M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee et al., A single-atom transistor, Nature Nanotechnology, vol.335, issue.4, p.242, 2012.
DOI : 10.1038/nnano.2012.21

A. C. Ferrari, F. Bonaccorso, V. Fal-'ko, K. S. Novoselov, S. Roche et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale, vol.60, issue.252, p.4598, 2015.
DOI : 10.1002/9781118144602.ch13

URL : http://orbit.dtu.dk/ws/files/103452584/ferrari.pdf

E. Prada, I. Guillamón, and E. E. Sahagún, So close and such a stranger : a documentary about condensed matter physics, 2016.

J. C. Slater, The Theory of Complex Spectra, Physical Review, vol.34, issue.10, p.1293, 1929.
DOI : 10.1103/PhysRev.34.1293

D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.01, pp.89-110, 1928.
DOI : 10.1017/S0305004100011919

J. ?í?ek, Advances in Chemical Physics : Correlation Effects in Atoms and Molecules, p.35, 1969.

C. Møller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, vol.46, issue.7, p.618, 1934.
DOI : 10.1103/PhysRev.46.618

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, issue.05, pp.542-548, 1927.
DOI : 10.1017/S0305004100011683

R. Gáspár, ???? ?????????? ?????????????????????????? ?????????????????????????? ??????????????, ???????????? ???????????????????????????????? ?????????????????? ????????????-????????, Acta Physica Academiae Scientiarum Hungaricae, vol.II, issue.3-4, p.263, 1954.
DOI : 10.1007/BF03156228

A. D. Becke, Density???functional thermochemistry. IV. A new dynamical correlation functional and implications for exact???exchange mixing, The Journal of Chemical Physics, vol.104, issue.3, p.1040, 1996.
DOI : 10.1063/1.470829

A. D. Becke, The Journal of chemical physics 98, p.1372, 1993.

D. J. Chadi and M. L. Cohen, Special Points in the Brillouin Zone, Physical Review B, vol.8, issue.12, p.5747, 1973.
DOI : 10.1103/PhysRevB.8.5747

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, p.5188, 1976.
DOI : 10.1103/PhysRevB.13.5188

H. Hellmann, A New Approximation Method in the Problem of Many Electrons, The Journal of Chemical Physics, vol.3, issue.1, p.61, 1935.
DOI : 10.1063/1.1749559

E. Anton?ík, Approximate formulation of the orthogonalized plane-wave method, Journal of Physics and Chemistry of Solids, vol.10, issue.4, p.314, 1959.
DOI : 10.1016/0022-3697(59)90007-1

D. Hamann, M. Schlüter, and E. C. Chiang, Norm-Conserving Pseudopotentials, Physical Review Letters, vol.43, issue.20, p.1494, 1979.
DOI : 10.1103/PhysRevLett.43.1494

P. E. Blöchl, Projector augmented-wave method, Physical Review B, vol.50, issue.24, p.17953, 1994.
DOI : 10.1103/PhysRevB.50.17953

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.59, issue.3, p.1758, 1999.
DOI : 10.1103/PhysRevB.59.1758

J. E. Lennard and -. , The electronic structure of some diatomic molecules, Transactions of the Faraday Society, vol.25, p.668, 1929.
DOI : 10.1039/tf9292500668

S. F. Boys, Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.200, issue.1063, pp.542-554, 1950.
DOI : 10.1098/rspa.1950.0036

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera et al., materials simulation, Journal of Physics: Condensed Matter, vol.14, issue.11, p.2745, 2002.
DOI : 10.1088/0953-8984/14/11/302

S. Nosé, The Journal of chemical physics, 1984.

M. Parrinello and A. Rahman, Crystal Structure and Pair Potentials: A Molecular-Dynamics Study, Physical Review Letters, vol.45, issue.14, p.1196, 1980.
DOI : 10.1103/PhysRevLett.45.1196

S. J. Cook and P. Clancy, Comparison of semi-empirical potential functions for silicon and germanium, Physical Review B, vol.47, issue.13, p.7686, 1993.
DOI : 10.1103/PhysRevB.47.7686

G. J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, The Journal of Chemical Physics, vol.101, issue.5, p.4177, 1994.
DOI : 10.1063/1.467468

P. Dauber-osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest et al., Structure and energetics of ligand binding to proteins:Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins: Structure, Function, and Genetics, vol.235, issue.1, p.31, 1988.
DOI : 10.1002/prot.340040106

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, Journal of the American Chemical Society, vol.117, issue.19, p.5179, 1995.
DOI : 10.1021/ja00124a002

J. E. Jones, On the Determination of Molecular Fields. II. From the Equation of State of a Gas, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.106, issue.738, pp.463-477, 1924.
DOI : 10.1098/rspa.1924.0082

R. A. Buckingham, The Classical Equation of State of Gaseous Helium, Neon and Argon, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.168, issue.933, pp.264-283, 1938.
DOI : 10.1098/rspa.1938.0173

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee et al., A smooth particle mesh Ewald method, The Journal of Chemical Physics, vol.103, issue.19, p.8577, 1995.
DOI : 10.1063/1.470117

B. W. Van-beest and G. J. Kramer, calculations, Physical Review Letters, vol.64, issue.16, p.1955, 1990.
DOI : 10.1103/PhysRevLett.64.1955

M. Born, K. Huang, and E. M. Lax, Dynamical Theory of Crystal Lattices, American Journal of Physics, vol.23, issue.7, p.474, 1955.
DOI : 10.1119/1.1934059

T. Tadano and S. Tsuneyuki, with first-principles anharmonic force constants, Physical Review B, vol.92, issue.5, p.54301, 2015.
DOI : 10.1103/PhysRevB.92.054301

J. M. Ziman, Electrons and phonons : the theory of transport phenomena in solids, 1960.

R. Peierls, Zur kinetischen Theorie der W??rmeleitung in Kristallen, Annalen der Physik, vol.13, issue.8, p.1055, 1929.
DOI : 10.1002/andp.19293950803

A. Maznev and O. Wright, Demystifying umklapp vs normal scattering in lattice thermal conductivity, American Journal of Physics, vol.82, issue.11, p.1062, 2014.
DOI : 10.1119/1.4892612

A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri et al., Phonon hydrodynamics in two-dimensional materials, Nature Communications, vol.85, p.6400, 2015.
DOI : 10.1038/ncomms7400

N. Wiener, Acta mathematica 55, 1930.

M. S. Green, Markoff Random Processes and the Statistical Mechanics of Time???Dependent Phenomena. II. Irreversible Processes in Fluids, The Journal of Chemical Physics, vol.22, issue.3, p.398, 1954.
DOI : 10.1063/1.1740082

Z. Fan, L. F. Pereira, H. Wang, J. Zheng, D. Donadio et al., Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations, Physical Review B, vol.92, issue.9, p.94301, 2015.
DOI : 10.1103/PhysRevB.92.094301

J. Kohanoff, Phonon spectra from short non-thermally equilibrated molecular dynamics simulations, Computational Materials Science, vol.2, issue.2, p.221, 1994.
DOI : 10.1016/0927-0256(94)90103-1

C. Oligschleger and J. Schön, Simulation of thermal conductivity and heat transport in solids, Physical Review B, vol.59, issue.6, p.4125, 1999.
DOI : 10.1103/PhysRevB.59.4125

P. K. Schelling, S. R. Phillpot, and E. P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B, vol.65, issue.14, p.144306, 2002.
DOI : 10.1103/PhysRevB.65.144306

K. Bolotin, K. Sikes, J. Hone, H. Stormer, and E. P. Kim, Temperature-Dependent Transport in Suspended Graphene, Physical Review Letters, vol.101, issue.9, p.96802, 2008.
DOI : 10.1103/PhysRevLett.101.096802

URL : http://arxiv.org/abs/0805.1830

P. C. Martin and J. Schwinger, Theory of Many-Particle Systems. I, Physical Review, vol.115, issue.6, p.1342, 1959.
DOI : 10.1103/PhysRev.115.1342

S. Datta, Quantum transport : atom to transistor, 2005.
DOI : 10.1017/CBO9781139164313

M. Brandbyge, N. Kobayashi, and E. M. Tsukada, Conduction channels at finite bias in single-atom gold contacts, Physical Review B, vol.60, issue.24, p.17064, 1999.
DOI : 10.1103/PhysRevB.60.17064

M. Büttiker, Y. Imry, R. Landauer, and E. S. Pinhas, Generalized many-channel conductance formula with application to small rings, Physical Review B, vol.31, issue.10, p.6207, 1985.
DOI : 10.1103/PhysRevB.31.6207

T. Frederiksen, M. Paulsson, M. Brandbyge, and A. Jauho, Inelastic transport theory from first principles: Methodology and application to nanoscale devices, Physical Review B, vol.75, issue.20, p.205413, 2007.
DOI : 10.1103/PhysRevB.75.205413

URL : http://orbit.dtu.dk/ws/files/4783212/Thomas.pdf

T. Seideman, Current-driven phenomena in nanoelectronics, 2016.
DOI : 10.1201/b11114

M. Brandbyge, J. Mozos, P. Ordejón, J. Taylor, and E. K. Stokbro, Density-functional method for nonequilibrium electron transport, Physical Review B, vol.65, issue.16, p.165401, 2002.
DOI : 10.1103/PhysRevB.65.165401

URL : http://arxiv.org/abs/cond-mat/0110650

J. R. Hill and J. Sauer, Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica, The Journal of Physical Chemistry, vol.98, issue.4, p.1238, 1994.
DOI : 10.1021/j100055a032

S. Tsuneyuki, M. Tsukada, H. Aoki, and E. Y. Matsui, First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics, Physical Review Letters, vol.61, issue.7, p.869, 1988.
DOI : 10.1103/PhysRevLett.61.869

P. Vashishta, R. K. Kalia, J. P. Rino, and E. I. Ebbsjö, : A molecular-dynamics study of structural correlations, Physical Review B, vol.41, issue.17, p.12197, 1990.
DOI : 10.1103/PhysRevB.41.12197

P. Tangney and S. Scandolo, parametrized interatomic force field for silica, The Journal of Chemical Physics, vol.117, issue.19, p.8898, 2002.
DOI : 10.1063/1.1513312

S. Munetoh, T. Motooka, K. Moriguchi, and E. A. Shintani, Interatomic potential for Si???O systems using Tersoff parameterization, Computational Materials Science, vol.39, issue.2, p.334, 2007.
DOI : 10.1016/j.commatsci.2006.06.010

T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino, and E. I. Ohdomari, Novel Interatomic Potential Energy Function for Si, O Mixed Systems, Japanese Journal of Applied Physics, vol.38, issue.Part 2, No. 4A, p.366, 1999.
DOI : 10.1143/JJAP.38.L366

A. D. Kulkarni, D. G. Truhlar, S. G. Srinivasan, A. C. Van-duin, P. Norman et al., Oxygen Interactions with Silica Surfaces: Coupled Cluster and Density Functional Investigation and the Development of a New ReaxFF Potential, The Journal of Physical Chemistry C, vol.117, issue.1, p.258, 2013.
DOI : 10.1021/jp3086649

D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai et al., Germanium nanowire field-effect transistors with SiO2 and high-?? HfO2 gate dielectrics, Applied Physics Letters, vol.83, issue.12, p.2432, 2003.
DOI : 10.1063/1.1611644

D. Neumayer and E. Cartier, Materials characterization of ZrO2???SiO2 and HfO2???SiO2 binary oxides deposited by chemical solution deposition, Journal of Applied Physics, vol.90, issue.4, p.1801, 2001.
DOI : 10.1063/1.1382851

I. H. Son, J. H. Park, S. Kwon, S. Park, M. H. Rümmeli et al., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density, Nature Communications, vol.45, issue.135, p.7393, 2015.
DOI : 10.1038/ncomms8393

J. Yu, S. B. Sinnott, and S. R. Phillpot, system, Physical Review B, vol.75, issue.8, p.85311, 2007.
DOI : 10.1103/PhysRevB.75.085311

URL : https://hal.archives-ouvertes.fr/hal-00195434

T. Shan, B. D. Devine, J. M. Hawkins, A. Asthagiri, S. R. Phillpot et al., and amorphous silica, Physical Review B, vol.82, issue.23, p.235302, 2010.
DOI : 10.1103/PhysRevB.82.235302

T. Liang, B. Devine, S. R. Phillpot, and S. B. Sinnott, Variable Charge Reactive Potential for Hydrocarbons to Simulate Organic-Copper Interactions, The Journal of Physical Chemistry A, vol.116, issue.30, p.7976, 2012.
DOI : 10.1021/jp212083t

T. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot, Charge-optimized many-body potential for the hafnium/hafnium oxide system, Physical Review B, vol.81, issue.12, p.125328, 2010.
DOI : 10.1103/PhysRevB.81.125328

Y. Cheng, T. Shan, T. Liang, R. K. Behera, S. R. Phillpot et al., A charge optimized many-body (comb) potential for titanium and titania, Journal of Physics: Condensed Matter, vol.26, issue.31, p.315007, 2014.
DOI : 10.1088/0953-8984/26/31/315007

K. Choudhary, T. Liang, A. Chernatynskiy, Z. Lu, A. Goyal et al., Charge optimized many-body potential for aluminum, Journal of Physics: Condensed Matter, vol.27, issue.1, p.15003, 2014.
DOI : 10.1088/0953-8984/27/1/015003

K. Choudhary, T. Liang, A. Chernatynskiy, S. R. Phillpot, and S. B. Sinnott, materials, interfaces, and nanostructures, Journal of Physics: Condensed Matter, vol.27, issue.30, p.305004, 2015.
DOI : 10.1088/0953-8984/27/30/305004

Y. Cheng, T. Liang, J. Martinez, S. Phillpot, and E. S. Sinnott, A charge optimized many-body potential for titanium nitride (TiN), Journal of Physics: Condensed Matter, vol.26, issue.26, p.265004, 2014.
DOI : 10.1088/0953-8984/26/26/265004

A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M. J. Noordhoek et al., Charge optimized many-body (COMB) potential for dynamical simulation of Ni???Al phases, Journal of Physics: Condensed Matter, vol.27, issue.33, p.336302, 2015.
DOI : 10.1088/0953-8984/27/33/336302

Y. Li, T. Liang, S. B. Sinnott, and S. R. Phillpot, system, Journal of Physics: Condensed Matter, vol.25, issue.50, p.505401, 2013.
DOI : 10.1088/0953-8984/25/50/505401

URL : https://hal.archives-ouvertes.fr/inria-00100587

T. Liang, T. Shan, Y. Cheng, B. D. Devine, M. Noordhoek et al., Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials, Materials Science and Engineering: R: Reports, vol.74, issue.9, p.255, 2013.
DOI : 10.1016/j.mser.2013.07.001

F. H. Streitz and J. W. Mintmire, Electrostatic potentials for metal-oxide surfaces and interfaces, Physical Review B, vol.50, issue.16, p.11996, 1994.
DOI : 10.1103/PhysRevB.50.11996

W. J. Mortier, K. Van-genechten, and E. J. Gasteiger, Electronegativity equalization: application and parametrization, Journal of the American Chemical Society, vol.107, issue.4, p.829, 1985.
DOI : 10.1021/ja00290a017

R. F. Bader, Atoms in molecules, 1990.

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. I, The Journal of Chemical Physics, vol.23, issue.10, p.1833, 1955.
DOI : 10.1063/1.1740588

R. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies, The Journal of Chemical Physics, vol.23, issue.10, p.1841, 1955.
DOI : 10.1063/1.1740589

R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, Electronegativity: The density functional viewpoint, The Journal of Chemical Physics, vol.68, issue.8, p.3801, 1978.
DOI : 10.1063/1.436185

R. T. Sanderson, Electronegativity and bond energy, Journal of the American Chemical Society, vol.105, issue.8, p.2259, 1983.
DOI : 10.1021/ja00346a026

W. J. Mortier, S. K. Ghosh, and E. S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules, Journal of the American Chemical Society, vol.108, issue.15, p.4315, 1986.
DOI : 10.1021/ja00275a013

G. O. Janssens, B. G. Baekelandt, H. Toufar, W. J. Mortier, and R. A. Schoonheydt, Comparison of Cluster and Infinite Crystal Calculations on Zeolites with the Electronegativity Equalization Method (EEM), The Journal of Physical Chemistry, vol.99, issue.10, p.3251, 1995.
DOI : 10.1021/j100010a041

A. K. Rappe, W. A. Goddard, and I. , Charge equilibration for molecular dynamics simulations, The Journal of Physical Chemistry, vol.95, issue.8, p.3358, 1991.
DOI : 10.1021/j100161a070

A. C. Van-duin, S. Dasgupta, F. Lorant, and W. A. Goddard, ReaxFF:?? A Reactive Force Field for Hydrocarbons, The Journal of Physical Chemistry A, vol.105, issue.41, p.9396, 2001.
DOI : 10.1021/jp004368u

K. Chenoweth, A. C. Van-duin, and E. W. Goddard, ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation, The Journal of Physical Chemistry A, vol.112, issue.5, p.1040, 2008.
DOI : 10.1021/jp709896w

K. D. Nielson, A. C. Van-duin, J. Oxgaard, W. Deng, and W. A. Goddard, Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes, The Journal of Physical Chemistry A, vol.109, issue.3, p.493, 2005.
DOI : 10.1021/jp046244d

W. A. Goddard, I. , A. Van-duin, K. Chenoweth, M. Cheng et al., Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO x, Topics in Catalysis, vol.104, issue.92, p.93, 2006.
DOI : 10.1007/s11244-006-0074-x

E. Demiralp, T. Ça?in, W. A. Goddard, and I. , Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass, Physical Review Letters, vol.82, issue.8, p.1708, 1999.
DOI : 10.1103/PhysRevLett.82.1708

R. Tétot, A. Hallil, and J. Creuze, polymorphs, EPL (Europhysics Letters), vol.83, issue.4, p.40001, 2008.
DOI : 10.1209/0295-5075/83/40001

S. W. Rick, S. J. Stuart, and B. J. Berne, Dynamical fluctuating charge force fields: Application to liquid water, The Journal of Chemical Physics, vol.101, issue.7, p.6141, 1994.
DOI : 10.1063/1.468398

URL : http://arxiv.org/abs/chem-ph/9406002

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Physical Review Letters, vol.100, issue.13, p.136406, 2008.
DOI : 10.1103/PhysRevLett.100.136406

J. Heyd, G. E. Scuseria, and E. M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, The Journal of Chemical Physics, vol.118, issue.18, p.8207, 2003.
DOI : 10.1063/1.1564060

F. Weigend, F. Furche, and E. R. Ahlrichs, Gaussian basis sets of quadruple zeta valence quality for atoms H???Kr, The Journal of Chemical Physics, vol.119, issue.24, p.12753, 2003.
DOI : 10.1063/1.1627293

J. Harkless, D. Stillinger, and E. F. Stillinger, Clusters, The Journal of Physical Chemistry, vol.100, issue.4, p.1098, 1996.
DOI : 10.1021/jp950807r

R. Mozzi and B. Warren, The structure of vitreous silica, Journal of Applied Crystallography, vol.2, issue.4, p.164, 1969.
DOI : 10.1107/S0021889869006868

H. M. Aktulga, J. C. Fogarty, and S. Pandit, Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques, Parallel Computing, vol.38, issue.4-5, p.245, 2012.
DOI : 10.1016/j.parco.2011.08.005

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.462.7248

T. Demuth, Y. Jeanvoine, J. Hafner, and J. G. Ángyán, Polymorphism in silica studied in the local density and generalized-gradient approximations, Journal of Physics: Condensed Matter, vol.11, issue.19, p.3833, 1999.
DOI : 10.1088/0953-8984/11/19/306

B. Xiao, J. Sun, A. Ruzsinszky, J. Feng, and J. P. Perdew, crystals via the random phase approximation, Physical Review B, vol.86, issue.9, p.94109, 2012.
DOI : 10.1103/PhysRevB.86.094109

H. Hay, G. Ferlat, M. Casula, A. P. Seitsonen, and E. F. Mauri, study, Physical Review B, vol.92, issue.14, p.144111, 2015.
DOI : 10.1103/PhysRevB.92.144111

URL : https://hal.archives-ouvertes.fr/in2p3-00296721

M. Catti, B. Civalleri, and E. P. Ugliengo, Polymorphs by Quantum-Mechanical and Semiclassical Approaches, The Journal of Physical Chemistry B, vol.104, issue.31, p.7259, 2000.
DOI : 10.1021/jp000160x

A. Wright and M. Lehmann, The structure of quartz at 25 and 590??C determined by neutron diffraction, Journal of Solid State Chemistry, vol.36, issue.3, p.371, 1981.
DOI : 10.1016/0022-4596(81)90449-7

P. Villars and L. D. Calvert, Pearson's handbook of crystallographic data for intermetallic phases, 1991.

J. Shropshire, P. P. Keat, and P. A. Vaughan, The crystal structure of keatite, a new form of silica, Zeitschrift f??r Kristallographie, vol.112, issue.1-6, p.409, 1959.
DOI : 10.1524/zkri.1959.112.1-6.409

M. Sugiyama, S. Endo, and E. K. Koto, The crystal structure of stishovite under pressure up to 6GPa., Mineralogical Journal, vol.13, issue.7, p.455, 1987.
DOI : 10.2465/minerj.13.455

T. P. Goumans, A. Wander, W. A. Brown, and C. R. Catlow, Structure and stability of the (001) ??-quartz surface, Phys. Chem. Chem. Phys., vol.159, issue.17, p.2146, 2007.
DOI : 10.1039/B701176H

G. M. Rignanese, J. C. Charlier, and E. X. Gonze, First-principles molecular-dynamics investigation of the hydration mechanisms of the (0001) ??-quartz surface, Phys. Chem. Chem. Phys., vol.629, issue.8, p.1920, 2004.
DOI : 10.1039/B311842H

P. E. Norman, Atomistic Simulation of Non-Equilibrium Phenomena in Hypersonic Flows, 2013.

J. M. Carpenter and D. L. Price, Correlated Motions in Glasses Studied by Coherent Inelastic Neutron Scattering, Physical Review Letters, vol.54, issue.5, p.441, 1985.
DOI : 10.1103/PhysRevLett.54.441

A. Rahmani, M. Benoit, and E. C. Benoit, study, Physical Review B, vol.68, issue.18, p.184202, 2003.
DOI : 10.1103/PhysRevB.68.184202

URL : https://hal.archives-ouvertes.fr/in2p3-00005193

R. Car and M. Parrinello, Physical review letters 55, p.2471, 1985.

A. Wischnewski, U. Buchenau, A. J. Dianoux, W. A. Kamitakahara, and J. L. Zarestky, Sound-wave scattering in silica, Physical Review B, vol.57, issue.5, p.2663, 1998.
DOI : 10.1103/PhysRevB.57.2663

H. Kanamori, N. Fujii, and E. H. Mizutani, Thermal diffusivity measurement of rock-forming minerals from 300?? to 1100??K, Journal of Geophysical Research, vol.30, issue.2, p.595, 1968.
DOI : 10.1029/JB073i002p00595

Y. Yoon, R. Car, D. J. Srolovitz, and E. S. Scandolo, Thermal conductivity of crystalline quartz from classical simulations, Physical Review B, vol.70, issue.1, p.12302, 2004.
DOI : 10.1103/PhysRevB.70.012302

K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. Mcgaughey et al., Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nature Communications, vol.133, p.1640, 2013.
DOI : 10.1038/ncomms2630

URL : http://doi.org/10.1038/ncomms2630

D. G. Cahill and R. Pohl, Lattice Vibrations and Heat Transport in Crystals and Glasses, Annual Review of Physical Chemistry, vol.39, issue.1, p.93, 1988.
DOI : 10.1146/annurev.pc.39.100188.000521

S. M. Lee and D. G. Cahill, Heat transport in thin dielectric films, Journal of Applied Physics, vol.81, issue.6, p.2590, 1997.
DOI : 10.1063/1.363923

T. Yamane, N. Nagai, S. Katayama, and E. M. Todoki, Measurement of thermal conductivity of silicon dioxide thin films using a 3?? method, Journal of Applied Physics, vol.91, issue.12, p.9772, 2002.
DOI : 10.1063/1.1481958

J. M. Larkin and A. J. Mcgaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon, Physical Review B, vol.89, issue.14, p.144303, 2014.
DOI : 10.1103/PhysRevB.89.144303

S. Shenogin, A. Bodapati, P. Keblinski, and A. J. Mcgaughey, Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity, Journal of Applied Physics, vol.105, issue.3, p.34906, 2009.
DOI : 10.1063/1.3073954

J. Yeo, Z. Liu, and E. T. Ng, Enhanced thermal characterization of silica aerogels through molecular dynamics simulation, Modelling and Simulation in Materials Science and Engineering, vol.21, issue.7, p.75004, 2013.
DOI : 10.1088/0965-0393/21/7/075004

J. Chen, G. Zhang, and E. B. Li, Thermal contact resistance across nanoscale silicon dioxide and silicon interface, Journal of Applied Physics, vol.112, issue.6, p.64319, 2012.
DOI : 10.1063/1.4754513

URL : http://arxiv.org/abs/1210.0354

R. Devine, interface through infrared spectroscopy, Applied Physics Letters, vol.68, issue.22, p.3108, 1996.
DOI : 10.1063/1.116438

D. H. Hurley, M. Khafizov, and E. S. Shinde, Measurement of the Kapitza resistance across a bicrystal interface, Journal of Applied Physics, vol.109, issue.8, p.83504, 2011.
DOI : 10.1063/1.3573511

S. S. Mahajan, G. Subbarayan, and B. G. Sammakia, Estimating Kapitza Resistance Between <formula formulatype="inline"> <tex Notation="TeX">${\rm Si}\hbox{-}{\rm SiO}_{2}$</tex></formula> Interface Using Molecular Dynamics Simulations, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, issue.8, p.1132, 2011.
DOI : 10.1109/TCPMT.2011.2112356

E. Lampin, Q. Nguyen, P. Francioso, and E. F. Cleri, Thermal boundary resistance at silicon-silica interfaces by molecular dynamics simulations, Applied Physics Letters, vol.100, issue.13, p.131906, 2012.
DOI : 10.1063/1.3698325

URL : https://hal.archives-ouvertes.fr/hal-00787869

F. Bonaccorso, Z. Sun, T. Hasan, and E. A. Ferrari, Graphene photonics and optoelectronics, Nature Photonics, vol.10, issue.9, p.611, 2010.
DOI : 10.1038/nphoton.2010.186

URL : http://arxiv.org/abs/1006.4854

]. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, vol.76, issue.8, p.574, 2010.
DOI : 10.1038/nnano.2010.132

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu et al., Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes, ACS Nano, vol.4, issue.1, p.43, 2009.
DOI : 10.1021/nn900728d

T. Han, Y. Lee, M. Choi, S. Woo, S. Bae et al., Extremely efficient flexible organic light-emitting diodes with modified graphene anode, Nature Photonics, vol.8, issue.2, p.105, 2012.
DOI : 10.1038/nphoton.2011.318

J. H. Beck, R. A. Barton, M. P. Cox, K. Alexandrou, N. Petrone et al., Clean Graphene Electrodes on Organic Thin-Film Devices via Orthogonal Fluorinated Chemistry, Nano Letters, vol.15, issue.4, p.2555, 2015.
DOI : 10.1021/acs.nanolett.5b00110

Y. Wu, Y. Lin, A. A. Bol, K. A. Jenkins, F. Xia et al., High-frequency, scaled graphene transistors on diamond-like carbon, Nature, vol.5, issue.7341, p.74, 2011.
DOI : 10.1038/nature09979

URL : http://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=736773

Y. Wu, K. A. Jenkins, A. Valdes-garcia, D. B. Farmer, Y. Zhu et al., State-of-the-Art Graphene High-Frequency Electronics, Nano Letters, vol.12, issue.6, p.3062, 2012.
DOI : 10.1021/nl300904k

Y. Lin, K. A. Jenkins, A. Valdes-garcia, J. P. Small, D. B. Farmer et al., Operation of Graphene Transistors at Gigahertz Frequencies, Nano Letters, vol.9, issue.1, p.422, 2008.
DOI : 10.1021/nl803316h

R. Sordan, F. Traversi, and E. V. Russo, Logic gates with a single graphene transistor, Applied Physics Letters, vol.94, issue.7, p.73305, 2009.
DOI : 10.1063/1.3079663

G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari et al., Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths, Nano Letters, vol.14, issue.11, p.6109, 2014.
DOI : 10.1021/nl502059f

S. Lee, D. Broido, K. Esfarjani, and E. G. Chen, Hydrodynamic phonon transport in suspended graphene, Nature Communications, vol.328, p.6290, 2015.
DOI : 10.1038/ncomms7290

URL : http://doi.org/10.1038/ncomms7290

D. Singh, J. Y. Murthy, and T. S. Fisher, Spectral phonon conduction and dominant scattering pathways in graphene, Journal of Applied Physics, vol.110, issue.9, p.94312, 2011.
DOI : 10.1063/1.3656451

L. Lindsay, W. Li, J. Carrete, N. Mingo, D. Broido et al., Phonon thermal transport in strained and unstrained graphene from first principles, Physical Review B, vol.89, issue.15, p.155426, 2014.
DOI : 10.1103/PhysRevB.89.155426

Z. Ong and E. Pop, Effect of substrate modes on thermal transport in supported graphene, Physical Review B, vol.84, issue.7, p.75471, 2011.
DOI : 10.1103/PhysRevB.84.075471

A. Maradudin and A. Fein, Scattering of Neutrons by an Anharmonic Crystal, Physical Review, vol.128, issue.6, p.2589, 1962.
DOI : 10.1103/PhysRev.128.2589

R. Stedman, L. Almqvist, and E. G. Nilsson, Phonon-Frequency Distributions and Heat Capacities of Aluminum and Lead, Physical Review, vol.162, issue.3, p.549, 1967.
DOI : 10.1103/PhysRev.162.549

T. Hart, R. Aggarwal, and E. B. Lax, Temperature Dependence of Raman Scattering in Silicon, Physical Review B, vol.1, issue.2, p.638, 1970.
DOI : 10.1103/PhysRevB.1.638

Y. K. Koh and D. G. Cahill, Frequency dependence of the thermal conductivity of semiconductor alloys, Physical Review B, vol.76, issue.7, p.75207, 2007.
DOI : 10.1103/PhysRevB.76.075207

A. J. Minnich, J. Johnson, A. Schmidt, K. Esfarjani, M. Dresselhaus et al., Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths, Physical Review Letters, vol.107, issue.9, p.95901, 2011.
DOI : 10.1103/PhysRevLett.107.095901

K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. Mcgaughey et al., Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nature Communications, vol.133, p.1640, 2013.
DOI : 10.1038/ncomms2630

URL : http://doi.org/10.1038/ncomms2630

J. A. Johnson, A. A. Maznev, M. T. Bulsara, E. A. Fitzgerald, T. Harman et al., Phase-controlled, heterodyne laser-induced transient grating measurements of thermal transport properties in opaque material, Journal of Applied Physics, vol.111, issue.2, p.23503, 2012.
DOI : 10.1063/1.3675467

J. Callaway, Model for Lattice Thermal Conductivity at Low Temperatures, Physical Review, vol.113, issue.4, p.1046, 1959.
DOI : 10.1103/PhysRev.113.1046

M. Holland, Analysis of Lattice Thermal Conductivity, Physical Review, vol.132, issue.6, p.2461, 1963.
DOI : 10.1103/PhysRev.132.2461

G. A. Slack, Nonmetallic crystals with high thermal conductivity, Journal of Physics and Chemistry of Solids, vol.34, issue.2, p.321, 1973.
DOI : 10.1016/0022-3697(73)90092-9

Z. Ong, E. Pop, and E. J. Shiomi, Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica, Physical Review B, vol.84, issue.16, p.165418, 2011.
DOI : 10.1103/PhysRevB.84.165418

L. T. Kong, Phonon dispersion measured directly from molecular dynamics simulations, Computer Physics Communications, vol.182, issue.10, p.2201, 2011.
DOI : 10.1016/j.cpc.2011.04.019

L. T. Kong, G. Bartels, C. Campañá, C. Denniston, and M. H. Müser, Implementation of Green's function molecular dynamics: An extension to LAMMPS, Computer Physics Communications, vol.180, issue.6, p.1004, 2009.
DOI : 10.1016/j.cpc.2008.12.035

C. Campaná and M. H. Müser, Practical Green???s function approach to the simulation of elastic semi-infinite solids, Physical Review B, vol.74, issue.7, p.75420, 2006.
DOI : 10.1103/PhysRevB.74.075420

A. Taleb and D. Farías, Phonon dynamics of graphene on metals, Journal of Physics: Condensed Matter, vol.28, issue.10, p.103005, 2016.
DOI : 10.1088/0953-8984/28/10/103005

A. France-lanord, P. Soukiassian, C. Glattli, and E. E. Wimmer, : Validation and thermal transport in nanostructures, The Journal of Chemical Physics, vol.144, issue.10, p.104705, 2016.
DOI : 10.1063/1.4943396

L. Lindsay and D. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Physical Review B, vol.81, issue.20, p.205441, 2010.
DOI : 10.1103/PhysRevB.81.205441

M. Mohr, J. Maultzsch, E. Dobard?i?, S. Reich, I. Milo?evi? et al., Phonon dispersion of graphite by inelastic x-ray scattering, Physical Review B, vol.76, issue.3, p.35439, 2007.
DOI : 10.1103/PhysRevB.76.035439

J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and E. P. Ordejón, Phonon Dispersion in Graphite, Physical Review Letters, vol.92, issue.7, p.75501, 2004.
DOI : 10.1103/PhysRevLett.92.075501

S. Grimme, J. Antony, S. Ehrlich, and E. H. Krieg, parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics, vol.132, issue.15, p.154104, 2010.
DOI : 10.1063/1.3382344

A. K. Rappé, C. J. Casewit, K. Colwell, W. Goddard, I. et al., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society, vol.114, issue.25, p.10024, 1992.
DOI : 10.1021/ja00051a040

]. Y. Lee, A. J. Pak, E. Paek, and G. S. Hwang, Principal Role of Contact-Force Distribution in Determining the Thermal Conductivity of Supported Graphene, Physical Review Applied, vol.4, issue.1, p.14006, 2015.
DOI : 10.1103/PhysRevApplied.4.014006

M. G. Holland, Analysis of Lattice Thermal Conductivity, Physical Review, vol.132, issue.6, p.2461, 1963.
DOI : 10.1103/PhysRev.132.2461

P. Klemens, The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical), Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.208, issue.1092, pp.108-133, 1951.
DOI : 10.1098/rspa.1951.0147

L. Lindsay, D. Broido, and E. N. Mingo, Flexural phonons and thermal transport in graphene, Physical Review B, vol.82, issue.11, p.115427, 2010.
DOI : 10.1103/PhysRevB.82.115427

A. C. Neto, F. Guinea, and N. M. Peres, Drawing conclusions from graphene, Physics World, vol.19, issue.11, p.33, 2006.
DOI : 10.1088/2058-7058/19/11/34

V. Gusynin and S. Sharapov, Unconventional Integer Quantum Hall Effect in Graphene, Physical Review Letters, vol.95, issue.14, p.146801, 2005.
DOI : 10.1103/PhysRevLett.95.146801

N. Peres, F. Guinea, and A. C. Neto, Electronic properties of disordered two-dimensional carbon, Physical Review B, vol.73, issue.12, p.125411, 2006.
DOI : 10.1103/PhysRevB.73.125411

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin et al., Direct observation of a widely tunable bandgap in bilayer graphene, Nature, vol.102, issue.7248, p.820, 2009.
DOI : 10.1038/nature08105

F. Guinea, A. C. Neto, and E. N. Peres, Electronic states and Landau levels in graphene stacks, Physical Review B, vol.73, issue.24, p.245426, 2006.
DOI : 10.1103/PhysRevB.73.245426

B. Partoens and F. Peeters, point, Physical Review B, vol.74, issue.7, p.75404, 2006.
DOI : 10.1103/PhysRevB.74.075404

E. Mccann and V. I. Fal-'ko, Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer, Physical Review Letters, vol.96, issue.8, p.86805, 2006.
DOI : 10.1103/PhysRevLett.96.086805

E. Mccann, Asymmetry gap in the electronic band structure of bilayer graphene, Physical Review B, vol.74, issue.16, p.161403, 2006.
DOI : 10.1103/PhysRevB.74.161403

E. V. Castro, K. Novoselov, S. Morozov, N. Peres, J. L. Santos et al., Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect, Physical Review Letters, vol.99, issue.21, p.216802, 2007.
DOI : 10.1103/PhysRevLett.99.216802

D. C. Elias, R. R. Nair, T. Mohiuddin, S. Morozov, P. Blake et al., Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science, vol.323, issue.5914, p.610, 2009.
DOI : 10.1126/science.1167130

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks et al., Bandgap opening in graphene induced by patterned hydrogen adsorption, Nature Materials, vol.78, issue.4, p.315, 2010.
DOI : 10.1038/nmat2710

J. G. Pedersen and T. G. Pedersen, Band gaps in graphene via periodic electrostatic gating, Physical Review B, vol.85, issue.23, p.235432, 2012.
DOI : 10.1103/PhysRevB.85.235432

S. Choi, S. Jhi, and Y. Son, Effects of strain on electronic properties of graphene, Physical Review B, vol.81, issue.8, p.81407, 2010.
DOI : 10.1103/PhysRevB.81.081407

M. Kim, N. S. Safron, E. Han, M. S. Arnold, and E. P. Gopalan, Fabrication and Characterization of Large-Area, Semiconducting Nanoperforated Graphene Materials, Nano Letters, vol.10, issue.4, p.1125, 2010.
DOI : 10.1021/nl9032318

T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen, A. Jauho et al., Graphene Antidot Lattices: Designed Defects and Spin Qubits, Physical Review Letters, vol.100, issue.13, p.136804, 2008.
DOI : 10.1103/PhysRevLett.100.136804

URL : http://arxiv.org/abs/0802.4019

L. Yang, C. Park, Y. Son, M. L. Cohen, and S. G. Louie, Quasiparticle Energies and Band Gaps in Graphene Nanoribbons, Physical Review Letters, vol.99, issue.18, p.186801, 2007.
DOI : 10.1103/PhysRevLett.99.186801

K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B, vol.54, issue.24, p.17954, 1996.
DOI : 10.1103/PhysRevB.54.17954

L. Brey and H. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation, Physical Review B, vol.73, issue.23, p.235411, 2006.
DOI : 10.1103/PhysRevB.73.235411

S. Zhou, G. Gweon, A. Fedorov, P. First, W. De-heer et al., Substrate-induced bandgap opening in epitaxial graphene, Nature Materials, vol.51, issue.10, p.770, 2007.
DOI : 10.1038/nmat2003

URL : http://arxiv.org/abs/0709.1706

P. Y. Huang, S. Kurasch, A. Srivastava, V. Skakalova, J. Kotakoski et al., Direct Imaging of a Two-Dimensional Silica Glass on Graphene, Nano Letters, vol.12, issue.2, p.1081, 2012.
DOI : 10.1021/nl204423x

W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang et al., Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nature Nanotechnology, vol.76, issue.9, p.562, 2009.
DOI : 10.1038/nnano.2009.191

S. J. Chae, F. Güne?, K. K. Kim, E. S. Kim, G. H. Han et al., Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation, Advanced Materials, vol.446, issue.22, p.2328, 2009.
DOI : 10.1002/adma.200803016

Z. Pan, N. Liu, L. Fu, and E. Z. Liu, Wrinkle Engineering: A New Approach to Massive Graphene Nanoribbon Arrays, Journal of the American Chemical Society, vol.133, issue.44, p.17578, 2011.
DOI : 10.1021/ja207517u

J. P. Perdew, K. Burke, and E. M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, p.3865, 1996.
DOI : 10.1103/PhysRevLett.77.3865

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, vol.10, issue.15, p.1787, 2006.
DOI : 10.1002/jcc.20495

D. Vanderbilt and S. G. Louie, Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method, Physical Review B, vol.30, issue.10, p.6118, 1984.
DOI : 10.1103/PhysRevB.30.6118

D. D. Johnson, Modified Broyden???s method for accelerating convergence in self-consistent calculations, Physical Review B, vol.38, issue.18, p.12807, 1988.
DOI : 10.1103/PhysRevB.38.12807

URL : https://works.bepress.com/duane_johnson/76/download/

M. G. Reuter and J. C. Hill, An efficient, block-by-block algorithm for inverting a block tridiagonal, nearly block Toeplitz matrix, Computational Science & Discovery, vol.5, issue.1, p.14009, 2012.
DOI : 10.1088/1749-4699/5/1/014009

J. T. Falkenberg and M. Brandbyge, -point sampling, Beilstein Journal of Nanotechnology, vol.6, p.1603, 2015.
DOI : 10.3762/bjnano.6.164

URL : https://hal.archives-ouvertes.fr/hal-01077129

J. L. Mañes, F. Guinea, and M. A. Vozmediano, Existence and topological stability of Fermi points in multilayered graphene, Physical Review B, vol.75, issue.15, pp.155424-245444, 2007.
DOI : 10.1103/PhysRevB.75.155424

]. T. Low, F. Guinea, and M. Katsnelson, Gaps tunable by electrostatic gates in strained graphene, Physical Review B, vol.83, issue.19, p.195436, 2011.
DOI : 10.1103/PhysRevB.83.195436

]. T. Wehling, A. Balatsky, A. Tsvelik, M. Katsnelson, and E. A. Lichtenstein, Midgap states in corrugated graphene: Ab initio calculations and effective field theory, EPL (Europhysics Letters), vol.84, issue.1, p.17003, 2008.
DOI : 10.1209/0295-5075/84/17003

URL : http://arxiv.org/abs/0710.5828

F. Guinea, M. Katsnelson, and E. M. Vozmediano, Midgap states and charge inhomogeneities in corrugated graphene, Physical Review B, vol.77, issue.7, p.75422, 2008.
DOI : 10.1103/PhysRevB.77.075422

URL : http://arxiv.org/abs/0707.0682

S. Y. Lee, D. L. Duong, Q. A. Vu, Y. Jin, P. Kim et al., Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio, ACS Nano, vol.9, issue.9, p.9034, 2015.
DOI : 10.1021/acsnano.5b03130

F. Xia, D. B. Farmer, Y. Lin, and E. P. Avouris, Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature, Nano Letters, vol.10, issue.2, p.715, 2010.
DOI : 10.1021/nl9039636

G. Kané, M. Lazzeri, and E. F. Mauri, High-field transport in graphene: the impact of Zener tunneling, Journal of Physics: Condensed Matter, vol.27, issue.16, p.164205, 2015.
DOI : 10.1088/0953-8984/27/16/164205

N. Papior, T. Gunst, D. Stradi, and E. M. Brandbyge, Manipulating the voltage drop in graphene nanojunctions using a gate potential, Phys. Chem. Chem. Phys., vol.17, issue.3, p.1025, 2016.
DOI : 10.1039/C5CP04613K

J. Guignard, D. Leprat, D. Glattli, F. Schopfer, and E. W. Poirier, Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements, Physical Review B, vol.85, issue.16, p.165420, 2012.
DOI : 10.1103/PhysRevB.85.165420

M. Paulsson and M. Brandbyge, Transmission eigenchannels from nonequilibrium Green???s functions, Physical Review B, vol.76, issue.11, p.115117, 2007.
DOI : 10.1103/PhysRevB.76.115117

URL : http://arxiv.org/abs/cond-mat/0702295

A. Carré, S. Ispas, J. Horbach, and E. W. Kob, Developing empirical potentials from ab initio simulations: The case of amorphous silica, Computational Materials Science, vol.124, p.323, 2016.
DOI : 10.1016/j.commatsci.2016.07.041

J. Y. Kim, J. Lee, and J. C. Grossman, Thermal Transport in Functionalized Graphene, ACS Nano, vol.6, issue.10, p.9050, 2012.
DOI : 10.1021/nn3031595