter Core i5 clocked at 2.7 GHz and

with 8 GB of RAM.

Table 4.1 exhibits the associated approximated values for mixed coefficients cases. For

each type of estimators, the evaluations of approximated convex and concave estimators

are displayed as the averages of values of 500 test points. We report several observations

below.

• Both SDP-based estimators and cover-based estimators perform significantly better

than McCormick’s inequalities.

• Values of both SDP-based estimators and cover-based estimators are close to values

of the convex and concave envelopes. Even when the density is 1, the cover-based

estimators can be close to values returned by the SDP-based estimators.

• Even though the strength of SDP-based estimators is generally stronger than that of

cover-based estimators. There are cases that cover-based estimators dominate the

SDP-based estimators, e.g., row (10, 0.75). Of-course, the strength of cover-based

estimators generally depends on the choice of the cover set.

Recall from Corollary 4.3 that the concave envelopes of bilinear functions over hy-

percubes are characterized by McCormick overestimators if all bilinear coefficients are

nonnegative. Hence we omit values associated with concave overestimators in Table 4.2

and summarize observations below.
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• The proposed cover-based convex estimators are evidently stronger than McCormick’s

estimators.

• If the matrix Q is not dense, e.g., 0.75, 0.5, the cover-based convex estimators can

be competitive with the SDP-based convex estimators.

• If the matrix Q is very dense, the SDP-based convex estimators exhibit distinct

advantages over other estimators.

Table 4.1: An evaluation of convex and concave estimators (mixed entries)

MC-estimators SDP-estimators cover-estimators Envelopes

(n, Density) qfMC f̂MC gap qfSDP f̂SDP gap qfC f̂C gap qf f̂ gap

(10,0.5) -0.06 3.76 3.83 0.20 3.40 3.20 0.20 3.43 3.23 0.39 3.21 2.82

(10,0.75) 0.08 5.77 5.69 0.86 5.05 4.19 0.97 5.00 4.03 1.08 4.82 3.74

(10, 1) 0.04 7.56 7.52 1.33 6.23 4.90 1.47 6.16 4.69 1.65 5.93 4.28

(20,0.5) -0.18 15.96 16.15 2.26 13.75 11.49 2.13 14.04 11.91 3.50 13.40 9.90

(20,0.75) -0.01 24.09 24.10 5.12 19.57 14.46 4.47 20.79 16.32 5.68 18.36 12.68

(20,1) 0.68 32.80 32.12 8.65 25.18 16.52 8.00 26.52 18.52 9.05 22.51 14.46

(30, 0.5) -0.71 35.98 36.69 6.50 29.17 22.67 4.10 31.59 27.49 - - -

(30, 0.75) -0.07 54.59 54.66 13.53 41.68 28.16 9.10 46.29 37.19 - - -

(30, 1) -0.91 72.15 73.06 19.74 53.07 33.34 14.71 58.19 43.48 - - -

Table 4.2: An evaluation of convex estimators (nonnegative coefficients)

(n, Density) qfMC
qfSDP

qfC qf

(10, 0.5) 3.79 4.21 4.30 4.33

(10, 0.75) 5.77 6.97 6.88 7.17

(10, 1) 7.65 10.55 9.18 10.63

(20, 0.5) 15.05 18.85 16.77 19.47

(20, 0.75) 23.27 30.87 26.63 31.71

(20, 1) 31.07 45.10 36.01 45.27

(30, 0.5) 35.22 44.88 42.34 -

(30, 0.75) 52.96 72.07 63.90 -

(30, 1) 70.75 90.22 79.75 -

4.5 A perspective

As a future research direction, we briefly discuss a novel approach to construct convex

underestimator when all the coefficients of a bilinear function f are nonnegative. Recall

the concept of pole-set introduced in [26].
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Definition 4.3 [26] Given a convex set S, a finite set Ω is called a pole-set of S if and

only if any element v ∈ S belongs to the convex hull of Ω (a convex combination of poles)

denoted by convΩ.

Obviously, extreme points of S form a pole-set of itself. The extreme points of any simplex

enclosing S also form a pole-set of S. The polyhedral function φ defined in (4.13) has a

desired property below.

Lemma 4.4 The concave envelope of φ(x) is vertex polyhedral over arbitrary polytopes

if Qij ≥ 0, ∀i < j.

Now assume that a pole-set Ω of a hypercube Hn is available, we are then able to con-

struct a convex underestimator of f via constructing a concave overestimator of φ over a

hypercube.

Theorem 8 Let Ω be a pole-set of a hypercube Hn, then if Qij ≥ 0, ∀i < j, for each

x ∈ Hn,

qf(x) ≥ 1

2

∑
i<j

Qij(xi + xj)−
1

2
φ̂Ω(x), (4.14)

where φ̂Ω(x) = max

{∑
ω∈Ω

λωφ(ω) : λi ≥ 0,
∑
ω∈Ω

λω = 1,
∑
ω∈Ω

λωω = x

}
.

Proof: By definition, it follows that

φ̂Hn(x) ≤ φ̂Ω(x).

Since Qij ≥ 0, ∀i < j, Lemma 4.4 implies

φ̂Ω(x) = max

{∑
ω∈Ω

λωφ(ω) : λi ≥ 0,
∑
ω∈Ω

λω = 1,
∑
ω∈Ω

λωω = x

}
.

It completes the proof in conjunction with Theorem 7.

One can see that when the pole-set Ω is the set of extreme points of Hn, the concave

envelope of φ(x) is obtained and therefore we get the exact convex envelope of f(x). Of-

course, the quality of the approximation relies on the choice of pole-set Ω. An investigation

on the construction of pole-sets has been carried out in [26]. We illustrate here the method

with an example.

Example 1 Let us approximate the convex envelope values of a bilinear function f(x)

with Qij = 1, 1 ≤ i < j ≤ 5 over a 5-dimensional cube. In general, we need to use 32

extreme points to get the optimality certificate. Let us take a pole-set

Ω =
{
(1,x) : x ∈ {0, 1}4

}⋃{
(0, x) : x ∈ ext{x ∈ R4 : ‖x− 0.5‖1 ≤ 2}

}
,

where ext represent the set of extreme points of a set. It is clear that the pole-set has

24 points, where 16 of them come from extreme points of a 4-dimensional cube and 8 of

them are members of a norm-1 ball centered at 0.5 with radius 2.

For point x = (0.5, 0.5, 0.5, 0.5, 0.5), the exact value of convex envelope is qf(x) = 2, the

value of McCormick relaxation gives qfMc(x) = 0 and our pole-set based convex estimator

returns qfΩ(x) = 1.0625.
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4.6 Conclusion

In this chapter, we have discussed two different ways to approximate the convex and

concave envelopes of a general bilinear function over hypercubes. The first approach

aims at finding the best estimators of the bilinear function in a convex quadratic form

at a pre-specified point, which turns out to be a semidefinite program parameterized at

the point. We then established a connection between quadratic convexification based

techniques and the standard semidefinite relaxation for bilinear optimization problems.

We also demonstrated that two seemingly different formulations are in fact equivalent by

establishing a geometric connection between their feasible regions. The second approach

focused on approximating the boolean quadratic polytope by adding fully-described BQPs

of lower dimensions.

In addition, some pole-set based estimators have been proposed as a perspective.

Further studies are needed to find a reasonable way to define the pole-sets.





Chapter 5

Multipolar Robust Optimization

5.1 Summary

We consider linear programs involving uncertain parameters and propose a new tractable

robust counterpart which contains and generalizes several other models including the

existing Affinely Adjustable Robust Counterpart and the Fully Adjustable Robust Coun-

terpart. It consists in selecting a set of poles whose convex hull contains some projection of

the uncertainty set, and computing a recourse strategy for each data scenario as a convex

combination of some optimized recourses (one for each pole). We show that the proposed

multipolar robust counterpart is tractable and its complexity is controllable. Further, we

show that under some mild assumptions, two sequences of upper and lower bounds con-

verge to the optimal value of the fully adjustable robust counterpart. To illustrate the

approach, a robust problem related to lobbying under some uncertain opinions of author-

ities is studied. Several numerical experiments are carried out showing the advantages of

the proposed robustness framework and evaluating the benefit of adaptability.

5.2 Introduction

Uncertainty in optimization parameters arises in many applications due to the difficulty

to measure data or because of their variability. To deal with uncertainty, there are

mainly two approaches: stochastic optimization and robust optimization. In the first

case, some probabilistic assumptions are made about the uncertain data [41, 60, 90]. One

is then interested in computing a solution optimizing some moments of random variables

depending on the data. Another variant, known as chance constrained programming [55],

consists in imposing that some constraints are satisfied only with some probability.

Robust optimization is a more recent approach dealing with uncertainty. It does not

require specifications of the exact distribution of the problem’s parameters. Roughly

speaking, uncertain data are assumed to belong to a known compact set, called un-

certainty set, and we aim at finding a solution that is immunized against all possible

realizations in the uncertainty set. An early contribution related to robust optimization

is the work of Soyster [149] followed by intensive investigations in the last 20 years start-

ing with [31, 67] in the context of convex optimization and the book [98] dealing with

63
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discrete optimization. Almost at the same time, and in an independent way, a lot of work

was initiated in [69] and [64] on robust optimization in communication networks dealing

with uncertain traffic matrix, see [27] for a survey.

Robust optimization and stochastic programming are related in numerous ways. For

example, using some knowledge about the distribution of uncertain data, it is sometimes

possible to define an uncertainty set in such a way that the robust solution is an approx-

imated solution of a chance constrained problem (see, e.g., [29, 32, 97] for details and

references). An approach combining robust optimization and stochastic programming

consists in computing solutions that are distributionally robust where the distribution

of parameters is assumed to vary within some set (for example, when the mean and the

covariance matrix are known) (see, e.g., [73, 75]).

The definition of the uncertainty set is a critical issue since a bad choice might lead to

very expensive solutions. One way to alleviate overconservatism of the robust approach

is to assume that a subset of the decision variables are adjustable on the realization of

the uncertain data. Let us for example consider the following linear problem

min cTx

s.t. Ax ≤ b,

x ∈ Rn,

involving uncertain parameters. We assume that x is partitioned as x = (u,v), where u

represents the non-adjustable and v the adjustable variables. The robust counterpart of

this uncertain problem under consideration reads

min
u,v

cTu

s.t. Uu + Vv(ξ) ≤ b, [U,b] ∈ Ξ,
(FARC)

where the uncertain parameters are U ∈ Rm×n and b ∈ Rm, while V and c are assumed

to be known. We denote by ξ ≡ [U,b] ∈ Ξ the uncertain parameters belonging to the

uncertainty set Ξ assumed to be compact, convex and with a non-empty interior .

ξ will be considered as a vector in the rest of this chapter.

The non-adjustable variables are sometimes interpreted “here and now” variables,

while the adjustable ones can be seen as “wait and see” variables. This robust counterpart

above is generally called fully-adjustable robust counterpart (FARC). FARC is sometimes

called the dynamic robust counterpart since v depends on ξ. FARC can be seen as

a two-stage optimization problem where u are the first-stage variables and v are the

second-stage variables.

If variables v are also static, then FARC simply becomes the standard static robust

counterpart denoted by SRC. Cases where FARC and SRC are equivalent have been

pointed out in [30] where it is shown that adaptability does not lead to any improvement

in the constraint-wise uncertainty case. Still, FARC is generally much less conservative

than SRC. In other words, there is generally some benefit of adaptability. Solving FARC is,

unfortunately difficult in general cases as shown by many authors [30, 56, 124]. Another

concern related to FARC is the inherent difficulty of implementing the solution v(ξ) in a

practical way.
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To get a tractable optimization problem and also to alleviate some overconservatism of

SRC, an affinely adjustable approach was proposed in [30], where the adjustable variables

v are not fully adaptable (dynamic), but are assumed to depend on the uncertain data ξ

in an affine way:

v(ξ) = w + Wξ, ξ ≡ [U,b] ∈ Ξ,

where w and the elements of matrix W are new decision variables (a.k.a. affine decision

rules). The induced formulation is called affine-adjustable robust counterpart (AARC).

An affine approach was also independently proposed for network optimization problems

where the traffic matrix is supposed to be uncertain and the way how traffic is splitted

through network’s paths is optimized [94, 24, 131]. Further developments appeared in

[14, 130].

Applying affine decision rules naturally leads to less expensive solutions than those ob-

tained by the static approach. The performance gap quantified by the difference between

optimum of AARC and the optimum of FARC was discussed for robust linear problems

with right-hand-side uncertainty in [34, 36]. One of the results of [34] states that AARC

is equivalent to FARC when the uncertainty set is a simplex. Some tight approximation

bounds relating the optimum of AARC to that of FARC in the right-hand-side uncertainty

case are also given there.

Related investigation on problems with some special uncertainty sets (integer sublat-

tices of the unit hypercube) are discussed in [87], where they provide sufficient conditions

such that the associated affinely adjustable decision rules lead to exact optimum of FARC.

The affine approach is related to the well-known linear or first-order decision rules

used in the context of multi-stage stochastic optimization [71]. Linear decisions rules

were also used in [99] in the context of stochastic programming not only to get upper

bounds (as done above) but also to get lower bounds by properly approximating the dual

problem using linear decision rule.

As observed in [58], even though AARC has been successfully applied to several

problems, its performance might be unsatisfactory under situations where the adjustable

variables exhibit high nonlinearity in terms of the uncertain parameters. This led to some

extensions of the affine approach in [57, 58] (see also references therein) by reparametrizing

the uncertainties and then applying the affinely adjustable approach. Roughly speaking,

a new set of variables is introduced (for example the positive and the negative parts of

the original uncertainties), and the adjustable variables are assumed to affinely depend

on the new set of parameters. A similar idea is also proposed in [36] in the context of

one-dimensional constrained multistage robust optimization.

Other extensions of affine decision rules have been proposed in literature. In [37]

polynomial recourse actions are considered where v is expressed as a polynomial in un-

certainty parameters with degree no larger than a fixed constant. The complexity of

the robust counterpart problem is then related to testing the positivity of a polynomial.

Using some recent results in algebraic geometry stating that under mild conditions, a

positive polynomial can be expressed as a sum of squares (not a priori bounded), the ro-

bust counterpart is approximated by considering sums of squares of degree no larger than



66 Multipolar Robust Optimization

a fixed constant. As a sum of squares can be represented by a semidefinite programming

[101], the proposed robust counterpart can be efficiently handled [37].

Another robust approach dealing with uncertainty, termed as multi-static approach in

[27], was proposed and studied in [23, 28, 156]. It consists in partitioning the uncertainty

set Ξ into a finite number of subsets Ξ1, . . . ,Ξp and using a recourse action vi for each

subset Ξi. In other words, if ξ ∈ Ξi, then we take v = vi. The recourse actions vi are

of course subject to optimization. A quite close idea is proposed in [33], where it was

called finite adaptability. The performance of finite adaptability in a fairly general class

of multi-stage stochastic and adaptive optimization problems was investigated in [35].

One can also combine finite adaptability and the affinely-adjustable approach by par-

titioning the uncertainty set into some subsets and considering some optimized specific

affine decision rules for each subset. This was also considered in [23, 27] in the context of

network design problems. This type of adaptability might also be called piecewise-affine

adaptability. Piecewise-affine rules were also considered in several other papers such as

[22, 75].

We mention that dynamic programming approaches have been successfully designed

to solve certain robust optimization problems. For example, authors in [97] proposed a

dynamic programming approach to solve the chance-constrained robust kapsack problem

iteratively. Very recently, Agra et al. [5] decomposed a general robust optimization model

whose dynamic programming value function is convex and separable, to a master problem

and a separation problem. To solve the separation problem, they proposed a couple of

dynamic programming approaches, which allows a FPTAS.

While a great number of proposals in robust optimization have appeared, there are still

challenges. First, to the best of our knowledges, none are general enough to encompass

static robustness, affinely adjustable robustness and fully adjustable robustness. Second,

as observed in [37], there is no systematic way to influence the trade-off between the

performance of the resulting policies and the computational complexity required to obtain

them. Third, the uncertain parameters of an optimization problem can be sometimes

difficult to observe. In several applications, only a subset of such parameters or some

aggregates of them can be observed.

The objective of our work is to provide a framework addressing those challenges at

the same time. Our contributions are four-fold:

1. A novel approach. We propose a hierarchical and convergent framework of ad-

justable robust optimization – multipolar robust approach, which generalizes notions

of static robustness, affinely adjustable robustness, fully adjustable robustness and

fill the gaps in-between. As a byproduct, a new way to look at the affine adapt-

ability is proposed. The result of [34] stating that affine rules are optimal when

the uncertainty set is a simplex is also obtained as a consequence of the multipolar

approach.

2. A comprehensive analysis. We show that the multipolar robust counterpart is

tractable by either a cut generation procedure or a compact formulation. Further,

we prove that the multipolar approach can generate a sequence of upper bounds
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and a sequence of lower bounds at the same time and both sequences converge to

the robust value of FARC under some mild assumptions.

3. A general constructive algorithm of pole-sets. The multipolar approach is based

on some tools related to the uncertainty set, that we term as pole-sets. For their

construction, we start with a simplex and then compute the best homothetic trans-

formation of this simplex to allow it to enclose a given convex set. An efficient

algorithm is proposed to compute such homothetic set. As a byproduct, we provide

a very simple proof of the geometric results of [128] related to hypercubes. The

pole-sets obtained after this homothetic transformation are then improved using a

tightening procedure.

4. An application. To numerically illustrate the multipolar approach, a lobbying prob-

lem is considered where a lobby aims to minimize the budget needed to convince a

set of voters taking into account a reasonable opinion dynamics model under some

uncertainty. The benefit of adaptability is clearly shown for this problem.

Outline. In Section 5.3, we present the concept and ingredients of multipolar robust

optimization and show that static robustness, affinely adjustable robustness, fully ad-

justable robustness are special cases of multipolar robust framework. In Section 5.4, we

discuss the tractability, the monotonicity and the convergence of the proposed approach.

A simple illustrative example is described in Section 5.5. In Section 5.6, we propose

algorithms for pole-set generation. Section 5.7 is dedicated to a numerical example on a

lobbying problem under several uncertainty scenarios. Finally, concluding remarks follow

in Section 5.8.

Notation. Throughout this chapter, we use Ξ to represent a compact convex un-

certainty set and ξ to denote a member of Ξ. We use I to denote the identity matrix.

Vectors and matrices are marked in bold, and their scalar components are presented in

italic. Given any matrix C, CT denotes its transpose. We also use [C,D] to denote

the matrix where C and D are concatenated by columns assuming they have the same

number of rows. Similarly, (C,D) denotes the matrix obtained by row concatenation

of two matrices C and D when they have the same number of columns. Observe that

v = (v1, . . . , vn) is then a vector and [v1, . . . , vn] = vT . We use δij to represent the

Kronecker’s delta function, where δij = 1 if i = j, 0 otherwise. For a set S ∈ Rn, we use

ext(S) to represent the set of its extreme points, convS to represent its convex hull and

dim(S) to denote its dimension. If S is finite, we use |S| to represent its cardinality. We

also use the standard notation for usual norms: ‖·‖∞ for the infinity norm, ‖·‖1 for the

Manhattan norm and ‖·‖2 for the Euclidean norm.

5.3 The multipolar robust optimization concept

In this section, we introduce the main ingredients of multipolar robustness and then setup

the multipolar robust counterpart as a novel approximation of FARC.

Shadow matrix. Like other robust approaches, multipolar approach is also based on

an uncertainty set Ξ. In addition, we consider a matrix associated with certain operations
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on the uncertain information, which can be data aggregation, filtering, and selection. Note

that these operations can either be natural or artificial. Natural operations are induced

by the difficulty of measurements or shortage of data. For example, in communication

networks, traffic flows are usually observed in an aggregated manner (the consequence

of aggregating uncertain demands from multiple origin-destination pairs). Nevertheless,

adjustable recourse actions should be implemented based the observed partial informa-

tion. On the other hand, artificial operations can be certain techniques to control the

complexity of the multipolar robust counterpart, as explained in the concluding remarks

of this section. We call the associated matrix of an operation shadow matrix since the

operation either reduces the size of the multipolar robust counterpart or is a direct con-

sequence of observations. We use P ∈ Rn0×dim(Ξ) to denote a shadow matrix, where n0

is the dimension of the shadow (i.e., the resulting partial information) and dim(Ξ) is the

dimension of the uncertainty set Ξ. The resulting partial information is defined by

ΞP := PΞ ≡ {Pξ, ξ ∈ Ξ}. (5.1)

When P is identity matrix, we have a complete measure of uncertainty.

We will assume that P is full row rank matrix. Consequently, ΞP is also compact,

convex and has a non-empty interior.

Pole-set. A key component of the multipolar approach is a finite set of poles, which

are given vectors in the range space of the shadow matrix. We denote by Ω such a pole-

set. We say that Ω is a pole-set of ΞP iff for any ξ ∈ Ξ, Pξ belongs to the convex hull

of Ω (a convex combination of poles) denoted by conv Ω. Given a set ΞP , a collection of

pole-sets of ΞP is defined as

FΞP
:= {Ω : ΞP ⊆ conv Ω} . (5.2)

Obviously, extreme points of ΞP form a pole-set, i.e., ext(ΞP ) ∈ FΞP
.

Multipolar robust counterpart. We now setup the multipolar robust counterpart

w.r.t. an uncertainty set Ξ, a shadow matrix P, a pole-set Ω ∈ FΞP
. For each ξ ∈ Ξ, we

consider a weight λξω for each pole ω in Ω. Then, for each scenario ξ ∈ Ξ, the following

system has a solution ∑
ω∈Ω

λξωω = Pξ,

∑
ω∈Ω

λξω = 1,

λξω ≥ 0, ω ∈ Ω.

(5.3)

Let Λξ be the set of weight vectors λξ satisfying the above system for a given ξ ∈ Ξ.

In the considered paradigm, each pole is associated with a recourse action, and the

recourse action in the presence of ξ ∈ Ξ is approximated by a convex combination of

the recourse actions associated with the poles. Specifically, let vector vω be the recourse

action associated with pole ω in the above system. We require the adjustable variables

v(ξ) to be restricted to

v(ξ) =
∑
ω∈Ω

λξωvω, (5.4)
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where λξ ∈ Λξ. We can readily present the multipolar robust counterpart defined by

ΠΞ(P,Ω) = min
u,v

cTu (MRC)

s.t. Uu + V
∑
ω∈Ω

λξωvω ≤ b, ξ ∈ Ξ, λξ ∈ Λξ. (5.5)

Following the spirits of robust optimization, the multipolar robust counterpart (MRC)

seeks a pair of non-adjustable solution u and a set of recourse actions related to poles

vω, ω ∈ Ω such that the objective function is minimized while hedging against the un-

certainty set Ξ. In brief, given Ξ, the multipolar robust approach can bee seen as a set

function of a pole-set Ω and a shadow matrix P. We denote the function by

ΠΞ : Rn0×dim(Ξ) ×FΞP
3 (P,Ω) 7→ ΠΞ (P,Ω) ∈ R

and call ΠΞ (P,Ω) multipolar robust value w.r.t. (P,Ω). Also, we call (u,v) multipolar

solution.

To conclude this section, we add few remarks on the concept of shadow matrix and

pole-set to clarify the motivation behind these ingredients.

• Note that by (5.5), the solution is protected against the considered uncertainty Ξ.

Neither a shadow matrix P nor a pole-set Ω changes the uncertainty set, so P and

Ω are not used to approximate the uncertainty set.

• Observe that 1 + dim(ΞP ) ≤ |Ω|, so we can use the shadow matrix P to reduce the

number of recourse actions and therefore the number of variables of (5.5). Reducing

the number of poles leads to an MRC which is easier to solve as will be shown in

Section 5.4.

• In several applications, after data is revealed, the adjustable variables should be

quickly chosen and used. This is fortunately easy to do in the multipolar robust

framework since the only thing to do is to find the coefficients λξω and use them to

combine the already computed recourse vectors vω, ω ∈ Ω.

5.3.1 Special cases

We show in this section that MRC generalizes SRC, AARC, and FARC by different

settings of pole-sets and recourse actions associated with poles.

First, we show that SRC is a special case of MRC. Imposing vω = vω′ for any pair

of ω and ω′ belonging to Ω leads to v(ξ) = vω, ∀ξ ∈ Ξ, which means that the recourse

action is static. Another way to get SRC is to impose that P is a null matrix having one

row (relaxing in this case the full row rank constraint related to P ) and Ω contains just

the zero vector.

Second, we show that FARC is a special case of MRC. Let Ω be the set of extreme

points of Ξ and P = I. Then conv Ω = Ξ, that is for ξ ∈ Ξ, there exists λξ ≥ 0 such

that
∑
ω∈Ω

λξω = 1 and
∑
ω∈Ω

λξωω = ξ. By linearity of inequalities (5.5), imposing that

Uu + Vvω ≤ b for each extreme point ω ∈ Ω is necessary and sufficient to ensure the
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satisfaction of all inequalities (5.5) for each ξ ∈ Ξ. We get here the fully adjustable case

representing the best that we can obtain for this problem since it is equivalent to assuming

that v can vary with no restrictions. Note that if the number of extreme points of Ξ is

limited, then the robust optimization counterpart can be efficiently solved. However, if

the number of extreme points of Ξ is non-polynomial, the problem is generally difficult

(as already mentioned in Section 5.2, see for example [30, 56, 124]).

Third, we show that AARC can also be generalized by MRC by proving the following

theorem.

Theorem 9 Let Ω ∈ FΞP
such that |Ω| = 1 + dim(PΞ). Then the optimal solution of

the corresponding MRC problem is exactly the best solution that is affine in Pξ.

Proof: Since PΞ has non-empty interior, PΞ ⊂ conv Ω and |Ω| = 1 + dim(PΞ), the ele-

ments of Ω are affinely independent. Let d = dim(PΞ) and assume Ω = {ω(1), . . . , ω(d+1)}.
The shadow matrix P is here the identity matrix. Consider matrix D obtained by taking

vectors ω(i) as columns and adding a final line containing only coefficients equal to 1.

D =


ω

(1)
1 . . . ω

(d+1)
1

...
...

...

ω
(1)
d . . . ω

(n+1)
d

1 . . . 1

 .

Observe that D is a non-singular square matrix of size (d+ 1).

Given any ξ, there are unique coefficients λξω such that Pξ =
∑
ω∈Ω

λξωω and
∑
ω∈Ω

λξω = 1.

This can be written as
(

Pξ, 1
)

= Dλξ where λξ is the vector whose components are

the λξω for ω ∈ Ω. This immediately implies that λξ = D−1
(

Pξ, 1
)

. Using E to

denote the matrix whose columns are the recourse vectors vω, equation (5.4) becomes

v = ED−1
(

Pξ, 1
)

. This clearly implies that v affinely depends on Pξ.

Let us now consider any affine policy w + WPξ. As shown above, the recourse

vector v provided by the multipolar approach is given by ED−1
(

Pξ, 1
)

. By taking

E = [W,w]D, we get v = w + WPξ. In other words, any recourse policy that is affine

in Pξ can be obtained through the multipolar approach.

When P = I, we get the desired result below.

Corollary 5.1 The affinely adjustable approach is a special case of the multipolar ap-

proach. It corresponds to any set of (dim Ξ + 1) affinely independent poles, in multipolar

robust optimization when P = I.

The following corollary is also immediate.

Corollary 5.2 If the uncertainty set Ξ is a simplex, then the affinely adjustable robust

counterpart is equivalent to the fully adjustable robust counterpart in the sense that their

objective values are equal.

Proof: Taking all the vertices of the simplex uncertainty set as the set of poles in

multipolar robust approach leads to the optimum of FARC. By Corollary 5.1, this pole-

set corresponds to affine adjustable approach, which completes the proof.
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Corollary 5.2 has been presented in [34] in the special case of right-hand-side uncertainty,

so we may treat the result here as an alternative proof using the framework of multipolar

approach.

5.4 Analysis

In this section, we first analyze the tractability of the multipolar robust counterpart

MRC. Then, we show that the proposed framework can generate a monotonic sequence

converging to the fully adjustable robust value of FARC. In fact, we will simultaneously

generate a lower and an upper bound both converging to the optimal value of FARC

under some mild assumptions.

5.4.1 Tractability

In this section, we show that MRC is computationally tractable. It can be solved either

by cut generation or using a compact reformulation.

First, a cutting plane algorithm for solving MRC may be devised as follows. Assume

that |Ω| is finite and has a reasonable size. Given a solution (u,v), we have to check if

there exists a pair of ξ ∈ Ξ and λξ ∈ Λξ violating the constraints of MRC. This can be

done by checking the sign of the optimum of each ith problem

max
λ,ξ

Uiu + Vi

∑
ω∈Ω

λξωvω − bi (5.6a)

s.t.
∑
ω∈Ω

λξωω = Pξ, (5.6b)∑
ω∈Ω

λξω = 1, (5.6c)

λξω ≥ 0, ω ∈ Ω, (5.6d)

ξ ∈ Ξ, (5.6e)

where Ui and Vi are the ith rows of U and V. If it is positive, then constraint

Uiu + Vi

∑
ω∈Ω

λ̂ξ̂ωvω ≤ bi, (5.7)

needs to be added to the restricted problem, where (λ̂ξ̂, ξ̂) solves (5.6). Problem (5.6) can

generally be solved easily when Ξ is polyhedral or ellipsoidal. In these cases, by equiva-

lence of separation and optimization [80], the multipolar robust optimization counterpart

problem can also be solved in polynomial time if the number of poles |Ω| is polynomially

bounded.

Second, we may solve MRC by duality. It is sometimes possible for several kinds

of convex uncertainty sets to write a strong dual of (5.6) leading to an extended re-

formulation of MRC. This holds for example if Ξ is a polytope defined by a limited

number of constraints, i.e., Ξ := {ξ ≡ [U,b] : Cξ ≤ d}, where C = [C1, . . . ,Cm],

Ci ∈ Rnd×(n+1), d ∈ Rnd and ξ is expressed as a column vector of size (n + 1) × m.

ξ contains m blocks of size n + 1 vectors: the ith block contains UT
i followed by bi.
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By strong duality, the constraints of the multipolar robust counterpart MRC w.r.t. Ξ

can be replaced with a polynomial number of inequalities. For each i, the inequalities

Uiu + Vi
∑
ω∈Ω

λξωvω ≤ bi, ξ ∈ Ξ, λξ ∈ Λξ are replaced with

dTηi + Vivω − ωTσi ≤ 0, ω ∈ Ω,

CT
j ηi −PT

j σi = δij

(
u,−1

)
, j = 1, . . . ,m,

ηi ∈ Rnd
+ , σi ∈ Rn0 ,

(5.8)

where the shadow matrix P = [P1, . . . ,Pj , . . . ,Pm],Pj ∈ Rn0×(n+1), j = 1, . . . ,m, δij is

Kronecker’s delta function.

When Ξ is ellipsoidal, i.e., Ξ := {ξ : ‖Fξ‖2 ≤ 1}, the multipolar robust counterpart

can be represented by a second order cone program. Then for each i, the ith constraint

of MRC is replaced with

‖ηi‖2 + Vivω − ωTσi ≤ 0,

FT ηi − Li = 0,

ηi ∈ Rnq , σi ∈ Rn0 .

(5.9)

where Li =
(
Li1, . . . ,Lim

)
, Lij = δij

(
u,−1

)
+PT

j σi, j = 1, . . . ,m, nq is number of rows

of matrix F. For sake of completeness, a proof of (5.9) is provided in Appendix.

5.4.2 Monotonicity

We show in this section that the function ΠΞ(P, ·) is monotonic w.r.t. a partial order

defined on FΞP
when the shadow matrix P is fixed.

Given an uncertainty set Ξ, we now define a partial order over the collection of its

pole-sets FΞP
denoted by �FΞP

. We set members of FΞP
ordered by the inclusion of

their convex hulls, i.e., for any Ω′,Ω ∈ FΞP
,

Ω′ �FΞP
Ω⇐⇒ conv Ω′ ⊆ conv Ω. (5.10)

The next theorem emphasizes the fact that the function ΠΞ(P, ·) is monotonic regarding

the partial order �FΞP
for each fixed P ∈ Rn0×dim(Ξ). In other words, the multipolar

value gets smaller when Ω is smaller w.r.t. �FΞP
.

Theorem 10 Given P ∈ Rn0×dim(Ξ), for any Ω′,Ω ∈ FΞP
, if Ω′ �FΞP

Ω, then we have

ΠΞ(P,Ω′) ≤ ΠΞ(P,Ω).

Proof: If (u, (vω)ω∈Ω) is an optimal solution of MRC, then a feasible solution, when

the set of poles is defined by Ω′, is given as follows. Each ω′ ∈ Ω′ writes as a convex

combination of the poles of Ω: ω′ =
∑
ω∈Ω

λω
′

ω ω. Let vω′ =
∑
ω∈Ω

λω
′

ω vω. The solution given

by (u, (vω′)ω′∈Ω′) is clearly feasible for MRC w.r.t. the set of poles defined by Ω′, which

completes the proof.

Theorem 10 not only implies that the smaller the Ω w.r.t. �FΞP
, the lower the multipolar

robust value, but also implies that for a given P, ΠΞ(P,Ω) is minimum if Ω = ext(ΞP ).
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Given two pole-sets Ω,Ω′ ∈ FΞP
, Theorem 10 also indicates that: first, for a fixed

shadow matrix P, if |Ω| > |Ω′|, then ΠΞ(P,Ω) is not necessarily less than ΠΞ(P,Ω′);

second, the function ΠΞ(P, ·) is not strictly monotonically increasing. For example, let

S, S′ ∈ FΞP
, S′ �FΞP

S and their convex hulls are simplices. By Theorem 9, ΠΞ(P, S′) =

ΠΞ(P, S) while by Theorem 10, ΠΞ(P, S′) ≤ ΠΞ(P, S), which illustrates the second point.

Now take any pole-set Ω whose cardinality is strictly greater than 1+dim(ΞP ), such that

S′ �FΞP
Ω �FΞP

S, then ΠΞ(P, S′) = ΠΞ(P,Ω) = ΠΞ(P, S), which illustrates the first

point.

Observe also that when P = I, any pole-set whose convex hull contains Ξ is contained

in a simplex. This immediately implies that the optimal value of AARC represents the

worst that can be obtained by the multipolar approach.

5.4.3 Convergence

The aim of this section is to show that under some mild assumptions, using the multipolar

framework, one can simultaneously compute a sequence of upper bounds and a sequence of

lower bounds converging to ΠΞ (I, ext (Ξ)), the optimal robust value of FARC. Throughout

this section the shadow matrix is the identity matrix.

Definition 5.1 Let Ω ∈ FΞ be a pole-set of a non-empty set Ξ, the distance function

between them is defined as d (Ω,Ξ) = max
ω∈Ω

min
ξ∈Ξ

‖ω − ξ‖2 .

The distance function is well-defined since Ω and Ξ are closed and bounded. It character-

izes the furtherest distance between pole-set Ω and the uncertainty set Ξ. This distance

is nothing other than the well-known Hausdorff distance.

Let Ω ∈ FΞ such that d (Ω,Ξ) = ε. For each ω ∈ Ω, we have d (ω,Ξ) ≤ ε. Let zω be

the projection of ω on Ξ, i.e.,

zω = argminξ∈Ξ d (ω, ξ) , eω = ω − zω, (5.11)

where ‖eω‖2 ≤ ε. For each ξ ∈ Ξ, consider convex combination coefficients
(
βξω
)

such

that

ξ =
∑
ω∈Ω

βξωω, and let E =
∑
ω∈Ω

βξωeω. (5.12)

Let us add subscripts to avoid confusion: ξ ≡ [Uξ,bξ], E ≡ [UE ,bE ] and zω ≡
[Uzω ,bzω ]. We define the convex set

Ξ′zΩ = conv {zω : ω ∈ Ω} . (5.13)

We obviously have Ξ′zΩ ⊆ Ξ. Let (u∗, (v∗zω)
ω∈Ω

) be the optimal solution of the MRC

problem related to Ξ′zΩ . Due to the definition of Ξ′zΩ , MRC and FARC are equivalent.

Moreover, from Ξ′zΩ ⊆ Ξ, we get that

cTu∗ = ΠΞ′zΩ
(I, ext(Ξ′zΩ)) ≤ ΠΞ(I, ext(Ξ)).
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We will also assume that there is a positive number µ such that ‖(u∗, 1)‖2 ≤ µ. This

assumption generally holds. For example, if the cost vector c is positive and variables

u are non-negative, then cTu∗ ≤ ΠΞ(I, ext(Ξ)) implies that ‖(u∗, 1)‖2 is upper-bounded.

The number µ does not depend on ε.

Assumption 3 There exists a constant number µ such that ‖(u∗, 1)‖2 ≤ µ for any Ξ′zΩ ⊆
Ξ and any optimal solution u∗ of the FARC problem related to Ξ′.

Lemma 5.1 Under Assumption 3, for each ξ ∈ Ξ, (UEu∗ − bE) is bounded from above

by εµ1, where 1 is an all-ones vector.

Proof: The result follows from Cauchy-Schwartz inequality applied to each row of E ≡
[UE ,bE ].

Let δ be a small positive number and let

Ξδ =
{
ξ ≡ [U,b] : ∃ξ′ ≡ [U,b′] ∈ Ξ,

∥∥b− b′
∥∥
∞ ≤ δ

}
. (5.14)

Observe that if ξ ≡ [U,b] ∈ Ξ, then [U,b − δ1] ∈ Ξδ. We will assume that for some

small number δ, the static robust counterpart problem SRC is still solvable.

Assumption 4 There exists a static robust solution (uδ,vδ) w.r.t. uncertainty set Ξδ.

Theorem 11 Under Assumptions 3 and 4, for each pole-set Ω ∈ FΞ such that d(Ω,Ξ) =

ε ≤ δ
µ , we have

ΠΞ(I,Ω) ≤
(

1− εµ

δ

)
cTu∗ +

εµ

δ
cTuδ,

where cTu∗ and cTuδ are respectively fully adjustable robust cost w.r.t. Ξ′zΩ and static

cost w.r.t. Ξδ.

Proof: Assume that the optimal solution of FARC w.r.t. uncertainty set Ξ′zΩ is
(
u∗, (v∗zω)

)
.

Consider the solution

û =
(

1− εµ

δ

)
u∗ +

εµ

δ
uδ, v̂ω =

(
1− εµ

δ

)
v∗zω +

εµ

δ
vδ. (5.15)

Let us show that (û, v̂ω) is a feasible solution of the MRC problem related to Ξ and Ω.
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For any ξ ≡ [U,b] ∈ Ξ, by (5.12), one can write:

Uξû + V
∑
ω∈Ω

βξωv̂ω = Uξû +
(

1− εµ

δ

)
V
∑
ω∈Ω

βξωv∗zω +
εµ

δ
Vvδ

≤ Uξû +
(

1− εµ

δ

)∑
ω∈Ω

βξω (bzω −Uzωu∗)

+
εµ

δ
(bξ − δ1−Uξuδ) (5.16)

= Uξû +
(

1− εµ

δ

)
(bξ − bE + UEu∗ −Uξu

∗)

+
εµ

δ
(bξ − δ1−Uξuδ) (5.17)

=
(

1− εµ

δ

)
(UEu∗ − bE)− εµ1 + bξ

≤
(

1− εµ

δ

)
εµ1− εµ1 + bξ (5.18)

= bξ −
ε2µ2

δ
1

≤ bξ,

where (5.16) follows from the fact that
(
u∗,v∗zω

)
satisfies constraint Uu + Vv ≤ b for

zω = [Uzω ,bzω ]T and the static solution (uδ,vδ) satisfies Uξu + Vv ≤ bξ − δ1, (5.17)

follows from (5.11) and (5.12), and (5.18) is due to Lemma 5.1.

The robust cost incurred by (û, (v̂ω)) is
(
1− εµ

δ

)
cTu∗+ εµ

δ cTuδ and is an upper bound

of the optimum of MRC.

Corollary 5.3 Given any sequence of pole-sets Ωi ∈ FΞ such that lim
i→∞

d (Ωi,Ξ) = 0,

then under Assumptions 3 and 4,

ΠΞ (I,Ωi) ≥ ΠΞ (I, ext (Ξ)) and lim
i→∞

ΠΞ (I,Ωi) = ΠΞ (I, ext (Ξ)) .

Moreover, the corresponding sequence of sets Ξ′zΩi
defined in (5.13) satisfies

ΠΞ′zΩi

(
I, ext

(
Ξ′zΩi

))
≤ ΠΞ (I, ext (Ξ)) and lim

i→∞
ΠΞ′zΩi

(
I, ext

(
Ξ′zΩi

))
= ΠΞ (I, ext (Ξ)) .

Proof: Let εi = d (Ωi,Ξ) , ∀i. From Theorem 11, we have

ΠΞ (I,Ωi) ≤
(

1− εiµ

δ

)
ΠΞ′zΩi

(
I, ext

(
Ξ′zΩi

))
+
εiµ

δ
cTuδ, ∀i,

and we know that

ΠΞ′zΩi

(
I, ext

(
Ξ′zΩi

))
≤ ΠΞ (I, ext (Ξ)) ≤ ΠΞ (I,Ωi) .

Consequently,

lim
i→∞

ΠΞ′zΩi

(
I, ext

(
Ξ′zΩi

))
= ΠΞ (I, ext (Ξ)) and lim

i→∞
ΠΞ (I,Ωi) = ΠΞ (I, ext (Ξ))

hold in the limit at the same time.
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5.5 An illustrative example

To illustrate the multipolar concept, we present a simple example, which had been pre-

viously studied in [58] and is as follows:

min u

s.t. ∀ξ ∈ Rn, ‖ξ‖1 ≤ 1, ∃v, vi ≥ ξi, vi ≥ −ξi, i = 1, . . . , n

u ≥
n∑
i=1

vi.

(5.19)

Observe that u is here the unique first-stage (non adjustable) variable. On the other hand

vi, for each i = 1, . . . , n, are second-stage (adjustable) variables. The uncertainty set is

given by Ξ ≡ {ξ ∈ Rn, ‖ξ‖1 ≤ 1}.
As noticed in [58], an optimal fully adjustable solution is given by u = 1 and vi = ‖ξi‖1,

whereas the optimal affinely adjustable solution requires that u = n. In other words, the

affine approach does not lead to any improvement compared to the static approach.

Following the paradigm of multipolar approach in Section 5.3, let us take Pξ =

(ξ1, . . . , ξn0), where n0 ∈ N, n0 ≤ n. In other words, the shadow matrix P limits the

dimension of Ξ to n0 by leaving ξi as they are for i ≤ n0 and disregarding the other

components for i > n0. Let Ω ⊆ Rn0 be the set of poles containing for i = 1, . . . , n0,

vectors φi = (0, . . . , 0, 1, 0, . . . , 0) and φ
i

= −φi, whose components are 0 except the ith

component. Hence Ω contains 2n0 poles and ΞP = conv Ω.

Given any ξ ⊆ Ξ, let λφi and λ
φ
i be the convex combination coefficients such that

Pξ =
n0∑
i=1

(
λφiφ

i + λ
φ
iφ
i
)

. The equation can be transformed to Pξ =
n0∑
i=1

φi
(
λφi − λφi

)
;

thus these coefficients should satisfy the equations λφi − λφi = ξi for 1 ≤ i ≤ n0. Let

vφi (resp. v
φ
i) be the recourse vector associated with pole φi (resp. φ

i
). These vectors

belong to Rn.

In the considered example, inequalities (5.7) are equivalent to the following set of

inequalities:

n0∑
i=1

(
λφivφi + λ

φ
iv
φ
i

)
≥ (|ξ1|, |ξ2|, . . . , |ξn|) , (5.20a)

u ≥

∥∥∥∥∥
n0∑
i=1

(
λφivφi + λ

φ
iv
φ
i

)∥∥∥∥∥
1

. (5.20b)

Let us take vφi = v
φ
i = (0, . . . , 0, 1, 0, . . . , 0, 1, . . . , 1), where the first n0 components

are 0 except the ith component, which is equal to 1, while the last (n− n0) components

are equal to 1.

Observe that the last (n− n0) components of the vector
n0∑
i=1

(
λφivφi + λ

φ
iv
φ
i

)
are

equal to 1. Moreover, for 1 ≤ i ≤ n0, we have λφi + λ
φ
i ≥ |λφi − λ

φ
i | = |ξi|. This

clearly implies that inequalities (5.20a) are satisfied. In addition, inequality (5.20b) leads

to u ≥
n0∑
i=1

(
λφi + λ

φ
i

)
(1 + n− n0), where (1 + n− n0) is the L1 norm of each recourse

vector vφi . Consequently, u ≥ 1+n−n0. Since we are minimizing u, we get u = 1+n−n0.

The cost decreases when n0 increases. When n0 is equal to 1, we get a static solution,
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while the optimal fully adjustable solution is obtained when n0 = n. Finally, taking

1 < n0 < n, we obtain a compromise between the simplicity of the static approach and

the efficiency of the fully adjustable solution. As mentioned earlier, such a compromise

cannot be obtained for this example with the affinely adjustable approach.

Consider now a slightly changed example with the uncertainty set being the non-

polyhedral set defined by Ξ := {ξ ∈ Rn : ‖ξ‖2 ≤ 1}. The rest of the problem remains as

in (5.19); thus the new problem can be formulated as follows:

min u

s.t. ∀ξ ∈ Rn, ||ξ||2 ≤ 1, ∃v, vi ≥ ξi, vi ≥ −ξi, i = 1, . . . , n,

u ≥
n∑
i=1

vi.

(5.21)

Observe that since the new uncertainty set Ξ contains the previous one based on L1 norm,

the optimal value of (5.21) is greater than or equal to that of (5.19). Optimal solutions

based on either the static approach or the affine approach still incur a cost of n while the

optimal fully adjustable solution has a cost of
√
n. Let us now consider the multipolar

approach, where P is still defined by Pξ = (ξ1, . . . , ξn0). Let us choose the following set

of poles: Ω = {√n0φ
i}i=n0
i=1 ∪ {

√
n0φ

i}i=n0
i=1 . One can easily show that ΞP ⊆ conv(Ω).

Moreover, by taking v√n0φi = v√
n0φ

i = (0, . . . , 0,
√
n0, 0, . . . , 0, 1, . . . , 1), where the first

n0 components are 0 except the ith component, which is equal to
√
n0, while the last

n−n0 components are equal to 1, we get a solution of the multipolar robust counterpart

with u =
√
n0 + n − n0. Similarly to the previous case, when n0 is equal to 1, we get a

static solution, while the optimal fully adjustable solution is obtained when n0 = n.

5.6 The construction of pole-sets

We know from Section 5.4 that the multipolar robust value converges to a fully adjustable

robust value when the distance between Ω and ΞP gets close to 0, and P = I. We

also proved the monotonicity of multipolar robust value w.r.t. the inclusion of conv Ω.

Therefore, the objective of this section is to find a pole-set Ω ∈ FP as close to ΞP as

possible, while minimizing the number of poles. This is clearly related to the theory of

approximation of convex sets by polytopes.

A considerable amount of work has been done in this area. A recent survey of relevant

results is given in [47]. It is proved in [46, 63] that given a convex body ΞP ∈ Rn0 , there

exists a polytope Fn ∈ Rn0 having n vertices containing ΞP such that dH(ΞP , Fn) ≤
k(ΞP )

n2/(n0−1) where dH denotes the Hausdorff distance and k(ΞP ) is a constant only depending

on ΞP . More precise approximations are obtained in dimension 2, where we can ensure

the existence of Fn ⊂ R2 such that dH(ΞP , Fn) ≤ l
2n sin π

n where l is the length of the

boundary of ΞP . Moreover, if the boundary of ΞP is two-times smooth, then an explicit

asymptotic result is known about the distance between ΞP and the set of circumscribed

polytopes having n vertices: the closest polytope Fn satisfies dH(ΞP , Fn) ∼ k(ΞP )

n2/(n0−1)

where k(ΞP ) is a constant depending on n0 and the Gaussian curvature of the boundary

of ΞP [44].
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The monotonicity of multipolar robust values w.r.t. pole-sets might suggest using

minimum volume circumscribed polytopes. Considering the Nikodym distance (related

to volumes) instead of the Hausdorff distance, the same kind of results can be obtained

[47]. One might be interested in a minimum volume simplex containing a convex set

ΞP . We know for example that if ΞP is the hypercube Hn0 , then a minimum volume

circumscribed simplex has a volume equal to n0
n0

n0! [100]. If ΞP is the unit ball, then

a minimum volume simplex containing the ball is a regular simplex whose volume is
n
n0/2
0 (n0+1)(n0+1)/2

n0! [47] and whose dihedral angle is arccos( 1
n0

) [134]. It is also known that

a minimum volume simplex enclosing ΞP satisfies the centroid property: the centroid of

each facet of this simplex should be in ΞP [96]. A polynomial-time algorithm to find such

a minimum volume simplex enclosing a set of points in R3 is given in [155]. However, it

is generally unknown how to solve the problem in higher dimensions [76].

As observed by [47], most constructive algorithms were generally proposed for low

dimensional cases (2 or 3). For more general cases, constructive algorithms of circum-

scribed polytopes such as the algorithm of [91] are generally based on the addition of

inequalities without controlling the number of vertices of the circumscribed polytope.

This can hardly accommodate the need of multipolar framework since we want to control

the complexity of MRC by limiting the number of poles.

Note also that we are required to construct the pole-set of ΞP in a reasonable time.

Algorithms checking whether each extreme point of ΞP belongs to the convex hull of Ω

fail to work, since the number of extreme points of a polytope can be exponential or even

infinite.

The rest of this section is organized as follows. First, we describe a general algorithm

to construct a simplex enclosing ΞP . The resulting simplex is guaranteed to be smallest in

the sense that it cannot be shrinked. Then, a project-and-cut based tightening procedure

is proposed to construct pole-sets that are closer to ΞP .

5.6.1 Generation of a circumscribed simplex

In this section, we describe a general algorithm for the construction of a circumscribed

simplex of ΞP . Specifically, we first randomly generate a set of (n0 + 1) affinely indepen-

dent points, whose convex hull forms a simplex S. Then, we compute the best homothetic

transformation of S such that the resulting simplex contains ΞP .

We denote by the ω(i), i = 1, . . . , (n0 + 1) the (n0 + 1) affinely independent points.

Then the n0-simplex set can be expressed as {x : Dλ = (x, 1),λ ≥ 0}, where

D =


ω

(1)
1 . . . ω

(n0+1)
1

...
...

...

ω
(1)
n0 . . . ω

(n0+1)
n0

1 . . . 1

 .

Since the (n0 + 1) points are affinely independent, matrix D is invertible; therefore,

λj , j = 1, . . . , (n0 + 1), can be expressed as an affine function of x; the coefficients of the
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affine function λi are the components of the ith row of D−1, i.e.,

λi(x) =

n0∑
j=1

lijxj + li(n0+1), i = 1, . . . , (n0 + 1). (5.22)

Note that λi(x) ≥ 0, i = 1, . . . , (n0 + 1) iff x belongs to the n-simplex.

Let σσ,Tt be the associate matrices for the operations of scaling with factor σ > 0

and translation t ∈ Rn0 . Thus the associated matrix Dσ,t of the simplex with homothetic

transformation on the simplex S is Dσ,t = TtσσD, where

Tt =

(
In0 t

0 1

)
, σσ =

(
σIn0 0

0 1

)
.

Its corresponding inverse is then

D−1
σ,t = D−1

(
1
σ In0 0

0 1

)(
In0 −t

0 1

)

=



1
σ l11 . . . 1

σ l1n0 l1(n0+1) − 1
σ

n0∑
k=1

tkl1k

...
...

...
...

1
σ ln01 . . . 1

σ ln0n0 ln0(n0+1) − 1
σ

n0∑
k=1

tkln0k

1
σ l(n0+1)1 . . . 1

σ l(n0+1)n0
l(n0+1)(n0+1) − 1

σ

n0∑
k=1

tkl(n0+1)k


.

Let σ∗ be the smallest scaling factor σ such that a translate of σS contains ΞP . The

translate used when σ = σ∗ is denoted by t∗.

Theorem 12 σ∗ and t∗ are given by: t∗ =
n0+1∑
i=1

ziω
(i) and σ∗ = −

n0+1∑
i=1

zi, where for each

i = 1, . . . , (n0 + 1), zi = min{
n0∑
j=1

lijxj : x ∈ ΞP }.

Proof: Assume that the homothetic copy of S given by σS + t contains ΞP . Then the

coefficients λi(x) defined in (5.22) should be nonnegative for any point x ∈ ΞP . Con-

sidering the matrix D−1
σ,t defined above and computing the minimum values of λi(x), i =

1, . . . , (n0 + 1), we get

li(n0+1) −
1

σ

n0∑
k=1

tklik +
1

σ
zi ≥ 0, i = 1, . . . , (n0 + 1),

For ease of notation, we express this as l′i(n0+1) + zi ≥ 0, i = 1, . . . , (n0 + 1), where

l′i(n0+1) = σli(n0+1) −
n0∑
k=1

tklik, i = 1, . . . , (n0 + 1).

Since the matrix (l)i,j=1,...,(n0+1) is the inverse of matrix D, we have

n0+1∑
i=1

lij = 0, j = 1, . . . , n0 and

n0+1∑
i=1

li(n0+1) = 1. (5.23)

Summing all l′i(n0+1), we get

σ =

n0+1∑
i=1

l′i(n0+1) ≥ −
n0+1∑
i=1

zi. (5.24)
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Observe that having l′i(n0+1) (and σ∗ as a consequence), we can get the translate t

through the linear system
n0∑
k=1

tklik = σli(n0+1)− l′i(n0+1), i = 1, . . . , (n0 + 1). Multiplying

by D, we get that (t1, ..., tn0 , 0) = σ(0, ..., 0, 1)−D(l′1(n0+1), ..., l
′
(n0+1)(n0+1)) which leads

to t =
n0+1∑
i=1

ziω
(i).

According to (5.24), the smallest σ∗ is −
n0+1∑
i=1

zi. We should however check if σ∗ ≥ 0.

This holds since by considering any x ∈ ΞP , one can write that

n0+1∑
i=1

zi ≤
n0+1∑
i=1

n0∑
j=1

lijxj

=

n0∑
j=1

xj

n0+1∑
i=1

lij

=0,

where the last equality is based on (5.23).

Since the matrix D−1
σ,t does not exist when σ∗ = 0, we have to study this special case.

It is clear that σ∗ = 0 if and only if ΞP is a single point. Observe that in this case, we

necessarily have
n0+1∑
i=1

zi = 0 since zi =
∑n0

j=1 lijxj , where x is the single point of ΞP . Then

formula σ∗ = −
n0+1∑
i=1

zi is still valid and t∗ = x =
n0+1∑
i=1

ziω
(i) also occurs.

Note that values of zi, i = 1, . . . , (n0+1) defined in Theorem 12 can easily be computed

for any ΞP since we only have to minimize a linear function over a convex set.

As a special case, pole-sets of a hypercube are of great use in multipolar robust

approach. First, hypercubes are one of the most common uncertainty sets in many

applications. Second, general box sets of the form {x : x ∈ [l,u]n0 ⊆ Rn0} are simply

affine transformations of a hypercube, so the pole-sets of a hypercube also apply to boxes

with some simple transformations.

Corollary 5.4 If ΞP is a hypercube, then σ∗ and t∗ are given by:

t∗ =

n+1∑
i=1

n0∑
j=1

min{0, lij}ω(i) and σ∗ =
1

2

n0+1∑
i=1

n0∑
j=1

|lij |.

Proof: If ΞP is a hypercube, by Theorem 12, we have zi =
n0∑
j=1

min{0, lij}, i = 1, . . . , n0.

By (5.23), we have −
n0+1∑
i=1

n0∑
j=1

min{0, lij} = 1
2

n0+1∑
i=1

n0∑
j=1
|lij |, which completes the proof.

According to Corollary 5.4, we have a closed formula for the homothetic translation for

a n0-simplex S containing the n0-hypercube, i.e,

xσ,t =
1

2

n0+1∑
i=1

n0∑
j=1

|lij |x +

n0+1∑
i=1

ω(i)
n0∑
j=1

min {0, lij} , ∀x ∈ S. (5.25)

Note that the value σ∗ presented in Corollary 5.4 has been given in [128] but the proof

here is much simpler.
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ω0

ω1

ω2
ω3

ω1

ω2 ω3

Figure 5.1: An illustration: (Left) Pole ω0 is replaced with poles (ωi)3i=1. (Right) The

updated convex hull of the new set of poles.

To sum up the foregoing, we present a general algorithm for the generation of a

circumscribed simplex as follows.

1. Generate (n0 + 1) affinely independent points (ω(i))i=n0+1
i=1 .

2. Compute σ∗ and t∗ by Theorem 12 and output the σ∗ω(i) + t∗, i = 1, . . . , (n0 +1).

5.6.2 A tightening procedure

In this section, we propose a general procedure to construct pole-sets of good quality by

tightening a given pole-set.

The procedure is the following: among the vertices of Ω select the farthest one in L2

sense from ΞP and compute the projection of this vertex on ΞP . Then we consider the

hyperplane separating this vertex from ΞP (containing the projection) and compute the

extreme points of the intersection of this hyperplane with convΩ. These extreme points

are added to Ω while the vertex that has been projected is removed from Ω. Figure

5.1 illustrates a tightening procedure of a 3-D simplex covering H3. The procedure is

repeated until the cardinality of Ω reaches some fixed upper bound. Details are given

below:

1. Assume Ω =
{
ω(k), k ∈ I

}
. For each k ∈ I, compute the distance between ω(k) and

ΞP . Let z
k be the projection of ω(k) on ΞP . z

k can be usually expressed in a closed

form. For example, in the ball case, we have zk = ω(k)

‖ω(k)‖
2

, while in the hypercube

case we get zki = ω
(k)
i if ω

(k)
i ∈ [0, 1], zki = 1 if ω

(k)
i ≥ 1 and zki = 0 if not. The

distance between ω(k) and ΞP is then given by
∥∥ω(k) − zk

∥∥
2
. Let ω(k0) be the vertex

of Ω maximizing the distance from ΞP :

ω(k0) = arg max
ω(k)∈Ω

∥∥∥ω(k) − zk
∥∥∥
2
.

2. Let α = ω(k0) − zk0 and let B
(
ω(k0), ‖α‖2

)
be the ball of radius ‖α‖2 centered at

ω(k0). Since B
(
ω(k0), ‖α‖2

)
∩ ΞP = {zk0} and B

(
ω(k0), ‖α‖2

)
and ΞP are convex,

there is a hyperplane separating them. This hyperplane, denoted by h(ω(k0)), is

here uniquely defined since it contains zk0 and is orthogonal to α. It is then given
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by h
(
ω(k0)

)
=
{
x : (x− zk0)Tα = 0

}
. We use h−

(
ω(k0)

)
=
{
x : (x− zk0)Tα < 0

}
and h+

(
ω(k0)

)
=
{
x : (x− zk0)Tα ≥ 0

}
to respectively denote the inner and outer

half spaces.

3. Now partition the vertices
(
ω(k)

)
k∈I into two disjoint sets: Ω− and Ω+, where Ω− ={

ω(k) : ω(k) ∈ h−
(
ω(k0)

)}
and Ω+ =

{
ω(k) : ω(k) ∈ h+

(
ω(k0)

)}
. Then consider the

set of vertices Ω′ obtained as intersections between the hyperplane h(ω(k0)) and the

set of lines (ω(i), ω(j)) where ω(i) ∈ Ω+ and ω(j) ∈ Ω−: Ω′ =
⋃
ω(i)∈Ω+,ω(j)∈Ω− h(ω(k0))∩

(ω(i), ω(j)). The number of such intersections is of course less than |Ω−|×|Ω+|. Also

note that we need to remove redundant points from Ω′ if they are convex combi-

nations of other points of Ω′. Finally update Ω by deleting Ω+ and adding Ω′:

Ω = Ω− ∪ Ω′. If cardinality of Ω is still under a prescribed upper bound, the

procedure is repeated.

To conclude this section, we might add that it is sometimes more efficient to start with

a pole-set having more than (n0 + 1) poles. Assume, for example, that ΞP is the unit

ball {x ∈ Rn0 : ‖x‖2 ≤ 1}. Then one can consider a 2n-pole-set where poles are the 2n0

extreme points of
{
x ∈ Rn0 : ‖x‖1 ≤

√
n0

}
. Of course, 2n-pole-sets can also be easily

generated for many other convex sets.

5.7 A numerical example: the lobbying problem

Let us consider a lobbying problem where a set of voters (for example, legislators or

members of regulatory agencies) have to take some decisions. The opinion of each voter

depends on the opinion of some authorities. Authority’s opinions are generally uncertain.

A lobby would like to ensure that an important decision will be unanimously approved

by all voters. The lobby will spend some effort (energy, money, etc.) to convince each

voter, while the total lobbying budget is minimized. Assume that there are m voters and

n authorities. The opinion of voter i is given by
∑n

j=1Qijξj where Qij is an estimated

number belonging to [−1, 1] and ξj represents the uncertain opinion of authority j. If

Qij is close to 1, then j has a big impact on i, while Qij = 0 means that i does not

care about j, while a negative value of Qij can be interpreted as a negative effect (i.e.,

when j recommends something, i is inclined to have an opposite opinion). We assume

here that the lobby would be satisfied if
∑n

j=1Qijξj ≤ 0 for each voter. Since this might

not occur for some voters, some effort modeled here by vi(ξ) can be made by the lobby

to convince them. The total effort is quantified by
∑m

i=1 rivi(ξ) where ri is a unit effort

price corresponding with voter i. The problem can be formulated as follows,

min u

s.t.

m∑
i=1

rivi(ξ) ≤ u, ξ ∈ Ξ,

Qξ ≤ v(ξ), ξ ∈ Ξ,

v(ξ) ≥ 0, ξ ∈ Ξ,

(5.26)
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where Q ∈ [−1,1]m×n, Ξ is the convex uncertainty set and u is the budget that has

to be secured by the lobby. The lobby problem is related to opinion dynamics in social

networks (see [1] and the references therein). Notice that interactions between voters are

also possible since the set of authorities might include the set of voters as a subset.

To illustrate the multipolar robust approach, we consider here two different uncer-

tainty sets: the hypercube Hn and a unit volume ball Bn. The numbers ri are assumed

to be equal to 1. Specializing (5.8) to Hn, we get the following formulation for MRC

associated with a shadow matrix P and a feasible pole-set Ω ∈ FPHn ,

ΠHn(P,Ω) = min
u,vω

u

s.t.
m∑
i=1

viω +
n∑
j=1

σjωj +
n∑
j=1

βj ≤ u, ω ∈ Ω,

n∑
j=1

ηTijωj +
n∑
j=1

αij − viω ≤ 0, ω ∈ Ω, i = 1, . . . ,m,

n∑
j=1

µij −Vi
ω −

n∑
j=1

δijωj ≤ 0, ω ∈ Ω, i = 1, . . . ,m,

β + PTσ ≥ 0,

αij + PTηi ≥ Qij , i = 1, . . . ,m, j = 1, . . . , n,

µi −PT τi ≥ 0, i = 1, . . . ,m,

αij , βj , µij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n,

σ,ηi, τi ∈ Rn0 , i = 1, . . . ,m.

(5.27)

As said above, we also consider the case where the uncertainty set is a unit volume ball

Bn, whose center is ξ̄ = (1
2 , . . . ,

1
2 , . . . ,

1
2) and radius ρ = (Γ(n/2+1)

πn/2 )
1
n . According to (5.9),

the dual of the multipolar robust counterpart w.r.t. Bn, writes

ΠBn(P,Ω) = min
u,vω

u

s.t. ρ
∥∥PTσ

∥∥
2

+ 1Tvω − ωTσ ≤ u, ω ∈ Ω,

ρ
∥∥QT

i + PTηi
∥∥

2
− viω − ωTηi + Qiξ̄ ≤ 0, ω ∈ Ω, i = 1, . . . ,m,

ρ
∥∥PTµi

∥∥
2
− viω − ωTµi ≤ 0, ω ∈ Ω, i = 1, . . . ,m,

σ,ηi,µi ∈ Rn0 , i = 1, . . . ,m,

(5.28)

where Ω ∈ FPBn .

As stated in Section 5.3.1, the fully adjustable robust value w.r.t. hypercube Hn can

be achieved by simply taking P = I and Ω = ext(Hn). The problem looks more complex

in the ball case since the number of extreme points is infinite. Assume again that P is

identity. Given ξ ∈ Bn, the optimal solution of vi is max{0,Qiξ} for each i = 1, . . . ,m.

Denote by P the power set of the index set {1,. . . ,m }. We partition the ball Bn into a

family of disjoint subsets by a set valued mapping S : P 7→ 2Bn , i.e., for each J ∈ P,

S(J) :=
{
ξ ∈ Bn : Qiξ ≥ 0, i ∈ J, Qjξ ≤ 0, j ∈ J̄

}
,
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where J̄ = {1, . . . ,m} \ J . Therefore, the fully adjustable robust program writes

Π∗Bn
= max

J∈P:S(J)6=∅
max
ξ∈S(J)

∑
i∈J

Qiξ. (5.29)

Notice that (5.29) takes an exponential number (in the number of constraints m) of

seconder order cone programs to obtain the fully adjustable robust value Π∗Bn
. We show

that (5.29) is equivalent to a much simpler problem.

Lemma 5.2 Program (5.29) is equivalent to

Π∗Bn
= max

J∈P

{
ρ

∥∥∥∥∥∑
i∈J

Qi

∥∥∥∥∥
2

+
∑
i∈J

Qiξ̄

}
. (5.30)

Proof: Observe first that max
J∈P

{
ρ

∥∥∥∥∑
i∈J

Qi

∥∥∥∥
2

+
∑
i∈J

Qiξ̄

}
is an upper bound of Π∗Bn

since

it is obtained by relaxing the constraints ξ ∈ S(J).

We show that it is also a lower bound of Π∗Bn
. Let Jmax ∈ P be a subset for which

the maximum is achieved:

Jmax = arg max
J∈P

{
ρ

∥∥∥∥∥∑
i∈J

Qi

∥∥∥∥∥
2

+
∑
i∈J

Qiξ̄

}
.

Take ξ̂ ∈ Bn such that ξ̂ = ξ̄ +
ρ

∑
i∈Jmax

Qi∥∥∥∥∥ ∑
i∈Jmax

Qi

∥∥∥∥∥
2

. Let K ∈ P such that

Qiξ̂ ≥ 0, i ∈ K,

Qiξ̂ ≤ 0, i ∈ {1, . . . ,m} \K.

We have that

ρ

∥∥∥∥∥ ∑
i∈Jmax

Qi

∥∥∥∥∥
2

+
∑

i∈Jmax

Qiξ̄ =
∑

i∈Jmax

Qiξ̂

≤
∑
i∈K

Qiξ̂

≤ max
ξ∈S(K)

∑
i∈K

Qiξ

≤ Π∗Bn

where the first equality follows from the choice of ξ̂. The second inequality is due to

Jmax ∩K ⊆ K, while the third inequality is from the fact that ξ̂ belongs to S(K) by the

definition of K. The last inequality is a direct consequence of (5.29).

Although problem (5.30) is easier than problem (5.29), it is still computationally costly

when the number of constraints m is large. Notice that (5.30) can also be seen as a

integer quadratic program that can be approximated by semidefinite programming and

solved using standard quadratic programming tools. We will not elaborate more on this

since this falls out of the scope of this thesis.
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5.7.1 Numerical experiments

The problem instances are randomly generated following the rules below.

1. Let m ∈ {10, 20, 30, 40, 50}, n ∈ {5, 9, 10, 12, 15, 20, 30}.

2. Generate the components of Q uniformly over [−1,1].

3. We build four different sizes of pole-sets for each considered hypercube by the

circumscribed simplex generation algorithm and the tightening procedure described

in Section 5.6. As a result, for a hypercube Hn, (Ωi) is a monotonic sequence w.r.t.

the set inclusion of their convex hulls, i.e., Ωi �Hn Ωj for all i > j. Table 5.1

displays the cardinality of different pole-sets of Hn. The number of vertices of Hn

is also provided in the last column.

Table 5.1: The pole-sets of hypercubes

Hypercube |Ω0| |Ω1| |Ω2| |Ω3| #ext.

H9 10 32 162 387 512

H10 11 36 112 322 1,024

H12 13 44 144 449 4,046

H15 16 56 192 353 32,768

H20 21 76 144 514 1,048,576

H30 31 60 116 432 1,073,741,824

4. As an illustration of multipolar robust approach for smooth convex uncertainty sets,

we generate pole-sets of ball Bn as well. In Table 5.2, Ω0 denotes a first pole-set

whose convex hull is a simplex, while Ω1 is the 2n−pole-set defined at the end of

Section 5.6. Starting from Ω1 and applying the tightening procedure, we get the

pole-sets Ωi, i = 2, 3, 4 as outputs. The cardinality of pole-sets are shown in Table

5.2.

Table 5.2: The pole-sets of the unit volume ball

Unit ball |Ω0| |Ω1| |Ω2| |Ω3| |Ω4|

B5 6 10 118 218 308

B9 10 18 62 152 352

B10 11 20 72 132 374

B12 13 24 88 164 478

The pole-sets had been readily generated before the solution procedure. Compact for-

mulations (5.27) and (5.28) are modeled by YALMIP [115] and all the problem instances
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are solved by the Linux version of CPLEX 12.5 with default settings on a Dell E6400

laptop with Intel Core(TM)2 Duo CPU clocked at 2.53 GHz and with 4 GB of RAM. We

evaluate our multipolar approach from different measuring: the impact of pole-sets, the

impact of the shadow matrix P, and the benefit of adaptability.

The influence of pole-sets

Recall that multipolar robust approach closes to some extend the gap between affine

robust value and the fully adjustable value. To test the impact of pole-sets, we fix

P = I. For relatively lower dimensional cases, we report the multipolar robust values

w.r.t. different pole-sets, and compute the percentage of the closed gap induced by the

multipolar robust approach ΠΞ(Ω0)−ΠΞ(Ωi)
ΠΞ(Ω0)−Π∗Ξ

× 100. For higher dimensional cases, where

FARC can hardly be solved in a reasonable time, we report the multipolar robust values

w.r.t. different pole-sets.

Results related to hypercubes are presented in Table 5.3. The closed gap percentages

are given within parentheses. Overall, these results appear encouraging as indicated by

the closed gaps. Observe that when the uncertainty set is fixed, the multipolar robust

values in general get lower as the pole-set Ω gets smaller. Also, we report the computing

Table 5.3: The multipolar robust values with different pole-sets (hypercube uncertainty

sets)

(m,n) static affine/ΠHn(Ω0) ΠHn(Ω1) ΠHn(Ω2) ΠHn(Ω3) Π∗Hn

(10,9) 24.84 12.42 12.18(9.45 ) 10.55(73.62) 10.16(88.98) 9.88

(10,10) 25.50 12.75 11.53(58.65) 10.96(86.06) 10.70(98.56) 10.67

(10,12) 30.66 15.33 14.63(35.18) 13.71(81.41) 13.43(95.48) 13.34

(20,9) 50.75 25.37 23.82(46.69) 22.08(99.10) 22.06(99.70) 22.05

(20,10) 50.88 25.44 23.56(16.95) 20.74(42.38) 18.58(61.86) 14.35

(20,12) 59.79 29.89 27.54(23.64) 25.40(45.17) 23.58(63.48) 19.95

(10,15) 35.81 17.90 16.91 15.98 15.29 -

(10,20) 50.88 25.44 24.82 24.35 23.33 -

(10,30) 64.32 32.16 31.70 31.14 30.22 -

(20,15) 82.49 41.25 39.36 36.20 34.87 -

(20,20) 99.28 49.64 47.17 45.66 40.80 -

(20,30) 157.20 78.60 77.82 76.83 73.77 -

time for higher dimensional instances associated with hypercube uncertainty set in Table

5.4. While the computational time compared with the affine robust approach scales in

magnitude, the complexity of multipolar robust approach is controlled by the choice of

pole-sets. In particular, in higher dimensional cases, where fully adjustable robust values

are difficult to obtain, the robust multipolar approach brings lower cost (compared with

affine approach) in a reasonable time.

A sequence of lower bounds can also be generated as stated in Corollary 5.3 of Sec-
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Table 5.4: Computing time (in seconds)

(m,n) static affine/ΠHn(Ω0) ΠHn(Ω1) ΠHn(Ω2) ΠHn(Ω3)

(10,15) 0.00 0.01 0.20 1.49 6.31

(10,20) 0.00 0.03 0.87 2.66 27.54

(10,30) 0.00 0.04 1.15 4.53 39.12

(20,15) 0.00 0.03 0.68 10.43 34.98

(20,20) 0.00 0.07 4.65 16.41 152.79

(20,30) 0.00 0.14 3.91 15.40 220.48

tion 5.4.3. All we need to do is to generate a sequence of (Γi)
i=3
i=0 by projecting the

pole-sets (Ωi)
i=3
i=0 onto the surface of hypercubes. The obtained lower bounds are de-

noted by ΠHn(Γi). Note that conv Ω′ ⊆ Ω does not necessarily lead to conv Γ′ ⊆ Γ or

conv Γ′ ⊇ Γ. Thus it may happen that ΠHn(Γi) ≥ ΠHn(Γi+1). The results are summa-

rized in Table 5.5, where the best lower bound for each problem instance is marked in

bold.

Table 5.5: Lower bounds related to hypercubes

(m,n) ΠHn(Γ0) ΠHn(Γ1) ΠHn(Γ2) ΠHn(Γ3) Π∗Hn

(10,9) 6.88 8.18 9.52 9.65 9.88

(10,10) 7.11 8.12 9.62 8.34 10.67

(10,12) 10.50 8.88 9.48 9.57 13.34

(20,9) 20.08 16.05 18.70 21.98 22.05

(20,10) 11.88 11.88 12.44 12.92 14.35

(20,12) 14.73 16.65 16.96 19.07 19.95

(10,15) 7.62 7.63 8.40 8.40 -

(10,20) 7.86 10.20 10.20 10.36 -

(10,30) 7.11 9.03 9.03 9.79 -

(20,15) 23.49 25.86 23.56 23.56 -

(20,20) 15.23 16.08 16.08 19.61 -

(20,30) 30.53 31.12 32.53 33.81 -

Let us now focus on the ball case. Remember that FARC is intractable in general.

However, as shown in Lemma 5.2, we can compute the optimum of FARC by solving

problem (5.30) when m is small. We report the robust values obtained by solving multi-

polar robust counterpart with different pole-sets in Table 5.6. The results may indicate

the following. First, the approximate robust values associated with balls appear lower

than those associated with hypercubes although the volume and symmetric center of
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balls and hypercubes are the same. Second, the closed gaps by multipolar robust ap-

proach on robust problems with ball uncertainty sets might be less significant than that

with hypercube uncertainty sets. As might be expected, larger poles-sets are required for

balls compared to hypercubes. Third, despite the limitations, multipolar approach closes

around 30% of the optimality gap. In particular, it appears compelling when the number

of constraints are large, while the dimension of the uncertainty set is small.

Table 5.6: The multipolar robust values with different pole-sets (ball)

(m,n) static ΠBn(Ω0) ΠBn(Ω1) ΠBn(Ω2) ΠBn(Ω3) ΠBn(Ω4) Π∗Bn

(10,9) 17.27 9.43 9.28(11.11) 9.21(16.30) 9.11(23.70) 9.01(31.11) 8.08

(10,10) 16.09 9.21 8.98(23.00) 8.95(26.00) 8.94(27.00) 8.89(32.00) 8.21

(10,12) 19.64 10.93 10.76(20.99) 10.76(20.99) 10.74(23.46) 10.70(28.40) 10.12

(20,9) 35.87 19.86 19.54(20.92) 19.51(22.88) 19.45(26.80) 19.36(32.68) 18.33

(20,10) 33.12 17.19 16.42(18.08) 15.62(36.85) 15.57(38.03) 15.36(42.96) 12.93

(20,12) 39.85 20.93 20.05(17.25) 19.96(19.02) 19.90(20.20) 19.81(21.96) 15.83

(30,5) 19.51 11.00 10.39 9.22 9.14 9.03 -

(40,5) 37.57 21.63 21.11 20.71 20.63 20.55 -

(50,5) 38.14 20.94 20.06 19.33 19.14 19.02 -

The lower bounds obtained in the ball case are reported in Table 5.7. Interestingly, the

observed sequences of lower bounds associated with ball Bn are monotonically increasing

and their best bounds in general are close to the fully adjustable robust value.

Table 5.7: The lower bounds in the ball case

(m,n) ΠBn(Γ0) ΠBn(Γ1) ΠBn(Γ2) ΠBn(Γ3) ΠBn(Γ4) Π∗Bn

(10,9) 6.60 6.70 6.70 6.71 7.67 8.08

(10,10) 6.07 6.28 6.93 7.44 7.60 8.21

(10,12) 7.26 7.51 8.01 8.08 8.44 10.12

(20,9) 16.04 16.17 16.89 16.89 16.89 18.33

(20,10) 12.03 12.03 12.03 12.03 12.03 12.93

(20,12) 12.35 13.41 13.67 13.67 13.67 15.83

(30,5) 7.48 7.48 8.11 8.11 8.34 -

(40,5) 16.54 17.31 19.27 19.27 19.87 -

(50,5) 15.53 15.53 17.22 17.22 17.80 -

The impact of the shadow matrix

To investigate the impact of the shadow matrix on the robust value of the robust problem,

we conduct some experiments on problem instances w.r.t. hypercube uncertainty sets.
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The shadow matrices considered here are simply projection matrices on lower subspaces.

The results are displayed in Table 5.8, where the uncertainty set is a hypercube and

several projections are considered (on H5, H7, H10, and H12). The pole-set considered

is the set of extreme points of the projected set. As might be expected, the robust value

decreases as more information is employed in MRC.

Table 5.8: Impact of the shadow matrix

(m,n) H5 H7 H10 H12

(10,30) 56.95 51.50 45.59 43.29

(10,50) 109.84 105.68 100.69 96.11

(10,70) 162.14 159.52 156.12 154.53

(10,100) 246.98 244.13 239.34 237.43

(20,30) 133.35 126.59 117.63 111.53

(20,50) 233.73 224.82 213.04 203.89

(20,70) 345.56 340.41 328.49 319.79

(20,100) 462.51 453.26 439.71 431.39

The benefit of adaptability

To illustrate the concept of benefit of adaptability in the framework of multipolar ro-

bust approach, we compute the multipolar robust values of problem (5.26) with different

proportions of adjustable variables v. We allow the first bθmc components of v to be

adaptable to the realization of ξ, while keeping the remaining m − bθmc variables in-

dependent of the realization of ξ, where θ ∈ [0, 1]. Note that when θ = 0, we get the

static case SRC. The results are summarized in Table 5.9 and we emphasize here two

observations:

1. For each problem instance, as the adaptability ratio θ increases, the robust value

decreases significantly, which is reasonable both in theory and practice.

2. As the adaptability ratio θ increases, the influence of pole-sets on the robust value

increases. For example, when the adaptability ratio θ = 0.25, the multipolar robust

values of all problem instances remain the same with different pole-sets except in-

stance (20,20). When the adaptability increases, the robust values of more instances

improve as the better pole-sets are used, which can be clearly seen when θ = 0.75

and θ = 1.

5.8 Conclusion

In this chapter, we have presented a novel approach to handle uncertainty in optimiza-

tion problems called the multipolar robust approach, which is based on a set of poles
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Table 5.9: The benefit of adaptability (hypercube)

(m,n), Ω1 θ = 0.25 θ = 0.5 θ = 0.75 θ = 1

(10,9) 23.42 19.88 16.56 12.18

(10,15) 32.64 24.83 21.83 16.91

(10,20) 46.13 37.06 32.78 24.82

(10,30) 59.72 47.14 41.59 31.70

(20,9) 45.01 36.57 28.99 23.82

(20,15) 73.99 58.66 46.80 39.36

(20,20) 85.18 73.46 59.54 47.17

(20,30) 137.78 118.51 99.94 77.82

(m,n), Ω2 θ = 0.25 θ = 0.5 θ = 0.75 θ = 1

(10,9) 23.42 19.88 15.91 10.55

(10,15) 32.64 24.55 21.21 15.98

(10,20) 46.13 36.86 32.46 24.35

(10,30) 59.72 46.95 41.32 31.14

(20,9) 45.01 36.52 27.24 22.08

(20,15) 73.99 58.16 45.06 36.20

(20,20) 84.98 72.98 58.77 45.66

(20,30) 137.78 117.96 99.13 76.83

(m,n), Ω3 θ = 0.25 θ = 0.5 θ = 0.75 θ = 1

(10,9) 23.42 19.88 15.88 10.16

(10,15) 32.64 24.54 20.96 15.29

(10,20) 46.13 36.60 31.81 23.33

(10,30) 59.72 46.70 40.74 30.22

(20,9) 45.01 36.52 27.06 22.06

(20,15) 73.99 58.14 44.89 34.87

(20,20) 84.78 72.42 57.23 40.80

(20,30) 137.78 116.78 96.99 73.77

that are used to approximate the fully adjustable policy by a set of associated recourse

decisions at poles. The approach generalizes the static approach, the affinely adjustable

approach, and the fully adjustable approach, still we can control its complexity by using

the concept of the shadow matrix and considering a reasonable number of poles. Sev-

eral algorithms are proposed for the construction of proper pole-sets for hypercubes and

balls. Comprehensive numerical experiments are carried out to evaluate the performance
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of the proposed approach in terms of the robust values, the complexity, and the benefit

of adaptability. In general, the results appear encouraging.

It would be interesting to investigate further the performance of the multipolar robust

approach on other problems. A systematic study of good approximations of convex bodies

by enclosing polytopes with a limited number of extreme points should help to alleviate

overconservatism and get closer to the optimal fully adaptable robust value. One can also

put more focus on the approximation of convex bodies from inside using, for example,

maximum volume inscribed polytopes to get better lower bounds of the fully adjustable

robust value.

While the approach was proposed in the context of a two-stage optimization problem,

it can be adapted to multistage optimization. Multipolar decision rules can also be

considered in stochastic programming. The multipolar approach might also be combined

with finite adaptability or multi-static robustness by partitioning the uncertainty set into

several subsets and considering some multipolar decision rules for each subset.

Appendix: the derivation of (5.9)

We derive the compact formulation (5.9) of Section 5.4.1 w.r.t. an ellipsoidal uncertainty

set defined by Ξ := {ξ : ‖Fξ‖2 ≤ 1}.
For each ith constraint, MRC requires the optimum of the following problem non-

positive.

max
ξ,s,λ≥0

Uiu− bi +
∑
ω∈Ω

λξωVivω

s.t. ‖s‖2 ≤ 1,

Fξ = s, ηi ∈ Rnq∑
ω∈Ω

λξωω = Pξ, σi ∈ Rn0

∑
ω∈Ω

λξω = 1, τi ∈ R

where ξ ≡ [U,b] and ηi,σi, τi are dual multipliers corresponding to each group of con-

straints. Consider the corresponding Lagrangian

L (λ, ξ, s,ηi, τi,σi) = Uiu− bi +
∑
ω∈Ω

λξωVivω + ηTi (s− Fξ)

+ σTi

(∑
ω∈Ω

λξωω −Pξ

)
+ τi

(∑
ω∈Ω

λξω − 1

)
.

The dual function is then max
λ,ξ,‖s‖2≤1

L (λ, ξ,ηi, τi,σi). Setting the derivative w.r.t. λ, ξ

leads to the dual constrains

Vivω + τi − ωTσi ≤ 0,

FT ηi − Li = 0,
(5.31)
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where P = [P1, . . . ,Pk, . . . ,Pm] ,Li =
(
Li1, . . . ,Lim

)
,Lij = δij

(
u,−1

)
+ PT

j σi, j =

1, . . . ,m. The dual objective is

min
ηi,τi,σi

‖ηi‖2 − τi. (5.32)

By duality, the optimum of the above dual problem is equal to the optimum of the

problem. Thus restricting the non-positivity of the primal optimum can be equivalently

represented as

‖ηi‖2 + Vivω − ωTσi ≤ 0,

FT ηi − Li = 0,

ηi ∈ Rnq ,σi ∈ Rn0 .

(5.33)



Chapter 6

Conclusions

To conclude this thesis, we briefly summarize our main contributions, and outline some

directions of future research.

6.1 Evaluation

This thesis is motivated by a mapping problem where a set of virtual machines need to be

assigned to servers with multiple 0-1 quadratic constraints. Two main challenges exist.

First, to the best of our knowledge, efficient exact solution procedures or approximation

schemes with performance guarantees of bounds do not appear in the literature. Second,

the demands of computing resources and networking resources are highly uncertain. Few

investigations have been conducted to incorporate uncertainty properly in the context of

robust optimization. It is well-known that both problems are difficult. Thus this thesis

aims at proposing and applying novel relaxation techniques to handle MIQCPs and robust

programs.

In Chapter 3, an exact model dealing with static mapping procedure is provided. Re-

laxations involving certain standard techniques such as RLT inequalities are proposed.

To further strengthen the formulation, two types of strong cuts are proposed by ex-

ploiting the problem structure, which numerically prove quite effective. Then, we have

tried a number of decompositions based on Lagrangian relaxations with a hope that the

Lagrangian dual bound is much stronger (compared with the bound provided by the

continuous relaxation of a strong formulation) while the solution procedure is efficient.

A request based decomposition scheme is then discussed in Section 3.4. We also pro-

vided a geometric result on the strength of the decomposition scheme, which implies a

novel hierarchy of relaxations by grouping the set of requests. Our numerical results

show that the proposed hierarchy can handle relatively larger problem instances much

more efficiently than the standard branch-and-bound routines of CPLEX12.6.3. Finally,

we proposed a reformulation exploiting symmetries of virtual requests, which scales the

proposed algorithms greatly.

Chapter 4 discusses a couple of relaxation approaches for bilinear optimization prob-

lems over a hypercube from the perspective of convex and concave envelopes. A connec-

tion between quadratic convexification techniques and Shor’s relaxation strengthened by

93



94 Conclusions

RLT inequalities was established. We showed that two seemingly different formulations

are in fact same, which generalizes a related result from Burer and Letchford [50]. Then

we proposed a novel relaxation approach by considering a predefined tool to approximate

the convex and concave envelope of f over a hypercube. This approach leads to a linear

reformulation and we also established its connections with various inequalities and the

RLT method proposed in [2].

To address the issues of uncertainty, we proposed a new tractable robust paradigm

called multipolar robust optimization in Chapter 5. It provides a new way to model

the recourse action for a fairly general linear program with uncertain parameters. It

generalizes notions of static robustness, affinely adjustable robustness, fully adjustable

robustness and fills the gaps in-between. The result of [34] stating that affine rules are

optimal when the uncertainty set is simplex in the special case of right-hand-side uncer-

tainty is generalized as a consequence of the multipolar approach. Moreover, we show

that the multipolar robust counterpart is tractable by either a cut generation procedure

or a compact formulation. Further, we prove that the multipolar approach can generate

a sequence of upper bounds and a sequence of lower bounds at the same time and both

sequences converge to the robust value of fully adjustable robust counterpart under some

mild assumptions. The multipolar approach is based on some tools related to the uncer-

tainty set, that we call as pole-sets. For their construction, we start with a simplex and

then compute the best homothetic transformation of this simplex to allow it to enclose

a given convex set. An efficient algorithm is proposed to compute such homothetic set.

Several numerical experiments are carried out showing the advantages of the proposed

robustness framework.

6.2 Perspectives

As future research directions, it would be interesting to investigate the following topics,

which have been left due to the lack of time.

Regarding the mapping problem discussed in Chapter 3, we have the following per-

spectives. First, we may integrate the proposed decomposition hierarchy into the branch-

and-bound procedure of CPLEX with a hope of accelerating the solution procedure fur-

ther. We might also consider combining the symmetry-induced model and decomposition

hierarchy together to deal with much larger problem instances. Second, it might be

worthwhile developing a spatial branch-and-bound scheme to solve the extended map-

ping model discussed in Section 3.6. We can also consider certain convex and concave

envelops over some polytopes associated with assignment constraints and location con-

straints. Third, a future project could be applying the multipolar robust optimization

paradigm to the mapping problem with uncertain parameters associated with virtual

requests.

In Chapter 4, we have proposed a perspective on approximating the convex and

concave envelopes using the idea of pole-set, which covers an n-dimensional hypercube

with much less extreme points. A valuable direction might be to combine the idea of pole-

set and certain valid inequalities for QPB polytope to derive strong estimators for general
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quadratic forms rather than bilinear forms. And, it might be interesting to integrate

ideas of cover-based estimators and pole-set based estimators in order to find the most

expressive linear formulation to approximate the estimators of bilinear functions.

To extend the work of multipolar robust optimization, we may investigate the ap-

proximation of convex bodies from inside using, for example, maximum volume inscribed

polytopes, to get better lower bounds of the fully adjustable robust value. We can also

extend our work to model recourse actions that are binary or general integer variables.

All these topics will be pursued in future research.
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[121] Meier, J. F., Clausen, U., Rostami, B., and Buchheim, C. (2016). A compact lin-

earisation of euclidean single allocation hub location problems. Electronic Notes in

Discrete Mathematics, 52:37 – 44. INOC 2015 – 7th International Network Optimiza-

tion Conference.

[122] Meng, X., Pappas, V., and Zhang, L. (2010). Improving the scalability of data

center networks with traffic-aware virtual machine placement. In INFOCOM, 2010

Proceedings IEEE, pages 1–9. IEEE.

[123] Meyer, C. A. and Floudas, C. A. (2005). Convex envelopes for edge-concave func-

tions. Mathematical Programming, 103(2):207–224.

[124] Minoux, M. (2010). Robust network optimization under polyhedral demand uncer-

tainty is np-hard. Discrete Applied Mathematics, 158(5):597–603.

[125] Misener, R., Thompson, J. P., and Floudas, C. A. (2011). Apogee: Global optimiza-

tion of standard, generalized, and extended pooling problems via linear and logarithmic

partitioning schemes. Computers & Chemical Engineering, 35(5):876–892.

[126] Murat Afsar, H., Artigues, C., Bourreau, E., and Kedad-Sidhoum, S. (2016). Ma-

chine reassignment problem: the roadef/euro challenge 2012. Annals of Operations

Research, 242(1):1–17.

[127] Murty, K. G. and Kabadi, S. N. (1987). Some np-complete problems in quadratic

and nonlinear programming. Mathematical programming, 39(2):117–129.

[128] Nevskii, M. (2011). Properties of axial diameters of a simplex. Discrete & Compu-

tational Geometry, 46(2):301–312.
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