G. Léo-allemand-giorgis, S. Bonneau, and . Hahmann, Reconstruction polynomiale par morceaux de fonctions à partir de complexes de Morse-Smale simplifiés, AFIG 2014 -27es journées de l'Association Française d'Informatique Graphique, 2014.

G. Léo-allemand-giorgis, S. Bonneau, and . Hahmann, Piecewise Polynomial Reconstruction of Functions from Simplified Morse-Smale complex, IEEE Visualization conference 2014, SciVis Posters, 2014.

G. Léo-allemand-giorgis, S. Bonneau, . Hahmann, . Et-fabien, and . Vivodtzev, Piecewise Polynomial Monotonic Interpolation of 2D Gridded Data, Topological and Statistical Methods for Complex Data, Mathematics and Visualization, 2014.
DOI : 10.1007/978-3-662-44900-4_5

R. K. Beatson and Z. Ziegler, Monotonicity Preserving Surface Interpolation, SIAM Journal on Numerical Analysis, vol.22, issue.2, pp.401-411, 1985.
DOI : 10.1137/0722024

P. T. Bremer, B. Hamann, H. Edelsbrunner, and E. V. Pascucci, A topological hierarchy for functions on triangulated surfaces, IEEE Transactions on Visualization and Computer Graphics, vol.10, issue.4, pp.385-396, 2004.
DOI : 10.1109/TVCG.2004.3

K. Brodlie and P. Mashwama, Controlled Interpolation for Scientific Visualization, Scientific Visualization, Overviews, Methodologies, and Techniques, pp.253-276, 1994.

R. E. Carlson and F. N. Fritsch, A Bivariate Interpolation Algorithm for Data that are Monotone in One Variable, SIAM Journal on Scientific and Statistical Computing, vol.12, issue.4, pp.859-866, 1991.
DOI : 10.1137/0912046

R. E. Carlson and F. N. Fritsch, An Algorithm for Monotone Piecewise Bicubic Interpolation, SIAM Journal on Numerical Analysis, vol.26, issue.1, pp.230-238, 1989.
DOI : 10.1137/0726013

W. Ray, . Clough, L. James, and . Tocher, Finite element stiffness matrices for analysis of plates in bending, Proceedings of conference on matrix methods in structural analysis, pp.515-545, 1965.

B. Delaunay, . Sur-la-sphère-vide, G. La-mémoire-de, and . Voronoï, Bulletin de l'Académie des Sciences de l'URSS, pp.793-800, 1934.

H. Edelsbrunner, D. Letscher, and E. A. Zomorodian, Topological persistence and simplification, Proceedings of the 41st Annual Symposium on Foundations of Computer Science, FOCS '00, p.454, 2000.
DOI : 10.1007/s00454-002-2885-2

URL : http://graphics.stanford.edu/~afra/papers/focs00/dcg.ps.gz

H. Edelsbrunner, J. Harer, and . Et-afra-zomorodian, Hierarchical Morse--Smale Complexes for Piecewise Linear 2-Manifolds, Discrete and Computational Geometry, vol.30, issue.1, pp.87-107, 2003.
DOI : 10.1007/s00454-003-2926-5

E. Gerald and . Farin, Curves and Surfaces for Computer-Aided Geometric Design : A Practical Code, 1996.

E. Gerald and . Farin, Triangular Bernstein-Bézier patches, Computer Aided Geometric Design, vol.3, issue.2, pp.83-127, 1986.

S. Michael and . Floater, Mean Value Coordinates, Comput. Aided Geom. Des, vol.20, issue.1, pp.19-27, 2003.

S. Michael, K. Floater, and . Hormann, Surface Parameterization : a Tutorial and Survey, Advances in multiresolution for geometric modelling, pp.157-186, 2005.

. Michaels, J. M. Floater, and . Peña, Tensor-product monotonicity preservation, Advances in Computational Mathematics, vol.9, issue.3-4, pp.353-362, 1998.

R. Forman, A User's Guide To Discrete Morse Theory, Proc. of the 2001 Internat . Conf. on Formal Power Series and Algebraic Combinatorics, A special volume of Advances in Applied Mathematics, p.48, 2001.

F. N. Fritsch and R. E. Carlson, Monotone Piecewise Cubic Interpolation, SIAM Journal on Numerical Analysis, vol.17, issue.2, pp.238-246, 1980.
DOI : 10.1137/0717021

G. Guennebaud and B. Jacob, Eigen v3, 2010.

D. Günther, A. Jacobson-reininghaus, H. Seidel, O. Sorkine-hornung, and T. Weinkauf, Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields, IEEE Transactions on Visualization and Computer Graphics (Proceedings Scientific Visualization / Information Visualization, issue.12, p.20, 2014.

D. Günther, J. Reininghaus, H. P. Seidel, and T. Weinkauf, Notes on the Simplification of the Morse-Smale Complex, Topological Methods in Data Analysis and Visualization III, Mathematics and Visualization, pp.135-150, 2014.
DOI : 10.1007/978-3-319-04099-8_9

A. Gyulassy, P. Bremer, B. Hamann, and E. V. Pascucci, A Practical Approach to Morse- Smale Complex Computation : Scalability and Generality. Visualization and Computer Graphics, IEEE Transactions on, vol.14, issue.6, pp.1619-1626, 2008.
DOI : 10.1109/tvcg.2008.110

URL : http://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Gyulassy08.pdf

A. Gyulassy, P. Bremer, and E. V. Pascucci, Computing Morse-Smale Complexes with Accurate Geometry. Visualization and Computer Graphics, IEEE Transactions on, vol.18, issue.12, pp.2014-2022, 2012.
DOI : 10.1109/tvcg.2012.209

L. Han and L. L. Schumaker, Fitting Monotone Surfaces to Scattered Data Using C1 Piecewise Cubics, SIAM Journal on Numerical Analysis, vol.34, issue.2, pp.569-585, 1997.
DOI : 10.1137/S0036142994268582

R. L. Hardy, Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968???1988, (90)90272-L. URL http, pp.163-208, 1968.
DOI : 10.1016/0898-1221(90)90272-L

R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, vol.71, issue.8, pp.1905-1915, 1971.
DOI : 10.1029/JZ071i004p01105

X. He and P. Shi, Monotone B-Spline Smoothing, Journal of the American Statistical Association, vol.93, issue.442, pp.643-650, 1996.
DOI : 10.2307/2670115

URL : http://www.stat.uiuc.edu/~he/mono.ps

A. Jacobson, T. Weinkauf, and O. Sorkine, Smooth Shape-Aware Functions with Controlled Extrema, Computer Graphics Forum, vol.29, issue.2, pp.311577-1586, 2012.
DOI : 10.1111/j.1467-8659.2009.01622.x

N. Jaxon and X. Qian, Isogeometric analysis on triangulations, {SIAM} Conference on Geometric and Physical Modeling, pp.45-57, 2013.
DOI : 10.1016/j.cad.2013.08.017

H. King, K. Knudson, and N. Mramor, Generating Discrete Morse Functions from Point Data, Experimental Mathematics, vol.14, issue.4, pp.435-444, 2005.
DOI : 10.1080/10586458.2005.10128941

T. Lewiner, H. Lopes, . Et-geovan, and . Tavares, Optimal discrete Morse functions for 2-manifolds, Computational Geometry, vol.26, issue.3, pp.221-233, 2003.
DOI : 10.1016/S0925-7721(03)00014-2

URL : https://doi.org/10.1016/s0925-7721(03)00014-2

D. H. Mclain, Two Dimensional Interpolation from Random Data, The Computer Journal, vol.19, issue.2, pp.178-181178, 1976.
DOI : 10.1093/comjnl/19.2.178

T. Nguyen and B. Jüttler, Parameterization of Contractible Domains Using Sequences of Harmonic Maps
DOI : 10.1016/j.cma.2011.03.005

M. J. Powell and M. A. Sabin, Piecewise Quadratic Approximations on Triangles, ACM Transactions on Mathematical Software, vol.3, issue.4, pp.316-325, 1977.
DOI : 10.1145/355759.355761

J. Reininghaus, D. Günther, I. Hotz, T. Weinkauf, and H. Seidel, Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices

L. Larry, C. Schumaker, and . Traas, Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines, Numerische Mathematik, vol.60, issue.1, pp.133-144, 1385718.

W. Thomas, . Sederberg, R. Scott, and . Parry, Comparison of three curve intersection algorithms, Computer-Aided Design, vol.18, issue.1, pp.58-63, 1986.

T. W. Sederberg, D. Anderson, and R. Goldman, Implicit representation of parametric curves and surfaces, Computer Vision, Graphics, and Image Processing, pp.72-84, 1984.

D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 23rd ACM national conference on -, pp.517-523, 1968.
DOI : 10.1145/800186.810616

N. Shivashankar, M. Senthilnathan, and V. Natarajan, Parallel Computation of 2D Morse-Smale Complexes, IEEE Transactions on Visualization and Computer Graphics, vol.18, issue.10, pp.1757-1770
DOI : 10.1109/TVCG.2011.284

R. Sibson, A brief description of natural neighbour interpolation. Interpreting multivariate data, pp.21-36, 1981.

R. Sibson and G. Thomson, A seamed quadratic element for contouring, The Computer Journal, vol.24, issue.4, pp.378-382, 1981.
DOI : 10.1093/comjnl/24.4.378

URL : https://academic.oup.com/comjnl/article-pdf/24/4/378/1039833/240378.pdf

G. Taubin, A signal processing approach to fair surface design, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques , SIGGRAPH '95, pp.351-358, 1995.
DOI : 10.1145/218380.218473

URL : http://mesh.caltech.edu/ee148/refs/Taubin-sg95.pdf

F. Utreras and L. Varas, Monotone interpolation of scattered data in R s. Constructive Approximation, pp.49-68, 1991.

T. Weinkauf, Y. Gingold, and O. Sorkine, Topology-based Smoothing of 2D Scalar Fields with C1-Continuity, Proceedings of the 12th Eurographics, pp.1221-1230, 2010.
DOI : 10.1080/10586458.1993.10504266

K. Willemans and P. Dierckx, Smoothing scattered data with a monotone Powell-Sabin spline surface, Numerical Algorithms, vol.27, issue.1, pp.215-231, 1996.
DOI : 10.1007/BF02141749

G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo, Parameterization of computational domain in isogeometric analysis: Methods and comparison, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.23-24, pp.23-242021, 2011.
DOI : 10.1016/j.cma.2011.03.005