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Abstract

The λ-calculus has been invented in 1936 by Alonzo Church as a way to for-
malize the notion of computation, and can be seen as an ancestor of today’s
programming languages. Since then it has been widely used as an abstract tool
to study computation and programming. In particular many variants has been
defined by adding different features to the original calculus. In this thesis we will
be interested in some of these variants obtained by adding a non deterministic
operator, and we will focus mostly on a probabilistic calculus.

The probabilistic λ-calculus relies on binary operators +p for p ∈ [0; 1] of prob-
abilistic choice, whose interpretation is that a term M +p N behaves as M with
probability p and as N with probability 1 − p. This calculus has been studied
for some time, but the probabilistic behaviour has always been treated as a side
effect: the operational semantics of the calculus is defined by saying that a term
M +p N actually reduces into M with probability p and it actually reduces into
N with probability 1 − p. This external treatment of the probabilities has some
drawbacks, and in particular it requires the use a particular reduction strategy
when reducing terms. Our purpose is to give a more equational representation
of this calculus, by handling the probabilities inside the reduction rather than as
a side effect.

To begin with we give a deterministic and contextual operational semantics for
the call-by-name probabilistic λ-calculus. To express the probabilistic behaviour
of the sum we quotient this calculus by equations stating the commutativity,
associativity and idempotence of the sum, as well as the irrelevance of the be-
haviours of probability 0. We show that this quotient has little consequence on
the calculus: the reduction modulo equivalence of the terms gives (almost) the
same relation as the reduction where only the result is considered modulo equiv-
alence. We also prove a standardization result for this calculus.

Then using this operational semantics without side effect we define a notion of
equational theories for the probabilistic λ-calculus. We extend some notions of
the deterministic λ-theories to this setting, and in particular we give a definition
for the sensibility of a theory, stating that all diverging terms are equal. This
notion is quite simple in a deterministic setting but becomes more complicated
when we have a probabilistic computation, and terms may diverge only with a
certain probability.

Finally we prove a generalization of the equality between the observational
equivalence, the Böhm tree equality and the maximal coherent sensible λ-theory.
To achieve this we give a notion of probabilistic Böhm trees generalizing the
deterministic ones, and prove that this forms a model of the probabilistic λ-
calculus, i.e. mainly that the equality of Böhm trees is stable under context. Then
we prove a separability result stating that two terms with different Böhm trees
are separable, i.e. are not observationally equivalent. From there we conclude by
proving the correspondence between the probabilistic observational equivalence
and the equality of the probabilistic Böhm trees, and that this relation is the
maximal consistent sensible probabilistic λ-theory.
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Résumé

Le λ-calcul a été inventé en 1936 par Alonzo Church pour formaliser la notion de
calcul, et peut être considéré comme un ancêtre des langages de programmation
d’aujourd’hui. Depuis, il a été largement utilisé en tant qu’outil pour étudier
le calcul et la programmation. En particulier de nombreuses variantes ont vu
le jour via l’ajout de nouvelles fonctionnalités à la structure d’origine. Dans
cette thèse nous nous intéresserons à certaines de ces variantes obtenues en
considérant un nouvel opérateur non déterministe, et nous nous pencherons plus
particulièrement sur le cas probabiliste.

Le λ-calcul probabiliste est basé sur des opérateurs binaires +p pour p ∈ [0; 1]
de choix probabiliste, tels qu’un terme M +p N se comporte soit comme M avec
probabilité p, soit commeN avec probabilité 1−p. Ce calcul a fait l’objet d’études
depuis quelques temps, mais toujours en considérant le comportement proba-
biliste d’un terme comme un effet de bord: la sémantique opérationnelle est
définie en disant qu’avec une probabilité p le terme M +p N se réduit effec-
tivement en M , tandis qu’il se réduit effectivement en N avec une probabilité
1 − p. Cette vision des probabilités comme étant externes au calcul lui-même
a des inconvénients, et elle impose entre autres de restreindre la réduction par
le choix d’une stratégie particulière. Notre objectif est de présenter ce calcul
d’une manière plus équationnelle, en intégrant le comportement probabiliste à
la réduction sans le voir comme un effet de bord.

Tout d’abord nous définissons une sémantique opérationnelle déterministe et
contextuelle pour le λ-calcul probabiliste en appel par nom. Afin de traduire
la signification de la somme comme un choix probabiliste nous quotientons ce
calcul par des équations exprimant sa commutativité, son associativité et son
idempotence, ainsi que l’absence de pertinence des réductions de probabilité
nulle. Nous démontrons que ce quotient ne déforme pas la réduction: considérer
toute les règles de calcul modulo équivalence revient (presque) à considérer
simplement le résultat du calcul modulo équivalence. Nous prouvons également
un résultat de standardisation.

Au moyen de cette sémantique opérationnelle sans effet de bord nous définis-
sons une notion de théorie équationnelle pour le λ-calcul probabiliste. Nous
étendons les définitions de certaines notions concernant les λ-théories usuelles,
et en particulier celle de bon sens, qui correspond à considérer les termes diver-
gents comme égaux. Cette idée se formalise facilement dans un cadre détermin-
iste mais est bien plus complexe dans le cas probabiliste, où un même terme peut
à la fois diverger et converger avec certaines probabilités.
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Pour finir nous généralisons un résultat affirmant que l’équivalence observa-
tionnelle, l’égalité des arbres de Böhm et la théorie cohérente sensée maximale
forment une seule et même relation sur les termes. Pour cela nous définissons
une notion d’arbres de Böhm probabilistes et nous prouvons qu’elle forme un
modèle, c’est-à-dire essentiellement que l’égalité de ces arbres est stable par con-
texte. Nous démontrons ensuite un résultat de séparabilité disant que deux ter-
mes avec des arbres de Böhm distincts ne sont pas observationnellement équiv-
alents. De là nous concluons en montrant que l’égalité des arbres de Böhms
probabilistes correspond à l’équivalence observationnelle probabiliste, et que la
théorie ainsi obtenue est maximale parmi toutes les théories probabilistes co-
hérentes sensées.
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Introduction

λ-calculus, along with Turing machines and Gödel’s recursive functions, is a way
to define precisely what a computation is. In an abstract way, a notion of com-
putation can be thought of as a set of rules which, when applied to some input,
yield a result.

input computation rules−−−−−−−−−−→ output

For instance we can define computation rules for the addition of two natural
numbers and apply them to 2 and 3 to get

2, 3 addition−−−−→ 5.

The most natural way to formalize this idea is to explain how the computation
rules can be built. This is how recursive functions are defined: a recursive func-
tion necessarily takes as input a finite sequence of natural numbers, if it outputs
a result then this result is necessarily a natural number, and there is a clear and
precise description of the different ways such a function can be built. Turing
machines can also be seen in this way. The input and output are more general
than for recursive functions, as they take the form of data written on a tape, but
again a machine is mostly defined by its transition table, i.e. the computation
rules. In both these models there is (at least) one function or one machine for
every computation: one for the addition, one for the multiplication, etc.

Yet in his paper On computable numbers, with an application to the Entschei-
dungsproblem, Turing defines a general notion of automatic machines but he
also describes what he calls universal machines. Those are machines that expect
as input the description of a machine as well as additional data, and simulates
the application of the described machine to the data.

If input computation rules−−−−−−−−−−→ output
then computation rules, input universal machine−−−−−−−−−−→ output.

For instance
addition, 2, 3 universal machine−−−−−−−−−−→ 5.

This idea to describe the computation not in the computation rules but rather
in the input is at the core of the λ-calculus. It can be thought of as an ancestor
of today’s programming languages: the input is a program written using some
instructions, and the computation rules are defined once and for all to explain
how to interpret these instructions.
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Computation and rewriting

To understand how λ-calculus works let us consider a simpler calculus based on
the same idea. This calculus will only compute expressions made of multiple
sums and products of natural numbers.

We said such a calculus is made of programs, which we call terms, and of
computation rules explaining how the instructions work. So let us first define
the terms.

• For every natural number n we have a term n.

• If M and N are terms then M +N is a term.

• If M and N are terms then M ×N is a term.

A shorter way to write this is

M,N := n |M +N |M ×N.

Some examples of terms are 1, 2 + 3 and (15 + 4)× 6.
Next the computation rules should define the meaning of + and ×. We write

them as a relation→ of reduction on terms.

n+m→ n+m

n×m→ n×m

We have for instance 2 + 3→ 5 and 2× 3→ 6.
What about the term (15 + 4)× 6? It is neither a sum of natural number nor a

product of natural numbers, but it contains one. We want to write (15+4)×6→
19× 6. In order to do this, we define contexts C as "terms with a hole":

C := [ ] | C +M |M + C | C ×M |M × C.

Contexts are exactly like terms with one occurrence of a hole [ ] in them. For
instance [ ], [ ] + 3 or (15 + [ ])× 6 are contexts. We can fill this hole with a term,
and we write C[M ] the term obtained by filling the hole in C with the term M .
For instance if C = (15 + [ ])× 6 then C[2 + 3] = (15 + (2 + 3))× 6.

Now we can say we allow reduction under arbitrary context. This means that
we can perform the following reductions for any context C:

C[n+m]→ C[n+m]
C[n×m]→ C[n×m]

Terms of the form n + m or n × m are called redexes, for reducible expressions,
and the reductions C[n + m] → C[n+m] and C[n × m] → C[n×m] are the
reductions of the redexes n+m and n×m under the context C. For instance we
do have (15 + 4) × 6 → 19 × 6 if we reduce the redex 15 + 4 under the context
C = [ ]× 6.
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With this calculus we can compute any expression made of sums and products
of natural numbers by performing multiple reductions. We have for instance

(15 + 4)× 6→ 19× 6
→ 114.

The λ-calculus

Our previous example of calculus is a very simple one, and it is certainly not
sufficient to express every possible computation. Just having sums and prod-
ucts as instructions is not powerful enough, and we need to find a better set of
instructions.

The λ-calculus is based on a single notion: functions. We consider given an
infinite set of variables Var , whose elements will usually be written x, y or z.
The set Λ of λ-terms is built as follows.

• Every variable x ∈ Var is a term.

• If M is a term and x is a variable then we can build the function which to
x associates M . It corresponds to the notation x 7→ M in mathematics, but
here we write it λx.M and call it the abstraction of x in M .

• If M and N are terms then we can build the application of M to N , usually
noted M(N) in mathematics but written here M N .

In short:
M,N ∈ Λ := x | λx.M |M N.

Some examples of terms are λx.x, λx.λy.x and (λx.λy.λz.x y (x z)) (λu.λv.u).
The only reduction rule defines how functions should behave. This reduction

is called the β-reduction.

(λx.M) N →β M
[
N/x

]
= "M where x is replaced by N "

For instance we have for any term N that

(λx.x) N →β N.

As in the previous calculus we consider reduction under arbitrary context, where
the contexts are defined by

C := [ ] | λx.C | C M |M C.

11



This way we have[
(λx.λy.λz.x y (x z)) (λu.λv.u)

]
→β λy.λz.

[
(λu.λv.u) y

]
((λu.λv.u) z)

→β λy.λz.
[

(λv.y) ((λu.λv.u) z)
]

→β λy.λz.y

where at each step we reduce the bracketed redex.
This calculus may not look very appealing, and it is not clear how we can use it

to represent every computation. So let us show that we can easily recover sums
and products of natural numbers in the λ-calculus.

• Given a natural number n, the n-th Church numeral is the term

n = λf.λx.f (f...(f x)...)

where the variable f is applied n times to the variable x. We can also write
n = λf.λx.fn x. For instance 3 = λf.λx.f (f (f x)).

• The term add is given by

add = λm.λn.λf.λx.m f (n f x).

• The term prod is given by

prod = λm.λn.λf.m (n f).

We can check that for any natural numbers m and n, the term add m n reduces
into m+ n and the term prod m n reduces into m× n.

Equational λ-theories

We can define calculi by giving reduction rules on terms, but at some point we
would like to extract some results from the computations and forget exactly
how we obtained them. For instance we saw that in our first calculus the term
(15 + 4)× 6 reduces in two steps into 114, but we do not have (15 + 4)× 6 = 114.
Moreover we also have 100+14→ 114 but there is no relation between (15+4)×6
and 100 + 14: neither one reduces into the other.

For that reason we define a notion of equality, or congruence, on terms. A
congruence is a relation ' with the following properties.

• It is reflexive: for all term M we have M 'M .

• It is transitive: if M ' N and N ' P then M ' P .

• It is symmetric: if M ' N then N 'M .

12



• It is contextual: if M ' N then for all context C, C[M ] ' C[N ].
Then from any calculus we can induce a congruence on terms, by replacing the
reduction rules by equality rules. In the case of the λ-calculus, this congruence
is called the β-equivalence and noted =β. It is the least congruence on λ-terms
such that for all M , N and x,

(λx.M) N =β M
[
N/x

]
.

This way we can write (λx.λy.λz.x y (x z)) (λu.λv.u) =β (λx.x) (λy.λz.y) or
add m n =β m+ n.

An interesting property to have when we deal with such congruences is the
confluence of the calculus. A reduction → is said to be confluent if whenever a
term M reduces (in any number of steps) into two terms N1 and N2, there exists
a term P such that both N1 and N2 reduce into P .

M

N1 N2

P

If this holds then the congruence ' induced by→ is simple: we have M ' N if
and only if there is a P such that M and N both reduce into P .

In particular in the λ-calculus the β-reduction is confluent so we have

M =β N if and only if ∃P : M →β ...→β P and N →β ...→β P.

We defined a particular congruence induced by the reduction rules, but we can
also consider a more general notion of "meaningful" congruences. We call theory
any congruence which respects the reduction rules, but may also equates terms
which are not related by the computation. We call λ-theory the theories in the
λ-calculus.

An example of a non trivial λ-theory is the βη-equivalence. When we substitute
a term N for a variable x in another term M , it may happen that x does not
appear in M , in which case M

[
N/x

]
= M . Now if x does not appear in M , let

us consider the term λx.M x. If we apply it to a term N we get

(λx.M x) N →β (M x)
[
N/x

]
= M N

so this is the same as applying directly M to N . But in general there is no direct
relation between λx.M x and M , and we have λx.M x 6=β M . The difference
between these terms only disappears once we apply them to another term. But
we can decide to add a new rule, called η, saying that if x does not appear in M
then

λx.M x =η M.
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Then the least congruence that respects both the β and η rules is called the βη-
equivalence, and it is a λ-theory.

What about probabilities?

The purpose of this thesis is to see how some properties of the λ-calculus can
be recovered if we consider an extension of this calculus with a probabilistic
behaviour.

The probabilistic λ-calculus is obtained by adding an instruction of probabilis-
tic choice to the λ-calculus, along with its reduction rules. The set Λ+ of proba-
bilistic terms is defined by

M,N ∈ Λ+ := x | λx.M |M N |M +p N

where p is a probability and ranges over [0; 1].
To express the idea of a probabilistic behaviour we do not simply consider

the reduction as a relation on terms, but we consider that reductions happen
with some probability. The reduction of a β-redex happens with a probability 1,
whereas the reduction of a sum M +p N will return M with probability p and N
with probability 1− p.

(λx.M) N 1−→ M
[
N/x

]
M +p N

p−→ M

M +p N
1−p−−→ N

Dealing with probabilities is usually done outside the calculus. We consider
that the probability of a reduction path is equal to the product of the probabilities
of its reduction steps: the reduction M p−→ N

q−→ P happens with probability p×q.
We also consider that the behaviour of a term is described by its reduction paths
where we made all the possible choices when reducing sums.

Consider for instance the term x +p (y +q z): it has seven maximal reduction
paths

x+p (y +q z) p−→ x

x+p (y +q z) 1−p−−→ y +q z
q−→ y

x+p (y +q z) 1−p−−→ y +q z
1−q−−→ z

x+p (y +q z) q−→ x+p q
p−→ x

x+p (y +q z) q−→ x+p q
1−p−−→ y

x+p (y +q z) 1−q−−→ x+p z
p−→ x

x+p (y +q z) 1−q−−→ x+p z
1−p−−→ z.

We have two kinds of reductions: either we reduce the outer sum first, or we
reduce the inner one first. In the first case we obtain x with probability p, y with
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probability (1− p)× q and z with probability (1− p)× (1− q); in the second case
we get x with probability q × p + (1 − q) × p = p, y with probability q × (1 − p)
and z with probability (1 − q) × (1 − p). We associate the same probability in
both cases to each result, and we indeed obtain a probability distribution as
p + (1 − p) × q + (1 − p) × (1 − q) = 1. But this information is external to
the calculus: there is no object D in the calculus representing this probability
distribution, and such that M → D.

But some trouble arise when we mix the β-reduction and the reduction of
sums. Let us look at all the maximal reduction paths of the term (λx.x x) (y+ 1

2
z):

(λx.x x) (y + 1
2
z)

1
2−→ (λx.x x) y 1−→ y y

(λx.x x) (y + 1
2
z)

1
2−→ (λx.x x) z 1−→ z z

(λx.x x) (y + 1
2
z) 1−→ (y + 1

2
z) (y + 1

2
z)

1
2−→ y (y + 1

2
z)

1
2−→ y y

(λx.x x) (y + 1
2
z) 1−→ (y + 1

2
z) (y + 1

2
z)

1
2−→ y (y + 1

2
z)

1
2−→ y z

(λx.x x) (y + 1
2
z) 1−→ (y + 1

2
z) (y + 1

2
z)

1
2−→ z (y + 1

2
z)

1
2−→ z y

(λx.x x) (y + 1
2
z) 1−→ (y + 1

2
z) (y + 1

2
z)

1
2−→ z (y + 1

2
z)

1
2−→ z z

(λx.x x) (y + 1
2
z) 1−→ (y + 1

2
z) (y + 1

2
z)

1
2−→ (y + 1

2
z) y

1
2−→ y y

(λx.x x) (y + 1
2
z) 1−→ (y + 1

2
z) (y + 1

2
z)

1
2−→ (y + 1

2
z) y

1
2−→ z y

(λx.x x) (y + 1
2
z) 1−→ (y + 1

2
z) (y + 1

2
z)

1
2−→ (y + 1

2
z) z

1
2−→ y z

(λx.x x) (y + 1
2
z) 1−→ (y + 1

2
z) (y + 1

2
z)

1
2−→ (y + 1

2
z) z

1
2−→ z z

To get a probability distribution we need to keep track of the two possible choices
whenever we reduce a sum. So here we have three interesting sets of reduction
paths:

• in the case where we reduce the sum first and then reduce the β-redex we
have two reduction paths and we get y y with probability 1

2 and z z with
probability 1

2 ;

• if we reduce the β-redex, then the leftmost sum and lastly the rightmost
sum we have four reduction paths and we get y y, y z, z y or z z, each with
probability 1

4 ;

• if we reduce the β-redex first but reduce the rightmost sum before the left-
most one we also get four reduction paths and we end up with the same
probability distribution.

We can see that in the last two cases the distribution probability is the same,
but in the first case we obtain a different one. The reason for this is pretty
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clear: when we perform a β-reduction we may duplicate the argument, and in
particular we may duplicate a sum, and making a choice once and for all before
duplicating it or actually duplicating the sum and making the choice several
times will obviously yield different results.

For that reason if we allow reduction under arbitrary context, the calculus does
not make sense. To prevent this we have to impose some reduction strategy, i.e.
some restriction on the reductions we are allowed to perform. There are mostly
two kinds of reduction strategies: those which reduce β-redexes without caring
about the shape of the argument (the call-by-name strategies) and those which
evaluate the argument before reducing a β-redex (the call-by-value strategies).

We will be interested in the call-by-name version of the probabilistic λ-calculus.
In the literature this calculus is usually restricted to the head reduction, i.e. re-
duction under contexts of the form λx1...λxn.[ ] P1 ... Pn. The reduction is then
fully described by the following rules, without any extension to another context.

λx1...λxn.(λx.M) N P1 ... Pn
1−→h λx1...λxn.M

[
N/x

]
P1 ... Pn

λx1...λxn.(M +p N) P1 ... Pn
p−→h λx1...λxn.M P1 ... Pn

λx1...λxn.(M +p N) P1 ... Pn
1−p−−→h λx1...λxn.N P1 ... Pn

This reduction never reduces a sum in an argument. Besides we can see that
every term is in one of the three following forms:

λx1...λxn. y P1 ... Pn
or λx1...λxn. (λx.M) N P1 ... Pn
or λx1...λxn. (M +p N) P1 ... Pn.

In the first case the term does not reduce, in the second case it has one possible β-
reduction (with probability 1) and in the last case it has two possible reductions
with probabilities p and 1 − p. There are far fewer reductions than when we
reduce under arbitrary contexts, where a term could have any number of possible
reductions. We can actually associate to every term a tree of reductions. This
way it is immediate to associate a probability distribution to a term.

If we look at the possible head reductions paths for our previous example
(λx.x x) (y + 1

2
z), we get:

(λx.x x) (y + 1
2
z) 1−→h (y + 1

2
z) (y + 1

2
z)

1
2−→h y (y + 1

2
z)

(λx.x x) (y + 1
2
z) 1−→h (y + 1

2
z) (y + 1

2
z)

1
2−→h z (y + 1

2
z).

There are only two maximal reduction paths, each with probability 1
2 . This cor-
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responds to the following reduction tree:

(λx.x x) (y + 1
2
z)

(y + 1
2
z) (y + 1

2
z)

y (y + 1
2
z) z (y + 1

2
z)

1

1
2

1
2

Probabilities and equations

The probabilistic head reduction is quite satisfying from a computational point of
a view, but it is much less so from the equational one. To begin with we described
the equational theories as purely contextual: if M ' N then C[M ] ' C[N ]
for any context C. Consequently the appearance of a reduction strategy in the
calculus, i.e. a restriction on the contexts, is unwelcome.

But more importantly an important part of the calculus is external to the re-
duction. The computation of probabilities and probability distributions is done
by looking at reductions paths and is not part of the reduction itself. Thus we
cannot just define theories as equalities that respect the reduction. We could try
to consider a relation'p of "equality with some probability p", withM+pN 'p M
and M +p N '1−p N . But then if we try to get an equivalent of the transitivity
(stating that if M ' N and N ' P then M ' P ), we have to face the following
situation:

(M +p N) +q P 'q M +p N and M +p N 'p M
M +q N 'q M and M 'p M +p P

In the first case the computation gives that (M +p N) +q P reduces into M with
probability p× q, so we would expect (M +pN) +q P 'p×q M . In the second case
we have that M +q N reduces to M with probability q and M +p P reduces to M
with probability p, so we should have M +q N 'min(p,q) M +p P . So what is the
"right" transitivity rule?

The situation gets even worse if we consider more than three terms. For in-
stance we have

M +p N 'p M 'q M +q P '1−q P 'r P +r Q.

Now M +p N and P +r Q are completely different terms, so no transitivity can
really hold. In this situation we can hardly speak of an equational theory.

Another attempt could be to look at the probability distributions we associate
to the terms. We can consider that two terms are equal if they describe the same
probability distribution. This is a much more satisfying solution, but this yields a
far more complicated definition of equational theories than for the deterministic
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case. In particular it uses the information given by sets of reduction paths, and
is not just an extension of the relation of reduction.

Luckily there is a simple solution to all these problems. All you actually need to
do is to change the calculus in order to internalize the probabilistic behaviours.
This way not only can we get a calculus with deterministic computation (on
terms describing probabilistic information) but we can also recover the full con-
textuality of the reduction. Then we can use the usual notion of equational
theory.

Related works

At first most of the research about non-deterministic and probabilistic calculi re-
volved around denotational semantics. In 1976, Plotkin [9] described a seman-
tics for simple programming languages with a non-deterministic choice operator
or, which he later adapted to the probabilistic case [8]. In 1978 Saheb-Djahromi
introduced an operational semantics for a probabilistic calculus [10], but he had
already observed that such a calculus required the choice of a reduction strategy,
so he consider only a weak head reduction and he focuses more on the denota-
tional semantics.

Maybe the first study of an operational semantics for a non-deterministic un-
typed λ-calculus has been done in 1995 by de’Liguoro and Piperno [4]. Their
work is similar to ours: they consider a λ-calculus extended with a choice opera-
tor + for which they give some reduction rules, prove a standardization theorem,
define some non-deterministic Böhm trees and try to get a separability result. But
this last attempt fails, as simple non-determinism does not allow enough quan-
tification. In a probabilistic calculus, the terms x +p y and x +q z will return the
same result with a probability pq, so if you check whether they are equal n times
the answer will always be positive with a probability (pq)n, which converges to
0 unless p = q = 1. But in a non-deterministic calculus x + y and x + z may be
equal, without further information, providing much less tools to get a general
separation result.

Recently more work appeared in this fashion. For instance Dal Lago and Zorzi
published some results about two operational semantics for the probabilistic λ-
calculus, without using any denotational semantics [2]. But once again the two
sets of rules they consider describe a call-by-name and a call-by-value calculi,
and they do not allow reduction under any context.

To our knowledge no research has been done on an equational presentation of
a non-deterministic calculus. Our work is thus based solely on previous results
about the deterministic λ-calculus. In particular our ultimate goal is the gen-
eralization of a theorem proven independently by Hyland [7] and Wadsworth
[12]: the infinitely extensional Böhm tree equality coincide with the observa-
tional equivalence, and this is the maximum for the inclusion of all the consistent
sensible theories.

The idea of dealing with sums inside the calculus is actually not new in the
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field of quantitative λ-calculi. It comes from the differential λ-calculus [6], and
can also be found in the algebraic λ-calculus [11]. The reason is that in these
cases the sums do not have such a clear computational meaning. For instance
the differential of a term is a sum of terms, and it does not make sense to say that
this sum can reduce into each of its component. Yet there exists no presentation
of a probabilistic calculus in this fashion.

Layout

In the first chapters we will describe an operational semantics for general non-
deterministic λ-calculi with labelled sums. In the first chapter we will show
how we can present those calculi with deterministic and contextual operational
semantics and prove that this presentation actually describes the behaviour we
expect from such calculi.

In the second chapter we will establish a standardization result. The intro-
duction of sums in the calculi makes this result more difficult than in the de-
terministic calculus but we can still recover a useful standardization property.
In particular the standardization can be used to simplify the description of the
reductions in our calculus.

From the third chapter onwards we will restrict our study to the probabilistic λ-
calculus. In this third chapter we will give a definition of probabilistic equational
theories. Although this definition is derived in a straightforward way from the
operational semantics and can hold for any calculus with labelled sums, we will
describe more precisely some specific theories, and in particular we will give a
notion of sensible theory which is proper to the probabilistic case.

The fourth chapter will be devoted to the notion of Böhm trees. We will give
a definition of probabilistic Böhm trees and infinitely extensional probabilistic
Böhm trees, and we will prove that they form a model of the probabilistic λ-
calculus, i.e. that the Böhm tree equality is a theory.

Finally we will prove a separability result in the fifth chapter. A reason why
the Böhm trees are an interesting structure in the usual deterministic λ-calculus
is that they describe exactly the observational equivalence of terms. The way we
extend the definition of Böhm trees to the probabilistic calculus is quite natural,
so it is satisfying to know that this is indeed the right notion of Böhm trees, in the
sense that they also correspond to a natural notion of probabilistic observational
equivalence.

Common notations and terminology

Relations. In this thesis we will use some common operations on relations.
Given two relations R and R′:

• we write R · R′ for the composition of R and R′: we have x R · R′ y if and
only if there is z such that x R z and z R′ y;
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• we write R? for the reflexive closure or R: x R? y iff x = y or x R y;

• we write R0 for the equality (x R0 y iff x = y) and for n ∈ N we define
Rn+1 by x Rn+1 y iff x R · Rn y: for all n ∈ N we have x Rn y iff
x = x0 R x1 R ... R xn = y for some x1,...xn−1;

• we write R+ for the transitive closure of R: R+= ∪n≥1 Rn;

• we write R∗ for the reflexive and transitive closure of R: R∗= ∪n≥0 Rn.

If we consider a reduction→:

• we write← for the reverse relation (x← y iff y → x);

• we write � for its reflexive and transitive closure→∗;

• we write↔ for its symmetric closure: ↔=→ ∪ ←;

• we write �� for its reflexive symmetric transitive closure: ��=↔∗ .

Reductions. Given a reduction → on terms, a term M is said to be normal or
in normal form if there is no reduction M → N . It is said to be normalizing if it
reduces into a normal form, i.e. M � N and there is no reduction N → P . It is
said to be strongly normalizing if there is no infinite reduction M → N1 → ....

The reduction→ itself is said normalizing (resp. strongly normalizing) if every
term is normalizing (resp. strongly normalizing). Moreover the reduction is
said to be confluent if any two reduction paths starting from the same term can
be made to meet again: if M � N1 and M � N2 then there is P such that
N1 � P and N2 � P . The reduction is weakly confluent if this holds at least
for reductions of length 1: whenever M → N1 and M → N2 there is P such
that N1 � P and N2 � P . Furthermore a weakly confluent reduction has the
diamond property if we can use only one-step reductions: whenever M → N1
and M → N2 with N1 6= N2 there is P such that N1 → P and N2 → P .

Every reduction with the diamond property is confluent, and every confluent
reduction is weakly confluent. Besides if a reduction is weakly confluent and
strongly normalizing then is it also confluent.

λ-terms. We will study λ-terms with labelled sums:

M,N := x | λx.M |M N |M +l N, l ∈ L

for some set of labels L.
We consider the application as left-associative: the term M N P is to be read

(M N) P . We also consider that the abstraction and the application takes pri-
ority over the sum, and the application takes priority over the abstraction: we
write λx.M N +l P Q for the term (λx.(M N)) +l (P Q). Besides when writing
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multiple abstractions we will omit all but the first λ: we will write λx1...xn.M for
λx1...λxn.M .

To shorten the notations we will sometimes write sequences of abstractions
or applications as vectors: the notation λ−→x 1...n.M

−→
P 1...m represents the term

λx1...xn.M P1 ... Pm.

Free variables. The set FV(M) of the free variables of a term M is defined by
induction on M by:

• FV(x) = {x};

• FV(λx.M) = FV(M) \ {x};

• FV(M N) = FV(M) ∪ FV(N);

• FV(M +l N) = FV(M) ∪ FV(N).

Substitutions We consider two ways to substitute a term P for a variable x

in a term M : the regular substitution M
[
P/x

]
and the binding substitution

M
{
P/x

}
. Both are defined by induction on M .

The regular substitution is given by:

• x
[
P/x

]
= P ;

• y
[
P/x

]
= y if y 6= x;

• (λx.M)
[
P/x

]
= λx.M ;

• (λy.M)
[
P/x

]
= λy.

(
M
[
P/x

])
if y 6= x and y /∈ FV(P );

• (M N)
[
P/x

]
=
(
M
[
P/x

]) (
N
[
P/x

])
;

• (M +l N)
[
P/x

]
=
(
M
[
P/x

])
+l

(
N
[
P/x

])
.

The binding substitution is given by:

• x
{
P/x

}
= P ;

• y
{
P/x

}
= y if y 6= x;

• (λx.M)
{
P/x

}
= λx.M ;

• (λy.M)
{
P/x

}
= λy.

(
M
{
P/x

})
if y 6= x;

• (M N)
{
P/x

}
=
(
M
{
P/x

}) (
N
{
P/x

})
;

21



• (M +l N)
{
P/x

}
=
(
M
{
P/x

})
+l

(
N
{
P/x

})
.

The difference is that when we substitute P for x in an abstraction λx.M , the
regular substitution does not allow the free variables of P to be bound by the
abstraction λx, whereas the binding substitution does.

A consequence is that while the binding substitution is always define, the reg-
ular one is not, and we need to consider the terms modulo α-equivalence:

λx.M =α λy. (M [y/x]) if y /∈ FV(M).

If M =α M
′ and M

[
P/x

]
and M ′

[
P/x

]
are both defined then we always have

M
[
P/x

]
=α M

′
[
P/x

]
, and given any two terms M and P and any variable x we

can always find M ′ =α M such that M ′
[
P/x

]
is defined.

A reduction→ is said to be substitutive if

M → N implies M
[
P/x

]
→ N

[
P/x

]
for all x and P .

Contexts. Contexts are defined by

C := [ ] | λx.C | C M |M C | C +lM |M +l C

and for any term M the term C[M ] is defined by induction on C:

• ([ ])[M ] = M ;

• (λx.C)[M ] = λx.C[M ];

• (C N)[M ] = C[M ] N ;

• (N C)[M ] = N C[M ];

• (C +l N)[M ] = C[M ] +l N ;

• (N +l C)[M ] = N +l C[M ].

If we consider [ ] as a variable this definition is equivalent to C[M ] = C
{
M/[ ]

}
.

Reductions modulo. We will consider reductions modulo equivalences relations,
usually the β-reduction→β. Given an equivalence relation ≡ on terms we write
→β/≡ the β-reduction modulo ≡, such that M →β/≡ N iff M ≡ · →β · ≡ N .

According to our definitions the relation →0
β/≡ is the equality on terms. But

morally the reduction→β/≡ is a reduction on classes of terms modulo ≡, so we
consider that M →0

β/≡ N whenever M ≡ N .

22



1 Non-deterministic λ-calculi

Our first goal is to give a presentation of the probabilistic λ-calculus which in-
ternalizes the probabilistic information, in order to obtain a deterministic and
confluent calculus. This presentation actually works for a larger set of calculi,
including the non-deterministic λ-calculus, with or without multiplicities, and
the algebraic λ-calculus.

For a given set of labels L we consider terms with labelled sums:

M,N ∈ ΛL+ := x | λx.M |M N |M +l N, l ∈ L.

The β-reduction is defined as usual on these terms by

(λx.M) N →β M
[
N/x

]
extended to arbitrary context.

To define the interpretation of the sums, rather than giving a reduction making
a choice between the two subterms we simply define a redution→+ by:

λx.(M +l N)→+ λx.M +l λx.N

(M +l N) P →+ M P +l N P

extended to context.
For the probabilistic calculus, i.e. with L = [0; 1], the usual probabilistic head-

reduction is defined by:

λx1...xn.(M +p N) P1 ... Pn
p−→h λx1...xn.M P1 ... Pn

λx1...xn.(M +p N) P1 ... Pn
1−p−−→h λx1...xn.N P1 ... Pn.

Here we have

λx1...xn.(M +p N) P1 ... Pn �+ λx1...xn.M P1 ... Pn +p λx1...xn.N P1 ... Pn.

Instead of choosing between two terms, we reduce deterministically into their
syntactic sum.

As we do not output any information, we need to handle the computation on
the probabilities inside the calculus. For instance if the probabilistic reduction
gives M p−→h N

q−→h P then we usually consider that M reduces into P with
probability pq, so we have to express this in our calculus.
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To do so we define a syntactic equivalence on the terms, given by the following
rules:

M +l N ≡syn N +γ(l) M γ : L → L
(M +l N) +l′ P ≡syn M +α1(l,l′) (N +α2(l,l′) P ) α1, α2 : L2 → L

M +lM ≡syn M if l ∈ I ⊂ L
M +l N ≡syn M +l P if l ∈ Z ⊂ L

We assume that the sum is commutative and associative, and the effect on the
labels is given by some functions γ, α1 and α2. Besides we also consider that it
may be idempotent for some particular labels, and that some labels may render
the right side of the sum irrelevant.

Note that without any assumption on the functions α1 and α2, a term of the
form M +l (N +l′ P ) can not necessarily be proven equivalent to (M +kN) +k′ P
for some k, k′ ∈ L by the associativity rule. But we always have

M +l (N +l′ P ) ≡syn
(
P +γ(l′) N

)
+γ(l) M

≡syn P +α1(γ(l′),γ(l))
(
N +α2(γ(l′),γ(l)) M

)
≡syn

(
M +γ(α2(γ(l′),γ(l))) N

)
+γ(α1(γ(l′),γ(l))) P.

It would be natural to expect some conditions on the parameters γ, α, I and Z.
For instance we could expect the associativity rule and the construction above to
be mutual inverses, or the function γ to be an involution. But the only property
we will actually need on the labels is the one stated in proposition 1.0.0.1.

To have this property we will require the following relations for all l, l′ ∈ L:

α1(l, l′) = α1(l′, l)
α2(l, l′) = α1(l′, γ(α2(l′, l)))

l = γ(α2(l′, γ(α2(l′, l)))).

With these we can prove that, in a sense, sums commute with sums.

Proposition 1.0.0.1. For any terms M , M ′, N and N ′ and for any labels l and
l′ we have modulo commutativity and associativity:

(M +l′ M
′) +l (N +l′ N

′) ≡syn (M +l N) +l′ (M ′ +l N
′).
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Proof. We have the following equivalences:

(M +l′ M
′) +l (N +l′ N

′)
≡syn M +α1(l′,l)

(
M ′ +α2(l′,l) (N +l′ N

′)
)

≡syn M +α1(l′,l)
(
(N +l′ N

′) +γ(α2(l′,l)) M
′
)

≡syn M +α1(l′,l)
(
N +α1(l′,γ(α2(l′,l)))

(
N ′ +α2(l′,γ(α2(l′,l))) M

′
))

≡syn M +α1(l′,l)
(
N +α1(l′,γ(α2(l′,l)))

(
M ′ +γ(α2(l′,γ(α2(l′,l)))) N

′
))

(M +l N) +l′ (M ′ +l N
′)

≡syn M +α1(l,l′)
(
N +α2(l,l′) (M ′ +l N

′)
)

We do not know if the required relations on the labels carry any particular
meaning, so it would be more natural to add this property as an additional axiom
on our equivalence. But we will want to study in detail the classes of terms and
the β-reduction modulo ≡syn, so we want to keep its definition as simple as
possible. For that reason we do not want to add an additional rule when the
existing ones are already sufficient in the cases we are interested in.

In the probabilistic case we have L = [0; 1], and the equivalence is:

M +p N ≡syn N +1−pM
(M +p N) +q P ≡syn M +pq (N + (1−p)q

1−pq
P ) if pq 6= 1

(M +1 N) +1 P ≡syn M +1 (N + 1
2
P )

M +pM ≡syn M
M +1 N ≡syn M +1 P

The purpose of this chapter is to study the calculus obtained by considering the
β-reduction and the reduction of sums, both fully contextual, on terms modulo
such a syntactic equivalence.

Let us first have a look at the head reduction in the probabilistic case, so
that we can compare this calculus with the usual notion of probabilistic head
reduction. Note that we try for now to justify the validity of our operational
semantics as an alternative to the usual probabilistic one rather than to give
precise results. For that reason we will not detail all the definitions and proofs.

In the deterministic λ-calculus, the head reduction can be understood as fol-
lows. The main idea is that you never look inside an argument: when a term is
an application then the reduction only depends on the shape of its left side term.
This way every term can be seen as a sequence of abstractions and applications
of an argument over a variable.
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For instance the term λx.(λy.(λuv.z P ) Q) R looks like

λx.

@

λy. R

@

λu. Q

λv.

@

z P

Now a β-redex is precisely an abstraction on the left of an application. So
when you consider a term without looking inside the arguments, there are two
possible cases. The first case is that you encounter no β-redex. This means
that all abstractions are above the applications, and the term is of the form
λx1...xn.y P1 ... Pm.

λx1.

λxn.

@

@ Pm

y P1
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The second case is that starting from the top we encounter a β-redex, so the
term is of the form λx1...xn.(λx.M) N P1 ... Pm.

λx1.

λxn.

@

@ Pm

@ P1

λx. N

M

The principle of the head reduction is to only reduce such outer leftmost redexes.
This way for every term we have either a unique finite reduction path

λ−→x 1...n1 .(λz1.M1) N1
−→
P 1,1...1,m1 →h λ

−→x 1...n2 .(λz2.M2) N2
−→
P 2,1...2,m2

→h ...

→h λ
−→x 1...nk .(λzk.Mk) Nk

−→
P k,1...k,mk

→h λ
−→x 1...nk+1 .yk+1

−→
P k+1,1...k+1,mk+1

or a unique infinite reduction path

λ−→x 1...n1 .(λz1.M1) N1
−→
P 1,1...1,m1 →h λ

−→x 1...n2 .(λz2.M2) N2
−→
P 2,1...2,m2

→h ...

→h λ
−→x 1...nk .(λzk.Mk) Nk

−→
P k,1...k,mk

→h ...

Terms of the form λ−→x 1...n.y
−→
P 1...m, which do not head reduce, are called head

normal forms, and a term is said to have a head normal form if its head reduction
terminates. Terms with a head normal form are also called solvable while terms
without normal form are called unsolvable, as the latter can never be used to
produce a result, i.e. a normal form.

Now in our λ-calculi with sums we added two reduction rules, and the new
redexes are precisely a sum under an abstraction, and a sum on the left side of
an application. So this time every term can be seen as a tree of sums, followed
by a sequence of abstractions, then a sequence of applications, and finally either
a variable or a redex. In other words every term is either a sum of terms or in
one of the following forms:
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λx1.

λxn.

@

@ Pm

y P1

λx1.

λxn.

@

@ Pm

@ P1

λx. N

M

λx1.

λxn.

λx.

+l

M N

λx1.

λxn.

@

@ Pm

@ P1

+l P

M N

Thus it is natural to define the head reduction by

M →h+ M ′

M +l N →h+ M ′ +l N

N →h+ N ′

M +l N →h+ M +l N
′

λ−→x 1...n.(λx.M) N −→P 1...m →h+ λ−→x 1...n.M
[
N/x

] −→
P 1...m

λ−→x 1...n.λx.(M +l N)→h+ λ−→x 1...n.(λx.M +l λx.N)

λ−→x 1...n.(M +l N) P −→P 1...m →h+ λ−→x 1...n.(M P +l N P ) −→P 1...m

We can observe that this reduction has the following properties.

• If λ−→x 1...n.(λx.M) N −→P 1...m →+
h+ Q then λ−→x 1...n.M

[
N/x

] −→
P 1...m �h+ Q.

• If λ−→x 1...n.(M +l N) P −→P 1...m →+
h+ Q then

λ−→x 1...n.M P
−→
P 1...m +l λ

−→x 1...n.N P
−→
P 1...m �h+ Q.
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• M +l N �h+ Q if and only if there are M ′ and N ′ such that Q = M ′ +l N
′

and M �h+ M ′, N �h+ N ′.

In the probabilistic case this reduction behaves just as the usual probabilistic
head reduction, except that when we should make a choice by reducing a sum
we keep both results, and every further reduction step is a reduction in one of
these two terms. Another small difference is that we detail more the reduction
of the sums in head position: the reduction

λ−→x 1...n.(M +l N) P −→P 1...m �h+ λ−→x 1...n.M P
−→
P 1...m +l λ

−→x 1...n.N P
−→
P 1...m

occurs in m+ n steps rather than just one, but these are the only possible m+ n
first head reduction steps of this term so this decomposition of the reduction
does not induce any odd behaviour.

A property this reduction lacks in comparison to the usual deterministic head
reduction is the uniqueness of the reduction. It is easy to see that the reduction
→h+ is confluent, and we can also prove that if a term is normalizing then it is
strongly normalizing. But if we consider terms which from a probabilistic point
of view may reach a head normal form but may also diverge, this head reduction
is not satisfactory. For instance if we consider Ω = (λx.x x) (λx.x x) the well-
known term such that Ω→β Ω, we have

(λx.x) y +p Ω→h+ (λx.x) y +p Ω→h+ (λx.x) y +p Ω→h+ ...

but this reduction path never accounts for the probabilistic reduction

(λx.x) y +p Ω p−→ (λx.x) y 1−→ y.

To solve this problem we can define a complete head reduction →H+ which
always reduces both sides of the sums.

M →H+ M ′ N →H+ N ′

M +l N →H+ M ′ +l N
′

λ−→x 1...n.y
−→
P 1...m →H+ λ−→x 1...n.y

−→
P 1...m

λ−→x 1...n.(λx.M) N −→P 1...m →H+ λ−→x 1...n.M
[
N/x

] −→
P 1...m

λ−→x 1...n.λx.(M +l N)→H+ λ−→x 1...n.(λx.M +l λx.N)

λ−→x 1...n.(M +l N) P −→P 1...m →H+ λ−→x 1...n.(M P +l N P ) −→P 1...m

Every term has a unique reduction for →H+, and this reduction never misses a
head normal form: if M has a probabilistic reduction to a head normal form
h = λx1...xn.y P1 ... Pm then there is a reduction M �H+ N such that h appears
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in N . A minor drawback is that there is strictly speaking no normal form for this
reduction, as a head normal form always reduces into itself. Another problem
with this idea of a complete reduction which always reduces all head redexes is
that when we want to compare two terms, we may have a problem of coordi-
nation. Consider for instance the term δ(λx.δx) where δ = λx.x x. This term is
β-equivalent to Ω and we have

δ(λx.δx)→H+ (λx.δx) (λx.δx)→H+ δ(λx.δx).

Now if we consider the term δ(λx.δx) +l (λx.δx) (λx.δx), its reduction for →H+
is

δ(λx.δx) +l (λx.δx) (λx.δx)→H+ (λx.δx) (λx.δx) +l δ(λx.δx)
→H+ δ(λx.δx) +l (λx.δx) (λx.δx)
→H+ ...

We have a sum of two similar terms, and if the sum is l ∈ I (hence M +lM ≡syn
M for all M) then we have

δ(λx.δx) +l (λx.δx) (λx.δx)→h+ δ(λx.δx) +l δ(λx.δx)
≡syn δ(λx.δx)

but the complete head reduction never lets the two sides of the sums reduce into
the same term.

Of course this situation only appears with infinite reductions. If two terms can
reach the same head normal form then the complete reduction works just fine
to compare them. This reduction is actually very useful to associate to a term
a probability distribution over head normal forms. This will be detailed in the
third chapter.

In the rest of the thesis we will not use exactly this definition of the head
reduction. The reason is that we will see the commutation of the sum with
the abstraction and the application as a syntactic equivalence rather than as a
reduction, and the main reduction rule will be the β-rule.

30



1.1 λ-terms with sums

For now let us forget about the β-reduction and look at the reduction→+ along
with the equivalence ≡syn.

1.1.1 Reduction of sums

The reduction→+ is contextual, so we can associate a congruence =+ to it. This
congruence is very easy to describe: indeed we will prove that not only is the
reduction →+ confluent (thus M =+ N if and only if M �+ · �+ N) but it is
also strongly normalizing.

Proposition 1.1.1.1. →+ is weakly confluent.

Proof. If M →+ N1 and M →+ N2 with N1 6= N2, we reason by induction on M :

• if λx.M →+ λx.Ni with M →+ Ni for i ∈ {1, 2} then we conclude by
induction hypothesis;

• similarly if we reduce M M ′ or M +l M
′ and the reductions occur both in

M or both in M ′ we conclude by induction hypothesis;

• if M M ′ →+ N1 M
′ and M M ′ →+ M N2 then N1 M

′ →+ N1 N2 and
M N2 →+ N1 N2;

• similarly if M +l M
′ →+ N1 +l M

′ and M +l M
′ →+ M +l N2 then both

reduce in N1 +l N2;

• if λx.(M +l M
′) →+ λx.M +l λx.M

′ and λx.(M +l M
′) →+ λx.(N +l M

′)
with M →+ N then both terms reduce in λx.N +l λx.M

′; the case where the
second reduction occurs in M ′ is similar;

• if (M +lM
′) P →+ M P +lM

′ P and we can reduce either M or M ′ we get
a similar result;

• if (M +lM
′) P →+ M P +lM

′ P and (M +lM
′) P →+ (M +lM

′) Q with
P →+ Q then M P +l M

′ P →+ M Q +l M
′ P →+ M Q +l M

′ Q and
(M +lM

′) Q→+ M Q+lM
′ Q.

Proposition 1.1.1.2. →+ is strongly normalizing.

Proof. Is is easy to see that the depth of the sums decrease along the reduction
but when we reduce (M +l N) P →+ M P +l N P we may duplicate sums. We
want to define a weight which strictly decreases when we perform a reduction.
We can observe that sums do not reduce when they are on the right side of an

application, and that the reduction →+ only duplicates sums inside an argument.
Then it makes sense to define the depth of a subterm as the number of times it is
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on the right side of an application. This notion of depth is such that the depth of
a sum never changes when we perform a reduction, and the reduction of a sum at
given depth can only duplicate strictly deeper sums. So a possible weight is the
sequence in NN whose d-th element is the total number of reductions required to
normalize the term at depth d, equipped with the lexicographic order.
Another possible weight function, maybe less intuitive but easier to formalize,

is w : ΛL+ × N→ N defined by:

• w(x, d) = 0;

• w(λx.M, d) = w(M,d+ 1);

• w(M N, d) = w(M,d+ 1) + (w(M, 1) + 1)× w(N, 0);

• w(M +l N, d) = w(M,d) + w(N, d) + d.

The parameter d counts the number of times a sum needs to be reduced. Given a
term M the weight w(M, 1) is at least the number of sums at depth 0 in M , so in
a term M N the argument N will de duplicated at most w(M, 1) times.
The weight of a term is a strictly increasing function of the weight of its subterms

in the following sense: for any context C, if w(M,d) < w(N, d) for all d ∈ N then
w(C[M ], d) < w(C[N ], d) for all d ∈ N. We prove this by induction on C:

• if C = [ ] this is immediate;

• if C = λx.C ′ then for all d andM , w(C[M ], d) = w(C ′[M ], d+1) so we apply
the induction hypothesis to C ′;

• if C = C ′ P then w(C[M ], d) = w(C ′[M ], d+1)+(w(C ′[M ], 1)+1)×w(P, 0)
so again the induction hypothesis applied to C ′ gives the result;

• if C = P C ′ then w(C[M ], d) = w(P, d+ 1) + (w(P, 1) + 1)×w(C[M ], 0), we
have w(P, 1) + 1 > 0 so the induction hypothesis allows us to conclude;

• the result is also immediate by induction hypothesis if C is a sum.

If we consider the weight of the redexes of →+ and their reducts we have

w(λx.(M +l N), d) = w(M,d+ 1) + w(N, d+ 1) + d+ 1
w(λx.M +l λx.N) = w(M,d+ 1) + w(N, d+ 1) + d

w((M +l N) P, d) = w(M,d+ 1) + w(N, d+ 1)
+ (w(M, 1) + w(N, 1) + 2)× w(P, 0) + d+ 1

w(M P +l N P, d) = w(M,d+ 1) + w(N, d+ 1)
+ (w(M, 1) + w(N, 1) + 2)× w(P, 0) + d

For all d ∈ N we have w(λx.(M +l N), d) > w(λx.M +l λx.N) and
w((M +l N) P, d) > w(M P +l N P, d).
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Usinge these two facts we get that ifM →+ N then for all d, w(M,d) > w(N, d),
hence the reduction →+ is strongly normalizing.

Corollary 1.1.1.3. →+ is confluent.

Corollary 1.1.1.4. 1. Every term has a unique normal form for →+.

2. Two terms are equal for =+ if and only if they have the same normal form.

Proof. →+ is strongly normalizing so every term has a normal form, and the
confluence ensures that if a term has two normal forms then they are equal.
The confluence also ensures that M =+ N if and only if M �+ · �+ N , and

this is equivalent to saying that M and N have the same normal form.

Every class of terms modulo =+ is represented by a unique normal form. These
forms are actually easy to describe, as they have a convenient inductive structure.

Definition 1.1.1.1. The canonical terms M,N and values v are defined by:

M,N := v |M +l N

v := x | λx.v | v M.

Proposition 1.1.1.5. The canonical terms are exactly the normal forms for →+.

Proof. First we check by induction that the canonical terms are indeed normal.

• M +l N is not a redex, and by induction hypothesis M and N are normal.

• x is normal.

• λx.v is a redex only if v is a sum, which is not possible, and by induction
hypothesis v is normal.

• v M is a redex only if v is a sum, which is not possible, and by induction
hypothesis v and M are normal.

Conversely every normal form is a canonical term.

• x is canonical.

• If λx.M is normal then M is normal, hence by induction hypothesis it is
canonical, and M is not a sum so it is necessarily a value.

• Similarly if M N is normal then M and N are normal, hence canonical, and
M is not a sum.

• If M +l N is normal then M and N are normal and by induction hypothesis
they are canonical forms.
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Definition 1.1.1.2. For allM we write can(M) the unique canonical (i.e. normal)
form of M .
The canonicalizing reduction →can is defined by M →can can(M). Note that

this reduction is not extended to context: every term has exactly one reduction
for →can.

Since every term has a unique canonical form and those are easily described
we are tempted to restrict the calculus to these terms. A problem is that they
are not stable by context: if M and N are canonical then M N is not necessarily
canonical.

Still they are very useful to describe our calculus. We will now see how the
canonicalcalization interacts with the other features of the calculus, namely the
β-reduction and the syntactic equivalence ≡syn. For now let us consider this
canonicalization modulo ≡syn.

1.1.2 Terms modulo ≡
We want to prove that the canonicalization preserves the syntactic equivalence
≡syn: if M ≡syn N then can(M) ≡syn can(N).

To describe precisely what goes on when we consider terms modulo ≡syn let
us consider the four following reductions, extended to context:

M +l N →γ N +γ(l) M γ : L → L
(M +l N) +l′ P →α M +α1(l,l′) (N +α2(l,l′) P ) α1, α2 : L2 → L

M +lM →I M if l ∈ I ⊂ L
M +l N →Z M +l P if l ∈ Z ⊂ L

We will want to prove some commutation between these reductions and→+.
Since some of these reductions duplicate terms we need to use a parallel re-
duction. Given a reduction → we define the associated independent parallel
reduction i−→ as the reduction of an arbitrary number of disjoint redexes.

M
i−→M

M → N

M
i−→ N

M
i−→ N

λx.M
i−→ λx.N

M
i−→ N M ′ i−→ N ′

M M ′ i−→ N N ′
M

i−→ N M ′ i−→ N ′

M +lM
′ i−→ N +l N

′

Now we can prove that the syntactic reductions commute with→+.

Lemma 1.1.2.1. For → any of the reductions →γ, ←γ, →α, ←α, →I, ←I, and
→Z , if M i−→ N →+ N ′ then there is a reduction N ′ �+ N ′′ and a term M ′ such
that M �+ M ′ i−→ N ′′.

M M ′

N N ′ N ′′

i

+

+

+

i

34



Proof. By induction on the reductions. If both reductions use context rules we
easily conclude by induction hypothesis. For instance if λx.M i−→ λx.N →+ λx.N ′

with M
i−→ N →+ N ′ then by induction hypothesis we have N ′ �+ N ′′ and

M �+ M ′ i−→ N ′′ so λx.N ′ �+ λx.N ′′ and λx.M �+ λx.M ′ i−→ λx.N ′′.
We just have to check all the different cases when M or N is a redex. If M is a

redex we have seven different cases for the first reduction M i−→ N (i.e. M → N
as M is directly a redex).

• M1 +lM2 →γ M2 +γ(l) M1;

• M2 +γ(l) M1 ←γ M1 +lM2;

• (M1 +lM2) +l′ M3 →α M1 +α1(l,l′) (M2 +α2(l,l′) M3);

• M1 +α1(l,l′) (M2 +α2(l,l′) M3)←α (M1 +lM2) +l′ M3;

• M1 +lM1 →I M1;

• M1 ←I M1 +lM1;

• M1 +lM2 →Z M1 +lM3.

Note that no abstraction or application appears here, so the reduction N →+ N ′

necessarily occurs in one of the Mi.

• In the first four cases the reductions obviously commute. For instance if

M1 +lM2 →γ M2 +γ(l) M1 →+ M2 +γ(l) M
′
1

with M1 →+ M ′
1 then

M1 +lM2 →+ M ′
1 +lM2 →γ M2 +γ(l) M

′
1.

• If M1 +lM1 →I M1 →+ M ′
1 then we have

M1 +lM1 →+ M ′
1 +lM1 →+ M ′

1 +lM
′
1 →I M ′

1.

• If M1 ←I M1 +l M1 →+ M ′
1 +l M1 we have M ′

1 +l M1 →+ M ′
1 +l M

′
1 and

M1 →+ M ′
1 ←I M ′

1 +l M
′
1. The case is similar if we reduce the term on the

right side of the sum.

• If M1 +lM2 →Z M1 +lM3 →+ M ′
1 +lM3 we have

M1 +lM2 →+ M ′
1 +lM2 →Z M ′

1 +lM3.

• If M1 +lM2 →Z M1 +lM3 →+ M1 +lM
′
3 we can reduce directly

M1 +lM2 →Z M1 +lM
′
3.
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The remaining case is when M is not directly reduced but N is. This means
that the reduction N →+ N ′ is either λx.(N1 +l N2) →+ λx.N1 +l λx.N2 or
(N1 +l N2) Q →+ N1 Q +l N2 P . Then necessarily M = λx.M0 or M = M0 P

with M0
i−→ N1 +l N2 and P i−→ Q.

If M0 = M1 +l M2 with Mj
i−→ Nj for j ∈ {1; 2} then the result is immediate.

Otherwise there are seven possible cases, that we only detail for N = λx.(N1+lN2):

• if M0 = N2 +l′ N1 →γ N1 +γ(l′) N2 with γ(l′) = l then

λx.M0 →+ λx.N2 +l′ λx.N1 →γ λx.N1 +l λx.N2;

• the same goes if M0 = N2 +γ(l) N1 ←γ N1 +l N2;

• if
M0 = (N1 +l′ M1) +l′′ M2 →α N1 +α1(l′,l′′) (M1 +α2(l′,l′′) M2)

with α1(l′, l′′) = l and M1 +α2(l′,l′′) M2 = N2 then we have

λx.N1 +l λx.N2 →+ λx.N1 +l (λx.M1 +α2(l′,l′′) λx.M2)

and

λx.M0 �+ (λx.N1+l′λx.M1)+l′′λx.M2 →α λx.N1+l (λx.M1+α2(l′,l′′)λx.M2);

• the same works for the reverse reduction ←α;

• if M0 = (N1 +l N2) +l′ (N1 +l N2) with l′ ∈ I then

λx.M0 �+ (λx.N1 +l λx.N2) +l′ (λx.N1 +l λx.N2)→I λx.N1 +l λx.N2;

• if M0 = N1 = N2 then we directly have λx.M0 ←I λx.N1 +l λx.N2;

• if M0 = N1 +lM2 →Z N1 +l N2 then

λx.M0 →+ λx.N1 +l λx.M2 →Z λx.N1 +l λx.N2.

This concludes the proof.

Corollary 1.1.2.2. For any reduction → of the previous lemma, if M i−→ N then
can(M) i−→ can(N).

Proof. First we prove that if M i−→ N then there is a term M ′ such that
M �+ M ′ i−→ can(N).
We know that the reduction →+ is strongly normalizing so for any term N the

length of the reductions N �+ can(N) is bounded. We reason by induction on
this bound. If N is canonical then the result is immediate.
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Otherwise if N →+ N ′ then according to the previous lemma we have N ′ �+ N ′′

and M �+ M ′ i−→ N ′′, and we can apply the induction hypothesis to N ′′ to get
M ′′ such that M ′ �+ M ′′ i−→ can(N ′′) = can(N).
Now this holds for the reduction→ but also for the reverse reduction←. Hence

ifM i−→ N we haveM �+ M ′ i−→ can(N) but also can(N) �+ N ′
i←− can(M ′). We

have can(M ′) = can(M), and necessarily N ′ = can(N), so can(M) i−→ can(N).

Proposition 1.1.2.3. If M ≡syn N then can(M) ≡syn can(N).

Proof. The equivalence ≡syn is the reflexive and transitive closure of the union of
the eight reductions →γ, →α, →I and →Z and their symmetric reductions. Thus
if M ≡syn N we have M (↔γ ∪ ↔α ∪ ↔I ∪ →Z)∗ N and

can(M) (↔γ ∪ ↔α ∪ ↔I ∪ →Z)∗ can(N).

The equality =+ behaves properly with respect to ≡syn. When we want to
consider terms modulo both =+ and ≡syn we actually only need to consider
canonical terms modulo ≡syn.

But observe that if M is a canonical term and we have M ≡syn N then N is not
necessarily canonical. We have v ≡syn v +l v for all canonical value v and l ∈ I
so we may create redexes for→+. For this reason we give an alternate definition
of ≡syn for canonical terms.

Definition 1.1.2.1. The relations ≡csyn on canonical terms and ≡vsyn on values are
defined as follows.

M ≡csyn N

N ≡csyn M

M ≡csyn N N ≡csyn P

M ≡csyn P

M +l N ≡csyn N +γ(l) M (M +l N) +l′ P ≡csyn M +α1(l,l′) (N +α2(l,l′) P )
l ∈ I

M +lM ≡csyn M
l ∈ Z

M +l N ≡csyn M +l P

M ≡csyn M
′

M +l N ≡csyn M
′ +l N

N ≡csyn N
′

M +l N ≡csyn M +l N
′

v ≡vsyn v
′

v ≡csyn v
′

x ≡vsyn x
v ≡vsyn v

′

λx.v ≡vsyn λx.v
′

v ≡vsyn v
′ M ≡csyn M

′

v M ≡vsyn v
′ M ′

Proposition 1.1.2.4. If M and N are canonical then M ≡syn N if and only if
M ≡csyn N .
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Proof. If M ≡csyn N then we obviously have M ≡syn N .
Conversely if M →γ N , M →α N , M →I N or M →Z N then we have

M ≡csyn N . We prove this by induction on the canonical structure of M and N .
As ≡csyn is symmetric and transitive this is enough to conclude.

Corollary 1.1.2.5. Given any terms M and N we have M ≡syn N if and only if
can(M) ≡csyn can(N).

Now let us consider the relation built on the rules of =+ and ≡syn.

Definition 1.1.2.2. The relation ≡ is the least congruence which contains =+
and ≡.

Corollary 1.1.2.6. M ≡ N if and only if can(M) ≡csyn can(N).

The equivalence ≡syn only involves sums, and it was introduced precisely to
define the meaning of this constructor. On the other hand canonical forms are
terms where the sums are gathered on top of the arguments. So for the different
interpretations of the sum we can give a very satisfying characterization of the
classes of terms modulo ≡.

We will only detail the case of the probabilistic λ-calculus. We will prove that
trees of sums represent probability distributions. More precisely we want to
prove the following theorem.

Theorem 1.1.2.7. The classes of probabilistic terms modulo ≡ are

V ∈Λ[0;1]
+ /≡ := finite probability distributions over values V

V := x | λx.V | V V .

According to the previous corollary the classes of terms modulo ≡ are exactly
the classes modulo ≡csyn of the canonical terms. So all we need to do is to show
that ≡csyn turns sums into probability distributions.

Definition 1.1.2.3. For every canonical termM we define a finite probability dis-
tribution VM over values (with probability distributions), and for every canonical
value v we define a value with probability distributions ṽ.

• Vv(ṽ) = 1 and Vv(V ) = 0 otherwise;

• VM+pN = p× VM + (1− p)× VN ;

• x̃ = x;

• λ̃x.v = λx.ṽ;

• ṽ M = ṽ VM .

Proposition 1.1.2.8. Given M and N two canonical terms, if M ≡csyn N then
VM = VN .
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Proof. We prove this as well as the corresponding result for values, i.e. that if
v ≡vsyn w then ṽ = w̃.
We reason by induction on ≡csyn and ≡vsyn. The basic cases are given by the

following equalities:

• pVM + (1− p)VN = (1− p)VN + (1− (1− p))VM ;

• q (pVM + (1− p)VN ) + (1− q)VP = pqVM + (1− pq)
(

(1−p)q
1−pq VN +

(
1− (1−p)q

1−pq

)
VP
)

;

• (VM + 0× VN) + 0× VP = VM + 0×
(

1
2 × VN + 1

2 × VP
)
;

• pVM + (1− p)VM = VM ;

• VM + 0× VN = VM + 0× VP .

We proved that we indeed have a transformation from the classes of terms
modulo ≡ to a syntax with probability distributions. Now we need to prove that
this transformation is a bijection.

Lemma 1.1.2.9. Given a canonical term M and a value v we can find canonical
terms Mv and M ′ such that M ≡csyn Mv +VM (ṽ) M

′ and VMv = Vṽ.

Proof. By induction on M .

• If M = w with w̃ = ṽ then VM(ṽ) = 1 and M ≡csyn w +1 M .

• If M = w with w̃ 6= ṽ then VM(ṽ) = 0 and we have M ≡csyn v +0 M .

• If M = M1 +pM2 then VM(ṽ) = pVM1(ṽ) + (1− p)VM2(ṽ), and by induction
hypothesis we have Mi ≡csyn Mi,v +VMi (ṽ) M

′
i for i ∈ {1; 2}. If VM(ṽ) = 1 we

have M ≡csyn M1,v +p M2,v, and if VM(ṽ) = 0 we have M ≡csyn M
′
1 +p M

′
2.

Otherwise we have

M ≡csyn

(
M1,v +VM1 (ṽ) M

′
1

)
+p

(
M2,v +VM2 (ṽ) M

′
2

)
≡csyn

M1,v +
pVM1 (̃v)

VM (̃v)

M2,v

+VM (ṽ)

M ′
1 +

p(1−VM1 (̃v))
1−VM (̃v)

M ′
2

 .

Proposition 1.1.2.10. The transformation is injective: for all terms M and N
if VM = VN then M ≡csyn N .
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Proof. We prove by induction on V and V that if VM = VN = V then M ≡csyn N ,
and if ṽ = w̃ = V then v ≡vsyn w.
In the cases of values the result is always immediate by induction hypothesis,

as values with probability distributions V have exactly the same structure as term
values v.
Given a finite probability distribution V , the induction hypothesis states that if
V(V ) 6= 0 then whenever ṽ = w̃ = V we have v ≡vsyn w.
First remark that for any value v such that V(ṽ) 6= 0, for any canonical term M

such that VM = Vv, we have M ≡csyn v. This is proven by induction on M :

• if M is a value then by hypothesis M ≡vsyn v;

• if M = M1 +p M2 with p ∈]0; 1[ then VM1 = VM2 = Vv and by induction
hypothesis M ≡csyn v +p v ≡csyn v;

• if M = M1 +1 M2 or M = M2 +0 M1 then M ≡csyn M1 and by induction
hypothesis M1 ≡csyn v.

In the general case we reason by induction on the number of values V such that
V(V ) 6= 0. There is always at least one, and furthermore if there exists M such
that VM = V then there exists v such that V(ṽ) 6= 0.

• If V = Vv then we proved that whenever VM = V thenM ≡csyn v so the result
is immediate.

• Otherwise 0 < V(ṽ) < 1, let

V ′ : V 7→

0 if V = ṽ
V(V )
V(ṽ) otherwise

.

The previous lemma gives that if VM = V then M ≡csyn Mv +V(ṽ) M
′ with

VMv = Vv, hence Mv ≡csyn v and M ≡csyn v +V(ṽ) M
′. Besides we have

necessarily VM ′ = V ′, so we can conclude by induction hypothesis on V ′.

Proposition 1.1.2.11. The transformation is surjective: for all V there exists M
such that V = VM .

Proof. We reason by induction on V . The cases of values are immediate:

• for a variable x we have x = x̃;

• for an abstraction λx.V we have by induction hypothesis that V = ṽ for some
canonical value v, and λx.V = λ̃x.v;

• for an application V V we have a canonical value v and a canonical term M
such that ṽ = V and M̃ = V , hence ṽ M = V V .

40



Now if we have a finite probability distribution V over values, let V0,...,Vn be the
pairwise distinct values such that V(Vi) 6= 0 for i ≤ n and V(V ) = 0 otherwise.
By induction hypothesis we have Vi = ṽi for some values vi. Then we can write
V = ∑n

i=0 V(ṽi)Vvi .
Let us defineM0 = v0 andMi+1 = vi+1 +pi+1 Mi with pi+1 = V(ṽi+1)∑i+1

j=0 V(ṽj)
for i < n.

We have

VM0 = Vv0

VMi+1 = V(ṽi+1)∑i+1
j=0 V(ṽj)

Vvi+1 +
∑i
j=0 V(ṽj)∑i+1
j=0 V(ṽj)

VMi

so by an easy induction on i we have

VMi
=

i∑
j=0

V(ṽj)∑i
k=0 V(ṽk)

Vvj .

In particular when i = n we have ∑n
k=0 V(ṽk) = 1 so VMn = V .

We have a correspondence between classes of terms for ≡ and terms with
probability distributions, which proves theorem 1.1.2.7.

A consequence of this theorem is that every result we will prove modulo ≡
will still hold if we consider any other calculus also expressing probability dis-
tributions. For instance we can consider the following calculus equivalent to
ours:

M,N := x | λx.M |M N |
n∑
i=1

pi.Mi,
n∑
i=1

pi = 1

λx.
n∑
i=1

pi.Mi →+

n∑
i=1

pi.λx.Mi(
n∑
i=1

pi.Mi

)
N →+

n∑
i=1

pi.Mi N

with the appropriate syntactic equivalence.
We have similar results for some other calculi, whose proofs we will not detail.

Non-deterministic λ-calculus: L = {∗}

M,N := x | λx.M |M N |M +N

M +N ≡syn N +M
(M +N) + P ≡syn M + (N + P )

M +M ≡syn M
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M,N ∈ΛL+/≡ := finite sets of values v
v := x | λx.v | v M.

Non-deterministic λ-calculus with multiplicities: L = {∗}

M,N := x | λx.M |M N |M +N

M +N ≡syn N +M
(M +N) + P ≡syn M + (N + P )

M,N ∈ΛL+/≡ := finite multisets of values v
v := x | λx.v | v M.

Algebraic λ-calculus: L = R2

M,N := x | λx.M |M N |M +α,β N

M +α,β N ≡syn N +β,αM
(M +α,β N) +γ,δ P ≡syn M +αγ,1 (N +βγ,δ P )

M +α,1−αM ≡syn M
M +α,0 N ≡syn M +α,0 P

M +α+γ,β M ≡syn M +α,β+γ M

M,N ∈ΛL+/≡ := finite linear combinations of values v
v := x | λx.v | v M.

In the case of the algebraic λ-calculus we need an additional rule. This equality
is necessary for terms to represent linear combinations of values. It is actually
derivable from the other rules in most cases.

If α + β 6= 0 we have :

M +α,β M ≡syn (M +α,β M) +1,0 (M +α,β M)
≡syn (M +α,β M) +1,0 M

≡syn M +α,1 (M +β,0 M)
≡syn (M + α

α+β ,
β

α+β
M) +α+β,0 M

≡syn M +α+β,0 M

so M +α,β M ≡syn M +γ,δ M whenever α + β = γ + δ 6= 0.
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Then if α 6= 0 we also have:

M +1,−1 M ≡syn (M +α,1−αM) +1,−1 M

≡syn M +α,1 (M +1−α,−1 M)
≡syn M +α,1 (M +−α,0 M)
≡syn (M +α,−αM) +1,0 M

≡syn (M +α,−αM) +1,0 (M +α,−αM)
≡syn M +α,−αM

so M +α,−αM ≡syn M +β,−β M whenever α 6= 0 and β 6= 0.
But as far as we know we can not prove that M+0,0M ≡syn M+1,−1M without

using this additional rule.
We did not include this rule in our proofs and we will not in the future, as we

are mostly interested in the probabilistic calculus, but we believe our results still
hold in this case.
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1.2 Deterministic β-reduction on non-deterministic terms

Now that we know what our terms modulo ≡ describe, let us look at the most
important reduction, i.e. the β-reduction. We will first describe the β-reduction
modulo =+, and in a second time we will consider it modulo ≡.

1.2.1 β-reduction modulo =+

An important property we want to prove is the confluence of the reduction. To
achieve this we proceed in a standard way and we prove we can define a parallel
β-reduction using labelled redexes. Using a parallel reduction is all the more
relevant as we may duplicate β-redexes when we reduce a term with →+, and
we want to be able to reduce all the duplicates at once.

The parallel labelled reduction is the reduction of the set of labelled redexes
in a term. So first we give a syntax for terms with labelled redexes.

Definition 1.2.1.1. Terms with labelled redexes are:

M,N := x | λx.M |M N |M +l N | ((λx.M) N)∗ .

The labelled β-reduction is:

((λx.M) N)∗ →β∗ M
[
N/x

]
extended to arbitrary context.

If we only wanted to prove we can reduce multiple redexes in parallel, we
would prove that →β∗ is confluent and strongly normalizing, thus every term
has a unique normal form which is the reduction of all its labelled redexes. But
here we want to consider terms modulo =+, so we also involve the reduction
→+ defined on labelled terms by:

λx.(M +l N)→+ λx.M +l λx.N

(M +l N) P →+ M P +l N P

((λx.(M +l N)) P )∗ →+ ((λx.M) P )∗ +l ((λx.N) P )∗

extended to context.

Proposition 1.2.1.1. →β∗ and →+ are substitutive: if M →β∗ M
′ (resp.

M →+ M ′) then for all x and N we have M
[
N/x

]
→β∗ M

′
[
N/x

]
(resp.

M
[
N/x

]
→+ M ′

[
N/x

]
).

Proof. By a simple induction on the context of the reduction. For instance for the
β∗-reduction and the empty context we have

((λy.M) P )∗
[
N/x

]
=
((
λy.M

[
N/x

])
P
[
N/x

])
∗
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if y is not free in N , which we can assume as we consider terms modulo α-
equivalence. Thus ((λy.M) P )∗

[
N/x

]
→β∗ M

[
N/x

] [
P
[
N/x

]
/y

]
and this is

known to be the equal to
(
M
[
P/y

]) [
N/x

]
.

Proposition 1.2.1.2. →β∗ and →β∗ ∪ →+ are weakly confluent.

Proof. We only deal with→β∗ ∪ →+, but the same arguments can be used to prove
the weak confluence of →β∗ . We must prove that if a term has two reductions for
→β∗ ∪ →+ then the reduced terms have a common reduct. We reason by induction
on the two contexts of the reductions.
If neither context is empty the result is immediate. Either the two reductions

occur in the same subterm (for instance λx.M reduces into λx.N1 and λx.N2 asM
reduces into N1 and N2) and we conclude by induction hypothesis, or they occur
in different subterms (such as M M ′ → N M ′ and M M ′ → M N ′) and we can
immediately compose the reductions (N M ′ and M N ′ both reduce to N N ′).
The remaining cases are when one of the contexts is empty.

• If

((λx.M) N)∗ →β∗ M
[
N/x

]
((λx.M) N)∗(→β∗ ∪ →+) ((λx.M ′) N)∗

we conclude by substitutivity of →β∗ and →+.

• If

((λx.M) N)∗ →β∗ M
[
N/x

]
((λx.M) N)∗ →β∗ ∪ →+ ((λx.M) N ′)∗

we can prove by an easy induction onM thatM
[
N/x

]
�β∗ ∪�+ M

[
N ′/x

]
.

• If

λx.(M +l N)→+ λx.M +l λx.N

or (M +l N) P →+ M P +l N P

or ((λx.(M +l N)) P )∗ →+ ((λx.M) P )∗ +l ((λx.N) P )∗

and the second reduction occurs in M , N or P we can easily compose the
reductions.

• If

((λx.(M +l N)) P )∗ →β∗ (M +l N)
[
P/x

]
((λx.(M +l N)) P )∗ →+ ((λx.M) P )∗ +l ((λx.N) P )∗
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then

(M +l N)
[
P/x

]
= M

[
P/x

]
+l N

[
P/x

]
((λx.M) P )∗ +l ((λx.N) P )∗ �β∗ M

[
P/x

]
+l N

[
P/x

]
.

Proposition 1.2.1.3. →β∗ and →β∗ ∪ →+ are strongly normalizing.

Proof. We consider that a weight on a labelled term M is a function wM which
associates a weight wM(xo) ≥ 2 in N to every variable occurrence xo in M . For
every other subterm N of M we then define wM(N) by

• wM(λx.N) = wM(N);

• wM(N P ) = wM(N)× wM(P );

• wM(N +l P ) = wM(N) + wM(P );

• wM (((λx.N) P )∗) = wM(N)× wM(P ).

Remark that to be accurate a subterm of M is given by a term N and a context
C such that M = C[N ]. Here we do not mention the context, which is ambiguous
but simplify the notations.
A weight wM is said to be decreasing if for every subterm ((λx.N) P )∗ ofM , for

every occurrence xo of the variable x in N we have wM(xo) ≥ wM(P ). We want to
use decreasing weights to prove that every reduction path of →β∗ ∪ →+ is finite.
We have by an easy induction onM that for every subterm N ofM , wM(N) ≥ 2.
Using this we also prove easily that the total weight of a term is a strictly

increasing function of the weight of its subterms: given a context C and two weights
wC[M ] and wC[N ] on C[M ] and C[N ] which agree on the weight of the variable
occurrences in C, if wC[M ](M) > wC[N ](N) then wC[M ](C[M ]) > wC[N ](C[N ]).
Now given a β∗-reduction M = C [((λx.N) P )∗] →β∗ C

[
N
[
P/x

]]
= M ′ and a

weight wM on M , we define wM ′ on M ′ by

• if yo is a variable occurrence in C then wM ′(yo) = wM(y′o) where y′o is the
corresponding variable occurrence in C in M ;

• if yo is an occurrence of a variable different from x in N then
wM ′(yo) = wM(y′o) where y′o is the corresponding variable occurrence in N
in M ;

• if yo is a variable occurrence in a copy of P then wM ′(yo) = wM(y′o) where
y′o is the corresponding variable occurrence in P in M .
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Then wM(M) > wM ′(M ′) if wM (((λx.N) P )∗) > wM ′
(
N
[
P/x

])
. If wM is a

decreasing weight then for every variable occurrence xo of x in N and for every
copy of P in M ′ we have wM(xo) > wM(P ) = wM ′(P ). Thus

wM(N) ≥ wM ′
(
N
[
P/x

])
> 0

wM (((λx.N) P )∗) = wM(N)× wM(P ) > wM ′
(
N
[
P/x

])
and wM(M) > wM ′(M ′).
Furthermore we can check that the weight wM ′ is decreasing. For every labelled

redex ((λx.N ′) P ′)∗ in M ′ we can find a labelled redex ((λx.N) P )∗ in M such
that P = P ′ or P →β∗ P

′, hence wM(P ) ≥ wM ′(P ′), and every occurrence x′o of x
in N ′ inherits its weight from an occurrence xo of x in N .
We can do the same reasoning with →+. Given a reduction M →+ M ′, a

weight wM on M induces in an obvious way a weight wM ′ on M ′. For instance if
M = C[(N +l P ) Q]→+ C[N Q+l P Q] = M ′ then:

• the variable occurrences of N in M ′ have the same weight as the correspond-
ing occurrences of N in M ;

• the variable occurrences of P inM ′ have the same weight as the corresponding
occurrences of P in M ;

• the variable occurrences of each of the Q’s in M ′ have the same weight as
the corresponding occurrences of Q in M .

It is easy to check that if wM is decreasing then so is wM ′ . Besides the weight of
a redex is preserved by reduction. In the example above we have

wM((N +l P ) Q) = (wM(N) + wM(P ))× wM(Q)
= wM ′(N)× wM ′(Q) + wM ′(P )× wM ′(Q)
= wM ′(N Q+l P Q).

To sum up, if wM is a decreasing weight on M , then if M →β∗ N there is a
decreasing weight wN on N with wM(M) > wN(N), and if M →+ N then there
is a decreasing weight wN on N with wM(M) = wN(N).
This means that if M has a decreasing weight then every reduction path from

M for→β∗ ∪ →+ has finitely many β∗ steps. In particular→β∗ is strongly normal-
izing. But we also know there is no infinite reduction path for →+. Then every
reduction path for →β∗ ∪ →+ is finite.
To conclude we need to prove that we can indeed find a decreasing weight for

every term. We easily prove by induction onM that for every family (δx) ∈ NVar we
can find a decreasing weight onM with wM(xo) ≥ δx for every variable occurrence
xo of x.

• If M = x we just choose wx(x) ≥ max(δx, 2).
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• If M = λx.N then M and N have the same variable occurrences, and we
have by induction hypothesis a decreasing weight wN on N so we define
wM(yo) = wN(yo) on M .

• Similarly if M = N P or M = N +l P we have weights wN and wP and we
define wM(xo) = wN(xo) for every xo in N and wM(xo) = wP (xo) for every
xo in P .

• If M = ((λx.N) P )∗ we have by induction hypothesis a weight wP , and we
have a weight wN such that wN(xo) > max(δx, wP (P )) for every variable
occurrence xo of x in N . Then we can define wM as in the previous case.

Corollary 1.2.1.4. 1. Every labelled term has a unique normal form for →β∗.
The normal forms are exactly the terms without labelled redex.

2. Every labelled term has a unique normal form for →β∗ ∪ →+. The normal
forms are exactly the canonical terms without labelled redex.

Now to define the parallel β-reduction, we consider the following operations:

• given a term M and a set F of β-redexes in M , we write MF the labelled
term obtained by labelling the redexes of F in M ;

• given a labelled term M , we write |M | the term obtained by erasing the
labels of M .

For every term M we have |MF | = M , and for every labelled term M there exists
M ′ and F such that M = M ′

F .

Definition 1.2.1.2. Given a termM and a set F of β-redexes inM , the reductions
F−→β// and

F−→βc
//
of M are defined by

MF �β∗ N N β∗-normal
M

F−→β// N

MF(→β∗ ∪ →+)∗N N β∗+-normal
M

F−→βc
//
N

.

In general we define the reductions −→β// and −→βc
//
by

∃F : M F−→β// N

M −→β// N

∃F : M F−→βc
//
N

M −→βc
//
N

.

The canonical parallel β-reduction is defined on all terms, but we will usually
consider it as a reduction between canonical terms, as if M −→βc

//
N then N is

necessarily canonical.
Observe that for every term M and every set of redexes F there are unique N

and N ′ such that M F−→β// N and M F−→βc
//
N ′, and then N ′ = can(N).
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We can also see that→β⊂−→β// and −→β//⊂�β so �β//=�β. Similarly
�βc

//
=(→β ∪ →+)∗. Thus the confluences of→β and→β ∪ →+ are equivalent to

the confluences of −→β// and −→βc
//
.

To prove these confluences let us define the notion of residuals of a β-redex.
We can define the β-reduction on labelled terms by (λx.M) N →β M

[
N/x

]
.

Then given a reduction on terms M →β N and a set F of β-redexes in M , we can
reduce MF either by β (if the reduced redex is not in F , hence not labelled) or
by β∗ (if the reduced redex is in F) to get a labelled term N ′ such that |N ′| = N .
Then there is a set of redexes G in N such that N ′ = NG. We call this set G the
set of residuals of F for this reduction.

For instance if M = (λx.x x) ((λy.P ) Q) →β ((λy.P ) Q) ((λy.P ) Q) = N , we
have:

(λx.x x) ((λy.P ) Q)∗ →β ((λy.P ) Q)∗ ((λy.P ) Q)∗
((λx.x x) ((λy.P ) Q))∗ →β∗ ((λy.P ) Q) ((λy.P ) Q)

so for this reduction ((λy.P ) Q) in M has two residuals in N whereas the whole
redex (λx.x x) ((λy.P ) Q) doesn’t have any.

It is well known that when we define the residuals we must say exactly what
the reduced redex is. For instance we have the two following reductions on
labelled terms:

(λx.x) ((λx.x) y)∗ →β ((λx.x) y)∗
(λx.x) ((λx.x) y)∗ →β∗ (λx.x) y

There are two ways to obtain the reduction (λx.x) ((λx.x) y) →β (λx.x) y: we
can reduce the outer redex (λx.x) ((λx.x) y) or the inner redex (λx.x) y. In the
first case the redex (λx.x) y has a residual, whereas in the second case it has
none.

We define the notion of residuals for→+ in the same way.
This definition is not standard, as residuals are usually defined for any sub-

term, not only redexes, and we would say that N is always the residual of M
when M →β N .

The reason we give this definition is that we are interested in the reduction of
sets of redexes. In particular we have the following result:

Proposition 1.2.1.5. Given a term M and a set of redexes F with M F−→β// N

(resp. M F−→βc
//
N), for all G ⊂ F if M G−→β// P (resp. M G−→βc

//
P ) and F ′ is the set

of residuals of F in P then P F ′−→β// N (resp. P F ′−→βc
//
N).

Proof. We have MF �β∗ PF ′ (resp. MF (→β∗ ∪ →+)∗ PF ′), so in either case the
normal form of MF is the same as the normal form of PF ′ .

In the above example ifM = (λx.x x) ((λy.P )Q) andF = {(λx.x x) ((λy.P )Q)}
the reduction of F in M gives ((λy.P ) Q) ((λy.P ) Q), but we do not want to say
that the redex ((λy.P ) Q) ((λy.P ) Q) is a residual of F .
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Proposition 1.2.1.6. −→β// and −→βc
//
have the diamond property: ifM −→β// N1 and

M −→β// N2 (resp. M −→βc
//
N1 and M −→βc

//
N2) then there is P such that N1 −→β// P

and N2 −→β// P (resp. N1 −→βc
//
P and N2 −→βc

//
P ).

Proof. If we have M F1−→β// N1 and M F2−→β// N2 then we define P as the reduction
of F1 ∪ F2 in M . For i ∈ {1; 2}, if Gi is the set of residuals of F1 ∪ F2 in Ni then
we have Ni

Gi−→β// P .

Corollary 1.2.1.7. The reductions →β and →β ∪ →+ are confluent.

This is an interesting result but we can deduce even more from the properties
of the labelled reduction. When we were looking at the equivalence ≡syn modulo
=+ we proved that it is entirely characterized by its restriction ≡csyn on canonical
terms. Here it does not make sense to restrict the β-reduction to canonical terms.
For instance if we consider the reduction

(λxy.x) (u+l v)→β λy.(u+l v)→+ λy.u+l λy.v

there is no way to go from (λxy.x) (u +l v) to λy.u +l λy.v without using a non
canonical form. So we define the following reduction.

Definition 1.2.1.3. The canonical β-reduction →βc between canonical terms is
defined by →βc=→β · →can.

Proposition 1.2.1.8. If M →β N then can(M) �βc can(N).

Proof. If ∆ is the reduced redex in M we have M {∆}−−→βc
//

can(N). We prove
that in general if P F−→βc

//
Q then can(P ) �βc Q. We know →β∗ ∪ →+ is strongly

normalizing so the length of the reductions of P is bounded, we reason by induction
on that bound.
If P is not canonical then P →+ P ′ with can(P ) = can(P ′) so the result is

immediate by induction hypothesis.
If P is canonical then either F = ∅ and P = Q, or we can reduce a redex of F

to get P →β P
′. In this case the induction hypothesis gives can(P ′) �βc Q and

we have P →βc can(P ′) �βc Q.

Corollary 1.2.1.9. If M �β/=+
N then can(M) �βc can(N).

Proof. If M �β/=+
N we have

M = M0 =+ M ′
0 →β M1 =+ M ′

1 →β ...→β Mn =+ M ′
n = N.

Using the previous result we get can(M ′
k) �βc can(Mk+1) for k < n, and since

Mk =+ M ′
k we have can(Mk) = can(M ′

k) for k ≤ n. Thus

can(M0) �βc can(M1) �βc ...�βc can(Mn).

We have can(M) �βc can(N).
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To consider the β-reduction modulo =+ is the same as considering the reduc-
tion →βc between canonical terms. There is a difference in the complexity, i.e.
the length of the reductions: in canonical terms some redexes are duplicated
and need to be reduced several times. But here we are more interested in the
equational point of view than the computational one.

Once again canonical forms are very useful to describe the β-reduction modulo
=+. But once again they are not stable by context, and the reduction→βc is not
contextual. Actually to study this reduction the most simple way is usually to
decompose it into a reduction →β · �+, so in the future we will not consider
only the reduction→βc but we will go back and forth between the canonical and
the non-canonical reductions.

1.2.2 β-reduction modulo ≡
The important computation rule of our calculus is the β-rule, whereas the rules
for the sums have a different status: they play an important role in the reduction
of terms but it makes as much sense to consider terms modulo =+ than to con-
sider→+ as an actual reduction. The syntactic rules of ≡syn, on the other hand,
are not supposed to describe a computation on the terms, only on the labels. For
that reason we expect the β-reduction modulo ≡ to be similar to the reduction
modulo =+.

It seems fairly obvious that the commutativity and associativity rules do not
influence the reduction. This is less trivial for the rule M +l N ≡syn M +l P if
l ∈ Z ⊂ L: we can replace a subterm by any other one, without restriction. But
the meaning of this rule is that everything on the right side of a sum +l with
l ∈ Z is irrelevant and should not influence the reduction.

The rule with the most consequences is the idempotence of the sum. If we
have a reduction M →β N then for any l ∈ I we have M →β/≡ M +lM . We will
prove that the reduction is confluent so even if we keep reducing M �β/≡ M1
and M �β/≡ M2 there will be N such that M1 and M2 both reduce to N , and
we will be able to contract the sum again: M1 +l N2 �β/≡ N +l N ≡ N . In
particular this rule will not influence the normalization of a term. But if we want
to characterize precisely the β-reduction modulo ≡ the splitting of terms will
play an important role.

1.2.2.1 Splitting terms

In section 1.1.2 we defined the reductions→γ,→α,→I and→Z associated to the
rules of ≡syn. We will again use these reductions, but we will isolate the splitting
of terms.

Definition 1.2.2.1. 1. The reduction →split is defined by

M →split M +lM if l ∈ I

extended to context.
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2. The reduction →syn is →I ∪ ↔γ ∪ ↔α ∪ →Z .

We showed that sometimes we need to split a term before reducing it: if
M →split M +l M �β/=+

M +l N then there is no way to perform the β-
reduction before the splitting. On the other hand we will prove that we can
always do all the splitting first, and then use the other reductions: if M �β/≡ N
then M �split · (→β/=+

∪ →syn)∗ N .
First let us show we can reason on the reduction �split by structural induction.

Proposition 1.2.2.1. The reduction �split is characterized inductively by:

x�split x

M �split N

λx.M �split λx.N

M �split N M ′ �split N
′

M M ′ �split N N ′
M1 �split N1 M2 �split N2

M1 +lM2 �split N1 +l N2

M �split N1 M �split N2 l ∈ I
M �split N1 +l N2

Proof. Let us write � the reduction defined by these rules. We prove easily that
these rules hold for �split so �⊂�split. We prove that �split⊂� by induction on
the length of the reduction �split.
For a reduction of length 0 we prove easily that� is reflexive. Otherwise we have

M �split N →split P and by induction hypothesis on the reduction M �split N
we have M � N . We then reason by induction on the context C of the reduction
N →split P and on M � N .

• If C 6= [ ] and M � N is given by a context rule the result is immediate
by induction hypothesis. For instance if we have N = λx.N ′ →split λx.P

′

and M = λx.M ′ � λx.N ′ then by induction hypothesis M ′ � P ′, hence
M � λx.P ′.

• If C 6= [ ] and M � N1 +l N2 with M � N1 and M � N2, then we have
P = P1 +lP1 with Ni →?

split Pi for i ∈ {1; 2} so by hypothesis or by induction
hypothesis we have M � Pi. Thus M � P1 +l P2.

• If C = [ ] then P = N+lN so using the last rule of � we haveM � N+lN .

Now let us prove that→split commutes with the other reductions.

Proposition 1.2.2.2. If M →I N �split P then there is a term N ′ such that
M �split N

′ �I P .

Proof. By induction on N �split P and the context C of the reduction M →I N .
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• If N �split P1 +l P2 with N �split Pi for i ∈ {1; 2} then by induction hypoth-
esis there are N ′1 and N ′2 such that M �split N

′
i �I Pi for i ∈ {1; 2}, and

M �split N
′
1 +l N

′
2 �I P1 +l P2.

• If C = [ ] then M = N +l N and we have M �split P +l P →I P .

• If N �split P does not use the last rule and C 6= [ ] then the result is
immediate by induction hypothesis.

Corollary 1.2.2.3. →split is confluent.

Proof. We just proved that if M �split N1 and M →split N2 then there is P such
that Ni �split P for i ∈ {1; 2}. We prove the confluence of →split by induction on
the length of one of the reductions.

Proposition 1.2.2.4. 1. If M →γ N �split P then there is N ′ such that
M �split N

′ �γ P .

2. If M ←γ N �split P then there is N ′ such that M �split N
′ �γ P .

3. If M →Z N �split P then there is N ′ such that M �split N
′ �Z P .

Proof. As in the proof of the previous proposition we have the result by induction
hypothesis if both reductions are given by context rules, and the same method
works if N →split P1 +l P2 with N →split Pi for i ∈ {1; 2}. We only need to deal
with the case when N �split P is given by a structural rule and the context of the
first reduction is empty.

• If M1 +lM2 →γ M2 +γ(l)M1 �split P2 +γ(l) P1 with Mi �split Pi for i ∈ {1; 2}
then M1 +lM2 �split P1 +l P2 →γ P2 +γ(l) P1.

• If M1 +γ(l) M2 ←γ M2 +lM1 we proceed in the same way.

• IfM+lM
′ →Z M+lN

′ �split P+lP
′ with l ∈ Z,M �split P andN ′ �split P

′

then we have M +lM
′ �split P +lM

′ →Z P +l P
′.

We can not reason in the same way for→α. The associativity is the only rules
which involves two sums. So if we proceed as for the others we need to deal
with the case

(M1 +lM2) +l′ M3 →α M1 +α1(l,l′) (M2 +α2(l,l′) M3) �split P

where we know that the reduction �split is given by a structural rule, hence
P = P1 +α1(l,l′) Q with M1 �split P1 and M2 +α2(l,l′) M3 �split Q, but we dot
not know if Q is of the form P2 +α2(l,l′) P3. Actually this reduction could use an
arbitrary number of times the last rule of �split, and Q would be an arbitrary
large tree of sums whose leaves are of the form P2 +α2(l,l′) P3.

For that reason we first prove that we can push down the splitting of a term.
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Lemma 1.2.2.5. If M +l N �split P then there are terms M ′ and N ′ such that
M �split M

′, N �split N
′ and M ′ +l N

′ (↔γ ∪ ↔α)∗ P .

Proof. This is a consequence of proposition 1.0.0.1. We reason by induction on
�split.

• If M +l N �split M
′ +l N

′ = P with M �split M
′ and N �split N

′ then the
result is immediate.

• If M +l N �split P1 +k P2 = P with M +l N �split Pi for i ∈ {1; 2} and
k ∈ I, then by induction hypothesis for i ∈ {1; 2} there are M ′

i and N ′i such
that M �split M

′
i , N �split N

′
i and M ′

i +l N
′
i (↔γ ∪ ↔α)∗ Pi. We have the

following reduction:

M +l N �split (M ′
1 +k M

′
2) +l (N ′1 +k N

′
2)

(↔γ ∪ ↔α)∗ (M ′
1 +l N

′
1) +k (M ′

2 +l N
′
2)

(↔γ ∪ ↔α)∗ P1 +k P2.

Proposition 1.2.2.6. 1. If M →α N �split P then there is N ′ such that
M �split N

′ (↔γ ∪ ↔α)∗ P .

2. If M ←α N �split P then there is N ′ such that M �split N
′ (↔γ ∪ ↔α)∗ P .

Proof. As before we prove this by induction, and we only need to detail the case
where the context of the first reduction is empty and the reduction �split is given
by a contextual rule.
If (M1 +l M2) +l′ M3 →α M1 +α1(l,l′) (M2 +α2(l,l′) M3) �split P1 +α1(l,l′) Q with

M1 �split P1 and M2 +α2(l,l′)M3 �split Q the previous lemma gives P2 and P3 such
that Mi �split Pi for i ∈ {2; 3} and P2 +α2(l,l′) P3 (↔γ ∪ ↔α)∗ Q. Then

(M1 +lM2) +l′ M3 �split (P1 +l P2) +l′ P3

→α P1 +α1(l,l′) (P2 +α2(l,l′) P3)
(↔γ ∪ ↔α)∗ P1 +α1(l,l′) Q.

The case of ←α is similar.

Corollary 1.2.2.7. If M →syn ·�split N then M �split ·�syn N .

We proved that the splitting of a term can be done before using the other
syntactic rules.

Now to deal with→split and the reduction of sums, we have again redexes with
multiple constructors so we extend the result of the lemma 1.2.2.5.

Lemma 1.2.2.8. 1. If λx.M �split P then there is M ′ such that M �split M
′

and λx.M ′ �+ P .
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2. If M N �split P then there are terms M ′ and N ′ such that M �split M
′,

N �split N
′ and M ′ N ′ (→+ ∪ →I)∗ P .

Proof. By induction on the reduction �split. If �split is given by a structural rule
(i.e. λx.M �split λx.M

′ or M N �split M
′ N ′) then the result is immediate.

Otherwise:

• if λx.M �split P1 +k P2 with λx.M �split Pi for i ∈ {1; 2} and k ∈ I, then
by induction hypothesis for i ∈ {1; 2} there is M ′

i such that M �split M
′
i and

λx.M ′
i �+ Pi. We have the following reduction:

λx.M �split λx.(M ′
1 +k M

′
2)

→+ λx.M ′
1 +k λx.M

′
2

�+ P1 +k P2;

• if M N �split P1 +k P2 with M N �split Pi for i ∈ {1; 2} and k ∈ I,
then by induction hypothesis for i ∈ {1; 2} there are M ′

i and N ′i such that
M �split M

′
i , N �split N

′
i and M ′

i N
′
i (→+ ∪ →I)∗ Pi. By the confluence of

→split there is Q such that N ′i �split Q, hence Q �I N ′i , for i ∈ {1; 2}. We
have the following reduction:

M N �split (M ′
1 +k M

′
2) Q

→+ M ′
1 Q+k M

′
2 Q

�I M
′
1 N

′
1 +k M

′
2 N

′
2

(→+ ∪ →I)∗ P1 +k P2.

Now we can prove that the splitting commutes with→+.

Proposition 1.2.2.9. If M →+ N �split P then there is a term N ′ such that
M �split N

′ (→+ ∪ →I)∗ P .

Proof. We reason by the same induction as usual.
If λx.(M1 +l M2) →+ λx.M1 +l λx.M2 �split P1 +l P2 then for i ∈ {1; 2} there

is M ′
i such that Mi �split M

′
i and λx.M ′

i �+ Pi. We have

λx.(M1 +lM2) �split λx.(M ′
1 +lM

′
2)

�+ λx.M ′
1 +l λx.M

′
2

�+ P1 +l P2.

If (M1 +l M2) N �+ M1 N +l M2 N �split P1 +l P2 then for i ∈ {1; 2} there
are M ′

i and Qi such that Mi �split M
′
i , N �split Qi and M ′

i Qi (→+ ∪ →I)∗ Pi.
By the confluence of →split there is Q such that Qi �split Q for i ∈ {1; 2}, and we
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have

(M1 +lM2) N �split (M ′
1 +lM

′
2) Q

→+ M ′
1 Q+lM

′
2 Q

�I M
′
1 Q1 +lM

′
2 Q2

(→+ ∪ →I)∗ P1 +l P2.

The β-reduction is different in the sense that it involves a substitution which
not only duplicates subterms but is also moves them inside the term.

Proposition 1.2.2.10. If M →β N �split P then there is a term N ′ such that
M �split N

′ (→β ∪ →+ ∪ →syn)∗ P .

Proof. If (λx.M) N →β M
[
N/x

]
�split P then we prove by induction on M that

there are terms M ′ and N ′ such that M �split M
′, N �split N

′ and
M ′

[
N ′/x

]
(→+ ∪ →syn)∗ P .

• If M = x then by hypothesis N �split P .

• If M = λy.M1 then λy.
(
M1

[
N/x

])
�split P and we know there is a term

Q1 such thatM1
[
N/x

]
�split Q1 and λy.Q1 �+ P . By induction hypothesis

there are terms M ′
1 and N ′ such that M1 �split M

′
1, N �split N

′ and
M ′

1

[
N ′/x

]
(→+ ∪ →syn)∗ Q1. Then M �split λy.M

′
1 and

(λy.M ′
1)
[
N ′/x

]
(→+ ∪ →syn)∗ λy.Q1

�+ P.

• If M = M1 M2 then
(
M1

[
N/x

]) (
M2

[
N/x

])
�split P and there are

terms Q1 and Q2 such that Mi

[
N/x

]
�split Qi for all i ∈ {1; 2} and

Q1 Q2 (→+ ∪ →I)∗ P . By induction hypothesis there are M ′
i and N ′i

such that Mi �split M
′
i , N �split N

′
i and M ′

i

[
N ′i/x

]
(→+ ∪ →syn)∗ Qi for

i ∈ {1; 2}. Then there is N ′ such that N ′i �split N
′ for i ∈ {1; 2} and we have

M �split M
′
1 M

′
2 and

(M ′
1 M

′
2)
[
N ′/x

]
�I

(
M ′

1

[
N ′1/x

]) (
M ′

2

[
N ′2/x

])
(→+ ∪ →syn)∗ Q1 Q2

(→+ ∪ →I)∗ P.

• If M = M1 +l M2 then
(
M1

[
N/x

])
+l

(
M2

[
N/x

])
�split P and there are

terms Q1 and Q2 such that Mi

[
N/x

]
�split Qi for all i ∈ {1; 2} and
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Q1 +l Q2 (↔γ ∪ ↔α)∗ P . By induction hypothesis there are M ′
i and N ′i

such that Mi �split M
′
i , N �split N

′
i and M ′

i

[
N ′i/x

]
(→+ ∪ →syn)∗ Qi for

i ∈ {1; 2}. Then there is N ′ such that N ′i �split N
′ for all i ∈ {1; 2} and we

have M �split M
′
1 +lM

′
2 and

(M ′
1 +lM

′
2)
[
N ′/x

]
�I

(
M ′

1

[
N ′1/x

])
+l

(
M ′

2

[
N ′2/x

])
(→+ ∪ →syn)∗ Q1 +l Q2

(↔γ ∪ ↔α)∗ P.

This conclude the proof of the intermediary result. Now if

(λx.M) N →β M
[
N/x

]
�split P

then we have

(λx.M) N �split (λx.M ′) N ′

→β M
′
[
N ′/x

]
(→+ ∪ →syn)∗ P.

We showed that the splitting of terms commutes with all the other reductions.

Proposition 1.2.2.11. If M �β/≡ N then

M �split · (→β ∪ →+ ∪ →syn)∗ can(N).

Proof. M �β/≡ N if and only if there is a reduction

M = M0 ≡syn M
′
0 �β/=+

M1 ≡syn M
′
1 �β/=+

...�β/=+
Mn ≡syn M

′
n = N.

But according to the proposition 1.1.2.3 ifMi ≡syn M
′
i then can(Mi) ≡syn can(M ′

i),
and if M ′

i �β/=+
Mi+1 then can(M ′

i) �βc can(Mi+1). Thus

M �+ can(M0) (→split ∪ →syn)∗ can(M ′
0)

(→β ∪ →+)∗ can(M1) (→split ∪ →syn)∗ can(M ′
1)

(→β ∪ →+)∗ ...
(→β ∪ →+)∗ can(Mn) (→split ∪ →syn)∗ can(M ′

n) =+ N .

In short if M �β/≡ N then M (→β ∪ →+ ∪ →split ∪ →syn)∗ can(N). But we
proved that the reductions→split commutes with→β,→+ and→syn so this implies
that M �split · (→β ∪ →+ ∪ →syn)∗ can(N).
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1.2.2.2 Getting rid of ≡syn

We dealt with the splitting of terms but our characterization of the β-reduction
modulo ≡ still involves syntactic equivalences along the reduction. So we will
prove that every use of a syntactic rule other than the splitting can be pushed at
the end of the reduction.

Proposition 1.2.2.12. If M →syn N then can(M) �syn can(N).

Proof. The corollary 1.1.2.2 gives that if M(↔γ ∪ ↔α ∪ →I ∪ →Z)N then
can(M) (↔γ ∪ ↔α ∪ →I ∪ →Z)∗ can(N). We conclude by induction on the
length of the reduction →syn.

To prove the commutation of →syn with the β-reduction we use the notion of
independent parallel reduction i−→ defined in section 1.1.2.

Proposition 1.2.2.13. If M is canonical and M →syn N
i−→β P then there is N ′

such that M i−→β N
′ �syn P .

Proof. The reason we require M to be canonical is that the reduction →I erases
a sum and can create a β-redex: with non canonical terms we may have
(λx.M +l λx.M) N →I (λx.M) N →β M

[
N/x

]
, and here we can not commute

the reductions.
We reason by induction on the contexts of the reductions.

• If neither context is empty the result is immediate by induction hypothesis.

• If the context of the reduction →syn is empty we have six cases:

– if M1 +lM2 →γ M2 +γ(l) M1
i−→β P then P = P2 +γ(l) P1 with Mi

i−→β Pi
for i ∈ {1; 2}, and

M1 +lM2
i−→β P1 +l P2 →γ P2 +γ(l) P1;

– if
(M1 +lM2) +l′ M3 →α M1 +α1(l,l′) (M2 +α2(l,l′) M3) i−→β P

then P = P1 +α1(l,l′) (P2 +α2(l,l′) P3) with Mi
i−→β Pi for i ∈ {1; 2; 3} and

(M1 +lM2) +l′ M3
i−→β (P1 +l P2) +l′ P3 →α P1 +α1(l,l′) (P2 +α2(l,l′) P3);

– the cases of ←γ and ←α are similar;

– if M +lM →I M
i−→β P then

M +lM
i−→β P +l P →I P ;
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– if M1 +lM2 →Z M1 +lM3
i−→β P then P = P1 +l P3 with Mi

i−→β Pi for
i ∈ {1; 3} and

M1 +lM2
i−→β P1 +lM2 →Z P1 +l P3.

• If the context of →syn is not empty but the context of the β-reduction is, we
have M = M ′ M2, N = (λx.N1) N2 and P = N1

[
N2/x

]
, and by hypothesis

M is canonical so M ′ is not a sum. Then necessarily M ′ = λx.M1 and we
have Mi →?

syn Ni for i ∈ {1; 2}. We get

(λx.M1) M2 →β M1
[
M2/x

]
�syn N1

[
N2/x

]
.

With these two results we can conclude.

Proposition 1.2.2.14. If M (→β ∪ →+ ∪ →syn)∗ N then

can(M) �βc P �syn can(N).

Proof. If M (→β ∪ →+ ∪ →syn)∗ N then we have

can(M) = M0 �syn M
′
0 →βc M1 �syn M

′
1 →βc ...→βc Mn �syn M

′
n = can(N)

where the terms Mi and M ′
i are all canonical.

But if Mi �syn M ′
i →β Pi �+ Mi+1 we know there is a term Qi such that

Mi
i−→β Qi �syn Pi �+ Mi+1. Then we also have can(Qi) �syn can(Pi) and

can(Pi) = Mi+1. Hence Mi �βc can(Qi) �syn Mi+1.
We conclude by induction on the length n of the reduction.

We can sum up all the results we have so far about the β-reduction modulo ≡.

Theorem 1.2.2.15. If M �β/≡ N then

can(M) �split P �βc Q�syn can(N).

Proof. IfM �β/≡ N thenM �split P (→β ∪ →+ ∪ →syn)∗ can(N). According to
the corollary 1.1.2.2 we have can(M) �split can(P ), and according to the previous
result we have can(P ) �βc Q�syn can(N).

Using this result we can prove the confluence of the reduction modulo ≡.

Corollary 1.2.2.16. �β/≡ is confluent.

Proof. Let us assume we have two reductions M �split Mi �βc Ni �syn Pi for
i ∈ {1; 2}, where all terms are canonical. We know that �split is confluent so there
is M ′ such that Mi �split M

′, or equivalently M ′ �I Mi, for i ∈ {1; 2}. But then
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M ′ �I Mi �βc Ni �syn Pi, hence M ′ (→β ∪ →+ ∪ →syn)∗ Pi, and we know there
is M ′

i canonical such that M ′ �βc M
′
i �syn Pi.

Now we have M ′ �βc M
′
i for i ∈ {1; 2} and we know that →βc is also confluent

so there is Q such that M ′
i �βc Q. But then we have both M ′

i �βc Q and
M ′

i �syn Pi so Pi �β/≡ Q.

M

M1 M2

N1 M ′ N2

P1 M ′
1 M ′

2 P2

Q

split split

βc βc

syn syn

I I

βc βc

syn syn

βc βc
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2 Standardization

A very useful property of the usual deterministic β-reduction is the standardiza-
tion: every β-reduction can be turned into a reduction where the redexes are
reduced from the left to the right. More precisely:

• the reduction

λx1...xn.(λy.M) P Q1 ... Qm →β λx1...xn.M
[
P/y

]
Q1 ... Qm �β N

is standard if the reduction λx1...xn.M
[
P/y

]
Q1 ... Qm �β N is standard;

• the reduction

λx1...xn.(λy.M) P1 P2 ... Pm �β λx1...xn.(λy.N) P1 P2 ... Pm

�β λx1...xn.(λy.N) Q1 P2 ... Pm

�β ...

�β λx1...xn.(λy.N) Q1 Q2 ... Qm

is standard if the reductions M �β N and Pi �β Qi for i ≤ m are standard;

• the reduction

λx1...xn.y P1 P2 ... Pm �β λx1...xn.y Q1 P2 ... Pm

�β ...

�β λx1...xn.y Q1 Q2 ... Qm

is standard if the reductions Pi �β Qi for i ≤ m are standard.

We can also characterize the existence of a standard reduction between terms
by:

• there is a standard reduction between λx1...xn.(λy.M) P Q1 ... Qm and N if
there is a standard reduction between λx1...xn.M

[
P/y

]
Q1 ... Qm and N ;

• there is a standard reduction between λx1...xn.(λy.M) P1 ... Pm and
λx1...xn.(λy.N) Q1 ... Qm if there are standard reductions between M and
N and between Pi and Qi for i ≤ m;
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• there is a standard reduction between λx1...xn.y P1 ... Pm and
λx1...xn.y Q1 ... Qm if there is a standard reduction between Pi and Qi for
all i ≤ m.

In the usual λ-calculus there is a standard reduction from M to N if and only if
there is a reduction M �β N .

Given the structure of canonical terms it seems fairly simple to extend the
notion of standard reduction to our calculus. However the fact that canonical
terms are not stable by β-reduction implies that we have a choice to make.

Consider the term (λx.(λy.y) (u +l v)) M . If there are reductions M →β M1
and M →β M2 (necessarily standard as they are of length 1), we have:

(λx.(λy.y) (u+l v)) M →β (λx.(u+l v)) M
�+ (λx.u) M +l (λx.v) M
→β (λx.u) M1 +l (λx.v) M
→β (λx.u) M1 +l (λx.v) M2.

Is this reduction standard? If we look at the shape of the reduction itself, it is
indeed from left to right and it seems natural to call it standard. But if we look at
the inductive characterization of the existence of a standard reduction we would
rather say that a standard reduction of (λx.(λy.y) (u +l v)) M which does not
reduce the head redex is given by a standard reductions for (λy.y) (u +l v) and
another for M , and this is not the case here.

So given a term λx1...xn.(λy.M) P1 ... Pm we must decide whether we allow
the canonicalization following the reduction of M to duplicate the Pi’s before we
reduce them, or if we must decide of all the reduction in parallel.

Before dealing with this matter let us make another remark: the standardiza-
tion fails in our calculus. Let us consider the following reduction:

(λx.(λy.y) (u+l v)) M →β (λx.(u+l v)) M
�+ (λx.u) M +l (λx.v) M
→β u+l (λx.v) M.

In a standard reduction the head redex (λx.(λy.y) (u +l v)) M is either reduced
first or it is never reduced. If we do reduce it we get

(λx.(λy.y) (u+l v)) M →β (λy.y) (u+l v)

and this term can not reduce to u +l (λx.v) M . If on the other hand we do not
reduce it then the only other choice is

(λx.(λy.y) (u+l v)) M →β (λx.(u+l v)) M

and we are not allowed to reduce the remaining redex.
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Still we immediately see that we have a reduction

(λx.(λy.y) (u+l v)) M →β (λy.y) (u+l v)→β u+l v

as well as
u+l (λx.v) M →β u+l v.

The standardization fails because the canonicalization can duplicate redexes and
we may reduce only some copies, not all of them. Then we can build a standard-
izable reduction by reducing the remaining copies of those redexes.

We will prove that every reduction can be completed into a standardizable one.
Now to get back to our other problem, we had to decide whether we allowed
(λx.(λy.y) (u +l v)) M to have a standard reduction to (λx.u) M1 +l (λx.v) M2.
But the reduction being confluent we know there is N such that M1 �β N and
M2 �β N . So we can extend this reduction by

(λx.u) M1 +l (λx.v) M2 �β (λx.u) N +l (λx.v) N

and we do have a standard reduction in the stronger sense from
(λx.(λy.y) (u+l v)) M to (λx.u) N +l (λx.v) N .

Since we can not standardize every reduction but we expect to be able extend
them into standardizable ones, and since every standard reduction in the weaker
sense can be extended into a standard one in the stronger sense, we do not lose
anything if we use the stronger definition of standardization.

Definition 2.0.2.1. We define the relation M �S N between canonical terms
saying that there is a standard relation from M to N by:

M1 �S N1 M2 �S N2
M1 +lM2 �S N1 +l N2

can
(
λx1...xn.v

[
P/y

]
Q1 ... Qm

)
�S N

λx1...xn.(λy.v) P Q1 ... Qm �S N

v �S N ∀i ≤ m,Pi �S Qi m > 0
λx1...xn.(λy.v) P1 ... Pm �S can (λx1...xn.(λy.N) Q1 ... Qm)

∀i ≤ m,Pi �S Qi

λx1...xn.y P1 ... Pm �S λx1...xn.y Q1 ... Qm

Proposition 2.0.2.1. If M �S N then M �βc N .

Proof. By a simple induction on �S.

Before dealing with the general case we will consider a restriction of the re-
duction →β ∪ →+ for which the standardization holds directly. We will then
show that every reduction can be extended into a standardizable one.
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2.1 Standardization results

When we defined our operational semantics we wanted be able to simulate the
usual probabilistic head reduction of probabilistic terms. We wanted to have for
every head context C that C[M +l N ] �+ C[M ] +l C[N ]. But we could adopt a
different point of view on the reduction of sums: the reason we need to reduce
them in the first place is that sums may prevent us from performing β-reduction.
For instance if we consider the term (λx.M +l N) P , we can not β-reduce it, but
we have the reduction

(λx.M +l N) P →+ (λx.M) P +l N P →β M
[
P/x

]
+l N P.

So the only necessary reduction rule is

(M +l N) P →+w M P +l N P.

While the reduction →+ corresponds to a head reduction strategy on sums, the
reduction→+w is closer to a weak head reduction strategy.

An interesting consequence to this restriction is that every weak reduction
(→β ∪ →+w)∗ is standardizable.

2.1.1 Weak reduction of sums

First we can see that restricting→+ to→+w does not really change the structure
of our calculus.

Proposition 2.1.1.1. →+w is confluent and strongly normalizing.

Proof. The strong normalization of →+ (proposition 1.1.1.2) immediately gives
the strong normalization of →+w , and the proof of proposition 1.1.1.1 giving the
weak confluence of →+ can be used to prove the weak confluence of →+w .

Definition 2.1.1.1. We call weak canonical form of a term M its unique normal
form canw(M) for→+w . We note→canw the corresponding canonicalizing reduction
M →canw canw(M).

Proposition 2.1.1.2. The weakly canonical terms are given by:

M,N := v |M +l N

v := x | λx.M | v M.

Proof. Every such term is weakly canonical, and we prove the converse following
the proof of proposition 1.1.1.5.

We can also define the weakly canonical parallel β-reduction following the
results of the section 1.2, using the labelled terms along with the reduction

(M +l N) P →+w M P +l N P
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extended to context.

Proposition 2.1.1.3. →β∗ ∪ →+w is confluent and strongly normalizing.

Proof. Again the strong normalization is given by the strong normalization of
→β∗ ∪ →+ from proposition 1.2.1.3, and the weak confluence is derived from the
proof of proposition 1.2.1.2.

Definition 2.1.1.2. Given a weakly canonical term M and a set F of β-redexes
in M we write M F−→βw

//
N if N is the unique normal form of MF for →β∗ ∪ →+w .

We write M −→βw
//
N whenever there exists F such that M F−→βw

//
N .

Proposition 2.1.1.4. −→βw
//

has the diamond property.

Proof. If M F1−→βw
//
N1 and M

F2−→βw
//
N2 then let P such that M F1∪F2−−−−→βw

//
P , we

have Ni −→βw
//
P for i ∈ {1; 2}.

Corollary 2.1.1.5. →β ∪ →+w is confluent.

Definition 2.1.1.3. The weakly canonical β-reduction→βw between weakly canon-
ical terms is →β · →canw .

Proposition 2.1.1.6. If M →β N then canw(M) �βw canw(N).

Proof. We proceed as for the proposition 1.2.1.8. We prove that if P F−→βw
//
Q

then canw(P ) �βw Q by induction on the bound on the length of the reductions
P (→β ∪ →+w)∗ Q.

Corollary 2.1.1.7. If M (→β ∪ →+w)∗ N then canw(M) �βw canw(N).

We can prove a standardization theorem by following the same idea as in the
deterministic case. The key result is that every reduction can be turned into head
reductions followed by internal reductions. This fails in general but is works
when we consider only the weak reduction of sums, as in this case head redexes
are never duplicated.

Definition 2.1.1.4. We define the head β-redexes and internal β-redexes of a
weakly canonical term as follows:

• a redex in M +l N is a head redex (resp. an internal redex) if it is a head
redex of M or a head redex of N (resp. an internal redex of M or an internal
redex of N);

• a redex in λx.M is a head redex (resp. an internal redex) if it is a head redex
of M (resp. an internal redex of M);

• the redex (λx.M) N is a head redex in (λx.M) N P1 ... Pm;

65



• a redex is internal in (λx.M) P1 ... Pm with m > 0 or in y P1 ... Pm if it is a
redex in M or a Pi for some i ≤ m.

Definition 2.1.1.5. 1. We write M →h N if M →β N by the reduction of a
head redex.

2. We write M →i N if M →β N by the reduction of an internal redex.
Proposition 2.1.1.8. 1. IfM is weakly canonical andM →h N then the resid-

uals of a head redex in M are head redexes in canw(N).

2. If M is weakly canonical and M →i N then the residuals of an internal redex
in M are internal redexes in canw(N).

Proof. By induction on M .
• If M = M1 +l M2 and M →h N (resp. M →i N) then N = N1 +l N2 and

canw(N) = canw(N1) +l canw(N2) with Mi →?
h Ni (resp. Mi →?

i Ni) for
i ∈ {1; 2} so the result is immediate by induction hypothesis.

• If M = λx.M0 and M →h N (resp. M →i N) then N = λx.N0 and
canw(N) = λx.canw(N0) with M0 →h N0 (resp. M0 →i N0) so the result is
immediate by induction hypothesis.

• If M = y P1 ... Pm then M has no head redex, and if M →i N then we have
canw(N) = y canw(Q1) ... canw(Qm) with Pi →?

β Qi for i ≤ m, hence every
redex in canw(N) is internal.

• If M = (λx.M0) P Q1 ... Qm and M →h N then N = M0
[
P/x

]
Q1 ... Qm

and the unique head redex (λx.M0) P has no residual in canw(N).

• If M = (λx.M0) P1 ... Pm and M →i N we have

canw(N) = (λx.canw(N0)) canw(Q1) ... canw(Qm)

with M0 →?
β N0 and Pi →?

β Qi for i ≤ m. Then it is easy to see that the
residuals of an internal redex of M are internal in canw(N).

As head and internal redexes are preserved respectively by head and internal
reductions we have that if M F−→βw

//
N and F is a set of head (resp. internal)

redexes then M (→h ∪ →+w)∗ N (resp. M (→i ∪ →+w)∗ N). Thus it makes
sense to define head and internal parallel reductions.

Definition 2.1.1.6. Given a parallel reduction M F−→βw
//
N we write M F−→hw

//
N if

F is a set of head redexes in M , and we write M F−→iw
//
N if F is a set of internal

redexes.
Again we write M −→hw

//
N (resp. M −→iw

//
N) if there is F such that M F−→hw

//
N

(resp. M F−→iw
//
N).
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Every reduction M �βw N between weakly canonical terms can be seen as
a parallel reduction M �βw

//
N . Then we want to prove that there is always a

reduction M �hw
//
·�iw

//
N .

Proposition 2.1.1.9. If M −→βw
//
N then M �hw

//
· −→iw

//
N .

Proof. Let F be such that M F−→βw
//
N . We reason by induction on the bound on

the length of the reduction of F .
If F is a set of internal redexes ofM then we already haveM −→iw

//
N . Otherwise

let F ′ ⊂ F be the (non empty) set of head redexes in F , we have M F ′−→hw
//
M ′ and

M ′ −→βw
//
N . Then by induction hypothesis M ′ �hw

//
· −→iw

//
N .

Proposition 2.1.1.10. If M −→iw
//
N then every head redex in N is the unique

residual of a head redex in M .

Proof. We reason by induction on M .

• If M is a sum or an abstraction then the result is immediate by induction
hypothesis.

• If M = y P1 ... Pm then N = y Q1 ... Qm with Pi −→βw
//
Qi for i ≤ m so N

has no head redex.

• If M = (λx.M0) P1 ... Pm then N = (λx.N0) Q1 ... Qm with M0 −→βw
//
N0 and

Pi −→βw
//
Qi for i ≤ m so the unique head redex of N is the residual of the

unique head redex of M .

Proposition 2.1.1.11. If M −→iw
//
· −→hw

//
N then M −→βw

//
N and M �hw

//
· −→iw

//
N .

Proof. If M F−→iw
//
P
G−→hw

//
N then every element of G is the unique residual of a

head redex in M , so there is a set G ′ of head redexes in M such that
MF∪G′(→β∗ ∪ →+w)∗PG, hence M F∪G′−−−→βc

//
N .

Proposition 2.1.1.12. If M −→iw
//
·�hw

//
N then M �hw

//
· −→iw

//
N .

Proof. By induction on the number of head reductions. If there is none the result is
immediate. Otherwise M −→iw

//
· −→hw

//
· −→n

hw
//
N so according to the previous result

M �hw
//
· −→iw

//
· −→n

hw
//
N , and by induction hypothesis M �hw

//
·�hw

//
· −→iw

//
N .

Proposition 2.1.1.13. If M (−→hw
//
∪ −→iw

//
)∗ N with n internal reduction steps

then M �hw
//
· −→n

iw
//
N .
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Proof. By induction on n. If n = 0 the result is immediate. Otherwise

M (−→hw
//
∪ −→iw

//
)∗ · −→iw

//
·�hw

//
N

with n+ 1 internal reductions so according to the previous result

M (−→hw
//
∪ −→iw

//
)∗ ·�hw

//
· −→iw

//
N

and by induction hypothesis M �hw
//
· −→n

iw
//
· −→iw

//
N .

2.1.2 Strong and weak standardization theorems

As we claimed before the β-reduction with weak reduction of sums enjoys a
standardization property. Let us first adapt the definition of the relation �S to
the weak case.

Definition 2.1.2.1. We define the relation M �Sw N between weakly canonical
terms by:

M1 �Sw N1 M2 �Sw N2
M1 +lM2 �Sw N1 +l N2

M �Sw N
λx.M �Sw λx.N

canw
(
M
[
P/y

]
Q1 ... Qm

)
�Sw N

(λy.M) P Q1 ... Qm �Sw N

M �Sw N ∀i ≤ m,Pi �Sw Qi m > 0
(λy.M) P1 ... Pm �Sw canw ((λy.N) Q1 ... Qm)

∀i ≤ m,Pi �Sw Qi

y P1 ... Pm �Sw y Q1 ... Qm

Proposition 2.1.2.1. If M �Sw N then M �βw N .

Proof. By induction on �Sw .

Now let us prove the standardization theorem.

Proposition 2.1.2.2. If M �hw
//
·�Sw N then M �Sw N .

Proof. By induction on the number of head reductions. If there is none the result
is immediate. Otherwise M −→hw

//
· �hw

//
· �Sw N and by induction hypothesis

M −→hw
//
·�Sw N . We reason by induction onM . Remark that ifM ∅−→hw

//
·�Sw N

then M �Sw N .

• If M = M1 +l M2 then N = N1 +l N2 with Mi −→hw
//
· �Sw Ni for i ∈ {1; 2}

so we conclude by induction hypothesis.
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• If M = λx.M0 then N = λx.N0 with M0 −→hw
//
· �Sw N0 so we conclude by

induction hypothesis.

• If M = y P1 ... Pm then M has no head redex.

• If M = (λx.M0) P Q1 ... Qm then either M ∅−→hw
//
· �Sw N and we have

M �Sw N , or we have canw
(
M0

[
P/x

]
Q1 ... Qm

)
�Sw N . In the second

case we have by definition of �Sw that M �Sw N .

Theorem 2.1.2.3. Given two weakly canonical terms M and N , if there is a
reduction M (→β ∪ →+w)∗ N then M �Sw N .

Proof. If M (→β ∪ →+w)∗ N then M �βw N , so M �βw
//
N . We reason by

induction on N .
The propositions 2.1.1.9 and 2.1.1.13 give that M �hw

//
M ′ �iw

//
N , and the

previous result gives that if M ′ �Sw N then M �Sw N . So we need to prove that
if M �iw

//
N then M �Sw N .

• If N = N1 +l N2 then M = M1 +l M2 with Mi �iw
//
Ni for i ∈ {1; 2} so we

conclude by induction hypothesis.

• If N = λx.N0 thenM = λx.M0 withM0 �iw
//
N0 so we conclude by induction

hypothesis.

• If N = y Q1 ... Qm then M = y P1 ... Pm with Pi �βc
//
Qi for i ≤ m so by

induction hypothesis Pi �Sw Qi.

• If N = (λx.Q0) Q1 ... Qm then M = (λx.P0) P1 ... Pm with Pi �βc
//
Qi for

i ≤ m so by induction hypothesis Pi �Sw Qi.

From this result we can derive a standardization theorem for the full reduction
→β ∪ →+. We will proceed in two steps. First we need to turn any reduction
into a weak one, and secondly we will need to derive a standard reduction �S

from a weakly standard one �Sw.

Definition 2.1.2.2. We define →+λ by

λx.(M +l N)→+λ λx.M +l λx.N

extended to context.
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Proposition 2.1.2.4. If M is weakly canonical and M →+λ · →canw · −→β// N
then there is N ′ such that N −→β// N

′ and M −→β// ·�+ N ′.

M

N

N ′

+λ canw

β//

β//

β//

+

Proof. By induction on M as a weakly canonical form.

• If M = M1 +l M2 then N = N1 +l N2 with Mi(→+λ · →canw)?· −→β// Ni for
i ∈ {1; 2} so we conclude by induction hypothesis.

• If M = y P1 ... Pm then N = y Q1 ... Qm with Pi(→+λ · →canw)?· −→β// Qi for
i ≤ m so we conclude by induction hypothesis.

• If
M = (λy.M0) P1 ... Pm →+λ · →canw (λy.M ′

0) P ′1 ... P ′m
with M0(→+λ · →canw)?M ′

0 and Pi(→+λ · →canw)?P ′i for i ≤ m then either
N = (λy.N0) Q1 ... Qm or N = N0

[
Q1/y

]
Q2 ... Qm, with in both cases

M ′
0 −→β// N0 and P ′i −→β// Qi for i ≤ m. Then by induction hypothesis we

have a term N ′0 such that N0 −→β// N
′
0 and M0 −→β// · �+ N ′0, and terms Q′i

such that Qi −→β// Q
′
i and Pi −→β// · �+ Q′i for i ≤ m. We choose either

N ′ = (λy.N ′0) Q′1 ... Q′m or N ′ = N ′0
[
Q′1/y

]
Q′2 ... Q

′
m.

• If

M = (λy.(M1 +lM2)) P1 ... Pm →+λ (λy.M1 +l λy.M2) P1 ... Pm

→canw (λy.M1) P1...Pm +l (λy.M2) P1...Pm

then
– either N = (λy.N1) Q1

1 ... Q
1
m +l (λy.N2) Q2

1 ... Q
2
m

– or N = N1
[
Q1

1/y
]
Q1

2 ... Q
1
m +l (λy.N2) Q2

1 ... Q
2
m

– or N = (λy.N1) Q1
1 ... Q

1
m +l N2

[
Q2

1/y
]
Q2

2 ... Q
2
m

– or N = N1
[
Q1

1/y
]
Q1

2 ... Q
1
m +l N2

[
Q2

1/y
]
Q2

2 ... Q
2
m

with in each case Mi −→β// Ni for i ∈ {1; 2} and Pi −→β// Q
j
i for i ≤ m and

i ∈ {1; 2}. Then there are terms Q′i for i ≤ m such that Pi −→β// Q
′
i and

Qj
i −→β// Q

′
i for j ∈ {1; 2}. We choose
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– either N ′ = (λy.N1) Q′1 ... Q′m +l (λy.N2) Q′1 ... Q′m in the first case

– or N ′ = N1
[
Q′1/y

]
Q′2 ... Q

′
m +l N2

[
Q′1/y

]
Q′2 ... Q

′
m.

Proposition 2.1.2.5. If M is weakly canonical and M →can · −→βc
//
N then there

is N ′ such that N �βc
//
N ′ and M −→β// · →can N

′. This implies M −→βw
//
· →can N

′.

Proof. If M is weakly canonical then the reduction M →can can(M) can be de-
composed in the form M (→+λ · →canw)∗ can(M). We reason by induction on the
number of reductions →+λ · →canw . If there is none then M is canonical and the
result is immediate.
Otherwise if M →+λ · →canw P (→+λ · →canw)∗ can(M) −→βc

//
N then by induc-

tion hypothesis there is N ′ such that N �βc
//
N ′ and P −→β// Q→can N

′. According
to the previous result there is Q′ such that Q −→β// Q

′ and M −→β// · �+ Q′.
But then from Q −→β// Q

′ we can deduce can(Q) �βc
//

can(Q′), and we have
can(Q) = N ′. Thus we have N �βc

//
N ′ �βc

//
can(Q′) and M −→β// · →can can(Q′).

M P can(M)

N

Q N ′

Q′ can(Q′)

+λ · canw +λ · canw

βc//

βc//

β//

can
β//

β//

+

βc//

can

(IH)

(2.1.2.4)

Proposition 2.1.2.6. If M is weakly canonical and M →can · �βc
//
N then there

is N ′ such that N �βc
//
N ′ and M �βw

//
· →can N

′.

Proof. By induction on the length of the reduction �βc
//
. If M →can N the result

is immediate.
Otherwise can(M) −→βc

//
P −→n

βc
//
N and according to the previous result there are

M ′ and P ′ such that P �βc
//
P ′ and M −→βw

//
M ′ →can P

′. Then using the diamond
property of −→βc

//
there exists Q such that N �βc

//
Q and P ′ −→n

βc
//
Q. By induction

hypothesis on the reduction M ′ →can P
′ −→n

βc
//
Q there is N ′ such that Q �βc

//
N ′
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and M ′ �βw
//
· →can N

′.

M can(M) P N

M ′ P ′ Q

N ′

can βc// βc// n

βw
// βc//

can βc//

n

βc//

βw
// βc//

can

(IH)

(2.1.2.5)

Corollary 2.1.2.7. If M (→β ∪ →+)∗ N then there is a term N ′ such that
N (→β ∪ →+)∗ N ′ and M (→β ∪ →+w)∗ ·�+ N ′.

Proof. We have canw(M) →can can(M) �βc can(N) so according to the previous
result there is N ′ such that can(N) �βc N

′ and canw(M) �βw · →can N
′.

Corollary 2.1.2.8. If M (→β ∪ →+)∗ N then there is a term N ′ such that
N (→β ∪ →+)∗ N ′ and canw(M) �Sw ·�+ N ′.

The only difference between →β ∪ →+ and →β ∪ →+w is that allowing the
commutation of sums with abstractions make it possible to duplicate more β-
redexes with the reductions (λx.(M1 +p M2)) N �+ (λx.M1) N +p (λx.M2) N ,
and then to reduce only some of them. But in the end it does not change the
calculus much. We can even deduce from the previous proofs that if we have a
reduction M �βc

//
N of length n then there is N ′ such that N �βc

//
can(N ′) and

there is a reduction M �βw
//
N ′ of the same length n.

Now we can use this result to prove that every reduction →β ∪ →+ can be
extended into a standard one.

Proposition 2.1.2.9. The rules of �S can be extended to non canonical terms:

• if can(Mi) �S can(Ni) for i ∈ {1; 2} then

can(M1 +lM2) �S can(N1 +l N2);

• if can
(
λx1...xn.M

[
P/y

]
Q1 ... Qm

)
�S can(N) then

can(λx1...xn.(λy.M) P Q1 ... Qm) �S can(N);

• if can(M) �S can(N) and can(Pi) �S can(Qi) for i ≤ m then

can(λx1...xn.(λy.M) P1 ... Pm) �S can (λx1...xn.(λy.N) Q1 ... Qm) ;
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• if can(Pi) �S can(Qi) for i ≤ m then

can(λx1...xn.y P1 ... Pm) �S can(λx1...xn.y Q1 ... Qm).

Proof. The first and last case are immediate. We have

can(M1 +lM2) = can(M1) +l can(M2)
�S can(N1) +l can(N2)
= can(N1 +l N2)

can(λx1...xn.y R1 ... Rm) = λx1...xn.y can(R1) ... can(Rm)
�S λx1...xn.y can(Q1) ... can(Qm)
= can(λx1...xn.y Q1 ... Qm).

In the second case observe that we have

can
(
λx1...xn.M

[
P/y

]
Q1 ... Qm

)
= can

(
λx1...xn.can(M)

[
can(P )/y

]
can(Q1) ... can(Qm)

)
can(λx1...xn.(λy.M) P Q1 ... Qm)

= can(λx1...xn.(λy.can(M)) can(P ) can(Q1) ... can(Qm))

so we can assume w.l.o.g. that M , P , Qi for i ≤ m and N are canonical. Then we
reason by induction on M :

• if M = v is a value then

can(λx1...xn.(λy.v) P Q1 ... Qm) = λx1...xn.(λy.v) P Q1 ... Qm

and the result is exactly a rule of �S;

• if M = M1 +lM2 then

can(λx1...xn.(λy.M) P Q1 ... Qm)
= can(λx1...xn.(λy.M1) P Q1...Qm) +l can(λx1...xn.(λy.M2) P Q1...Qm)

can
(
λx1...xn.M

[
P/y

]
Q1 ... Qm

)
= can

(
λx1...xn.M1

[
P/y

]
Q1...Qm

)
+l can

(
λx1...xn.M2

[
P/y

]
Q1...Qm

)
and necessarily N = N1 +l N2 with

can
(
λx1...xn.Mi

[
P/y

]
Q1 ... Qm

)
�S Ni

for i ∈ {1; 2} so by induction hypothesis

can(λx1...xn.(λy.M1) P Q1 ... Qm) �S Ni.
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The third case is similar. Again we can assume that M , N and Pi and Qi for
i ≤ m are canonical, and we weason by induction on M . If M is a value then
we have exactly a rule of �S, and if M = M1 +l M2 then N = N1 +l N2 with
Mi �S Ni for i ∈ {1; 2} and the result follows by induction hypothesis.

Proposition 2.1.2.10. If M is weakly canonical and M �Sw N then can(M) �S

can(N).

Proof. By induction on �Sw .

• If λx.M �Sw λx.N with M �Sw N then by induction hypothesis we have
can(M) �S can(N). We prove the result by induction on this reduction:
– if

can(M) = M1 +lM2 �S N1 +l N2 = can(N)

then can(λx.M) = can(λx.M1) +l can(λx.M2) and by induction hy-
pothesis we have can(λx.Mi) �S can(λx.Ni) for i ∈ {1; 2}, hence
can(λx.M) �S can(λx.N);

– if
can(M) = λx1...xn.(λy.v) P Q1 ... Qm �S can(N)

with can
(
λx1...xn.v

[
P/y

]
Q1 ... Qm

)
�S can(N) then by induction

hypothesis can
(
λx.λx1...xn.v

[
P/y

]
Q1 ... Qm

)
�S can(λx.N), hence

can(λx.M) = λx.λx1...xn.(λy.v) P Q1 ... Qm �S can(λx.N);

– if

can(M) = λx1...xn.(λy.v) P1 ... Pm �S can (λx1...xn.(λy.N0) Q1 ... Qm)

with v �S N0 and Pi �S Qi for i ≤ m then

can(λx.M) = λx.λx1...xn.(λy.v) P1 ... Pm

�S can (λx.λx1...xn.(λy.N0) Q1 ... Qm) = can(λx.N);

– if

can(M) = λx1...xn.y P1 ... Pm �S λx1...xn.y Q1 ... Qm = can(N)

with Pi �S Qi for i ≤ m then

can(λx.M) = λx.λx1...xn.y P1 ... Pm

�S λx.λx1...xn.y Q1 ... Qm = can(λx.N).

The other cases are consequences of the previous result.
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• If
M1 +lM2 �Sw N1 +l N2

with Mi �Sw Ni for i ∈ {1; 2} then by induction hypothesis we have
can(Mi) �S can(Ni) for i ∈ {1; 2} so

can(M1 +lM2) �S can(N1 +l N2).

• If
(λy.M) P Q1 ... Qm �Sw N

with canw
(
M
[
P/y

]
Q1 ... Qm

)
�Sw N then by induction hypothesis

can
(
M
[
P/y

]
Q1 ... Qm

)
�S can(N) so

can((λy.M) P Q1 ... Qm) �S can(N).

• If
(λy.M) P1 ... Pm �Sw (λy.N) Q1 ... Qm

with M �Sw N and Pi �Sw Qi for i ≤ m then by induction hypothesis
can(M) �S can(N) and can(Pi) �S can(Qi) for i ≤ m so

can((λy.M) P1 ... Pm) �S can((λy.N) Q1 ... Qm).

• If
y P1 ... Pm �Sw y Q1 ... Qm

with Pi �Sw Qi for i ≤ m then by induction hypothesis can(Pi) �S can(Qi)
for i ≤ m so

can(y P1 ... Pm) �S can(y S1 ... Sm).

Every reduction→β ∪ →+ can be extended into a weak reduction, every weak
reduction is weakly standardizable and every weak standard reduction lifts to a
standard one, so we have our general standardization theorem.

Theorem 2.1.2.11. If M �β/=+
N then there is N ′ such that N �β/=+

N ′ and
can(M) �S N

′.

Proof. If M �β/=+
N then can(M) �βc can(N), hence there is N ′ such that

can(N) (→β ∪ →+)∗ N ′ and can(M) �Sw N ′, which gives can(M) �S can(N ′).

Corollary 2.1.2.12. If M �β/=+
N where N is a canonical β-normal form then

can(M) �S N .
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2.2 Simpli�cation of the reductions

The standardization is a very useful result to study the reduction. In our case
it comes with this requirement to extend the reduction. This is not much of a
problem, as we are mostly interested in reductions which end on some sort of
normal form.

But it has its drawbacks. For instance if we have M �β/=+
P �β/=+

N then
we can find P ′ such that P �β/=+

P ′ and M �S P ′ �β/=+
N ; then we can

also find P ′′ such that P ′ �β/=+
P ′′ and N �S P

′′, but there is not guarantee
that we still have M �S P ′′. We actually do not know if we necessarily have
M �S ·�S N or not.

Still this idea of extending a reduction to simplify it is quite convenient, and
yields some interesting results.

2.2.1 Non splitting reductions

The first simplification we want to deal with is the case of the splitting of terms:

M →split M +lM if l ∈ I.

The opposite reduction M +l M →I M is natural and necessary if we want
to have the right semantics for our calculus. And if we want to look at this
calculus from an equational point of view then we also have the splitting. Yet
this splitting is not natural at all from a computational point of view. We even
proved that every reduction modulo ≡syn can be turned into a reduction �β/=+
if we consider the result modulo≡syn, with the exception that we have to perform
the splitting first: we have �β/≡=�split ·�β/=+

· ≡syn.
This annoying behaviour of the splitting can be fixed if we allow the exten-

sion of the reduction: every reduction can be extended into a reduction without
splitting.

Proposition 2.2.1.1. If M �split ·�S N then there is N ′ such that N �β/≡ N ′

and M �S N
′.

Proof. Let M �split P �S N with P canonical by definition of �S. We reason
by induction on �S, using the inductive characterization of �I given by 1.2.2.1.
If P = P1 +l P2 �S N1 +l N2 = N with Pi �S Ni for i ∈ {1; 2}, there are two

cases for the reduction M �split P .

• If M �split Pi for i ∈ {1; 2} then by induction hypothesis there are N ′1 and
N ′2 such that Ni �β/≡ N ′i and M �S N

′
i for i ∈ {1; 2}. But then we also

have M �β/=+
N ′i for i ∈ {1; 2}, so by confluence of �β/=+

there is Q such
that N ′i �β/=+

Q for i ∈ {1; 2}, and there is Q′ such that Q�β/=+
Q′ and

M �S Q
′. We conclude by observing that N �β/=+

Q′ +l Q
′ →I Q′.
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• If M = M1 +l M2 �split P1 +l P2 with Mi �split Pi for i ∈ {1; 2} then by
induction hypothesis we have terms N ′i such that Ni �β/≡ N ′i andMi �S N

′
i

for i ∈ {1; 2}.

Otherwise P is a value and M has the same shape as P .

• If P = λx1...xn.y R1 ... Rm �S λx1...xn.y S1 ... Sm = N with Ri �S Si for
i ≤ m then M = λx1...xn.y Q1 ... Qm with Qi �split Ri for i ≤ m so the
result is immediate by induction hypothesis.

• If P = λx1...xn.(λy.R0) R1 ... Rm �S λx1...xn.(λy.S0) S1 ... Sm = N with
Ri �S Si for i ≤ m then M = λx1...xn.(λy.Q0) Q1 ... Qm with Qi �split Ri

for i ≤ m, and we conclude by induction hypothesis.

• If P = λx1...xn.(λy.R0) R1 ... Rm with λx1...xn.R0
[
R1/y

]
R2 ... Rm �S N

then M = λx1...xn.(λy.Q0) Q1 ... Qm with Qi �split Ri for i ≤ m. We
have λx1...xn.Q0

[
Q1/y

]
Q2 ... Qm �split λx1...xn.R0

[
R1/y

]
R2 ... Rm so by

induction hypothesis there is N ′ such that N �β/≡ N ′ and

λx1...xn.Q0
[
Q1/y

]
Q2 ... Qm �S N

′

thus M �S N
′.

Remark that we extend the reduction for two reasons: to standardize and to
use the confluence. This means that even with a strong standardization theorem
such as for the weak reduction of sums, we do not have �split ·�Sw=�Sw.

Theorem 2.2.1.2. If M �β/≡ N then there is N ′ such that N �β/≡ N ′ and
M �S N

′.

Proof. We know that if M �β/≡ N then can(M) �split P �β/=+
Q ≡syn can(N)

with P and Q canonical. Then there is Q′ such that Q �β/=+
Q′ and P �S Q

′,
and according to the previous result there is a term N ′ such that Q′ �β/≡ N ′

and M �S N
′. Besides we can observe that can(N) ≡syn Q �β/≡ N ′ so we have

N �β/≡ N ′.

Corollary 2.2.1.3. If M �β/≡ N and N is a canonical β-normal form then
M �S · ≡syn N .

Proof. If N is canonical and β-normal and N �β/≡ N ′ with N ′ canonical then
N ≡syn N

′.
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2.2.2 Complete reductions

Another question we discussed in the introduction of the first chapter is that of
a complete head reduction. A natural definition of a canonical head reduction
would be the following.

Definition 2.2.2.1. The canonical head reduction →hc is defined between canon-
ical terms by:

M1 →hc N1
M1 +lM2 →hc N1 +lM2

M2 →hc N2
M1 +lM2 →hc M1 +l N2

λx1...xn.(λy.M) P Q1 ... Qm →hc can
(
λx1...xn.M

[
P/y

]
Q1 ... Qm

)
Unlike in the deterministic case, a term with sums may have several head

redexes. We may have many different head reduction paths which do not neces-
sarily yield the same result. This is quite a loss compared to the usual case, but
we can recover a more satisfying notion of head reduction if we always reduce
every head redex in parallel.

Definition 2.2.2.2. The complete head reduction→H is defined between canonical
terms by:

M1 →H N1 M2 →H N2
M1 +lM2 →H N1 +l N2 λx1...xn.y P1 ... Pm →H λx1...xn.y P1 ... Pm

λx1...xn.(λy.M) P Q1 ... Qm →H can
(
λx1...xn.M

[
P/y

]
Q1 ... Qm

)
This reduction has many interesting properties. To begin with we recover the

uniqueness of the reduction, and every head reduction can be completed.

Proposition 2.2.2.1. For any canonical term M there is a unique term, which
we note H(M), such that M →H H(M).

Proof. By induction on M .

• IfM = M1 +lM2 thenM →H N if and only if N = N1 +lN2 withMi →H Ni

for i ∈ {1; 2}, and by induction hypothesis such terms exist and are unique.

• If M is a value then we have either M = λx1...xn.y P1 ... Pm or
M = λx1...xn.(λy.M0) P Q1 ... Qm and there is a unique reduction from M .

Proposition 2.2.2.2. If M �H N then M �hc N .

Proof. We prove that if M →H N then M �hc N , and the result will follow by
induction on the length of the reduction. We reason by induction on →H .
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• If M = M1 +l M2 →H N1 +l N2 = N with Mi →H Ni for all i ∈ {1; 2} then
by induction hypothesis Mi �hc Ni for i ∈ {1; 2}, hence
M1 +lM2 �hc N1 +lM2 �hc N1 +l N2.

• If M = λx1...xn.y P1 ... Pm →H λx1...xn.y P1 ... Pm = N then M = N and
M �hc N .

• IfM = λx1...xn.(λy.M0) P Q1 ... Qm →H can
(
λx1...xn.M0

[
P/y

]
Q1 ... Qm

)
then M →hc N .

Proposition 2.2.2.3. If M �hc N then there is N ′ such that N �hc N
′ and

M �H N ′.

Proof. First we prove that if M →hc N then N �hc H(M) by induction on the
reduction →hc .

• If M = M1 +l M2 →hc N1 +l M2 = N with M1 →hc N1 then by induction
hypothesis N1 �hc H(M1), and N1 +lM2 �hc H(M1) +l H(M2) = H(M).

• If M = M1 +lM2 →hc M1 +l N2 = N with M2 →hc N2 the case is similar.

• IfM = λx1...xn.(λy.M0) P Q1 ... Qm →hc can
(
λx1...xn.M0

[
P/y

]
Q1 ... Qm

)
then N = H(M).

Next we have that →hc enjoys the diamond property: if we have two different
reductions M →hc N1 and M →hc N2 then there is P such that Ni →hc P for
i ∈ {1; 2}. This is very simple to prove by induction on M .
Finally we can conclude by induction on the length of the reduction M �hc N .

If M = N the result is immediate. Otherwise we have M →n
hc P →hc N so by

induction hypothesis there is P ′ such that P �hc P
′ and M �H P ′, and using

the diamond property of →hc there is Q such that P ′ →?
hc Q and N �hc Q. Then

Q�hc H(P ′), so N �hc H(P ′) and M �H H(P ′).

Corollary 2.2.2.4. If M �hc N and N is a head normal form then M �H N .

Another interesting aspect of the complete head reduction is that it commutes
with the canonical reduction and the syntactic equivalence.

Proposition 2.2.2.5. If M →βc N then H(M) �βc H(N).

Proof. By induction on M .

• If M = M1 +l M2 then N = N1 +l N2 with Mi →?
βc Ni for i ∈ {1; 2} so by

induction hypothesis H(Mi) �βc H(Ni), hence H(M) �βc H(N).

• If M = λx1...xn.y P1 ... Pm then N = λx1...xn.y Q1 ... Qm with Pi →?
βc Qi

for i ≤ m so H(M) = M and H(N) = N .
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• If M = λx1...xn.(λy.M0) P Q1 ... Qm we note ∆ the redex of the reduction
M →βc N . If ∆ is the head redex of M then N = H(M) and we obvi-
ously have N �βc H(N). Otherwise we have M {(λy.M0) P ;∆}−−−−−−−−−→βc

//
H(N) and

M (→β ∪ →+)∗ H(M) (→β ∪ →+)∗ H(N).

Proposition 2.2.2.6. If M and N are canonical terms and M ≡syn N then
H(M) ≡syn H(N).

Proof. M , N , H(M) and H(N) are canonical terms so we can use the relation ≡csyn
defined in the section 1.1.2.
We reason by induction on ≡csyn.

• if M ≡csyn P and P ≡csyn N then by induction hypothesis H(M) ≡csyn H(P )
and H(P ) ≡csyn H(N), so H(M) ≡csyn H(N);

• if M ≡csyn N implies N ≡csyn M then by induction hypothesis we have
H(M) ≡csyn H(N) so H(N) ≡csyn H(M).

• H(M +l N) = H(M) +l H(N) ≡csyn H(N) +γ(l) H(M) = H(N +γ(l) M);

•

H((M +l N) +l′ P ) = (H(M) +l H(N)) +l′ H(P )
≡csyn H(M) +α1(l,l′) (H(N) +α2(l,l′) H(P ))
= H(M +α1(l,l′) (N +α2(l,l′) P ));

• H(M +lM) = H(M) +l H(M) ≡csyn H(M) if l ∈ I ⊂ L;

• H(M +lN) = H(M) +l H(N) ≡csyn H(M) +l H(P ) = H(M +l P ) if l ∈ Z ⊂ L.

The remaining cases are those of the contextual rules and they are given by in-
duction hypothesis.

These properties, and in particular the commutation of the complete head
reduction with the syntactic equivalence, make this a very convenient reduction.
But once again this is a completion of the basic head reduction, thus it does
not work well to compare terms. We gave earlier an example with the term
δ (λx.δx) such that δ (λx.δx) →H (λx.δ x) (λx.δ x) →H δ (λx.δx): the terms
δ (λx.δx)+l(λx.δ x) (λx.δx) and δ (λx.δx)+lδ (λx.δx) head reduce into a common
term but their complete head reductions never meet.

We can define another interesting reduction which extends the complete head
reduction by reducing inductively inside the head normal forms.
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Definition 2.2.2.3. The complete left reduction →L is defined between canonical
terms by:

M1 →L N1 M2 →L N2
M1 +lM2 →L N1 +l N2

∀i ≤ m,Pi →L Qi

λx1...xn.y P1 ... Pm →L λx1...xn.y Q1 ... Qm

λx1...xn.(λy.M) P Q1 ... Qm →L can
(
λx1...xn.M

[
P/y

]
Q1 ... Qm

)
This reduction enjoys properties similar to those of the complete head reduc-

tion.

Proposition 2.2.2.7. For any canonical term M there is a unique term, which
we note L(M), such that M →L L(M).

Proof. By induction on M .

• If M = M1 +lM2 then M →L N if and only if N = N1 +lN2 with Mi →L Ni

for i ∈ {1; 2}, and by induction hypothesis such terms exist and are unique.

• IfM = λx1...xn.y P1...Pm thenM →L N if and only ifN = λx1...xn.y Q1...Qm

with Pi →L Qi for i ≤ m, and by induction hypothesis such terms exist and
are unique.

• If M = λx1...xn.(λy.M) P Q1 ... Qm then M has a unique reduction.

Proposition 2.2.2.8. If M →βc N then L(M) �βc L(N).

Proof. By induction on M . If M is a sum or M = λx1...xn.y P1 ... Pm the result
is immediate by induction hypothesis. If M = λx1...xn.(λy.M0) P Q1 ... Qm

then L(M) = H(M), and we always have H(N) �βc L(N) so we can use the
corresponding result on →H .

Proposition 2.2.2.9. If M ≡syn N then L(M) ≡syn L(N).

Proof. Once again this is proved in the same way as the corresponding result for
→H .

The complete head reduction returns the head normal form of a term: ifM has
a head normal form N then Hn(M) = N for all n ∈ N big enough. The complete
left reduction, on the other hand, can be used to reach any normal form.

Proposition 2.2.2.10. If M �βc N and N is a canonical β-normal form then
M �L N .

Proof. This is a simple consequence of the standardization result. We know that
M �S N so we reason by induction on this relation.
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• If M = M1 +l M2 �S N1 +l N2 = N with Mi �S Ni for i ∈ {1; 2} then by
induction hypothesis we haveMi →ni

L Ni for i ∈ {1; 2}, and as N is β-normal
we have L(Ni) = Ni for i ∈ {1; 2}. Hence M1 +lM2 →max(n1,n2)

L N1 +l N2.

• If M = λx1...xn.(λy.v) P Q1 ... Qm �S N with
can

(
λx1...xn.v

[
P/y

]
Q1 ... Qm

)
�S N , i.e. L(M) �S N , we have by in-

duction hypothesis that L(M) �L N so M �L N .

• If M = λx1...xn.y P1 ... Pm �S λx1...xn.y Q1 ... Qm = N with Pi �S Qi for
i ≤ m then by induction hypothesis Pi →ni

L Qi for i ≤ m so M →maxi ni
L N .

• The case M = λx1...xn.(λy.v) P1 ... Pm �S can (λx1...xn.(λy.N0) Q1 ... Qm)
with m > 0 is impossible as N is β-normal.

This result can actually be extended to a more general notion of normal forms,
namely the Böhm trees. We will later define probabilistic Böhm trees and show
that the tree of a term M is an upper bound in some sense of the terms Ln(M).
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3 Probabilistic equational theories

The intended purpose of our operational semantics was to get a contextual re-
duction without side effect, in order to easily define a notion of equational theory.
This is something we can now do.

Definition 3.0.2.1. An equational theory is a congruence =T on terms such that

(λx.M) N =T M
[
N/x

]
λx.(M +l N) =T λx.M +l λx.N
(M +l N) P =T M P +l N P

M +l N =T N +γ(l) M
(M +l N) +l′ P =T M +α1(l,l′) (N +α2(l,l′) P )

M +lM =T M if l ∈ I
M +l N =T M +l P if l ∈ Z.

The least theory induced by these rules is noted =β+.

Proposition 3.0.2.1. Given two canonical terms M and N we have M =β+ N if
and only if

M �S · ≡syn ·�βc ·�split N.

Proof. The confluence of →β/≡ gives that M =β+ N if and only if M and N
reduces into the same term P . Then we know there is P ′ such that P �β/≡ P ′

and M �S P , which gives N �β/≡ P ′ hence N �split ·�βc · ≡syn P
′.

In the deterministic λ-calculus the two theories defined by the observational
equivalence and the infinitely extensional Böhm tree equality corresponds, and
this is also the supremum of all sensible consistent theories. We want to prove
a similar result in our non-deterministic case. To begin with we can define the
consistency of a theory, as well as an other interesting property, namely the ex-
tensionality.

Definition 3.0.2.2. A theory =T is consistent if there are terms M and N such
that

M 6=T N.

Definition 3.0.2.3. A theory is extensional if for all term M and all variable
x /∈ FV(M) we have

λx.M x =T M.
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Another crucial notion is the sensibility of a theory. A deterministic theory is
said to be sensible if the unsolvable terms, i.e. the terms which do not normalize
for the head reduction, are all equal. This is a quite simple and straightforward
notion. In a non deterministic setting it becomes more complex, as the head
reduction of a term is not unique. We gave a notion of complete head reduction
to solve this problem, but even so the problem is that such a reduction may
require an infinite number of steps to describe the behaviour of a term. Consider
for instance the terms

Nk = Θ (λf.λn.(n+l f (succ n))) k

where k ∈ N, k is the corresponding Church integer, succ is an encoding of the
successor and Θ is a fixed-point operator such that for allM , ΘM �hc M (ΘM).
Then we have

Nk �hc k +l Nk+1

and for all k

N0 �hc

+l

0 +l

1 +l

2 +l

k Nk+1

The intuition is that N0 reduces to the sum of all the Church integers and has
one non terminating branch, and in a sensible theory it should be equal to every
other such term. For instance if we define N′k in the same way as Nk but by
changing the implementation of the successor or the fixed-point operator, we
should have N0 =T N′0 in every sensible theory =T .

But how do we formalize this intuition? In some cases this seems simple: if
you consider for instance the probabilistic λ-calculus and l = p then this infinite
reduction occurs with probability

∏∞
k=0(1 − p) = 0 if p > 0, whereas we have

Nk �βc k +0 Nk+1 ≡syn Nk+1 if p = 0 so N0 is unsolvable.
In other cases this is more complicated. If we consider the simple non deter-

ministic calculus (with L = {∗}) then to prove that N0 =T N′0 we would like to
prove that N1 =T N′1, but we can not claim that N1 is "less important" than N0
as we could in the probabilistic case. The problem is even clearer if we consider
the term N = Θ (λf.0 + f). Then N �βc 0 + N, and to prove that if N′ �βc 0 + N′
then N =T N′ we would precisely want to prove that N =T N′.

There are several ways to solve this problem. One way is to consider a strong
sensibility based on the must convergence: a term is unsolvable if it has an
infinite head reduction, regardless of whether some of its branches can reach a
head normal form or not. In this setting solvable terms are always finite sums
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of value head normal forms, and we have powerful tools to obtain the result we
seek. But this would require some computation on the labels, and we did not
study what properties γ, α1, α2, Z and I should have. In the probabilistic case
we are confident we can get the expected result: although we will not prove it,
the techniques we will use should be easy to adapt to this notion of sensibility.

Another way is to make explicitly reference to the semantics of the terms. For
instance in the simple case where terms describe sets of values we can say that
a theory =T is sensible if two terms are equal whenever they describe the same
set when restricted to head normal values modulo =T . This corresponds to the
intended meaning of the sensibility, but it is not a convenient definition when
we study terms from a syntactical point of view.

What we will do will be to restrict our study to the probabilistic λ-calculus,
where we have a natural notion of measure which we can use to approximate
the infinite behaviours by finite ones. The infinite behaviours are actually always
defined as limits of finite ones: for instance in the simple non deterministic
calculus we can associate to a term an infinite set of head normal values, which
we define as a union of finite sets. But we have no way to quantify how close
we are to the result. In the probabilistic case, on the other hand, we associate to
a term a subprobability distribution defined as the limit of finite ones, and here
we can say that for all ε > 0, the infinite distribution is approximated up to ε by
a finite one.

In the rest of this thesis we will now only consider the probabilistic calcu-
lus. We will not consider probabilistic choice with any probability but only with
computable ones. The set Λ+ of terms is:

M,N ∈ Λ+ := x | λx.M |M N |M +p N, p ∈ [0; 1] computable.

This restriction to computable probabilities is natural if we want to relate our
probabilistic λ-calculus to actual programmation languages, but in this purely
theoretical setting it is less welcome. The only reason we do not consider arbi-
trary probabilities is to be able to prove the proposition 3.2.2.5, which will justify
our definition of sensibility.

We have the following notion of theory.

Definition 3.0.2.4. A probabilistic λ-theory is a congruence =T on probabilistic
terms such that

(λx.M) N =T M
[
N/x

]
λx.(M +p N) =T λx.M +p λx.N
(M +p N) P =T M P +p N P

M +p N =T N +1−pM
(M +p N) +q P =T M +pq (N + (1−p)q

1−pq
P ) if pq 6= 1

M +pM =T M
M +1 N =T M +1 P .
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The least theory induced by these rules is noted =β+.

Remark that the rule (M +1 N) +1 P =T M +1 (N + 1
2
P ) we gave in the first

chapter can be recovered from the other equivalences, and its purpose was only
to define total functions α1 and α2.
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3.1 Probabilistic behaviour and probabilistic observation

3.1.1 Probability measures

The specificity of the probabilistic calculus is that we can associate a probability
measure to some events. We consider that an event is given by a set of terms,
and we are interested in the probability that such an event occurs if we start with
a given term which behaves according to a given relation.

Definition 3.1.1.1. Given a set of termsM⊂ Λ+ we define the following sets:

• M+ is the set of terms which respectM, and is defined as the closure ofM
by probabilistic sum:

M⊂M+ and if M,N ∈M+ then M +p N ∈M+

• Mp for p ∈ [0; 1] is the set of terms which respect M with probability at
least p:

Mp = {M | ∃N ∈M+,∃P ∈ Λ+ : M ≡ N +p P}

Remark that the splitting of terms is quite convenient here, as it gives the
following property:

Proposition 3.1.1.1. If p ≤ q then for allM we haveMq ⊂Mp.

Proof. If M ≡ N +q P with N ∈M+, we have

N +q P ≡ (N + p
q
N) +q P ≡ N +p (N + q−p

1−p
P ).

Now we can define the probability of occurrence of an event.

Definition 3.1.1.2. Given a termM ∈ Λ+ and a relation R ⊂ Λ+×Λ+, we define
the probability ofM⊂ Λ+ by

P(M RM) = sup{p ∈ [0; 1] | ∃N ∈Mp : can(M) R N}.

Remark that this is a generic definition, and for fixed M and R we may not
directly have a probabilistic measure over Λ+. If for instance R is the equality,
we said that a term M modulo ≡ can be seen as a finite probability distribution
over values M ≡ ∑i pi.vi, and for any setM of values modulo ≡vsyn we have
P(M = M) = ∑

i s.t. vi∈M pi, so we get a probability distribution over classes of
values. If on the other hand R =�hc we get a subprobability distribution over
head normal values, but not over the whole set Λ+.

We will actually only use this definition with sets of head normal values, but
when proving some properties of this construction we will try to give the most
general results.
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First an important property is that under some conditions these probabilities
commute with the sums.

Proposition 3.1.1.2. If R andM are such that

• if M RM ′ and N R N ′ then M +p N RM ′ +p N
′;

• if M +p N R P then P = M ′ +p N
′ with M RM ′ and N R N ′;

• M contains only values

then
P(M +p N RM) = p.P(M RM) + (1− p).P(N RM).

Proof. We assume w.l.o.g. that M and N are canonical.
If M contains only values then we can view any term M as a probability dis-

tribution over values M ≡ ∑i pi.vi +∑
j p
′
j.wj where vi ∈M for all i and wj /∈M

for all j. Then M ∈ Mq if and only if q ≤ ∑
i pi, and P(M =M) = ∑

i pi. From
there we get that

P(M +p N =M) = p.P(M =M) + (1− p).P(N =M).

We can also remark that for any term M :

P(M RM) = sup{p | ∃M ′ ∈Mp : M RM ′}
= sup{sup{p |M ′ ∈Mp} |M RM ′}
= sup{P(M ′ =M) |M RM ′}.

Then
P(M +p N RM) = sup{P(P =M) |M +p N R P}

and

p.P(M RM) + (1− p).P(N RM)
= p. sup{P(Q =M) |M R Q}+ (1− p).{P(R =M) | N R R}
= sup{p.P(Q =M) + (1− p).P(R =M) |M R Q,N R R}
= sup{P(Q+p R =M) |M R Q,N R R}.

But the conditions on R give precisely that if M +p N R P then P ≡ Q +p R
(hence P(P = M) = P(Q +p R = M)) with M R Q and N R R, and that
conversely if M R Q and N R R then M +p N R Q +p R. Thus the sets
{P(P = M) | M +p N R P} and {P(Q +p R = M) | M R Q,N R R} are
equal.

The relations we are interested in here are our different reductions and equiv-
alences. Under some conditions onM we can show that some of these relations
express the same behaviour.
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Proposition 3.1.1.3. IfM+ is stable by β-reduction then for all M ∈ Λ+:

P(M =β+ M) = P(M �β/≡ M) = P(M �SM).

Proof. We know that �S⊂�β/≡⊂=β+ so we have

P(M =β+ M) ≥ P(M �β/≡ M) ≥ P(M �SM).

We want to prove that if M =β+ M ′ ∈ Mp, i.e. M =β+ N +p P with N ∈ M+,
then can(M) �S · ≡ N ′ +p P

′ with N ′ ∈M+.
If M =β+ N +p P then

can(M) �S · ≡syn ·�βc ·�split can(N) +p can(P ).

The reductions �split and �βc preserve sums, so there are N ′ and P ′ such that
can(N) �split ·�βc N

′, can(P ) �split ·�βc P
′ and can(M) �S · ≡syn N

′ +p P
′.

By definition M+ is stable by ≡ so if it is stable by →β it is also stable by
�β/≡. This implies that N ′ ∈M+.

Proposition 3.1.1.4. IfM+ is closed by head reduction then for all M ∈ Λ+:

P(M �hc M) = P(M �H M).

Proof. Again �H⊂�hc so P(M �hc M) ≥ P(M �H M), and conversely we
want to prove that if can(M) �hc · ≡ N +p P for some N ∈ M+ and P then
can(M) �H · ≡ N ′ +p P

′ with N ′ ∈M+.
We know there is Q such that can(M) �H Q and N +p P ≡ ·�hc Q. Then we

have N +p P �split · �hc · ≡ Q so as �split and �hc preserve sums there are N ′
and P ′ with N �split · �hc N

′, P �split · �hc P
′ and N ′ +p P

′ ≡ Q. AsM+ is
closed by head reduction and by ≡ we have N ′ ∈M+.

3.1.2 Observation

In the deterministic λ-calculus we define an observational equivalence where
observing a term amounts to checking whether its head reduction terminates.
We can remark that for any deterministic term, i.e. any term without sum, we
have

P(M �h H) =

1 if M is solvable
0 if M is unsolvable

where H is the set of all deterministic head normal forms.
Then extending this notion of observation to the probabilistic case is very nat-

ural.

Definition 3.1.2.1. The convergence probability of a term M is

P⇓(M) = P(M �hc H)
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where H = {λx1...xn.y P1 ... Pm} is the set of all head normal values.

Proposition 3.1.2.1. 1. For every set H of head normal values, every terms
M,N ∈ Λ+ and every probability p ∈ [0; 1]:

P(M +p N �hc H) = p.P(M �hc H) + (1− p).P(N �hc H).

2. For any set H of value head normal forms closed by internal β-equivalence
and for any term M ∈ Λ+:

P(M �hc H) = P(M �H H) = P(M =β+ H)

Proof. ByH closed by internal equivalence we mean that if λx1...xn.y P1 ... Pm ∈ H
and Pi =β+ Qi for all i ≤ m then λx1...xn.y Q1 ... Qm ∈ H
The first result is a direct application of proposition 3.1.1.2.
For the second one we can apply the two previous results, and we get:

P(M =β+ H) = P(M �β/≡ H) = P(M �S H)
P(M �hc H) = P(M �H H)

All we have left to prove is that P(M �S H) = P(M �hc H). We have
�hc⊂�S so P(M �S H) ≥ P(M �hc H).
The converse is given by the fact that if can(M) �S · ≡ N +p P with N ∈ H+

then can(M) �hc Q �ic · ≡ N +p P , and since H is closed by internal β-
equivalence we already have Q ∈ Hp.

Corollary 3.1.2.2. 1. For every terms M,N ∈ Λ+ and every probability
p ∈ [0; 1]:

P⇓(M +p N) = p.P⇓(M) + (1− p).P⇓(N)

2. For any term M ∈ Λ+:

P⇓(M) = P(M �H H) = P(M =β+ H)

Definition 3.1.2.2. The observational equivalence =obs is defined by

M =obs N iff ∀C,P⇓(C[M ]) = P⇓(C[N ]).

Proposition 3.1.2.3. =obs is a theory.

Proof. For a fixed context C the relation P⇓(C[M ]) = P⇓(C[N ]) is trivially an
equivalence, thus so is =obs.

=obs is also contextual: if M =obs N then for any context C, for any context C ′
we have P⇓(C ′[C[M ]]) = P⇓(C ′[C[N ]]) so C[M ] =obs C[N ].
We also proved that P⇓(M) = P(M =β+ H) so =obs is stable by →β, →+ and
≡syn.
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It is easy to see that =obs is coherent. It is also extensional but this is much less
simple to prove, and it will come as a consequence of our separability result.

We want to prove that =obs is the same as the equality of infinitely extensional
Böhm trees, as well as the maximum sensible coherent theory. So first of all we
need to define the sensibility of a theory.
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3.2 Sensible theories

To define the sensibility of a theory we want to find a congruence =Ω which ex-
press the equality of unsolvable terms. In a deterministic case such a congruence
is simply induced by M =Ω N whenever M and N are unsolvable, but as we
pointed out before this does not work in the probabilistic case.

We gave a term N0 whose reduction gives the infinite sum of all Church inte-
gers k:

N0 �βc

+p

0 +p

1 +p

2 +p

k Nk+1

Given two such sequence (Nk) and (N′)k we want to have N0 =Ω N′0.

3.2.1 Continuity

This case is actually a particular one, as the terms (Nk) and (N′)k converge with
probability 1. Then we can use another notion in the probabilistic theories, that
we call continuity.

Definition 3.2.1.1. A probabilistic theory =T is continuous if for all M and N ,

if ∀ε > 0,∃P,Q : M +1−ε P =T N +1−ε Q then M =T N.

The intuition behind this notion is the same as the one behind the sensibility:
two terms which have the same behaviour should be equal, and two behaviours
are equal if they are equal up to every ε > 0. Given any two terms M and N such
that for all ε > 0 there are Pε and Qε such that M +1−ε Pε =β+ N +1−ε Qε, given
any set H of head normal values closed by β, we have

P(M +1−ε Pε �hc H) = P(N +1−ε Qε �hc H)

so

(1− ε).P(M �hc H) + ε.P(Pε �hc H)
=(1− ε).P(N �hc H) + ε.P(Qε �hc H)

and necessarily
P(M �hc H) = P(N �hc H).

Besides this property has some interesting consequences on the theories.
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Proposition 3.2.1.1. If =T is a continuous theory then for all terms M , N and
P and for all probability p > 0:

if M +p P =T N +p P then M =T N.

Proof. If p = 1 the result is immediate.
Otherwise we have

M + p
1+p

(M +p P ) =T M + p
1+p

(N +p P )

≡syn
p

1 + p
.M + p

1 + p
.N + 1− p

1 + p
.P

≡syn N + p
1+p

(M +p P )

=T N + p
1+p

(N +p P )

thus M + 2p
1+p

P =T N + 2p
1+p

P .
Let us define p0 = p and pn+1 = 2pn

1+pn for n ∈ N. For all n ∈ N we have
M +pn P =T N +pn P . It is easy to see that the sequence (pn) is increasing and
converges toward 1. Then for all ε > 0 there is n such that pn > 1− ε, and there
are Q and R such that M +1−ε Q ≡syn M +pn P =T N +pn P ≡syn N +1−ε R.

Corollary 3.2.1.2. If =T is a continuous theory then for all terms M and N :

if ∃p 6= q : M +p N =T M +q N then M =T N.

Proof. Assume w.l.o.g. p < q, we have M +p N ≡syn p.M + (q − p).M + q.N and
M +Q N ≡syn p.M + (q − p).N + q.N so we can use the previous result twice to
simplify p.M and q.N .

With the continuity we can prove that the terms N0 and N′0 are equal. If p = 1
then they are both equal to 0. Otherwise we have for all k

N0 =β+

k∑
i=0

(1− p)ip.i+ (1− p)k+1Nk+1

N′0 =β+

k∑
i=0

(1− p)ip.i+ (1− p)k+1N ′k+1

so for all k

1
1 + (1− p)k .N0 + (1− p)k

1 + (1− p)k .N
′
k =β+

1
1 + (1− p)k .N

′
0 + (1− p)k

1 + (1− p)k .Nk.

(1−p)k
1+(1−p)k converges to 0 so we get N0 =T N′0 if =T is continuous.

But as we mentioned before the continuity is enough because N0 and N′0 con-
verges with probability 1. In this case we need to get rid of an infinite reduction
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of probability 0, but we do not really need to say that two actual non terminating
behaviour are equal.

3.2.2 Weak and strong sensibilities

Let us consider a variant of our term N0 which diverges with a non zero proba-
bility. Given a probability p we define the following terms:

T = λxy.x

F = λxy.y

P = λn.n (λx.x+p F) T
NP
k = Θ (λf.λn.P n n (f (succ n))) k.

We have that

P k �β/≡ T +pk F
NP
k �β/≡ k +pk NP

k+1.

Then

NP
1 �β/≡

+p

1 +p2

2 +p3

3 +pk

k NP
k+1

This term converges with probability
∑∞
k=1 p

k∏k−1
i=1 (1 − pi), which is strictly less

than 1 when p < 1.
Here we cannot proceed as before to prove that if some N′P1 behaves as NP

k

then they are equal in every continuous theory, as the probability to reach the
subterm NP

k does not converge to 0.
We reason once more by approximation up to ε > 0. We simply extend the

relation =Ω which equates unsolvable terms with this idea of probabilistic ap-
proximation.

Definition 3.2.2.1. For ε ≥ 0, the sensible equality up to ε =Ω,ε is given by:

P⇓(M) ≤ ε P⇓(N) ≤ ε

M =Ω,ε N x =Ω,ε x
M =Ω,ε N

λx.M =Ω,ε λx.N

M =Ω,ε N M ′ =Ω,ε N
′

M M ′ =Ω,ε N N ′
M1 =Ω,ε N1 M2 =Ω,ε N2

M1 +pM2 =Ω,ε N1 +p N2
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Remark that since some quantification is involved this relation is not transitive.
For instance we have 0 +ε Ω =Ω,ε Ω so

0 +ε (0 +ε Ω) =Ω,ε 0 +ε Ω =Ω,ε Ω

but we do not want 0+ε(0+εΩ) =Ω,ε Ω. What we have is 0+ε(0+εΩ)Ω =Ω,ε(2−ε) Ω.

Definition 3.2.2.2. A probabilistic theory =T is weakly sensible if for all M and
N ,

if ∀ε > 0,M �β/≡ · =Ω,ε ·�β/≡ N then M =T N.

Then for all ε > 0 we can find k such that P⇓(NP
k ) ≤ ε, so if N′P1 behaves as NP

k

we can prove they are equal in every weakly sensible theory.
The weak sensibility as an interesting consequence. We could expect that for

any term M , the diverging part of M is in some sense equal to the unsolvable
term Ω in sensible theories. A formalization of this is to say that for every term
M there exists a term M0 such that M =T M0 +P⇓(M) Ω.

The only trouble to get such a result is to define M0. If the behaviour of M
is described by a finite term then we easily get this property. For instance if
P⇓(M) 6= 0 and P(M �hc {h}) 6= 0 for finitely many head normal values h, then
we can define M0 = ∑

h
P(M�hc{h})
P⇓(M) .h (which is a finite sum) and in every weakly

sensible theory we have M =T M0 +P⇓(M) Ω. But if we consider for instance our

term M = NP
1 then morally we want to have M0 �β/≡

∑
k∈N

pk
∏k−1
i=1 (1−pi)
P⇓(M) .k. As

this sum is infinite we can not take this as a definition of M0.
We are not certain it is always possible to build such a term M0, but we can

approximate it. For any term M we can find computable sequences (hn) of head
normal values and (pn) of probabilities such that for all head normal value h
we have P(M �hc {h}) = ∑

i s.t. hi≡h pi. Then given any computable probability
C with C ≥ P⇓(M) we can use these sequences to build a term MC such that
M =T MC +C Ω.

As we rely on the notion of computability, let us define some notions of repre-
sentations.

Definition 3.2.2.3. 1. A probability p = ∑
k∈N∗

pk
2k ∈ [0; 1] with pk ∈ {0; 1} for

k ∈ N∗ is represented by a term P if for all k ∈ N∗ we have

P k �β

T if pk = 1
F if pk = 0

.

2. A sequence of probabilities (pn) is represented by a term S if for all n ∈ N
the term S n represents pn.

3. A sequence of head normal values (hn) is represented by a term S if for all
n ∈ N we have S n�β hn.
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Definition 3.2.2.4. The term read is given by

read = λp.Θ (λϕ.λk.p k + 1
2
ϕ (succ k)) 1.

Proposition 3.2.2.1. If P represents p ∈ [0; 1] then P(read P �β/≡ T) = p and
P(read P �β/≡ F) = 1− p.

Proof. Let p = ∑
k∈N

pk
2k , we have 1− p = ∑

k∈N
1−pk

2k .
Let us write

Pk = Θ (λϕ.λk.P k + 1
2
ϕ (succ k)) k

, we want to prove that P1 behaves as T +p F.
For all k ≥ 1 we have

Pk �β/≡ P k + 1
2
Pk+1

so

P(Pk �β/≡ T) = pk
2 + P(Pk+1 �β/≡ T)

P(Pk �β/≡ F) = 1− pk
2 + P(Pk+1 �β/≡ F).

We get P(P1 �β/≡ T) = ∑
k∈N

pk
2k and P(P1 �β/≡ F) = ∑

k∈N
1−pk

2k .

Proposition 3.2.2.2. Given computable sequences (pn) of probabilities and (hn)
of head normal values represented by terms Sp and Sh, let

M(pn),(hn) = Θ (λϕ.λn.read (Sp n) (Sh n) (ϕ (succ n))) 0.

For all n ∈ N and ε > 0 there exists terms Mn
(pn),(hn) and Rn

ε such that

M(pn),(hn) �β/≡

+1−ε

+p0 Rn
ε

h0 +p1

h1 +p2

h2 +pn

hn Mn+1
(pn),(hn)

.

Proof. Let

Mn
(pn),(hn) = Θ (λϕ.λn.read (Sp n) (Sh n) (ϕ (succ n))) n.
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For all n ∈ N we have

Mn
(pn),(hn) �β/≡ read (Sp n) (Sh n) Mn+1

(pn),(hn).

According to the previous result read (Sp n) behaves as T+pnF, and Sh n�β/≡ hn
so for all ε > 0 we can find Qn

ε such thatMn
(pn),(hn) �β/≡ (hn+pnM

n+1
(pn),(hn))+1−εQ

n
ε .

We prove the result by induction on n. For n = −1 we have that
M(pn),(hn) = M0

(pn),(hn). Otherwise we have by induction hypothesis that for all
ε > 0

M(pn),(hn) �β/≡

(
n∑
k=0

pk
k−1∏
i=0

(1− pi).hk +
n∏
k=0

(1− pk).Mn+1
(pn),(hn)

)
+1−ε R

n
ε .

We get

M(pn),(hn) �β/≡
n∑
k=0

(1− ε)pk
k−1∏
i=0

(1− pi).hk + (1− ε)2pn+1

n∏
k=0

(1− pk).hn+1

+ (1− ε)2
n+1∏
k=0

(1− pk).Mn+2
(pn),(hn) + (1− ε)ε

n∏
k=0

(1− pk).Qn+1
ε + ε.Rn

ε

�β/≡
n+1∑
k=0

(1− ε)2pk
k−1∏
i=0

(1− pi).hk + (1− ε)2
n+1∏
k=0

(1− pk).Mn+2
(pn),(hn)

+
n∑
k=0

ε(1− ε)pk
k−1∏
i=0

(1− pi).hk

+ (1− ε)ε
n∏
k=0

(1− pk).Qn+1
ε + ε.Rn

ε

We define

Rn+1
ε(2−ε) =

n∑
k=0

1− ε
2− εpk

k−1∏
i=0

(1− pi).hk + 1− ε
2− ε

n∏
k=0

(1− pk).Qn+1
ε + 1

2− ε.R
n
ε

which gives the wanted result.

Given a term M and C ≥ P⇓(M) we want to build the term MC using the
previous result. We want to find computable sequences (pn) and (hn) such that
M =T M(pn),(hn) +C Ω in every weakly sensible theory.

Proposition 3.2.2.3. Let M a term with 0 < P⇓(M) < 1, there are computable
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sequences (pn), (hn) and (Mn), such that limn→∞P⇓(Mn) = 0 and for all n

M �β/≡

+p0

h0 +p1

h1 +p2

h2 +pn

hn Mn+1

.

Proof. These sequences are given by the following algorithm:
Get r i d o f a l l the t r i v i a l p r o b a b i l i t i e s (0 and 1 ) .
I f M conta in s a head normal va lue

r ewr i t e M in to h +_p M’
us ing commutativity and a s s o c i a t i v i t y ;

s e t p_0 = p , h_0 = h , M^1 = M’ ;
compute the r e s t o f the sequence from M’ ;

Else apply the a lgor i thm to H(M) .
where "M contains a head normal value" meansM is equal to a head normal value
with a non zero probability, i.e. P(M = {head normal values}) > 0.
First remark that terms without trivial sums +0 and +1 are stable by associa-

tivity, commutativity, →β and →+. So if we start by erasing all such sums in M
using the relation N+0M ≡syn M+1N ≡syn M+1M ≡syn M , we never encounter
them anymore.
If P(M = {h}) 6= 0 with h a head normal value then there is h′ ≡syn h such that

we have eitherM = h′ orM ≡syn h
′+pM

′ modulo associativity and commutativity.
But we assumed P⇓(M) < 1 so the first case is impossible. We have necessarily
M ≡syn h

′ +pM
′ with P⇓(M ′) < 1. Besides we assumed M reduces into infinitely

many head normal values, and necessarily so does M ′. In particular P⇓(M ′) > 0.
Remark also that when applying the algorithm to a term M we always get

M ≡syn h0 +p0 (h1 +p1 ... (hn +pn M
n+1)...)

with P(Mn+1 = {head normal values}) = 0. Indeed if M ≡syn N using only
commutativity and associativity then M and N have the same size, so M being
of finite size we can not have M ≡syn h0 +p0 (h1 +p1 ... (hn +pn M

n+1)...) modulo
associativity and commutativity for arbitrary large n. Then we apply the algorithm
to H(Mn+1).
As the hk are head normal values we have

H(M) ≡syn H(h0 +p0 (h1 +p1 ... (hn +pn M
n+1)...))

= h0 +p0 (h1 +p1 ... (hn +pn H(Mn+1))...).
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Then for all m there is n and a term Nm such that

Hm(M) ≡syn h0 +p0 (h1 +p1 ... (hn +pn N
m)...)

with P(Nm = {head normal values}) = 0.
From there we can deduce two things. First the algorithm is productive: indeed

for all h such that P(M) �hc {h}) 6= 0 there ism such that P(Hm(M) = {h}) 6= 0,
so the algorithm keeps producing pn, hn andMn+1 provided P⇓(Mn) 6= 0. Secondly
we have

P⇓(M) = sup
m
P(Hm(M) = {head normal values}) =

∑
k∈N

pk
k−1∏
i=0

(1− pi).

Then we have for all n ∈ N

M �β/≡ h0 +p0 (h1 +p1 ... (hn +pn M
n+1)...)

P⇓(M) =
n∑
k=0

pk
k−1∏
i=0

(1− pi) +
n∏
k=0

(1− pk)P⇓(Mn+1)

This means that ∏n
k=0(1 − pk)P⇓(Mn+1) converges to 0. But for all n we have∏n

k=0(1− pk) ≥ 1− P⇓(M) and we assumed P⇓(M) < 1 so necessarily P⇓(Mn+1)
converges to 0.

Proposition 3.2.2.4. Given a sequence of probabilities (pn) ∈]0; 1[N, given a prob-
ability C ∈ [∑k∈N pk

∏k−1
i=0 (1− pi); 1], we define a sequence (qn) by

qn = pn
C

n−1∏
k=0

1− pk
1− qk

.

Then for all n ∈ N we have pn ≤ qn < 1.

Proof. Remark that qn is defined if and only if qk is defined and different from 1
for all k < n.
Let us define C0 = C and Cn+1 = Cn−pn

1−pn . We will prove that for all n, qn = pn
Cn

,
hence the wanted result is pn ≤ pn

Cn
< 1, or equivalently pn < Cn ≤ 1. So first let

us prove by induction on n a more precise result, namely that

∑
k≥n

pk
k∏
i=n

(1− pi) ≤ Cn ≤ 1.

If n = 0 this is just the assumption on C. Otherwise we have by induction
hypothesis Cn+1 = Cn−pn

1−pn ≤
1−pn
1−pn ≤ 1, and

Cn+1 ≥
∑
k≥n pk

∏k
i=n(1− pi)− pn
1− pn

=
∑

k≥n+1
pk

k∏
i=n+1

(1− pi).
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Now we prove by induction on n that qn is well defined, qn = pn
Cn

and pn ≤ qn < 1.
If n = 0 then by definition we have q0 = p0

C
which is well defined, and we have

p0 < C ≤ 1 so p0 ≤ q0 < 1.
Otherwise we have by induction hypothesis that qk is well defined and qk < 1

for k ≤ n so qn+1 is well defined. We can write qn+1 = qn
pn+1
pn

1−pn
1−qn , and by

induction hypothesis qn = pn
Cn

and qn+1 = pn+1
Cn

1−pn
1− pn

Cn

= pn+1
1−pn
Cn−pn = pn+1

Cn+1
. Then

from pn+1 < Cn+1 ≤ 1 we get pn+1 ≤ qn+1 < 1.

We now have all the necessary tools to prove our result.

Proposition 3.2.2.5. For all M and all computable C ≥ P⇓(M) there is a term
MC such that in all weakly sensible theories

M =T MC +C Ω.

Proof. If P⇓(M) = 0 we have M =T Ω in every sensible theory. If P⇓(M) = 1
then necessarily C = 1 and M ≡syn M +1 Ω. If there are finitely many head
normal values h modulo ≡syn such that P(M �hc {h}) 6= 0 then we define MC

such that MC ≡syn
∑
h
P(M�hc{h})
P⇓(M) .h, and we can prove that this term works by

using techniques similar to those of the general case.
Otherwise we have computable sequences (pn) of non trivial probabilities, (hn)

of head normal values and (Mn) of terms such that

M �β/≡ h0 +p0 (h1 +p1 ... (hn +pn M
n+1)...)

for all n and P⇓(Mn) converges to 0. Then we define qn = pn
C

∏n−1
k=0

1−pk
1−qC

k
, this is

a computable sequence and we know that the qn’s are probabilities. We finally
define MC = M(qn),(hn), for all n and ε > 0 we have

MC �β/≡
(
h0 +q0 (h1 +q1 ... (hn +qn M

n+1
C )...)

)
+1−ε R

n
ε .

For all n and ε > 0 we have

MC +C Ω �β/≡
n∑
k=1

(1− ε)
(
Cqk

k−1∏
i=1

(1− qi)
)
.hk

+ (1− ε)C
n∏
k=1

(1− qk).Mn+1
C + Cε.Rn

ε + (1− C).Ω

M �β/≡
n∑
k=1

(1− ε)
(
pk

k−1∏
i=1

(1− pi)
)
.hk

+ (1− ε)
n∏
k=1

(1− pk).Mn+1 + ε.M

Using the definition of the sequence (qn) we see that for all k ∈ N we have
Cqk

∏k−1
i=1 (1 − qi) = pk

∏k−1
i=1 (1 − pi). Then to prove that for all ε > 0 we have
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M �β/≡ · =Ω,ε · �β/≡ MC +C Ω we have to prove that for all ε > 0 there are n
and δ > 0 such that

P⇓
(

(1− δ)C ∏n
k=1(1− qk)

1− cδ,n
.Mn+1

C + Cδ

1− cδ,n
.Rn

δ + 1− C
1− cδ,n

.Ω
)
≤ ε

P⇓
(

(1− δ)∏n
k=1(1− pk)

1− cδ,n
.Mn+1 + δ

1− cδ,n
.M

)
≤ ε

where cδ,n = (1− δ)∑n
k=1 pk

∏k−1
i=1 (1− pi) and we have cδ,n < P⇓(M) < 1.

As 1− cδ,n has a lower bound we just need to prove that
P⇓(MC +C Ω) = ∑∞

k=1Cqk
∏k−1
i=1 (1−qi) and P⇓(M) = ∑∞

k=1 pk
∏k−1
i=1 (1−pi). Indeed

what we want to prove is equivalent to ∀ε > 0,∃δ > 0,∃n :

(1− cδ,n)P⇓
(

(1− δ)C ∏n
k=1(1− qk)

1− cδ,n
.Mn+1

C + Cδ

1− cδ,n
.Rn

δ + 1− C
1− cδ,n

.Ω
)
≤ ε

(1− cδ,n)P⇓
(

(1− δ)∏n
k=1(1− pk)

1− cδ,n
.Mn+1 + δ

1− cδ,n
.M

)
≤ ε.

But this means precisely that ∀ε > 0, ∃δ > 0,∃n :

P⇓(MC +C Ω)− cδ,nP⇓

 n∑
k=1

(1− δ)
(
Cqk

∏k−1
i=1 (1− qi)

)
cδ,n

.hk

 ≤ ε

P⇓(M)− cδ,nP⇓

 n∑
k=1

(1− δ)
(
pk
∏k−1
i=1 (1− pi)

)
cδ,n

.hk

 ≤ ε

i.e. ∀ε > 0,∃δ > 0,∃n :

P⇓(MC +C Ω)−
n∑
k=1

(1− δ)
(
Cqk

k−1∏
i=1

(1− qi)
)
≤ ε

P⇓(M)−
n∑
k=1

(1− δ)
(
pk

k−1∏
i=1

(1− pi)
)
≤ ε

We know that P⇓(M)−∑∞k=1 pk
∏k−1
i=1 (1− pi), and we can check that

P⇓(MC) = ∑∞
k=1 qk

∏k−1
i=1 (1− qi).

The weak sensibility is defined in a quite natural way, as a conjunction of the
notions of equality of unsolvable terms and approximations up to ε. And this
natural definition gives a satisfying result, as given any term we can isolate its
diverging part (up to some ε > 0) in every weakly sensible theory.

But we call it weak as it is the opposite of the continuity: it deals with the non
termination but it can not be used to eliminate infinite branches with probability
0. For instance there is no obvious way to prove that in our first example the
terms N0 and N′0 are equal in every weakly sensible theory.
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The reason is that we consider the local convergence probability of the sub-
terms, not their contribution to the convergence probability of the whole term.
We can define a strong sensibility which takes this into account.

Definition 3.2.2.5. For ε, ε′ ≥ 0 we define =s
Ω,ε,ε′ by:

P⇓(M) ≤ ε′ P⇓(N) ≤ ε′

M =s
Ω,ε,ε′ N x =s

Ω,ε,ε′ x

M =s
Ω,ε,ε′ N

λx.M =s
Ω,ε,ε′ λx.N

M =s
Ω,ε,ε′ N M ′ =s

Ω,ε,ε N
′

M M ′ =s
Ω,ε,ε′ N N ′

M1 =s
Ω,ε,ε1 N1 M2 =s

Ω,ε,ε2 N2

M1 +pM2 =s
Ω,ε,pε1+(1−p)ε2 N1 +p N2

We note M =s
Ω,ε N when M =s

Ω,ε,ε N .

The intuition is that M =s
Ω,ε,ε N wheneverN is obtained by changing a subterm

whose contribution to the convergence of M is less than ε in M , and then doing
so inductively on the arguments in M . The meaning of this relation may be
clearer if we consider it on canonical terms.

Definition 3.2.2.6. For ε, ε′ ≥ 0 we define =s,c
Ω,ε,ε′ on canonical terms and =s,v

Ω,ε on
values by:

P⇓(M) ≤ ε′ P⇓(N) ≤ ε′

M =s,c
Ω,ε,ε′ N

M1 =s,c
Ω,ε,ε1 N1 M2 =s,c

Ω,ε,ε2 N2

M1 +pM2 =s,c
Ω,ε,pε1+(1−p)ε2 N1 +p N2

v =s,v
Ω,ε w

v =s,c
Ω,ε,ε′ w

x =s,v
Ω,ε x

v =s,v
Ω,ε w

λx.v =s,v
Ω,ε λx.w

v =s,v
Ω,ε w M =s,c

Ω,ε,ε N

v M =s,v
Ω,ε w N

We note M =s,c
Ω,ε N when M =s,c

Ω,ε,ε N .

Proposition 3.2.2.6. If M and N are canonical then M =s
Ω,ε,ε′ N if and only if

M =s,c
Ω,ε,ε′ N .

Proof. It is straightforward to prove by induction on =s,c
Ω,ε,ε′ that if M =s,c

Ω,ε,ε′ N
then M =s

Ω,ε,ε′ N and if v =s,v
Ω,ε w then for all ε′, v =s

Ω,ε,ε′ w.
Conversely we can prove by an easy induction on =s

Ω,ε,ε′ that ifM =s
Ω,ε,ε′ N with

M canonical then M =s,c
Ω,ε,ε′ N and if v =s

Ω,ε,ε′ w then v =s,v
Ω,ε w.

Proposition 3.2.2.7. If M =s
Ω,ε,ε′ N then can(M) =s,c

Ω,ε,ε′ can(N).

Proof. We just need to prove that if M =s
Ω,ε,ε′ N and M →+ M ′ then there is N ′

such that N →?
+ N ′ and M ′ =s

Ω,ε,ε′ N
′. Then if M =s

Ω,ε,ε′ N there is N ′ such that
N �+ N ′ and can(M) =s

Ω,ε,ε′ N
′, by symmetry we get can(M) =s

Ω,ε,ε′ can(N), and
we can use the previous result to get can(M) =s,c

Ω,ε,ε′ can(N).
We prove this by induction on M =s

Ω,ε,ε′ N and the context of the reduction
M →+ M ′.
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• If P⇓(M),P⇓(N) ≤ ε′ then we know that the convergence probability is stable
by →+ so P⇓(M ′) = P⇓(M).

• Otherwise if the context of the reduction is not empty then the result is
immediate by induction hypothesis.

• If M = λx.(M1 +p M2) →+ λx.M1 +p λx.M2 = M ′ and we do not have
P⇓(M),P⇓(N) ≤ ε′ then necessarily N = λx.Q and M1 +pM2 =s

Ω,ε,ε′ Q. We
have P⇓(M1 +p M2) = P⇓(M) and P⇓(Q) = P⇓(N) so these are not less
than ε, and necessarily Q = N1 +p N2 with Mi =s

Ω,ε,εi Ni for i ∈ {1; 2} with
pε1 + (1 − p)ε2 = ε. From there we have λx.Mi =s

Ω,ε,εi λx.Ni for i ∈ {1; 2},
and M ′ =s

Ω,ε,ε′ λx.N1 +p λx.N2.

• Similarly if M = (M1 +p M2) P →+ M1 P +p M2 P = M ′ then N = Q P
with P⇓(M1 +p M2) ≤ P⇓(M) and P⇓(Q) ≤ P⇓(N) so Q = N1 +p N2, and
M ′ =s

Ω,ε,ε′ N1 P +p N2 P .

The interesting relation on canonical terms is =s,c
Ω,ε. If we consider canonical

terms modulo ≡syn we have

∑
i

pi.vi +
(

1−
∑
i

pi

)
.M =s,c

Ω,ε
∑
i

pi.wi +
(

1−
∑
i

pi

)
.N

whenever

• vi =s,v
Ω,ε wi for all i,

• (1−∑i pi)P⇓(M) ≤ ε

• and (1−∑i pi)P⇓(N) ≤ ε.

Then if we go back to our previous examples, for all ε > 0 we have both
N0 �β/≡ · =

s,c
Ω,ε ·�β/≡ N′0 and NP

1 �β/≡ · =
s,c
Ω,ε ·�β/≡ N′P1 .

Definition 3.2.2.7. A probabilistic theory =T is strongly sensible if for allM and
N ,

if ∀ε > 0,M �β/≡ · =
s,c
Ω,ε ·�β/≡ N then M =T N.

Proposition 3.2.2.8. Every strongly sensible theory is weakly sensible.
Proof. We can prove that if M =Ω,ε N then M =s

Ω,ε,ε N . The only thing we need
to remark is that if Mi =s

Ω,ε,ε Ni for i ∈ {1; 2} then M1 +pM2 =s
Ω,ε,ε N1 +pN2.

In the following we will not really be interested in the strong sensibility it-
self. We will consider continuous weakly sensible theories, and we conjecture
that such theories are always strongly sensible. So we will simply speak about
continuous sensible theories, without specifying that we consider the weak sen-
sibility.

The main reason we mentioned the strong sensibility is that the relations =s
Ω,ε,ε′

and =s,c
Ω,ε will be useful to characterize the probabilistic Böhm tree equality.
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4 Probabilistic Böhm trees

The Böhm tree of a deterministic term is a generalization of the notion of normal
form, obtained by iterating head normalization. Deterministic normal forms are
characterized inductively as follows: a term is in normal form if it is a head
normal form λx1...xn.y P1 ... Pm where Pi is normal for i ≤ m. Böhm trees
are obtained by adding a symbol Ω for unsolvable terms, and by extending this
definition to infinite forms.

Definition 4.0.2.1. The sets BT d for d ∈ N of Böhm trees of depth d are defined
by

BT 0 = {Ω}

BT d+1 =


λx1...xn.y

T1 ... Tm

| ∀i ≤ m,Ti ∈ BT d

 ∪ {Ω}.
In the future we will most often write trees as terms:

BT d+1 = {λx1...xn.y T1 ... Tm | ∀i ≤ m,Ti ∈ BT d} ∪ {Ω}.

Definition 4.0.2.2. The Böhm tree BT d(M) of depth d ∈ N of a deterministic
term M is given by:

BT 0(M) = Ω

BT d+1(M) =

λx1...xn.y BT d(P1) ... BT d(Pm) if M �h λx1...xn.y P1 ... Pm

Ω otherwise

What we call the Böhm tree of a term M is a possibly infinite tree obtained
as the limit of its finite approximations BT d(M). Such an infinite tree can be
defined directly, but here we will simply say that two terms have the same Böhm
tree if they have the same finite Böhm trees.

Definition 4.0.2.3. The Böhm tree equality =B is defined by

M =B N iff ∀d ∈ N,BT d(M) = BT d(N).

This notion of tree is actually not the one we are interested in. It is fairly simple
to see that =B does not correspond to the observational equivalence: the terms
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x and λy.x y have different Böhm trees but they are observationally equivalent.
We need to introduce some notion of extensionality in our Böhm tree equality.

As Böhm trees are infinite there are several ways to quotient them by exten-
sionality. We can simply consider the equivalence induced by the rule

λx1...xnz.y T1 ... Tm z = λx1...xn.y T1 ... Tm if z 6= y and z is not free in the Ti’s.

But this is not enough as this would mean that two trees are equivalent if we can
rewrite one into the other using this rule finitely many times.

Let (xn) a sequence of pairwise distinct variables, we can define terms Xn for
n ∈ N such that for all n, Xn =β λxn+1.xn Xn+1. Then we can prove that Xn is
observationally equivalent to xn for all n ∈ N. Yet the Böhm trees of the terms
Xn have no η-redex. if we consider that the tree of Xn+1 is equivalent to the tree
xn+1 then we can perform an η-contraction, but in some sense the first η redex is
pushed at an infinite depth.

So instead of considering the η-contraction we rather perform an infinite η-
expansion. If M �h λx1...xn.y P1 ... Pm then we will consider

BT η
d+1(M) = λx1...xnxn+1... .y BT η

d(P1) ... BT η
d(Pm) BT η

d(xn+1) ...

To make this definition a bit lighter we will consider given a family of pairwise
distinct variables (xd,n)d,n∈N (such that Var \ {xd,n | d, n ∈ N} is still an infinite
set). Then for any d ∈ N and for any solvable term M we have a reduction
M �h λxd,1...xd,n.y P1 ... Pm, and the infinitely extensional Böhm tree of M at
depth d+ 1 is then given by the head variable y and the sequence
(BT η

d(P1), ...,BT η
d(Pm),BT η

d(xn+1), ...).

Definition 4.0.2.4. The sets BT ηd for d ∈ N of infinitely extensional Böhm trees
of depth d, or Nakajima trees of depth d, are defined by

BT η0 = {Ω}
BT ηd+1 = {(y, (Tn)) | ∀n ∈ N, Tn ∈ BT ηd} ∪ {Ω}.

Definition 4.0.2.5. The infinitely extensional Böhm tree BT η
d(M) of depth d ∈ N

of a deterministic term M is given by:

BT η
0(M) = Ω

BT η
d+1(M) =

(y,(BTη
d
(P1),..,BTη

d
(Pm),BTη

d
(xd,n+1),..)) if M �h λx1...xn.y P1 ... Pm

Ω otherwise

Remark that if BT η
d+1(M) = (y, (Tn)) then there exists m ∈ N and s ∈ Z such

that for all n > m we have Tn = BT η
d(xd,n−s). The trees which do not have this

property are not useful to describe terms, so they are irrelevant. Thus a possible
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alternate definition for infinitely extensional Böhm trees would be

BT η0 = {Ω}
BT ηd+1 = {(y, (Tn)) | ∃m ∈ N,∃s ∈ Z : ∀n > m, Tn = BT η

d(xd,n−s)} ∪ {Ω}.

This restriction will only come useful in the next chapter to obtain a separability
result. We will then define classes of trees based on their head variable y and on
the integer s, and the trees for which this property does not hold will not belong
to any class.

Definition 4.0.2.6. The infinitely extensional Böhm tree equality =Bη is defined
by

M =Bη N iff ∀d ∈ N,BT η
d(M) = BT η

d(N).

It is known that this equality corresponds to the deterministic observational
equivalence.

We want to generalize these definitions to probabilistic terms. Probabilistic
normal forms modulo ≡ are finite probability distributions over normal values,
and normal values are head normal values λx1...xn.y P1 ... Pm where Pi is nor-
mal for i ≤ m. Thus it is natural to build probabilistic Böhm trees with two
layers: one to represent (potentially infinite) probability distributions and one
to represent head normal values.

Definition 4.0.2.7. The sets PT d of probabilistic Böhm trees of depth d and VT d
of probabilistic value Böhm trees of depth d for d ∈ N are defined by

VT 0 = ∅
VT d+1 = {λx1...xn.y T1 ... Tm | ∀i ≤ m,Ti ∈ PT d}

PT d =

T : VT d → [0; 1] |
∑

t∈VT d
T (t) ≤ 1

 .
Definition 4.0.2.8. The probabilistic Böhm tree PT d(M) of depth d ∈ N of a
term M and the probabilistic value Böhm tree VT d(h) of depth d ∈ N∗ of a head
normal value h are given by:

VT d+1(λx1...xn.y P1 ... Pm) = λx1...xn.y PT d(P1) ... PT d(Pm)
PT d(M) : t 7→ P(M �hc {h | VT d(h) = t}).

To simplify the notations, given a relation R and t ∈ VT d we write P(M R t)
for P(M R {h | VT d(h) = t}).

Remark that when defining the Böhm tree of a probabilistic term in such a way
it is not convenient to add a label Ω for unsolvable terms. Indeed we can not
define VT d(v) = Ω when v is unsolvable, as we do not have a satisfying notion
of unsolvability. What we do is to associate to every term a subprobability dis-
tribution over trees of head normal forms, and the probability of Ω is intuitively
given by PT d(M)(Ω) = 1−∑t∈VT d PT d(M)(t).
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Also remark that we defined the Böhm tree at depth 0 of a term M as
PT 0(M) : t 7→ P(M =β+ {h | VT 0(h) = t}), even though VT 0(h) is not defined,
but one the other hand VT 0 = ∅ so PT 0(M) is the unique function from ∅ to
[0; 1].

We need to prove that this definition is correct, i.e. that for any term M and
any d ∈ N we have

∑
t∈VT d PT d(M)(t) ≤ 1.

Lemma 4.0.2.1. Given two head normal values h and h′, if h =β+ h′ then
h = λx1...xn.y P1 ... Pm and h′ = λx1...xn.y P

′
1 ... P

′
m with Pi =β+ P ′i for i ≤ m.

Proof. If h = λx1...xn.y P1 ... Pm �split ·�βc M then
M ≡syn

∑
j pj.λx1...xn.yPj,1 ... Pj,m with Pi �split ·�βc Pj,i for all j and i ≤ m.

Besides if ∑j pj.λx1...xn.yPj,1 ... Pj,m ≡syn
∑
j p
′
j.λx1...xn′ .y

′P ′j,1 ... P
′
j,m′ then

necessarily n = n′, y = y′ and m = m′, as the syntactic equivalence can not
change the structure of head normal forms. Moreover we can prove by induction
on ≡syn that for all i ≤ m and all j there is j′ such that Pi,j ≡syn Pi,j′ .
Thus if h = λx1...xn.y P1 ... Pm, h′ = λx1...xn′ .y

′ P ′1 ... P
′
m′ and h =β+ h′, i.e.

h �split · �βc · ≡syn · �βc · �split h
′, we have n = n′, y = y′, m = m′ and

Pi =β+ P ′i for all i ≤ m.

Proposition 4.0.2.2. For all d ∈ N:

1. if d > 0 and h =β+ h′ then VT d(h) = VT d(h′);

2. for t ∈ VT d we have for all M

P(M �hc t) = P(M �H t) = P(M =β+ t) = P(M �S t);

3. if M =β+ M ′ then PT d(M) = PT d(M ′);

4. if d > 0, for any term M we have ∑t∈VT d PT d(M)(t) = P⇓(M).

In particular for all d and M we have PT d(M) ∈ PT d.

Proof. We reason by induction on d. If d = 0 then VT 0 = ∅ and there is a unique
Böhm tree of depth 0.
Otherwise we have:

• if h =β+ h′ then h = λx1...xn.y P1 ... Pm and h′ = λx1...xn.y P
′
1 ... P

′
m with

Pi =β+ P ′i for i ≤ m so by induction hypothesis PT d(Pi) = PT d(P ′i ) for
i ≤ m, hence VT d+1(h) = VT d+1(h′);

• for t ∈ VT d+1 the set {h | VT d+1(h) = t} is a set of head normal values,
and by induction hypothesis it is closed by β so we can apply the proposition
3.1.2.1;

• we just proved PT d+1(M)(t) = P(M =β+ t) for t ∈ VT d+1 so if M =β+ M ′

we immediately have PT d+1(M) = PT d+1(M ′);
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• we also proved that PT d+1(M)(t) = P(M �H t), from which we get that
PT d+1(M)(t) = supn∈NP(Hn(M) = t), and the sequences (P(Hn(M) = t))n
are increasing so∑

t∈VT d+1

sup
n∈N
P(Hn(M) = t) = sup

n∈N

∑
t∈VT d+1

P(Hn(M) = t)

= sup
n
P(Hn(M) = {h head normal value})

= P⇓(M).

Definition 4.0.2.9. The probabilistic Böhm tree equality =PB is defined by

M =PB N iff ∀d ∈ N,PT d(M) = PT d(N).

We have a definition for probabilistic Böhm trees, that we can easily extend to
infinitely extensional probabilistic Böhm trees.

Definition 4.0.2.10. The sets PT ηd of infinitely extensional probabilistic Böhm
trees of depth d and VT ηd of infinitely extensional probabilistic value Böhm trees of
depth d for d ∈ N are defined by

VT η0 = ∅
VT ηd+1 = {(y, (Tn)) | ∀n ∈ N, Tn ∈ PT ηd}

PT ηd =

T : VT ηd → [0; 1] |
∑

t∈VT η
d

T (t) ≤ 1

 .
Definition 4.0.2.11. The infinitely extensional probabilistic Böhm tree PT η

d(M)
of depth d ∈ N of a termM and the infinitely extensional probabilistic value Böhm
tree VT η

d(h) of depth d ∈ N∗ of a head normal value h are given by:

VT η
d+1(λx1...xn.y P1 ... Pm) = (y, (PTη

d(P1), ..., PTη
d(Pm), PTη

d(xd,n+1), ...))
PT η

d(M) : t 7→ P(M �hc {h | VT η
d(h) = t}).

Proposition 4.0.2.3. For all d ∈ N:

1. if d > 0 and h =β+ h′ then VT η
d(h) = VT η

d(h′);

2. for all t ∈ VT ηd and all M we have

P(M �hc t) = P(M �H t) = P(M =β+ t) = P(M �S t);

3. if M =β+ M ′ then PT η
d(M) = PT η

d(M ′);

4. if d > 0, for any term M we have ∑t∈VT η
d

PT η
d(M)(t) = P⇓(M).
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In particular for all d and M we have PT η
d(M) ∈ PT ηd.

Proof. This is the same proof as for the non extensional trees.

Definition 4.0.2.12. The infinitely extensional Böhm tree equality =PBη is de-
fined by

M =PBη N iff ∀d ∈ N,PT η
d(M) = PT η

d(N).

We want to prove that =PBη corresponds to the probabilistic observational
equivalence. The first, and most technical, step is to prove that =PBη is actually
a theory. It is obviously an equivalence, and we proved that it is stable by =β+,
so what we need to prove is that it is contextual. Then we will get =PBη⊂=obs:
indeed if for all context C we have C[M ] =PBη C[N ] then for all C we have

P⇓(C[M ]) =
∑

t∈VT η1

PT η
1(C[M ])(t) =

∑
t∈VT η1

PT η
1(C[N ])(t) = P⇓(C[N ]).
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4.1 Finite approximations

Böhm trees are infinite objects, and thus are not easy to manipulate. It is more
convenient to work on finite approximations of these trees. We actually did not
directly define Böhm trees but only their approximations at finite depths.

At the end of the section 2.2.2 we claimed that the Böhm tree of a term M
is obtained as the limit of its complete left reductions Lk(M) for k ∈ N. To
formalize this idea, we will associate to every term a (finite) tree, then show that
the Böhm tree of a term is indeed the limit of the finite trees associated to its
complete left reductions.

For deterministic terms we do not even need to introduce a notion of limit.
The restriction to finite depth means that for a term M and a depth d the trees
BT d(M) and BT η

d(M) are given by finitely many complete left reductions on M .

Definition 4.1.0.1. The local Böhm trees btd(M) and btηd(M) for a term M and
d ∈ N are given by

bt0(M) = Ω

btd+1(M) =

λx1...xn.y btd(P1) ... btd(Pm) if M = λx1...xn.y P1 ... Pm

Ω otherwise

and

btη0(M) = Ω

btηd+1(M) =

(y,(btη
d
(P1),...,btη

d
(Pm),btη

d
(xd,n+1),...)) if M = λxd,1...xd,n.y P1 ... Pm

Ω otherwise.

The definition of the local Böhm tree of a term is the same as the definition of
Böhm trees, except that we do not check whether a term is solvable, but directly
whether it is a head normal form.

Proposition 4.1.0.1. For every deterministic term M and every d ∈ N there
exists k ∈ N such that

BT d(M) = btd(Lk(M)) and BT η
d(M) = btηd(Lk(M)).

Proof. First it is easy to prove by induction on d that if BT d(M) = btd(M) then
BT d(M) = btd(L(M)). The result is immediate if d = 0. If M is unsolvable then
L(M) is unsolvable and BT d+1(M) = btd+1(L(M)) = Ω.
Otherwise if BT d+1(M) = btd+1(M) andM is solvable then it is necessarily head

normal, i.e. M = λx1...xn.y P1 ... Pm, and L(M) = λx1...xn.y L(P1) ... L(Pm).
By induction hypothesis BT d(Pi) = btd(L(Pi)) for i ≤ m and we immediately get
BT d+1(M) = btd+1(L(M)).
For the same reason if BT η

d(M) = btηd(M) then BT η
d(M) = btηd(L(M)).
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Now we prove the proposition by a simple induction on d. If d = 0 then
BT 0(M) = bt0(M) = Ω and BT η

0(M) = btη0(M) = Ω. Similarly if M is un-
solvable then BT d+1(M) = btd+1(M) = Ω and BT η

d+1(M) = btηd+1(M) = Ω.
Otherwise ifM is solvable then for some k0 we have that Lk0(M) is head normal,

we write Lk0(M) = λx1...xn.y P1 ... Pm. By induction hypothesis there are k1,...,km
such that BT d(Pi) = btd(Lki(Pi)) and BT η

d(Pi) = btηd(Lki(Pi)) for all i ≤ m. Let
k = k0 + maxi≤m ki, we have BT d(M) = btd(Lk(M)) and BT η

d(M) = btηd(Lk(M)).

We can define the same kind of local Böhm trees in the probabilistic case.

Definition 4.1.0.2. The local probabilistic Böhm trees ptd(M) and ptηd(M) for a
term M and d ∈ N are given by

vtd+1(λx1...xn.y P1 ... Pm) = λx1...xn.y ptd(P1) ... ptd(Pm)
ptd(M) : t 7→ P(M = {h | vtd(h) = t}).

and

vtηd+1(λx1...xn.y P1 ... Pm) = (y, (ptηd(P1), ..., ptηd(Pm), ptηd(xd,n+1), ...))
ptηd(M) : t 7→ P(M = {h | vtηd(h) = t}).

But here we do not have the same result as in the deterministic case. If we
consider a term M such that M �βc λx.x+pM then M has the same Böhm tree
as λx.x, i.e. for any d ∈ N we have PT d+1(M)(λx.x) = 1 and PT d+1(M)(t) = 0
otherwise. But we can not reduce M �β/≡ M ′ to get PT d+1(M) = ptd+1(M ′).

For that reason we must not only approximate the Böhm trees in depth, but
also in width: we can prove that for any term M , any d ∈ N and any ε > 0 there
is k such that ptd(Lk(M)) approximates PT d(M) up to ε.

4.1.1 Ordering trees

We will detail the case of the non extensional Böhm trees. The non extensional
and infinitely extensional Böhm trees are actually very similar, and they are built
in the same way, so it is easy to adapt the following proofs to the infinitely
extensional case. The difference between the two notions will arise later, when
we will compute with terms knowing only their Böhm trees.

First of all we need to define an order saying that a tree is less defined than
another. In the deterministic calculus such an order is simply given by the rule
Ω � T for any tree T . Here we must be a liittle more subtle to take into account
the probabilities.

Definition 4.1.1.1. The relations �d,ε on PT d and �vd,ε on VT d are defined for
d ∈ N and ε ≥ 0 by:

∀i ≤ m,Ti �d,ε T ′i
λx1...xn.y T1 ... Tm �vd+1,ε λx1...xn.y T

′
1 ... T

′
m
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∀A ⊂ VT d,
∑
t∈↑A T (t) ≤ ∑t∈↑εA T

′(t) + ε

T �d,ε T ′

where ↑ε A = {t ∈ VT d | ∃t′ ∈ A : t′ �vd,ε t} and ↑ A =↑0 A. We also define
�d=�d,0 and �vd=�vd,0.

Remark that for d = 0, �v0,ε is a relation on VT 0 = ∅ so it is uniquely defined.
We want to prove that �d is an order on probabilistic Böhm trees, and that the

Böhm tree PT d(M) of a term is the supremum of its approximations ptd(Lk(M)).
It is easy to prove that the sequence (ptd(Lk(M))) is increasing for �d and
PT d(M) is an upper bound, but to prove that this is actually its supremum we
will also prove that for all ε > 0 we have PT d(M) �d,ε ptd(Lk(M)) for k big
enough.

For now let us check that �d,ε behaves as an order up to ε.

Proposition 4.1.1.1. For all d ∈ N and all ε ≤ ε′ we have �d,ε⊂�d,ε′ and
�vd,ε⊂�vd,ε′.

Proof. By induction on d. For d = 0 we have �v0,ε= ∅ and Ω �0,ε Ω for all ε ≥ 0.
Let ε ≤ ε′, if t =�vd+1,ε t

′ then t = λx1...xn.y T1 ... Tm and t′ = λx1...xn.y T
′
1 ... T

′
m

with Ti �d,ε T ′i for all i ≤ m, thus by induction hypothesis Ti �d,ε′ T ′i for i ≤ m
and t �vd+1,ε′ t

′.
Then for all A ⊂ VT d+1 we have ↑ε A ⊂↑ε′ A: if t ∈↑ε A then there is t′ ∈ A such

that t′ �vd+1,ε t, hence t′ �vd+1,ε′ t. Thus if T �d+1,ε T
′ we have for all A ⊂ VT d+1:∑

t∈↑A
T (t) ≤

∑
t∈↑εA

T ′(t) + ε ≤
∑

t∈↑ε′A
T ′(t) + ε ≤

∑
t∈↑ε′A

T ′(t) + ε′.

Proposition 4.1.1.2. For all d ∈ N and ε, ε′ ≥ 0 we have �d,ε · �d,ε′⊂�d,ε+ε′ and
�vd,ε · �vd,ε′⊂�vd,ε+ε′.

Proof. We reason by induction on d, and the result is immediate when d = 0 or
for value trees.
The result on value trees gives that for all A ⊂ VT d+1 we have ↑ε′↑ε A ⊂↑ε+ε′ A.

Then if T �d+1,ε T
′ and T ′ �d+1,ε′ T

′′ we have for all A ⊂ VT d+1:∑
t∈↑A

T (t) ≤
∑
t∈↑εA

T ′(t) + ε ≤
∑

t∈↑ε′↑εA
T ′′(t) + ε+ ε′ ≤

∑
t∈↑ε+ε′A

T ′′(t) + ε+ ε′.

Proposition 4.1.1.3. For all d ∈ N, �d and �vd are orders.

Proof. We reason by induction on d. If d = 0 the result is immediate, and we
easily deduce that �vd+1 is an order from the fact that �d is an order.
�d+1 is trivially reflexive, and we proved that �d+1,0 · �d+1,0⊂�d+1,0+0, i.e. �d+1

is transitive.
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If T �d+1 T
′ and T ′ �d+1 T then ∑t∈↑A T (t) = ∑

t∈↑A T
′(t) for all A ⊂ VT d+1.

In particular given a value tree t ∈ VT d+1 we have that ↑ {t} = {t′ | t �d+1 t
′}

and ↑ {t′ | t �d+1 t
′ and t 6= t′} = {t′ | t �d+1 t

′ and t 6= t′}, so∑
t�d+1t′ T (t′) = ∑

t�d+1t′ T ′(t′)∑
t�d+1t′ and t6=t′ T (t′) = ∑

t�d+1t′ and t6=t′ T ′(t′)
T (t) = T ′(t)

�d+1 is antisymmetric.

Lemma 4.1.1.4. For all d ∈ N and ε ≥ 0 we have T �d,ε T ′ if and only if for all
finite A ⊂f VT d ∑

t∈↑A
T (t) ≤

∑
t∈↑εA

T ′(t) + ε.

Proof. We just need to observe that for any tree T ∈ PT d all the sums ∑t∈↑εA T (t)
for A ⊂ VT d can be recovered from the sums ∑t∈↑εA T (t) for finite A.
Indeed if A ⊂ VT d then we have ∑t∈↑εA T (t) = supB⊂f↑εA

∑
t∈B T (t), and for all

finite B ⊂f↑ε A there is B′ ⊂f A such that B ⊂↑ε B′. Thus∑
t∈↑εA T (t) = supB′⊂fA

∑
t∈↑εB T (t).

Proposition 4.1.1.5. Given two trees T and T ′ in PT d, if for all ε > 0 we have
T �d,ε T ′ then T �d T ′.

Proof. We prove this, as well as the corresponding result for value trees, by induc-
tion on d. As usual the result is immediate when d = 0 or for value trees.
We know that if ε ≤ ε′ then for all A ⊂ VT d+1 we have ↑ε A ⊂↑ε′ A. This means

that for a fixed ε > 0 we have for all A ⊂ VT d+1 and for all ε′ > 0 with ε′ ≤ ε:∑
t∈↑A

T (t) ≤
∑

t∈↑ε′A
T ′(t) + ε′ ≤

∑
t∈↑εA

T ′(t) + ε′

hence ∑t∈↑A T (t) ≤ ∑t∈↑εA T
′(t). As ↑ε A decreases with ε we get∑
t∈↑A

T (t) ≤
∑

t∈
⋂
ε>0↑εA

T ′(t).

We want to prove that for all A ⊂ VT d+1 we have ⋂ε>0 ↑ε A =↑ A. We actually
only need to prove this when A is finite. In this case for any t ∈ ⋂ε>0 ↑ε A there is
t′ ∈ A such that t′ �vd+1,ε t for arbitrary small ε > 0, hence t′ �vd+1,ε t for all ε > 0.
Then by induction hypothesis t′ �vd+1 t and t ∈↑ A.

We have the results we need on �d,ε and �vd,ε to prove that a tree is the supre-
mum of a sequence.

Proposition 4.1.1.6. Given a sequence (Tn) and a tree T in PT d, if

• for all n ∈ N, Tn �d T

• and for all ε > 0 there is n such that T �d,ε Tn
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then T = supn Tn for �d.

Proof. We have to prove that if T ′ ∈ PT d is such that Tn �d T ′ for all n then
T �d T ′. Given such a T ′ we have for all ε > 0 that T �d,ε Tn �d T ′ for some n,
hence T �d,ε T ′, and according to the previous result T �d T ′.

4.1.2 Böhm trees as a supremum

To use this result with local Böhm trees let us first show that the complete left
reduction of a term gives an increasing sequence of local Böhm trees bounded
by its Böhm tree.

Proposition 4.1.2.1. If M is a canonical term and M →βc N then for all d ∈ N,
ptd(M) �d ptd(N).

Proof. We prove this, as well as the corresponding result for head normal values,
by induction on d. If d = 0 the result is immediate.
If h = λx1...xn.y P1 ... Pm is a head normal value and h→βc h

′ then
h′ = λx1...xn.y Q1 ... Qm with Pi →?

βc Qi for all i ≤ m. By induction hypothesis
or reflexivity we have ptd(Pi) �d ptd(Qi) for i ≤ m, and vtd+1(h) �vd+1 vtd+1(h′).
If M is a canonical term we reason by induction on it.

• If M = M1 +p M2 then ptd+1(M) = p.ptd+1(M1) + (1 − p)ptd+1(M2) and
N = N1 +p N2 with Mi →?

βc Ni for i ∈ {1; 2}. By induction hypothesis
ptd+1(Mi) �d+1 ptd+1(Ni) for i ∈ {1; 2} so ptd+1(M) �d+1 ptd+1(N).

• If M = h is a head normal value then N = h′ is also a head normal value
and we know that vtd+1(h) �vd+1 vtd+1(h′). Then for all A ⊂ VT d+1 ei-
ther vtd+1(h) /∈↑ A and ∑t∈↑A ptd+1(M)(t) = 0, or vtd+1(h) ∈↑ A but then
necessarily vtd+1(h′) ∈↑ A and ∑t∈↑A ptd+1(M)(t) = ∑

t∈↑A ptd+1(N)(t) = 1.

• IfM is a value but not in head normal form then ptd+1(M) = 0 so necessarily
ptd+1(M) �d+1 ptd+1(N).

Proposition 4.1.2.2. For every canonical term M and every d ∈ N we have
ptd(M) �d PT d(M).

Proof. We prove this and the corresponding result for value trees by induction on
d. The result is immediate if d = 0 and for value trees.
Given a canonical term M we reason by induction on M .

• If M is a sum the result is immediate by induction hypothesis.

• If M is a head normal value h then we have vtd+1(h) �vd+1 VT d+1(h) so
ptd+1(M) �d+1 PT d+1(M).

• If M is a value but not head normal then ptd+1(M) = 0 �d+1 PT d+1(M).
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For any term M the tree PT d(M) is an upper bound for (ptd(Lk(M))). To
prove it is the least one we introduce a notion of normal form up to ε > 0.

Definition 4.1.2.1. The sets NFd,ε of canonical d, ε-normal forms and NFvd,ε of
d, ε-normal values are defined for d ∈ N and ε ≥ 0 by

NFv0,ε = {v value}
NFvd+1,ε = {λx1...xn.y P1 ... Pm | ∀i ≤ m,Pi ∈ NFd,ε}

NFd,ε =
{∑

i

pi.vi +
(

1−
∑
i

pi

)
.M | vi ∈ NFvd,ε and

(
1−

∑
i

pi

)
.P⇓(M) ≤ ε

}

Proposition 4.1.2.3. If M is a d, ε-normal form then PT d(M) �d,ε ptd(M).

Proof. We prove this and the corresponding result for values by induction on d.
The result is immediate when d = 0 and for values.
Given M ≡syn

∑
i pi.hi + (1−∑i pi) .P ∈ NFd+1,ε with hi ∈ NFvd+1,ε for all

i and (1−∑i pi) .P⇓(P ) ≤ ε then for all A ⊂ VT d+1 we have for all i that if
VT d+1(hi) ∈↑ A then vtd+1(hi) ∈↑ε A. Hence

∑
t∈↑A

PT d+1(M)(t)−
∑
t∈↑εA

ptd+1(M)(t) ≤
(

1−
∑
i

pi

) ∑
t∈↑A

PT d+1(P ).

We know that ∑t∈VT d+1 PT d+1(P ) = P⇓(P ) so (1−∑i pi)
∑
t∈↑A PT d+1(P ) ≤ ε

and ∑
t∈↑A

PT d+1(M)(t) ≤
∑
t∈↑εA

ptd+1(M)(t) + ε.

Proposition 4.1.2.4. For all d ∈ N and all ε > 0, for all M there is k ∈ N such
that Lk(M) ∈ NFd,ε.

Proof. By induction on d, trivial for d = 0.
Given any canonical term M there exist k0 ∈ N and head normal values hi such

that Hk0(M) ≡syn
∑
i pi.hi + (1−∑i pi) .P with (1−∑i pi) .P⇓(P ) ≤ ε.

Let hi = λx1...xni .yi Pi,1 ... Pi,mi , by induction hypothesis there are ki,1,...,ki,mi
such that Lki,j(Pi,j) ∈ NFd,ε for all i and j ≤ mi. But NFd,ε is stable by β-reduction
so let k = k0 + maxi,j≤mi ki,j, we have Lk(M) ∈ NFd+1,ε.

Corollary 4.1.2.5. For all d ∈ N and ε > 0, for all M there is k such that
PT d(M) �d,ε ptd(Lk(M)).

Proof. If Lk(M) is a d, ε-normal form then PT d(M) = PT d(Lk(M)) �d,ε ptd(Lk(M)).
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Corollary 4.1.2.6. For all d ∈ N and all term M we have

PT d(M) = sup
k∈N

ptd(Lk(M)).

This result is very useful to prove that two terms have the same Böhm tree,
as the Böhm tree at depth d of a term M is entirely defined by the sequence
ptd(Lk(M))

Proposition 4.1.2.7. Given any two terms M and N and any d ∈ N, we have
that PT d(M) �d PT d(N) if and only if for all k ∈ N and ε > 0 there is k′ ∈ N
such that ptd(Lk(M)) �d,ε ptd(Lk

′(N)).

Proof. If PT d(M) �d PT d(N) then for all k we have ptd(Lk(M)) �d PT d(N), and
for all ε > 0 there is k′ such that PT d(N) �d,ε ptd(Lk

′(N)).
Conversely for all ε > 0 there is k such that PT d(M) �d,ε ptd(Lk(M)), so

by hypothesis there is k′ such that PT d(M) �d,2ε ptd(Lk
′(N)). We know that

ptd(Lk
′(N)) �d PT d(N) so PT d(M) �d,2ε PT d(N), hence PT d(M) �d PT d(N).

To compare the Böhm trees of two terms it is sufficient to compare the local
Böhm trees of their complete left reductions.

All these results are for non extensional Böhm trees, but they also extend to
infinitely extensional ones. The proofs are exactly the same so we will simply
give the definitions of the order and state the final results.

Definition 4.1.2.2. The relation �ηd,ε on PT
η
d and �vηd,ε on VT

η
d are defined for

d ∈ N and ε ≥ 0 by:

∀n ∈ N∗, Tn �ηd,ε T ′n
(y, (Tn)) �vηd+1,ε (y, (T ′n))

∀A ⊂ VT ηd,
∑
t∈↑A T (t) ≤ ∑t∈↑εA T

′(t) + ε

T �ηd,ε T ′

where ↑ε A = {t ∈ VT ηd | ∃t′ ∈ A : t′ �vηd,ε t} and ↑ A =↑0 A. We also define
�ηd=�

η
d,0 and �vηd =�vηd,0.

Proposition 4.1.2.8. For all d ∈ N, �ηd and �vηd are orders.

Proposition 4.1.2.9. For all d ∈ N and all term M we have

PT η
d(M) = sup

k∈N
ptηd(Lk(M)).

Proposition 4.1.2.10. Given two terms M and N and given d ∈ N, we have
PT η

d(M) �ηd PT η
d(N) if and only if for all k ∈ N and ε > 0 there is k′ ∈ N such

that ptηd(Lk(M)) �ηd,ε ptηd(Lk
′(N)).
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4.2 Böhm trees as a model

4.2.1 Warming up: the non extensional trees

Proving that the Böhm tree equality is contextual is not easy. To understand
where the problem lies, and how to solve it, let us consider a similar but more
simple example.

Let us consider the equivalence on deterministic term such that two normal-
izable terms are equivalent if they have the same normal form, and two non
normalizable terms are equivalent. It is not immediate that this equivalence is
contextual: if M and M ′ both normalize into N then given a context C we know
that C[M ] and C[M ′] both reduce to C[N ], but C[N ] itself is not necessarily nor-
mal. We need to say that if C[M ] or C[M ′] is normalizable then so is C[N ], and
then both C[M ] and C[M ′] reduce into the normal form of C[N ].

The Böhm tree equality is a refinement of this equivalence. Instead of checking
whether a term is normalizable we only check whether it is head normalizable,
and if two term are head normalizable then we compare inductively their sub-
terms. The problem is that by doing so we leave the realm of terms: while a
normal form is still a term, a Böhm tree is an infinite object. Thus if M and M ′

have the same Böhm tree T then given a context C we can not directly say that
the terms C[M ] and C[M ′] are related to some object C[T ], which would have
the same Böhm tree as C[M ] and C[M ′].

A solution is to define operations of abstraction and application on Böhm trees,
so that C[T ] is actually defined as a tree. This is how Barendregt proves that
Böhm trees form a model [1]. We did not try to extend these definitions to
probabilistic trees.

We can also observe that to define our first equivalence on normalizable terms,
we actually do not need to consider normal forms. Indeed we know that two
normalizable terms M and M ′ have the same normal form if and only if they
both reduce into a same term P , regardless of whether P is normal or not. Then
for any context C, if C[M ] and C[M ′] both reduce into C[P ] they are equivalent.

We can perform the same trick with Böhm trees. We can give a characterization
of the Böhm tree equality which can be easily proven contextual if we forget that
Böhm trees are supposed to be normal forms.

The Böhm tree equality is based on two ideas. First this is a sensible equality:
all unsolvable terms have the same Böhm tree. Secondly we have a notion of
depth and we say that two terms have the same Böhm tree when their differences
can be pushed at arbitrary large depth. To these two ideas will correspond two
relations on terms. The sensibility is given by the relations =Ω on deterministic
terms and =s

Ω,ε on probabilistic terms we define in the section 3.2. We also define
a relation of equality up to a finite depth.

Definition 4.2.1.1. The relation ∼d of equality up to depth d for d ∈ N is given
by

M ∼0 N x ∼d+1 x
M ∼d+1 N

λx.M ∼d+1 λx.N
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M ∼d+1 N M ′ ∼d N ′
M M ′ ∼d+1 N N ′

M1 ∼d+1 N1 M2 ∼d+1 N2
M1 +pM2 ∼d+1 N1 +p N2

In the most simple case, i.e. for non extensional deterministic trees, we can
prove that given two deterministic terms M and N we have

M =B N if and only if ∀d ∈ N,M �β · ∼d · =Ω · ∼d ·�β N.

It is easy to prove that if two terms have the same Böhm tree then this relation
holds.

Proposition 4.2.1.1. Given two deterministic terms M and N , if M =B N then

∀d ∈ N,M �β · ∼d · =Ω · ∼d ·�β N.

Proof. For all d ∈ N the proposition 4.1.0.1 and its proof give that for k ∈ N large
enough we have BT d(M) = btd(Lk(M)), hence for k large enough we have both
BT d(M) = btd(Lk(M)) and BT d(N) = btd(Lk(N)). Then if M =B N we have
btd(Lk(M)) = btd(Lk(N)).
From there we can prove by induction on Lk(M) that Lk(M) ∼d · =Ω Lk(N).

Conversely we want to prove that if this relation holds between two determin-
istic terms M and N then they have the same Böhm tree. To achieve this we
will use the fact that the Böhm tree of a term is the limit of the local Böhm trees
of its complete left reductions. So first we prove that this relation is stable by
complete left reduction.

Proposition 4.2.1.2. Given d ∈ N and terms M , N , P and Q, if M ∼d N and
P ∼d Q then M

[
P/x

]
∼d N

[
Q/x

]
.

Proof. By induction on M ∼d N .

• If d = 0 then M
[
P/x

]
∼0 N

[
Q/x

]
.

• If M = N = x then by hypothesis P ∼d+1 Q.

• If M = N = y 6= x then M
[
P/x

]
= N

[
Q/x

]
= y.

• If M = λy.M ′ and N = λy.N ′ then M
[
P/x

]
= λy.

(
M ′

[
P/x

])
and

N
[
Q/x

]
= λy.

(
N ′
[
Q/x

])
so we conclude by induction hypothesis on M ′

and N ′.

• Similarly if M and N are applications or sums the result is immediate by
induction hypothesis.

Proposition 4.2.1.3. For any d ∈ N, ifM and N are canonical (or deterministic)
terms and M ∼d+1 N then L(M) ∼d L(N).
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Proof. The intuition is that when we perform a reduction (λx.P ) Q→β P
[
Q/x

]
,

we take the argument Q at depth 1 and we substitute it in P , so at most at depth
0. Thus the depth of the subterms decreases of at most 1 when we perform a
β-reduction.
Formally we prove the result by induction on M .

• If M = M1 +pM2 then N = N1 +p N2 with Mi ∼d+1 Ni for i ∈ {1; 2} so by
induction hypothesis L(Mi) ∼d L(Ni) and L(M) ∼d L(N).

• If M = λx1...xn.y P1 ... Pm then N = λx1...xn.y Q1 ... Qm with Pi ∼d Qi for
i ≤ m. Then either d = 0 and L(M) ∼0 L(N), or by induction hypothesis
we have L(Pi) ∼d−1 L(Qi) for i ≤ m and L(M) ∼d L(N).

• If M = λx1...xn.(λy.M0) P R1 ... Rm then N = λx1...xn.(λy.N0) Q S1 ... Sm
with M0 ∼d+1 N0, P ∼d Q and Ri ∼d Si for i ≤ m. Then M0 ∼d N0 and

L(M) = λx1...xn.M0
[
P/y

]
R1 ... Rm ∼d λx1...xn.N0

[
Q/y

]
S1 ... Sm = L(N).

Proposition 4.2.1.4. Given two deterministic terms M and N , if M =Ω N then
L(M) =Ω L(N).

Proof. First we can prove by an easy induction on a term M that if M =Ω N and
P =Ω Q then M

[
P/x

]
=Ω N

[
Q/x

]
. Indeed if M is unsolvable then M

[
P/x

]
is

unsolvable.
Then the result is given by an easy induction on M . The only non trivial case is

when M = λx1...xn.(λy.M0) P R1 ... Rm, in which case either M and N are both
unsolvable (and so are L(M) and L(N)) or N = λx1...xn.(λy.N0) Q S1 ... Sm with
M0 =Ω N0, P =Ω Q and Ri =Ω Si for i ≤ m.

The proposition 2.2.2.8 gives that the β-reduction commutes with the com-
plete left reduction so we have the following result.

Corollary 4.2.1.5. If M and N are deterministic terms and for all d ∈ N we
have

M �β · ∼d · =Ω · ∼d ·�β N

then for all k ∈ N and d ∈ N we have

Lk(M) �β · ∼d · =Ω · ∼d ·�β Lk(N).

Proof. For all d and k, if

M �β · ∼d+k · =Ω · ∼d+k ·�β N

then
Lk(M) �β · ∼d · =Ω · ∼d ·�β Lk(N).
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Next we can see that the relations ∼d and =Ω preserve local Böhm trees.

Proposition 4.2.1.6. For all d ∈ N, given two deterministic terms M and N
such that M ∼d N we have

btd(M) = btd(N) and btηd(M) = btηd(N).

Given two canonical terms M and N such that M ∼d N we have

ptd(M) = ptd(N) and ptηd(M) = ptηd(N).

Proof. By a simple induction on the structure of the terms. For instance for
canonical terms such that M ∼d+1 N we have

• M = M1 +p M2 and N = N1 +p N2 with Mi ∼d+1 Ni for i ∈ {1; 2} and we
get the result by induction hypothesis;

• or M = λx1...xn.y P1 ... Pm and N = λx1...xn.y Q1 ... Qm with Pi ∼d Qi for
i ≤ m and we apply the induction hypothesis to the Pi’s and Qi’s;

• or M = λx1...xn.(λy.M0) P1 ... Pm and N = λx1...xn.(λy.N0) Q1 ... Qm with
m > 0 in which case ptd(M) = ptd(N) = 0 and ptηd(M) = ptηd(N) = 0.

Proposition 4.2.1.7. Given deterministic terms M and N such that M =Ω N
we have for all d ∈ N

btd(M) = btd(N) and btηd(M) = btηd(N).

Proof. By a very simple induction on the terms.

We have all the results we need to conclude.

Proposition 4.2.1.8. Given two deterministic terms M and N , if

∀d ∈ N,M �β · ∼d · =Ω · ∼d ·�β N

then M =B N .

Proof. We know that given d ∈ N, for k big enough we have BT d(M) = btd(Lk(M))
and BT d(N) = btd(Lk(N)). Then there are terms P and Q such that

Lk(M) �β P ∼d · =Ω · ∼d Q�β Lk(N).

According to the previous results btd(P ) = btd(Q). Besides we have

BT d(M) = btd(Lk(M)) �d btd(P ) �d BT d(P ) = BT d(M)

so btd(P ) = BT d(M) and similarly btd(Q) = BT d(N).
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Corollary 4.2.1.9. For deterministic terms M and N ,

M =B N if and only if ∀d ∈ N,M �β · ∼d · =Ω · ∼d ·�β N.

Theorem 4.2.1.10. The relation =B is a λ-theory.

Proof. We mentioned before it is an equivalence stable by β, and we want to prove
it is contextual.
Given a context C, we can prove by an easy induction on C that ifM ∼d N then

C[M ] ∼d C[N ]. Moreover the β-reduction and the equality =Ω are both stable by
context so if

M �β · ∼d · =Ω · ∼d ·�β N

then
C[M ] �β · ∼d · =Ω · ∼d ·�β C[N ].

Generalizing this result to probabilistic trees is very simple. The proof has
exactly the same structure, and the only part we need to change is the relation
=Ω, as the notion of sensibility is quite different in the probabilistic case. We use
instead the relation =s,c

Ω,ε.

Proposition 4.2.1.11. Given M and N such that PT d(M) = PT d(N), for all
ε > 0 we have

M �β/≡ · ∼d · =
s,c
Ω,ε · ∼d ·�β/≡ N.

Proof. We reason by induction on d. If d = 0 the result is immediate.
Otherwise if h = λx1...xn.y P1 ... Pm and h′ = λx1...xn.y Q1 ... Qm are head

normal values such that VT d+1(h) = VT d+1(h′) then for all i ≤ m we have
PT d(Pi) = PT d(Qi) so by induction hypothesis there are terms P ′i , P ′′i , Q′i and
Q′′i such that

Pi �β/≡ P ′i ∼d P ′′i =s,c
Ω,ε Q

′′
i ∼d Q′i �β/≡ Qi

and we have

h�β/≡ λ−→x 1...n.y
−→
P ′1...m

∼d+1 λ
−→x 1...n.y

−→
P ′′1...m

=s,v
Ω,ε λ
−→x 1...n.y

−→
Q′′1...m

∼d+1 λ
−→x 1...n.y

−→
Q′1...m �β/≡ h′.

In general, given any term M and ε > 0 we can find finitely many value trees
t1,...,tk such that ∑t∈VT d+1\{t1,...,tk} PT d+1(M)(t) ≤ ε. Then we have a reduction

M �β/≡
k∑
i=1

∑
j

pi,j.hi,j +
1−

k∑
i=1

∑
j

pi,j

 .M ′
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such that the hi,j’s are head normal values and for all i ≤ k and all j we have
VT d+1(hi,j) = ti, and such that for all i ≤ k, ∑j pi,j = (1− ε)PT d+1(M)(ti).
Now if M and N are terms such that PT d+1(M) = PT d+1(N), for all ε > 0 we

can find such value trees t1,...tk, and we can get

M �β/≡
k∑
i=1

∑
j

pi,j.hi,j +
1−

k∑
i=1

∑
j

pi,j

 .M ′

N �β/≡
k∑
i=1

∑
j

pi,j.h
′
i,j +

1−
k∑
i=1

∑
j

pi,j

 .N ′
with VT d+1(hi,j) = VT d+1(h′i,j) = ti for all i ≤ k and all j, and with∑
j pi,j = (1− ε)PT d+1(M)(ti) for all i ≤ k.
Then we have1−

k∑
i=1

∑
j

pi,j

P⇓(M ′) =
∑

t∈VT d+1\{t1,...,tk}
PT d+1(M)(t) + ε

k∑
i=1

PT d+1(M)(ti)

≤ 2ε1−
k∑
i=1

∑
j

pi,j

P⇓(N ′) =
∑

t∈VT d+1\{t1,...,tk}
PT d+1(N)(t) + ε

k∑
i=1

PT d+1(N)(ti)

≤ 2ε.

Besides we proved that for all i ≤ k and all j we have

hi,j �β/≡ · ∼d+1 · =s,v
Ω,2ε · ∼d+1 ·�β/≡ h′i,j.

Hence
M �β/≡ · ∼d+1 · =s,c

Ω,2ε · ∼d+1 ·�β/≡ N.

Now as before we check that the relation =s,c
Ω,ε is preserved by complete left

reduction.

Proposition 4.2.1.12. Given ε, ε′, δ ≥ 0, given probabilistic terms M , N , P and
Q such that M =s

Ω,ε,ε′ N and P =s
Ω,δ Q, we have M

[
P/x

]
=s

Ω,ε+δ,ε′+δ N
[
Q/x

]
.

Proof. We reason by induction on =s
Ω,ε,ε′ .

• If M =s
Ω,ε,ε′ N with P⇓(M) ≤ ε′ and P⇓(N) ≤ ε′ then P⇓

(
M
[
P/x

])
≤ ε′

and P⇓
(
N
[
Q/x

])
≤ ε′.

• If x =s
Ω,ε,ε′ x then P =s

Ω,δ,δ Q so P =s
Ω,ε+δ,ε′+δ Q.

• If y =s
Ω,ε,ε′ y with y 6= x then y =s

Ω,ε+δ,ε′+δ y.
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• If λy.M =s
Ω,ε,ε′ λy.N with M =s

Ω,ε,ε′ N then by induction hypothesis
M
[
P/x

]
=s

Ω,ε+δ,ε′+δ N
[
Q/x

]
so

λy.
(
M
[
P/x

])
=s

Ω,ε+δ,ε′+δ λy.
(
N
[
Q/x

])
.

• If M M ′ =s
Ω,ε,ε′ N N ′ with M =s

Ω,ε,ε′ N and M ′ =s
Ω,ε,ε N

′ then by induction
hypothesis M

[
P/x

]
=s

Ω,ε+δ,ε′+δ N
[
Q/x

]
and M ′

[
P/x

]
=s

Ω,ε+δ,ε+δ N
′
[
Q/x

]
so (

M
[
P/x

]) (
M ′

[
P/x

])
=s

Ω,ε+δ,ε′+δ

(
N
[
Q/x

]) (
N ′
[
Q/x

])
.

• If M1 +p M2 =s
Ω,ε,pε1+(1−p)ε2 N1 +p N2 with Mi =s

Ω,ε,εi Ni for i ∈ {1; 2} then
again the result is immediate by induction hypothesis.

Corollary 4.2.1.13. Given values v and w and canonical terms P and Q, if
v =s,v

Ω,ε w and P =s,c
Ω,ε Q then v

[
P/x

]
=s

Ω,2ε w
[
Q/x

]
.

Proposition 4.2.1.14. If M =s,c
Ω,ε,ε′ N then L(M) =s,c

Ω,2ε,ε+ε′ L(N).

Proof. We prove this result and that if v =s,v
Ω,ε w then L(v) =s,c

Ω,2ε,2ε L(w) by induc-
tion on M =s,c

Ω,ε,ε′ N .

• If P⇓(M),P⇓(N) ≤ ε′ then P⇓(L(M)),P⇓(L(N)) ≤ ε′.

• If M = M1 +p M2 and N = N1 +p N2 with Mi =s,c
Ω,ε,εi Ni for i ∈ {1; 2} and

pε1 + (1 − p)ε2 = ε′ then by induction hypothesis L(Mi) =s,c
Ω,2ε,ε+εi L(Ni) for

i ∈ {1; 2} and L(M) =s,c
Ω,2ε,ε+pε1+(1−p)ε2 L(Ni).

• If M and N are values such that M =s,v
Ω,ε N then by induction hypothesis

L(M) =s,v
Ω,2ε L(N) and L(M) =s,c

Ω,2ε,ε+ε′ L(N).

• If
v = λx1...xn.y P1 ... Pm =s,v

Ω,ε λx1...xn.y Q1 ... Qm = w

with Pi =s,c
Ω,ε Qi for i ≤ m then by induction hypothesis L(Pi) =s,c

Ω,2ε,2ε L(Qi)
for i ≤ m and L(v) =s,v

Ω,2ε L(w).

• If

v = λx1...xn.(λy.v0) P R1 ... Rm =s,v
Ω,ε λx1...xn.(λy.w0) Q S1 ... Sm = w

with v0 =s,v
Ω,ε w0, P =s,c

Ω,εQ and Ri =s,c
Ω,ε Si for i ≤ m then

L(v) = can
(
λx1...xn.v0

[
P/y

]
R1 ... Rm

)
L(w) =

(
λx1...xn.w0

[
Q/y

]
S1 ... Sm

)
.
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The previous corollary gives v′
[
P1/y

]
=s

Ω,2ε w
′
[
Q1/y

]
, thus

λx1...xn.v
′
[
P1/y

]
P2 ... Pm =s

Ω,2ε λx1...xn.w
′
[
Q1/y

]
Q2 ... Qm.

Then the proposition 3.2.2.7 gives L(v) =s,c
Ω,2ε L(w).

Corollary 4.2.1.15. If M =s,c
Ω,ε N then L(M) =s,c

Ω,2ε L(N).

Corollary 4.2.1.16. Given two terms M and N , if for all d ∈ N and ε > 0 we
have

M �β/≡ · ∼d · =
s,c
Ω,ε · ∼d ·�β/≡ N

then for all k ∈ N, d ∈ N and ε > 0 we have

Lk(M) �β/≡ · ∼d · =
s,c
Ω,ε · ∼d ·�β/≡ Lk(N).

The relation =s,c
Ω,ε does not preserve local Böhm trees, but we can relate it to

the approximate ordering �d,ε.

Proposition 4.2.1.17. Given canonical terms M and N and ε ≥ 0, if M =s,c
Ω,ε N

then for all d ∈ N, ptd(M) �d,ε ptd(N).

Proof. We reason by induction on d, immediate when d = 0.
Given two values v and w with v =s,v

Ω,ε w, if v or w is head normal then they are
both head normal, so we can write v = λx1...xn.y P1 ... Pm and
w = λx1...xn.y Q1 ... Qm with Pi =s,c

Ω,ε Qi for all i ≤ m. Then by induction
hypothesis ptd(Pi) �d,ε ptd(Qi) so vtd+1(v) �vd+1,ε vtd+1(w).
Now if M =s,c

Ω,ε N we have

M ≡syn
∑
i

pi.vi +
(

1−
∑
i

pi

)
.M ′

N ≡syn
∑
i

pi.wi +
(

1−
∑
i

pi

)
.N ′

with (1−∑i pi)P⇓(M ′), (1−∑i pi)P⇓(N ′) ≤ ε and vi =s,v
Ω,ε wi for all i.

Then for all A ⊂ VT d+1, if vi is a head normal form and vtd+1(vi) ∈↑ A then
from vtd+1(vi) �vd,ε vtd+1(wi) we deduce vtd+1(wi) ∈↑ε A. Thus∑

t∈↑A
ptd+1(M)(t) ≤

∑
i s.t.vtd+1(vi)∈↑A

pi + ε

≤
∑

i s.t.vtd+1(wi)∈↑εA
pi + ε

≤
∑
t∈↑εA

ptd+1(N)(t) + ε.
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With these results we can prove that our relation does describe the probabilis-
tic Böhm tree equality.

Proposition 4.2.1.18. If for all d ∈ N and ε > 0

M �β/≡ · ∼d · =
s,c
Ω,ε · ∼d ·�β/≡ N

then M =PB N .

Proof. We know that for all d ∈ N and all ε > 0 there is k ∈ N such that
PT d(M) �d,ε ptd(Lk(M)). Then we know there are terms Q, Q′, R and R′ such
that

Lk(M) �β/≡ Q ∼d R =s,c
Ω,ε R

′ ∼d Q′ �β/≡ Lk(N).

We proved that ptd(Q) = ptd(R) and ptd(R′) = ptd(Q′), and the previous result
gives that ptd(R) �d,ε ptd(R′). Besides we know that ptd(Lk(M)) �d ptd(Q) and
ptd(Q′) �d PT d(Q′) = PT d(N). To sum up:

PT d(M) �d,εptd(Lk(M)) �d ptd(Q) = ptd(R)
�d,ε ptd(R′) = ptd(Q′) �d PT d(Q′) = PT d(N).

For all d ∈ N and all ε > 0, we have PT d(M) �d,2ε PT d(N), so we have
PT d(M) �d PT d(N). By symmetry PT d(N) �d PT d(M), and by antisymme-
try PT d(M) = PT d(N).

Theorem 4.2.1.19. The relation =PB is a λ-theory.

Proof. We proved that M =PB N if and only if

∀d ∈ N, ∀ε > 0,M �β/≡ · ∼d · =
s,c
Ω,ε · ∼d ·�β/≡ N

and this relation is contextual.

4.2.2 Introducing in�nite extensionality

The technique we used to prove the contextuality of =B and =PB can be adapted
to the infinitely extensional cases, but we need to use more complex and less
straightforward relations. For that reason we will not deal with the deterministic
case first, but we will directly consider the probabilistic trees.

To compare extensional trees it may be natural to use the η-expansion: two
Böhm trees of finite depth are equal up to infinite extensionality if they have a
common η-expansion. But we do not necessarily have ptηd(M) �ηd ptηd(λx.M x),
so this relation does not fit well in our technique. The η-contraction is better
behaved, as we do have ptηd(λx.M x) �ηd ptηd(M).

We actually use a reduction which mixes the β-reduction modulo ≡, the rela-
tion ∼d and the η-contraction.
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Definition 4.2.2.1. The relation →ηd is defined inductively for d ∈ N by

M →η0 N

∀ε > 0,M �β/≡ M0 +1−εM
′ with M0 →ηd+1 N

M →ηd+1 N

M1 →ηd+1 N M2 →ηd+1 N

M1 +pM2 →ηd+1 N

M →ηd+1 N ∀i, zi /∈ FV(M) ∪ FV(N) ∪ {zj | j 6= i} ∀i,PT η
d(Zi) = zi

λ−→z 1...k.M
−→
Z 1...k →ηd+1 N

x→ηd+1 x
M →ηd+1 N

λx.M →ηd+1 λx.N

M →ηd+1 N M ′ →ηd N
′

M M ′ →ηd+1 N N ′
M1 →ηd+1 N1 M2 →ηd+1 N2

M1 +pM2 →ηd+1 N1 +p N2

Proposition 4.2.2.1. If M →ηd+1 N then M →ηd N .

Proof. Immediate by induction on M →ηd N .

Proposition 4.2.2.2. If M �β/≡ · →ηd N then M →ηd N .

Proof. If M �β/≡ P with P →ηd N then for all ε > 0, M �β/≡ P +1−ε P .

Proposition 4.2.2.3. If PT η
d(X) = x then X →ηd x.

Proof. If d = 0 then X →η0 x.
Otherwise if h is a head normal value with VT η

d+1(h) = x then h = λ−→z 1...k.x
−→
Z 1...k

where the variables zi are pairwise distinct and distinct from x, and PT η
d(Zi) = zi

for all i ≤ k. Hence h→ηd+1 x.
Now if PT η

d+1(X) = x then for all ε > 0 we have X �β/≡
∑
i pi.hi +1−εX

′ with
VT η

d+1(hi) = x for all i, hence ∑i pi.hi →ηd+1 x.

To characterize the infinitely extensional probabilistic Böhm tree equality it
appears that the usual η-contraction is not enough. Indeed the η-contraction
involves the notion of free variables. Given a term and a variable, we can ask
whether the variable is free in the term, but we can also ask whether it is free in
its Böhm tree, and the two answers do not necessarily coincide. A very simple
example is M = (λy.z) x: the variable x is free in M but M →β z and x is not
free in the Böhm tree of M . A more subtle example is M = Θ (λf.λy.z (f y)) x:
we have M �β z M and x is free in every reduct of M , but it is not free in
its Böhm tree. What happens is that when we reduce M the variable x is being
pushed down, so it is always free but it appears at infinitely increasing depth.
With probabilities a third case arises, where the variable is not pushed down
but appears with a decreasing probability: if M = Θ (λf.λy.0 + 1

2
f y) x then

M �βc 0 + 1
2
M and x is always free at a constant depth in the reducts of M but

not in its Böhm tree.
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Definition 4.2.2.2. The sets FVB(T ) of free variables in a tree T ∈ PT ηd and
FVv
B(t) of free variables in t ∈ VT ηd+1 are given by

FVB(T ) =
⋃

t s.t. T (t)6=0
FVv
B(t)

FVv
B(y, (Tn)) =

{y} ∪ ⋃
n≥1

FVB(Tn)
 \ {xd,1, xd,2, ...}.

The set of Böhm free variables at depth d of a termM is FVd
B(M) = FVB(PT η

d(M)),
and we write FVB(M) = ⋃

d∈N FVd
B(M).

This notion of free variables has good properties. We can prove some results
which support the intuition that variables which are not free in a term are irrel-
evant.

Proposition 4.2.2.4. If M is canonical and x /∈ FVB(M) then for all P we have

L
(
can

(
M
[
P/x

]))
=+ L(M)

[
P/x

]
.

Proof. By a simple induction on M .

Proposition 4.2.2.5. For all d ∈ N, if x /∈ FVd
B(M) then for any term P ,

ptηd(M) = ptηd
(
can

(
M
[
P/x

]))
.

Proof. To simplify we write ptηd
(
M
[
P/x

])
for ptηd

(
can

(
M
[
P/x

]))
.

We reason by induction on d. If d = 0 the result is immediate.
Otherwise if M is a value but it is not in head normal form then we have

ptηd+1(M) = ptηd+1

(
M
[
P/x

])
= 0.

If M is a head normal value h = λx1...xn.y Q1 ... Qm then y 6= x and
x /∈ FVd

B(Qi) for i ≤ m, so by induction hypothesis ptηd(Qi) = ptηd
(
Qi

[
P/x

])
and can

(
h
[
P/x

])
is a head normal value with vtηd+1(h) = vtηd+1

(
h
[
P/x

])
, hence

ptηd+1(M) = ptηd+1

(
M
[
P/x

])
.

Finally if M ≡ ∑i pi.vi then

ptηd+1(M) =
∑
i

pi.ptηd+1(vi) =
∑
i

pi.ptηd+1

(
vi
[
P/x

])
= ptηd+1

(
M
[
P/x

])
.

Corollary 4.2.2.6. For all d ∈ N, if x /∈ FVd
B(M) then for any term P ,

PT η
d(M) = PT η

d

(
M
[
P/x

])
.
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Proof. If x /∈ FVd
B(M) then L

(
M
[
P/x

])
= L(M)

[
P/x

]
. But we know that

PT η
d(L(M)) = PT η

d(M) so x /∈ FVd
B(L(M)), and we get by induction that for all

k ∈ N, Lk
(
M
[
P/x

])
= Lk(M)

[
P/x

]
. Then ptηd(Lk(M)) = ptηd

(
Lk
(
M
[
P/x

]))
,

hence PT η
d(M) = PT η

d

(
M
[
P/x

])
.

Proposition 4.2.2.7. If x /∈ FVB(M) then for any context C which does not
contain x, we have x /∈ FVB(C[M ]).

Proof. We based the definition of the Böhm free variables of a term on its infinitely
extensional Böhm tree, but we can observe that we can give an equivalent definition
on non extensional Böhm trees. In particular we have that if M =PB N then
FVB(M) = FVB(N), and if x /∈ FVB(M) then for all P , M =PB M

[
P/x

]
.

Then we can use the contextuality of the non extensional Böhm trees. If
x /∈ FVB(M) then there isM ′ withM =PB M ′ and x /∈ FV(M ′) (take for instance
M ′ = M

[
λx.x/x

]
), and then we have both x /∈ FV(C[M ′]) and C[M ′] =PB C[M ],

hence x /∈ FVB(C[M ′]).

We call the variables which are free in a term but not in its Böhm tree dummy
variables. We just proved that we can substitute any term to a dummy variable
without influencing the Böhm tree of a term.

Definition 4.2.2.3. The relation ≡dum is given by

M
{
P/x

}
≡dum M

{
Q/x

}
if x /∈ FVB(M)

closed by transitivity, where M
{
P/x

}
is the substitution of P for x in M with

binding of variables.

Proposition 4.2.2.8. ≡dum is contextual.

Proof. If M
{
P/x

}
≡dum M

{
Q/x

}
with x /∈ FVB(M), let C be a context, y a

fresh variable, we have C [M [y/x]]
{
P/y

}
= C

[
M
{
P/x

}]
and the proposition

4.2.2.7 gives y /∈ FVB (C [M [y/x]]). Then we have

C
[
M
{
P/x

}]
= C [M [y/x]]

{
P/y

}
≡dum C [M [y/x]]

{
Q/y

}
= C

[
M
{
Q/x

}]
.

To use the reduction→ηd in conjunction with ≡dum it is useful to prove that it
is stable by substitution.

Proposition 4.2.2.9. If M →ηd N and P →ηd Q then M
[
P/x

]
→ηd N

[
Q/x

]
.

Proof. By induction on M →ηd N .

• If M →η0 N then M
[
P/x

]
→η0 N

[
Q/x

]
.
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• If for all ε > 0,M �β/≡ M0+1−εM
′ withM0 →ηd+1 N then the substitutivity

of the β-reduction gives M
[
P/x

]
�β/≡ M0

[
P/x

]
+1−ε M

′
[
P/x

]
and by

induction hypothesis M0
[
P/x

]
→ηd+1 N

[
Q/x

]
. This holds for all ε > 0 so

M
[
P/x

]
→ηd+1 N

[
Q/x

]
.

• If M1 +p M2 →ηd+1 N with Mi →ηd+1 N for i ∈ {1; 2} then by induction
hypothesis Mi

[
P/x

]
→ηd+1 N

[
Q/x

]
and (M1 +pM2)

[
P/x

]
→ηd+1 N

[
Q/x

]
.

• If λ−→z 1...k.M
−→
Z 1...k →ηd+1 N with M →ηd+1 N then by induction hypothesis

M
[
P/x

]
→ηd+1 N

[
P/x

]
. Besides for all i ≤ k we have zi 6= x so x /∈ FVd

B(Zi)
and PT η

d

(
Zi
[
P/x

])
= PT η

d(Zi) = zi.

• If x→ηd+1 x then P →ηd+1 Q.

• If y →ηd+1 y with y 6= x then y
[
P/x

]
= y

[
Q/x

]
= y.

• The other cases are immediate by induction hypothesis.

We can use these relations to relate terms with the same infinitely extensional
probabilistic Böhm tree.

Proposition 4.2.2.10. If M =PBη N then for all d ∈ N and ε > 0 we have

M �β/≡ · ≡dum · →ηd · =
s,c
Ω,ε · ←ηd · ≡dum ·�β/≡ N.

Proof. We prove that if M and N are d, ε-normal forms and M =PBη N then

M ≡ · ≡dum · →ηd · =
s,c
Ω,2ε · ←ηd · ≡dum · ≡ N

from which we can deduce the proposition.
We reason by induction on d. If d = 0 the result is immediate.
Otherwise we can write

M ≡
∑
i

pi.hi +
(

1−
∑
i

pi

)
.M ′

N ≡
∑
i

pi.h
′
i +

(
1−

∑
i

pi

)
.N ′

where hi and h′i are d + 1, ε-normal values with VT η(hi) = VT η(h′i) for all i, and
(1−∑i pi)P⇓(M ′) ≤ 2ε, (1−∑i pi)P⇓(N ′) ≤ 2ε.
If h and h′ are d + 1, ε-normal values with VT η(h) = VT η(h′) then we have

w.l.o.g. h = λ−→x 1...n.y
−→
P 1...m and h′ = λ−→x 1...n+k.y

−→
Q 1...m

−→
X 1...k with
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PT η(Pi) = PT η(Qi) for all i ≤ m and PT η(Xi) = xn+i for all i ≤ k. By induction
hypothesis we have

Pi ≡ · ≡dum P ′i →ηd P
′′
i =s,c

Ω,2ε Q
′′
i ←ηd Q

′
i ≡dum · ≡ Qi

for all i ≤ m. Besides we have xn+j /∈ FV(Pi) for all j ≤ k and all i ≤ m,
so xn+j /∈ FVB(Pi) = FVB(Qi). Let I = λx.x (or any closed term), we have
Q′i ≡dum Q′i

[
I/xn+1

]
...
[
I/xn+k

]
, the proposition 4.2.2.9 gives

Q′i
[
I/xn+1

]
...
[
I/xn+k

]
→ηd Q

′′
i

[
I/xn+1

]
...
[
I/xn+k

]
and

P ′i
[
I/xn+1

]
...
[
I/xn+k

]
→ηd P

′′
i

[
I/xn+1

]
...
[
I/xn+k

]
with according to the proposition 4.2.1.12

P ′′i
[
I/xn+1

]
...
[
I/xn+k

]
=s,c

Ω,2ε Q
′′
i

[
I/xn+1

]
...
[
I/xn+k

]
.

This means that for all j ≤ k and i ≤ m we can assume that xn+j is not free in
P ′i , P ′′i , Q′′i and Q′i, hence

h ≡ · ≡dum · →ηd+1 λ
−→x 1...n.y

−→
P ′′1...m

h′ ≡ · ≡dum · →ηd+1 λ
−→x 1...n.y

−→
Q′′1...m

with
λ−→x 1...n.y

−→
P ′′1...m =s,v

Ω,2ε λ
−→x 1...n.y

−→
Q′′1...m.

From there we have

M ≡ · ≡dum · →ηd · =
s,c
Ω,2ε · ←ηd · ≡dum · ≡ N.

To prove the converse we prove that the relations ≡dum and→ηd are stable by
complete left reduction, and we study their influence on local Böhm trees. First
we can check that ≡dum has absolutely no influence on Böhm trees.

Proposition 4.2.2.11. If M ≡dum N then L(M) ≡dum L(N) and for all d ∈ N,
PT η

d(M) = PT η
d(N) and ptηd(M) = ptηd(N).

Proof. This is given by the propositions 4.2.2.4 and 4.2.2.5 and the corollary
4.2.2.6.

To deal with the reduction →ηd we begin by checking that, as most of our
relations, it is preserved by canonicalization.

Lemma 4.2.2.12. If M →ηd+1 N1 +p N2 then for all ε > 0 we have

M �β/≡ (M1 +pM2) +1−εM
′
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with Mi →ηd+1 Ni for i ∈ {1; 2}.

Proof. We reason by induction on M →ηd+1 N1 +p N2.

• If for all ε > 0 we have M �β/≡ M0 +1−εM
′ with M0 →ηd+1 N1 +p N2 then

by induction hypothesis M0 �β/≡ (M1 +p M2) +1−ε M
′′ with Mi →ηd+1 Ni

for i ∈ {1; 2}, thus

M �β/≡ (M1 +pM2) +(1−ε)2 (M ′ + 1
2−ε

M ′′).

• If M1 +q M2 →ηd+1 N1 +p N2 with Mi →ηd+1 N1 +p N2 for i ∈ {1; 2} then by
induction hypothesis for all ε > 0 we have Mi �β/≡ (Mi,1 +p Mi,2) +1−ε M

′
i

with Mi,j →ηd+1 Nj for j ∈ {1; 2}. Then

M1 +pM2 �β/≡ ((M1,1 +q M2,1) +p (M1,2 +q M2,2)) +1−ε (M ′
1 +q M

′
2).

• If M1 +pM2 →ηd+1 N1 +p N2 with Mi →ηd+1 Ni for i ∈ {1; 2} then the result
is immediate.

Proposition 4.2.2.13. If M →ηd N then M →ηd can(N).

Proof. We prove that if M →ηd N →+ N ′ then M →ηd N
′, and the result follows.

We reason by induction on M →ηd N .

• If M →η0 N →+ N ′ then M →η0 N
′.

• If for all ε > 0 we haveM �β/≡ M0+1−εM
′ withM0 →ηd+1 N and N →+ N ′

then by induction hypothesis M0 →ηd+1 N
′, hence M →η+1 N

′.

• If M1 +pM2 →ηd+1 N →+ N ′ with Mi →ηd+1 Ni for i ∈ {1; 2} then the result
is immediate by induction hypothesis.

• If λ−→z 1...k.M
−→
Z 1...k →ηd+1 N →+ N ′ with M →ηd+1 N then the result is

immediate by induction hypothesis.

• If x→ηd+1 x then we cannot reduce with →+.

• If λx.M →ηd+1 λx.(N1 +p N2) with M →ηd+1 N1 +p N2 then the previous
lemma gives M �β/≡ (M1 +pM2) +1−εM

′ with Mi →ηd+1 Ni for i ∈ {1; 2}
for all ε > 0, thus

λx.M �β/≡ (λx.M1 +p λx.M2) +1−ε λx.M
′

and λx.M →ηd+1 λx.N1 +p λx.N2.

• Similarly if M M ′ →ηd+1 (N1 +p N2) N ′ then we use the previous result to
get M M ′ →ηd+1 N1 N

′ +p N2 N
′.
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• The other cases are simple context rules and the result is immediate by
induction hypothesis.

We can use the structure of canonical terms to define a simplified version of
→ηd on those. At the same time we will show that we can restrict the use of the
rule λ−→z 1...k.M

−→
Z 1...k →ηd+1 N .

Definition 4.2.2.4. The relations →c
ηd

from terms to canonical terms and →v
ηd

between values are defined inductively by

M →c
η0 N

∀ε > 0,M �β/≡ M0 +1−εM
′ with M0 →c

ηd+1
N

M →c
ηd+1

N

M1 →c
ηd+1

N M2 →c
ηd+1

N

M1 +pM2 →c
ηd+1

N

M1 →c
ηd+1

N1 M2 →c
ηd+1

N2

M1 +pM2 →c
ηd+1

N1 +p N2

v →v
ηd+1

w ∀i, zi /∈ FV(v) ∪ FV(w) ∪ {zj | j 6= i} ∀i,PT η
d(Zi) = zi

λ−→z 1...k.v
−→
Z 1...k →c

ηd+1
w

x→v
ηd+1

x

v →c
ηd+1

w

λx.v →v
ηd+1

λx.w

v →v
ηd+1

w M →c
ηd
N

v M →v
ηd+1

w N

Remark that this definition seems better suited for weakly canonical terms: to
reduce a value v M we treat v as a value, but to reduce λx.v we treat v as a
general term. The reason is that we do not want to η-contract a variable which
also forms a β-redex: the term (λz.M z) N with z /∈ FV(M) both β-reduces and
η-reduces into M N , and we want to see this as a β-reduction. But we do not
mind η-reducing under an abstraction.

Proposition 4.2.2.14. If M →c
ηd
N then M →ηd N .

Proof. Immediate by induction on →c
ηd
.

Lemma 4.2.2.15. IfM �β/≡ λ−→y 1...l.M0
−→
Y 1...l where the variables yi are pairwise

distinct, yi /∈ FV(M0) and PT η
d(Yi) = yi for i ≤ l, then for any pairwise distinct

variables zi and any terms Zi with PT η
d(Zi) = zi for i ≤ k we have

λ−→z 1...k.M
−→
Z 1...k �β/≡ λ−→x 1...m.M0

−→
X 1...m

where m = max(k, l), xi = zi for i ≤ k, xk+i = yi for i ≤ l − k and PT η
d(Xi) = xi

for i ≤ m.
Proof. We prove this lemma by induction on d.
First observe that if l ≤ k then we have

λ−→z 1...k.M
−→
Z 1...k �β/≡ λ−→z 1...k.(λ−→y 1...l.M0

−→
Y 1...l)

−→
Z 1...k

�β/≡ λ−→z 1...k.M0
−→
Y 1...l

[
Z1/y1

]
...
[
Zl/yl

] −→
Z l+1...k.
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If l ≥ k then

λ−→z 1...k.M
−→
Z 1...k �β/≡ λ−→z 1...k.(λ−→y 1...l.M0

−→
Y 1...l)

−→
Z 1...k

�β/≡ λ−→z 1...k
−→y k+1...l.M0

−→
Y 1...l

[
Z1/y1

]
...
[
Zk/yk

]
.

So we want to prove that in general if PT η
d(X) = x and PT η

d(Y ) = y then
PT η

d

(
X
[
Y /x

])
= y. If d = 0 the result is immediate.

For head normal values, if we have h = λ−→z 1...k.x
−→
Z 1...k with PT η

d(Zi) = zi and
h′ = λ−→u 1...l.y

−→
U 1...l with PT η

d(Ui) = ui then by induction hypothesis

λ−→z 1...k.h
′ −→Z 1...k �β/≡ λ−→x 1...m.y

−→
X 1...m

with PT η
d(Xi) = xi, hence PT η

d+1

(
λ−→z 1...k.h

′ −→Z 1...k
)

= y.
In general if PT η

d+1(X) = x and PT η
d+1(Y ) = y then for all ε > 0 we have

X �β/≡
∑
i

pi.hi +1−ε X
′

Y �β/≡
∑
j

qj.h
′
j +1−ε Y

′

where the terms hi and h′j are head normal values.
Let us write hi = λ−→z 1...ki .x

−→
Z i,1...i,ki , we get

X
[
Y /x

]
�β/≡

∑
i

∑
j

piqj.λ
−→z 1...ki .h

′
j

−→
Z ′i,1...i,ki +(1−ε)2 Y ′′

with Z ′i,j = Zi,j
[
Y /x

]
and PT η

d(Z ′i,j) = zj for all i and j ≤ ki.
From there, PT η

d+1

(
X
[
Y /x

])
= y.

Proposition 4.2.2.16. If M →c
ηd
N and the variables zi are pairwise distinct,

zi /∈ FV(M) ∪ FV(N) and PT η
d(Zi) = zi for all i ≤ k then

λ−→z 1...k.M
−→
Z 1...k →c

ηd
N.

Proof. By induction on M →c
ηd
N .

• If M →c
η0 N then λ−→z 1...k.M

−→
Z 1...k →c

η0 N .

• If for all ε > 0, M �β/≡ M0 +1−εM
′ with M0 →c

ηd+1
N then

λ−→z 1...k.M
−→
Z 1...k �β/≡ λ−→z 1...k.M0

−→
Z 1...k +1−ε λ

−→z 1...k.M
′ −→Z 1...k

with by induction hypothesis λ−→z 1...k.M0
−→
Z 1...k →c

ηd+1
N .
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• If M1 +pM2 →c
ηd+1

N with Mi →c
ηd+1

N for i ∈ {1; 2} then

λ−→z 1...k.(M1 +pM2) −→Z 1...k ≡ λ−→z 1...k.M1
−→
Z 1...k +p λ

−→z 1...k.M2
−→
Z 1...k

and by induction hypothesis λ−→z 1...k.Mi

−→
Z 1...k →c

ηd+1
N for i ∈ {1; 2}.

• If M1 +pM2 →c
ηd+1

N1 +p N2 with Mi →c
ηd+1

Ni for i ∈ {1; 2} then

λ−→z 1...k.(M1 +pM2) −→Z 1...k ≡ λ−→z 1...k.M1
−→
Z 1...k +p λ

−→z 1...k.M2
−→
Z 1...k.

with by induction hypothesis λ−→z 1...k.Mi
−→
Z 1...k →c

ηd+1
Ni for i ∈ {1; 2}.

• If M = λ−→y 1...l.v
−→
Y 1...l →c

ηd+1
w with v →v

ηd+1
w then the previous lemma

gives
λ−→z 1...k.M

−→
Z 1...k �β/≡ λ−→x 1...m.v

−→
X 1...m

and we have λ−→x 1...m.v
−→
X 1...m →c

ηd+1
w.

Proposition 4.2.2.17. If N is canonical and M →ηd N then M →c
ηd
N .

Proof. We reason by induction on N and M →ηd N .

• If M →η0 N then M →c
η0 N .

• If for all ε > 0 we have M �β/≡ M0 +1−ε M
′ with M0 →ηd+1 N then by

induction hypothesis M0 →c
ηd+1

N hence M →c
ηd+1

N .

• If M1 +p M2 →ηd+1 N with Mi →ηd+1 N for i ∈ {1; 2} then by induction
hypothesis Mi →c

ηd+1
N and M1 +pM2 →c

ηd+1
N .

• If λ−→z 1...k.M
−→
Z 1...k →ηd+1 N with M →ηd+1 N then by induction hypothesis

M →c
ηd+1

N and the previous proposition gives λ−→z 1...k.M
−→
Z 1...k →c

ηd+1
N .

• If x→ηd+1 x then x→c
ηd+1

x.

• If λx.M →ηd+1 λx.w with M →ηd+1 w then by induction hypothesis we have
M →c

ηd+1
w, and λx.M →c

ηd+1
λx.w.

• If M M ′ →ηd+1 w N ′ with M →ηd+1 w and M ′ →ηd N
′ then by induction

hypothesis M →c
ηd+1

w, we reason by induction on this reduction.
– If for all ε > 0,M �β/≡ M0+1−εM

′′ withM0 →c
ηd+1

w then by induction
hypothesis M0 M

′ →c
ηd+1

w N ′, and M M ′ �β/≡ M0 M
′ +1−ε M

′′ M ′

so M M ′ →c
ηd+1

w N ′.
– If M = M1 +pM2 with Mi →c

ηd+1
N for i ∈ {1; 2} then we have

M M ′ ≡M1 M
′ +pM2 M

′ and we conclude by induction hypothesis.
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– If M = v with v →v
ηd+1

w then the induction hypothesis on N gives that
M ′ →c

ηd
N ′ and v M ′ →v

ηd+1
w N ′.

– If M = λ−→z 1...k+1.v
−→
Z 1...k+1 with v →v

ηd+1
w then

M M ′ →β λ
−→z 2...k+1.v

−→
Z 1...k+1

[
M ′

/z1

]
and the proposition 4.2.2.9 gives Z1

[
M ′

/z1

]
→ηd N

′. Using the outer
induction hypothesis on N we have that Z1

[
M ′

/z1

]
→c

ηd
N ′, and by

induction hypothesis v Z1
[
M ′

/z1

]
→c

ηd+1
w N ′, hence

λ−→z 2...k+1.v Z1
[
M ′

/z1

] −→
Z 2...k+1

[
M ′

/z1

]
→c

ηd+1
w N ′.

• IfM1+pM2 →ηd+1 N1+pN2 withMi →ηd+1 Ni for i ∈ {1; 2} then by induction
hypothesis Mi →c

ηd+1
Ni and M1 +pM2 →c

ηd+1
N1 +p N2.

Now we can prove that the reduction →c
ηd

behaves properly with respect to
the complete left reduction.

Proposition 4.2.2.18. If M →c
ηd+1

N then L(M)→c
ηd

L(N).

Proof. Again we prove that L(M) →ηd N
′ where N ′ does not depend on M and

can(N ′) = L(N).
We reason by induction on N andM →c

ηd+1
N . The result is immediate if d = 0.

• If for all ε > 0, M �β/≡ M0 +1−ε M
′ with M0 →c

ηd+2
N then we have

L(M) �β/≡ L(M0)+1−εL(M ′) and by induction hypothesis L(M0)→ηd+1 N
′,

hence M →ηd+1 N
′.

• If M1 +p M2 →c
ηd+2

N with Mi →c
ηd+2

Ni for i ∈ {1; 2} then by induction
hypothesis L(Mi)→ηd+1 N

′ and L(M1 +pM2) = L(M1) +p L(M2)→ηd+1 N
′.

• IfM1+pM2 →c
ηd+2

N1+pN2 withMi →c
ηd+2

Ni for i ∈ {1; 2} then by induction
hypothesis L(Mi)→ηd+1 N

′
i and L(M1 +pM2)→ηd+1 N

′
1 +p N

′
2.

• If v →c
ηd+2

w with v →v
ηd+2

w then by induction hypothesis L(v)→ηd+1 w
′.

• If λ−→z 1...k+1.v
−→
Z 1...k →c

ηd+2
w with v →v

ηd+2
w and v is not an abstraction then

L(λ−→z 1...k+1.v
−→
Z 1...k) =+ λ−→z 1...k+1.L(v) −→Z 1...k

or
L(λ−→z 1...k+1.v

−→
Z 1...k) =+ λ−→z 1...k+1.L(v) L(−→Z 1...k)

and by induction hypothesis L(v)→ηd+1 w
′, hence L(λ−→z 1...k+1.v

−→
Z 1...k)→ηd+1

w′.
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• If λ−→z 1...k+1.(λx.v) −→Z 1...k →c
ηd+2

λx.w with v →v
ηd+2

w then by induction
hypothesis L(v) →ηd+1 w

′, and Z1 →ηd+1 z1 so the proposition 4.2.2.9 gives
L(v)

[
Z1/x

]
→ηd+1 w

′ [z1/x]. We have

L(λ−→z 1...k+1.(λx.v) −→Z 1...k) =+ λ−→z 1...k+1.v
[
Z1/x

] −→
Z 2...k

�β/≡ λ−→z 1...k+1.L(v)
[
Z1/x

] −→
Z 2...k

→ηd+1 λz1.w
′ [z1/x]

= λx.w′.

• If λx.v →v
ηd+2

λx.w with v →c
ηd+2

w then by induction hypothesis we have
L(v)→ηd+1 w

′ and L(λx.v) =+ λx.L(v)→ηd+1 λx.w
′.

• If x −→P 1...m →v
ηd+2

x
−→
Q 1...m with Pi →c

ηd+1
Qi for i ≤ m then by induction

hypothesis L(Pi)→ηd Q
′
i for i ≤ m and x L(−→P 1...m)→ηd+1 x

−→
Q′1...m.

• If (λx.v) P −→R 1...m →v
ηd+2

(λx.w) Q −→S 1...m with v →c
ηd+2

w, P →c
ηd+1

Q
and Ri →c

ηd+1
Si for all i ≤ m then the proposition 4.2.2.9 gives that

v
[
P/x

]
→ηd+1 w

[
Q/x

]
, hence

L((λx.v) P −→R 1...m) =+ v
[
P/x

] −→
R 1...m

→ηd+1 w
[
Q/x

] −→
S 1...m.

We obtain the following result.

Proposition 4.2.2.19. If for all d ∈ N and all ε > 0 we have

M �β/≡ · ≡dum · →
c
ηd
· =s,c

Ω,ε · ←c
ηd
· ≡dum ·�β/≡ N

then for all k ∈ N, d ∈ N and all ε > 0 we have

Lk(M) �β/≡ · ≡dum · →
c
ηd
· =s,c

Ω,ε · ←c
ηd
· ≡dum ·�β/≡ Lk(N).

The relation of the previous proposition holds between terms with the same
infinitely extensional Böhm tree and it is stable by complete left reduction, all
we have left to do is to prove that if two d, ε-normal forms are related then they
have almost the same Böhm trees of depth d. First it is easy to see that the local
Böhm trees increase with the reduction→c

ηd
.

Proposition 4.2.2.20. If M is canonical and M →c
ηd
N then ptηd(M) �ηd ptηd(N).

Proof. We reason by induction on M →c
ηd
N .
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• If M →c
η0 N then the result is immediate.

• If for all ε > 0 we have M �β/≡ M0 +1−ε M
′ with M0 →c

ηd+1
N then

by induction hypothesis ptηd+1(M0) �ηd+1 ptηd+1(N). From there we have
ptηd+1(M) �ηd+1,ε ptηd+1(N) and ptηd+1(M) �ηd+1 ptηd+1(N).

• If M1 +p M2 →c
ηd+1

N with Mi →c
ηd+1

N for i ∈ {1; 2} then by induction
hypothesis ptηd+1(Mi) �ηd+1 ptηd+1(N) thus

pptηd+1(M1) + (1− p)ptηd+1(M2) �ηd+1 ptηd+1(N).

• IfM1+pM2 →c
ηd+1

N1+pN2 withMi →c
ηd+1

Ni for i ∈ {1; 2} then by induction
hypothesis ptηd+1(Mi) �ηd+1 ptηd+1(Ni) and

pptηd+1(M1) + (1− p)ptηd+1(M2) �ηd+1 pptηd+1(N1) + (1− p)ptηd+1(N2).

• If v →c
ηd+1

w with v →v
ηd+1

w then by induction hypothesis we have
ptηd+1(v) �ηd+1 ptηd+1(w).

• If λ−→z 1...k+1.x
−→
P 1...m

−→
Z 1...k →c

ηd+1
x
−→
Q 1...m with Pi →c

ηd
Qi for i ≤ m then

ptηd+1(λ−→z 1...k+1.x
−→
P 1...m

−→
Z 1...k) = ptηd+1(x −→P 1...m)

and by induction hypothesis ptηd(Pi) �
η
d ptηd(Qi) for i ≤ m so

ptηd+1(x −→P 1...m) �ηd+1 ptηd+1(x −→Q 1...m).

• If λ−→z 1...k+1.(λx.v) −→P 1...m
−→
Z 1...k →c

ηd+1
(λx.w) −→Q 1...m then

ptηd+1(λ−→z 1...k+1.(λx.v) −→P 1...m
−→
Z 1...k) = 0.

• If λx.v →v
ηd+1

λx.w with v →c
ηd+1

w then by induction hypothesis we have
ptηd+1(v) �ηd+1 ptηd+1(w) and ptηd+1(λx.v) �ηd+1 ptηd+1(λx.w).

• If x −→P 1...m →v
ηd+1

x
−→
Q 1...m with Pi →c

ηd
Qi for i ≤ m then we get the result

with the induction hypothesis.

• If (λx.v) −→P 1...m+1 →v
ηd+1

(λx.w) −→Q 1...m+1 then ptηd+1((λx.v) −→P 1...m+1) = 0.

It is more complicated to see that if we reduce a d, ε-normal form with →c
ηd

then the former tree is greater than the latter up to ε.
Indeed if M ≡ ∑

i pi.hi + (1−∑i pi) .M ′ with (1−∑i pi) .P⇓(M ′) ≤ ε and if
M →c

ηd
N then N ≡ ∑i pi.h

′
i + (1−∑i pi) .N ′ with hi →c

ηd
h′i and M ′ →c

ηd
N ′, but

for now we do not know anything about the convergence P⇓(N ′).
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Proposition 4.2.2.21. IfM →c
ηd+1

h with h a head normal value then P⇓(M) = 1.

Proof. We reason by induction on M →c
ηd+1

h.

• If for all ε > 0 we have M �β/≡ M0 +1−ε M
′ with M0 →c

ηd+1
h then by

induction hypothesis P⇓(M0) = 1, hence P⇓(M) ≥ 1− ε.

• If M1 +pM2 →c
ηd+1

h then by induction hypothesis P⇓(Mi) = 1 for i ∈ {1; 2}
and P⇓(M) = 1.

• If v →c
ηd+1

h with v →v
ηd+1

h then by induction hypothesis P⇓(v) = 1.

• If λ−→z 1...k+1.v
−→
Z 1...k →c

ηd+1
h with v →v

ηd+1
h then by induction hypothesis

P⇓(v) = 1. Then for all ε > 0 we have v �β/≡
∑
i pi.hi +1−ε v

′ where the
terms hi are head normal values, and

λ−→z 1...k+1.v
−→
Z 1...k �β/≡

∑
i

pi.λ
−→z 1...k+1.hi

−→
Z 1...k +1−ε λ

−→z 1...k+1.v
′ −→Z 1...k.

We can then check that for all i we have P⇓(λ−→z 1...k+1.hi
−→
Z 1...k) = 1, hence

P⇓(λ−→z 1...k+1.v
−→
Z 1...k) ≥ 1− ε and P⇓(λ−→z 1...k+1.v

−→
Z 1...k) = 1.

• If λx.v →v
ηd+1

λx.h with v →c
ηd+1

h then by induction hypothesis P⇓(v) = 1
and P⇓(λx.v) = 1.

• If x −→P 1...m →v
ηd+1

x
−→
Q 1...m with Pi →c

ηd
Qi for i ≤ m then P⇓(x

−→
P 1...m) = 1.

Proposition 4.2.2.22. For all d ∈ N and ε > 0, if M is a d, ε-normal form and
M →c

ηd
N then ptηd(N) �ηd,ε PT η

d(M).

Proof. We reason by induction on d, the result is immediate when d = 0.
Otherwise using the lemma 4.2.2.12 we can write N ≡ ∑

i pi.vi and get for all
ε′ > 0 that M �β/≡

∑
i pi.Mi +1−ε′ M

′ with Mi →c
ηd+1

vi for all i. The previous
result gives that if vi is a head normal value then P⇓(Mi) = 1, and the fact that
M is a d + 1, ε-normal form (hence ∑i pi.Mi +1−ε′ M

′ is a d + 1, ε-normal form)
gives

(1− ε′)
∑

i s.t. Mi is not head normal
pi.P⇓(Mi) ≤ ε.

Together these two results give

(1− ε′)
∑

i s.t. Mi is not head normal,vi is head normal
pi ≤ ε.

But if Mi is head normal and Mi →c
ηd+1

vi then vi is head normal, and we prove
by induction on Mi →c

ηd+1
vi that ptηd(vi) �

η
d,ε PT η

d(Mi).
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• If for all ε′′ > 0 we have Mi �β/≡ Mi,0 +1−ε′′ M
′
i with Mi,0 →c

ηd+1
vi then by

induction hypothesis ptηd(vi) �
η
d,ε PT η

d(Mi,0), hence ptηd(vi) �
η
d,ε+ε′′ PT η

d(Mi).
This holds for all ε′′ > 0 so we have ptηd(vi) �

η
d,ε PT η

d(Mi).

• If Mi = Mi,1 +p Mi,2 with Mi,j →c
ηd+1

vi then the result is immediate by
induction hypothesis.

• IfMi = λ−→x 1...n
−→z 1...k.y

−→
P 1...m

−→
Z 1...k and vi = λ−→x 1...n.y

−→
Q 1...m with Pi →c

ηd
Qi

for all i ≤ m then the induction hypothesis on d gives ptηd(Qi) �ηd,ε PT η
d(Pi)

and we have

ptηd(λ−→x 1...n.y
−→
Q 1...m) �ηd,ε PT η

d(λ−→x 1...n
−→z 1...k.y

−→
P 1...m

−→
Z 1...k).

Then we have

PT η
d+1(M) = (1− ε′)

∑
i s.t. Mi hnf

piPT η
d+1(Mi)

+(1− ε′)
∑

i s.t. Mi not hnf
piPT η

d+1(Mi)

+ε′PT η
d+1(M ′)

and

ptηd+1(N) = (1− ε′)
∑

i s.t. Mi hnf
piptηd+1(vi)

+(1− ε′)
∑

i s.t. Mi not hnf
piptηd+1(vi)

+ε′
∑
i

piptηd+1(vi)

hence
ptηd(N) �ηd,ε+ε′ PT η

d(M).

This holds for all ε′ > 0 so ptηd(N) �ηd,ε PT η
d(M).

Proposition 4.2.2.23. If for all d ∈ N and all ε > 0 we have

M �β/≡ · ≡dum · →
c
ηd
· =s,c

Ω,ε · ←c
ηd
· ≡dum ·�β/≡ N

then M =PBη N .

Proof. Given d ∈ N and ε > 0, for k ∈ N large enough the terms Lk(M) and Lk(N)
are d, ε-normal forms, and we have

Lk(M) �β/≡ M1 ≡dum M2 →c
ηd
M3 =s,c

Ω,ε N3 ←c
ηd
N2 ≡dum N1 �β/≡ Lk(N).
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Then we have

ptηd(Lk(M)) �ηd ptηd(M1) = ptηd(M2) �ηd ptηd(M3)
�ηd,ε ptηd(N3) �ηd,ε PT η

d(N2) = PT η
d(N1) = PT η

d(N).

For all d ∈ N and k ∈ N, for all ε > 0 we have ptηd(Lk(M)) �ηd,2ε PT η
d(N),

hence ptηd(Lk(M)) �ηd PT η
d(N) and PT η

d(M) �ηd PT η
d(N). By symmetry we have

PT η
d(M) = PT η

d(N), and M =PBη N .

Theorem 4.2.2.24. If M =PBη N then for all context C, C[M ] =PBη C[N ].

Proof. The relation⋂
d∈N

⋂
ε>0

�β/≡ · ≡dum · →
c
ηd
· =s,c

Ω,ε · ←c
ηd
· ≡dum ·�β/≡

is stable by context.

Theorem 4.2.2.25. The relation =PBη is a theory.
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5 Separability

The infinitely extensional probabilistic Böhm tree equality forms a theory, and it
is contained in the observational equivalence. To prove that these two theories
are the same we need to show that if two terms have different Böhm trees then
they are not observationally equivalent. In other words we need a separability
result.

In the deterministic calculus there are two notions of separation. Two terms
M and N are usually said to be separable if given any pair of terms P and Q
there is a context C such that C[M ] �β P and C[N ] �β Q. This is a strong
property, and although it is useful to know that two terms are separable, it is
much less informative to know that they are not. If we consider normalizable
terms then two terms are β-equivalent if and only if they are not separable. But if
we consider the typical diverging term Ω, any context C such that C[Ω] �β λx.x
does not use its argument: for any term M we also have C[M ] �β λx.x. This
means that Ω is never separable from any other term.

The second notion of separation, called the weak separation, is obtained by
weakening the observation made on terms. Two terms M and N are weakly
separable if there is a context C such that one of the terms C[M ] and C[N ] is
solvable, while the other is not. This corresponds exactly to the definition of the
observational equivalence: two terms are weakly separable if and only if they
are not observationally equivalent.

The situation is the same in the probabilistic calculus. We can define many
notions of separability, and each will be useful on some particular terms. For
instance we can prove that if M 6=β+ N are probabilistic terms which normalize
for the reduction→β ∪ →+ then for any terms P and Q, for any ε > 0 there is a
context C such that C[M ] �β/≡ P +1−ε Q and C[N ] �β/≡ P +ε Q.

Here we are interested in the observational equivalence, so we will use the
corresponding notion of separability.

Definition 5.0.2.1. Two terms M and N are separable if there is a context C
such that

P⇓(C[M ]) 6= P⇓(C[N ]).

We want to prove that two terms with different infinitely extensional Böhm
trees are separable. This result is not much more difficult to obtain than in the
deterministic case, but we encounter the same problem as for the contextuality
of Böhm trees. Given a deterministic term M , for any d ∈ N there is k ∈ N such
that BT η

d(M) = btηd(Lk(M)), so it is easy to deduce the behaviour of a term from
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its Böhm tree. With probabilistic terms, on the other hand, we always need to
work up to a small probability ε > 0.

For that reason we split the separability proof in two parts. Given finitely
many trees T1,...,Tn we will describe a way to get probabilities α1,...,αn such
that αi = αj if and only if Ti = Tj, and then we will show that given terms
M1,...,Mn with Böhm trees T1,...,Tn, for all ε > 0 we can find a context C such
that |P⇓(C[Mi])− αi| ≤ ε for all i ≤ n.
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5.1 Separating trees

Our goal is to find a way to read the structure of a tree and to encode it in a
single probability.

As we mentioned when we first defined infinitely extensional Böhm trees, the
trees obtained from terms have a particular structure. For probabilistic trees, we
get that for every head normal value h the value tree VT η

d+1(h) is of the form
(y, (T1, ..., Tm, xd,n+1, xd,n+2, ...)), and for every term M the tree PT η

d+1(M) is a
subprobability distribution over such value trees.

Definition 5.1.0.1. For d ∈ N, given any variable y and any s ∈ Z we define the
sets of value Böhm tree of depth d+ 1 in the class (y, s) by

VT ηd+1,(y,s) = {(y, (Tn)) | ∃m ∈ N,∃s ∈ Z : ∀n > m, Tn = xd,n−s} .

It is easy to see that if (y, s) 6= (y′, s′) then VT ηd+1,(y,s)∩VT
η
d+1,(y′,s′) = ∅. On the

other hand we do not have VT ηd+1 = ⋃
y,s VT ηd+1,(y,s), but for every head normal

value h there is a (unique) class (y, s) such that VT η
d+1(h) ∈ VT ηd+1,(y,s).

We call term Böhm tree the trees T such that T = PT η
d(M) for some term M .

To have a separation result on terms we only need to separate term Böhm trees.
Using standard Böhm out techniques we know that two head normal values

whose Böhm trees are in different classes are separable. To separate two differ-
ent value Böhm trees in the same class we use functions ϕ : [0; 1]k → [0; 1] to
encode the difference of the subtrees into a single probability.

Definition 5.1.0.2. The evaluation functions from [0; 1]k to [0; 1] are

• the constant functions α1, ..., αk 7→ α for α ∈ [0; 1];

• the projections α1, ..., αk 7→ αi for i ≤ k;

• the products α1, ..., αk 7→ ϕ(α1, ..., αk) × ψ(α1, ..., αk) where ϕ and ψ are
evaluation functions;

• the probabilistic sums α1, ..., αk 7→ p× ϕ(α1, ..., αk) + (1− p)× ψ(α1, ..., αk)
where p ∈ [0; 1] and ϕ and ψ are evaluation functions.

Definition 5.1.0.3. For d ∈ N, and evaluation structure S of depth d+ 1 is given
by:

• a finite set of classes CS ⊂f Var × Z;

• for all c ∈ CS an arity mSc ∈ N and an evaluation function
ϕSc : [0; 1]mSc → [0; 1];

• for all c ∈ CS and all i ≤ mSc an evaluation structure Sc,i of depth d.

There is a unique evaluation structure of depth 0, with C = ∅.
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Definition 5.1.0.4. Given a tree T of depth d and an evaluation structure S of
depth d, the evaluation S(T ) of T by S is given by

S(T ) =
∑

t∈VT η
d

T (t)× Sv(t)

Sv(y, (Tn)) =

ϕ
S
c

(
Sc,1(T1), ...,Sc,mSc (TmSc )

)
if (y, (Tn)) ∈ VT ηd+1,c and c ∈ CS

0 otherwise
.

What we want to prove is that given finitely many trees T1,...,Tk there is an
evaluation structure S such that for all i, j ≤ k, S(Ti) = S(Tj) if and only if
Ti = Tj.

The evaluation functions are some particular polynomials, so the evaluation
of a tree is a possibly infinite sum of polynomials functions of the evaluation of
its subtrees. For that reason the following result will be very useful.

Proposition 5.1.0.1. Given pairwise distinct probabilities αi ∈ [0; 1] for i ∈ I
with I ⊂ N and given two probability subdistributions (pi)i∈I and (p′i)i∈I we have(

∀n ∈ N,
∑
i∈I

piα
n
i =

∑
i∈I

p′iα
n
i

)
⇒ ∀i ∈ I, pi = p′i

Proof. The following proof is thanks to Franck Boyer.
If for all n we have ∑i∈I piα

n
i = ∑

i∈I p
′
iα
n
i then for all polynomial P we have∑

i∈I piP (αi) = ∑
i∈I p

′
iP (αi).

If f : [0; 1] → R is continuous let ‖f‖ = maxx∈[0;1]|f(x)|. We know by the
Stone-Weierstrass theorem that for every continuous f and for all ε > 0 there is a
polynomial P such that ‖f−P‖ ≤ ε. Thus for all continuous function f : [0; 1]→ R
we have ∑i∈I pif(αi) = ∑

i∈I p
′
if(αi).

Now let i ∈ I, we want to show pi = p′i. Let ϕ : R → R be a continuous
function with compact support such that ϕ(0) = 1, ‖ϕ‖= 1 and ϕ(x) = 0 when
|x| > 1. We can choose for instance ϕ : x 7→ max(0, 1 − |x|). Then for ε > 0 let
fε : x 7→ ϕ

(
x−αi
ε

)
, we have fε(αi) = 1, ‖fε‖= 1 and fε(x) = 0 when |x| > ε.

For all ε > 0 there exists a finite subset J ⊂f I with i ∈ J such that∑j∈I\J pj ≤ ε
and∑j∈I\J p

′
j ≤ ε. Then there exists δ > 0 such that for all j ∈ J\{i}, |αi−αj| > δ,

hence fδ(αj) = 0. We get ∑
j∈I

pjfδ(αj) =
∑
j∈I

p′jfδ(αj)

pi +
∑
j∈I\J

pjfδ(αj) = p′i +
∑
j∈I\J

p′jfδ(αj)

We have |pi − p′i| ≤ ε for all ε > 0 so pi = p′i.

Another useful result is that we can combine the evaluations functions to sep-
arate elements of [0; 1]m.
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Proposition 5.1.0.2. Given finitely many vectors ~αi ∈ Nm, given finitely many
evaluation functions ϕ1, ..., ϕk : [0; 1]m → [0; 1] with k ≥ 1, there is an evaluation
function ψ : [0; 1]m → [0; 1] such that for all i, i′

ψ(~αi) = ψ(~αi′) iff ∀j ≤ k, ϕj(~αi) = ϕj(~αi′).

Proof. We reason by induction on k. If k = 1 then ψ = ϕ1.
Otherwise if for all i, i′ and j ≤ k we have ϕj(~αi) = ϕj(~αi′) then ψ = ϕk+1. If it is

not the case by induction hypothesis there is ψ such that the ψ(~αi) are equal if and
only if the ϕj(~αi) are equal for all j ≤ k. Then let δ = min{|ψ(~αi)− ψ(~αi′)| 6= 0},
we have

ψ(~αi) + δ
2ϕk+1(~αi) = ψ(~αi′) + δ

2ϕk+1(~αi′)
iff ψ(~αi) = ψ(~αi′) and ϕk+1(~αi) = ϕk+1(~αi′)
iff ∀j ≤ k + 1, ϕj(~αi) = ϕj(~αi′).

The evaluation function ~α 7→ 2
2+δψ(~α)+ δ

2+δϕk+1(~α) has the required property.

With these two results we can directly prove that evaluation structures can
separate trees.

Proposition 5.1.0.3. Given term Böhm trees T1,...,Tk of depth d there is an
evaluation structure S such that for all i, j ≤ k, S(Ti) = S(Tj) if and only if
Ti = Tj.

Proof. To simplify the proof we assume the Ti’s pairwise distinct.
We reason by induction on d. If d = 0 there are a unique tree and a unique

evaluation structure of depth 0.
Otherwise we first cut the trees in width. Observe that for any tree T and any

value tree t = (y, (Un)) ∈ VT ηd+1,c of depth d + 1, T (t) is the limit when m → ∞
of the sequence ∑

t′=(y,(U ′n))∈VT η
d+1,c s.t.∀n≤m,Un=U ′n

T (t′).

So given two distinct trees T 6= T ′ of depth d + 1 there is t = (y, (Un)) of class c
such that T (t) 6= T ′(t), and there is m ∈ N such that∑

t′=(y,(U ′n))∈VT η
d+1,c s.t.∀n≤m,Un=U ′n

T (t′) 6=
∑

t′=(y,(U ′n))∈VT η
d+1,c s.t.∀n≤m,Un=U ′n

T ′(t′).

More generally given finitely many pairwise distinct trees T1,...,Tk of depth d+1
there is m ∈ N such that for all i 6= j there are a class ci,j and trees Ui,j,1,...,Ui,j,m
of depths d with ∑

t′=(y,(U ′n))∈VT η
d+1,ci,j

s.t.∀n≤m,Ui,j,n=U ′n

Ti(t′)

6=
∑

t′=(y,(U ′n))∈VT η
d+1,ci,j

s.t.∀n≤m,Ui,j,n=U ′n

Tj(t′).
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For all i ≤ k we define

τ 1
i : c, (U1, ..., Um) 7→

∑
t′=(y,(U ′n))∈VT η

d+1,c s.t.∀n≤m,Un=U ′n

Ti(t′).

The τ 1
i ’s are pairwise distinct subprobability distributions over Var×Z× (PT ηd)

m.
We can use the induction hypothesis to associate to every τ 1

i a subprobability
distribution τ 2

i over Var×Z× [0; 1]m. We can find a finite set C of labels and finite
sets Uc,n of trees of depth d for c ∈ C and n ≤ m such that

• for all i 6= j, ci,j ∈ C and for all n ≤ m, Ui,j,n ∈ Uc,n;

• and for all i 6= j,∑
t∈R

Ti(t) < |τ 1
i (yi,j, si,j, (Ui,j,1, ..., Ui,j,m))− τ 1

j (yi,j, si,j, (Ui,j,1, ..., Ui,j,m))|

where R = {(y, (Un)) ∈ VT ηd+1,c | c /∈ C or ∃n ≤ m : Un /∈ Uc,n}.

Applying the induction hypothesis to the sets Uc,n gives evaluation structures
Sc,n. Then for i ≤ k we define

τ 2
i : c, (α1, ..., αm) 7→

∑
Sc,1(U1)=α1

...
∑

Sc,m(Um)=αm
τ 1
i (c, (U1, ..., Um)).

For all c ∈ C and U1, ..., Um ∈ Uc,1 × ...× Uc,m we have for all i ≤ k

τ 1
i (c, (U1, ..., Um)) ≤ τ 2

i (c, (Sc,1(U1), ...,Sc,m(Um))) ≤ τ 1
i (c, (U1, ..., Um)) +

∑
t∈R

Ti(t).

In particular for i 6= j we have

τ 2
i (ci,j, (Sci,j ,1(Ui,j,1), ...,Sci,j ,m(Ui,j,m))) 6= τ 2

j (ci,j, (Sci,j ,1(Ui,j,1), ...,Sci,j ,m(Ui,j,m))).

Next we want to build subprobability distributions τ 3
i over Var ×Z× [0; 1]. For

each c ∈ C we simply use the previous result with the vectors (Sc,1(U1), ...,Sc,m(Um))
for (U1, ..., Um) ∈ Uc,1 × ...× Uc,m and the projections α1, ..., αm 7→ αn for n ≤ m.
This gives evaluation functions ψc such that the ψc(Sc,1(U1), ...,Sc,m(Um)) for
(U1, ..., Um) ∈ Uc,1 × ...× Uc,m are pairwise distinct. Then for i ≤ k we define

τ 3
i : c, α 7→

∑
ψc(α1,...,αm)=α

τ 2
i (c, (α1, ..., αm)).

Again we have

τ 1
i (c, (U1, ..., Um)) ≤ τ 3

i (c, ψc(Sc,1(U1), ...,Sc,m(Um))) ≤ τ 1
i (c, (U1, ..., Um))+

∑
t∈R

Ti(t)

for c ∈ C and U1, ..., Um ∈ Uc,1 × ...× Uc,m so the τ 3
i are pairwise distinct.
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The next step is to define τ 4
i over [0; 1]. Let us write C = {c0, ..., cl−1}, for i ≤ k

we define

τ 4
i : α 7→

τ 3
i (ca, β) if α = a

l
+ β

2l
0 otherwise

.

For i 6= j, if τ 3
i (ca, β) 6= τ 3

j (ca, β) then τ 4
i

(
a
l

+ β
2l

)
6= τ 4

j

(
a
l

+ β
2l

)
so the τ 4

i are
pairwise distinct.
Then for all i 6= j, according to proposition 5.1.0.1 there is ni,j ∈ N such that∑
α∈[0;1] τ

4
i (α)αni,j 6= ∑

α∈[0;1] τ
4
j (α)αni,j .

Finally for all ca ∈ C we can define an evaluation function ϕca as a linear
combination of the evaluation functions

α1, ...αm 7→
(
a

l
+ 1

2lψc
a(α1, ..., αm)

)ni,j
such that the sums∑

(y,s)∈C

∑
U1,...,Um

τ 1
i (c, (U1, ..., Um))ϕc(Sc,1(U1), ...,Sc,m(Um))

for i ≤ k are pairwise distinct. Then the evaluation structure given by C, the
evaluation function ϕc and the substructure Sc,n separates the trees T1,...,Tk.

147



5.2 Evaluating terms

To obtain a separabilty result all we have left to do is to show that we can sim-
ulate at the level of terms the evaluation of a tree by an evaluation structure.
Given finitely many terms M1,...,Mk and an evaluation structure S of depth d we
want to find a context C such that for all i ≤ k, the term C[Mi] converges with
probability S(PT η

d(Mi)). As usual we can not obtain exactly this result, so we
will need to work up to a small probability ε > 0.

Definition 5.2.0.1. For α ∈ [0; 1] and ε ≥ 0 we say that a term M represents α
up to ε if

α− ε ≤ P(M =β+ I) ≤ P⇓(M) ≤ α + ε

with I = λx.x.

First it is easy to show that we can represent the evaluation functions by terms,
and that this representation is uniformly continuous.

Proposition 5.2.0.1. Given an evaluation function ϕ : [0; 1]m → [0; 1] there is a
term ϕ such that for all ε > 0 there exists δ > 0 such that whenever M1,...,Mm

represent α1,...,αm up to δ then ϕ M1 ... Mm represents ϕ(α1, ..., αm) up to ε.

Proof. We reason by induction on the definition of evaluation function.

• The term λa1...am.(I +α Ω) represents the constant function α1, ..., αm 7→ α.

• IfM1,...,Mm represent α1,...,αm up to ε then for all i ≤ m the term λa1...am.ai
represents the projection α1, ..., αm 7→ αi.

• If ϕ and ψ represent ϕ and ψ then for all ε ≥ 0 there is δ such that if
M1,...,Mm represent α1,...,αm up to δ then ϕ M1 ... Mm and ψ M1 ... Mm

represent ϕ(α1, ..., αm) and ψ(α1, ..., αm) up to ε. Then

P((ϕ M1 ... Mm) (ψ M1 ... Mm) =β+ I)
≥ P(ϕ M1 ... Mm =β+ I)× P(ψ M1 ... Mm =β+ I)
≥ (ϕ(α1, ..., αm)− ε)(ψ(α1, ..., αm)− ε)
≥ ϕ(α1, ..., αm)× ψ(α1, ..., αm)− 2ε

and

P⇓((ϕ M1 ... Mm) (ψ M1 ... Mm))
≤ P(ϕ M1 ... Mm =β+ I)× P⇓(ψ M1 ... Mm) + 2ε
≤ (ϕ(α1, ..., αm) + ε)(ψ(α1, ..., αm) + ε) + 2ε
≤ ϕ(α1, ..., αm)× ψ(α1, ..., αm) + 4ε+ ε2.

The term λa1...am.(ϕ a1 ... am) (ψ a1 ... am) is a uniformly continuous rep-
resentation of the function α1, ..., αm 7→ ϕ(α1, ..., αm)× ψ(α1, ..., αm).
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• Finally if ϕ and ψ represent ϕ and ψ then for all ε ≥ 0 there is δ such that
if M1,...,Mm represent α1,...,αm up to δ then ϕ M1 ... Mm and ψ M1 ... Mm

represent ϕ(α1, ..., αm) and ψ(α1, ..., αm) up to ε. Then

P((ϕ+p ψ) M1 ... Mm =β+ I)
= pP(ϕ M1 ... Mm =β+ I) + (1− p)P(ψ M1 ... Mm =β+ I)
≥ p(ϕ(α1, ..., αm)− ε) + (1− p)(ψ(α1, ..., αm)− ε)
= pϕ(α1, ..., αm) + (1− p)ψ(α1, ..., αm)− ε

and

P⇓((ϕ+p ψ) M1 ... Mm)
= pP⇓(ϕ M1 ... Mm) + (1− p)P⇓(ψ M1 ... Mm)
≤ p(ϕ(α1, ..., αm) + ε) + (1− p)(ψ(α1, ..., αm) + ε)
= pϕ(α1, ..., αm) + (1− p)ψ(α1, ..., αm) + ε.

The term ϕ +p ψ represents the function α1, ..., αm 7→ pϕ(α1, ..., αm) + (1 −
p)ψ(α1, ..., αm).

Next we want to mimic the action of an evaluation structure on terms. For any
term M and ε > 0 we have

M �β/≡
∑
i

pi.hi +
(

1−
∑
i

pi

)
.M ′

where the hi’s are head normal values and (1−∑i pi)P⇓(M ′) ≤ ε. So for any
evaluation structure S of depth d + 1, if we have a context C such that for all
i, C[hi] represents Sv(VT η

d+1(hi)) up to ε and such that C commutes with sums,
then C[M ] represents S(PT η

d+1(M)) up to 2ε.
Besides given a head normal value h = λx1...xn.y P1 ... Pm we have

Sv(VT η
d+1(h)) = ϕSy,m−n(Sy,m−n,1(PT η

d(P ′1)), ...,Sy,m−n,mSy,m−n(PT η
d(P ′mSy,m−n)))

where P ′i =

Pi if i ≤ m

xd,i−m+n if i > m
. Hence there is δ > 0 such that if Ci[P ′i ] repre-

sents Sy,m−n,i(PT η
d(P ′i )) up to δ for i ≤ mSy,m−n then

ϕSy,m−n C1[P ′1] ... CmSy,m−n [P ′mSy,m−n ]

represents Sv(VT η
d+1(h)) up to ε.

We can see that what we need to do is very similar to the usual separability
techniques for the deterministic λ-calculus.
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Definition 5.2.0.2. We describe the parallel substitutions by functions between
terms σ : Λ+ → Λ+ such that

• σ(x) 6= x for finitely many variables x;

• σ(λx.M) = λx.σ(M) if σ(x) = x;

• σ(M N) = σ(M) σ(N);

• σ(M +p N) = σ(M) +p σ(N).

We note Σ the set of all such functions.

Proposition 5.2.0.2. For all σ ∈ Σ there is a context C such that for all M ,
C[M ] �β σ(M).

Proof. Let x1,...,xn be the variables such that σ(x) 6= x, then we can choose
C = (λx1...xn.[ ]) σ(x1) ... σ(xn).

Definition 5.2.0.3. For n ∈ N we define Rn = λx1...xn+1.xn+1 x1 ... xn+1.

Definition 5.2.0.4. Given a finite set of variables Y ⊂f Var and δ ∈ N, the set
ΣY,δ ⊂ Σ of substitutions respecting the conditions Y and δ is defined by σ ∈ ΣY,δ

iff

• ∀x ∈ Var , σ(x) 6= x⇒ ∃n ∈ N : σ(x) = Rn

• ∀y ∈ Y, σ(y) 6= y

• ∀x ∈ Var , σ(x) = Rn ⇒ n > δ

• ∀x 6= x′ ∈ Var , σ(x) = Rn and σ(x′) = Rn′ ⇒ |n− n′| > δ.

Proposition 5.2.0.3. Given finite sets of variables Y and Y ′ and integers δ and
δ′ we have ΣY,δ ∩ ΣY ′,δ′ = ΣY ∪Y ′,max(δ,δ′).

Proof. Immediate by definition.

Proposition 5.2.0.4. Given d ∈ N and finitely many head normal forms h1,...,hk
• for every family of integers (my,s)

• there exists Y ⊂f Var and δ ∈ N such that

• for every σ ∈ ΣY,δ and every family (Fy,s) of terms

• there exist terms L1,...,Ll
such that for all i ≤ k, if hi = λx1...xn.y P1 ... Pm then

σ(hi) L1 ... Ll =β+ Fy,m−n σ(P ′1) ... σ(P ′my,m−n)

with P ′i =

Pi if i ≤ m

xd,i−m+n if i > m
.
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Proof. To simplify the notations we consider d ∈ N given and we simply write xi
for xd,i.
Let us write hi = λx1...xni .yi Pi,1 ... Pi,mi for i ≤ k.
Let n ≥ maxi≤k ni, we have for all i ≤ k that

hi x1 ... xn �β yi Pi,1 ... Pi,mi xni+1 ... xn.

Then we also have

σ(hi) σ(x1) ... σ(xn) = σ(hi x1 ... xn)
�β σ(yi Pi,1 ... Pi,mi xni+1 ... xn)
= σ(yi) σ(Pi,1) ... σ(Pi,mi) σ(xni+1) ... σ(xn)
= σ(yi) σ(P ′i,1) ... σ(P ′i,n+mi−ni).

Given any Y ⊂f Var such that yi ∈ Y for all i ≤ k and any δ ∈ N such that
δ ≥ n+mi − ni, for all l ∈ N large enough and all terms F1,...,Fl, we have for all
i ≤ k with σ(yi) = Ra

σ(hi) σ(x1) ... σ(xn) F1 ... Fl �β Fa−(n+mi−ni) σ(P ′i,1) ... σ(P ′i,n+mi−ni) F1 ... Fl.

Besides if δ ≥ |(mi − ni)− (mj − nj)| for all i 6= j, we have for all i, j ≤ k that if
σ(yi) = Ra, σ(yj) = Rb and a− (n+mi−ni) = b− (n+mj −nj) then necessarily
yi = yj and mi − ni = mj − nj.
So to sum up:

• consider given d ∈ N, the head normal values h1,...,hk and a family of integers
(my,s);

• let n such that n ≥ ni and n+mi − ni ≥ myi,mi−ni for all i ≤ k;

• let Y = {y1; ...; yk} and let us choose δ such that δ ≥ n+mi−ni for all i ≤ k
and δ ≥ |(mi − ni)− (mj − nj)| for all i 6= j;

• then consider given σ ∈ ΣY,δ and a family of terms (Fy,s);

• for i ≤ k let ai ∈ N the integer such that σ(yi) = Rai and let l ∈ N such that
l ≥ ai − (n+mi − ni) for all i ≤ k;

• for i ≤ k let Fai−(n+mi−ni) = λz1...zn+mi−ni+l.Fyi,mi−ni z1 ... zmyi,mi−ni , and let
us choose any term for Fq if q ≤ l is not of this form.

Then for all i ≤ k we have

σ(hi) σ(x1) ... σ(xn) F1 ... Fl �β Fyi,mi−ni σ(P ′i,1) ... σ(P ′i,myi,mi−ni ).

With these results we can simulate on the terms the evaluation of some trees.
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Proposition 5.2.0.5. • Given an evaluation structure S of depth d, finitely
many terms M1,...,Mk and ε > 0,

• there are a finite set of variables Y and an integer δ such that

• for all σ ∈ ΣY,δ,

• there are terms L1,...,Ll
such that for all i ≤ k, σ(Mi) L1 ... Ll represents S(PT η

d(Mi)) up to ε.

Proof. We already sketched the proof of this result.
We reason by induction on d. If d = 0 then for all i ≤ k, S(PT η

d(Mi)) = 0
and we can find Y and δ such that for all σ ∈ ΣY,δ, the sequence of terms Ω, ...,Ω
works.
Otherwise for all i ≤ k we have

Mi �β/≡
∑
j

pi,j.hi,j +
1−

∑
j

pi,j

 .M ′
i

where the hi,j are head normal values and
(
1−∑j pi,j

)
P⇓(M ′

i) ≤ ε.
The previous result applied with d, the head normal values hi,j and the familymy,s =

mSy,s if (y, s) ∈ CS

0 otherwise

 gives some Y0 ⊂f Var and δ0 ∈ N.

For all (y, s) ∈ CS there is a term ϕSy,s which uniformly continuously represents
ϕSy,s, and the uniform continuity applied to ε gives some ε′.
Now we write hi,j = λxd,1...xd,ni,j .yi,j Pi,j,1 ... Pi,j,mi,j , we define

P ′i,j,q =

Pi,j,q if q ≤ mi,j

xd,q−mi,j+ni,j if q > mi,j

.

For all (y, s) ∈ CS and for all q ≤ mSy,s, we apply the induction hypothesis with
Sy,s,q, the terms P ′i,j,q for i and j such that (yi,j,mi,j − ni,j) = (y, s) and ε′ to get
Yy,s,q and δy,s,q.
Let

Y = Y0 ∪
⋃

(y,s)∈CS

⋃
q≤my,s

Yy,s,q

δ = max{δ0} ∪ {δy,s,q | (y, s) ∈ CS , q ≤ my,s}.

We have
ΣY,δ = ΣY0,δ0 ∩

⋂
(y,s)∈CS

⋂
q≤my,s

ΣYy,s,q ,δy,s,q .

Let σ ∈ ΣY,δ, for all (y, s) ∈ CS and q ≤ my,s we have σ ∈ ΣYy,s,q ,δy,s,q so there are
terms Ly,s,q,1,...,Ly,s,q,ly,s,q such that for all i and j such that (yi,j,mi,j−ni,j) = (y, s)
we have that σ(P ′i,j,q) Ly,s,q,1 ..., Ly,s,q,ly,s,q represents Sy,s,q(PT η

d(P ′i,j,q)) up to ε′.
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For (y, s) ∈ X S we define

Fy,s = λz1...zmy,s .ϕ
S
y,s (z1 Ly,s,1,1 .. Ly,s,1,ly,s,1) .. (zmy,s Ly,s,my,s,1 .. Ly,s,my,s,ly,s,my,s ).

For all i, j such that (yi,j,mi,j − ni,j) = (y, s) the term Fy,s σ(P ′i,j,1) ... σ(P ′i,j,my,s)
represents ϕSy,s(Sy,s,1(PT η

d(P ′i,j,1)), ...,Sy,s,mSy,s(PT η
d(P ′i,j,mSy,s))) up to ε, i.e. it repre-

sents Sv(VT η
d+1(hi,j)).

We define Fy,s = Ω if (y, s) /∈ CS , as σ ∈ ΣY0,δ0 there are terms L1,...,Ll such
that for all i, j,

σ(hi,j) L1 ... Ll =β+ Fyi,j ,mi,j−ni,j σ(P ′i,j,1) ... σ(P ′i,j,myi,j ,mi,j−ni,j ).

Finally for all i ≤ k

σ(Mi) L1 ... Ll =β+
∑
j

pi,j.σ(hi,j) L1 ... Ll +
1−

∑
j

pi,j

 .M ′′
i

so σ(Mi) L1 ... Ll represents S(PT η
d+1(Mi)) up to 2ε.

Corollary 5.2.0.6. Given an evaluation structure S of depth d and finitely many
terms M1,...,Mk, for all ε > 0 there exists a context C such that for all i ≤ k,
C[Mi] represents S(PT η

d(Mi)) up to ε.

Theorem 5.2.0.7. Given finitely many terms M1,...,Mk, there exists a context C
such that for all i, j ≤ k,

P⇓(C[Mi) = P⇓(C[Mj]) if and only if Mi =PBη Mj.

Proof. The contextuality of the Böhm trees gives that for all i, j ≤ k ifMi =PBη Mj

then for all C, P⇓(C[Mi) = P⇓(C[Mj]).
Conversely there exists d ∈ N such that for all i, j ≤ k, Mi =PBη Mj if and

only if PT η
d(Mi) = PT η

d(Mj). Then the proposition 5.1.0.3 applied to the trees
PT η

d(M1),...,PT η
d(Mk) gives an evaluations structure S such that for all i, j ≤ k,

Mi =PBη Mj if and only if S(PT η
d(Mi)) = S(PT η

d(Mj)).
Let ε > 0 such that 2ε < |S(PT η

d(Mi)) − S(PT η
d(Mj))| whenever Mi 6=PBη Mj.

There is a context C such that C[Mi] represents S(PT η
d(Mi)) up to ε for all i ≤ k.

In particular we have for all i ≤ k

S(PT η
d(Mi))− ε ≤ P⇓(C[Mi]) ≤ S(PT η

d(Mi)) + ε.

For all i, j ≤ k we have P⇓(C[Mi]) = P⇓(C[Mj]) if and only if
S(PT η

d(Mi)) = S(PT η
d(Mj)).

Theorem 5.2.0.8. For any terms M and N ,

M =PBη N if and only if M =obs N.
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Conclusion

We have described a probabilistic λ-calculus which resembles the usual determin-
istic one. To begin with, the λ-calculus is meant to be very simple and contains
the bare minimum to get a complete model of computation. So to introduce non-
determinism we preferred considering a syntax with binary labeled sums, rather
than directly using distributions. And to avoid using side-effects we gave deter-
ministic reductions rules for these sums, rather than implementing the notion
of non-deterministic choice in the operational semantics. We then proved that
allowing such a reduction under arbitrary context yields a confluent calculus,
which enjoys a standardization property.

To carry the interpretation of the sums as non-deterministic choices inside the
calculus we gave syntactic equivalences, such that for instance in the probabilis-
tic cases sums modulo equivalence actually define probability distributions. An
interesting result is that this equivalence has actually little influence on the re-
duction: reducing a term modulo equivalence is basically the same as reducing
it and considering only the result modulo equivalence. The only exception to
this is when we introduce irrelevant choices, saying that M →split M +l M , but
this is not something we want to do. We may decide not to allow such a thing,
turning the equivalence into reduction rules, or we know that we can get rid of
these splittings by extending the β-reductions.

Once we have a contextual and deterministic operational semantics we can
define theories in a natural way. In the case of a positive quantification (such
as with the simple non-deterministic calculus or the probabilistic calculus, but
not with the algebraic calculus), there is also a straightforward notion of Böhm
trees. In the probabilistic case we proved that the Böhm trees form a model
of the calculus, and we established a separation result which implies that the
infinitely extensional Böhm trees describe the observational equivalence on the
terms.

To reach the goal we set, i.e. to prove that this particular theory is the max-
imum sensible theory, we also had to define a notion of sensibility. This one is
unfortunately much less natural than the others. We still managed to find a defi-
nition which allows us to state that in every sensible theory the diverging part of
a term is equal to the diverging term Ω up to an arbitrary probability ε > 0. This
is sufficient for us to conclude.

Final theorem. The infinitely extensional Böhm tree equality =PBη (and the ob-
servational equivalence =obs) is the maximum of all probabilistic sensible continu-
ous consistent λ-theories.
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Proof. The theorem 4.2.2.25 states that the relation =PBη is a theory, and moreover
the theorem 5.2.0.8 states that it corresponds to the observational equivalence.
Besides =PBη is clearly continuous, strongly sensible and consistent. So we want
that if M and N have different infinitely extensional Böhm trees, or equivalently
if they are not observationally equivalent, then every sensible continuous theory
=T such that M =T N is inconsistent.
The proof of the separation theorem 5.2.0.7 gives probabilities α 6= β such that

for all small ε > 0 there is a context C such that

α− ε ≤ P(M =β+ I) ≤ P⇓(M) ≤ α + ε

β − ε ≤ P(N =β+ I) ≤ P⇓(N) ≤ β + ε.

In a sensible theory =T we can use the proposition 3.2.2.5 to get

M =T (α− 2ε).I + (1− α− 2ε).Ω + 4ε.M ′

N =T (β − 2ε).I + (1− β − 2ε).Ω + 4ε.N ′

for some terms M ′ and N ′.
In continuous theories we can simplify sums (proposition 3.2.1.1), so let us as-

sume w.l.o.g. α < β, we have

β − α
β − α + 4ε.Ω + 4ε

β − α + 4ε.M
′ =T

β − α
β − α + 4ε.I + 4ε

β − α + 4ε.N
′.

Then for all ε > 0 there are terms M ′ and N ′ such that

Ω +1−εM
′ =T I +1−ε N

′.

By continuity this implies
Ω =T I.

From there the proof of inconsistency is the same as for deterministic theories.
Using a fixed point operator Θ, the term Θ (λxy.x) is unsolvable so

Θ (λxy.x) =T I

and Θ (λxy.x) �β λy. (Θ (λxy.x)) so

Θ (λxy.x) =T λy. (Θ (λxy.x))

hence
I =T λy.I.

Then for any term P we have

P =T I P =T (λy.I) P =T I.

=T is inconsistent.
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Future work

We claimed that all the definitions involved in our final theorem are natural
extensions of the definitions in the deterministic λ-calculus except for the sensi-
bility of a theory. This definition is not without consequences: in all our work
we assumed that our probabilities were computable, but the only reason we do
so is to be able to prove the proposition 3.2.2.5 stating that the diverging part of
a term is actually equal to Ω up to an arbitrary ε > 0.

Restricting the calculus to computable probabilities is fine in practice, and be-
sides we know how to prove that any continuous consistent theory in which the
proposition 3.2.2.5 holds is included in the Böhm tree equality even if we allow
arbitrary probabilities. But is would still be interesting to find a better definition
for the sensibility which suits the general case.

Another question which arises is the relation between our theories and exist-
ing models of the probabilistic λ-calculus. For instance we know of a model in
the probabilistic coherence spaces [3] [5], and even though it is presented as a
model of a calculus with a probabilistic head reduction it is easy to see that it fits
our notion of theory. In particular it is entirely contextual: if M and N have the
same denotational semantics then so do C[M ] and C[N ] for any context C. Then
we can wonder whether this model is fully abstract, i.e. if two terms have the
same denotational semantics if and only if they are observationally equivalent.

We can also try to extend our results to other quantitative calculi. In the first
two chapters of this thesis we tried be be as general as possible when describing
our operational semantics, which gives a good basis to adapt our results. Un-
fortunately in the simple cases of non deterministic calculi with a unique, non
indexed sum, the separation seems to fail.

And in the algebraic λ-calculus our results are hardly relevant. Indeed we
know that given any algebraic term M we can build a term ωM representing an
infinite sum of M , such that ωM �β M + ωM . Then

0 ≡ ωM − ωM �β (M + ωM)− ωM ≡M.

This way given any two terms M and N we can find a reduction M �β/≡ N .
It is clear why this should not happen. This is like saying that if we consider

integers with an infinite element ω such that 1 + ω = ω then

0 = ω − ω = 1 + ω − ω = 1.

The problem here is that the difference ω − ω is not well defined, and so in the
algebraic λ-calculus the difference ωM − ωM should not be equal to 0.

So our results may be useful in the study of the algebraic λ-calculus, but one
has to be very careful about the syntactic equivalence, and it is very likely that
even our general framework would need to be adapted to get a meaningful cal-
culus.
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