K. Kulp, J. G. Ponte-]-j, R. L. Bemiller, . F. Whistler5-]-r, J. Tester et al., Handbook of cereal science and technology Starch: chemistry and technology Qi, « Starch -composition, fine structure and architecture » « Microscopy of starch: evidence of a new level of granule organization, « The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review, PlasticsEurope -Plastic statistics Starch -Stärke Starch granules: structure and biosynthesis Blends of Cysteine-Containing Proteins », pp.151-165, 1997.

S. I. Martins, W. M. Jongen, and M. A. Van-boekel, « A review of Maillard reaction in food and implications to kinetic modelling », Trends in Food Science & Technology, Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems, pp.9-10, 2000.

E. H. Ajandouz, V. Desseaux, and S. Tazi, Effects of temperature and pH on the kinetics of caramelisation, protein cross-linking and Maillard reactions in aqueous model systems, Food Chemistry, vol.107, issue.3, pp.1244-1252, 2008.
DOI : 10.1016/j.foodchem.2007.09.062

V. Fogliano, S. M. Monti, T. Musella, and G. Randazzo, Ritieni, « Formation of coloured Maillard reaction products in a gluten-glucose model system, Food Chemistry, vol.6614, issue.3, pp.293-299, 1999.

M. A. Van-boekel, Kinetic aspects of theMaillard reaction: a critical review, Nahrung/Food, vol.45, issue.3, pp.150-159, 2001.
DOI : 10.1002/1521-3803(20010601)45:3<150::AID-FOOD150>3.0.CO;2-9

P. S. Misra, E. T. Mertz, and D. T. Glover, « Studies on Corn Proteins. X. Polypeptide Molecular-Weight Distribution in Landry-Moureaux Fractions of Normal and Mutant Endosperms, Cereal Chemistry, vol.53, pp.705-710, 1976.

]. P. Shewry and N. G. Halford, « Cereal seed storage proteins: structures, properties and role in grain utilization Tatham, « The prolamin storage proteins of cereal seeds: structure and evolution, Journal of Experimental Botany Biochemical Journal, vol.5321, issue.267, pp.947-958, 1990.

J. S. Wall, L. A. Cooker, and J. A. Bietz, Structure and origin of maize endosperm alcohol-insoluble glutelin, Journal of Agricultural and Food Chemistry, vol.36, issue.4, pp.722-728, 1988.
DOI : 10.1021/jf00082a012

J. S. Wall and J. W. , Paulis, « Corn and sorghum grain proteins » Advances in cereal science and technology, Changes in the Zein Composition of Protein Bodies during Maize Endosperm Development, pp.135-219, 1978.

C. Barron, B. Bouchet, G. D. Valle, D. J. Gallant, and V. Planchot, Microscopical Study of the Destructuring of Waxy Maize and Smooth Pea Starches by Shear and Heat at Low Hydration, Journal of Cereal Science, vol.33, issue.3, pp.289-300, 2001.
DOI : 10.1006/jcrs.2000.0368

C. Barron, A. Buleon, P. Colonna, and G. D. Valle, Structural modifications of low hydrated pea starch subjected to high thermomechanical processing, Carbohydrate Polymers, vol.43, issue.2, pp.171-181, 2000.
DOI : 10.1016/S0144-8617(00)00146-6

W. Zheng, S. S. Chiang, . Wang29-]-p, J. Colonna, B. Melcion et al., mixing and residence time distribution of maize starch within a twin-screw extruder with a longitudinally-split barrel » « Transformation of wheat flour by extrusion cooking: influence of screw configuration and operating conditions Feng, « Effects of glycerin and glycerol monostearate on performance of thermoplastic starch, Effect of Shear Energy on Size Reduction of Starch Granules in Extrusion32] W. Wiedmann et E. Strobel, « Compounding of Thermoplastic Starch with Twin-screw Extruders », Starch - Stärke Thermoplastic Starch: A Green Material for Various Industries, pp.146-151, 1983.

J. J. Van-soest, R. C. Bezemer, D. De-wit, and J. F. Vliegenthart, Influence of glycerol on the melting of potato starch, Influence of glycerol on the melting of potato starch The extrusion behaviour of potato starch, pp.1-9, 1995.
DOI : 10.1016/0926-6690(95)00047-X

R. M. Van-den-einde, A. Bolsius, J. J. Van-soest, L. P. Janssen, A. J. Van-der-goot et al., The effect of thermomechanical treatment on starch breakdown and the consequences for process design, The effect of thermomechanical treatment on starch breakdown and the consequences for process design, pp.57-63, 2004.
DOI : 10.1016/j.carbpol.2003.07.004

R. M. Van-den-einde, C. Akkermans, A. J. Van-der-goot, and R. M. Boom, « Molecular breakdown of corn starch by thermal and mechanical effects », Carbohydrate Polymers, 38] N. Igura, I. Hayakawa, et Y. Fujio, « Effect of Longer Heating Time on Depolymerization of Low Moisturized Starches », Starch -Stärke, pp.415-422, 1997.

R. M. Van-den-einde, M. E. Van-der-veen, H. Bosman, A. J. Van-der-goot, R. M. Boom40-]-a et al., « Modeling macromolecular degradation of corn starch in a twin screw extruder » « Size exclusion chromatography characterization of thermoplastic starch composites 1. Influence of plasticizer and fibre content, Influence of amylose content on the viscous behavior of low hydrated molten starches, pp.147-154, 1996.

J. L. Willett, M. M. Millard, and B. K. Jasberg, Extrusion of waxy maize starch: melt rheology and molecular weight degradation of amylopectin, Polymer, vol.38, issue.24, pp.5983-5989, 1997.
DOI : 10.1016/S0032-3861(97)00155-9

P. J. Liu, R. G. Halley, ]. O. Gilbert44, L. Martin, G. Averous et al., « In-line determination of plasticized wheat starch viscoelastic behavior: impact of processing, Macromolecules Ageing of soft thermoplastic starch with high glycerol content Structure and properties of compression-molded thermoplastic starch materials from normal and high-amylose maize starches, pp.2855-2864, 1997.

D. Lourdin, L. Coignard, H. Bizot, and E. P. Colonna, Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials, Polymer, vol.38, issue.21, pp.5401-5406, 1997.
DOI : 10.1016/S0032-3861(97)00082-7

P. M. Forssell, J. M. Mikkilä, G. K. Moates, and E. R. Parker, Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch », Carbohydrate Polymers, Effect of glycerol on behaviour of amylose and amylopectin films, pp.275-282, 1997.

J. Yu, J. Gao, and E. T. Lin, Biodegradable thermoplastic starch, Biodegradable thermoplastic starch, pp.1491-1494, 1996.
DOI : 10.1002/(SICI)1097-4628(19961128)62:9<1491::AID-APP19>3.0.CO;2-1

J. J. Van-soest, S. H. Hulleman, D. De-wit, J. F. Vliegenthart53-]-s, F. H. Hulleman et al., « Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity », Carbohydrate Polymers, The role of water during plasticization of native starches », Polymer Relationship between structure and viscoelastic behavior of plasticized starch55] S. B. Ross-Murphy, « Structure?property relationships in food biopolymer gels and solutions », pp.225-232, 1995.

M. J. Miles, V. J. Morris, P. D. Orford, and S. G. Ring, The roles of amylose and amylopectin in the gelation and retrogradation of starch, Carbohydrate Research, vol.135, issue.2, pp.271-281, 1985.
DOI : 10.1016/S0008-6215(00)90778-X

M. A. Huneault, P. J. Carreau, P. G. Lafleur, V. P. Gupta58-]-v, J. M. Hernandez-izquierdo et al., Extrudate swelling and viscoelasticity of rigid PVC compounds Morel, « Heat and shear mediated polymerisation of plasticized wheat gluten protein upon mixing, Thermoplastic Processing of Proteins for Film Formation?A Review » Extrusion of feather keratin, pp.175-181, 1992.

T. D. Strecker, R. P. Cavalieri, R. L. Zollars, Y. Pomeranz, A. Redl et al., Polymerization and Mechanical Degradation Kinetics of Gluten and Glutenin at Extruder Melt-Section Temperatures and Shear Rates Extrusion of Wheat Gluten Plasticized with Glycerol: Influence of Process Conditions on Flow Behavior, Rheological Properties, and Molecular Size Distribution Vergnes, « Rheological properties of gluten plasticized with glycerol: dependence on temperature, glycerol content and mixing conditions, Morel, A. Redl, et S. Guilbert, « Aggregation and degradation of plasticized wheat gluten during thermo-mechanical treatments, pp.532-537, 1995.

M. Pommet, A. Redl, M. Morel, S. Domenek, and E. S. Guilbert, Thermoplastic processing of protein-based bioplastics: chemical engineering aspects of mixing, extrusion and hot molding, Macromolecular Symposia, pp.207-218, 2003.
DOI : 10.1002/masy.200350719

J. W. Lawton, Plasticizers for Zein: Their Effect on Tensile Properties and Water Absorption of Zein Films, Cereal Chemistry, vol.81, issue.1, pp.1-5, 2004.
DOI : 10.1094/CCHEM.2004.81.1.1

]. B. Ghanbarzadeh, A. R. Oromiehie, M. Musavi, P. M. Falcone, Z. E. et al., Study of mechanical properties, oxygen permeability and AFM topography of zein films plasticized by polyols, Packaging Technology and Science, vol.7, issue.3, pp.155-163, 2007.
DOI : 10.1002/pts.750

M. Tillekeratne and A. J. , Modification of zein films by incorporation of poly(ethylene glycol)s, Polymer International, vol.257, issue.1, pp.127-134, 2000.
DOI : 10.1002/(SICI)1097-0126(200001)49:1<127::AID-PI320>3.0.CO;2-B

B. Ghanbarzadeh and A. R. Oromiehi, Studies on glass transition temperature of mono and bilayer protein films plasticized by glycerol and olive oil, Thermal and mechanical behavior of laminated protein films, pp.2848-2854, 2008.
DOI : 10.1002/app.28289

L. Di-gioia, B. Cuq, S. Guilbert76-]-l, B. Di-gioia, S. Cuq et al., Thermal properties of corn gluten meal and its proteic components « Corn Gluten Meal as a Thermoplastic Resin: Effect of Plasticizers and Water Content, Microstructural changes in zein proteins during extrusion », Scanning, pp.341-350, 1998.

E. Corradini, E. Souto-de-medeiros, A. J. Carvalho, A. A. Curvelo, L. H. Mattoso et al., Mechanical and morphological characterization of starch/zein blends plasticized with glycerol, Starch-zein blends formed by shear flow Structure and mechanical behaviour of corn flour and starch-zein based materials in the glassy state », Carbohydrate Polymers, pp.4133-4139, 2005.
DOI : 10.1002/app.23570

H. Chanvrier, G. D. Valle, E. D. Lourdin, E. Corradini, J. M. Marconcini et al., Mechanical behaviour of corn flour and starch-zein based materials in the glassy state: A matrix-particle interpretation », Carbohydrate Polymers « Thermoplastic blends of corn gluten meal/starch (CGM/Starch) and corn gluten meal/polyvinyl alcohol and corn gluten meal/poly (hydroxybutyrateco-hydroxyvalerate ) (CGM/PHB-V) », Carbohydrate Polymers, 84] D. Paton et W. A. Spratt, « Component Interactions in the Extrusion Cooking Process: Influence of Process Conditions on the Functional Viscosity of the Wheat Flour System, pp.346-356, 1984.

S. J. Batterman-azcona, J. W. Lawton, and B. R. Hamaker, Effect of Specific Mechanical Energy on Protein Bodies and ?-Zeins in Corn Flour Extrudates 1 », Cereal Chemistry, vol.7686, issue.2, pp.316-320, 1999.

M. Li, T. Lee, N. Cervone, J. M. Harper, S. I. Fletcher et al., Effect of Cysteine on the Functional Properties and Microstructures of Wheat Flour Extrudates « Viscosity of an intermediate moisture dough An experimental study of twin-screw extrusion-cooking of maize grits, Journal of Agricultural and Food Chemistry Journal of Food Process Engineering Journal of Food Engineering, vol.4490, issue.4, pp.1871-1880, 1978.

A. Senouci and A. C. Smith, An experimental study of food melt rheology, Rheologica Acta, vol.2, issue.5, pp.546-554, 1988.
DOI : 10.1007/BF01329355

S. Ilo, U. Tomschik, E. Berghofer, and E. N. Mundigler, Flow behavior and exit pressures of corn meal under high-shear?high-temperature extrusion conditions using a slit die, The Effect of Extrusion Operating Conditions on the Apparent Viscosity and the Properties of Extrudates in Twin-Screw Extrusion Cooking of Maize Grits », Lebensmittel-Wissenschaft und-Technologie, pp.315-593, 1991.

H. Madeka, J. L. Kokini, M. Zeng, Y. Huang, L. Lu et al., Lourdin, « Mechanical Properties of Thermo-moulded Biofilms in Relation to, « Tensile Properties of Extruded Zein Sheets and Extrusion Blown Films, Barlow et D. R. Paul, « Polymer blends and alloys?a review of selected considerations, pp.489-494, 1981.

]. X. Li, S. H. Goh, Y. H. Lai, A. T. Wee, X. Li et al., Miscibility and interactions in blends of carboxyl-containing polysiloxane with poly(1-vinylimidazole) », Polymer, Miscibility of carboxyl-containing polysiloxane/poly(vinylpyridine) blends », Polymer Miscibility study of Torlon® polyamide-imide with Matrimid® 5218 polyimide and polybenzimidazole », Polymer, pp.5463-5469, 2000.

Z. Qiu, M. Komura, T. Ikehara, E. T. Nishi, and . Poly, Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization, Polymer, vol.44, issue.26, pp.8111-8117, 2003.
DOI : 10.1016/j.polymer.2003.10.030

P. Iriondo, J. J. Iruin, and M. J. Fernandez-berridi, Thermal and infra-red spectroscopic investigations of a miscible blend composed of poly(vinyl phenol) and poly(hydroxybutyrate), Polymer, vol.36, issue.16, pp.3235-3237, 1995.
DOI : 10.1016/0032-3861(95)97888-M

M. G. Cascone, G. Polacco, L. Lazzeri, E. N. Barbani, and . Dextran, Dextran/poly(acrylic acid) mixtures as miscible blends, Journal of Applied Polymer Science, vol.66, issue.11, pp.2089-2094, 1997.
DOI : 10.1002/(SICI)1097-4628(19971219)66:11<2089::AID-APP4>3.0.CO;2-D

R. E. Robertson and D. R. Paul, Stress???strain behavior of polyolefin blends, Journal of Applied Polymer Science, vol.17, issue.8, pp.2579-2595, 1973.
DOI : 10.1002/app.1973.070170823

E. Nolley, J. W. Barlow, and D. R. Paul, Mechanical properties of polypropylene-low density polyethylene blends, Polymer Engineering and Science, vol.18, issue.5, pp.364-369, 1980.
DOI : 10.1002/pen.760200508

D. W. Bartlett, J. W. Barlow, and D. R. Paul, Mechanical properties of blends containing HDPE and PP, Journal of Applied Polymer Science, vol.27, issue.7, pp.2351-2360, 1982.
DOI : 10.1002/app.1982.070270704

J. P. Robin, C. Mercier, R. Charbonnière, and E. A. Guilbot, Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch, Lintnerized starches, p.89, 1974.

R. Mani and M. Bhattacharya, Properties of injection moulded blends of starch and modified biodegradable polyesters, European Polymer Journal, vol.37, issue.3, pp.515-526, 2001.
DOI : 10.1016/S0014-3057(00)00155-5

C. Z. Chuai and K. Almdal, Lyngaae-Jørgensen, « Phase continuity and inversion in polystyrene/poly(methyl methacrylate) blends », Polymer, pp.481-493, 2003.
DOI : 10.1016/s0032-3861(02)00632-8

N. Marin and B. D. , Co-continuous morphology development in partially miscible PMMA/PC blends, Polymer, vol.43, issue.17, pp.4723-4731, 2002.
DOI : 10.1016/S0032-3861(02)00280-X

L. A. Utracki and Z. H. Shi, Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: Droplet dispersion and coalescence?a review, Polymer Engineering and Science, vol.33, issue.49, pp.1824-1833, 1992.
DOI : 10.1002/pen.760322405

U. Sundararaj and C. W. Macosko, Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization, Macromolecules, vol.28, issue.8, pp.2647-2657, 1995.
DOI : 10.1021/ma00112a009

Z. H. Shi and L. A. Utracki, Development of polymer blend morphology during compounding in a twin-screw extruder. Part II: Theoretical derivations, Polymer Engineering and Science, vol.21, issue.49, pp.1834-1845, 1992.
DOI : 10.1002/pen.760322406

V. Bordereau, M. Carrega, Z. H. Shi, L. A. Utracki, and E. P. Sammut, Development of polymer blend morphology during compounding in a twin-screw extruder. Part III: Experimental procedure and preliminary results, Polymer Engineering and Science, vol.30, issue.24, pp.1846-1856, 1992.
DOI : 10.1002/pen.760322407

A. Leclair and B. D. , The role of interfacial contact in immiscible binary polymer blends and its influence on mechanical properties, Polymer, vol.37, issue.21, pp.4723-4728, 1996.
DOI : 10.1016/S0032-3861(96)00319-9

B. D. Favis and J. P. Chalifoux, Influence of composition on the morphology of polypropylene/polycarbonate blends???, Polymer, vol.29, issue.10, pp.1761-1767, 1988.
DOI : 10.1016/0032-3861(88)90388-6

B. D. Favis and J. P. Chalifoux, The effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing, Polymer Engineering and Science, vol.23, issue.21, pp.1591-1600, 1987.
DOI : 10.1002/pen.760272105

Z. Li, M. Yang, B. Xie, J. Feng, and E. R. Huang, In-situ microfiber reinforced composite based on PET and PEvia slit die extrusion and hot stretching: Influences of hot stretching ratio on morphology and tensile properties at a fixed composition, Polymer Engineering & Science, vol.36, issue.3, pp.615-628, 2003.
DOI : 10.1002/pen.10050

E. H. Kerner, The Elastic and Thermo-elastic Properties of Composite Media, Proceedings of the Physical Society. Section B, pp.808-813, 1956.
DOI : 10.1088/0370-1301/69/8/305

L. Nicolais and L. Nicodemo, The Effect of Particles Shape on Tensile Properties of Glassy Thermoplastic Composites, International Journal of Polymeric Materials, vol.1, issue.3, pp.229-243, 1974.
DOI : 10.1088/0370-1301/69/8/305

L. E. Nielsen, Simple theory of stress-strain properties of filled polymers, Journal of Applied Polymer Science, vol.10, issue.1, pp.97-103, 1966.
DOI : 10.1002/app.1966.070100107

M. Denac, V. Musil, E. I. Smit, and . Polypropylene, Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties, Composites Part A: Applied Science and Manufacturing, vol.36, issue.9, pp.1282-1290, 2005.
DOI : 10.1016/j.compositesa.2005.01.011

C. P. Papadopoulou and N. K. Kalfoglou, Comparison of compatibilizer effectiveness for PET/PP blends: their mechanical, thermal and morphology characterization, Polymer, vol.41, issue.7, pp.2543-2555, 2000.
DOI : 10.1016/S0032-3861(99)00442-5

I. L. Dubnikova, S. M. Berezina, and E. A. , Effect of rigid particle size on the toughness of filled polypropylene, Journal of Applied Polymer Science, vol.45, issue.5, pp.1917-1926, 2004.
DOI : 10.1002/app.21017

J. S. Schulze, A comparison of extensional viscosity measurements from various RME rheometers, Rheologica Acta, vol.40, issue.5, pp.457-466, 2001.
DOI : 10.1007/s003970100170

J. Meissner and J. Hostettler, A new elongational rheometer for polymer melts and other highly viscoelastic liquids, Rheologica Acta, vol.31, issue.4, pp.1-21, 1994.
DOI : 10.1007/BF00453459

M. H. Wagner, The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows, Rheologica Acta, vol.39, issue.2, pp.97-109, 2000.
DOI : 10.1007/s003970050010

M. Okamoto, A. Kojima, and E. T. Kotaka, Elongational flow and birefringence of low density polyethylene and its blends with ultrahigh molecular weight polyethylenet, Polymer, vol.39, issue.11, pp.2149-2153, 1998.
DOI : 10.1016/S0032-3861(97)00514-4

H. Münstedt and T. Steffl, Correlation between rheological behaviour in uniaxial elongation and film blowing properties of various polyethylenes, Rheologica Acta, vol.59, issue.2, pp.14-22, 2005.
DOI : 10.1007/s00397-005-0435-6

J. Meins and P. Moldenaers, Mewis, « Suspensions of monodisperse spheres in polymer melts: particle size effects in extensional flow, Rheologica Acta, vol.42, pp.1-2, 2003.

M. Kobayashi, T. Takahashi, J. Takimoto, and E. K. Koyama, Influence of glass beads on the elongational viscosity of polyethylene with anomalous strain rate dependence of the strain-hardening, Polymer, vol.37, issue.16, pp.3745-3747, 1996.
DOI : 10.1016/0032-3861(96)00191-7

Z. Starý and H. Münstedt, Morphology development in PS/LLDPE blend during and after elongational deformation, Journal of Polymer Science Part B: Polymer Physics, vol.173, issue.1, pp.16-27, 2008.
DOI : 10.1002/polb.21338

U. A. Handge, K. Okamoto, and E. H. Münstedt, Recoverable deformation and morphology after uniaxial elongation of a polystyrene/linear low density polyethylene blend, Rheologica Acta, vol.426, issue.6, pp.1197-1209, 2007.
DOI : 10.1007/s00397-007-0208-5

M. Heindl and M. Sommer, Morphology development in polystyrene/polyethylene blends during uniaxial elongational flow, Rheologica Acta, vol.27, issue.1, pp.55-70, 2004.
DOI : 10.1007/s00397-004-0372-9

T. Takahashi, W. Wu, H. Toda, J. Takimoto, T. Akatsuka et al., Elongational viscosity of ABS polymer melts with soft or hard butadiene particles, Journal of Non-Newtonian Fluid Mechanics, vol.68, issue.2-3, pp.2-3, 1997.
DOI : 10.1016/S0377-0257(96)01514-5

N. Mechbal and M. Bousmina, Uniaxial deformation and relaxation of polymer blends: relationship between flow and morphology development, Rheologica Acta, vol.43, issue.2, pp.119-126, 2004.
DOI : 10.1007/s00397-003-0326-7

Y. Wang, W. Liu, and E. Z. Sun, Effects of glycerol and PE-g-MA on morphology, thermal and tensile properties of LDPE and rice starch blends, Journal of Applied Polymer Science, vol.40, issue.92, pp.344-350, 2004.
DOI : 10.1002/app.20015

F. J. Rodriguez-gonzalez, B. A. Ramsay, and B. D. , High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene, Polymer, vol.44, issue.5, pp.1517-1526, 2003.
DOI : 10.1016/S0032-3861(02)00907-2

A. Taguet, M. A. Huneault, and B. D. Favis, Interface/morphology relationships in polymer blends with thermoplastic starch, Polymer, vol.50, issue.24, pp.5733-5743, 2009.
DOI : 10.1016/j.polymer.2009.09.055

R. R. Sailaja and S. Seetharamu, « Itaconic acid -grafted -LDPE as compatibilizer for LDPE -plasticized Tapioca starch blends », Reactive and Functional Polymers, pp.831-841, 2008.
DOI : 10.1016/j.reactfunctpolym.2007.12.003

D. Bikiaris, LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer, Polymer Degradation and Stability, vol.59, issue.1-3, pp.1-3, 1998.
DOI : 10.1016/S0141-3910(97)00126-2

B. G. Girija and R. R. Sailaja, Low-density polyethylene/plasticized tapioca starch blends with the low-density polyethylene functionalized with maleate ester: Mechanical and thermal properties, Journal of Applied Polymer Science, vol.14, issue.2, pp.1109-1120, 2006.
DOI : 10.1002/app.24025

D. S. Rosa, C. G. Guedes, and C. L. Carvalho, Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends, Journal of Materials Science, vol.14, issue.3, pp.551-557, 2007.
DOI : 10.1007/s10853-006-1049-9

D. Schlemmer, E. R. De-oliveira, and M. J. Et, Polystyrene/thermoplastic starch blends with different plasticizers, Journal of Thermal Analysis and Calorimetry, vol.369, issue.341, pp.635-638, 2007.
DOI : 10.1007/s10973-006-7776-y

M. A. Villar, E. L. Thomas, and R. C. Armstrong, « Rheological properties of thermoplastic starch and starch/poly(ethylene-co-vinyl alcohol) blends », Polymer, pp.1869-1876, 1995.

S. Simmons and E. L. Thomas, Structural characteristics of biodegradable thermoplastic starch/poly(ethylene???vinyl alcohol) blends, Journal of Applied Polymer Science, vol.58, issue.12, pp.2259-2285, 1995.
DOI : 10.1002/app.1995.070581215

P. J. Stenhouse, J. A. Ratto, and N. S. Schneider, Structure and properties of starch/poly(ethylene-co-vinyl alcohol) blown films, Journal of Applied Polymer Science, vol.64, issue.13, pp.2613-2622, 1997.
DOI : 10.1002/(SICI)1097-4628(19970627)64:13<2613::AID-APP15>3.0.CO;2-#

Z. Liu, Y. Feng, and E. X. Yi, Thermoplastic starch/PVAl compounds: Preparation, processing, and properties, Thermoplastic starch, pp.2667-2673, 1999.
DOI : 10.1002/(SICI)1097-4628(19991209)74:11<2667::AID-APP14>3.0.CO;2-D

V. Vargha and P. Truter, Biodegradable polymers by reactive blending trans-esterification of thermoplastic starch with poly(vinyl acetate) and poly(vinyl acetate-co-butyl acrylate), European Polymer Journal, vol.41, issue.4, pp.715-726, 2005.
DOI : 10.1016/j.eurpolymj.2004.10.044

E. Landreau, L. Tighzert, C. Bliard, F. Berzin, and E. C. Lacoste, Morphologies and properties of plasticized starch/polyamide compatibilized blends, Morphologies and properties of plasticized starch/polyamide compatibilized blends, pp.2609-2618, 2009.
DOI : 10.1016/j.eurpolymj.2009.06.017

Q. Wu and L. Zhang, Preparation and Characterization of Thermoplastic Starch Mixed with Waterborne Polyurethane, Industrial & Engineering Chemistry Research, vol.40, issue.2, pp.558-564, 2001.
DOI : 10.1021/ie000582t

L. Avérous and C. Fringant, Association between plasticized starch and polyesters: Processing and performances of injected biodegradable systems, Polymer Engineering & Science, vol.38, issue.5, pp.727-734, 2001.
DOI : 10.1002/pen.10768

P. Dubois and R. Narayan, « Biodegradable compositions by reactive processing of aliphatic polyester, Macromolecular Symposia, pp.233-244, 2003.

G. Li and B. D. , Favis, « Morphology Development and Interfacial Interactions in Polycaprolactone/Thermoplastic-Starch Blends, Macromolecular Chemistry and Physics, pp.321-333, 2010.
DOI : 10.1002/macp.200900348

P. Matzinos, V. Tserki, and A. Kontoyiannis, Processing and characterization of starch/polycaprolactone products, Polymer Degradation and Stability, vol.77, issue.1, pp.17-24, 2002.
DOI : 10.1016/S0141-3910(02)00072-1

B. Shin, S. Lee, Y. Shin, S. Balakrishnan, and E. R. Narayan, Rheological, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone, pp.1429-1438, 2004.
DOI : 10.1002/pen.20139

E. Schwach and L. , Starch-based biodegradable blends: morphology and interface properties, Polymer International, vol.40, issue.12, pp.2115-2124, 2004.
DOI : 10.1002/pi.1636

G. Li, P. Sarazin, and B. D. , The Relationship between Starch Gelatinization and Morphology Control in Melt-Processed Polymer Blends with Thermoplastic Starch, Macromolecular Chemistry and Physics, vol.42, issue.10, pp.991-1002, 2008.
DOI : 10.1002/macp.200700637

K. Dean, L. Yu, S. Bateman, and D. Y. Wu, Gelatinized starch/biodegradable polyester blends: Processing, morphology, and properties, Gelatinized starch/biodegradable polyester blends: Processing, morphology, and properties, pp.802-811, 2007.
DOI : 10.1002/app.25149

S. Lai, T. Don, and Y. Huang, Preparation and properties of biodegradable thermoplastic starch/poly(hydroxy butyrate) blends, Journal of Applied Polymer Science, vol.426, issue.432, pp.2371-2379, 2006.
DOI : 10.1002/app.23085

H. Verhoogt, N. St-pierre, F. S. Truchon, B. A. Ramsay, B. D. Favis et al., -12%-hydroxyvalerate) and thermoplastic starch, Blends containing poly(hydroxybutyrate-co-12%-hydroxyvalerate) and thermoplastic starch, pp.323-328, 1995.
DOI : 10.1139/m95-204

Q. Shi, C. Chen, L. Gao, L. Jiao, H. Xu et al., Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE, Polymer Degradation and Stability, vol.96, issue.1, pp.175-182, 2011.
DOI : 10.1016/j.polymdegradstab.2010.10.002

O. Martin, L. Avérous, and . Poly, Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer, vol.42, issue.14, pp.6209-6219, 2001.
DOI : 10.1016/S0032-3861(01)00086-6

N. Wang, J. Yu, and E. X. Ma, Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion, Polymer International, vol.35, issue.11, pp.1440-1447, 2007.
DOI : 10.1002/pi.2302

M. A. Huneault and H. Li, Morphology and properties of compatibilized polylactide/thermoplastic starch blends, Polymer, vol.48, issue.1, pp.270-280, 2007.
DOI : 10.1016/j.polymer.2006.11.023

J. W. Park, S. S. Im, S. H. Kim, and Y. Ha-kim, Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch, Polymer Engineering & Science, vol.8, issue.12, pp.2539-2550, 2000.
DOI : 10.1002/pen.11384

T. Ke, X. S. Sun, and . Starch, Poly(lactic acid), and Poly(vinyl alcohol) Blends », Journal of Polymers and the Environment, vol.11, issue.1, pp.7-14, 2003.
DOI : 10.1023/A:1023875227450

L. Averous, N. Fauconnier, and L. Moro, Blends of thermoplastic starch and polyesteramide: processing and properties, Journal of Applied Polymer Science, vol.48, issue.7, pp.1117-1128, 2000.
DOI : 10.1002/(SICI)1097-4628(20000516)76:7<1117::AID-APP16>3.0.CO;2-W

J. Zeng, L. Jiao, Y. Li, M. Srinivasan, T. Li et al., Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption, Carbohydrate Polymers, vol.83, issue.2, pp.762-768, 2011.
DOI : 10.1016/j.carbpol.2010.08.051

S. Lai, C. Huang, and H. Shen, Preparation and properties of biodegradable poly(butylene succinate)/starch blends, Journal of Applied Polymer Science, vol.146, issue.1, pp.257-264, 2005.
DOI : 10.1002/app.21679

J. Raquez, Y. Nabar, R. Narayan, and E. P. Dubois, In situ compatibilization of maleated thermoplastic starch/polyester melt-blends by reactive extrusion, Polymer Engineering & Science, vol.58, issue.(5), pp.1747-1754, 2008.
DOI : 10.1002/pen.21136

P. Sarazin, G. Li, W. J. Orts, and B. D. , Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch, Polymer, vol.49, issue.2, pp.599-609, 2008.
DOI : 10.1016/j.polymer.2007.11.029

J. Ren, H. Fu, T. Ren, and E. W. Yuan, « Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate) », Carbohydrate Polymers, pp.576-582, 2009.

Y. Parulekar and A. K. , Extruded Biodegradable Cast Films from Polyhydroxyalkanoate and Thermoplastic Starch Blends: Fabrication and Characterization, Macromolecular Materials and Engineering, vol.30, issue.12, pp.1218-1228, 2007.
DOI : 10.1002/mame.200700125

P. S. Walia, J. W. Lawton, and R. L. Shogren, Mechanical properties of thermoplastic starch/poly(hydroxy ester ether) blends: Effect of moisture during and after processing, Journal of Applied Polymer Science, vol.28, issue.1, pp.121-131, 2002.
DOI : 10.1002/app.10271

X. Ma, P. R. Chang, J. Yu, and E. N. Wang, Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites », Carbohydrate Polymers, pp.229-234, 2008.

J. M. Raquez, R. Narayan, and E. P. Dubois, Recent Advances in Reactive Extrusion Processing of Biodegradable Polymer-Based Compositions, Macromolecular Materials and Engineering, vol.96, issue.277, pp.447-470, 2008.
DOI : 10.1002/mame.200700395

S. Kalambur and S. S. Rizvi, An Overview of Starch-Based Plastic Blends from Reactive Extrusion, Journal of Plastic Film and Sheeting, vol.22, issue.1, pp.39-58, 2006.
DOI : 10.1177/8756087906062729

URL : https://hal.archives-ouvertes.fr/hal-00572068

R. B. Maliger, S. A. Mcglashan, P. J. Halley, and L. G. Matthew, Compatibilization of starch???polyester blends using reactive extrusion, Compatibilization of starch?polyester blends using reactive extrusion, pp.248-263, 2006.
DOI : 10.1002/pen.20479

J. Raquez, P. Degée, Y. Nabar, R. Narayan, and E. P. Dubois, Biodegradable materials by??reactive extrusion: from catalyzed polymerization to??functionalization and??blend compatibilization, Comptes Rendus Chimie, vol.9, issue.11-12, pp.11-12, 2006.
DOI : 10.1016/j.crci.2006.09.004

J. Raquez, Y. Nabar, and R. Narayan, Novel High-Performance Talc/Poly[(butylene adipate)-co-terephthalate] Hybrid Materials, butylene adipate)-coterephthalate] Hybrid Materials, pp.310-320, 2008.
DOI : 10.1002/mame.200700352

W. Liu, Y. Wang, and E. Z. Sun, Effects of polyethylene-grafted maleic anhydride (PE-g-MA) on thermal properties, morphology, and tensile properties of low-density polyethylene (LDPE) and corn starch blends, Journal of Applied Polymer Science, vol.88, issue.13, pp.2904-2911, 2003.
DOI : 10.1002/app.11965

J. Zhang and X. Sun, Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride, Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride, pp.1446-1451, 2004.
DOI : 10.1021/bm0400022

C. Wu, Physical properties and biodegradability of maleated-polycaprolactone/starch composite, Polymer Degradation and Stability, vol.80, issue.1, pp.127-134, 2003.
DOI : 10.1016/S0141-3910(02)00393-2

R. Mani and M. Bhattacharya, Properties of injection moulded blends of starch and modified biodegradable polyesters, European Polymer Journal, vol.37, issue.3, pp.515-526, 2001.
DOI : 10.1016/S0014-3057(00)00155-5

C. Pascente, L. Marquez, V. Balsamo, and A. J. Müller, Use of modified poly(?????caprolactone) in the compatibilization of poly(?????caprolactone)/maize starch blends, Journal of Applied Polymer Science, vol.37, issue.6, pp.4089-4098, 2008.
DOI : 10.1002/app.28255

Y. Nabar, J. M. Raquez, P. Dubois, and E. R. Narayan, -terephthalate) as a Compatibilizer, Biomacromolecules, vol.6, issue.2, pp.807-817, 2005.
DOI : 10.1021/bm0494242

C. H. Yean and V. G. Das, Studies on the transesterification of glycerides: I. The methanolysis of tripalmitin catalysed by diorganotin(IV) compounds, Applied Organometallic Chemistry, vol.16, issue.6, pp.304-315, 2000.
DOI : 10.1002/(SICI)1099-0739(200006)14:6<304::AID-AOC985>3.0.CO;2-N

L. C. Meher, D. Vidya-sagar, and S. N. Naik, Technical aspects of biodiesel production by transesterification???a review, Renewable and Sustainable Energy Reviews, vol.10, issue.3, pp.248-268, 2006.
DOI : 10.1016/j.rser.2004.09.002

L. Chen, Poly(l-lactide)/starch blends compatibilized with poly(l-lactide)-g-starch copolymer, Carbohydrate Polymers, vol.65, issue.1, pp.75-80, 2006.
DOI : 10.1016/j.carbpol.2005.12.029

E. Choi, C. Kim, and E. J. Park, Structure-property relationship in PCL/starch blend compatibilized with starch-g-PCL copolymer, Journal of Polymer Science Part B: Polymer Physics, vol.8, issue.17, pp.2430-2438, 1999.
DOI : 10.1002/(SICI)1099-0488(19990901)37:17<2430::AID-POLB14>3.0.CO;2-4

E. Duquesne, D. Rutot, and P. Degée, Dubois, « Synthesis and characterization of compatibilized poly(?caprolactone )/granular starch composites, Macromolecular Symposia, pp.33-44, 2001.

R. Mani, J. Tang, and E. M. Bhattacharya, Synthesis and characterization of starch-graft-polycaprolactone as compatibilizer for starch/polycaprolactone blends, Macromolecular Rapid Communications, vol.19, issue.6, pp.283-286, 1998.
DOI : 10.1002/(SICI)1521-3927(19980601)19:6<283::AID-MARC283>3.0.CO;2-C

L. Chen, Z. Zhang, X. Zhuang, and X. Chen, Jing, « Compatibilizing effect of starch-grafted-poly(L-lactide) on the poly(?-caprolactone)/starch composites, Journal of Applied Polymer Science, vol.117, pp.2724-2731, 2010.

D. Mecerreyes and R. Jérôme, From living to controlled aluminium alkoxide mediated ring-opening polymerization of (di)lactones, a powerful tool for the macromolecular engineering of aliphatic polyesters, Macromolecular Chemistry and Physics, vol.200, issue.12, pp.2581-2590, 1999.
DOI : 10.1002/(SICI)1521-3935(19991201)200:12<2581::AID-MACP2581>3.0.CO;2-P

P. Dubois, C. Jacobs, and R. Jerome, Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide, Macromolecules, vol.24, issue.9, pp.2266-2270, 1991.
DOI : 10.1021/ma00009a022

D. Mecerreyes, P. Dubois, R. Jérôme, J. L. Hedrick, and C. J. Hawker, Synthesis of dendritic-linear block copolymers by living ring-opening polymerization of lactones and lactides using dendritic initiators, Journal of Polymer Science Part A: Polymer Chemistry, vol.130, issue.13, pp.1923-1930, 1999.
DOI : 10.1002/(SICI)1099-0518(19990701)37:13<1923::AID-POLA5>3.0.CO;2-8

A. Kowalski, J. Libiszowski, A. Duda, and E. S. Penczek, -Dilactide Initiated by Tin(II) Butoxide, Macromolecules, vol.33, issue.6, pp.1964-1971, 2000.
DOI : 10.1021/ma991751s

URL : https://hal.archives-ouvertes.fr/halshs-00807294

S. Penczek, A. Duda, A. Kowalski, J. Libiszowski, K. Majerska et al., On the mechanism of polymerization of cyclic esters induced by tin(II) octoate, Macromolecular Symposia, pp.61-70, 2000.
DOI : 10.1002/1521-3900(200007)157:1<61::AID-MASY61>3.0.CO;2-6

A. Kowalski, A. Duda, and E. S. Penczek, Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 1. Polymerization of ?-caprolactone, Macromolecular Rapid Communications, vol.19, issue.11, pp.567-572, 1998.

A. Kowalski, A. Duda, and E. S. Penczek, Macromolecules Fitted with Tin(II) Alkoxide Species Observed Directly in MALDI???TOF Spectra, Macromolecules, vol.33, issue.3, pp.689-695, 2000.
DOI : 10.1021/ma9906940

A. Kowalski, A. Duda, and E. S. Penczek, -Dilactide, Macromolecules, vol.33, issue.20, pp.7359-7370, 2000.
DOI : 10.1021/ma000125o

URL : https://hal.archives-ouvertes.fr/halshs-00807294

M. K. Kiesewetter, E. J. Shin, J. L. Hedrick, R. M. Waymouth, and . Organocatalysis, Organocatalysis: Opportunities and Challenges for Polymer Synthesis, Macromolecules, vol.43, issue.5, pp.2093-2107, 2010.
DOI : 10.1021/ma9025948

B. G. Lohmeijer, Guanidine and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters, Macromolecules, vol.39, issue.25, pp.8574-8583, 2006.
DOI : 10.1021/ma0619381

D. Bourissou and S. Moebs-sanchez, Recent advances in the controlled preparation of poly(??-hydroxy acids): Metal-free catalysts and new monomers, Comptes Rendus Chimie, vol.10, issue.9, pp.775-794, 2007.
DOI : 10.1016/j.crci.2007.05.004

C. Jérôme and P. Lecomte, Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization???, Advanced Drug Delivery Reviews, vol.60, issue.9, pp.1056-1076, 2008.
DOI : 10.1016/j.addr.2008.02.008

F. Nederberg, E. F. Connor, M. Möller, T. Glauser, and J. L. Hedrick, New Paradigms for Organic Catalysts: The First Organocatalytic Living Polymerization, Angewandte Chemie International Edition, vol.28, issue.14, p.2712, 2001.
DOI : 10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z

R. C. Pratt, B. G. Lohmeijer, D. A. Long, R. M. Waymouth, J. L. Hedrick et al., Triazabicyclodecene:?? A Simple Bifunctional Organocatalyst for Acyl Transfer and Ring-Opening Polymerization of Cyclic Esters, Journal of the American Chemical Society, vol.128, issue.14, pp.4556-4557, 2006.
DOI : 10.1021/ja060662+

E. F. Connor, G. W. Nyce, M. Myers, A. Möck, and J. L. Hedrick, First Example of N-Heterocyclic Carbenes as Catalysts for Living Polymerization:?? Organocatalytic Ring-Opening Polymerization of Cyclic Esters, Journal of the American Chemical Society, vol.124, issue.6, pp.914-915, 2002.
DOI : 10.1021/ja0173324

L. Zhang, F. Nederberg, R. C. Pratt, R. M. Waymouth, J. L. Hedrick et al., Phosphazene Bases:?? A New Category of Organocatalysts for the Living Ring-Opening Polymerization of Cyclic Esters, Macromolecules, vol.40, issue.12, pp.4154-4158, 2007.
DOI : 10.1021/ma070316s

M. Myers, E. F. Connor, T. Glauser, A. Möck, G. Nyce et al., Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides, Journal of Polymer Science Part A: Polymer Chemistry, vol.40, issue.7, pp.844-851, 2002.
DOI : 10.1002/pola.10168.abs

S. Matsumura, K. Mabuchi, and E. K. Toshima, Lipase-catalyzed ring-opening polymerization of lactide, Macromolecular Rapid Communications, vol.18, issue.6, pp.477-482, 1997.
DOI : 10.1002/marc.1997.030180604

J. Liu, L. Liu, and . Ring, Ring-Opening Polymerization of ??-Caprolactone Initiated by Natural Amino Acids, Macromolecules, pp.2674-2676, 2004.
DOI : 10.1021/ma0348066

D. Bourissou, B. Martin-vaca, A. Dumitrescu, M. Graullier, and E. F. Lacombe, Controlled Cationic Polymerization of Lactide, Controlled Cationic Polymerization of Lactide, pp.9993-9998, 2005.
DOI : 10.1021/ma051646k

URL : https://hal.archives-ouvertes.fr/hal-00361537

J. H. Clements, Reactive Applications of Cyclic Alkylene Carbonates, Reactive Applications of Cyclic Alkylene Carbonates, pp.663-674, 2003.
DOI : 10.1021/ie020678i

S. Kéki, J. Török, G. Deák, E. M. Zsuga, and . Ring, System:?? A Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Study of the Oligomers Formed, Macromolecules, vol.34, issue.20, pp.6850-6857, 2001.
DOI : 10.1021/ma0100302

J. Lee, M. H. Litt, and . Ring, -ethylene carbonate), Macromolecules, vol.33, issue.5, pp.1618-1627, 2000.
DOI : 10.1021/ma9914321

URL : https://hal.archives-ouvertes.fr/hal-00857436

I. Engelberg and J. Kohn, Physico-mechanical properties of degradable polymers used in medical applications: A comparative study, Biomaterials, vol.12, issue.3, pp.292-304, 1991.
DOI : 10.1016/0142-9612(91)90037-B

K. J. Zhu, R. W. Hendren, K. Jensen, and C. G. Pitt, Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate), Macromolecules, vol.24, issue.8, pp.1736-1740, 1991.
DOI : 10.1021/ma00008a008

A. R. Katz, D. P. Mukherjee, A. L. Kaganov, and E. S. Gordon, « A new synthetic monofilament absorbable suture made from polytrimethylene carbonate, Surgery, Gynecology & Obstetrics, vol.161, issue.3, pp.213-222, 1985.

A. Albertsson and M. Eklund, Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonate-co-caprolactone), and poly(adipic anhydride), Journal of Applied Polymer Science, vol.57, issue.1, pp.87-103, 1995.
DOI : 10.1002/app.1995.070570109

E. Ruckenstein and Y. Yuan, Molten ring-open copolymerization ofL-lactide and cyclic trimethylene carbonate, Journal of Applied Polymer Science, vol.69, issue.7, pp.1429-1434, 1998.
DOI : 10.1002/(SICI)1097-4628(19980815)69:7<1429::AID-APP18>3.0.CO;2-O

J. Zhang, -glycolide) and poly(trimethylene carbonate) at the interface, Journal of Applied Polymer Science, vol.10, issue.4, pp.2153-2158, 2010.
DOI : 10.1002/app.31840

URL : https://hal.archives-ouvertes.fr/hal-01258459

H. Liu and J. Zhang, Research progress in toughening modification of poly(lactic acid), Journal of Polymer Science Part B: Polymer Physics, vol.490, issue.125, pp.1051-1083, 2011.
DOI : 10.1002/polb.22283

J. H. Kim and J. H. Lee, Preparation and Properties of Poly(l-lactide)-block-poly(trimethylenecarbonate) as Biodegradable Thermoplastic Elastomer, Polymer Journal, vol.10, issue.1, p.203, 2002.
DOI : 10.1002/app.1983.070280312

T. Okada, Y. Imamura, and E. T. Matsuda, Polymerization of trimethylene carbonate in aqueous solutions: Reaction mechanism and characterization, Journal of Polymer Science Part A: Polymer Chemistry, vol.36, issue.7, pp.1485-1492, 2010.
DOI : 10.1002/pola.23891

W. H. Carothers and F. J. Natta, STUDIES ON POLYMERIZATION AND RING FORMATION. III. GLYCOL ESTERS OF CARBONIC ACID, Journal of the American Chemical Society, vol.52, issue.1, pp.314-326, 1930.
DOI : 10.1021/ja01364a045

M. Sepulchre, M. Sepulchre, M. Dourges, and E. M. Neblai, Nucleophile-initiated and thermal bulk polymerizations of cyclic trimethylene carbonate in the absence of added catalysts, Macromolecular Chemistry and Physics, vol.201, issue.13, pp.1405-1414, 2000.
DOI : 10.1002/1521-3935(20000801)201:13<1405::AID-MACP1405>3.0.CO;2-T

H. R. Kricheldorf and A. Stricker, SnOct2-initiated polymerizations of trimethylene carbonate (TMC, 1,3-dioxanone-2) », Macromolecular Chemistry and Physics, Polymers of carbonic acid, pp.2557-2565, 2000.

H. R. Kricheldorf and B. Weegen-schulz, Polymers of carbonic acid. XIV. High molecular weight poly(trimethylene carbonate) by ring-opening polymerization with butyltin chlorides as initiators, Journal of Polymer Science Part A: Polymer Chemistry, vol.33, issue.13, pp.2193-2201, 1995.
DOI : 10.1002/pola.1995.080331313

M. Helou, O. Miserque, J. Brusson, J. Carpentier, and S. M. Guillaume, Organocatalysts for the Controlled ???Immortal??? Ring-Opening Polymerization of Six-Membered-Ring Cyclic Carbonates: A Metal-Free, Green Process, Chemistry - A European Journal, vol.44, issue.46, pp.13805-13813, 2010.
DOI : 10.1002/chem.201001111

URL : https://hal.archives-ouvertes.fr/hal-00589214

F. Nederberg, Organocatalytic Ring Opening Polymerization of Trimethylene Carbonate, Biomacromolecules, vol.8, issue.1, pp.153-160, 2007.
DOI : 10.1021/bm060795n

S. Matsumura, K. Tsukada, E. K. Toshima, and . Enzyme, Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate), Macromolecules, vol.30, issue.10, pp.3122-3124, 1997.
DOI : 10.1021/ma961862g

D. Delcroix, B. Martín-vaca, D. Bourissou, and E. C. Navarro, Ring-Opening Polymerization of Trimethylene Carbonate Catalyzed by Methanesulfonic Acid: Activated Monomer versus Active Chain End Mechanisms, Macromolecules, vol.43, issue.21, pp.8828-8835, 2010.
DOI : 10.1021/ma101461y

M. Helou, O. Miserque, J. Brusson, J. Carpentier, and S. M. Guillaume, Metal Triflates as Highly Stable and Active Catalysts for the ???Immortal??? Ring-Opening Polymerization of Trimethylene Carbonate, ChemCatChem, vol.32, issue.3, pp.306-313, 2010.
DOI : 10.1002/cctc.200900279

URL : https://hal.archives-ouvertes.fr/hal-00492634

H. R. Kricheldorf and S. Lee, Polymers of carbonic acid, 12. Spontaneous and hematin-initiated polymerizations of trimethylene carbonate and neopentylene carbonate, Macromolecular Chemistry and Physics, vol.197, issue.3, pp.1043-1054, 1996.
DOI : 10.1002/macp.1996.021970323

F. Becquart, Y. Chalamet, J. Chen, Y. Zhao, E. M. Taha et al., -caprolactone) Synthesis by Reactive Extrusion, 1 - Structural and Kinetic Study, Macromolecular Materials and Engineering, vol.197, issue.9, pp.643-650, 2009.
DOI : 10.1002/mame.200900134

URL : https://hal.archives-ouvertes.fr/hal-01424970

Y. Zhao, F. Becquart, Y. Chalamet, J. D. Chen, E. M. Taha et al., -caprolactone) by Reactive Extrusion, 2 - Parameter Analysis, Poly(?caprolactone ) by Reactive Extrusion, 2 ? Parameter Analysis, pp.651-657, 2009.
DOI : 10.1002/mame.200900136

URL : https://hal.archives-ouvertes.fr/hal-01008894

F. Becquart, M. Taha, A. Zerroukhi, Y. Chalamet, and J. Kaczun, ??-caprolactone grafting on a poly(vinyl alcohol-co-vinyl acetate) in the melt without added initiator, Journal of Applied Polymer Science, vol.197, issue.5, pp.2525-2531, 2007.
DOI : 10.1002/app.26400

E. Choi, C. Kim, and J. Park, -Polycaprolactone Copolymer, Macromolecules, vol.32, issue.22, pp.7402-7408, 1999.
DOI : 10.1021/ma981453f

URL : https://hal.archives-ouvertes.fr/hal-00857436

B. Volkert, A. Lehmann, T. Greco, and M. H. Nejad, A comparison of different synthesis routes for starch acetates and the resulting mechanical properties, Carbohydrate Polymers, vol.79, issue.3, pp.571-577, 2010.
DOI : 10.1016/j.carbpol.2009.09.005

G. Moad, Chemical modification of starch by reactive extrusion, Progress in Polymer Science, pp.218-237, 2011.
DOI : 10.1016/j.progpolymsci.2010.11.002

P. Tomasik, Y. J. Wang, and E. J. Jane, Facile Route to Anionic Starches. Succinylation, Maleination and Phthalation of Corn Starch on Extrusion, Starch -Stärke, pp.96-99, 1995.
DOI : 10.1002/star.19950470305

V. D. Miladinov and M. A. Hanna, Starch esterification by reactive extrusion, Industrial Crops and Products, vol.11, issue.1, pp.51-57, 2000.
DOI : 10.1016/S0926-6690(99)00033-3

M. E. Carr, S. Kim, K. J. Yoon, and K. D. Stanley, « Graft polymerization of cationic methacrylate, acrylamide, and acrylonitrile monomers onto starch by reactive extrusion, Cereal Chemistry, vol.69, issue.1, pp.70-75, 1992.

D. Rutot, E. Duquesne, I. Ydens, P. Degée, and E. P. Dubois, Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers, Polymer Degradation and Stability, vol.73, issue.3, pp.561-566, 2001.
DOI : 10.1016/S0141-3910(01)00142-2

P. Dubois, M. Krishnan, and E. R. Narayan, Aliphatic polyester-grafted starch-like polysaccharides by ring-opening polymerization, Polymer, vol.40, issue.11, pp.3091-3100, 1999.
DOI : 10.1016/S0032-3861(98)00110-4

Q. Xu, J. F. Kennedy, and E. L. Liu, An ionic liquid as reaction media in the ring opening graft polymerization of ?-caprolactone onto starch granules », Carbohydrate Polymers, pp.113-121, 2008.

R. Ouhib, B. Renault, H. Mouaziz, C. Nouvel, E. Dellacherie et al., Six, « Biodegradable amylose-g-PLA glycopolymers from renewable resources », Carbohydrate Polymers, pp.32-40, 2009.
DOI : 10.1016/j.carbpol.2008.11.038

I. Ydens, D. Rutot, P. Degee, J. Six, E. Dellacherie et al., Controlled Synthesis of Poly(??-caprolactone)-Grafted Dextran Copolymers as Potential Environmentally Friendly Surfactants, Macromolecules, vol.33, issue.18, pp.6713-6721, 2000.
DOI : 10.1021/ma0002803

X. Wang, K. Yang, Y. Wang, D. Chen, and S. Chen, Crystallization and morphology of starch-g-poly(1,4-dioxan-2-one) copolymers, Polymer, vol.45, issue.23, pp.7961-7968, 2004.
DOI : 10.1016/j.polymer.2004.09.052

H. Lönnberg, Q. Zhou, H. Brumer, T. T. Teeri, and E. Malmström, -lactic acid) via Ring-Opening Polymerization, Biomacromolecules, vol.7, issue.7, pp.2178-2185, 2006.
DOI : 10.1021/bm060178z

Q. Gong, L. Wang, and E. K. Tu, In situ polymerization of starch with lactic acid in aqueous solution and the microstructure characterization, Carbohydrate Polymers, vol.64, issue.4, pp.501-509, 2006.
DOI : 10.1016/j.carbpol.2005.09.005

L. Najemi, T. Jeanmaire, and A. Zerroukhi, Raihane, « Organic catalyst for ring opening polymerization of ?caprolactone in bulk. Route to starch-graft-polycaprolactone », Starch -Stärke, pp.3-4, 2010.

T. Gädda, Poly(??-caprolactone)-grafted acetylated anhydroglucose oligomer by ring-opening polymerization???Synthesis and characterization, Journal of Applied Polymer Science, vol.10, issue.2, pp.1633-1641, 2006.
DOI : 10.1002/app.23697

C. Nouvel, C. Frochot, V. Sadtler, P. Dubois, E. Dellacherie et al., Polylactide-Grafted Dextrans: Synthesis and Properties at Interfaces and in Solution, Macromolecules, vol.37, issue.13, pp.4981-4988, 2004.
DOI : 10.1021/ma049857x

URL : https://hal.archives-ouvertes.fr/hal-00079353

R. Gref, J. Rodrigues, and E. P. Couvreur, Polysaccharides Grafted with Polyesters: Novel Amphiphilic Copolymers for Biomedical Applications, Macromolecules, vol.35, issue.27, pp.9861-9867, 2002.
DOI : 10.1021/ma021132a

Q. Xu, Q. Wang, and E. L. Liu, Ring-opening graft polymerization ofL-lactide onto starch granules in an ionic liquid, Journal of Applied Polymer Science, vol.39, issue.4, pp.2704-2713, 2008.
DOI : 10.1002/app.27341

J. Yu, F. Ai, A. Dufresne, S. Gao, J. Huang et al., -caprolactone), Macromolecular Materials and Engineering, vol.43, issue.9, pp.763-770, 2008.
DOI : 10.1002/10.1002/pc.20612

URL : https://hal.archives-ouvertes.fr/hal-01258459

W. Yuan, J. Yuan, F. Zhang, E. X. Xie, and . Syntheses, -lactide) Copolymers by Sequential Ring-Opening Polymerization, Biomacromolecules, vol.8, issue.4, pp.1101-1108, 2007.
DOI : 10.1021/bm0610018

URL : https://hal.archives-ouvertes.fr/hal-01058829

X. Wang, K. Yang, Y. Wang, Z. Zhou, and E. Y. Jin, -poly(1,4-dioxan-2-one) copolymers, Journal of Polymer Science Part A: Polymer Chemistry, vol.199, issue.14, pp.3417-3422, 2004.
DOI : 10.1002/pola.20203

URL : https://hal.archives-ouvertes.fr/jpa-00209906

A. K. Sugih, F. Picchioni, L. P. Janssen, and H. J. Heeres, Synthesis of poly-(??)-caprolactone grafted starch co-polymers by ring-opening polymerisation using silylated starch precursors, Carbohydrate Polymers, vol.77, issue.2, pp.267-275, 2009.
DOI : 10.1016/j.carbpol.2008.12.032

C. Yan, -lactide) Copolymers Homogeneously Synthesized in an Ionic Liquid with 4-Dimethylaminopyridine Catalyst, Biomacromolecules, vol.10, issue.8, pp.2013-2018, 2009.
DOI : 10.1021/bm900447u

URL : https://hal.archives-ouvertes.fr/hal-01407904

F. Suriano, Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery, Biomaterials, vol.31, issue.9, pp.2637-2645, 2010.
DOI : 10.1016/j.biomaterials.2009.12.022

L. Chen, « A novel approach to grafting polymerization of ?-caprolactone onto starch granules », Carbohydrate Polymers, pp.103-109, 2005.

R. Narayan, P. Dubois, and E. M. Krishnan, « Polysaccharides grafted with aliphatic polyesters derived from cyclic esters, p.6911996

K. Khemani, B. Morris, G. Moad, and E. G. Li, Reactive extrusion modification of fuctional polymers and / or polysaccarides

P. , L. Bail, H. Bizot, M. Ollivon, G. Keller et al., Buléon, « Monitoring the crystallization of amylose?lipid complexes during maize starch melting by synchrotron x-ray diffraction, Biopolymers, vol.50, issue.1, pp.99-110, 1999.

J. J. Van-soest, S. H. Hulleman, D. De-wit, and J. F. Vliegenthart, Crystallinity in starch bioplastics, Crystallinity in starch bioplastics, pp.11-22, 1996.
DOI : 10.1016/0926-6690(95)00048-8

G. S. Nilsson, L. Gorton, K. Bergquist, and E. U. Nilsson, « Determination of the Degree of Branching in Normal and Amylopectin Type Potato Starch with 1H-NMR Spectroscopy Improved resolution and two-dimensional spectroscopy, Starch -Stärke, pp.352-357, 1996.

D. Lourdin, H. Bizot, E. P. Colonna, and «. , ?Antiplasticization? in starch-glycerol films?, Journal of Applied Polymer Science, vol.63, issue.8, pp.1047-1053, 1997.
DOI : 10.1002/(SICI)1097-4628(19970222)63:8<1047::AID-APP11>3.0.CO;2-3

R. Zullo and S. Iannace, The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure, Carbohydrate Polymers, vol.77, issue.2, pp.376-383, 2009.
DOI : 10.1016/j.carbpol.2009.01.007

I. C. Mcneill and H. A. Leiper, Degradation studies of some polyesters and polycarbonates???2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer, Polymer Degradation and Stability, vol.11, issue.4, pp.309-326, 1985.
DOI : 10.1016/0141-3910(85)90035-7

T. Kijchavengkul, R. Auras, M. Rubino, M. Ngouajio, and R. T. Fernandez, Assessment of aliphatic???aromatic copolyester biodegradable mulch films. Part I: Field study, Chemosphere, vol.71, issue.5, pp.942-953, 2008.
DOI : 10.1016/j.chemosphere.2007.10.074

T. Kijchavengkul, R. Auras, M. Rubino, M. Ngouajio, and R. T. Fernandez, Assessment of aliphatic???aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions, Chemosphere, vol.71, issue.9, pp.1607-1616, 2008.
DOI : 10.1016/j.chemosphere.2008.01.037

T. Kijchavengkul, R. Auras, M. Rubino, S. Selke, M. Ngouajio et al., Formulation selection of aliphatic aromatic biodegradable polyester film exposed to UV/solar radiation, Polymer Degradation and Stability, vol.96, issue.10, pp.1919-1926, 2011.
DOI : 10.1016/j.polymdegradstab.2011.07.001

S. Wu, Polymer interface and adhesion, 1982.

L. Elias, F. Fenouillot, J. Majesté, G. Martin, and E. P. Cassagnau, Migration of nanosilica particles in polymer blends, Migration of nanosilica particles in polymer blends, pp.1976-1983, 2008.
DOI : 10.1002/polb.21534

URL : https://hal.archives-ouvertes.fr/hal-00373896

G. K. Moates, T. R. Noel, R. Parker, and S. G. , Ring, « Dynamic mechanical and dielectric characterisation of amylose-glycerol films », Carbohydrate Polymers, pp.247-253, 2001.

M. Curini, F. Epifano, F. Maltese, and O. Rosati, Carbamate synthesis from amines and dimethyl carbonate under ytterbium triflate catalysis, Tetrahedron Letters, vol.43, issue.28, pp.4895-4897, 2002.
DOI : 10.1016/S0040-4039(02)00965-6

T. Sima, S. Guo, F. Shi, and E. Y. Deng, The syntheses of carbamates from reactions of primary and secondary aliphatic amines with dimethyl carbonate in ionic liquids, Tetrahedron Letters, vol.43, issue.45, pp.8145-8147, 2002.
DOI : 10.1016/S0040-4039(02)01943-3

E. Pretsch, P. Bühlmann, and C. Affolter, Structure determination of organic compounds: tables of spectral data, 2000.

Y. Li, Functional properties of the Maillard reaction products of rice protein with sugar, Food Chemistry, vol.117, issue.1, pp.69-74, 2009.
DOI : 10.1016/j.foodchem.2009.03.078

W. Jiang, S. Tjong, and R. K. Li, Brittle???tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed, Polymer, vol.41, issue.9, pp.3479-3482, 2000.
DOI : 10.1016/S0032-3861(99)00747-8