R. Au-surface-after, .. Au-profile, and .. , 118 5.19 Microscope pictures of the science chip Chip assembly with cell, of micro lens array, p.124

A. Mask-layout-for-nickel-clamps, .. Sm, and M. , 129 A.2 Shot sequence for 131 A.3 Bending loss of large mode area 131 A.4 Spectrum of high finesse cavity 132 A.5 Resonator gluing setup, 135 A.8 Macroscopic U with chip assembly . . . . . . . . . . . . . . . . . . . . . 137 A.9 Coil cage for simulation, p.138

J. P. Dowling and G. J. Milburn, Quantum technology: the second quantum revolution, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.361, issue.1809, pp.1655-1674, 2003.
DOI : 10.1098/rsta.2003.1227

URL : http://arxiv.org/abs/quant-ph/0206091

E. Commission, The European Cloud Initiative URL: https://ec.europa.eu/digital-single-market/en/news/european- commission-will-launch-eu1-billion-quantum-technologies-flagship, 2016.

E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and Molecules, Physical Review, vol.28, issue.6, p.1049, 1926.
DOI : 10.1103/PhysRev.28.1049

E. Schrödinger, Die gegenw???rtige Situation in der Quantenmechanik, Die Naturwissenschaften, vol.23, issue.48, pp.807-812, 1935.
DOI : 10.1007/BF01491891

W. H. Zurek, Decoherence and the Transition from Quantum to Classical ??? Revisited, Quantum Decoherence, pp.1-31, 2006.
DOI : 10.1007/978-3-7643-7808-0_1

S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, and J. Tüxen, Matter???wave interference of particles selected from a molecular library with masses exceeding 10???000 amu, Physical Chemistry Chemical Physics, vol.17, issue.35, pp.14696-14700, 2013.
DOI : 10.1039/c3cp51500a

T. Kovachy, P. Asenbaum, C. Overstreet, C. Donnelly, S. Dickerson et al., Quantum superposition at the half-metre scale, Nature, vol.489, issue.7583, pp.530-533, 2015.
DOI : 10.1038/nature16155

E. Schrödinger, Discussion of Probability Relations between Separated Systems, Mathematical Proceedings of the Cambridge Philosophical Society, vol.31, issue.04, pp.555-563, 1935.
DOI : 10.1017/S0305004100013554

A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Physical Review, vol.47, issue.10, p.777, 1935.
DOI : 10.1103/PhysRev.47.777

J. S. Bell, P. Aspect, G. Grangier, and . Roger, On the Einstein Podolsky Rosen paradox Experimental tests of realistic local theories via Bell's theorem, Phys. Rev. Lett, vol.47, pp.460-463, 1964.

B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature, vol.484, issue.7575, pp.682-686, 2015.
DOI : 10.1038/nature15759

URL : http://hdl.handle.net/2117/79298

J. S. Bell, Bertlmann's socks and the nature of reality, Le Journal de Physique Colloques, vol.42, pp.2-41, 1981.

C. H. Bennett and D. P. Divincenzo, Quantum Information and Computation, Physics Today, vol.48, issue.10, pp.247-255, 2000.
DOI : 10.1063/1.881452

C. H. Bennett and G. Brassard, Quantum Cryptography, Scientific American, vol.267, issue.4, pp.7-11, 2014.
DOI : 10.1038/scientificamerican1092-50

W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature, vol.15, issue.5886, pp.802-803, 1982.
DOI : 10.1038/299802a0

S. Lloyd, Universal Quantum Simulators, Science, vol.273, issue.5278, 1996.
DOI : 10.1126/science.273.5278.1073

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.654.7909

L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing , STOC '96, pp.212-219, 1996.
DOI : 10.1145/237814.237866

P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Review, vol.41, issue.2, pp.303-332, 1999.
DOI : 10.1137/S0036144598347011

I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Reviews of Modern Physics, vol.86, issue.1, pp.153-185, 2014.
DOI : 10.1103/RevModPhys.86.153

R. P. Feynman, Quantum mechanical computers, Foundations of Physics, vol.6, issue.6, pp.507-531, 1986.
DOI : 10.1007/BF01886518

M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes et al., Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices, Physical Review Letters, vol.111, issue.18, p.185301, 2013.
DOI : 10.1103/PhysRevLett.111.185301

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida et al., Towards quantum chemistry on a quantum computer, Nature Chemistry, vol.3, issue.2, pp.106-111, 2010.
DOI : 10.1364/OL.33.002281

N. C. Menicucci, S. J. Olson, and G. J. Milburn, Simulating quantum effects of cosmological expansion using a static ion trap URL: http Resolution 1 of the 13th CGPM, New Journal of Physics, vol.126813, issue.1, p.95019, 1967.

H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno et al., Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor URL: http: //science.sciencemag.org/content, Science Muquans, vol.3393396119557, pp.557-560, 2013.

V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-Enhanced Measurements: Beating the Standard Quantum Limit, Science, vol.306, issue.5700, p.1330, 2004.
DOI : 10.1126/science.1104149

URL : http://arxiv.org/abs/quant-ph/0412078

G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann et al., Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard, Physical Review Letters, vol.82, issue.23, pp.4619-4622, 1999.
DOI : 10.1103/PhysRevLett.82.4619

S. Weyers, B. Lipphardt, and H. Schnatz, Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser, Physical Review A, vol.79, issue.3, p.31803, 2009.
DOI : 10.1103/PhysRevA.79.031803

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Optimal frequency measurements with maximally correlated states, Physical Review A, vol.54, issue.6, pp.4649-4652, 1996.
DOI : 10.1103/PhysRevA.54.R4649

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.1363

M. Zwierz, C. A. Pérez-delgado, and P. Kok, General Optimality of the Heisenberg Limit for Quantum Metrology, Physical Review Letters, vol.105, issue.18, p.180402, 2010.
DOI : 10.1103/PhysRevLett.105.180402

J. Aasi, J. Abadie, B. Abbott, R. Abbott, T. Abbott et al., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Photonics, vol.11, issue.8, pp.613-619, 2013.
DOI : 10.1038/nphoton.2013.177

A. Kuzmich, L. Mandel, and N. P. Bigelow, Generation of Spin Squeezing via Continuous Quantum Nondemolition Measurement, Physical Review Letters, vol.85, issue.8, pp.1594-1597, 2000.
DOI : 10.1103/PhysRevLett.85.1594

V. Meyer, M. Rowe, D. Kielpinski, C. Sackett, W. Itano et al., Experimental Demonstration of Entanglement-Enhanced Rotation Angle Estimation Using Trapped Ions, Physical Review Letters, vol.86, issue.26, p.5870, 2001.
DOI : 10.1103/PhysRevLett.86.5870

J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, Squeezing and entanglement in a Bose???Einstein condensate, Nature, vol.96, issue.7217, pp.1216-1219, 2008.
DOI : 10.1038/nature07332

J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjaergaard et al., Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit, Proceedings of the National Academy of Sciences, vol.106, issue.27, pp.10960-10965, 2009.
DOI : 10.1073/pnas.0901550106

T. Takano, M. Fuyama, R. Namiki, and Y. Takahashi, Spin Squeezing of a Cold Atomic Ensemble with the Nuclear Spin of One-Half, Physical Review Letters, vol.102, issue.3, p.33601, 2009.
DOI : 10.1103/PhysRevLett.102.033601

C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler, Nonlinear atom interferometer surpasses classical precision limit, Nature, vol.32, issue.7292, pp.1165-1169, 2010.
DOI : 10.1038/nature08919

URL : http://arxiv.org/abs/1009.2374

M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell, Sub-Projection-Noise Sensitivity in Broadband Atomic Magnetometry, Physical Review Letters, vol.104, issue.9, p.93602, 2010.
DOI : 10.1103/PhysRevLett.104.093602

I. D. Leroux, M. H. Schleier-smith, and V. Vuleti?, Implementation of Cavity Squeezing of a Collective Atomic Spin, Physical Review Letters, vol.104, issue.7, pp.73602-73626, 2010.
DOI : 10.1103/PhysRevLett.104.073602

M. H. Schleier-smith, I. D. Leroux, and V. Vuleti?, States of an Ensemble of Two-Level Atoms with Reduced Quantum Uncertainty, Physical Review Letters, vol.104, issue.7, pp.73604-73631, 2010.
DOI : 10.1103/PhysRevLett.104.073604

M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra et al., Atom-chip-based generation of entanglement for quantum metrology, Nature, vol.65, issue.7292, pp.1170-1173, 2010.
DOI : 10.1038/nature08988

I. D. Leroux, M. H. Schleier-smith, and V. Vuleti?, Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock, Physical Review Letters, vol.104, issue.25, pp.250801-140, 2010.
DOI : 10.1103/PhysRevLett.104.250801

J. G. Bohnet, K. C. Cox, M. A. Norcia, J. M. Weiner, Z. Chen et al., Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit, Nature Photonics, vol.112, issue.9, pp.731-736, 2014.
DOI : 10.1038/nphoton.2014.151

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, Measurement noise 100 times lower than the quantum-projection limit using entangled atoms, Nature, vol.111, issue.7587, pp.505-508, 2016.
DOI : 10.1038/nature16176

P. Gill, Optical frequency standards URL: http: //stacks, p.125, 2005.
DOI : 10.1088/0026-1394/42/3/s13

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Reviews of Modern Physics, vol.87, issue.2, p.637, 2015.
DOI : 10.1103/RevModPhys.87.637

URL : https://hal.archives-ouvertes.fr/hal-01329728

P. Gill, Is the time right for a redefinition of the second by optical atomic clocks?, Journal of Physics: Conference Series, vol.723, p.12053, 2016.
DOI : 10.1088/1742-6596/723/1/012053

J. C. Hafele and R. E. Keating, Around-the-World Atomic Clocks: Predicted Relativistic Time Gains, Science, vol.177, issue.4044, 1972.
DOI : 10.1126/science.177.4044.166

G. Tino, L. Cacciapuoti, K. Bongs, C. J. Bordé, P. Bouyer et al., Atom interferometers and optical atomic clocks: New quantum sensors for fundamental physics experiments in space, Nuclear Physics B - Proceedings Supplements, vol.166, pp.159-165, 2007.
DOI : 10.1016/j.nuclphysbps.2006.12.061

L. Cacciapuoti and C. Salomon, Space clocks and fundamental tests: The ACES experiment, The European Physical Journal Special Topics, vol.172, issue.1, pp.57-68, 2009.
DOI : 10.1140/epjst/e2009-01041-7

F. Esnault, N. Rossetto, D. Holleville, J. Delporte, N. Dimarcq et al., Horace: A compact cold atom clock for Galileo Advances in Space Research Metrological characterization of the pulsed Rb clock with optical detection, pp.854-858, 2011.

F. Tricot, P. Yun, B. Francois, S. Mejri, J. Danet et al., Progress on a pulsed CPT clock: Reduction of the main noise source contributions, 2016 European Frequency and Time Forum (EFTF), pp.1-3, 2016.
DOI : 10.1109/EFTF.2016.7477813

B. L. Swenson, B. Tucker, and R. Wang, Mercury ion clock for a NASA technology demonstration mission, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.63, pp.1034-1043, 2016.

R. Szmuk, V. Dugrain, W. Maineult, J. Reichel, and P. Rosenbusch, Stability of a trapped-atom clock on a chip, Physical Review A, vol.92, issue.1, pp.12106-93, 2015.
DOI : 10.1103/PhysRevA.92.012106

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. , Coherence in Microchip Traps, Physical Review Letters, vol.92, issue.20, p.203005, 2004.
DOI : 10.1103/PhysRevLett.92.203005

URL : http://arxiv.org/abs/quant-ph/0311197

J. Reichel and V. Vuletic, Atom Chips, p.94, 2011.
DOI : 10.1038/scientificamerican0205-46

C. Deutsch, F. Ramirez-martinez, C. Lacroûte, F. Reinhard, T. Schneider et al., Spin Self-Rephasing and Very Long Coherence Times in a Trapped Atomic Ensemble, Physical Review Letters, vol.105, issue.2, pp.20401-121, 2010.
DOI : 10.1103/PhysRevLett.105.020401

URL : https://hal.archives-ouvertes.fr/hal-00474488

W. Maineult, C. Deutsch, K. Gibble, J. Reichel, and P. Rosenbusch, Spin Waves and Collisional Frequency Shifts of a Trapped-Atom Clock, Physical Review Letters, vol.109, issue.2, p.20407, 2012.
DOI : 10.1103/PhysRevLett.109.020407

C. Lacroûte, F. Reinhard, F. Ramirez-martinez, C. Deutsch, T. Schneider et al., Preliminary results of the trapped atom clock on a chip, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.57, issue.1, pp.106-110, 2010.
DOI : 10.1109/TUFFc.2010.1385

F. Ramírez-martínez, C. Lacroûte, P. Rosenbusch, F. Reinhard, C. Deutsch et al., Compact frequency standard using atoms trapped on a chip, Advances in Space Research, vol.47, issue.2, pp.247-252, 2011.
DOI : 10.1016/j.asr.2010.04.014

J. Lodewyck, P. Westergaard, and P. Lemonde, Nondestructive measurement of the transition probability in a Sr optical lattice clock, Physical Review A, vol.79, issue.6, p.61401, 2009.
DOI : 10.1103/PhysRevA.79.061401

N. Shiga and M. Takeuchi, Locking the local oscillator phase to the atomic phase via weak measurement, New Journal of Physics, vol.14, issue.2, p.23034, 2012.
DOI : 10.1088/1367-2630/14/2/023034

T. Vanderbruggen, R. Kohlhaas, A. Bertoldi, S. Bernon, A. Aspect et al., Feedback Control of Trapped Coherent Atomic Ensembles, Physical Review Letters, vol.110, issue.21, p.210503, 2013.
DOI : 10.1103/PhysRevLett.110.210503

URL : https://hal.archives-ouvertes.fr/hal-00995374

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger et al., Strong atom???field coupling for Bose???Einstein condensates in an optical cavity on a chip, Nature, vol.74, issue.7167, pp.272-276, 2007.
DOI : 10.1038/nature06331

URL : https://hal.archives-ouvertes.fr/hal-00264333

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, Entangled States of More Than 40 Atoms in an Optical Fiber Cavity, Science, vol.344, issue.6180, pp.180-140, 2014.
DOI : 10.1126/science.1248905

G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. , Deterministic generation of multiparticle entanglement by quantum Zeno dynamics, Science, vol.349, issue.6254, pp.1317-1321, 2015.
DOI : 10.1126/science.aaa0754

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero et al., Cavity-enhanced optical detection of carbon nanotube Brownian motion, Applied Physics Letters, vol.102, issue.15, p.151910, 2013.
DOI : 10.1063/1.4802746

M. Mader, J. Reichel, T. W. Hansch, and D. Hunger, A scanning cavity microscope, Nature Communications, vol.30, 2015.
DOI : 10.1038/ncomms8249

URL : http://doi.org/10.1038/ncomms8249

H. M. Meyer, R. Stockill, M. Steiner, C. L. Gall, C. Matthiesen et al., Direct Photonic Coupling of a Semiconductor Quantum Dot and a Trapped Ion, Physical Review Letters, vol.114, issue.12, pp.123001-123034, 2015.
DOI : 10.1103/PhysRevLett.114.123001

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. , Measurement of the internal state of a single atom without energy exchange, Nature, vol.78, issue.7355, pp.210-213, 2011.
DOI : 10.1038/nature10225

K. Ott, S. Garcia, R. Kohlhaas, K. Schüppert, P. Rosenbusch et al., Millimeter-long fiber Fabry-Perot cavities, Optics Express, vol.24, issue.9, pp.9839-9853, 2016.
DOI : 10.1364/OE.24.009839

URL : https://hal.archives-ouvertes.fr/hal-01323860

H. J. Kimble, The quantum internet, Nature, vol.137, issue.7198, pp.1023-142, 2008.
DOI : 10.1038/nature07127

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner et al., An elementary quantum network of single atoms in optical cavities, Nature, vol.95, issue.7393, p.142, 2012.
DOI : 10.1038/nature11023

L. Bernier and P. Rochat, Active hydrogen maser atomic frequency standard, pp.206-139, 1998.

M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem et al., New Limits on the Drift of Fundamental Constants from Laboratory Measurements, Physical Review Letters, vol.92, issue.23, p.230802, 2004.
DOI : 10.1103/PhysRevLett.92.230802

T. Rosenband, D. Hume, P. Schmidt, C. Chou, A. Brusch et al., Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place, Science, vol.319, issue.5871, pp.1808-1812, 2008.
DOI : 10.1126/science.1154622

F. Bloch, Nuclear Induction, Physical Review, vol.70, issue.7-8, pp.460-474, 1946.
DOI : 10.1103/PhysRev.70.460

J. Vanier and C. Audoin, The quantum physics of atomic frequency standards, 1989.
DOI : 10.1201/b18738

C. Deutsch, Trapped atom clock on a chip Identical spin rotation effects in an ultracold trapped atomic clock, pp.96-102, 2011.

M. G. Moore, D. J. Raizen, and . Wineland, Quantum projection noise: Population fluctuations in two-level systems, Physical Review A, vol.47, p.3554, 1993.

F. Reinhard, Design and construction of an atomic clock on an atom chip, pp.16-93, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00414386

C. Lacroûte, Développement d'une horloge atomique sur puce à atomes : optimisation de la durée de cohérence et caractérisation préliminaire, p.139, 2010.

L. Yi, S. Mejri, J. J. Mcferran, Y. L. Coq, and S. Bize, Clock Transition, Physical Review Letters, vol.106, issue.7, p.73005, 2011.
DOI : 10.1103/PhysRevLett.106.073005

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, Observation of Anomalous Spin-State Segregation in a Trapped Ultracold Vapor, Physical Review Letters, vol.88, issue.7, p.70403, 2002.
DOI : 10.1103/PhysRevLett.88.070403

D. Harber, H. Lewandowski, J. Mcguirk, and E. Cornell, Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas, Physical Review A, vol.66, issue.5, p.53616, 2002.
DOI : 10.1103/PhysRevA.66.053616

V. Dugrain, Metrology with trapped atoms on a chip using non-degenerate and degenerate quantum gases, 2012.

P. Rosenbusch, Magnetically trapped atoms for compact atomic clocks, Applied Physics B, vol.88, issue.2, pp.227-235, 2009.
DOI : 10.1007/s00340-009-3451-x

X. Du, L. Luo, B. Clancy, and J. E. Thomas, Observation of Anomalous Spin Segregation in a Trapped Fermi Gas, Physical Review Letters, vol.101, issue.15, p.150401, 2008.
DOI : 10.1103/PhysRevLett.101.150401

Y. Sortais, S. Bize, C. Nicolas, G. Santarelli, G. S. Salomon et al., /sup 87/Rb versus /sup 133/Cs in cold atom fountains: a comparison, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.47, issue.5, pp.1093-1097, 2000.
DOI : 10.1109/58.869036

D. A. Steck, Rubidium 87 D Line Data Version 2.1 URL: http: //steck, p.90, 2010.

. Hänsel, Magnetische Mikrofallen für Rubidiumatome, pp.12-95, 2000.

W. H. Wing, On neutral particle trapping in quasistatic electromagnetic fields, Progress in Quantum Electronics, vol.8, issue.3-4, pp.181-199, 1984.
DOI : 10.1016/0079-6727(84)90012-0

W. Ketterle, D. Durfee, and D. Stamper-kurn, Making, probing and understanding Bose-Einstein condensates Bose-Einstein condensation in atomic gases, of Proceedings of the international school of physics of Proceedings of the international school of physics Enrico Fermi, pp.67-176, 1999.

Y. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, Bose-Einstein condensates in a combined magnetic and optical potential, Physical Review A, vol.79, issue.6, p.63631, 2009.
DOI : 10.1103/PhysRevA.79.063631

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Stable, Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms, Physical Review Letters, vol.74, issue.17, pp.3352-3355, 1995.
DOI : 10.1103/PhysRevLett.74.3352

M. Keil, O. Amit, S. Zhou, D. Groswasser, Y. Japha et al., Fifteen years of cold matter on the atom chip: promise, realizations, and prospects, Journal of Modern Optics, vol.4, issue.18, pp.1-46, 2016.
DOI : 10.1038/nphoton.2014.53

A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf, First Observation of Magnetically Trapped Neutral Atoms, Physical Review Letters, vol.54, issue.24, pp.2596-2599, 1985.
DOI : 10.1103/PhysRevLett.54.2596

J. Reichel, W. Hänsel, P. Hommelhoff, and T. W. Hänsch, Applications of integrated magnetic microtraps, Applied Physics B, vol.72, issue.1, pp.81-89, 2001.
DOI : 10.1007/s003400000460

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini et al., Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States, Science, vol.304, issue.5676, pp.1476-1478, 2004.
DOI : 10.1126/science.1097576

F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Atomic Coherent States in Quantum Optics, Physical Review A, vol.6, issue.6, pp.2211-2237, 1972.
DOI : 10.1103/PhysRevA.6.2211

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Spin squeezing and reduced quantum noise in spectroscopy, Physical Review A, vol.46, issue.11, pp.6797-6800, 1992.
DOI : 10.1103/PhysRevA.46.R6797

A. Sorensen, L. Duan, J. I. Cirac, and P. Zoller, Many-particle entanglement with Bose?Einstein condensates, pp.63-66, 2001.

E. Brion, L. H. Pedersen, and K. Molmer, Adiabatic elimination in a lambda system, Journal of Physics A: Mathematical and Theoretical, vol.40, issue.5, p.1033, 2007.
DOI : 10.1088/1751-8113/40/5/011

E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE 51, pp.89-109, 1963.
DOI : 10.1109/PROC.1963.1664

D. Braak, Integrability of the Rabi Model, Physical Review Letters, vol.107, issue.10, p.100401, 2011.
DOI : 10.1103/PhysRevLett.107.100401

M. H. Schleier-smith and ]. H. Kimble, Cavity-enabled spin squeezing for a quantum-enhanced atomic clock Strong interactions of single atoms and photons in cavity QED, Physica Scripta, vol.21120, issue.127, 1998.

H. Uys, M. Biercuk, A. Vandevender, C. Ospelkaus, D. Meiser et al., Decoherence due to Elastic Rayleigh Scattering, Physical review letters 105, p.23, 2010.
DOI : 10.1103/PhysRevLett.105.200401

URL : http://arxiv.org/abs/1007.2661

R. Ozeri, C. Langer, J. Jost, B. Demarco, A. Ben-kish et al., Hyperfine Coherence in the Presence of Spontaneous Photon Scattering, Physical review letters 95, pp.30403-30426, 2005.
DOI : 10.1103/PhysRevLett.95.030403

M. H. Schleier-smith, I. D. Leroux, and V. Vuleti?, Squeezing the collective spin of a dilute atomic ensemble by cavity feedback, Physical Review A, vol.81, issue.2, pp.21804-21829, 2010.
DOI : 10.1103/PhysRevA.81.021804

K. Pawlowski, J. Érôme-est-'eve, J. Reichel, and A. Sinatra, Limits of atomic entanglement by cavity feedback: From weak to strong coupling, EPL (Europhysics Letters), vol.113, issue.3, p.24, 2016.
DOI : 10.1209/0295-5075/113/34005

URL : https://hal.archives-ouvertes.fr/hal-01180415

C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans, and M. S. Chapman, Spin-nematic squeezed vacuum in a quantum gas, Nature Physics, vol.8, issue.4, pp.305-308, 2012.
DOI : 10.1038/nature10654

R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood et al., Magnetic Sensitivity Beyond the Projection Noise Limit by Spin Squeezing, Physical Review Letters, vol.109, issue.25, p.253605, 2012.
DOI : 10.1103/PhysRevLett.109.253605

URL : http://arxiv.org/abs/1111.6969

R. Friedberg and J. Manassah, Dicke states and Bloch states, Laser Physics Letters, vol.4, issue.12, pp.900-924, 2007.
DOI : 10.1002/lapl.200710073

M. Kitagawa and M. Ueda, Squeezed spin states, Physical Review A, vol.47, issue.6, pp.5138-5143, 1993.
DOI : 10.1103/PhysRevA.47.5138

I. D. Leroux, Squeezing collective atomic spin with an optical resonator, Massachusetts Institute of Technology, vol.25, p.26, 2011.

M. Takeuchi, S. Ichihara, T. Takano, M. Kumakura, T. Yabuzaki et al., Spin Squeezing via One-Axis Twisting with Coherent Light, Physical Review Letters, vol.94, issue.2, p.23003, 2005.
DOI : 10.1103/PhysRevLett.94.023003

URL : http://arxiv.org/abs/quant-ph/0410132

Z. Chen, J. G. Bohnet, J. M. Weiner, K. C. Cox, and J. K. Thompson, Cavity-aided nondemolition measurements for atom counting and spin squeezing, Physical Review A, vol.89, issue.4, p.43837, 2014.
DOI : 10.1103/PhysRevA.89.043837

URL : http://arxiv.org/abs/1211.0723

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe et al., Cavity-Based Single Atom Preparation and High-Fidelity Hyperfine State Readout, Physical Review Letters, vol.104, issue.20, p.203602, 2010.
DOI : 10.1103/PhysRevLett.104.203602

URL : http://arxiv.org/abs/1002.4424

J. Reichel, W. Hänsel, and T. W. Hänsch, Atomic Micromanipulation with Magnetic Surface Traps, Physical Review Letters, vol.83, issue.17, pp.3398-3401, 1999.
DOI : 10.1103/PhysRevLett.83.3398

D. M. Harber, J. M. Mcguirk, J. M. Obrecht, and E. A. Cornell, Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces, Journal of Low Temperature Physics, vol.133, issue.3/4, pp.229-2381026084606385, 2003.
DOI : 10.1023/A:1026084606385

T. Steinmetz, Resonator-Quantenelektrodynamik auf einem Mikrofallenchip, pp.96-98, 2008.

J. D. Miller, R. A. Cline, and D. J. Heinzen, Far-off-resonance optical trapping of atoms, Physical Review A, vol.47, issue.6, pp.4567-4570, 1993.
DOI : 10.1103/PhysRevA.47.R4567

J. Brantut, J. Clément, M. R. De-saint, G. Vincent, R. A. Varoquaux et al., Light-shift tomography in an optical-dipole trap for neutral atoms, Physical Review A, vol.78, issue.3, pp.31401-31431, 2008.
DOI : 10.1103/PhysRevA.78.031401

URL : https://hal.archives-ouvertes.fr/hal-00303321

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger et al., control of single-molecule emission, Applied Physics Letters, vol.97, issue.2, pp.21107-21140, 2010.
DOI : 10.1063/1.3456559

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, Single Ion Coupled to an Optical Fiber Cavity, Physical Review Letters, vol.110, issue.4, p.43003, 2013.
DOI : 10.1103/PhysRevLett.110.043003

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity, Physical Review Letters, vol.110, issue.24, p.243602, 2013.
DOI : 10.1103/PhysRevLett.110.243602

M. Miguel-sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamo?lu et al., Cavity quantum electrodynamics with chargecontrolled quantum dots coupled to a fiber Fabry-Perot cavity, p.45002, 2013.

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard et al., Polariton Boxes in a Tunable Fiber Cavity, Physical Review Applied, vol.3, issue.1, pp.14008-14041, 2015.
DOI : 10.1103/PhysRevApplied.3.014008

N. E. Flowers-jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich et al., Fiber-cavity-based optomechanical device Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity, Phys. Rev. A, vol.101, issue.89, pp.221109-221142, 2012.

B. Brandstätter, A. Mcclung, K. Schüppert, B. Casabone, K. Friebe et al., Integrated fiber-mirror ion trap for strong ion-cavity coupling, Review of Scientific Instruments, vol.84, issue.12, pp.123104-62, 2013.
DOI : 10.1063/1.4838696

H. Takahashi, J. Morphew, F. Oru?evi?, A. Noguchi, E. Kassa et al., Novel laser machining of optical fibers for long cavities with low birefringence, Optics Express, vol.22, issue.25, pp.31317-31352, 2014.
DOI : 10.1364/OE.22.031317

A. Seco, H. Takahashi, and M. Keller, Novel ion trap design for strong ion-cavity coupling, p.124, 2016.

C. Miller and F. Janniello, Passively temperature-compensated fibre Fabry???Perot filter and its application in wavelength division multiple access computer network, Electronics Letters, vol.26, issue.25, pp.2122-2123, 1990.
DOI : 10.1049/el:19901365

R. Kitamura, L. Pilon, and M. Jonasz, Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature, Applied Optics, vol.46, issue.33, pp.8118-8133, 2007.
DOI : 10.1364/AO.46.008118

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, Localized CO_2 laser damage repair of fused silica optics, Applied Optics, vol.45, issue.21, pp.5358-5367, 2006.
DOI : 10.1364/AO.45.005358

F. Laguarta, N. Lupon, and J. Armengol, Optical glass polishing by controlled laser surface-heat treatment, Applied Optics, vol.33, issue.27, pp.6508-6513, 1994.
DOI : 10.1364/AO.33.006508

K. M. Nowak, H. J. Baker, and D. R. Hall, Efficient laser polishing of silica micro-optic components, Applied Optics, vol.45, issue.1, pp.162-171, 2006.
DOI : 10.1364/AO.45.000162

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. , Laser micro-fabrication of concave, low-roughness features in silica, AIP Advances, vol.2, issue.1, pp.12119-12158, 2012.
DOI : 10.1063/1.3679721

U. Paek and A. Weaver, Formation of a Spherical Lens at Optical Fiber Ends with a CO_2 Laser, Applied Optics, vol.14, issue.2, pp.294-298, 1975.
DOI : 10.1364/AO.14.000294

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature, vol.27, issue.6926, pp.925-928, 2003.
DOI : 10.1038/35097032

M. Salz, Optimierung einer segmentierten Paulfalle mit optischer Schnittstelle, p.47, 2013.

A. A. Trichet, P. R. Dolan, D. M. Coles, G. M. Hughes, and J. M. Smith, Topographic control of open-access microcavities at the nanometer scale, Optics Express, vol.23, issue.13, pp.17205-17216, 2015.
DOI : 10.1364/OE.23.017205

M. Shaheen, J. Gagnon, and B. Fryer, Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study, Laser Physics, vol.24, issue.10, p.106102, 2014.
DOI : 10.1088/1054-660X/24/10/106102

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell et al., Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity, Applied Physics Letters, vol.105, issue.7, pp.73113-73147, 2014.
DOI : 10.1063/1.4893612

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, Measurement of ultralow losses in an optical interferometer, Optics Letters, vol.17, issue.5, pp.363-365, 1992.
DOI : 10.1364/OL.17.000363

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, Frequency splitting of polarization eigenmodes in microscopic Fabry???Perot cavities, New Journal of Physics, vol.17, issue.1, p.91, 2015.
DOI : 10.1088/1367-2630/17/1/013053

J. Benedikter, T. Hämmer, M. Mader, B. Schlederer, J. Reichel et al., Transverse-mode coupling and diffraction loss in tunable Fabry???P??rot microcavities, New Journal of Physics, vol.17, issue.5, pp.53051-71, 2015.
DOI : 10.1088/1367-2630/17/5/053051

URL : http://doi.org/10.1088/1367-2630/17/5/053051

S. Garcia, Interfaces fibrées entre atomes uniques et photons uniques, pp.78-80, 2015.

J. Schmit and J. Creath, Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry, Applied Optics, vol.34, issue.19, pp.3610-3647, 1995.
DOI : 10.1364/AO.34.003610

M. Gad and . Hak, The MEMS handbook, p.41, 2001.

X. Dai, X. Zhao, G. Ding, H. Wang, and B. Cai, Packaging of optical fibers using microfabricated nickel clamps, Journal of Micro/Nanolithography, MEMS, and MOEMS, vol.7, issue.1, pp.10501-010501, 2008.
DOI : 10.1117/1.2896082

H. Klank, J. P. Kutter, and O. Geschke, CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems, Lab on a Chip, vol.2, issue.4, pp.242-246, 2002.
DOI : 10.1039/b206409j

J. N. Gonsalves, W. W. Duley, K. Boyd, S. Rees, N. Simakov et al., Cutting thin metal sheets with the cw CO2 laser URL: http:// scitation.aip.org/content, High precision 9.6 µm CO 2 laser endface processing of optical fibres, pp.4684-4687, 1972.

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, Single-mode optical fiber for high-power, low-loss UV transmission, Optics Express, vol.22, issue.16, pp.19783-19829, 2014.
DOI : 10.1364/OE.22.019783

K. M. Nowak, H. J. Baker, and D. R. Hall, Analytical model for CO_2 laser ablation of fused quartz, Applied Optics, vol.54, issue.29, pp.8653-8663, 2015.
DOI : 10.1364/AO.54.008653

T. Doualle, L. Gallais, P. Cormont, D. Hébert, P. Combis et al., Thermo-mechanical simulations of CO2 laser-fused silica interactions URL: http://scitation, Journal of Applied Physics, vol.1191194944435, issue.11101, pp.113106-113153, 1063.

L. Flatten, A. Trichet, and J. Smith, Spectral engineering of coupled open-access microcavities, Laser & Photonics Reviews, vol.89, issue.3, p.47, 2015.
DOI : 10.1002/lpor.201500138

F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, Manufacturing and measurement of freeform optics, CIRP Annals - Manufacturing Technology, vol.62, issue.2, pp.823-846, 2013.
DOI : 10.1016/j.cirp.2013.05.003

J. F. Dynes, S. J. Kindness, S. W. Tam, A. Plews, A. W. Sharpe et al., Quantum key distribution over multicore fiber, Optics Express, vol.24, issue.8, pp.8081-8087, 2016.
DOI : 10.1364/OE.24.008081

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber, Biomedical Optics Express, vol.4, issue.2, pp.260-62, 2013.
DOI : 10.1364/BOE.4.000260

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567713

P. Cormont, P. Combis, L. Gallais, C. Hecquet, L. Lamaignère et al., Removal of scratches on fused silica optics by using a CO_2 laser, Optics Express, vol.21, issue.23, pp.28272-28289, 2013.
DOI : 10.1364/OE.21.028272

URL : https://hal.archives-ouvertes.fr/hal-00937939

K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, and A. K. Ghosh, Laser-fabricated fiber optical taps for interconnects and optical data processing devices, Components for Fiber Optic Applications V, 1991.
DOI : 10.1117/12.24661

K. M. Nowak, H. J. Baker, and D. R. Hall, Pulsed-laser machining and polishing of silica micro-optical components using a co2 laser and an acousto-optic modulator, International Society for Optics and Photonics, pp.107-111, 2003.

G. A. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components, Applied Optics, vol.41, issue.27, p.5660, 2002.
DOI : 10.1364/AO.41.005660

J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, Correction of beam errors in high power laser diode bars and stacks, Optics Express, vol.14, issue.18, pp.8178-8183, 2006.
DOI : 10.1364/OE.14.008178

G. Vázquez, A. Harhira, R. Kashyap, and R. Bosisio, Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device, Optics Communications, vol.283, issue.14, pp.2824-2828, 2010.
DOI : 10.1016/j.optcom.2010.03.047

S. Heidrich, A. Richmann, and E. Willenborg, Development of a laser-based process chain for manufacturing free form optics, 2012.

C. Fabry and A. Pérot, Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d'air, Ann. Chim. Phys, vol.12, pp.459-501, 1897.

K. J. Vahala, Optical microcavities, Nature, vol.424, issue.6950, pp.839-846, 2003.
DOI : 10.1038/nature01939

H. Kogelnik and T. Li, Laser Beams and Resonators, Applied Optics, vol.5, issue.10, pp.1550-1567, 1966.
DOI : 10.1364/AO.5.001550

M. Pöllinger, D. O-'shea, F. Warken, and A. , Tunable Whispering-Gallery-Mode Microresonator, Physical Review Letters, vol.103, issue.5, p.53901, 2009.
DOI : 10.1103/PhysRevLett.103.053901

V. The and . Collaboration, The VIRGO large mirrors: a challenge for low loss coatings, Classical and Quantum Gravity, vol.21, p.935, 2004.

J. M. Bennett, Recent developments in surface roughness characterization, Measurement Science and Technology, vol.3, issue.12, 1992.
DOI : 10.1088/0957-0233/3/12/001

W. B. Joyce and B. C. Deloach, Alignment of Gaussian beams, Applied Optics, vol.23, issue.23, pp.4187-4196, 1984.
DOI : 10.1364/AO.23.004187

T. A. Birks, J. C. Knight, and P. S. Russell, Endlessly single-mode photonic crystal fiber, Optics Letters, vol.22, issue.13, pp.961-963, 1997.
DOI : 10.1364/OL.22.000961

A. Roy and M. D. Barrett, Fabrication of glass micro-cavities for cavity quantum electrodynamics experiments, Applied Physics Letters, vol.99, issue.17, pp.171112-69, 2011.
DOI : 10.1063/1.3658391

W. B. Joyce and B. Deloach, Alignment of Gaussian beams, Applied Optics, vol.23, issue.23, pp.4187-4196, 1984.
DOI : 10.1364/AO.23.004187

R. A. Boudreau and S. M. Boudreau, Passive micro-optical alignment methods, p.71, 2005.
DOI : 10.1201/9781420027723

D. Kleckner, W. T. Irvine, S. S. Oemrawsingh, and D. Bouwmeester, Diffraction-limited high-finesse optical cavities, Physical Review A, vol.81, issue.4, p.43814, 2010.
DOI : 10.1103/PhysRevA.81.043814

C. Lebouteiller, Dispositif pour le chargement rapide d'une cavité miniaturisée : vers un registre de qubits atomiques, p.87, 2016.

A. Franzen, URL: http://www.gwoptics.org/ComponentLibrary, p.79, 2009.

D. Mccarron, S. King, and S. Cornish, Modulation transfer spectroscopy in atomic rubidium, Measurement Science and Technology, vol.19, issue.10, pp.105601-78, 2008.
DOI : 10.1088/0957-0233/19/10/105601

C. Nshii, M. Vangeleyn, J. Cotter, P. Griffin, E. Hinds et al., A surface-patterned chip as a strong source of ultracold atoms for quantum technologies, Nature Nanotechnology, vol.83, issue.5, pp.321-324, 2013.
DOI : 10.1038/nnano.2013.47

J. R. Mowat, Stark Effect in Alkali-Metal Ground-State Hyperfine Structure, Physical Review A, vol.5, issue.3, pp.1059-1062, 1972.
DOI : 10.1103/PhysRevA.5.1059

H. Gould, E. Lipworth, and M. C. Weisskopf, Quadratic stark shift between Zeeman substates in Cs 133, Phys. Rev, vol.87, issue.188, pp.24-29, 1969.

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-dorantes et al., High-finesse fiber Fabry???Perot cavities: stabilization and mode matching analysis, Applied Physics B, vol.64, issue.3, pp.1-14, 2016.
DOI : 10.1007/s00340-015-6281-z

URL : http://arxiv.org/abs/1508.05289

A. Bick, C. Staarmann, P. Christoph, O. Hellmig, J. Heinze et al., The role of mode match in fiber cavities, Review of Scientific Instruments, vol.87, issue.1, p.13102, 2016.
DOI : 10.1063/1.4939046

R. R. Braga, R. Y. Ballester, and J. L. Ferracane, Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review, Dental Materials, vol.21, issue.10, pp.962-970, 2005.
DOI : 10.1016/j.dental.2005.04.018

G. Q. Monteiro and M. A. Montes, Evaluation of linear polymerization shrinkage, flexural strength and modulus of elasticity of dental composites, Materials Research, vol.13, issue.1, pp.51-55, 2010.
DOI : 10.1590/S1516-14392010000100012

L. C. Boaro, F. Gonçalves, T. C. Guimarães, J. L. Ferracane, A. Versluis et al., Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites, Dental Materials, vol.26, issue.12, pp.1144-1150, 2010.
DOI : 10.1016/j.dental.2010.08.003

K. Karthick, K. Sivakumar, P. G. Priya, and S. Shankar, Polymerization shrinkage of composites?a review, pp.32-36, 2011.

F. Ferri, In preparation, 2017.

S. K. Sheem and T. G. Giallorenzi, Two-dimensional silicon grooves for altitudinal alignment in fiber end-butt coupling, Optics Letters, vol.3, issue.3, pp.73-75, 1978.
DOI : 10.1364/OL.3.000073

C. Bulmer, S. Sheem, R. Moeller, and W. Burns, Fabrication of Flip-Chip Optical Couplers Between Single-Mode Fibers and LiNbO<inf>3</inf>Channel Waveguides, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.4, issue.4, pp.350-355, 1981.
DOI : 10.1109/TCHMT.1981.1135829

E. J. Murphy, Fiber attachment for guided wave devices, Journal of Lightwave Technology, vol.6, issue.6, pp.862-871, 1988.
DOI : 10.1109/50.4074

D. Albares and T. Trask, Optical fiber to waveguide coupling technique, Tech. rep., DTIC Document, vol.87, 1990.

K. L. Moore, Ultracold atoms, circular waveguides, and cavity QED with millimeter-scale electromagnetic traps, p.89, 2007.

S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt et al., Optimized magneto-optical trap for experiments with ultracold atoms near surfaces, Physical Review A, vol.69, issue.3, p.30901, 2004.
DOI : 10.1103/PhysRevA.69.030901

R. Long, T. Rom, W. Hänsel, W. T. Hänsch, and J. , Long distance magnetic conveyor for precise positioning of ultracold atoms, The European Physical Journal D, vol.85, issue.1, pp.125-133, 2005.
DOI : 10.1140/epjd/e2005-00177-6

R. Long, ]. Dupont-nivet, M. Casiulis, T. Laudat, C. I. Westbrook et al., Couplage d'une microsphère accordable et d'une puce à atomes Microwave-stimulated Raman adiabatic passage in a Bose-Einstein condensate on an atom chip, Phys. Rev. A, vol.97, issue.91, pp.98-221, 2003.

F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proceedings of the IEEE, vol.66, issue.1, pp.51-83, 1978.
DOI : 10.1109/PROC.1978.10837

J. Trebbia, C. L. Garrido-alzar, R. Cornelussen, C. I. Westbrook, and I. Bouchoule, Roughness Suppression via Rapid Current Modulation on an Atom Chip, Physical Review Letters, vol.98, issue.26, p.263201, 2007.
DOI : 10.1103/PhysRevLett.98.263201

URL : https://hal.archives-ouvertes.fr/hal-00127098

S. J. Orfanidis, URL: http:// www.ece.rutgers, Electromagnetic Waves and Antennas, p.110, 1999.

P. Treutlein, Coherent manipulation of ultracold atoms on atom chips, pp.115-134, 2008.

V. Guarrera, R. Szmuk, J. Reichel, and P. Rosenbusch, Microwave-dressed state-selective potentials for atom interferometry, New Journal of Physics, vol.17, issue.8, p.83022, 2015.
DOI : 10.1088/1367-2630/17/8/083022

URL : https://hal.archives-ouvertes.fr/hal-01188057

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth et al., Matter-wave interferometry in a double well on an atom chip, Nature Physics, vol.79, issue.1, pp.57-62, 2005.
DOI : 10.1038/435440a

P. A. Böhi, Coherent manipulation of ultracold atoms with microwave nearfields, p.117, 2010.

S. S. Gevorgian, T. Martinsson, P. L. Linner, and E. L. Kollberg, CAD models for multilayered substrate interdigital capacitors, IEEE Transactions on Microwave Theory and Techniques, vol.44, issue.6, pp.896-904, 1996.
DOI : 10.1109/22.506449

B. Mussler and D. Brunner, Aluminiumnitridkeramik, Technische Keramische Werkstoffe (DKG), p.113, 2001.

T. Schneider, Chip fabrication report for atomic clock on chip experiment, Ecole Normale Superieure, vol.114, p.118, 2007.

F. Haas, Création d'états intriqués d'un ensemble d'atomes dans une cavité optique, p.114, 2014.

F. Haas, Chip fabrication report for the FFP experiment, p.115, 2013.

T. Schumm, J. Estève, C. Figl, J. Trebbia, C. Aussibal et al., Atom chips in the real world: the effects of wire corrugation, The European Physical Journal D, vol.84, issue.2, pp.171-180, 2005.
DOI : 10.1140/epjd/e2005-00016-x

URL : https://hal.archives-ouvertes.fr/hal-00002220

. Epotek, Techtip 6, minimum bond line (cure and thickness), Tech. rep, p.119, 2009.

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, Laser cooling with a single laser beam and a planar diffractor, Optics Letters, vol.35, issue.20, pp.3453-3455, 2010.
DOI : 10.1364/OL.35.003453.m001

URL : https://hal.archives-ouvertes.fr/hal-01095913

C. L. Alzar, W. Yan, and A. Landragin, Towards high sensitivity rotation sensing using an atom chip, High Intensity Lasers and High Field Phenomena, pp.2-10, 2012.

M. Ammar, M. Dupont-nivet, L. Huet, J. Pocholle, P. Rosenbusch et al., Symmetric microwave potentials for interferometry with thermal atoms on a chip, Physical Review A, vol.91, issue.5, pp.53623-122, 2015.
DOI : 10.1103/PhysRevA.91.053623

URL : https://hal.archives-ouvertes.fr/hal-01163686

R. Dumke, M. Volk, T. Müther, F. Buchkremer, G. Birkl et al., Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits, Physical review letters, pp.97903-123, 2002.
DOI : 10.1103/PhysRevLett.89.097903

G. Birkl, F. Buchkremer, R. Dumke, and W. Ertmer, Atom optics with microfabricated optical elements, Optics Communications, vol.191, issue.1-2, pp.67-81, 2001.
DOI : 10.1016/S0030-4018(01)01107-5

URL : http://doi.org/10.1016/s0030-4018(01)01107-5

P. Belanger, R. L. Lachance, and C. Pare, Super-Gaussian output from a CO_2 laser by using a graded-phase mirror resonator, Optics Letters, vol.17, issue.10, pp.739-741, 1992.
DOI : 10.1364/OL.17.000739

F. Gori, Flattened gaussian beams, Optics Communications, vol.107, issue.5-6, pp.335-341, 1994.
DOI : 10.1016/0030-4018(94)90342-5

M. Bondarescu and K. S. Thorne, New family of light beams and mirror shapes for future LIGO interferometers, Physical Review D, vol.74, issue.8, p.82003, 2006.
DOI : 10.1103/PhysRevD.74.082003

. Kimble, Deterministic generation of single photons from one atom trapped in a cavity URL: http://science.sciencemag. org/content, Science, vol.3033035666, p.124, 1992.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system, Nature, vol.25, issue.7012, pp.1075-1078, 2004.
DOI : 10.1103/PhysRevLett.82.2594

T. E. Northup, B. Casabone, K. Friebe, K. Schüppert, F. R. Ong et al., An ion-cavity interface for quantum networks, SPIE Optical Engineering+ Applications, pp.961506-961506
DOI : 10.1117/12.2189924

W. Emkey and C. Jack, Analysis and evaluation of graded-index fiber lenses, Journal of Lightwave Technology, vol.5, issue.9, pp.1156-1164, 1987.
DOI : 10.1109/JLT.1987.1075651

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl et al., Cavity QED with a Bose???Einstein condensate, Nature, vol.69, issue.7167, pp.268-271, 2007.
DOI : 10.1038/nature06120

K. J. Arnold, Collective dispersive interaction of atoms and light in a high finesse cavity, p.127, 2012.

S. L. Hohmann, Using optical fibre cavities to create multi-atom entanglement by quantum Zeno dynamics, p.137, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01142441