M. Valeur-de-référence-par-la-méthode and . ?6, 23 ± 0.17 $ Valeur par simulation MCNP recalée ?6

M. Valeur-de-référence-par-la-méthode and . ?8, 21 $ Valeur par simulation MCNP recalée ?7

M. Valeur-de-référence-par-la-méthode and . ?17, 48 ± 0.46 $ Valeur par simulation MCNP recalée ?16

M. Valeur-de-référence-par-la-méthode and . ?6, 26 ± 0.17 $ Valeur par simulation MCNP recalée ?5

M. Valeur-de-référence-par-la-méthode and . ?6, 23 ± 0.17 $ Valeur par simulation MCNP recalée ?6

. Bibliographie, IAEA : Nuclear Power Reactors in the World. Reference Data Series No. 2 2016 Edition, 2016.

. Observ-'er and . Edf, La production d'électricité d'origine renouvelable dans le monde - Collection chiffres et statistiques. Quinzième inventaire -Édition, 2013.

J. Ligou, Introduction au génie nucléaire. PPUR presses polytechniques

S. Marguet, La physique des réacteurs nucléaires, pp.978-1005, 2013.

B. S. Shen and M. Merker, Spallation Nuclear Reactions and their Applications, 2012.
DOI : 10.1007/978-94-010-1511-0

S. David, Capacités des réacteurs hybrides au plomb pour la production d'énergie et l'incinération avec multirecyclage des combustibles -Évolution des paramètres physiques -Radiotoxicités induites, 1999.

M. Salvatores, The Potential of Accelerator-Driven Systems for Transmutation of Power Production Using Thorium or Uranium Fuel Cycles, Nuclear Science and Engineering, vol.126, pp.333-340, 1997.

M. B. Chadwick, ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data, Nuclear Data Sheets, vol.112, issue.12, pp.2887-2996, 2011.
DOI : 10.1016/j.nds.2011.11.002

Z. Chen, Nuclear waste transmutation performance assessment of an accelerator driven subcritical reactor for waste transmutation (ADS-NWT), Annals of Nuclear Energy, vol.75, pp.723-727, 2015.
DOI : 10.1016/j.anucene.2014.09.002

J. Clavel, Étude de systèmes et scénarios électronucléaires double strate de transmutation des actinides mineurs en ADS, 2012.

J. Grouillier, Minor actinides transmutation scenario studies with PWRs, FRs and moderated targets, Proceedings of the 2nd Seminar on European Research on Materials for Transmutation, pp.163-169, 2003.
DOI : 10.1016/S0022-3115(03)00184-3

M. Cometto, P. Wydler, and R. Chawla, Management of actinide waste inventories in nuclear phase-out scenarios, Annals of Nuclear Energy, vol.35, issue.8, pp.1447-1460, 2008.
DOI : 10.1016/j.anucene.2008.01.016

R. S. Kemp, Nuclear Proliferation with Particle Accelerators, Science & Global Security, vol.13, issue.3, pp.183-207, 2005.
DOI : 10.1080/08929880500357708

B. Lewis, The significance of the yield of neutrons from heavy nuclei excited to high energies, AECL) Research and Development Report, 1952.

P. Grand, The use of high energy accelerators in the nuclear fuel cycle, Nature, vol.38, issue.5706, pp.693-696, 1979.
DOI : 10.1038/270376a0

. D. Ch and . Bowman, Accelerator-driven systems for nuclear waste transmutation, Annual Review of Nuclear and Particle Science, vol.48, pp.505-506, 1998.

C. Rubbia, Conceptual design of a fast neutron operated high power energy amplifier, European Organization for Nuclear Research, pp.95-139, 1995.

A. C. Mueller, Nuclear waste incineration and accelerator aspects from the European PDS-XADS study, Nuclear Physics A, vol.751, pp.453-468, 2005.
DOI : 10.1016/j.nuclphysa.2005.02.015

URL : https://hal.archives-ouvertes.fr/in2p3-00024095

L. Mansani, EFIT : The European Facility for Industrial Transmutation of Minor Actinides. Eighth International Topical Meeting on Nuclear Applications and Utilization of Accelerators, 2007.

P. Baeten, From MYRRHA/XT-ADS to MYRRHA/FASTEF : the FP7 Central Design Team project, International conference on fast reactors and related fuel cycles (FR09) : Challenges and opportunities, 2009.

D. De-bruyn, H. Aït-abderrahim, and P. Baeten, The MYRRHA ADS Project in Belgium Enters the Front End Engineering Phase, Physics Procedia, vol.66, pp.75-84, 2015.
DOI : 10.1016/j.phpro.2015.05.012

J. L. Biarrotte, Euratom MAX Project : The MYRRHA Accelerator eXperiment R&D Program. Thorium Energy for the World, pp.259-264, 2016.
DOI : 10.1007/978-3-319-26542-1_38

URL : https://hal.archives-ouvertes.fr/in2p3-00903786

I. Pioro, Handbook of Generation-IV Nuclear Reactors, Journal of Nuclear Engineering and Radiation Science, vol.3, issue.2
DOI : 10.1115/1.4035327

G. S. Bauer, MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target, Journal of Nuclear Materials, vol.296, issue.1-3, pp.17-33, 2001.
DOI : 10.1016/S0022-3115(01)00561-X

A. Billebaud, Réacteurs hybrides : Avancées récentes pour un démonstrateur. École Joliot-Curie de Physique Nucléaire -Le cycle électronucléaire : De la fission aux nouvelles filières, 2006.

J. Conto, GENEPI : A high intensity deuteron accelerator for pulsed neutron production, pp.685-687, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-00003866

A. Soule, Neutronic Studies in Support of Accelerator-Driven Systems: The MUSE Experiments in the MASURCA Facility, Nuclear Science and Engineering, vol.148, pp.124-152, 2004.
DOI : 10.13182/NSE01-13C

URL : https://hal.archives-ouvertes.fr/in2p3-00023657

J. Lebrat, R. Soule, W. Assal, P. Chaussonnet, C. Destouches et al., Global Results from Deterministic and Stochastic Analysis of the MUSE-4 Experiments on the Neutronics of Accelerator-Driven Systems, Nuclear Science and Engineering, vol.158, issue.1, p.49, 2008.
DOI : 10.13182/NSE05-100

URL : https://hal.archives-ouvertes.fr/in2p3-00281433

D. Villamarin-fernandez, Análisis dinámico des reactor experimental de fisión nuclear MUSE-4, 2004.

F. Perdu, Prompt reactivity determination in a subcritical assembly through the response to a dirac pulse, Progress in Nuclear Energy, pp.107-120, 2003.
DOI : 10.1016/S0149-1970(02)00101-4

URL : https://hal.archives-ouvertes.fr/in2p3-00012235

F. Perdu, Contributions aux études de sûreté pour des filières innovantes de réacteurs nucléaires, 2003.

J. Vollaire, L'expérience MUSE-4 : mesure des paramètres cinétiques d'un système sous-critique, 2004.

F. Mellier, The MUSE experiments for sub-critical neutronics validation. 5th Euratom Framework Programme (contract no. FIKW-CT-2000-00063) deliverable 8, 2005.

R. Rosa, Overview of the TRADE project, Third annual workshop on Accelerator- Driven Subcritical System (ADSS) experiments, 2005.

P. Baeten, The GUINEVERE project at the VENUS facility, International Conference on the Physics of Reactors -PHYSOR 2008, pp.14-19, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00305892

M. Baylac, The GENEPI-3C accelerator for the GUINEVERE project In International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, Proc. CD Series IAEA-13-CN-173, 2009.

Y. Gohar, YALINA Facility : A Sub-Critical Accelerator-Driven System (ADS) for Nuclear-Energy Research Facility -Description and an Overview of the Research Program Argonne National Laboratory (United States) Funding organisation : USDOE Office of Nuclear Energy, Science and Technology, 1997.

V. Bécares, Evaluation of the criticality constant from Pulsed Neutron Source measurements in the Yalina-Booster subcritical assembly, Annals of Nuclear Energy, vol.53, pp.40-49, 2013.
DOI : 10.1016/j.anucene.2012.10.002

V. Bécares, Validation of ADS reactivity monitoring techniques in the Yalina-Booster subcritical assembly, Annals of Nuclear Energy, vol.53, pp.331-341, 2013.
DOI : 10.1016/j.anucene.2012.10.001

V. Bécares, Evaluation of Reactivity Monitoring Techniques at the YALINA-Booster Sub-critical Facility, 2014.

A. Hébert, Applied Reactor Physics Presses internationales Polytechnique, 2009.

R. Barjon, Physique des Réacteurs Nucléaires, Institut des Sciences Nucléaires, 1993.

K. O. Ott and R. J. Neuhold, Introductory -Nuclear Reactor Dynamics, 1985.

G. R. Keepin, T. F. Wimett, and R. K. Zeigler, Delayed neutrons from fissionable isotopes of Uranium, Plutonium and Thorium, J. Nuclear Energy, vol.6, pp.1-21, 1957.

G. D. Spriggs, J. M. Campbell, and V. M. , An 8-group delayed neutron model based on a consistent set of half-lives, Progress in Nuclear Energy, vol.41, issue.1-4, pp.223-251, 2002.
DOI : 10.1016/S0149-1970(02)00013-6

M. C. Team, Los Alamos National Laboratory : MCNP -Version 5, I : Overview and Theory, 1987.

P. Reuss, Précis de Neutronique, EDP Sciences, 2003.

G. I. Bell and S. Glasstone, Nuclear Reactor Theory, pp.978-0442206840, 1970.

J. Lewins, Time dependent importance of neutrons and precursors, Nuclear Science and Engineering, vol.7, p.268, 1960.

P. Blaise, Application of the Modified Source Multiplication (MSM) Technique to Subcritical Reactivity Worth Measurements in Thermal and Fast Reactor Systems, IEEE Transactions on Nuclear Science, vol.58, issue.3, pp.1166-1176, 2011.
DOI : 10.1109/TNS.2011.2115254

G. D. Spriggs, R. D. Busch, and J. G. , Two-region kinetic model for reflected reactors, Annals of Nuclear Energy, vol.24, issue.3, p.205, 1997.
DOI : 10.1016/0306-4549(96)00062-X

S. Chabod, Reactivity Measurements at GUINEVERE Facility Using the Integral kp Method. In PHYSOR2014 -The Role of Reactor Physics towards a Sustainable Future, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01109546

S. Chabod, Communication privée, 2016.

A. Billebaud, The GUINEVERE Project for Accelerator Driven System Physics The Nuclear Fuel Cycle : Sustainable Options & Industrial Perspectives, International Conference GLOBAL 2009, pp.1809-1815, 2009.

M. Baylac, The GENEPI-3C Accelerator for the GUINEVERE Project, International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00382010

B. Wolf, Handbook of Ion Sources, 1995.

C. Destouches, The GENEPI accelerator operation feedback at the MA- SURCA reactor facility, pp.601-609, 2005.
DOI : 10.1016/j.nima.2006.02.126

A. Billebaud, Expériences de physique et technologie des réacteurs, Conseil Scientifique de l'IN2P3, 2013.

G. Ban, A telescope for monitoring fast neutron sources, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.577, issue.3, pp.696-701, 2007.
DOI : 10.1016/j.nima.2007.05.002

URL : https://hal.archives-ouvertes.fr/in2p3-00134052

W. Uyttenhove, Description of the VENUS-F Reactor for Neutronic Calculations , SCK?CEN Restricted Report R-4914, 2009.

X. Doligez, Effective delayed neutron fraction measurement in the critical VENUS-F reactor using noise techniques, 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), 2015.
DOI : 10.1109/ANIMMA.2015.7465614

URL : https://hal.archives-ouvertes.fr/in2p3-01347108

J. L. Lecouey, Estimate of the reactivity of the VENUS-F subcritical configuration using a Monte Carlo MSM method, Annals of Nuclear Energy, vol.83, pp.65-75, 2015.
DOI : 10.1016/j.anucene.2015.04.010

URL : https://hal.archives-ouvertes.fr/in2p3-01177675

A. Kochetkov, Equipment for the realisation of the GUINEVERE experimental programme, SCK?CEN Restricted Report R-4912, 2010.

A. Lafuente, MCNP detector's model description for the calculations in support of the experimental campaign, 2009.

. Canberra, Manuel d'utilisation -Tiroir Amplificateur Discriminateur d'impulsions 7820-ADS, Document technique

J. Bouvier, GANDDALF : système d'acquisition de données pour le programme expérimental GUINEVERE, 2011.

L. Anselmi, Aspects in the use of the inverse neutron kinetics technique, Nuclear Instruments and Methods, vol.98, issue.3, pp.485-491, 1972.
DOI : 10.1016/0029-554X(72)90233-9

J. L. Lecouey and T. Chevret, Evolution of the neutron population in a subcritical reactor driven by a time-dependent external neutron source within the framework of the Point Kinetics Model, 2013.

M. Carta, Communication privée, 2011.

G. Rimpault, The ERANOS code and data system for fast neutronic analysis, Proc. Int. Conf. PHYSOR, pp.7-10, 2002.

M. Sarotto, The MYRRHA-FASTEF cores design for critical and sub-critical operational modes (EU FP7 Central Design Team project), Nuclear Engineering and Design, vol.265, pp.184-200, 2013.
DOI : 10.1016/j.nucengdes.2013.08.055

-. and R. La-ur, MCNP-A General Monte Carlo N-Particle Code, 1987.

N. Messaoudi, MUSE-4 Benchmark Calculations Using MCNP-4C and Different Nuclear Data Libraries, 2003.

W. Uyttenhove, MCNP VENUS-F Core Model, Version 3 Based GUINEVERE : Experimental Programme ? Description of the VENUS-F Reactor for Neutronics Calculations, 2010.

J. L. Lecouey and N. Marie, Chevret : A simplified semi-homogeneous MCNP model of the VENUS-F reactor, Document interne, 2015.

N. Marie, Reactivity Monitoring Using the Area Method for the Subcritical VENUS-F Core within the Framework of the FREYA Project, International Workshop on Technology and Components of Accelerator Driven Systems (TCADS) OECD Nuclear Energy Agency, pp.88-97, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00829301

M. Carlo and M. , Correction Factors for Control Rod Worth Estimates in Subcritical and Near-Critical Fast Neutron Reactors, EPJ Nuclear Sci. Technol, vol.1, 2015.

M. C. Team, Los Alamos National Laboratory : MCNP -Version 5, II : User's Guide, 2003.

W. Haeck and B. , Verboomen : A Validated MCNP(X) Cross Section Library based on JEFF 3.1, 2006.

K. Meulekamp, Calculating the Effective Delayed Neutron Fraction with Monte Carlo, Nuclear Science and Engineering, vol.152, issue.2, pp.142-148, 2006.
DOI : 10.13182/NSE03-107

M. Herman, A. Trkov, E. , E. , and C. Document, ENDF-6 Formats Manual -Data Formats and Procedures for the Evaluated Nuclear Data F iles, 2009.

V. Bécares, Monte Carlo assessment of the reflector & source effects in the reactivity monitoring techniques applied to the GUINEVRE/FREYA experiment, FREYA (Contract number 29665) -Deliverable 1.3, 2014.

D. E. Cullen, C. J. Clouse, R. Procassini, and R. C. , Little : Static and dynamic criticality : are they different ?, 2003.
DOI : 10.2172/15009756

URL : http://www.osti.gov/scitech/servlets/purl/15009756

B. Betzler, Calculating alpha eigenvalues and eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method, 2014.

Y. Cao, Space-Time Kinetics and Time-Eigenfunctions, 2008.

R. S. Modak and A. Gupta, A simple scheme for the direct evaluation of time-eigenvalues of neutron transport equation, Annals of Nuclear Energy, vol.30, issue.2, pp.211-222, 2003.
DOI : 10.1016/S0306-4549(02)00050-6

E. B. Dahl, V. Protopopescu, and N. G. , Sjöstrand : On the Relation Between Decay Constants and Critical Parameters in Monoenergetic Neutron Transport, Nuclear Science and Engineering, vol.83, pp.374-379, 1983.

T. Yamamoto, Higher Order Mode Eigenvalue Calculation by Monte Carlo Power Iteration, Progress in Nuclear Science and Technology, pp.826-835, 2011.

B. Betzler, Calculating infinite medium alpha-eigenvalue spectra with a Transition Rate Matrix Method, International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering, 2013.
DOI : 10.1016/j.nucengdes.2015.07.052

URL : http://dx.doi.org/10.1016/j.nucengdes.2015.07.052

Y. Nauchi and T. Kameyama, and Based on Continuous Energy Monte Carlo Method, Journal of Nuclear Science and Technology, vol.35, issue.1, pp.503-514, 2005.
DOI : 10.1080/18811248.2004.9726417

V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal, Arnoldi methods in slepc Disponible sur http, 2009.

V. Hernandez, J. E. Roman, and V. Vidal, SLEPc, ACM Transactions on Mathematical Software, vol.31, issue.3, pp.31351-362, 2005.
DOI : 10.1145/1089014.1089019

J. Leppänen, Serpent-a Continuous-energy Monte Carlo Reactor Physics Burn-up Calculation Code. VTT Technical Research Centre of Finland, 2015.

J. Leppänen, The Serpent Monte Carlo Code: Status, Development and Applications in 2013, SNA + MC 2013, Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, pp.142-150, 2015.
DOI : 10.1051/snamc/201406021

J. Leppänen, Calculation of effective point kinetics parameters in the Serpent