C. Qu-'il-faut-retenir and .. , Concentration d'échantillons par des écoulements capillaires confinés Table des matières 3.1 Conditions expérimentales, p.69

L. Magro, F. Monti, and P. Tabeling, Procédés de stockage, transport et déstockage d'un composé non volatil, Demande de brevet n?FR1360986

L. Magro, F. Monti, and P. Tabeling, Procédé de stockage et de concentration d'un composé non volatil, Demande de brevet n?FR1360987, p.6

L. Magro, B. Jacquelin, P. Lafaye, J. Manuguerra, F. Monti et al., Dispositif de diagnostic par amplification isotherme d'ADN " , Demande de brevet n?FR1551189, déposée le 13 février 2015, extension PCT le 12 février 2016 Paper-based RNA detection and multiplexed analysis for Ebola virus diagnostics

L. Magro, B. Jacquelin, C. Escadafal, P. Garneret, A. Kwasiborski et al., Paper microfluidics for nucleic acids amplification testing (NAAT) Médiation scientifique, Lab on a Chip, Revue en cours de soumission

I. Au-upfest-À-la-bellevilloise, Bienvenue demain, 2015.

L. Invitée-pendant, . Social-good, and . Week, Le numérique se réincarne, SoScience !, 2015.

P. Sukhdev and N. Nuttall, A brief for policymakers on the green economy and millennium development goals, 2010.

C. A. Lehmann, The future of home testing???implications for traditional laboratories, Clinica Chimica Acta, vol.323, issue.1-2, pp.31-36, 2002.
DOI : 10.1016/S0009-8981(02)00181-X

B. G. Celler, N. H. Lovell, and J. Basilakis, Using information technology to improve the management of chronic diseases, Medical Journal of Australia, vol.179, issue.5, pp.242-246, 2003.

M. L. Kilgore, S. J. Steindel, and J. A. Smith, Evaluating stat testing options in an academic health center : therapeutic turnaround time and staff satisfaction, Clinical Chemistry, issue.8, pp.441597-1603, 1998.

J. Mccord, R. M. Nowak, P. A. Mccullough, C. Foreback, S. Borzak et al., Ninety-Minute Exclusion of Acute Myocardial Infarction By Use of Quantitative Point-of-Care Testing of Myoglobin and Troponin I, Circulation, vol.104, issue.13, pp.1041483-1488, 2001.
DOI : 10.1161/hc3801.096336

M. Siu, P. Ng, R. Krishnaswamy, P. Morissey, R. Clopton et al., Ninety-minute accelerated critical pathway for chest pain evaluation, American Journal of Cardilogy, vol.99, pp.611-617, 2001.

C. G. Fraser, Optimal analytical performance for point of care testing, Clinica Chimica Acta, vol.307, issue.1-2, pp.37-43, 2001.
DOI : 10.1016/S0009-8981(01)00429-6

B. Delaney, S. Wilson, D. Fitzmaurice, C. Hyde, and R. Hobbs, Near-Patient Tests in Primary Care: Setting the Standards for Evaluation, Journal of Health Services Research & Policy, vol.342, issue.1, pp.37-41, 2000.
DOI : 10.1136/bmj.313.7057.603

L. Piia-von, Point-of-care immunotesting : Approaching the analytical performance of central laboratory methods, Clinical Biochemistry, vol.38, pp.591-606, 2005.

U. R. Jahn and H. Van-aken, Editorial I: Near-patient testing--point-of-care or point of costs and convenience?, British Journal of Anaesthesia, vol.90, issue.4, pp.425-427, 2003.
DOI : 10.1093/bja/aeg082

R. Grieve, R. Beech, J. Vincent, and J. Mazurkiewicz, Near patient testing in diabetes clinics : appraising the costs and outcomes, Health Technology Assessment, vol.3, issue.5, 1999.

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays, Angewandte Chemie International Edition, vol.24, issue.8, pp.1318-1320, 2007.
DOI : 10.1002/anie.200603817

W. Edward and . Washwurn, The dynamics of capillary flow. The Physical Review, pp.273-284, 1921.

R. Masoodi and K. M. Pillai, Darcy's law-based model for wicking in paper-like swelling porous media, AIChE Journal, vol.35, issue.9, pp.2257-2268, 2010.
DOI : 10.1002/aic.12163

L. Gervais and E. Delamarche, Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates, Lab on a Chip, vol.145, issue.23, pp.3330-3337, 2009.
DOI : 10.1039/b906523g

M. I. Mohammed and M. P. Desmulliez, Autonomous capillary microfluidic system with embedded optics for improved troponin I cardiac biomarker detection, Biosensors and Bioelectronics, vol.61, pp.478-484, 2014.
DOI : 10.1016/j.bios.2014.05.042

D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf et al., Autonomous Microfluidic Capillary System, Analytical Chemistry, vol.74, issue.24, pp.6139-6144, 2002.
DOI : 10.1021/ac0261449

N. , S. Lynn, and D. S. Dandy, Passive microfluidic pumping using coupled capillary/evaporation effects, Lab on a Chip, vol.9, pp.3422-3429, 2009.
DOI : 10.1039/b912213c

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827300

M. Glenn, D. J. Walker, and . Beebe, An evaporation-based microfluidic sample concentration method, Lab on a Chip, vol.2, pp.57-61, 2002.

J. Leng, B. Lonetti, P. Tabeling, M. Joanicot, and A. Ajdari, Micro-evaporators for kinetic exploration of phase diagrams, Physical Review Letters, issue.8, p.96, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00016965

L. Courbin, J. C. Bird, M. Reyssat, and H. A. Stone, Dynamics of wetting: from inertial spreading to viscous imbibition, Journal of Physics: Condensed Matter, vol.21, issue.46, 2009.
DOI : 10.1088/0953-8984/21/46/464127

URL : https://hal.archives-ouvertes.fr/hal-00662861

H. P. Darcy, Détermination des lois d'écoulement de l'eau à travers le sable

D. A. Lockington, J. Y. Parlange, and M. Lenkopane, Capillary absorption in porous sheets and surfaces subject to evaporation, Transport in Porous Media, pp.29-36, 2007.
DOI : 10.1007/s11242-006-9056-5

R. Roberts, Liquid penetration into paper, 2004.

E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, Transport in two-dimensional paper networks, Microfluid Nanofluid, pp.29-35, 2011.
DOI : 10.1007/s10404-010-0643-y

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228841

. Wouter-van-der-wijingaart, Capillary pumps with constant flow rate, Microfluid Nanofluid, pp.829-837, 2014.
DOI : 10.1007/s10404-014-1365-3

J. Park, J. Ho-shin, and J. Park, Pressed Paper-Based Dipstick for Detection of Foodborne Pathogens with Multistep Reactions, Analytical Chemistry, vol.88, issue.7, pp.3781-3788, 2016.
DOI : 10.1021/acs.analchem.5b04743

L. H. Tanner, The spreading of silicone oil drops on horizontal surfaces, Journal of Physics D: Applied Physics, vol.12, issue.9, pp.1473-1484, 1979.
DOI : 10.1088/0022-3727/12/9/009

W. B. Hardy, The spreading of fluids on glass, Philosophical Magasine, vol.38, issue.49, 1919.

R. N. Wenzel, RESISTANCE OF SOLID SURFACES TO WETTING BY WATER, Industrial & Engineering Chemistry, vol.28, issue.8, pp.988-994, 1936.
DOI : 10.1021/ie50320a024

A. B. Cassie and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 1944.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops, Nature, vol.389, issue.6653, pp.827-829, 1997.
DOI : 10.1038/39827

N. Walji and B. D. Macdonalrd, Influence of geometry and surrounding conditions on fluid flow in paper-based devices. Micromachines, pp.73-86, 2016.

K. M. Schilling, A. L. Lepore, J. A. Kurian, and A. W. Martinez, Fully Enclosed Microfluidic Paper-Based Analytical Devices, Analytical Chemistry, vol.84, issue.3, pp.1579-1585, 2012.
DOI : 10.1021/ac202837s

J. Wang, Z. Chen, P. L. Corstjens, M. G. Mauka, and H. H. Bau, A disposable microfluidic cassette for DNA amplification and detection, Lab Chip, vol.293, issue.2, pp.46-53, 2006.
DOI : 10.1016/j.bej.2005.02.023

C. Liu, E. Geva, M. Mauk, X. Qiu, W. R. Abrams et al., An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases, The Analyst, vol.9, issue.10, pp.2069-2077, 2011.
DOI : 10.1039/c1an00007a

M. Branavan, R. E. Mackay, P. Craw, A. Naveenathayalan, J. C. Ahern et al., Modular development of a prototype point of care molecular diagnostic platform for sexually transmitted infections, Medical Engineering & Physics, vol.38, issue.8, pp.1-8, 2016.
DOI : 10.1016/j.medengphy.2016.04.022

L. Zhang, Y. Zhang, C. Wang, Q. Feng, F. Fan et al., Integrated Microcapillary for Sample-to-Answer Nucleic Acid Pretreatment, Amplification, and Detection, Analytical Chemistry, vol.86, issue.20, pp.10461-10466, 2014.
DOI : 10.1021/ac503072a

URL : http://doi.org/10.1021/ac503072a

W. Gan, B. Zhuang, P. Zhang, J. Han, L. Cai-xia et al., A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types, Lab on a Chip, vol.25, issue.19, pp.143719-3728, 2014.
DOI : 10.1039/C4LC00686K

M. Dou, D. C. Dominguez, X. Li, J. Sanchez, and G. Scott, A Versatile PDMS/Paper Hybrid Microfluidic Platform for Sensitive Infectious Disease Diagnosis, Analytical Chemistry, vol.86, issue.15, pp.7978-7986, 2014.
DOI : 10.1021/ac5021694

A. G. , C. , and A. Gandini, Turning polysaccharides into hydrophobic materials : a critical review, pp.875-889, 2010.

R. Pelton, Bioactive paper provides a low-cost platform for diagnostics, TrAC Trends in Analytical Chemistry, vol.28, issue.8, pp.925-948, 2009.
DOI : 10.1016/j.trac.2009.05.005

J. Credou and T. Berthelot, Cellulose: from biocompatible to bioactive material, Journal of Materials Chemistry B, vol.4, issue.30, pp.5767-4788, 2014.
DOI : 10.1039/C4TB00431K

URL : https://hal.archives-ouvertes.fr/hal-01156573

S. Di, R. , and N. Yan, Bioactive paper through inkjet printing, Journal of Adhesion Science and Technology, vol.24, issue.3, pp.661-684, 2010.

J. Li and J. Macdnald, Advances in isothermal amplification: novel strategies inspired by biological processes, Biosensors and Bioelectronics, vol.64, pp.196-211, 2015.
DOI : 10.1016/j.bios.2014.08.069

P. Kubelka and F. Munk, Ein beitrag zur optik der farbanstriche. Zeitschrift fur technische Physik, pp.593-601, 1931.

E. Evans, E. F. , M. Gabriel, W. K. , T. Coltro et al., Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices, The Analyst, vol.17, issue.9, pp.2127-2132, 2014.
DOI : 10.1002/elps.201300511

J. Su, M. Al-tamimi, and G. Garnier, Engineering paper as a substrate for blood typing bio-diagnostics, Cellulose, vol.63, issue.1, pp.1749-1758, 2012.
DOI : 10.1007/s10570-012-9748-7

E. Roger, J. D. Luckham, and . Brennan, Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol?gel/enzyme/gold nanoparticle composites, Analyst, vol.135, pp.2028-2035, 2010.

F. M. Ellen, P. T. Gabriel, . Garcia, M. G. Thiago, F. M. Cardoso et al., Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices, Analyst, 2016.

A. Geertruida, A. Posthuma-trumpie, J. Van-korf, and . An-amerongen, Lateral flow (immuno)assay : its strengths, weaknesses, opportunities and threats. a literature survey, Analytical Bioanalytical Chemistry, vol.393, pp.569-582, 2009.

E. M. Fenton, M. R. Mascarenas, G. P. Lopez, and S. S. Sibbett, Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping, ACS Applied Materials & Interfaces, vol.1, issue.1, pp.124-129, 2009.
DOI : 10.1021/am800043z

URL : http://cbme.unm.edu/pdf/fenton et al ACS Adv Matl Interf vol 1 pp 124_129_2009.pdf

J. Nie, Y. Liang, Y. Zhang, S. Le, D. Li et al., One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices, The Analyst, vol.80, issue.2, pp.671-677, 2013.
DOI : 10.1039/C2AN36219H

A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta, and G. M. Whitesides, FLASH: A rapid method for prototyping paper-based microfluidic devices, Lab on a Chip, vol.309, issue.12, pp.2146-2150, 2008.
DOI : 10.1039/b811135a

D. A. Bruzewicz, M. Reches, and G. M. Whitesides, Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper, Analytical Chemistry, vol.80, issue.9, pp.3387-3393, 2008.
DOI : 10.1021/ac702605a

E. Carrilho, A. W. Martinez, and G. M. Whitesides, Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics, Analytical Chemistry, vol.81, issue.16, pp.7091-7095, 2008.
DOI : 10.1021/ac901071p

X. Li and X. Liu, Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper, Microfluid Nanofluid, pp.819-827, 2014.
DOI : 10.1007/s10404-014-1340-z

R. Verena-taudte, A. Beavis, L. Wilson-wilde, C. Roux, P. Doble et al., A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed ??PADs, Lab on a Chip, vol.13, issue.4, pp.4164-4173, 2013.
DOI : 10.1039/c3lc50609f

X. Li, J. Tian, T. Nguyen, and W. Shen, Paper-Based Microfluidic Devices by Plasma Treatment, Analytical Chemistry, vol.80, issue.23, pp.9131-9134, 2008.
DOI : 10.1021/ac801729t

Q. He, C. Ma, X. Hu, and H. Chen, -Patterning, Analytical Chemistry, vol.85, issue.3, pp.1327-1331, 2013.
DOI : 10.1021/ac303138x

URL : https://hal.archives-ouvertes.fr/tel-01108652

A. W. Martinez, S. T. Phillips, and G. M. Whitesides, Three-dimensional microfluidic devices fabricated in layered paper and tape, Proceedings of the National Academy of Sciences, vol.105, issue.50, pp.19606-19611, 2008.
DOI : 10.1073/pnas.0810903105

C. Wang, J. W. Hennek, A. A. Kumar, W. Lan, J. Im et al., A paper-based pop-up electrochemical device for analysis of beta-hyrdroxybutyrate, Analytical Chemistry, 2016.

Y. L. Han, W. Wang, J. Hu, G. Huang, S. Wang et al., Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper???polymer composite, Lab on a Chip, vol.11, issue.24, pp.134745-4754, 2013.
DOI : 10.1002/adfm.201300780

A. C. Glavan, R. V. Martinez, E. J. Maxwell, A. Bala-subramaniam, M. D. Rui et al., Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper, Lab on a Chip, vol.75, issue.15, pp.2922-2930, 2013.
DOI : 10.1002/adfm.201300780

M. Martin, R. V. Thuo, W. Martinez, X. Lan, . Liu et al., Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods, Chemistry of Materials, issue.14, pp.264230-4237, 2014.

J. L. Osborn, B. Lutz, E. Fu, P. Kauffman, D. Y. Stevens et al., Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks, Lab on a Chip, vol.76, issue.20, pp.2637-2824, 2010.
DOI : 10.1039/c004766j

J. Houghtaling, T. Liang, G. Thiessen, and E. Fu, Dissolvable Bridges for Manipulating Fluid Volumes in Paper Networks, Analytical Chemistry, vol.85, issue.23, pp.11201-11204, 2013.
DOI : 10.1021/ac4022677

B. Lutz, T. Liang, E. Fu, S. Ramachandran, P. Kauffman et al., Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics, Lab on a Chip, vol.12, issue.14, pp.2840-2848, 2013.
DOI : 10.1039/c3lc50178g

P. J. He, I. N. Katis, R. W. Eason, and C. L. Sones, Engineering fluidic delays in paper-based devices using laser direct-writing, Lab Chip, vol.45, issue.20, pp.4054-4061, 2015.
DOI : 10.1039/C5LC00590F

J. Bhushan, J. A. Toley, M. Wang, J. R. Gupta, L. K. Buser et al., A versatile valving toolkit for automating fluidic operations in paper microfluidic devices, Lab on a Chip, vol.15, issue.6, pp.1432-1444, 2015.

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-118, 2000.
DOI : 10.1126/science.288.5463.113

A. W. Martinez, S. T. Phillips, and G. M. Whitesides, Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices, Analytical Chemistry, vol.82, issue.1, pp.3-10, 2010.
DOI : 10.1021/ac9013989

X. Li, J. Tian, and W. Shen, Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors, Cellulose, vol.8, issue.3, pp.649-659, 2010.
DOI : 10.1007/s10570-010-9401-2

M. Bernard and . Branson, Rapid tests for hiv antibody, AIDS Reviews, vol.2, pp.76-83, 2000.

F. Wu, H. Yuan, C. Zhou, M. Mao, Q. Liu et al., Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay, Biosensors and Bioelectronics, vol.77, pp.464-470, 2016.
DOI : 10.1016/j.bios.2015.10.002

H. Yang, D. Li, R. He, Q. Guo, and K. Wang, A Novel Quantum Dots???Based Point of Care Test for Syphilis, Nanoscale Research Letters, vol.281, issue.5, pp.875-881, 2010.
DOI : 10.1007/s11671-010-9578-1

N. Khreich, P. Lamourette, H. Boutal, K. Devilliers, C. Créminon et al., Detection of Staphylococcus enterotoxin B using fluorescent immunoliposomes as label for immunochromatographic testing, Analytical Biochemistry, vol.377, issue.2, pp.182-188, 2008.
DOI : 10.1016/j.ab.2008.02.032

Y. Ryu, Z. Jin, M. S. Kang, and H. Kim, Increase in the detection sensitivity of a lateral flow assay for a cardiac marker by oriented immobilization of antibody, BioChip Journal, vol.4, issue.285, pp.193-198, 2011.
DOI : 10.1007/s13206-011-5301-2

T. Teerinen, T. Lappalainen, and T. Erho, A paper-based lateral flow assay for morphine, Analytical and Bioanalytical Chemistry, vol.400, issue.3, pp.5955-5965, 2014.
DOI : 10.1007/s00216-014-8001-7

B. Capolaghi, B. Charbonnier, M. Dumontet, B. Hennache, J. Henninot et al., Recommandations sur la prescription, le dosage et l'interprétation des troponines cardiaques, Annales de Biologies Cliniques, vol.63, issue.3, pp.245-261, 2005.

X. Han, S. Li, Z. Peng, A. M. Othman, and R. Leblanc, Recent Development of Cardiac Troponin I Detection, ACS Sensors, vol.1, issue.2, pp.106-114, 2016.
DOI : 10.1021/acssensors.5b00318

J. Todd, B. Freese, A. Lu, D. Held, J. Morey et al., Ultrasensitive flow-based immunoessay using single-molecule counting, Clinical Chemistry, issue.11, pp.531990-1995, 2007.
DOI : 10.1373/clinchem.2007.091181

C. Hsu, H. Huang, W. Chen, W. Nishie, H. Ujiie et al., Paper-Based ELISA for the Detection of Autoimmune Antibodies in Body Fluid???The Case of Bullous Pemphigoid, Analytical Chemistry, vol.86, issue.9, pp.4605-4610, 2014.
DOI : 10.1021/ac500835k

A. Apilux, Y. Ukita, M. Chikae, O. Chailapakul, and Y. Takamura, Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing, Lab Chip, vol.10, issue.1, pp.126-135, 2013.
DOI : 10.1039/C2LC40690J

S. K. Dong-hwan-choi, Y. Lee, . Kyoung-oh, S. D. Byeong-woo-bae, S. Lee et al., A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I, Biosensors and Bioelectronics, vol.25, issue.8, pp.1999-2002, 2010.
DOI : 10.1016/j.bios.2010.01.019

R. Guthrie and A. Susie, A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants, Pediatrics, p.32, 1963.

T. W. Mcdade, S. Williams, and J. Snodgrass, What a Drop Can Do: Dried Blood Spots as a Minimally Invasive Method for Integrating Biomarkers Into Population-Based Research, Demography, vol.44, issue.4, pp.899-925, 2007.
DOI : 10.1353/dem.2007.0038

R. B. Edward and . Mccabe, Utility of pcr for dna analysis from dried blood spots on filter paper blotters, PCR Methods and Applications, vol.1, issue.2, pp.99-106, 1991.

S. Cassol, T. Salas, M. J. Gill, M. Montpetit, J. Rudnik et al., Stability of dried blood spot specimens for detection of human immunodeficiency virus dna by polymerase chain reaction, Journal of Clinical Microbiology, issue.12, pp.303039-3042, 1992.

C. Li, I. A. Beck, K. D. Seidel, and L. M. Frenkel, Persistence of Human Immunodeficiency Virus Type 1 Subtype B DNA in Dried-Blood Samples on FTA Filter Paper, Journal of Clinical Microbiology, vol.42, issue.8, pp.423847-3849, 2004.
DOI : 10.1128/JCM.42.8.3847-3849.2004

R. Sujit, D. H. Jangam, S. M. Yamada, D. M. Mcfall, and . Kelso, Rapid, pointof-care extraction of human immunodeficiency virus type 1 proviral dna from whole blood for detection by real-time pcr, Journal of Clinical Microbiology, issue.8, pp.472363-2368, 2009.

I. A. Beck, K. D. Drennan, A. J. Melvin, K. M. Mohan, A. M. Herz et al., Simple, Sensitive, and Specific Detection of Human Immunodeficiency Virus Type 1 Subtype B DNA in Dried Blood Samples for Diagnosis in Infants in the Field, Journal of Clinical Microbiology, vol.39, issue.1, pp.29-33, 2001.
DOI : 10.1128/JCM.39.1.29-33.2001

S. P. Parker and W. D. Cubitt, The use of the dried blood spot sample in epidemiological studies, Journal of Clinical Pathology, vol.52, issue.9, pp.633-639, 1999.
DOI : 10.1136/jcp.52.9.633

S. Mercader, D. Featherstone, and W. J. Bellini, Comparison of available methods to elute serum from dried blood spot samples for measles serology, Journal of Virological Methods, vol.137, issue.1, pp.140-149, 2006.
DOI : 10.1016/j.jviromet.2006.06.018

M. Anastassova-dineva, L. Mahilum-tapay, and H. Lee, Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings, The Analyst, vol.36, issue.12, pp.1193-1199, 2007.
DOI : 10.1186/1471-2180-2-17

H. Alfthan, C. Haglund, J. Dabek, and U. H. Stenman, Concentrations of human choriogonadotropin , its beta-subunit, and the core fragment of the beta-subunit in serum and urine of men and nonpregnant women, Clinical Chemistry, issue.10, pp.381981-1987, 1992.

A. Samir, R. Bhakta, M. J. Borba, C. D. Taba, E. Garcia et al., Determination of nitrite in saliva using microfluidic paper-based analytical devices, Analytica Chimica Acta, vol.809, pp.117-122, 2014.

L. F. Hofman, Human saliva as a diagnostic specimen, Journal of Nutrition, vol.131, issue.5, pp.1-5, 2001.

S. J. Vella, P. Beattie, R. Cademartiri, A. Laromaine, A. W. Martinez et al., Measuring Markers of Liver Function Using a Micropatterned Paper Device Designed for Blood from a Fingerstick, Analytical Chemistry, vol.84, issue.6, pp.2883-2891, 2012.
DOI : 10.1021/ac203434x

R. Nira, S. Pollock, D. J. Mcgray, F. Colby, H. Noubary et al., Field evaluation of a prototype paper-based point-of-care fingerstick transaminase test, PLOS One, vol.8, issue.9, p.2013

D. Sadowski, H. Cohen, L. Laine, P. Greenberg, J. Goldstein et al., Evaluation of the FlexSure HP whole blood antibody test for diagnosis of Helicobacter pylori infection, The American Journal of Gastroenterology, vol.110, issue.1, pp.932119-2123, 1998.
DOI : 10.1016/S0002-9270(97)00003-8

K. Matsuura, K. Chen, C. Tsai, W. Li, Y. Asano et al., Paper-based diagnostic devices for evaluating the quality of human sperm, Microfluidics and Nanofluidics, vol.11, issue.5, pp.857-867, 2014.
DOI : 10.1007/s10404-014-1378-y

F. Osman and A. Rowhani, Application of a spotting sample preparation technique for the detection of pathogens in woody plants by RT-PCR and real-time PCR (TaqMan), Journal of Virological Methods, vol.133, issue.2, pp.130-136, 2006.
DOI : 10.1016/j.jviromet.2005.11.005

H. Ahmed, E. Macleod, G. Hide, S. Welburn, and K. Picozzi, The best practice for preparation of samples from fta cards for diagnosis of blood borne infections using african trypanosomes as a model system. Parasites and Vectors, 2011.

X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices, Lab Chip, vol.1, issue.2, pp.274-280, 2012.
DOI : 10.1039/C1LC20803A

L. Guan, R. Cao, J. Tian, H. Mcliesh, G. Garnier et al., A preliminary study on the stabilization of blood typing antibodies sorbed into paper, Cellulose, vol.9, issue.2, pp.717-727, 2014.
DOI : 10.1007/s10570-013-0134-x

M. Al-tamimi, W. Shen, R. Zeineddine, H. Tran, and G. Garnier, Validation of Paper-Based Assay for Rapid Blood Typing, Analytical Chemistry, vol.84, issue.3, pp.1661-1668, 2012.
DOI : 10.1021/ac202948t

M. Samad-khan, G. Thouas, W. Shen, G. Whyte, and G. Garnier, Paper Diagnostic for Instantaneous Blood Typing, Analytical Chemistry, vol.82, issue.10, pp.4158-4164, 2010.
DOI : 10.1021/ac100341n

J. C. Linnes, A. Fan, N. M. Rodriguez, B. Lemieux, H. Kong et al., Paper-based molecular diagnostic for Chlamydia trachomatis, RSC Adv., vol.3, issue.80, pp.42245-42251, 2014.
DOI : 10.1039/C4RA07911F

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188396

C. F. Fronczek, T. S. Park, D. K. Harshman, A. M. Nicolinia, and J. Yoon, Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples, RSC Advances, vol.76, issue.22, pp.11103-11110, 2014.
DOI : 10.1039/c3ra47688j

A. V. Govindarajan, S. Ramachandran, G. D. Vigil, P. Yager, and K. F. Bohringer, A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami, Lab Chip, vol.48, issue.1, pp.174-181, 2012.
DOI : 10.1039/C1LC20622B

S. Y. Wong, M. Cabodi, J. Rolland, and C. M. Klapperich, Evaporative Concentration on a Paper-Based Device to Concentrate Analytes in a Biological Fluid, Analytical Chemistry, vol.86, issue.24, pp.11981-11985, 2014.
DOI : 10.1021/ac503751a

B. Rohrman and R. Rebecca, Inhibition of Recombinase Polymerase Amplification by Background DNA: A Lateral Flow-Based Method for Enriching Target DNA, Analytical Chemistry, vol.87, issue.3, pp.1963-1967, 2015.
DOI : 10.1021/ac504365v

P. Aubry, Le diagnostic biologique des maladies infectieuses en zones tropicales, Médecine Tropicale, 2014.

K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn et al., Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction, Cold Spring Harbor Symposia on Quantitative Biology, vol.51, issue.0, 1986.
DOI : 10.1101/SQB.1986.051.01.032

T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe et al., Loop-mediated isothermal amplification of DNA, Nucleic Acids Research, vol.28, issue.12, pp.63-70, 2000.
DOI : 10.1093/nar/28.12.e63

Y. Mori, K. Nagamine, N. Tomita, and T. Notomi, Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation, Biochemical and Biophysical Research Communications, vol.289, issue.1, pp.150-154, 2001.
DOI : 10.1006/bbrc.2001.5921

N. A. Tanner, Y. Zhang, and T. C. Evans, Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes, BioTechniques, vol.58, issue.2, pp.59-68, 2015.
DOI : 10.2144/000114253

X. Yu, L. Shi, X. Lv, W. Yao, M. Cao et al., Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus, Virology Journal, vol.146, issue.1, pp.76-93, 2015.
DOI : 10.1186/s12985-015-0297-1

. Kochel, L. Shuenn-jue, and . Wu, Development of a pan-serotype reverse transcription loop mediated isothermal amplification assay for the detection of dengue virus, Diagnostic Microbiology and Infectious Disease, vol.83, issue.1, p.2015

L. Strekowski and B. Wilson, Noncovalent interactions with DNA: An overview, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.623, issue.1-2, pp.3-13, 2007.
DOI : 10.1016/j.mrfmmm.2007.03.008

O. Piepenburg, C. H. Williams, D. L. Stemple, and N. A. Armes, DNA Detection Using Recombination Proteins, PLoS Biology, vol.42, issue.7, pp.1115-1121, 2006.
DOI : 10.1371/journal.pbio.0040204.sd001

URL : http://doi.org/10.1371/journal.pbio.0040204

M. Euler, Y. Wang, D. Heidenreich, P. Patel, O. Strohmeier et al., Development of a Panel of Recombinase Polymerase Amplification Assays for Detection of Biothreat Agents, Journal of Clinical Microbiology, vol.51, issue.4, pp.1110-1117, 2013.
DOI : 10.1128/JCM.02704-12

M. Yang, Y. Ke, X. Wang, H. Ren, W. Liu et al., Development and Evaluation of a Rapid and Sensitive EBOV-RPA Test for Rapid Diagnosis of Ebola Virus Disease, Scientific Reports, vol.83, issue.1, 2016.
DOI : 10.1016/j.diagmicrobio.2015.07.025

P. Craw and W. Balachandran, Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review, Lab on a Chip, vol.65, issue.14, pp.2469-2486, 2012.
DOI : 10.1039/c2lc40100b

M. Vincent, Y. Xu, and H. Kong, Helicase-dependent isothermal DNA amplification, EMBO reports, vol.89, issue.8, pp.795-800, 2004.
DOI : 10.1006/mcpr.2001.0393

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1249482

M. E. Gabrielle, . Van-der, . Vliet, A. F. Rianne, B. Schukkink et al., Nucleic acid sequence-based amplification (NASBA) for the identification of mycobacteria, Journal of General Microbiology, vol.139, issue.10, pp.2423-2429, 1993.
DOI : 10.1099/00221287-139-10-2423

G. Nallur, C. Luo, L. Fang, S. Cooley, V. Dave et al., Signal amplification by rolling circle amplification on DNA microarrays, Nucleic Acids Research, vol.29, issue.23, 2001.
DOI : 10.1093/nar/29.23.e118

URL : http://doi.org/10.1093/nar/29.23.e118

F. David and . Williams, On the mechanisms of biocompatibility, Biomaterials, vol.29, pp.2941-2953, 2008.

I. G. Wilson, Inhibition and facilitation of nucleic acid amplification, Applied and Environmental Microbiology, vol.63, issue.10, pp.3741-3751, 1997.

T. B. Christensen, C. M. Pedersen, K. G. Grondahl, T. G. Jensen, A. Sekulovic et al., PCR biocompatibility of lab-on-a-chip and MEMS materials, Journal of Micromechanics and Microengineering, vol.17, issue.8, pp.1527-1532, 2007.
DOI : 10.1088/0960-1317/17/8/015

R. Kodzius, K. Xiao, J. Wu, X. Yid, X. Gong et al., Inhibitory effect of common microfluidic materials on PCR outcome, Sensors and Actuators B: Chemical, vol.161, issue.1, pp.349-358, 2012.
DOI : 10.1016/j.snb.2011.10.044

URL : http://repository.kaust.edu.sa/kaust/bitstream/10754/303149/6/Inhibitory%20effect%20of%20common%20microfluidic%20materials%20on%20PCR%20outcome_autorsCopy.pdf

H. Kaneko, T. Kawana, E. Fukushima, and T. Suzutani, Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances, Journal of Biochemical and Biophysical Methods, vol.70, issue.3, pp.499-501, 2007.
DOI : 10.1016/j.jbbm.2006.08.008

A. Ravaggi, D. Primi, and E. Cariani, Direct PCR amplification of HCV RNA from human serum., Genome Research, vol.1, issue.4, pp.291-292, 1992.
DOI : 10.1101/gr.1.4.291

L. M. Leo, B. W. Poon, E. H. Wong, K. H. Ma, L. M. Chan et al., Sensitive and inexpensive molecular test for falciparum malaria : Detecting plasmodium falciparum dna directly from heat treated blood by loop-mediated isothermal amplification, Clinical Chemistry, vol.52, issue.2, pp.303-306, 2006.

. Boon-teong, . Teoh, . Sing-sin, K. Sam, M. B. Tan et al., Sazaly AbuBakar. Early detection of the dengue virus using reverse transcription-recombinase polymerase amplification, Journal of Clinical Microbiology, vol.53, issue.3, pp.830-859, 2015.

J. Allison, L. Lopatkin, and . You, Synthetic biology looks good on paper, Cell, vol.159, pp.717-719, 2014.

C. M. Niemeyer, M. Adler, and R. Wacker, Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification, Trends in Biotechnology, vol.23, issue.4, pp.208-216, 2005.
DOI : 10.1016/j.tibtech.2005.02.006

J. Singleton, J. L. Osborn, L. Lillis, K. Hawkins, D. Guelig et al., Electricity-Free Amplification and Detection for Molecular Point-of-Care Diagnosis of HIV-1, PLoS ONE, vol.8, issue.11, pp.9-2014
DOI : 10.1371/journal.pone.0113693.t005

B. A. Rohrman, V. Leautaud, E. Molyneux, and R. R. Richards-kortum, A Lateral Flow Assay for Quantitative Detection of Amplified HIV-1 RNA, PLoS ONE, vol.7, issue.9, p.2012
DOI : 10.1371/journal.pone.0045611.s001

A. C. Araujo, Y. Sonj, J. Lundeberg, P. L. Stahl, and H. Brumer, Activated Paper Surfaces for the Rapid Hybridization of DNA through Capillary Transport, Analytical Chemistry, vol.84, issue.7, pp.3311-3317, 2012.
DOI : 10.1021/ac300025v

Y. Song, P. Gyarmati, A. C. Araujo, J. Lundeberg, H. Brumer et al., Visual Detection of DNA on Paper Chips, Analytical Chemistry, vol.86, issue.3, 2014.
DOI : 10.1021/ac403196b

P. Umit-hakan-yildiz, B. Alagappan, and . Liedberg, Naked Eye Detection of Lung Cancer Associated miRNA by Paper Based Biosensing Platform, Analytical Chemistry, vol.85, issue.2, pp.820-824, 2013.
DOI : 10.1021/ac3034008

E. Carrilho, S. T. Phillips, S. J. Vella, A. W. Martinez, and G. M. Whitesides, Paper Microzone Plates, Analytical Chemistry, vol.81, issue.15, pp.5990-5998, 2009.
DOI : 10.1021/ac900847g

S. Lo, S. Yang, D. Yao, J. Chen, C. Wu-chun-tuc et al., Molecular-level dengue fever diagnostic devices made out of paper, Lab on a Chip, vol.12, issue.14, pp.2686-2693, 2013.
DOI : 10.1039/c3lc50135c

S. Lo, S. Yang, D. Yao, J. Chen, and C. Cheng, Molecular-level dengue fever diagnostics developing a combination of rt-lamp and paperbased devices, IEEE Nanotechnology Magazine, vol.12, pp.26-30, 2012.

K. Scida, B. Li, A. D. Ellington, and R. M. Crooks, DNA Detection Using Origami Paper Analytical Devices, Analytical Chemistry, vol.85, issue.20, pp.9713-9720, 2013.
DOI : 10.1021/ac402118a

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852662

S. Roy, I. A. Rahman, and M. Ahmed, Paper-based rapid detection of pork and chicken using LAMP???magnetic bead aggregates, Anal. Methods, vol.87, issue.12, pp.2391-2400, 2016.
DOI : 10.1021/acsbiomaterials.5b00449

X. Wei, T. Tian, S. Jia, Z. Zhu, Y. Ma et al., Target-Responsive DNA Hydrogel Mediated ???Stop-Flow??? Microfluidic Paper-Based Analytic Device for Rapid, Portable and Visual Detection of Multiple Targets, Analytical Chemistry, vol.87, issue.8, pp.4275-4282, 2015.
DOI : 10.1021/acs.analchem.5b00532

M. M. Ali, S. D. Aguirre, Y. Xu, C. D. Filipe, R. Pelton et al., Detection of DNA using bioactive paper strips, Chemical Communications, vol.99, issue.43, pp.6640-6642, 2009.
DOI : 10.1039/b911559e

K. Pardee, A. A. Green, T. Ferrante, D. Ewen-cameron, A. Daleykeyser et al., Paper-Based Synthetic Gene Networks, Cell, vol.159, issue.4, 2014.
DOI : 10.1016/j.cell.2014.10.004

URL : http://doi.org/10.1016/j.cell.2014.10.004

J. T. Connelly, J. P. Rolland, and G. M. Whitesides, ???Paper Machine??? for Molecular Diagnostics, Analytical Chemistry, vol.87, issue.15, pp.7595-7601, 2015.
DOI : 10.1021/acs.analchem.5b00411

URL : http://nrs.harvard.edu/urn-3:HUL.InstRepos:24900309

J. C. Linnes, N. M. Rodriguez, L. Liu, and C. M. Klapperich, Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics, Biomedical Microdevices, vol.111, issue.10, pp.18-30, 2016.
DOI : 10.1007/s10544-016-0057-z

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855516

A. Brittany, R. R. Rohrman, and . Richards-kortum, A paper and plastic device for performing recombinase polymerase amplification of hiv dna, Lab on a Chip, vol.12, issue.7, pp.3082-3096, 2012.

S. Michael, R. R. Cordray, and . Richards-kortum, A paper and plastic device for the combined isothermal amplification and lateral flow detection of plasmodium dna, Malaria Journal, vol.14, issue.1, pp.472-480, 2015.

N. M. Rodriguez, W. S. Wong, L. Liu, R. Dewar, and C. M. Klapperich, A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples, Lab Chip, vol.8, issue.15, pp.753-763, 2016.
DOI : 10.1039/C5LC01392E

J. Choi, J. Hu, Y. Gong, S. Feng, W. Abu-bakar-wan-abas et al., An integrated lateral flow assay for effective DNA amplification and detection at the point of care, The Analyst, vol.14, issue.10, pp.2930-2939, 2016.
DOI : 10.3109/07388551.2016.1139541

T. Cubaud and T. G. Mason, Capillary threads and viscous droplets in square microchannels, Physics of Fluids, vol.20, issue.5, pp.3302-3311, 2008.
DOI : 10.1063/1.2911716

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction???scaling and mechanism of break-up, Lab on a Chip, vol.12, issue.3, pp.437-446, 2006.
DOI : 10.1039/b510841a

D. S. Boyle, D. A. Lehman, L. Lillis, D. Peterson, M. Singhal et al., Rapid Detection of HIV-1 Proviral DNA for Early Infant Diagnosis Using Recombinase Polymerase Amplification, mBio, vol.4, issue.2, 2013.
DOI : 10.1128/mBio.00135-13

K. S. Garry and P. C. Sabeti, Genomic surveillance elucidates ebola virus origin and transmission during the 2014 outbreak, Science, issue.6202, pp.3451369-1372, 2014.

A. A. , E. Wahed, P. Patel, O. Faye, S. Thaloengsok et al., Recombinase polymerase amplification assay for rapid diagnostics of dengue infection, PLOS One, vol.10, issue.6, pp.1371-1388, 2015.

A. Ashok, J. W. Kumar, B. S. Hennek, . Smith, P. Kumar et al., From the bench to the field in low-cost diagnostics : Two case studies, Angewandte Chemie, vol.54, pp.5836-5653, 2015.

L. Altman, D. A. Hooft, J. F. Korevaar, and . Cohen, Stard 2015 : An updated list of essential items for reporting diagnostic accuracy studies, Clinical Chemistry, 2015.