R. Curves-for-one-contaminated and A. , ) time series: Detection rate (y-axis) vs. False alarm rate (x-axis), p.125

S. A. Abbasi and A. Miller, On Proper Choice of Variability Control Chart for Normal and Non-normal Processes, Quality and Reliability Engineering International, vol.22, issue.6, pp.279-296, 2012.
DOI : 10.1007/978-1-4899-7120-3

J. L. Alfaro and J. F. Ortega, control chart using trimmed estimators, Quality and Reliability Engineering International, vol.3, issue.1, pp.601-611, 2008.
DOI : 10.1007/BF00146951

J. L. Alfaro and J. F. Ortega, -Student distribution for individual observations, Applied Stochastic Models in Business and Industry, vol.31, issue.2, pp.79-91, 2013.
DOI : 10.1002/9780470316863

D. Allard, R. Senoussi, and E. Porcu, Anisotropy Models for Spatial Data, Mathematical Geosciences, vol.44, issue.3, pp.1-24, 2015.
DOI : 10.1090/S0002-9947-1938-1501980-0

URL : https://hal.archives-ouvertes.fr/hal-01183245

A. Amiri, W. A. Jensen, and R. B. Kazemzadeh, A case study on monitoring polynomial profiles in the automotive industry, Quality and Reliability Engineering International, vol.38, issue.3, pp.509-520, 2010.
DOI : 10.1007/s00170-009-2063-2

I. Andrianakis and P. G. Challenor, The effect of the nugget on Gaussian process emulators of computer models, Computational Statistics & Data Analysis, vol.56, issue.12, pp.4215-4228, 2012.
DOI : 10.1016/j.csda.2012.04.020

M. Batton-hubert, M. Binois, and E. Padonou, Inverse modeling to estimate methane surface emission with optimization and reduced models: application of waste landfill plants, 13th Annual Conference of the European Network for Business and Industrial, 2013.
URL : https://hal.archives-ouvertes.fr/emse-00849417

I. Ben-gal, A. Shmilovici, and G. Morag, Context-Based Statistical Process Control, Technometrics, vol.45, issue.4, pp.293-311, 2003.
DOI : 10.1198/004017003000000122

S. Bersimis, S. Psarakis, and J. Panaretos, Multivariate statistical process control charts: an overview, Quality and Reliability Engineering International, vol.41, issue.5, pp.517-543, 2007.
DOI : 10.1016/S1367-5788(99)90055-X

J. Blue and A. Chen, Spatial Variance Spectrum Analysis and Its Application to Unsupervised Detection of Systematic Wafer Spatial Variations, IEEE Transactions on Automation Science and Engineering, vol.8, issue.1, pp.56-66, 2011.
DOI : 10.1109/TASE.2010.2041775

URL : https://hal.archives-ouvertes.fr/emse-01098363

R. Borgoni, L. Radaelli, V. Tritto, and D. Zappa, Optimal reduction of a spatial monitoring grid: Proposals and applications in process control, Computational Statistics & Data Analysis, vol.58, pp.407-419, 2013.
DOI : 10.1016/j.csda.2012.08.007

G. E. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control. Holden- Day series in time series analysis and digital processing, 1976.
DOI : 10.1002/9781118619193

G. E. Box, G. M. Jenkins, and G. C. , Time Series Analysis: Forecasting and Control, 2008.
DOI : 10.1002/9781118619193

J. D. Brutlag, Aberrant Behavior Detection in Time Series for Network Monitoring, Proceedings of the 14th Systems Administration Conference, 2000.

H. Chernoff and S. Zacks, Estimating the Current Mean of a Normal Distribution which is Subjected to Changes in Time, The Annals of Mathematical Statistics, vol.35, issue.3, pp.999-1018, 1964.
DOI : 10.1214/aoms/1177700517

P. Cicorella, Surface Reconstruction and Monitoring via Gaussian processes, 2014.

T. Cipra and R. Romera, Kalman filter with outliers and missing observations, Test, vol.80, issue.3, pp.379-395, 1997.
DOI : 10.1080/03610919508813252

B. M. Colosimo, Bayesian Control Charts, pp.169-174, 2008.

B. M. Colosimo, P. Cicorella, and M. Blaco, From Profile to Surface Monitoring: SPC for Cylindrical Surfaces Via Gaussian Processes, Journal of Quality Technology, vol.36, issue.2, pp.95-113, 2014.
DOI : 10.1080/00207540412331282060

N. A. Cressie, Statistics for spatial data, 1993.
DOI : 10.1002/9781119115151

C. Croux, S. Gelper, and K. Mahieu, Robust control chart for time series data, Expert Systems with Applications, vol.38, issue.11, pp.13810-13815, 2011.

G. Damblin, M. Couplet, and B. Iooss, Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties, Journal of Simulation, vol.82, issue.2, pp.276-289, 2013.
DOI : 10.1016/j.cpc.2012.07.002

URL : https://hal.archives-ouvertes.fr/hal-00848240

E. , D. Castillo, B. M. Colosimo, and S. D. Tajbakhsh, Geodesic Gaussian processes for the parametric reconstruction of a free-form surface, Technometrics, vol.57, issue.1, pp.87-99, 2015.

E. , D. Castillo, and A. M. Hurwitz, Run-to-Run Process Control: Literature Review and Extensions, Journal of Quality Technology, vol.29, issue.2, pp.184-196, 1997.

F. Desobry, M. Davy, and C. Doncarli, An online kernel change detection algorithm, IEEE Transactions on Signal Processing, vol.53, issue.8, pp.2961-2974, 2005.
DOI : 10.1109/TSP.2005.851098

URL : http://www-lagis.univ-lille1.fr/~davy/papers/desobry-IEEESP-2005.pdf

H. Dette, V. B. Melas, and A. Pepelyshev, Optimal designs for statistical analysis with Zernike polynomials, Statistics, vol.41, issue.6, pp.453-470, 2007.
DOI : 10.1080/02331880701395395

N. Doganaksoy, F. W. Faltin, and W. T. Tucker, Identification of out of control quality characteristics in a multivariate manufacturing environment, Communications in Statistics - Theory and Methods, vol.22, issue.9, pp.2775-2790, 1991.
DOI : 10.2307/1269710

V. Dubourg, Adaptive surrogate models for reliability analysis and reliability-based design optimization, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00697026

J. Dugmore and S. Lacy, Capacity management. British Standards Institution, 2005.

N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro, ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis, Journal of Multivariate Analysis, vol.115, pp.57-67, 2013.
DOI : 10.1016/j.jmva.2012.08.016

URL : https://hal.archives-ouvertes.fr/hal-00601472

B. Efron and C. Stein, The Jackknife Estimate of Variance, The Annals of Statistics, vol.9, issue.3, pp.586-596, 1981.
DOI : 10.1214/aos/1176345462

C. Erdman and J. W. Emerson, Package for Performing a Bayesian Analysis of Change Point Problems, Journal of Statistical Software, vol.23, issue.3, pp.1-13, 2007.
DOI : 10.18637/jss.v023.i03

T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, vol.27, issue.8, pp.861-874, 2006.
DOI : 10.1016/j.patrec.2005.10.010

N. I. Fisher, Statistical Analysis of Circular Data, 1995.
DOI : 10.1017/CBO9780511564345

J. Franco, D. Dupuy, O. Roustant, G. Damblin, and B. Iooss, DiceDesign: Designs of Computer Experiments, 2014.

M. M. Gardner, J. C. Lu, R. S. Gyurcsik, J. J. Wortman, B. E. Hornung et al., Equipment fault detection using spatial signatures, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C, pp.295-304, 1997.
DOI : 10.1109/3476.650961

B. Gauthier and L. Pronzato, Spectral Approximation of the IMSE Criterion for Optimal Designs in Kernel-Based Interpolation Models, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.805-825, 2014.
DOI : 10.1137/130928534

URL : https://hal.archives-ouvertes.fr/hal-00913466

S. Gelper, R. Fried, and C. Croux, Robust forecasting with exponential and Holt- Winters smoothing, Journal of Forecasting, vol.29, issue.3, pp.285-300, 2010.
DOI : 10.2139/ssrn.1089403

D. Ginsbourger, O. Roustant, and N. Durrande, On degeneracy and invariances of random fields paths with applications in Gaussian process modelling, Journal of Statistical Planning and Inference, vol.170, pp.117-128, 2016.
DOI : 10.1016/j.jspi.2015.10.002

URL : https://hal.archives-ouvertes.fr/emse-01222506

D. Ginsbourger, O. Roustant, D. Schuhmacher, N. Durrande, and N. Lenz, On ANOVA decompositions of kernels and Gaussian random field paths. ArXiv e-prints, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01066503

T. Gneiting, Strictly and non-strictly positive definite functions on spheres, Bernoulli, vol.19, issue.4, pp.1327-1349, 2013.
DOI : 10.3150/12-BEJSP06SUPP

URL : http://doi.org/10.3150/12-bejsp06

J. G. De-gooijer and R. J. Hyndman, 25 years of time series forecasting, International Journal of Forecasting, vol.22, issue.3, 2006.
DOI : 10.1016/j.ijforecast.2006.01.001

R. B. Gramacy and H. K. Lee, Cases for the nugget in modeling computer experiments, Statistics and Computing, vol.4, issue.4, pp.713-722, 2012.
DOI : 10.1007/978-1-4612-1494-6

R. B. Gramacy, J. Niemi, and R. M. Weiss, Massively Parallel Approximate Gaussian Process Regression, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.564-584, 2014.
DOI : 10.1137/130941912

URL : http://arxiv.org/pdf/1310.5182.pdf

R. B. Gramacy and H. Lian, Gaussian Process Single-Index Models as Emulators for Computer Experiments, Technometrics, vol.35, issue.6, pp.30-41, 2012.
DOI : 10.1016/j.csda.2008.12.010

URL : http://arxiv.org/pdf/1009.4241

B. Hansen, The New Econometrics of Structural Change: Dating Breaks in U.S. Labor Productivity, Journal of Economic Perspectives, vol.15, issue.4, pp.117-128, 2001.
DOI : 10.1257/jep.15.4.117

K. A. Haskard, An anisotropic Matern spatial covariance model: REML estimation and properties, 2007.

T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The elements of statistical learning : data mining, inference, and prediction. Springer series in statistics, 2009.

D. M. Hawkins, Multivariate Quality Control Based on Regression-Adjusted Variables, Technometrics, vol.33, issue.1, pp.61-75, 1991.
DOI : 10.2307/1269008

J. M. Hellerstein, Quantitative Data Cleaning for Large Databases, United Nations Economic Commission for Europe, 2008.

C. C. Holt, Forecasting seasonals and trends by exponentially weighted moving averages, International Journal of Forecasting, vol.20, issue.1, pp.5-10, 2004.
DOI : 10.1016/j.ijforecast.2003.09.015

P. J. Huber, Robust Statistics. Wiley Series in Probability and Statistics, 1981.
DOI : 10.1002/0471725250

M. Hubert, Theory and Applications of Recent Robust Methods. Statistics for industry and technology. Birkhäuser, 2004.

M. Hubert and K. Van-driessen, Fast and robust discriminant analysis, Computational Statistics & Data Analysis, vol.45, issue.2, pp.301-320, 2004.
DOI : 10.1016/S0167-9473(02)00299-2

R. J. Hyndman, M. L. King, I. Pitrun, and B. Billah, LOCAL LINEAR FORECASTS USING CUBIC SMOOTHING SPLINES, Australian <html_ent glyph="@amp;" ascii="&"/> New Zealand Journal of Statistics, vol.47, issue.1, pp.87-99, 2005.
DOI : 10.1111/j.1467-842X.2005.00374.x

B. Iooss, Revue sur l'analyse de sensibilité globale de modèles numériques, pp.3-25, 2011.

M. E. Ismail, Classical and quantum orthogonal polynomials in one variable, volume 98 of Encyclopedia of Mathematics and its Applications, 2005.

J. Jin, Individual Station Monitoring Using Press Tonnage Sensors for Multiple Operation Stamping Processes, Journal of Manufacturing Science and Engineering, vol.24, issue.1, pp.83-90, 2004.
DOI : 10.1115/1.1643749

G. Jona-lasinio, A. Gelfand, and M. Jona-lasinio, Spatial analysis of wave direction data using wrapped Gaussian processes, The Annals of Applied Statistics, vol.6, issue.4, pp.1478-1498, 2012.
DOI : 10.1214/12-AOAS576

E. S. Gardner-jr, Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing, Management Science, vol.45, issue.8, pp.1169-1176, 1999.
DOI : 10.1287/mnsc.45.8.1169

E. S. Gardner-jr, Exponential smoothing: The state of the art???Part II, International Journal of Forecasting, vol.22, issue.4, pp.637-666, 2006.
DOI : 10.1016/j.ijforecast.2006.03.005

L. Kang and S. L. Albin, On-line monitoring when the process yields a linear profile, JOURNAL OF QUALITY TECHNOLOGY, vol.32, issue.4, pp.418-426, 2000.

R. S. Kenett and M. Pollak, On Assessing the Performance of Sequential Procedures for Detecting a Change, Quality and Reliability Engineering International, vol.53, issue.3, pp.500-507, 2012.
DOI : 10.1002/qre.1265

T. Kourti and J. F. Macgregor, Process analysis, monitoring and diagnosis, using multivariate projection methods, Chemometrics and Intelligent Laboratory Systems, vol.28, issue.1, pp.3-21, 1995.
DOI : 10.1016/0169-7439(95)80036-9

S. G. Krantz, Handbook of Complex Variables, Birkhäuser Boston, 2012.
DOI : 10.1007/978-1-4612-1588-2

C. A. Leikis, Consolidated Capacity and Performance Reporting, Int. CMG- CONFERENCE, vol.2, pp.527-534, 2007.

C. A. Lowry and D. C. Montgomery, A review of multivariate control charts, IIE Transactions, vol.12, issue.6, pp.800-810, 1995.
DOI : 10.1147/rd.312.0199

M. Lutz, Industrial decision-aid socio-statistical methods : Applied to the capacity management of an IS in the microelectronics industry, Theses, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00849870

M. Lutz, E. Padonou, and O. Roustant, Implementing statistical methods to improve information system management in a semiconductor industry International Year of Statistics, 13th Annual Conference of the European Network for Business and Industrial, 2013.

S. Makridakis, S. Wheelwright, and R. J. Hyndman, Forecasting, methods and applications, 1998.

G. Matheron, Principles of geostatistics, Economic Geology, vol.58, issue.8, 1963.
DOI : 10.2113/gsecongeo.58.8.1246

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

W. R. Mebane, J. , and J. S. Sekhon, Genetic optimization using derivatives: The rgenoud package for R, Journal of Statistical Software, vol.42, issue.11, pp.1-26, 2011.

D. C. Montgomery, Statistical Quality Control: A Modern Introduction, 2012.

M. D. Morris, Gaussian Surrogates for Computer Models With Time-Varying Inputs and Outputs, Technometrics, vol.128, issue.1, pp.42-50, 2012.
DOI : 10.1080/02664768700000020

M. D. Morris and T. J. Mitchell, Exploratory designs for computational experiments, Journal of Statistical Planning and Inference, vol.43, issue.3, pp.381-402, 1995.
DOI : 10.1016/0378-3758(94)00035-T

R. Navarro and J. Arines, Complete Modal Representation with Discrete Zernike Polynomials - Critical Sampling in Non Redundant Grids, 2011.
DOI : 10.5772/24631

R. Noorossana, A. Saghaei, and A. Amiri, Statistical Analysis of Profile Monitoring, 2011.
DOI : 10.1002/9781118071984

E. Padonou and O. Roustant, Polar Gaussian Processes and Experimental Designs in Circular Domains, SIAM/ASA Journal on Uncertainty Quantification, vol.4, issue.1, 2016.
DOI : 10.1137/15M1032740

URL : https://hal.archives-ouvertes.fr/emse-01412189

E. Padonou, O. Roustant, J. Blue, and H. Duverneuil, Spatial risk assessment on circular domains: Application to wafer profile monitoring, 2015 26th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp.223-225, 2015.
DOI : 10.1109/ASMC.2015.7164475

URL : https://hal.archives-ouvertes.fr/emse-01338842

E. Padonou, O. Roustant, and M. Lutz, Robust Monitoring of an Industrial IT System in the Presence of Structural Change. Quality and Reliability Engineering International, 2014.
URL : https://hal.archives-ouvertes.fr/emse-01235063

E. S. Page, CONTINUOUS INSPECTION SCHEMES, Biometrika, vol.41, issue.1-2, pp.100-115, 1954.
DOI : 10.1093/biomet/41.1-2.100

E. S. Page, A test for a change in a parameter occurring at an unknown point, Biometrika, vol.42, issue.3-4, pp.523-527, 1955.
DOI : 10.1093/biomet/42.3-4.523

E. S. Page, Cumulative Sum Schemes Using Gauging, Technometrics, vol.12, issue.1, pp.97-109, 1962.
DOI : 10.1080/00401706.1961.10489922

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1988.

G. Pison, S. Van-aelst, and G. Willems, Small sample corrections for LTS and MCD, Metrika, vol.55, issue.1-2, pp.111-123, 2002.
DOI : 10.1007/s001840200191

URL : http://www.stat.ualberta.ca/~wiens/stat578/papers/Pison, Van Aelst %26 Willems.pdf

G. Pistone and G. Vicario, Kriging prediction from a circular grid: application to wafer diffusion, Applied Stochastic Models in Business and Industry, vol.1, issue.1, pp.350-361, 2013.
DOI : 10.1016/S0031-8914(34)80259-5

C. E. Rasmussen and C. K. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

URL : http://mlg.eng.cam.ac.uk/pub/pdf/Ras04.pdf

M. S. Reis and P. M. Saraiva, Multiscale Statistical Process Control of Paper Surface Profiles, Quality Technology & Quantitative Management, vol.3, issue.3, pp.263-282, 2006.
DOI : 10.1080/16843703.2006.11673114

B. D. Ripley93-]-p and . Rousseeuw, Spatial Statistics Wiley Series in Probability and Statistics Least Median of Squares Regression, Journal of the American Statistical Association, issue.388, pp.79871-880, 1984.

P. J. Rousseeuw and C. Croux, Alternatives to the Median Absolute Deviation, Journal of the American Statistical Association, vol.69, issue.424, pp.1273-1283, 1993.
DOI : 10.1093/biomet/69.1.242

P. J. Rousseeuw and K. Van-driessen, A Fast Algorithm for the Minimum Covariance Determinant Estimator, Technometrics, vol.35, issue.3, pp.212-223, 1998.
DOI : 10.1080/01621459.1994.10476821

P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, 1987.
DOI : 10.1002/0471725382

O. Roustant, D. Ginsbourger, and Y. Deville, Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, Journal of Statistical Software, vol.51, issue.1, pp.1-55, 2012.
DOI : 10.18637/jss.v051.i01

URL : https://hal.archives-ouvertes.fr/hal-00495766

R. Y. Rubinstein, Generating random vectors uniformly distributed inside and on the surface of different regions, European Journal of Operational Research, vol.10, issue.2, pp.205-209, 1982.
DOI : 10.1016/0377-2217(82)90161-8

C. Rudd and V. Lloyd, Service Design, ITIL, Version 3, 2007.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and Analysis of Computer Experiments, Statistical Science, vol.4, issue.4, pp.409-423, 1989.
DOI : 10.1214/ss/1177012413

R. L. Sandland and G. M. Laslett, Precision and Accuracy of Kriging Estimators with Inter-Laboratory Trial Information, of Quantitative Geology and Geostatistics, pp.797-808, 1989.
DOI : 10.1007/978-94-015-6844-9_63

W. A. Shewart, Economic control of Quality of Manufactured Product, 1931.

A. F. Siegel, Robust regression using repeated medians, Biometrika, vol.69, issue.1, pp.242-244, 1982.
DOI : 10.1093/biomet/69.1.242

I. Sobol, Sensitivity estimates for non linear mathematical models, Mathematical Modelling and Computational Experiments, vol.1, pp.407-414, 1993.

A. Soumelidis, Z. Fazekas, F. Schipp, and M. Pap, Electronic Engineering and Computing Technology, chapter Discrete Orthogonality of Zernike Functions and Its Application to Corneal Measurements, pp.455-469, 2010.

E. T. Spiller, M. J. Bayarri, J. O. Berger, E. S. Calder, A. K. Patra et al., Automating Emulator Construction for Geophysical Hazard Maps, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.126-152, 2014.
DOI : 10.1137/120899285

J. W. Taylor, Smooth transition exponential smoothing, Journal of Forecasting, vol.23, issue.6, pp.385-394, 2004.
DOI : 10.1002/for.918

URL : http://users.ox.ac.uk/~mast0315/STES.pdf

T. M. Williams, Adaptive Holt-Winters forecasting, Journal of Operational Research Society, vol.38, issue.6, pp.553-560, 1987.
DOI : 10.2307/2582769

P. R. Winters, Forecasting Sales by Exponentially Weighted Moving Averages, Management Science, vol.6, issue.3, pp.324-342, 1960.
DOI : 10.1287/mnsc.6.3.324

W. H. Woodall, Current research on profile monitoring. Production, pp.420-425, 2007.
DOI : 10.1590/s0103-65132007000300002

W. H. Woodall and D. C. Montgomery, Research issues and ideas in statistical process control, Journal of Quality Technology, vol.31, issue.4, pp.376-386, 1999.

W. H. Woodall, D. J. Spitzner, D. C. Montgomery, and S. Gupta, Using control charts to monitor process and product quality profiles, Journal of Quality Technology, vol.36, issue.3, pp.309-320, 2004.

S. Zacks and R. S. Kenett, Process tracking of time series with change points. Recent Advances in Statistics and Probability, Proceedings of the 4th International Meeting of Statistics in the Basque Country, pp.155-171, 1994.

A. Zeileis, Alternative boundaries for CUSUM tests, Statistical Papers, vol.7, issue.1, 2004.
DOI : 10.18637/jss.v007.i02

A. Zeileis, Statistics, and OLS Residuals, Econometric Reviews, vol.44, issue.4, pp.445-466, 2005.
DOI : 10.1002/jae.776

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber, Package for Testing for Structural Change in Linear Regression Models, Journal of Statistical Software, vol.7, issue.2, pp.1-38, 2002.
DOI : 10.18637/jss.v007.i02

F. Zernike, Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode, Physica, vol.1, issue.7-12, pp.689-704, 1934.
DOI : 10.1016/S0031-8914(34)80259-5

H. Zhang, Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics, Journal of the American Statistical Association, vol.99, issue.465, pp.250-261, 2004.
DOI : 10.1198/016214504000000241

URL : http://www.biostat.umn.edu/%7Edipankar/pubh8472/HaoWang_JASA2004.pdf