L. A. Aguirrezabal, E. Deleens, and F. Tardieu, Root elongation rate is accounted for by intercepted PPFD and source-sink relations in field and laboratory-grown sunflower, Plant, Cell and Environment, vol.5, issue.4, 1994.
DOI : 10.1086/336860

D. J. Andrew and K. A. Kumar, Pearl Millet for Food, Feed, and Forage, Adv. Agron, vol.48, pp.89-139, 1992.
DOI : 10.1016/S0065-2113(08)60936-0

H. Araki, S. Morita, J. Tatsumi, M. Iijima, H. Araki et al., Physiol-Morphological Analysis on Axile Root Growth in Upland Rice, Plant Production Science, vol.5, issue.4, pp.286-293, 2002.
DOI : 10.1626/jcs.50.452

J. A. Atkinson, L. U. Wingen, M. Griffiths, M. P. Pound, O. Gaju et al., Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat, Journal of Experimental Botany, vol.270, issue.8, 2015.
DOI : 10.1007/s11104-004-1697-y

URL : https://hal.archives-ouvertes.fr/hal-01245197

A. Babé, T. Lavigne, J. Séverin, K. Nagel, A. Walter et al., Repression of early lateral root initiation events by transient water deficit in barley and maize, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.25, issue.11, pp.1534-1575, 2012.
DOI : 10.1071/BI9721169

C. Bai, Y. Liang, and M. J. Hawkesford, Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat, Journal of Experimental Botany, vol.111, issue.6, pp.1745-1753, 2013.
DOI : 10.1007/s00122-005-2051-3

L. R. Band, D. M. Wells, A. Larrieu, J. Sun, A. M. Middleton et al., Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism, Proceedings of the National Academy of Sciences, vol.23, issue.11, pp.4668-4673, 2012.
DOI : 10.1105/tpc.111.088047

URL : https://hal.archives-ouvertes.fr/cea-00848570

T. I. Baskin, B. Peret, F. Ka, P. N. Benfey, M. Bennett et al., Shootward and rootward: peak terminology for plant polarity, Trends in Plant Science, vol.15, issue.11, pp.593-594, 2010.
DOI : 10.1016/j.tplants.2010.08.006

URL : https://hal.archives-ouvertes.fr/cea-00848575

A. Bationo, J. Kihara, B. Vanlauwe, B. Waswa, and J. Kimetu, Soil organic carbon dynamics, functions and management in West African agro-ecosystems, Agricultural Systems, vol.94, issue.1, pp.13-25, 2007.
DOI : 10.1016/j.agsy.2005.08.011

URL : https://cgspace.cgiar.org/bitstream/10568/69942/1/66055_Sow_organic_carbon_dynamics%2c_functions_and_management_in_West_African_agro-ecos.pdf

V. Behrens, I. Komatsu, M. Zhang, Y. Berendzen, K. W. Niu et al., Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize, The Plant Journal, vol.17, issue.2, pp.341-353, 2011.
DOI : 10.1105/tpc.105.036236

J. L. Bennetzen, J. Schmutz, H. Wang, R. Percifield, J. Hawkins et al., Reference genome sequence of the model plant Setaria, Nature Biotechnology, vol.36, issue.6, pp.555-61, 2012.
DOI : 10.1093/nar/gkq1027

A. Berg, D. Noblet-ducoudré, N. Sultan, B. Lengaigne, M. Guimberteau et al., Projections of climate change impacts on potential C4 crop productivity over tropical regions, Agricultural and Forest Meteorology, vol.170, pp.89-102, 2013.
DOI : 10.1016/j.agrformet.2011.12.003

URL : https://hal.archives-ouvertes.fr/hal-01496000

F. R. Bidinger and C. T. Hash, Pearl millet, Physiology and Biotechnology Integration for Plant Breeding, pp.225-270, 2004.

A. Bishopp and J. P. Lynch, The hidden half of crop yields, Nature Plants, vol.1, issue.8, 2015.
DOI : 10.1038/nbt.2842

M. Bohn, J. Novais, R. Fonseca, R. Tuberosa, and T. E. Grift, Genetic evaluation of root complexity in maize, Acta Agronomica Hungarica, vol.54, issue.3, pp.291-303, 2006.
DOI : 10.1556/AAgr.54.2006.3.3

H. Brück, B. Piro, B. Sattelmacher, and W. Payne, Spatial distribution of roots of pearl millet on sandy soils of Niger, Plant and Soil, vol.256, issue.1, pp.149-159, 2003.
DOI : 10.1023/A:1026246728095

H. Brück, B. Sattelmacher, and W. A. Payne, Varietal differences in shoot and rooting parameters of pearl millet on sandy soils in Niger, Plant and Soil, vol.251, issue.1, pp.175-185, 2003.
DOI : 10.1023/A:1022932815486

J. Brunken, J. Wet, . De, and J. Harlan, The morphology and domestication of pearl millet, Economic Botany, vol.1, issue.19, pp.163-174, 1977.
DOI : 10.4159/harvard.9780674421707

P. Bühlmann and A. J. Wyner, Variable length markov chains, Ann. Stat, vol.27, pp.480-513, 1999.

A. L. Burton, J. M. Johnson, J. M. Foerster, C. N. Hirsch, C. R. Buell et al., QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.), Theoretical and Applied Genetics, vol.14, issue.9, pp.2293-2311, 2014.
DOI : 10.1016/j.pbi.2011.03.020

P. J. Casero, I. Casimiro, and P. G. Lloret, Lateral root initiation by asymmetrical transverse divisions of pericycle cells in four plant species:Raphanus sativus, Helianthus annuus, Zea mays, andDaucus carota, Protoplasma, vol.8, issue.1-2, pp.49-58, 1995.
DOI : 10.1007/BF01276795

C. Castillo, F. Puccio, D. Morales, F. Borie, and E. Sieverding, Early arbuscular mycorrhiza colonization of wheat, barley and oats in Andosols of southern Chile, Journal of soil science and plant nutrition, vol.12, issue.ahead, pp.511-524, 2012.
DOI : 10.4067/S0718-95162012005000012

M. C. Champoux, G. Wang, S. Sarkarung, D. J. Mackill, J. C. O-'toole et al., Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers, Theoretical and Applied Genetics, vol.90, issue.7-8, pp.969-98110, 1007.
DOI : 10.1007/BF00222910

C. Chen, Y. Yang, H. Lur, Y. Tsai, C. et al., A Novel Function of Abscisic Acid in the Regulation of Rice (Oryza sativa L.) Root Growth and Development, Plant and Cell Physiology, vol.47, issue.1, 2005.
DOI : 10.1146/annurev.pp.39.060188.002255

J. Chopart, Etude du systeme racinaire du mil (pennisetum typhoides) dans un sol sableux du Sénégal, Agron. Trop. XXXVIII, pp.37-51, 1983.

R. T. Clark, A. N. Famoso, K. Zhao, J. E. Shaff, E. J. Craft et al., High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development, Plant, Cell & Environment, vol.2, issue.2, pp.454-466, 2013.
DOI : 10.1038/ncomms1467

J. Clotault, A. Thuillet, M. Buiron, S. De-mita, M. Couderc et al., Evolutionary History of Pearl Millet (Pennisetum glaucum [L.] R. Br.) and Selection on Flowering Genes since Its Domestication, Molecular Biology and Evolution, vol.24, issue.3, pp.1199-212, 2012.
DOI : 10.1093/molbev/msm005

L. H. Comas, S. R. Becker, V. M. Cruz, P. F. Byrne, and D. Dierig, Root traits contributing to plant productivity under drought, Frontiers in Plant Science, vol.4, 2013.
DOI : 10.3389/fpls.2013.00442

URL : http://journal.frontiersin.org/article/10.3389/fpls.2013.00442/pdf

Y. Coudert, A. Dievart, G. Droc, and P. Gantet, ASL/LBD Phylogeny Suggests that Genetic Mechanisms of Root Initiation Downstream of Auxin Are Distinct in Lycophytes and Euphyllophytes, Molecular Biology and Evolution, vol.21, issue.3, pp.569-572, 2013.
DOI : 10.1093/molbev/msh075

URL : https://hal.archives-ouvertes.fr/hal-01326191

B. Courtois, A. Audebert, A. Dardou, S. Roques, T. Ghneim-herrera et al., Genome-Wide Association Mapping of Root Traits in a Japonica Rice Panel, PLoS ONE, vol.44, issue.11, pp.1-18, 2013.
DOI : 10.1371/journal.pone.0078037.s008

M. P. Coutts, Developmental processes in tree root systems, Canadian Journal of Forest Research, vol.17, issue.8, pp.761-767, 1987.
DOI : 10.1139/x87-122

I. Csiszár and Z. Talata, Context tree estimation for not necessarily finite memory processes, via BIC and MDL, IEEE Transactions on Information Theory, vol.52, issue.3, pp.1007-1016, 2005.
DOI : 10.1109/TIT.2005.864431

B. R. Debi, S. Taketa, and M. Ichii, Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa), J. Plant Physiol, vol.162, 2005.

K. M. Devos, T. S. Pittaway, A. Reynolds, and M. D. Gale, Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice, TAG Theoretical and Applied Genetics, vol.100, issue.2, pp.190-198, 2000.
DOI : 10.1007/s001220050026

S. Dhondt, N. Wuyts, and D. Inzé, Cell to whole-plant phenotyping: the best is yet to come, Trends in Plant Science, vol.18, issue.8, 2013.
DOI : 10.1016/j.tplants.2013.04.008

B. Dinkelaker, C. Hengeler, and H. Marschner, Distribution and Function of Proteoid Roots and other Root Clusters, Botanica Acta, vol.119, issue.156, pp.169-276, 1995.
DOI : 10.1007/BF02370281

C. Doussan, L. Jouniaux, and J. L. Thony, Variations of self-potential and unsaturated water flow with time in sandy loam and clay loam soils, Journal of Hydrology, vol.267, issue.3-4, pp.173-185, 2002.
DOI : 10.1016/S0022-1694(02)00148-8

M. C. Drew, Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root sytem, and the shoot, in barley, pp.479-490, 1975.

D. Van-dusschoten, R. Metzner, J. Kochs, J. A. Postma, D. Pflugfelder et al., Quantitative 3D Analysis of Plant Roots growing in Soil using Magnetic Resonance Imaging, Plant Physiology, vol.170, 2016.
DOI : 10.1104/pp.15.01388

E. J. Edwards, Rapid report New grass phylogeny resolves deep evolutionary relationships and discovers C 4 origins, pp.304-312, 2012.

M. Eldin, Analyse de l'effet des déficits hydriques sur la récolte du mil au Niger : conséquences agronomiques, " in Le mil en Afrique, diversité genetique et agrophysiologique: Potentialites et contraintes pour l'amelioriation et la culture Available at, pp.149-16038958, 1993.

N. Fahlgren, M. Feldman, M. A. Gehan, M. S. Wilson, C. Shyu et al., A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria, Molecular Plant, vol.8, issue.10, pp.1520-1535, 2015.
DOI : 10.1016/j.molp.2015.06.005

N. Fahlgren, M. Gehan, and I. Baxter, Lights, camera, action: high-throughput plant phenotyping is ready for a close-up, Current Opinion in Plant Biology, vol.24, pp.93-99, 2015.
DOI : 10.1016/j.pbi.2015.02.006

URL : https://doi.org/10.1016/j.pbi.2015.02.006

B. G. Forde, Is it good noise? The role of developmental instability in the shaping of a root system, Journal of Experimental Botany, vol.96, issue.11, pp.3989-4002, 2009.
DOI : 10.1073/pnas.96.11.6529

S. Freixes, M. C. Thibaud, F. Tardieu, and B. Muller, Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings, Plant, Cell and Environment, vol.118, issue.10, 2002.
DOI : 10.1073/pnas.96.11.6529

R. Gamuyao, J. H. Chin, J. Pariasca-tanaka, P. Pesaresi, S. Catausan et al., The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency, Nature, vol.45, issue.7412, pp.535-53910, 1038.
DOI : 10.1038/nature11346

D. C. Gemenet, W. L. Leiser, R. G. Zangre, I. I. Angarawai, M. D. Sanogo et al., Association analysis of low-phosphorus tolerance in West African pearl millet using DArT markers, Molecular Breeding, vol.1, issue.3, 2015.
DOI : 10.3835/plantgenome2008.02.0089

F. González-rabanal, M. Casal, and L. Trabaud, Effects of high temperatures, ash and seed position in the inflorescence on the germination of three Spanish grasses, Journal of Vegetation Science, vol.20, issue.3, pp.289-294, 1994.
DOI : 10.1016/B978-0-12-424255-5.50007-9

V. R. Gowda, A. Henry, A. Yamauchi, H. E. Shashidhar, and R. Serraj, Root biology and genetic improvement for drought avoidance in rice, Field Crops Research, vol.122, issue.1, 2011.
DOI : 10.1016/j.fcr.2011.03.001

Y. Guédon, Estimating Hidden Semi-Markov Chains From Discrete Sequences, Journal of Computational and Graphical Statistics, vol.12, issue.3, pp.604-639, 2003.
DOI : 10.1198/1061860032030

Y. Guédon, Hidden hybrid Markov/semi-Markov chains, Computational Statistics & Data Analysis, vol.49, issue.3, pp.663-688, 2005.
DOI : 10.1016/j.csda.2004.05.033

Y. Guédon, Exploring the state sequence space for hidden Markov and semi-Markov chains, Computational Statistics & Data Analysis, vol.51, issue.5, pp.2379-2409, 2007.
DOI : 10.1016/j.csda.2006.03.015

M. Guigaz, Memento de l, CIRAD-GRET and Ministère des Affaires Etrangères, 2002.

A. L. Gurney, J. Slate, M. C. Press, and J. D. Scholes, A novel form of resistance in rice to the angiosperm parasite Striga hermonthica, New Phytologist, vol.136, issue.1, 2006.
DOI : 10.1126/science.1068037

Y. Gutterman, Maternal Effects on Seeds During Development in Seeds: The Ecology of Regeneration in Plant Communities, pp.59-84, 2000.

S. Henry, F. Divol, M. Bettembourg, C. Bureau, E. Guiderdoni et al., Immunoprofiling of Rice Root Cortex Reveals Two Cortical Subdomains, Frontiers in Plant Science, vol.2014, issue.790, pp.1-9, 2016.
DOI : 10.1155/2014/181727

URL : http://journal.frontiersin.org/article/10.3389/fpls.2015.01139/pdf

G. Herder, . Den, G. Van-isterdael, T. Beeckman, D. Smet et al., The roots of a new green revolution, Trends in Plant Science, vol.15, issue.11, pp.600-607, 2010.
DOI : 10.1016/j.tplants.2010.08.009

W. Hetz, F. Hochholdinger, M. Schwall, and G. Feix, Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots, The Plant Journal, vol.10, issue.5, pp.845-857, 1996.
DOI : 10.1046/j.1365-313X.1996.10050845.x

D. R. Hoagland and D. I. Arnon, The Water-Culture Method for Growing Plants without Soil, Calif. Agric. Exp. Stn. Circ, vol.347, 1950.

F. Hochholdinger and G. Feix, Genetic Analysis of Maize Root Development, Plant Roots: the Hidden Half, pp.239-248, 2002.
DOI : 10.1201/b14550-13

F. Hochholdinger, W. J. Park, M. Sauer, and K. Woll, From weeds to crops: genetic analysis of root development in cereals, Trends in Plant Science, vol.9, issue.1, pp.42-48, 2004.
DOI : 10.1016/j.tplants.2003.11.003

F. Hochholdinger and R. Tuberosa, Genetic and genomic dissection of maize root development and architecture, Current Opinion in Plant Biology, vol.12, issue.2, 2009.
DOI : 10.1016/j.pbi.2008.12.002

A. Hodge, The plastic plant: root responses to heterogeneous supplies of nutrients, New Phytologist, vol.163, issue.1, 2004.
DOI : 10.1073/pnas.96.11.6529

M. Ichii and M. Ishikawa, Genetic analysis of newly induced Short-root mutants in Rice, 1997.

@. Exploreit and . Icrisat, Available at: http://exploreit.icrisat.org, p.680, 2016.

Y. Inukai, M. Miwa, Y. Nagato, H. Kitano, and A. Yamauchi, Characterization of Rice Mutants Deficient in the Formation of Crown Roots., Breeding Science, vol.51, issue.2, pp.123-129, 2001.
DOI : 10.1270/jsbbs.51.123

Y. Inukai, M. Miwa, Y. Nagato, H. Kitano, and A. Yamauchi, RRL1, RRL2 and CRL2 loci regulating root elongation in rice., Breeding Science, vol.51, issue.4, pp.231-239, 2001.
DOI : 10.1270/jsbbs.51.231

URL : https://www.jstage.jst.go.jp/article/jsbbs/51/4/51_4_231/_pdf

Y. Inukai, T. Sakamoto, M. Ueguchi-tanaka, Y. Shibata, K. Gomi et al., Crown rootless1, Which Is Essential for Crown Root Formation in Rice, Is a Target of an AUXIN RESPONSE FACTOR in Auxin Signaling, THE PLANT CELL ONLINE, vol.17, issue.5, pp.1387-1396, 2005.
DOI : 10.1105/tpc.105.030981

A. S. Iyer-pascuzzi, O. Symonova, Y. Mileyko, Y. Hao, H. Belcher et al., Imaging and Analysis Platform for Automatic Phenotyping and Trait Ranking of Plant Root Systems, PLANT PHYSIOLOGY, vol.152, issue.3, pp.1148-1157, 2010.
DOI : 10.1104/pp.109.150748

T. Izawa and K. Shimamoto, Becoming a model plant: The importance of rice to plant science, Trends in Plant Science, vol.1, issue.3, pp.95-9910, 1996.
DOI : 10.1016/S1360-1385(96)80041-0

M. Jain, N. Kaur, R. Garg, J. K. Thakur, A. K. Tyagi et al., Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa), Functional & Integrative Genomics, vol.296, issue.1, pp.47-59, 2006.
DOI : 10.1016/j.bbaexp.2005.08.002

L. Jansen, J. Hollunder, I. Roberts, C. Forestan, P. Fonteyne et al., Comparative transcriptomics as a tool for the identification of root branching genes in maize, Plant Biotechnology Journal, vol.139, issue.9, pp.1092-1102, 2013.
DOI : 10.1104/pp.105.067330

H. Javot, V. Lauvergeat, V. Santoni, F. Martin-laurent, J. Güçlü et al., Role of a Single Aquaporin Isoform in Root Water Uptake, THE PLANT CELL ONLINE, vol.15, issue.2, pp.509-522, 2003.
DOI : 10.1105/tpc.008888

URL : https://hal.archives-ouvertes.fr/hal-01637032

B. Jayne and M. Quigley, Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis, Mycorrhiza, vol.185, issue.2, 2014.
DOI : 10.1007/BF02257525

M. O. Jordan, J. Harada, C. Bruchou, Y. , and K. , Maize nodal root ramification: Absence of dormant primordia, root classification using histological parameters and consequences on sap conduction, Plant and Soil, vol.51, issue.1, pp.125-143, 1993.
DOI : 10.1626/jcs.51.584

N. N. Kadam, X. Yin, P. S. Bindraban, P. C. Struik, and K. S. Jagadish, Does Morphological and Anatomical Plasticity during the Vegetative Stage Make Wheat More Tolerant of Water Deficit Stress Than Rice? Plant Physiol, pp.1389-401, 2015.

Y. Kato, J. Abe, A. Kamoshita, Y. , and J. , Genotypic Variation in Root Growth Angle in Rice (Oryza sativa L.) and its Association with Deep Root Development in Upland Fields with Different Water Regimes, Plant and Soil, vol.35, issue.Extra Issue 1, pp.117-129, 2006.
DOI : 10.1080/00380768.1982.10432387

Y. Kitomi, H. Inahashi, H. Takehisa, Y. Sato, and Y. Inukai, OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice, Plant Science, vol.190, pp.116-122, 2012.
DOI : 10.1016/j.plantsci.2012.04.005

Y. Kitomi, H. Ito, T. Hobo, K. Aya, H. Kitano et al., The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling, The Plant Journal, vol.21, issue.3, pp.472-484, 2011.
DOI : 10.1105/tpc.108.061655

Y. Kitomi, A. Ogawa, H. Kitano, and Y. Inukai, CRL4 regulates crown root formation through auxin transport in rice, Plant Root, vol.2, 2008.
DOI : 10.3117/plantroot.2.19

B. A. Kountche, C. T. Hash, H. Dodo, O. Laoualy, M. D. Sanogo et al., Development of a pearl millet Striga-resistant genepool: Response to five cycles of recurrent selection under Striga-infested field conditions in West Africa, Field Crops Research, vol.154, pp.82-90, 2013.
DOI : 10.1016/j.fcr.2013.07.008

R. C. Kuijken, F. Van-eeuwijk, L. F. Marcelis, and H. J. Bouwmeester, Root phenotyping: from component trait in the lab to breeding: Table 1., Journal of Experimental Botany, vol.177, issue.7, pp.5389-401, 2015.
DOI : 10.1007/s00122-006-0260-z

J. V. Lagerwerff, G. Ogata, E. , and E. H. , Control of Osmotic Pressure of Culture Solutions with Polyethylene Glycol, Science, vol.133, issue.3463, pp.1486-1487, 1961.
DOI : 10.1126/science.133.3463.1486

M. Lartaud, C. Perin, B. Courtois, E. Thomas, S. Henry et al., PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification, Frontiers in Plant Science, vol.9, issue.105, 2014.
DOI : 10.1038/nmeth.2089

URL : http://journal.frontiersin.org/article/10.3389/fpls.2014.00790/pdf

J. Lavenus, T. Goh, I. Roberts, S. Guyomarc-'h, M. Lucas et al., Lateral root development in Arabidopsis: fifty shades of auxin, Trends in Plant Science, vol.18, issue.8, pp.1360-1385, 2013.
DOI : 10.1016/j.tplants.2013.04.006

F. Lecompte, L. Pagès, and H. Ozier-lafontaine, Patterns of variability in the diameter of lateral roots in the banana root system, New Phytologist, vol.48, issue.3, 2005.
DOI : 10.1201/9780203909423.ch9

H. Li, S. E. Smith, R. E. Holloway, Y. Zhu, and F. A. Smith, Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses, New Phytologist, vol.91, issue.3, pp.536-543, 2006.
DOI : 10.1023/A:1013343811110

H. Li, H. Wang, Y. , and Y. , Interdecadal variation of the West African summer monsoon during 1979???2010 and associated variability, Climate Dynamics, vol.286, issue.6, pp.2883-2894, 2012.
DOI : 10.1126/science.286.5444.1537

J. Li, Y. Zhao, H. Chu, L. Wang, Y. Fu et al., SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation, PLOS Genetics, vol.1, issue.8, pp.1-21, 2015.
DOI : 10.1371/journal.pgen.1005464.s010

M. Lièvre, C. Granier, and Y. Guédon, Identifying developmental phases in the Arabidopsis thaliana rosette using integrative segmentation models, New Phytol, 2016.

S. Liu, J. Wang, L. Wang, X. Wang, Y. Xue et al., Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family, Cell Research, vol.6, issue.9, pp.1110-1119, 2009.
DOI : 10.1046/j.1365-313X.2003.01860.x

G. Lobet, L. Pagès, and X. Draye, A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of Root System Architecture, Plant Physiology, vol.157, issue.1, pp.29-39, 2011.
DOI : 10.1104/pp.111.179895

J. P. Lynch, Root Phenes for Enhanced Soil Exploration and Phosphorus Acquisition: Tools for Future Crops, PLANT PHYSIOLOGY, vol.156, issue.3, 2011.
DOI : 10.1104/pp.111.175414

URL : http://www.plantphysiol.org/content/plantphysiol/156/3/1041.full.pdf

J. P. Lynch, J. G. Chimungu, and K. M. Brown, Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement, Journal of Experimental Botany, vol.37, issue.21, pp.6155-6166, 2014.
DOI : 10.1071/FP09197

URL : https://academic.oup.com/jxb/article-pdf/65/21/6155/18044199/eru162.pdf

J. P. Lynch and M. D. Ho, Rhizoeconomics: Carbon costs of phosphorus acquisition, Plant and Soil, vol.15, issue.1-2, pp.45-56, 2005.
DOI : 10.1201/9780203909423.ch12

R. D. Macleod, Lateral root primordium inception in Zea mays L., Environmental and Experimental Botany, vol.30, issue.2, pp.225-234, 1990.
DOI : 10.1016/0098-8472(90)90068-F

S. Mairhofer, S. Zappala, S. R. Tracy, C. Sturrock, M. Bennett et al., RooTrak: Automated Recovery of Three-Dimensional Plant Root Architecture in Soil from X-Ray Microcomputed Tomography Images Using Visual Tracking, PLANT PHYSIOLOGY, vol.158, issue.2, pp.561-569, 2012.
DOI : 10.1104/pp.111.186221

R. K. Maiti and F. R. Bidinger, Growth and development of the pearl millet plant, ICRISAT Res. Bull, 1981.

J. E. Malamy, Intrinsic and environmental response pathways that regulate root system architecture, Plant, Cell and Environment, vol.127, issue.1, pp.67-77, 2005.
DOI : 10.1007/s00122-003-1390-1

J. E. Malamy and P. N. Benfey, Organization and cell differentiation in lateral roots of Arabidopsis thaliana, Development, vol.124, pp.33-44, 1997.

K. Manning, R. Pelling, T. Higham, J. Schwenniger, and D. Q. Fuller, 4500-Year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: new insights into an alternative cereal domestication pathway, Journal of Archaeological Science, vol.38, issue.2, pp.312-322, 2011.
DOI : 10.1016/j.jas.2010.09.007

C. Mariac, V. Luong, I. Kapran, A. Mamadou, F. Sagnard et al., Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers, Theoretical and Applied Genetics, vol.43, issue.1, pp.49-58, 2006.
DOI : 10.1093/oxfordjournals.molbev.a004186

M. Meijón, S. B. Satbhai, T. Tsuchimatsu, and W. Busch, Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis, Nature Genetics, vol.57, issue.1, pp.77-81, 2014.
DOI : 10.1093/beheco/ark016

C. Monat, C. Tranchant-dubreuil, A. Kougbeadjo, C. Farcy, E. Ortega-abboud et al., TOGGLE: toolbox for generic NGS analyses, BMC Bioinformatics, vol.6, issue.1, pp.374-384, 2015.
DOI : 10.1038/nmeth.1363

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-015-0795-6?site=bmcbioinformatics.biomedcentral.com

B. Muller, M. Stosser, and F. Tardieu, Spatial distributions of tissue expansion and cell division rates are related to irradiance and to sugar content in the growing zone of maize roots, Plant, Cell and Environment, vol.20, issue.2, pp.149-158, 1998.
DOI : 10.1016/0098-8472(80)90227-0

H. S. Neufeld, D. M. Durall, P. M. Rich, and D. T. Tingey, A rootbox for quantitative observations on intact entire root systems, Plant and Soil, vol.72, issue.2, pp.295-298, 1989.
DOI : 10.1093/treephys/3.4.393

B. Orman-ligeza, B. Parizot, P. P. Gantet, T. Beeckman, M. J. Bennett et al., Post-embryonic root organogenesis in cereals: branching out from model plants, Trends in Plant Science, vol.18, issue.8, pp.459-67, 2013.
DOI : 10.1016/j.tplants.2013.04.010

URL : https://hal.archives-ouvertes.fr/hal-01326207

I. Oumar, C. Mariac, J. Pham, and Y. Vigouroux, Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci, Theoretical and Applied Genetics, vol.291, issue.12, pp.489-97, 2008.
DOI : 10.1139/g88-148

F. M. Padilla, J. D. Miranda, and F. I. Pugnaire, Early root growth plasticity in seedlings of three Mediterranean woody species, Plant and Soil, vol.87, issue.1-2, pp.103-113, 2007.
DOI : 10.5194/we-6-17-2006

L. Pagès, Growth patterns of the lateral roots of young oak (Quercus robur) tree seedlings Relationship with apical diameter, New Phytologist, vol.48, issue.4, pp.503-509, 1995.
DOI : 10.1016/B978-1-4832-2931-7.50029-X

L. Pagès, Links between root developmental traits and foraging performance, Plant, Cell & Environment, vol.49, issue.10, 2011.
DOI : 10.2307/2439545

A. M. Pahlavanian and W. K. Silk, Effect of Temperature on Spatial and Temporal Aspects of Growth in the Primary Maize Root, PLANT PHYSIOLOGY, vol.87, issue.2, pp.529-532, 1988.
DOI : 10.1104/pp.87.2.529

S. Passot, F. Gnacko, D. Moukouanga, M. Lucas, S. Guyomarc-'h et al., Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots, Frontiers in Plant Science, vol.178, issue.790, pp.1-11, 2016.
DOI : 10.1111/j.1469-8137.2007.02358.x

URL : https://hal.archives-ouvertes.fr/hal-01398441

A. H. Paterson, J. E. Bowers, R. Bruggmann, I. Dubchak, J. Grimwood et al., The Sorghum bicolor genome and the diversification of grasses, Nature, vol.320, issue.7229, pp.551-556, 2009.
DOI : 10.1042/bj1010103

W. A. Payne, R. J. Lascano, L. R. Hossner, C. W. Wendt, and A. B. Onken, Pearl Millet Growth as Affected by Phosphorus and Water, Agronomy Journal, vol.83, issue.6, pp.942-948, 1991.
DOI : 10.2134/agronj1991.00021962008300060005x

J. Poland and T. W. Rife, Genotyping-by-Sequencing for Plant Breeding and Genetics, The Plant Genome Journal, vol.5, issue.3, pp.92-102, 2012.
DOI : 10.3835/plantgenome2012.05.0005

URL : https://dl.sciencesocieties.org/publications/tpg/pdfs/5/3/92

V. Poncet, F. Lamy, J. Enjalbert, H. Joly, A. Sarr et al., Genetic analysis of the domestication syndrome in pearl millet (Pennisetum glaucum L., Poaceae): inheritance of the major characters, Heredity, vol.77, issue.6, pp.648-658, 1998.
DOI : 10.1139/g88-070

J. Pritchard, A. D. Tomos, W. Jones, and R. G. , Control of Wheat Root Elongation Growth, Journal of Experimental Botany, vol.38, issue.6, pp.948-959, 1987.
DOI : 10.1093/jxb/38.6.948

R. Development and C. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2008.

J. Rebouillat, A. Dievart, J. L. Verdeil, J. Escoute, G. Giese et al., Molecular Genetics of Rice Root Development, Rice, vol.33, issue.Spec No, pp.15-34, 2009.
DOI : 10.1626/jcs.53.169

S. M. Rich and M. Watt, Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver, Journal of Experimental Botany, vol.111, issue.5, pp.1193-1208, 2013.
DOI : 10.1007/s00122-005-2051-3

URL : https://academic.oup.com/jxb/article-pdf/64/5/1193/18044206/ert043.pdf

D. Ron, Y. Singer, and N. Tishby, The power of amnesia: Learning probabilistic automata with variable memory length, Machine Learning, vol.24, issue.1, pp.117-149, 1997.
DOI : 10.1002/j.1538-7305.1951.tb01366.x

M. Rostamza, R. Richards, and M. Watt, Response of millet and sorghum to a varying water supply around the primary and nodal roots, Annals of Botany, vol.8, issue.2, pp.439-446, 2013.
DOI : 10.1626/pps.8.454

P. Saengwilai, X. Tian, and J. P. Lynch, Low Crown Root Number Enhances Nitrogen Acquisition from Low-Nitrogen Soils in Maize, PLANT PHYSIOLOGY, vol.166, issue.2, pp.581-590, 2014.
DOI : 10.1104/pp.113.232603

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213090/pdf

A. A. Saïdou, C. Mariac, V. Luong, J. L. Pham, G. Bezançon et al., Association Studies Identify Natural Variation at PHYC Linked to Flowering Time and Morphological Variation in Pearl Millet, Genetics, vol.182, issue.3, pp.899-910, 2009.
DOI : 10.1534/genetics.109.102756

M. Salehin, R. Bagchi, E. , and M. , -Based Auxin Perception: Mechanism and Role in Plant Growth and Development, The Plant Cell Online, vol.27, issue.1, 2015.
DOI : 10.1105/tpc.114.133744

URL : http://www.plantcell.org/content/plantcell/27/1/9.full.pdf

B. Scheres, H. Wolkenfelt, V. Willemsen, M. Terlouw, E. Lawson et al., Embryonic origin of the Arabidopsis primary root and root meristem initials, Development, vol.2487, pp.2475-2487, 1994.

J. E. Schmidt, T. M. Bowles, and A. C. Gaudin, Using Ancient Traits to Convert Soil Health into Crop Yield: Impact of Selection on Maize Root and Rhizosphere Function, Frontiers in Plant Science, vol.57, issue.415, 2016.
DOI : 10.1007/s10722-009-9521-4

C. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

J. Scott-wendt, R. G. Chase, and L. R. Hossner, Soil Chemical Variability in Sandy Ustalfs in Semiarid Niger, West Africa Available at, Soil Sci, vol.145, issue.414, pp.1069-1073, 1988.

J. L. Seago, F. , and D. D. , Anatomical aspects of angiosperm root evolution, Annals of Botany, vol.2, issue.suppl, pp.223-261, 2013.
DOI : 10.1093/oxfordjournals.aob.a086527

URL : https://academic.oup.com/aob/article-pdf/112/2/223/17008231/mcs266.pdf

S. W. Souci, W. Fachmann, and H. Kraut, Food composition and nutrition tables, 2000.

K. A. Steele, A. H. Price, H. E. Shashidhar, and J. R. Witcombe, Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety, Theoretical and Applied Genetics, vol.97, issue.2, pp.208-221, 2006.
DOI : 10.1007/s00122-005-0110-4

B. Sultan and M. Gaetani, Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation, Frontiers in Plant Science, vol.12, issue.386, 2016.
DOI : 10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/insu-01355123

F. Takahashi, K. Sato-nara, K. Kobayashi, M. Suzuki, and H. Suzuki, Sugarinduced adventitious roots in Arabidopsis seedlings, J. Plant Res, vol.116, pp.83-91, 2003.

G. Taramino, M. Sauer, J. L. Stauffer, D. Multani, X. Niu et al., The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation, The Plant Journal, vol.58, issue.4, pp.649-659, 2007.
DOI : 10.1016/S0176-1617(00)80053-X

M. Tester and A. Bacic, Abiotic Stress Tolerances in Grasses Form Model Plants To Crop Plants, J. Plant Pathol, vol.137, pp.791-793, 2005.
DOI : 10.1104/pp.104.900138

URL : http://www.plantphysiol.org/content/plantphysiol/137/3/791.full.pdf

P. Thaler and L. Pagès, Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability, Physiologia Plantarum, vol.97, issue.2, pp.365-371, 1996.
DOI : 10.1034/j.1399-3054.1996.970222.x

D. Tolivia and J. Tolivia, Fasga: A new polychromatic method for simultaneous and differential staining of plant tissues, Journal of Microscopy, vol.91, issue.1, pp.113-117, 1987.
DOI : 10.1007/BF01012529

C. N. Topp, A. S. Iyer-pascuzzi, J. T. Anderson, C. Lee, P. R. Zurek et al., 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture, Proceedings of the National Academy of Sciences, vol.84, issue.1595, pp.1695-704, 2013.
DOI : 10.1016/j.biosystemseng.2011.06.004

S. Trachsel, S. M. Kaeppler, K. M. Brown, and J. P. Lynch, Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field, Plant and Soil, vol.111, issue.1-2, pp.75-87, 2011.
DOI : 10.1007/s00122-005-2051-3

Y. Uga, K. Sugimoto, S. Ogawa, J. Rane, M. Ishitani et al., Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions, Nature Genetics, vol.36, issue.9, pp.1097-102, 2013.
DOI : 10.1007/s10681-007-9605-1

. Undata, Available at: http://data.un.org/Data.aspx?q=population&d=PopDiv&f=variableID%3a12

V. Vadez, T. Hash, F. R. Bidinger, and J. Kholova, Phenotyping pearl millet for adaptation to drought, Front. Physiol, 2012.
DOI : 10.3389/fphys.2012.00386

URL : http://journal.frontiersin.org/article/10.3389/fphys.2012.00386/pdf

G. Varney, M. Canny, X. Wang, and M. Mccully, The Branch Roots of Zea. I. First Order Branches, Their Number, Sizes and Division into Classes, Annals of Botany, vol.67, issue.6, pp.357-364, 1991.
DOI : 10.1093/oxfordjournals.aob.a088203

G. T. Varney and M. E. Mccully, The branch roots of Zea. II. Developmental loss of the apical meristem in field-grown roots, New Phytologist, vol.138, issue.9, pp.535-546, 1991.
DOI : 10.1111/j.1365-2818.1985.tb02601.x

H. Vierheilig, A. P. Coughlan, U. R. Wyss, R. , and C. De, Ink and Vinegar, a Simple Staining Technique for Arbuscular-Mycorrhizal Fungi, Appl. Environ. Microbiol, vol.64, pp.5004-5007, 1998.

J. G. Waines and B. Ehdaie, Domestication and Crop Physiology: Roots of Green-Revolution Wheat, Annals of Botany, vol.100, issue.5, pp.991-998, 2007.
DOI : 10.1093/aob/mcm180

URL : https://academic.oup.com/aob/article-pdf/100/5/991/318130/mcm180.pdf

J. R. Wang, H. Hu, G. H. Wang, J. Li, J. Y. Chen et al., Expression of PIN Genes in Rice (Oryza sativa L.): Tissue Specificity and Regulation by Hormones, Molecular Plant, vol.2, issue.4, pp.823-831, 2009.
DOI : 10.1093/mp/ssp023

M. Watt, L. J. Magee, and M. E. Mccully, Types, structure and potential for axial water flow in the deepest roots of field-grown cereals, New Phytologist, vol.89, issue.1, pp.135-146, 2008.
DOI : 10.1046/j.1469-8137.2003.00893.x

K. Woll, L. Borsuk, H. Stransky, D. Nettleton, P. S. Schnable et al., Isolation, Characterization, and Pericycle-Specific Transcriptome Analyses of the Novel Maize Lateral and Seminal Root Initiation Mutant rum1, PLANT PHYSIOLOGY, vol.139, issue.3, pp.1255-1267, 2005.
DOI : 10.1104/pp.105.067330

Q. Wu, L. Pagès, and J. Wu, Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize, Annals of Botany, vol.387, issue.3, 2016.
DOI : 10.1093/aob/mcv127

URL : https://hal.archives-ouvertes.fr/hal-01273698

L. Xu, M. Henke, J. Zhu, W. Kurth, and G. Buck-sorlin, A functional???structural model of rice linking quantitative genetic information with morphological development and physiological processes, Annals of Botany, vol.35, issue.76, pp.817-828, 2011.
DOI : 10.1071/FP08060

URL : https://hal.archives-ouvertes.fr/hal-01132289

A. Yamauchi, J. Jr, and Y. Kono, Root system structure and its relation to stress tolerance, Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics, pp.211-233, 1996.

S. G. Yao, J. Mushika, S. Taketa, and M. Ichii, The short-root mutation srt5 defines a sugar-mediated root growth in rice (Oryza sativa L.). Plant Sci, pp.49-54, 2004.

S. G. Yao, S. Taketa, and M. Ichii, A novel short-root gene that affects specifically early root development in rice (Oryza sativa L.). Plant Sci, pp.207-215, 2002.

S. G. Yao, S. Taketa, and M. Ichii, Isolation and characterization of an abscisic acidinsensitive mutation that affects specifically primary root elongation in rice (Oryza sativa L.). Plant Sci, pp.971-978, 2003.

L. M. York, M. Silberbush, and J. P. Lynch, Spatiotemporal variation of nitrate uptake kinetics within the maize (Zea mays) root system is associated with greater nitrate uptake and interactions with root system architectural phenes, J. Exp. Bot, 2016.

W. Zegada-lizarazu and M. Iijima, Deep Root Water Uptake Ability and Water Use Efficiency of Pearl Millet in Comparison to Other Millet Species, Plant Production Science, vol.8, issue.4, pp.454-460, 2005.
DOI : 10.1626/pps.7.427

A. Zhan, H. Schneider, and J. P. Lynch, Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize, Plant Physiology, vol.168, issue.4, pp.1603-1618, 2015.
DOI : 10.1104/pp.15.00187

URL : http://www.plantphysiol.org/content/plantphysiol/168/4/1603.full.pdf

Y. Zhao, S. Cheng, Y. Song, Y. Huang, S. Zhou et al., The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling, The Plant Cell, vol.27, issue.9, 2015.
DOI : 10.1105/tpc.15.00227

Y. Zhao, Y. Hu, M. Dai, L. Huang, and D. Zhou, The WUSCHEL-Related Homeobox Gene WOX11 Is Required to Activate Shoot-Borne Crown Root Development in Rice, THE PLANT CELL ONLINE, vol.21, issue.3, pp.736-748, 2009.
DOI : 10.1105/tpc.108.061655

J. Zhu, K. M. Brown, and J. P. Lynch, Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.), Plant. Cell Environ, vol.33, 2010.

Z. X. Zhu, Y. Liu, S. J. Liu, C. Z. Mao, Y. R. Wu et al., A Gain-of-Function Mutation in OsIAA11 Affects Lateral Root Development in Rice, Molecular Plant, vol.5, issue.1, pp.154-161, 2012.
DOI : 10.1093/mp/ssr074