]. S. Terry, J. Jerman, and J. Angell, A Gas Chromatographic Air Analyzer Fabricated, CHAPTER. CONCLUSION AND PERSPECTIVES Bibliography, issue.1, 1979.
DOI : 10.1109/t-ed.1979.19791

M. P. Macdonald, G. C. Spalding, and K. Dholakia, Microfluidic sorting in an optical lattice, Nature, vol.426, issue.6965, pp.421-424, 2003.
DOI : 10.1038/nature02144

D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. Tse et al., Label-free cell separation and sorting in microfluidic systems, Analytical and Bioanalytical Chemistry, vol.7, issue.8, pp.3249-3267, 2010.
DOI : 10.1007/s00216-010-3721-9

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911537

M. Hagiwara, T. Kawahara, Y. Yamanishi, and F. Arai, Precise Control of Magnetically Driven Microtools for Enucleation of Oocytes in a Microfluidic Chip, Advanced Robotics, vol.22, issue.8, pp.991-1005, 2011.
DOI : 10.1163/016918611X568611

T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, Selective Trapping and Manipulation of Microscale Objects Using Mobile Microvortices, Nano Letters, vol.12, issue.1, pp.156-160, 2012.
DOI : 10.1021/nl2032487

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona et al., Magnetic Helical Microswimmers Functionalized with Lipoplexes for Targeted Gene Delivery, Advanced Functional Materials, vol.10, issue.11, pp.1666-1671, 2015.
DOI : 10.1002/adfm.201403891

T. Kawahara, M. Sugita, M. Hagiwara, F. Arai, H. Kawano et al., On-chip microrobot for investigating the response of aquatic microorganisms to mechanical stimulation, Lab on a Chip, vol.2, issue.6, pp.1070-1078, 2013.
DOI : 10.1039/c2lc41190c

W. Jing and D. J. Cappelleri, Micro-force sensing mobile microrobots, p.949405, 2015.
DOI : 10.1117/12.2183259

M. Medina-sánchez, L. Schwarz, A. K. Meyer, F. Hebenstreit, and O. G. Schmidt, Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors, Nano Letters, vol.16, issue.1, pp.555-561, 2016.
DOI : 10.1021/acs.nanolett.5b04221

P. M. Lintilhac and T. B. Vesecky, Stress-induced alignment of division plane in plant tissues grown in vitro, Nature, vol.37, issue.5949, 1984.
DOI : 10.1038/307363a0

A. Routier-kierzkowska, A. Weber, P. Kochova, D. Felekis, B. J. Nelson et al., Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics, PLANT PHYSIOLOGY, vol.158, issue.4, pp.1514-1522, 2012.
DOI : 10.1104/pp.111.191460

G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder, and R. K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids, Nature Biotechnology, vol.14, issue.8, pp.778-783, 1997.
DOI : 10.1038/nbt0897-778

B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, Cyclic mechanical strain regulates the development of engineered smooth muscle tissue, Nature Biotechnology, vol.17, issue.10, pp.979-983, 1999.
DOI : 10.1038/13671

C. J. Meyer, F. J. Alenghat, P. Rim, J. H. Fong, B. Fabry et al., Mechanical control of cyclic AMP signalling and gene transcription through integrins, Nature Cell Biology, vol.2, pp.666-668, 2000.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. Mcdonald et al., Cell Stiffness Is a Biomarker of the Metastatic Potential of Ovarian Cancer Cells, PLoS ONE, vol.7, issue.10, 2012.
DOI : 10.1371/journal.pone.0046609.s005

V. Swaminathan, K. Mythreye, E. Tim-o-'brien, A. Berchuck, G. C. Blobe et al., Mechanical Stiffness Grades Metastatic Potential in Patient Tumor Cells and in Cancer Cell Lines, Cancer Research, vol.71, issue.15, pp.5075-5080, 2011.
DOI : 10.1158/0008-5472.CAN-11-0247

T. Itabashi, Y. Terada, K. Kuwana, T. Kan, I. Shimoyama et al., Mechanical impulses can control metaphase progression in a mammalian cell, Proceedings of the National Academy of Sciences, vol.109, issue.19, pp.7320-7325, 2012.
DOI : 10.1073/pnas.1116749109

T. R. Strick, J. F. Allemand, V. Croquette, and D. Bensimon, Twisting and stretching single DNA molecules, Progress in Biophysics and Molecular Biology, vol.74, issue.1-2, pp.115-140, 2000.
DOI : 10.1016/S0079-6107(00)00018-3

Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surface Science, vol.290, pp.688-692, 1993.
DOI : 10.1016/0039-6028(93)90582-5

N. F. Martínez and R. García, Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy, Nanotechnology, vol.17, issue.7, pp.167-172, 2006.
DOI : 10.1088/0957-4484/17/7/S11

P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner et al., Tapping mode atomic force microscopy in liquids, Applied Physics Letters, vol.64, issue.13, pp.1738-1740, 1994.
DOI : 10.1063/1.111795

P. Gravesen, J. Branebjerg, and O. S. Jensen, Microfluidics-a review, Journal of Micromechanics and Microengineering, vol.3, issue.4, p.168, 1993.
DOI : 10.1088/0960-1317/3/4/002

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, A particle image velocimetry system for microfluidics, Experiments in Fluids, vol.25, issue.4, pp.316-319, 1998.
DOI : 10.1007/s003480050235

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

G. U. Lee, L. A. Chrisey, and R. J. Colton, Direct measurement of the forces between complementary strands of DNA, Science, vol.266, issue.5186, pp.771-774, 1994.
DOI : 10.1126/science.7973628

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy., Proceedings of the National Academy of Sciences, vol.93, issue.8, pp.3477-3481, 1996.
DOI : 10.1073/pnas.93.8.3477

V. T. Moy, E. L. Florin, and H. E. Gaub, Intermolecular forces and energies between ligands and receptors, Science, vol.266, issue.5183, pp.257-259, 1994.
DOI : 10.1126/science.7939660

M. J. Doktycz, C. J. Sullivan, P. R. Hoyt, D. A. Pelletier, S. Wu et al., AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces, Ultramicroscopy, vol.97, issue.1-4, pp.209-216, 2003.
DOI : 10.1016/S0304-3991(03)00045-7

A. Ashkin, Acceleration and Trapping of Particles by Radiation Pressure, Physical Review Letters, vol.24, issue.4, pp.156-159, 1970.
DOI : 10.1103/PhysRevLett.24.156

A. Ashkin, J. M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature, vol.330, issue.6150, pp.769-771, 1987.
DOI : 10.1038/330769a0

A. H. De-vries, B. E. Krenn, R. Van-driel, and J. S. Kanger, Micro Magnetic Tweezers for Nanomanipulation Inside Live Cells, Biophysical Journal, vol.88, issue.3, pp.2137-2144, 2005.
DOI : 10.1529/biophysj.104.052035

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Characterization of Photodamage to Escherichia coli in Optical Traps, Biophysical Journal, vol.77, issue.5, pp.2856-63, 1999.
DOI : 10.1016/S0006-3495(99)77117-1

M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, An Automated Two-Dimensional Optical Force Clamp for Single Molecule Studies, Biophysical Journal, vol.83, issue.1, pp.491-501, 2002.
DOI : 10.1016/S0006-3495(02)75185-0

URL : http://doi.org/10.1016/s0006-3495(02)75185-0

J. Yan, D. Skoko, and J. F. Marko, Near-field-magnetic-tweezer manipulation of single DNA molecules, Physical Review E, vol.70, issue.1, pp.1-5, 2004.
DOI : 10.1103/PhysRevE.70.011905

J. K. Fisher, J. Cribb, K. V. Desai, L. Vicci, B. Wilde et al., Thin-foil magnetic force system for high-numerical-aperture microscopy, Review of Scientific Instruments, vol.77, issue.2, p.23702, 2006.
DOI : 10.1063/1.2166509

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513178

N. Willium, C. Tang, H. Tu-chong, R. T. Howe, ". W. Tang et al., Laterally driven polysilicon resonant microstructures, Sensors and Actuators A: Physical, vol.20, pp.25-32, 1989.

R. Legtenberg, .. W. Groeneveld, and M. Elwenspoek, Comb-drive actuators for large displacements, Journal of Micromechanics and Microengineering, vol.6, issue.3, pp.320-329, 1999.
DOI : 10.1088/0960-1317/6/3/004

URL : http://eprints.eemcs.utwente.nl/13564/01/JMMME_6_320.pdf

Y. Sun, B. J. Nelson, D. P. Potasek, and E. Enikov, A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives, Journal of Micromechanics and Microengineering, vol.12, issue.6, pp.832-840, 2002.
DOI : 10.1088/0960-1317/12/6/314

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, Optical tweezers applied to a microfluidic system, Lab Chip, vol.1, issue.3, pp.196-200, 2004.
DOI : 10.1039/B307960K

URL : https://pure.ltu.se/ws/files/415655/Article.pdf

X. Wang, S. Chen, and D. Sun, Robot-assisted automatic cell sorting with combined optical tweezer and microfluidic chip technologies, 2011 IEEE International Conference on Robotics and Automation, pp.6003-6008, 2011.
DOI : 10.1109/ICRA.2011.5979662

K. C. Neuman and A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nature Methods, vol.75, issue.6, pp.491-505, 2008.
DOI : 10.1038/nmeth.1218

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397402

S. Chattopadhyay, R. Moldovan, C. Yeung, and X. L. Wu, Swimming efficiency of bacterium Escherichia coli, Proceedings of the National Academy of Sciences, pp.13712-13717, 2006.
DOI : 10.1073/pnas.0602043103

S. E. Chung, X. Dong, and M. Sitti, Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper, Lab Chip, vol.94, issue.7, pp.1667-1676, 2015.
DOI : 10.1039/C5LC00009B

K. B. Yesin, Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields, The International Journal of Robotics Research, vol.25, issue.5-6, pp.527-536, 2006.
DOI : 10.1177/0278364906065389

M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul et al., OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation, IEEE Transactions on Robotics, vol.26, issue.6, pp.1006-1017, 2010.
DOI : 10.1109/TRO.2010.2073030

T. Qiu, T. Lee, A. G. Mark, K. I. Morozov, R. Münster et al., Swimming by reciprocal motion at low Reynolds number, Nature Communications, vol.66, 2014.
DOI : 10.1038/ncomms6119

URL : http://doi.org/10.1038/ncomms6119

J. Feng, J. Yuan, and S. K. Cho, Micropropulsion by an acoustic bubble for navigating microfluidic spaces, Lab Chip, vol.30, issue.6, pp.1554-1562, 2015.
DOI : 10.1039/C4LC01266F

H. W. Tung, K. E. Peyer, D. F. Sargent, and B. J. Nelson, Noncontact manipulation using a transversely magnetized rolling robot, Applied Physics Letters, vol.103, issue.11, p.114101, 2013.
DOI : 10.1063/1.4820776

H. Salmon, L. Couraud, and G. Hwang, Swimming property characterizations of Magnetic Polarizable microrobots, 2013 IEEE International Conference on Robotics and Automation, pp.5520-5526, 2013.
DOI : 10.1109/ICRA.2013.6631369

G. Hwang, R. Braive, L. Couraud, O. Cavanna, I. Abdelkarim et al., Electro-osmotic propulsion of helical nanobelt swimmers, The International Journal of Robotics Research, vol.16, issue.17, pp.806-819, 2011.
DOI : 10.1177/0278364911407231

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-obregõn et al., Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport, Advanced Materials, vol.22, issue.6, pp.811-816, 2012.
DOI : 10.1002/adma.201103818

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong et al., How Should Microrobots Swim?, The International Journal of Robotics Research, vol.18, issue.5, pp.1434-1447, 2009.
DOI : 10.1063/1.3079655

K. E. Peyer, L. Zhang, B. E. Kratochvil, and B. J. Nelson, Non-ideal swimming of artificial bacterial flagella near a surface, 2010 IEEE International Conference on Robotics and Automation, pp.96-101, 2010.
DOI : 10.1109/ROBOT.2010.5509602

L. Zhang, J. J. Abbott, L. Dong, B. E. Kratochvil, D. Bell et al., Artificial bacterial flagella: Fabrication and magnetic control, Applied Physics Letters, vol.94, issue.6, p.64107, 2009.
DOI : 10.1063/1.3079655

A. W. Mahoney, J. C. Sarrazin, E. Bamberg, and J. J. Abbott, Velocity Control with Gravity Compensation for Magnetic Helical Microswimmers, Advanced Robotics, vol.18, issue.8, pp.1007-1028, 2011.
DOI : 10.1163/016918611X568620

J. Burdick, R. Laocharoensuk, P. M. Wheat, J. D. Posner, and J. Wang, Synthetic Nanomotors in Microchannel Networks: Directional Microchip Motion and Controlled Manipulation of Cargo, Journal of the American Chemical Society, vol.130, issue.26, pp.8164-8165, 2008.
DOI : 10.1021/ja803529u

J. Wang, Cargo-towing synthetic nanomachines: Towards active transport in microchip devices, Lab on a Chip, vol.50, issue.11, 2012.
DOI : 10.1039/c2lc00003b

H. Morimoto, T. Ukai, Y. Nagaoka, N. Grobert, and T. Maekawa, Tumbling motion of magnetic particles on a magnetic substrate induced by a rotational magnetic field, Physical Review E, vol.78, issue.2, p.21403, 2008.
DOI : 10.1103/PhysRevE.78.021403

T. Courcier, H. Joisten, P. Sabon, S. Leulmi, T. Dietsch et al., Tumbling motion yielding fast displacements of synthetic antiferromagnetic nanoparticles for biological applications, Applied Physics Letters, vol.99, issue.9, p.93107, 2011.
DOI : 10.1063/1.3633121

L. Zhang, T. Petit, Y. Lu, B. E. Kratochvil, K. E. Peyer et al., Controlled Propulsion and Cargo Transport of Rotating Nickel Nanowires near a Patterned Solid Surface, ACS Nano, vol.4, issue.10, pp.6228-6234, 2010.
DOI : 10.1021/nn101861n

A. Ghost and P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers, Nano Letters, vol.9, issue.6, pp.2243-2245, 2009.

J. Li, S. Sattayasamitsathit, R. Dong, W. Gao, R. Tam et al., Template electrosynthesis of tailored-made helical nanoswimmers, Nanoscale, vol.72, issue.16, pp.9415-9420, 2013.
DOI : 10.1039/c3fd00105a

Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, and J. M. Tour, Directional Control in Thermally Driven Single-Molecule Nanocars, Nano Letters, vol.5, issue.11, pp.2330-2334, 2005.
DOI : 10.1021/nl051915k

E. Russell, Fly on the wall, pp.65-67, 2005.

S. Sánchez and M. Pumera, Nanorobots: The Ultimate Wireless Self-Propelled Sensing and Actuating Devices, Chemistry - An Asian Journal, vol.127, issue.9, 2009.
DOI : 10.1002/asia.200900143

I. A. Ivan, G. Hwang, J. Agnus, N. Chaillet, and S. Régnier, NIST and IEEE Challenge for MagPieR: The Fastest Mobile Microrobots in the World, IEEE Robotics & Automation Magazine, vol.20, issue.2, pp.63-70, 2013.
DOI : 10.1109/MRA.2012.2201599

H. Choi, J. Choi, G. Jang, J. Park, and S. Park, Two-dimensional actuation of a microrobot with a stationary two-pair coil system, Smart Materials and Structures, vol.18, issue.5, p.55007, 2009.
DOI : 10.1088/0964-1726/18/5/055007

H. Salmon, L. Couraud, and G. Hwang, Swimming property characterizations of Magnetic Polarizable microrobots, 2013 IEEE International Conference on Robotics and Automation, pp.5520-5526, 2013.
DOI : 10.1109/ICRA.2013.6631369

N. C. Hess, D. J. Carlson, J. D. Inder, E. Jesulola, J. R. Mcfarlane et al., Clinically meaningful blood pressure reductions with low intensity isometric handgrip exercise. A randomized trial, Physiological Research, vol.65, issue.3, pp.461-468, 2016.

T. Honda, K. I. Arai, and K. Ishiyama, Micro swimming mechanisms propelled by external magnetic fields, IEEE Transactions on Magnetics, vol.32, issue.5, pp.5085-5087, 1996.
DOI : 10.1109/20.539498

T. Xu, Propulsion Characteristics and Visual Servo Control of Scaled-up Helical Microswimmers, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00977906

D. Schamel, A. G. Mark, J. G. Gibbs, C. Miksch, K. I. Morozov et al., Nanopropellers and Their Actuation in Complex Viscoelastic Media, ACS Nano, vol.8, issue.9, pp.8794-8801, 2014.
DOI : 10.1021/nn502360t

G. Hwang, I. A. Ivan, J. Agnus, H. Salmon, S. Alvo et al., Mobile microrobotic manipulator in microfluidics, Sensors and Actuators A: Physical, vol.215, pp.56-64, 2014.
DOI : 10.1016/j.sna.2013.09.030

T. Hayakawa, S. Fukada, and F. Arai, Fabrication of an On-Chip Nanorobot Integrating Functional Nanomaterials for Single-Cell Punctures, IEEE Transactions on Robotics, vol.30, issue.1, pp.59-67, 2014.
DOI : 10.1109/TRO.2013.2284402

Y. Ding, F. Qiu, X. Casadevall-i-solvas, F. W. Chiu, B. J. Nelson et al., Microfluidic-Based Droplet and Cell Manipulations Using Artificial Bacterial Flagella, Micromachines, vol.7, issue.2, pp.1-13, 2016.
DOI : 10.3390/mi7020025

URL : http://doi.org/10.3390/mi7020025

P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagués, Controlled Swimming in Confined Fluids of Magnetically Actuated Colloidal Rotors, Physical Review Letters, vol.101, issue.21, p.218304, 2008.
DOI : 10.1103/PhysRevLett.101.218304

L. Zhang, T. Petit, Y. Lu, B. E. Kratochvil, K. E. Peyer et al., Controlled Propulsion and Cargo Transport of Rotating Nickel Nanowires near a Patterned Solid Surface, ACS Nano, vol.4, issue.10, pp.6228-6234, 2010.
DOI : 10.1021/nn101861n

S. Sanchez, A. A. Solovev, S. M. Harazim, and O. G. Schmidt, Microbots Swimming in the Flowing Streams of Microfluidic Channels, Journal of the American Chemical Society, vol.133, issue.4, pp.701-703, 2011.
DOI : 10.1021/ja109627w

A. G. Mark, J. G. Gibbs, T. Lee, and P. Fischer, Hybrid nanocolloids with programmed three-dimensional shape and material composition, Nature Materials, vol.12, issue.9, pp.802-809, 2013.
DOI : 10.1364/JOSAA.11.001491

URL : http://hdl.handle.net/11858/00-001M-0000-0014-C11C-3

T. Xu, G. Hwang, N. Andreff, and S. Regnier, Modeling and Swimming Property Characterizations of Scaled-Up Helical Microswimmers, IEEE/ASME Transactions on Mechatronics, vol.19, issue.3, pp.1069-1079, 2014.
DOI : 10.1109/TMECH.2013.2269802

URL : https://hal.archives-ouvertes.fr/hal-01324577

L. L. Erskine, A. Heikal, S. M. Kuebler, M. Rumi, X. Wu et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Solid State Physics, vol.398, pp.51-54, 1999.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann et al., Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility, Biomedical Microdevices, vol.10, issue.6, pp.997-1003, 2013.
DOI : 10.1007/s10544-013-9791-7

J. K. Gansel, J. K. Gansel, M. Thiel, M. S. Rill, M. Decker et al., Gold Helix Photonic Metamaterial as Broadband Circular Polarizer, Science, vol.325, issue.5947, pp.1513-1515, 2011.
DOI : 10.1126/science.1177031

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.220.7533

K. Sugioka, Y. Cheng, and K. Midorikawa, Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture, Applied Physics A, vol.85, issue.1, pp.1-10, 2005.
DOI : 10.1103/PhysRevLett.85.3161

J. Cheng, M. Yen, C. Wei, Y. Chuang, and T. Young, Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip, Journal of Micromechanics and Microengineering, vol.15, issue.6, pp.1147-1156, 2005.
DOI : 10.1088/0960-1317/15/6/005

D. C. Duffy, J. C. Mcdonald, O. J. Schueller, and G. M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Analytical Chemistry, vol.70, issue.23, pp.4974-4984, 1998.
DOI : 10.1021/ac980656z

M. A. Unger, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

C. Greiner, SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography, Journal of Micromechanics and Microengineering, vol.17, issue.6, pp.81-95, 2007.

T. Honda, K. I. Arai, and K. Ishiyama, Micro swimming mechanisms propelled by external magnetic fields, IEEE Transactions on Magnetics, vol.32, issue.5, pp.5085-5087, 1996.
DOI : 10.1109/20.539498

T. W. Fountain, P. V. Kailat, and J. J. Abbott, Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator, 2010 IEEE International Conference on Robotics and Automation, pp.576-581, 2010.
DOI : 10.1109/ROBOT.2010.5509245

M. E. Alshafeei, A. Hosney, A. Klingner, S. Misra, and I. S. Khalil, Magnetic-based motion control of a helical robot using two synchronized rotating dipole fields, 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp.12-15, 2014.
DOI : 10.1109/BIOROB.2014.6913768

K. B. Yesin, K. Vollmers, and B. J. Nelson, Guidance of magnetic intraocular microrobots by active defocused tracking, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), pp.3309-3314, 2004.
DOI : 10.1109/IROS.2004.1389927

F. Schick, Whole-body MRI at high field: technical limits and clinical potential, European Radiology, vol.14, issue.Suppl 5, pp.946-959, 2005.
DOI : 10.1007/s00330-005-2678-0

J. Duryea, M. Magalnick, S. Alli, L. Yao, M. Wilson et al., Semiautomated three-dimensional segmentation software to quantify carpal bone volume changes on wrist CT scans for arthritis assessment, Medical Physics, vol.15, issue.6, pp.2321-2330, 2008.
DOI : 10.1117/12.595706

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673630

J. Yen and K. Shung, High-frequency high frame rate ultrasound imaging system for small animal imaging with linear arrays, IEEE Ultrasonics Symposium, pp.1431-1434, 2005.

D. Vilkomerson and D. Lyons, A system for ultrasonic beacon-guidance of catheters and other minimally-invasive medical devices, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.44, issue.2, pp.496-504, 1997.
DOI : 10.1109/58.585134

M. N. Sovilj, Kinematic Viscosities of Binary and Ternary Liquid Mixtures Involving Chloroform, 2-Propanol, and 2-Butanol at Several Temperatures, Journal of Chemical & Engineering Data, vol.40, issue.5, pp.1058-1061, 1995.
DOI : 10.1021/je00021a006

A. Barbot, D. Decanini, and G. Hwang, On-chip Microfluidic Multimodal Swimmer toward 3D Navigation Scientific reports, 2016.

A. Barbot, D. Decanini, and G. Hwang, On-chip glass microfluidic trap and storage of helical magnetic microrobot, MNE, 2015.

Y. Man and E. Lauga, The wobbling-to-swimming transition of rotated helices, Physics of Fluids, vol.25, issue.7, pp.1-16, 2013.
DOI : 10.1063/1.4812637

N. C. Hess, D. J. Carlson, J. D. Inder, E. Jesulola, J. R. Mcfarlane et al., Clinically meaningful blood pressure reductions with low intensity isometric handgrip exercise. A randomized trial, 2016.

Z. Ye, E. Diller, and M. Sitti, Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators, Journal of Applied Physics, vol.112, issue.6, 2012.
DOI : 10.1063/1.4754521

S. P. Gavriel, M. Graviel, G. Arkady, G. Iddan, G. Meron et al., Wireless capsule endoscopy, Nature, vol.405, p.417, 2000.

L. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochvil et al., Characterizing the Swimming Properties of Artificial Bacterial Flagella, Nano Letters, vol.9, issue.10, pp.3663-3667, 2009.
DOI : 10.1021/nl901869j

E. M. Purcell, The efficiency of propulsion by a rotating flagellum, Proceedings of the National Academy of Sciences, vol.94, issue.21, pp.11307-11311, 1997.
DOI : 10.1073/pnas.94.21.11307

F. A. Morrison, Obtaining Uncertainty Measures on Slope and Intercept of a Least Squares Fit with Excel's LINEST, pp.1-14, 2014.

K. R. Chu and . Thompson, Densities and Refractive Indices of Alcohol-Water Solutions of n-Propyl, Isopropyl, and Methyl Alcohols., Journal of Chemical & Engineering Data, vol.7, issue.3, pp.358-360, 1962.
DOI : 10.1021/je60014a011

J. C. Owens, Optical Refractive Index of Air: Dependence on Pressure, Temperature and Composition, Applied Optics, vol.6, issue.1, pp.51-59, 1967.
DOI : 10.1364/AO.6.000051

F. Pedaci, Z. Huang, M. Van-oene, S. Barland, and N. H. Dekker, Excitable particles in an optical torque wrench, Nature Physics, vol.116, issue.3, pp.259-264, 2011.
DOI : 10.1063/1.2356852

L. Harris and W. H. Reid, Critical {R}ayleigh numbers for natural convection of water confined in square cells with L/D from 0.5 to 8, ASME J. Heat Transfer, vol.93, pp.188-196, 1959.

T. Xu, Propulsion Characteristics and Visual Servo Control of Scaled-up Helical Microswimmers, 2014.
DOI : 10.1109/tmech.2013.2269802

URL : https://hal.archives-ouvertes.fr/tel-00977906

N. C. Hess, D. J. Carlson, J. D. Inder, E. Jesulola, J. R. Mcfarlane et al., Clinically meaningful blood pressure reductions with low intensity isometric handgrip exercise. A randomized trial, Physiological Research, vol.65, issue.3, pp.461-468, 2016.

A. Y. Men, B. M. Shabsel, Y. O. Skurkis, K. S. Inkin, N. A. Chekina et al., Magnetic polymer particles: Synthesis and properties, Russian Journal of General Chemistry, vol.77, issue.3, p.354, 2007.

A. G. Roca, E. , P. Tartaj, M. Del-puerto-morales, S. Veintemillas-vergaguer et al., Progress in the preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics, vol.42, issue.22, p.224002, 2009.
DOI : 10.1088/0022-3727/42/22/224002

J. Branebjerg, O. Jensen, N. Laursen, O. Leistiko, and H. Soeberg, A micromachined flow sensor for measuring small liquid flows, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, pp.41-44, 1991.
DOI : 10.1109/SENSOR.1991.148793

T. S. Lammerink, N. R. Tas, M. Elwenspoek, and J. H. Fluitman, Micro-liquid flow sensor, Sensors and Actuators A: Physical, vol.37, issue.38, pp.37-38, 1993.
DOI : 10.1016/0924-4247(93)80010-E

URL : http://eprints.eemcs.utwente.nl/14135/01/JSAA_37_45.pdf

G. Fuhr, R. Hagedorn, T. Muller, W. Benecke, and B. Wagner, Pumping of water solutions in microfabricated electrohydrodynamic systems, [1992] Proceedings IEEE Micro Electro Mechanical Systems, pp.25-30, 1992.
DOI : 10.1109/MEMSYS.1992.187685

V. Gass, B. H. Der-schoot, N. F. De-rooij, B. H. Van-der-schoot, and N. F. Rooij, Nanofluid handling by micro-flow-sensor based on drag force measurements, [1993] Proceedings IEEE Micro Electro Mechanical Systems, pp.167-172, 1993.
DOI : 10.1109/MEMSYS.1993.296928

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel, Measurement Science and Technology, vol.17, issue.4, pp.797-808, 2006.
DOI : 10.1088/0957-0233/17/4/026

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa et al., In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system, Biomedical Microdevices, vol.7, issue.4, pp.153-167, 2008.
DOI : 10.1007/s10544-007-9121-z

D. , D. Carlo, D. Irimia, R. G. Tompkins, and M. Toner, Continuous inertial focusing, ordering , and separation of particles in microchannels, Proceedings of the National Academy of Sciences of the United States of America, pp.18892-18899, 2007.

E. S. Asmolov, The inertial lift on a small particle in a weak-shear parabolic flow, Physics of Fluids, vol.14, issue.1, pp.15-28, 2002.
DOI : 10.1063/1.1424306

D. , D. Carlo, J. F. Edd, D. Irimia, R. G. Tompkins et al., Equilibrium separation and filtration of particles using differential inertial focusing, Analytical Chemistry, vol.80, issue.6, pp.2204-2211, 2008.

S. Choi and J. Park, Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel, Lab on a Chip, vol.22, issue.7, pp.890-897, 2007.
DOI : 10.1039/b701227f

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.251-265, 2012.
DOI : 10.1515/jnum-2012-0013

L. Zeng, S. Balachandar, and P. Fischer, Wall-induced forces on a rigid sphere at finite Reynolds number, Journal of Fluid Mechanics, vol.536, pp.1-25, 2005.
DOI : 10.1017/S0022112005004738

H. W. Tung, D. F. Sargent, and B. J. Nelson, Protein crystal harvesting using the RodBot: a wireless mobile microrobot, Journal of Applied Crystallography, vol.69, issue.2, pp.692-700, 2014.
DOI : 10.1107/S1600576714004403/fs5060sup2.mpg

H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith et al., Microfluidic Shear Devices for Quantitative Analysis of Cell Adhesion, Analytical Chemistry, vol.76, issue.18, pp.5257-5264, 2004.
DOI : 10.1021/ac049837t

A. Barbot, D. Decanini, and G. Hwang, Controllable Roll-to-Swim motion transition of helical nanoswimmers, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.4662-4667, 2014.
DOI : 10.1109/IROS.2014.6943224

A. Barbot, D. Decanini, and G. Hwang, Wireless obstacle detection and characterization by multimodal helical nanoswimmers, 2015 IEEE International Conference on Robotics and Automation (ICRA), pp.3525-3530, 2015.
DOI : 10.1109/ICRA.2015.7139687

N. Beyrand, L. Couraud, A. Barbot, D. Decanini, and G. Hwang, Multi-flagella helical microswimmers for multiscale cargo transport and reversible targeted binding, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1403.
DOI : 10.1109/IROS.2015.7353551