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À mes parents...

Tous les mots ne sauraient exprimer ma gratitude et ma reconnaissance pour vos sacrifices,
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Abstract

Content-Based Visual Information Retrieval and Classification on Magnetic Resonance Imag-

ing is penetrating the universe of IT tools supporting clinical decision making. A clinician

can take profit from retrieving subjects’ scans with similar patterns. In this thesis, we use

the visual indexing framework and pattern recognition analysis based on structural MRI and

Tensor Diffusion Imaging data to discriminate three categories of subjects: Normal Con-

trols (NC), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). The approach

extracts visual features from the most involved areas in the disease: Hippocampus and Pos-

terior Cingulate Cortex (PCC). Hence, we represent signal variations (atrophy) inside the

Region of Interest anatomy by a set of local features and we build a disease-related signature

using an atlas based parcellation of the brain scan. The extracted features are quantized

using the Bag-of-Visual-Words approach to build one signature by brain/ROI (subject).

This yields a transformation of a full MRI brain into a compact disease-related signature.

Several schemes of information fusion are applied to enhance the diagnosis performance.

The proposed approach is less time-consuming compared to the state of the arts Volumet-

ric methods, computer-based and does not require the intervention of an expert during the

classification/retrieval phase.
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Résumé

L’augmentation de la durée de vie dans les pays développés a été accompagnée par une aug-

mentation sans précédent des cas des pathologies neuro-dégénératives liées è l’âge. La maladie

d’Alzheimer (MA) est le type le plus fréquent de démence. Selon l’Association ”Alzheimer

Disease International” 1, il y a approximativement 36 millions de personnes atteintes par

la MA dans le tout monde et selon les estimations ce nombre devrait tripler pour attein-

dre 115 millions en 2050. L’impact économique mondial de la maladie dAlzheimer pesait

600 milliards de dollars en 2010. Les conséquences socio économiques de cet accroissement

sont lourdes ce qui rend le diagnostic précoce de la MA une urgence de santé publique. En

effet, l’identification des marqueurs morphologiques présents dans les stades initiaux de la

MA devraient aider au diagnostic précoce, et donc à une prise en charge mieux adaptée des

patients.

Plusieurs méthodes et techniques ont été proposés dans ce cadre pour l’étude de la

morphologie de structure de cerveau humain à travers l’Imagerie cérébrale par Résonnance

Magnétique (IRM). On peut distinguer deux grandes familles de méthodes. Premièrement,

les méthodes d’analyse par région d’intérêt (ROI) (volumétrique), ces méthodes extraient une

ROI et étudient sa variation de volume. Cependant, elles présentent certaines limites dans

la mesure où la délimitation est coûteuse en temps et dépend de l’observateur. Le deuxième

groupe est le groupe des méthodes voxéliques qui s’intéressent à la détection des différences

significatives au niveau de la matière grise entre deux groupes de sujets par des tests voxel

à voxel. Toutefois, ces dernières permettent seulement une localisation de l’atrophie mais

1http://www.alz.org/
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aucune appréciation visuelle ou quantification, il est donc difficile d’avoir un indice réflétant

le degré d’atrophie d’un patient donné. Les méthodes traditionnelles d’analyse des IRM ont

été souvent développées dans l’optique d’étude des groupes, leurs intérêt pour un diagnostic

individuel reste limité et leurs applications cliniques restent encore inadaptées. En effet, ces

méthodes sont loin d’ être capables à émuler le processus de diagnostic fait par le médecin.

En réalité, le clinicien analyse l’IRM du patient et essai de quantifier visuellement l’atro-

phie. Il est très évident que le processus de diagnostic médical repose sur la capacité de

médecin d’apprendre des cas similaires déjà vus d’une part et sur son aptitude de détecter et

de caractériser des cibles pathologiques (interpréter visuellement les altérations spécifiques)

d’autre part. En effet, le médecin fait souvent appel à sa mémoire d’expériences passées dans

l’exercice, pour chercher une ressemblance entre des anciennes images et la nouvelle. Une

telle ressemblance, si elle existe, devrait aider énormément dans la résolution du nouveau

problème en main. Aussi, l’interprétation visuelle des motifs associés aux atrophies fait ap-

pel d’une façon explicite aux techniques de reconnaissance des formes et d’apprentissage qui

consistent à déterminer selon un citère de similarité visuelle à quelle classe de sujets connue

le nouveau cas peut être associé ou bien quelle est la liste des images qui sont lui similaires?

Les outils méthodologiques en indexation et recherche des images par le contenu sont

déjà assez matures et ce domaine s’ouvre vers les applications médicales. Dans cette thèse,

nous nous intéressons à l’indexation visuelle, à la recherche et à la classification des images

cérébrales IRM par le contenu pour l’aide au diagnostic précoce de la maladie d’Alzheimer.

L’idée principale est de donner au clinicien des informations sur les images ayant des car-

actéristiques visuelles similaires. À base de ces informations, le médecin se rend capable

de prendre la décision à propos de la maladie dans son stade précoce. Trois catégories de

sujets sont à distinguer : sujets sains (NC), sujets avec troubles cognitifs légers (MCI) et

sujets atteints par la maladie d’Alzheimer (AD). Dans ce travail, nous proposons des solu-

tions pour l’aide au diagnostic de la MA basées sur une quantifications l’atrophie cérébrale

sous forme d’une signature visuelle spécifique à la MA. Les connaissances sont représentées

d’une façon étroitement lié à la méthode de raisonnement de médecin pour un diagnostic

individuel. Nous nous sommes basés sur les outils d’indexation par le contenu couplés avec

les connaissances de domaine en acquisition des images IRM et en diagnostic de la MA. Pour

2014/2015 Olfa Ben Ahmed
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rendre cette signature spécifique à la maladie dAlzheimer nous avons adopté un ensemble de

méthodologies:

Nous nous sommes concentrés uniquement sur la description fine des régions qui sont

impliquées dans la maladie d’Alzheimer et qui causent des changements particuliers dans

la structure de cerveau. En se basant sur des informations fournis par nos partenaires de

l’INCIA, nous étudions deux zones de cerveau : l’hippocampe : région cérébrale impliquée

dans la mémorisation, et le Cortex Cingulaire Postérieur (CCP) qui correspond à la zone

de la mémoire autobiographique. Ces régions sont extraites en utilisant un atlas normalisé

adopté à notre problématique.

Pour extraire l’information visuelle, nous avons opté à une approche 2D pour capter le

spectre complet et local de l’atrophie. Nous avons appliqué des descripteurs de contenu locaux

comme ( SIFT, SURF et Fonctions Harmoniques Circulaires de Laguerre-Gauss (CHFs) )

pour représenter la variation de signal dans une région d’intérêt sur les images IRM pour

détecter les changements de la structure de cerveau dans le cas de la MA. L’utilisation des

CHFs est une nouvelle technique pour la construction des descripteurs représentatifs distincts.

L’algorithme effectue une analyse multi-résolution de l’image dans le domaine transformé par

Laguerre Gauss et collecte dans un descripteur local les coefficients transformés dans plusieurs

échelles.

Les caractéristiques extraites de chaque région sont ensuite quantifiées en utilisant l’ap-

proche Sac de mots visuels typique pour l’indexation visuelle. Cela donne une transformation

d’une image ou d’une ROI du cerveau en une signature, un histogramme des caractéristiques

quantifiées. Afin de réduire la dimension de la signature, nous avons utilisé la technique de

PCA.

Dans ces travaux, nous nous sommes aussi intéressés à la fusion d’information issue de

différents marqueurs extraits des IRM. Des stratégies de fusion ont été proposées pour ren-

forcer les décisions à savoir une fusion tardive et une fusion précoce. En premier lieu, nous

avons appliqué une fusion tardive pour fusionner les résultats de classification issue de l’utili-

sation de la structure de l’hippocampe et le volume de Liquide Cérébro-spinal (LCS) qui règne

dans cette région. En effet, en se basant sur les connaissances de domaine, dans un stade

précoce de la MA, l’hippocampe se rétrécit à cause de la dégénération des cellules et le LCS,

2014/2015 Olfa Ben Ahmed
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qui est un substance liquide dans la quelle baigne le cerveau, remplie le volume manquant.

Dans un second lieu, nous avons appliqué une fusion précoce des vecteurs caractéristiques

extraits des régions de l’hippocampe et du Cortex Circulaire Postérieur. En effet, au stade

précoce, la maladie touche la région de l’hippocampe qui subit une perte massive de neurones.

Au stade plus avancé, le CCP voit son métabolisme diminué et cet hypo-métabolisme serait

prédictif d’une conversion rapide vers AD et donc il permettrait de détecter les cas MCI.

Aussi, nous avons aussi utilisé les cartes des diffusion (MD) de la modalité Imagerie à

Tenseur de Diffusion (DTI) pour distinguer entre AD, NC et MCI. Nous avons appliqué le

classifieur SVM avec différents noyaux pour classer les groupes.

Les méthodes proposées sont appliquées dans un premier temps sur des ensembles des

sujets de la base de cas de maladie d’Alzheimer : la base ADNI. Et puis sur une cohorte réelle

des sujets de groupe ”Bordeaux-”City”. Les méthodes proposées sont automatiques (sans la

moindre intervention de clinicien), ne nécessitent pas une étape de segmentation coûteuse et

fastidieuse grâce à l’utilisation d’un Atlas normalisé. Les résultats obtenus montrent que la

description de contenu des régions de cerveau impliquées dans la MA permettent une bonne

discrimination entre des patients AD, des sujets sains et des sujets MCI et donc peuvent

être utilisés comme un outil potentiel d’aide au diagnostic de cette pathologie. En plus,

les descripteurs CHFs donnent de meilleurs résultats par rapport aux descripteurs SIFT qui

représente un benchmark. Aussi, la modalité DTI, qui est à nos connaissance, n’a jamais

été question de recherche dans le cadre de recherche ou classification par le contenu pour le

diagnostic d’Alzheimer, a donné des bons résultats pour classifier les sujets sains des sujets

AD ou MCI. Les résultats obtenus apportent une amélioration par rapport aux méthodes

volumétriques en termes de précision de classification et de temps de traitement.

2014/2015 Olfa Ben Ahmed
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0.1 Motivation

0.1.1 Clinical Motivation

Alzheimer’s disease

With the aging of population in developed countries, more people will be affected by dementia.

Alzheimer’s disease (AD) is one of the most frequent form of dementia. It is a progressive

neurodegenerative disease, characterized by severe deterioration in cognitive function and by

memory loss. Nowadays, AD represents a major public health problem and its early detection

is very important to achieve delay in the disease progression. Medically speaking, Alzheimer’s

disease results from the accumulation of a protein called beta-amyloid in healthy neurons.

This accumulation lead to the disintegration of microtubules in brain cells (Greenfield et al.,

1997). Consequently, neurons become weaker, lose their ability to communicate efficiently

with each other and finish by dieing. Thus, this neuronal death could contribute to loss of

brain cells. Figure 1 illustrates the neurodegeneration process. Eventually, cells degeneration

spreads to the hippocampus, which is a brain area involved in memory forming. As more

neurons die, entire areas of the brain shrink. This leads to cognitive function problems

which are symptoms of AD. In more advanced stage, damages become widespread and brain

undergoes significant shrinkage (complete brain failure).

There are three clinical phases (stages) of AD:

• Preclinical AD:

About half of the people in this phase do not report cognitive troubles some years before

diagnosis, because cells degenerations associated with AD begin years even decades

before subjects first show clinical symptoms. Indeed, biological changes are under way

in the body before symptoms of disease appear. It is challenging to quantify patterns

of structural change in the early stages of AD or during clinically normal stages. Thus,

an accurate diagnosis of the disease in the clinical phase is not yet possible.

• Mild Cognitive Impairment (MCI): Most patients go through the transitional stage

called Mild Cognitive Impairment before they lapse into AD. In this stage, subject

may show memory problems long before he gets an Alzheimer’s diagnosis. Disease in
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Figure 1: Cells degeneration process and brain shrinkage in the case of Alzheimer’s disease
dementia: spatio-temporal progression of the disease (By Chess Coach Will Stewart (USCF
2256, FIDE 2234))

this phase is not severe enough to disrupt a person’s life. MCI is a challenging and

confused group because in this phase the subject is not yet considered to have AD.

From Figure 2, we can see that lines between MCI and normal age-related memory loss

overlap, as are the lines between MCI and AD. Despite its large heterogeneity, MCI

remains a group of interest in the study of early-stage AD and current research studies

are focusing on proposing methods to predict conversion or not of MCI cases.

• Clinically Diagnosed AD:

The late stage of Alzheimer’s disease may also be called ”severe”. Subjects in this stage

show decreased mental ability, total loss of cognitive function and finally this causes

death.

Today, approximately 36 million persons are living with Alzheimer’s disease worldwide
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Figure 2: Clinical phases of Alzheimer’s disease (Rodgers and on Aging., 2002)

and this number is expected to double increasing to 66 million by 2030 and even to triple to

be 115 million by 2050 (Hebert et al., 2013). Indeed, every 67 seconds someone in the world

develops Alzheimer’s disease. The global estimated cost of dementia worldwide is US 600

billion dollars (380 billion e). For instance, in United States, there is an estimated 5.2 million

persons of all ages have Alzheimer’s disease by 2014. This includes an estimated 5 million

people aged 65 and older, and approximately 200,000 individuals under age 65 who have

younger-onset Alzheimer’s (Alzheimer’s Association, 2014). This number will dramatically

increase in the next 40 years unless preventive measures are developed. Actually, there’s

no cure yet for AD but the effort to early AD diagnosis continues with great fervor. An

early diagnosis of AD will allow patients to benefit from new treatments that may slow down

neurodegeneration.

Recent advances in neuroimaging instruments show substantial improvement of image

quality and acquisition speed. This increased the use of medical imaging considerably for

AD diagnosis. Up to day, Magnitique Resonance Imaging (MRI) is the most used tool for
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brain imaging in vivo for the assessment of AD. Such popularity comes from its good contrast

of soft tissues and high spatial resolution which allow to capture the distribution of anatomical

changes in brain structure. Toward this goal, there is still a need to find the best ways to

extract and quantify pathological structural alterations from MRI. Traditional voxel-wise or

volumetric methods are the gold standards methods for MRI analysis but these are still far

from emulating the clinician diagnosis process. The shortcoming of such methods is that every

voxel in the image is analyzed individually. Usually, the clinician identifies neurodegenerative

diseases in MRI scans by looking for a disease specific pattern of neurodegeneration in the

brain. This suggests that the decision relevant information is comprised in patterns and not

only in single voxels. In addition, volumetric methods require a Region of Interest (ROI)

segmentation which is time-consuming and user-depending. Actually, Alzheimer’s disease

may not affect only a single ROI, but several structures localized far away from each others.

Then, the pattern of atrophy is difficult to quantify by those standard methods Therefore,

the visual analysis of medical images could be a time consuming and fastidious task that

demands a highly trained clinician. In addition, those proposed methods are interested in

the group level diagnosis contrasting a group of patients versus a group of normal subjects.

They have limited clinical value for individual diagnosis. Recently, a new trend towards

disease-related pattern quantification for individual AD diagnosis has appeared, representing

a fundamental shift of the research paradigm. Therefore, in this thesis, we investigate the

computer vision tools and pattern recognition techniques to do the automatic individual

diagnosis of Alzheimer’s disease subjects without the need to a fastidious segmentation step.

0.1.2 Computer vision for medical imaging diagnosis

Due to an enormous increase of the diversity and of the volume of biomedical image collections

and the large range of image modalities getting available nowadays, there is a need for

providing automated tools to index and manage medical information. Computer vision field

attracts greater interest from various research communities in medical imaging management.

Many powerful computer vision tools (such as machine learning, pattern classification and

image segmentation...) find extensive applications in the field of Computer-Aided Diagnosis

(CAD) as it helps to bring much needed quantitative information not easily available by

2014/2015 Olfa Ben Ahmed



0.1. MOTIVATION 28

trained clinicians. This allows for better diagnosis and treatment of diseases.

Recently, indexing and classification methods for Content Based Visual Image Retrieval

(CBVIR) have been penetrating the universe of medical image analysis (Müller et al., 2004;

Müller and Deserno, 2011). This is a normal ”knowledge diffusion” process, when methodolo-

gies developed for multimedia mining penetrate a new application area. The latter brings its

own specificity requiring an adjustment of methodologies on the basis of domain knowledge.

Content-based Image Retrieval (CBIR) is the application of computer vision techniques

to better human image content understanding and to index images with minimal human

intervention.

Fully automatic normal and diseased human brain recognition from MRI is of great impor-

tance for research and clinical studies specially in Alzheimer’s disease diagnosis application.

For this aim, advances in computer vision and evolution of medical imaging techniques allow

together for studying structural changes in human brain and their relationship with clinical

diagnosis of AD. Medical information from structural Magnetic Resonance Imaging (sMRI)

and Diffusion Tensor Imaging (DTI) are used for detecting structural abnormalities of the

human brain and tracking the evolution of brain atrophy which is considered as a marker

of AD process. Often, clinical diagnosis is based on a classification of medical images ac-

cording to the anatomy of specific ROI known to be involved in the disease rather than

the entire brain structure. Sometimes the distinguishing features that would indicate a par-

ticular classification are difficult to recognize even by a trained expert. The application of

content-based indexing, classification and retrieval techniques in CAD has obtained increas-

ing research interest by using the visual appearance of MRI tissues. The diagnosis here is

based on classification of local individual pattern. Feature vectors extracted describing low

level features in an image, is a basis of similarity measurement in a retrieval/classification

procedure. Computer vision deals in general with information extraction from images. A

variety of visual features, such as texture, shape and spatial relationships, which have been

used in other domains, have been adopted in the medical domain with little alteration.
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0.2 Thesis objectives

Brain anatomical difference in AD subjects at the group level has been well studied, but

the pattern classification of MRI scans across individuals still remains less developed. The

main challenge here lies first in the identification of features which provide the most reliable

information about the particular disease (so-called disease signature). Moreover, symptoms

of the disease can vary between individuals, in this case individual scan’s patterns need to

be taken into consideration and thus build a distinctive signature of disease-related atrophy

per subject. In reality, pathology bearing regions tends to be highly localized. On the other

hand, MR image is a collection of voxels characterized by spatial distribution and gray level

intensities. Here, structure-based features may reflect the image information by describing

the organizational pattern of these voxels. The extensive research on retrieval and classifica-

tion in the domain of multimedia attempts to investigate the discriminative power of local

features within brain regions that are sensitive to AD. Hence, the current research intends

to discriminate between the normal and diseased brain using local features. We propose

features-based methods to detect Alzheimer’s disease at an early stage from structural MR

images and Tensor-Diffusion Imaging modalities. We develop both content-based retrieval

framework and Content-based classification framework for CAD using domain knowledge in

AD. The main idea consists in refuting the hypothesis that morphological atrophies appear

at the same voxel location for all subjects and thus automatically build distinctive signature

of disease-related atrophy per subject. We use machine learning to do binary classification

between AD versus NC, NC versus MCI and MCI versus AD and visual similarity retrieval

methods to find similar cases to help diagnosis process. As explained in the last sections, the

MCI group is very heterogeneous and it overlaps with AD and NC groups. We focus on the

MCI/AD recognition task. We use local visual feature, such as the Circular Harmonic Func-

tions (CHFs) descriptors, Scale Invariant Feature Transform (SIFT) and Speed Up Robust

Feature (SURF).

Hence, we address the following research questions in this work:

• We aim to disseminate the knowledge of the CBIR approaches to AD diagnosis.

• Can visual features-based methods replace the fastidious ROI segmentation for effective
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and efficient AD diagnosis ? and what is the performance in comparison with volumetric

approaches?

• According to the domain knowledge in AD diagnosis, what anatomical patterns are

characteristic of AD, NC or MCI brains ? How can one interpret the neurodegeneration

pattern visually in MRI ? How can we represent the observed disease-related pattern ?

• Test the suitability of visual features to describe structural MRI and Tensor diffusion

derived images.

• Can early or late fusion of different structural features improve the classification/re-

trieval results between MCI and AD cases ?

• Is the proposed approach comparable, in terms of performance, with existing volumetric

approaches?

0.3 Contributions

The current thesis presents a multidisciplinary research efforts to investigate the emerging

computer vision tools to the AD diagnosis. We design a pattern recognition approach in the

paradigm of CBVIR to help early diagnosis of Alzheimer’s disease from structural MRI and

DTI. Indeed, we characterize brain abnormalities in terms of intra-ROI local patterns using

consistent neuroanatomical features for the disease.

The major contributions can be summarized as flows:

• We refer to the domain knowledge in AD diagnosis to emulate the clinician diagno-

sis process. Hence, inspiring from the clinician’s vision about the brain atrophy, we

build distinctive and specific disease-related signature to discriminate between AD, NC

and MCI brains. The extracted features are incorporated in a CAD system to assist

clinicians on decision making tasks.

• We extract distinctive local and visual signatures of AD-related atrophy using an atlas-

based approach without the need to a traditional tedious ROI segmentation. This help

capturing different signals from a number of different tissues inside the ROI it self.
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• We separate AD/MCI patients from NC using 2D MR images inside 3D MRI brain

volumes and at the pattern level inside the traditional voxel level analysis.

• We represent signal variations inside the ROI anatomy by a set of local features. Here,

we employ a multi resolution approach based on the Circular Harmonic Functions

(CHFs), which is suitable for extracting the most relevant image features and even

small and localized pattern. Extracted features are leveraged to distinguish normal

from abnormal local ROI tissue.

• We use the domain knowledge of the acquired MRI and Alzheimer ’s disease character-

istics to extract appropriate features from the most involved ROIs in AD: hippocampus

Hippocampus (Hpc) and Posterior Cingulate Cortex (PCC).

• We propose an early fusion of visual signatures from two selected characteristic regions,

Hpc and PCC to improve discrimination power. We apply this approach not only to

discriminate between AD and NC, but also to recognize the more challenging class of

subjects (MCI) as well.

• Referring to the domain knowledge in hippocampus ROI shrinkage, we propose a late

fusion of hippocampal visual features-based classifiers for Alzheimer’s disease diagnosis.

Here, the probabilistic outputs of classifies on both local features and the amount of

Cerebrospinal Fluid (CSF) are fused to perform the final classification of the MRI

scans.

• We present each brain scan by one global signature using the Bag Of Visual Word

(BoVW) approach. To integrate atrophy information from different projections (sagital,

axial and coronal), we propose to construct a separate codebook for MRI scans with

each projection. Then, each image can be represented as a concatenation of histograms,

each containing words from the corresponding projections.

• To test the effectiveness of our proposed disease-related signature, we design both

Content-based retrieval and binary classification systems for CAD of AD. For classi-

fication purposes, we use the well-studied and efficient tool Support Vector Machines
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(SVM). We applied the method on subset from the ADNI dataset and then on a small

group of a French dataset of AD subjects, ”Bordeaux-3City” dataset.

• Referring to the domain knowledge: when a brain is affected by Alzheimer’s disease,

hippocampus ROI undergoes a cells degeneration and then water molecules become less

hindered because of loss of barriers for diffusion motion. In this case, we hypothesize

that the fast diffusion of water on the hippocampal area results in brighter pixels on

the MD maps. We extract visual features from MD maps and we build signatures to

distinguish between an affected or a healthy hippocampus for AD CAD. The present

research is the first attempt (in our best knowledge) to apply a CBIR techniques on

the DTI modality for AD diagnosis. We means Diffusion maps.

0.4 Thesis outline

The organization of the rest of this thesis is as follows:

Chapter 1 This chapter introduces theories and concepts related to structural MRI and

Tensor Diffusion imaging modalities. It presents the principals biomarkers for AD disease as

well as the state-of-the-arts Alzheimer’s disease diagnosis methods (for both DTI and sMRI

modalities ).

Chapter 2 We start in Chapter 2 by introducing the CBIR paradigm. Then, we present

the concept of CBIR-based CAD system. Next, we review some recent research features-based

methods for Alzheimer’s disease diagnosis in the literature. The end of this chapter presents a

review of the pattern recognition methods used for Alzheimer’s disease patient discriminating.

This chapter presents the mathematical background of the machine learning methods used

in this thesis.

Chapter 3 The brain/ROI anatomy changes can be represented as a set of local fea-

tures extracted from an MR images. Those features illustrate the presence or absence of

atrophy in the specific tissue overlapping with atlas parcels. This chapter presents materials
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and methods of the current work. Indeed, we generally present and explain our methodology

in generating Alzheimer’s disease-related signature using a local feature extraction method.

First, we present the MRI preprocessing pipeline. Then, we describe the process of im-

ages signature construction. Hence, we describe the used methods such as the Bag of word

approach (BoW) and Circulars Harmonic Functions (CHFs). We present the Atlas-based

approach for ROI extraction. Materials are given in the end of chapter, we present the data

used in the current research.

Chapter 4 It presents an application of the methodology described in chapter 3 but

with more specific details referred to the domain knowledge in Alzheimer’s disease diagno-

sis. Thus, it specifically address binary classification tasks ( AD versus NC), (MCI versus

NC) and (AD versus MCI). The modality used in this chapter is the Structural MRI. Visual

features from the hippocampal region are extracted to emphasize the difference or similarity

of subjects with respect to AD. Two kinds of features are extracted: visual local descriptors

using SIFT, SURF and CHFs and the amount of CSF pixels in the hippocampal area. The

proposed final classification is based on a late fusion scheme, where the probabilistic outputs

of classifies on both local features of the hippocampus ROI and the amount of CSF. This

approach has been applied on the baseline MR images of 218 subjects from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database and then on the MRI subset ”Bordeaux-

3City” described in Chapter 3.

Chapter 5 In chapter 5, we use the visual indexing framework and pattern recogni-

tion on structural MRI data to discriminate between Normal Controls (NC), Mild Cognitive

Impairment (MCI) and Alzheimer’s Disease (AD). We use the Circular Harmonic Func-

tions (CHFs) to extract local features from the hippocampus and Posterior Cingulate Cortex

(PCC) ROIs. Tow schemes of CAD diagnosis are tested. First, a similarity retrieval approach

is applied to retrieve the most similar cases. And then we propose a binary subjects classifica-

tion framework with the same signatures. The fusion of features from both regions improves

retrieval/classification results. Obtained results are promising and indicate that the combi-

nation of hippocampus and PCC atrophy captured by specific CHF features gives a good

indicator to the diagnosis. The method is automatic less time consuming then volumetric
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methods since it does not require a segmentation of ROI.

Chapter 6 This chapter presents an approach based on the comparison of visual fea-

tures extracted from the hippocampal area on other modality (Tensor Diffusion Imaging) to

help AD diagnosis. We stilluse the Circular Harmonic Functions (CHFs) to extract content

from the Diffusion Tensor-derived map: Mean Diffusivity (MD). In this chapter, disease-

related signature is illustrated by the motion of molecules water on the hippocampus ROI.

First, we propose a CBIR method to retrieve similar scans. Then, we design a classification

framework based on CHFs features and the Bag of Visual Words approach to classify be-

tween subjects. The DTI modality is a recent modalities and the present research is the first

attempt (in our best knowledge) to apply features-based approaches on this modality for AD

diagnosis.
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1.1 Introduction

Neuroimaging is a well established technique in the medical examination routine providing

a way for clinicians to analyze the structural and functional changes in the brain associated

with the development of Alzheimer’s disease in vivo. Commonly used neuro-image techniques

include anatomical/Structural Magnetic Resonance Imaging MRI, Positron Emission Tomog-

raphy (PET), Diffusion Tensor Imaging DTI and Single-Photon Emission Computerized To-

mography (SPECT). MRI provides contrast images where different tissues are distinguished.

It should be noted that the current work will focus on information extraction from sMRI and

DTI modalities. Hence, in this chapter, we will first introduce the basic theory and concept

of sMRI and DTI, then we will briefly describe their widely used measures of brain atrophy

and finally, we will present a short survey of the (DTI/sMRI)-based methods for Alzheimer’s

disease diagnosis.

1.2 Magnetic Resonance Imaging Theory

Magnetic Resonance Imaging was mainly developed around 1980. MRI is based on the

phenomenon of Nuclear Magnetic Resonance (NMR), which leaded to several Nobel prizes

(Geva, 2006). MRI has presented itself as a powerful imaging technique as a way of visualizing

detailed structures in-vivo. It is based on magnetic manipulation of protons to acquire

images without ionizing radiation. In fact, in an MRI scanner, the patient is placed in a

strong magnetic field. This magnetic field causes the hydrogen atoms (protons in the water

molecules) in the patient’s body to align either in parallel or anti-parallel to the field. Figure

1.1 shows the major components of the Magnetic Resonance Imaging system.

The radio-frequency coils in the machine emit radio-frequency (RF) pulses causing the

proton to spin on its own axis. When the RF pulse is turned off, the protons go back to

being aligned with static the static magnetic field and send electromagnetic energy back to the

radio-frequency coils. This magnetic resonance signal is used to produce the 3 Dimensional

grey-scale image. The rates of the proton spin relaxation can be in different, depending on

the tissue type they are located in. This is how we are able to distinguish between brain

tissues such as gray and white matter differences in an MR image.
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Figure 1.1: Components of the Magnetic Resonance Imaging System (Heggie, 2001).

More details about MRI can be found in (E. Mark Haacke, 1999).

Figure 1.2: T1 (anatomical) image taken of Tim’s brain by the MRC CBU (http://www.
euroscientist.com/the-research-subject)

During the last decade, brain MRI has been widely used in clinical practice for diagnosis
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(Rovira et al., 2009) because of its excellent soft-tissue contrast. Moreover, MRI is a safe and

painless technique that uses electromagnetic waves to produce pictures which means that

there is no exposure to radiation such as in Computed Tomography (CT) or X-rays scans.

Therefore, MRI machines collect three-dimensional images. This allows us to represent the

brain in axial, sagittal and coronal views at the same time ( see Figure 1.2) which provide

better localization of a lesion in the 3D space of the brain and allow structures involved by

the tumor or dementia to be more clearly delineated. Hence, in this thesis we focus on human

brain MRI features extraction with the aim of Alzheimer’s disease diagnosis.

1.2.1 Structural MRI (sMRI)

Structural Magnetic Resonance Imaging (sMRI) is a non-invasive technique for examining

the physical structure of the brain. It is the most commonly used imaging technique among

others ( PET, SPECT, DTI...). sMRI provides good tissue contrast enabling the detection

of structural brain changes such as tumors or affected tissues. sMRI provides information

to qualitatively and quantitatively describe the shape, size, and integrity of gray and white

matter structures in the brain (E. Mark Haacke, 1999).

There are different types of structural images that may be collected by the MRI machines.

The image type do not depend on the scanner itself but it is determined by the pattern of

radio-frequency pulses. Tow basic parameters of MRI acquisition are involved:

• Repetition Time RT: is the time between successive Radio frequency RF pulses also

called relaxation time.

• The Echo Time TE: represents the time between the start of the Radio frequency RF

pulse and the maximum in the signal.

Two relaxation times for protons are commonly used known as T1 and T2 described

below:

In clinical practice:

• TE is always shorter than TR
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Figure 1.3: Axial slices of T1-weighted (left) and T2-weighted (right) images and grey
map distribution of brain tissue ( in the middle).

• A short TR = value approximately equal to the average T1 value, usually lower than

500 ms

• A long TR = 3 times the short TR, usually greater than 1500 ms

• A short TE is usually lower than 30 ms

• A long TE = 3 times the short TE, usually greater than 90 ms

T1-weighted images The T1-Weighted MRI is the standard imaging obtained with

short TE and short TR (TR < 1000ms, TE < 30ms ). In T1-weighted brain MRI, the

Gray Matter (GM) is seen as a dark gray area, the White Matter (WM) is light gray and

the Cerebrospinal Fluid (CSF) is black. Structural T1-weighted images are the most used

in research studies because they allows an accurate differentiation of brain structure This is

also the image type that functional MRI data are overlaid on.

T2-weighted images The T2-Weighted MRI is built with long TE and long TR

(TR > 2000ms, TE > 80ms). In T2-weighted images of the brain, CSF is bright, GM is

light gray, and WM is dark gray. This type of images is collected mostly for medical purposes,
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since MRI contrast allows clinicians to see abnormalities within the ventricles and cerebral

cortex better than on T1-weighted images.

However, radiologists used both T1- and T2-weighted images for medical diagnosis.

T2-weighted images are sometimes collected for research purposes and they are often not

as useful for analysis because the GM and WM boundaries are not as clearly defined as

in T1-weighted images. MR-based brain morphometry is usually performed on the basis of

T1-weighted imaging data (van der Kouwe et al., 2008). Hence, in the current research we

consider the use of T1-weighted brain MRI.

The picture of Figure 1.3 shows an axial T2-weighted image, on the right, and a

T1-weighted image at the same slice level on the left. As, it is shown in the left, in the

axial slice of the T1-weighted image, grey matter is lightly colored, while white matter ap-

pears darker. In the right, the axial slice of the T2-weighted image, CSF has a higher signal

intensity than tissue and therefore appear bright.

1.2.2 Diffusion Tensor Imaging (DTI)

Diffusion Tensor Imaging is relatively a new Magnetic Resonance technique (Basser and

Pierpaoli, 1996).

DTI concept

DTI yields quantitative measures for tissue microstructures by measuring the diffusion in-

formation of water molecules (Bihan, 2003). Random motion of water molecules, can be

quantified and reflects intrinsic features of microstructural brain tissue in vivo which just

a few years ago would have been considered impossible. Indeed, diffusion signals capture

microstructural properties of brain tissue that cannot otherwise be captured on traditional

anatomical MRI. Actually, the quantitative information about brain ultrastructure is given

by quantifying isotropic and anisotropic water diffusion. The diffusion ellipsoids and tensors

for isotropic unrestricted diffusion, isotropic restricted diffusion, and anisotropic restricted

diffusion are shown in Figure 1.4.

In fact, in an unrestricted environment such as the ventricles, large spaces deep in the

brain, which offer limited constraints, water molecules move randomly in every direction. The
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Figure 1.4: Isotropic and anisotropic diffusion. In the isotropic case, the diffusion is similar
in all directions. However, when the field is anisotropic, the diffusion is larger in one direction
than the other (Mukherjee et al., 2008)

.

random motion is described as isotropic. By contrast, water molecules diffuse preferentially in

one direction over another in a constrained environment. This movement is called anisotropic.

An example of such an anisotropic environment is within the white-matter fibers which are

constrained by the presence of axons that limit molecular movement in some directions.

Those measurements are presented by tow mainly used qualitative DTI-derived images, the

Means Diffusivity (MD) and the Fractional Anisotropy (FA). MD represents the magnitude

of water diffusion and FA reflects the degree of anisotropy. They are estimated from the DTI

data following the procedure expanded in the next section. The measurement of signal loss

or attenuation is a function of the diffusivity in a chosen direction as shown below:

S = S0 exp (−bD) where b = −γ2G2δ2
(
∆− δ

3

)
(1.1)

Where S0 is the signal intensity without the diffusion weighting, S is the signal with
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the gradient, γ is the gyromagnetic ratio, G is the strength of the gradient pulse, δ is the

duration of the pulse, ∆ is the time between the two pulses, and finally D is the estimated

diffusivity or apparent diffusion coefficient (ADC) (Lebihan and Breton, 1985). The degree

to which the pulse sequence is sensitive to diffusion is expressed through the ”b-value” given

in equation 1.1

Quantitative diffusion measurements

In DTI, diffusion property is quantified by fitting the measured water diffusion to a simple

tensor model with a 3*3 symmetric matrix :

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.2)

D describes the covariance of diffusion displacements in 3D normalized by the diffusion

time. The diagonal elements Dxx, Dyy and Dzz are the diffusion variances along the x, y and

z axes, and the off-diagonal elements are the covariance terms and are symmetric about the

diagonal (Dxz = Dzx). The diagonalization of this matrix yields three eigenvalues (λ1, λ2,

and λ3) that describe the three-dimensional diffusion properties of water within tissues and

three eigenvectors, (v1, v2, and v3), describing the extent and the orientation of anisotropy.

A tensor may be represented by an ellipse visually around the center of the voxel (see

the bottom of Figure1.4). The shape of the ellipse varies with the size of anisotropy. In the

open water (eg cerebrospinal fluid CSF) the replacement of water molecules is random. In

this case, the ellipse becomes a sphere. In the white matter, the ellipse is elongated in the

direction of the fibers, the more it is elongated the more the anisotropy will be important

Figure 1.5.

A tensor is computed in each pixel and then several contrasts can be generated such as

the Mean Diffusivity (MD) and the fractional anisotropy (FA). First, the mean diffusivity is

the average of three eigenvalues (Equation 1.3) , indicating the magnitude of overall water
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Figure 1.5: Example of diffusivity on CSF, GM and WM tissues

diffusion in each pixel. Second, the fractional anisotropy is the degree of diffusion anisotropy

(Equation 1.4).

MD = (λ1 + λ2 + λ3)/3 (1.3)

FA =

√
1

2
.

√
(λ1 − λ2)2(λ1 − λ3)2(λ2 − λ3)2√

(λ2
1 + λ2

2 + λ2
3)

(1.4)

FA ranges from 0 (isotropic diffusion) to 1 (diffusion exclusively along one direction).

If diffusion is isotropic (λ1 = λ2 = λ3), this measure becomes 0. An FA value close to 1

indicates a high diffusion anisotropy.

In addition to these scalar measures, a very common method in DTI is to display tensor

orientation, described by the major eigenvector direction, as RGB color maps. In Figure

1.6, the RGB map is compared with the DTI-derived maps. In the latter, the white matter

area looks homogeneous. However, the color-coded orientation map contains various colors

in the white matter area. For diffusion tensors with high anisotropy, the major eigenvector

direction is generally parallel to the direction of WM tract, and the RGB color map is used to

indicate the major eigenvector orientation. Red color indicates that the fibers at that voxel

are running in the left-right direction, blue indicates the inferior-superior direction (down-up),

and green means they are running in the anterior-posterior direction (front-back).
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Figure 1.6: Quantitative maps of DTI measurements. Left to right: the mean diffusivity
(MD; CSF appearing hyperintense), fractional anisotropy (FA; hyperintense in white matter),
the major eigenvector direction indicated by RGB color map.

Consequently, with this respect, DTI could be a diagnostic tool that quantifies the degree

of tissue atrophy and thus could be a good biomarker for disease diagnosis in particular for

Alzheimer’s disease diagnosis. In this thesis we will focus on the use of the MD maps to

classify subject with and without AD.

Both structural MRI and DTI measures promise to aid diagnosis and treatment monitor-

ing of MCI and AD by quantifying patterns of structural brain atrophy. Here, several sMRI

and DTI biomarkers are involved and a variety of methodologies and techniques are proposed

to analyze brain tissue and to detect abnormalities. This will be detailed in the next section.

1.3 Alzheimer’s disease diagnosis using sMRI

1.3.1 MRI and its ability to capture visual brain atrophy in AD

In the past decade, anatomical magnetic resonance imaging has been increasingly used to

help clinicians in Alzheimer’s diseases diagnosis (DeKosky and Marek, 2003) because it is

widely available, and very sensitive to the atrophy that occurs with AD. Moreover, structural

MRI provides high resolution images of brain tissue, it is thus possible to measure cortical

thickness and volumes of different regions.
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From a practical point of view, an observer with some experience may well be able to

identify the more atrophic medial temporal lobe areas in figure. Looking at the same scans

from the feature extraction perspective, it becomes evident that there are substantial differ-

ences between both scans, (e.g. regarding brightness, anatomy of the ventricles or differences

in brain structures) that are unrelated to the diagnostic problem. Generally, the pattern of

cell neurodegeneration seen using anatomical MRI is presented by (Braak and Braak, 1998)

and several brain areas may be sensitive biomarkers for AD. The most interesting ones are

cited below:

MRI cortical thickness shrivels up It has been reported that AD patients show

evidence of cortical atrophy, in comparison with normal subject (Arnold et al.; Brun and

Gustafson, 1976). The cerebral cortex shrink (atrophy) in multiple regions as the disease

advances, damaging areas involved in thinking, planning and remembering.

Hippocampus volume loss Rates of whole-brain and hippocampal atrophy are sen-

sitive markers of neurodegeneration, and are increasingly used as outcome measures in AD

diagnosis (Pelletier et al., 2013). The hippocampus is an area of the cortex that plays a

key role in formation of new memories. Several studies show that the hippocampus, and

the entorhinal cortex are the most vulnerable Regions of Interest (ROIs) with respect to

AD pathology (Braak and Braak, 1998). High rates of hippocampal atrophy compared with

cognitively normal persons have been measured using MRI in both AD and MCI patients

(Van de Pol et al., 2007; Schuff et al., 2009). In (Wang et al., 2003; Scher et al., 2007), the

authors demonstrate that hippocampal volume loss distinguish very mild AD from healthy

aging.

Ventricles enlargement The Ventricles -chambers fluid-filled spaces within the brain-

are noticeably enlarged. Accordingly to (Schott et al., 2005) and (Bradley et al., 2002), an

increased rates of ventricular expansion and whole-brain atrophy were seen in AD compared

with control subjects. Many studies have shown a correlation between the enlargement of

ventricles and the progression of AD. Recently, in (Nestor et al., 2008), the authors show that

Ventricular enlargement represents a marker of disease progression in subjects with MCI and

2014/2015 Olfa Ben Ahmed



1.3. ALZHEIMER’S DISEASE DIAGNOSIS USING SMRI 46

subjects with AD.

Cerebrospinal fluid (CSF) biomarkers CSF fluid replaces brain tissue which is lost

due to neuronal cell degeneration or the loss of volume of some region. Consequently an

increased amount of CSF fluid has been advocated as diagnostic measures for diagnosing or

excluding AD in several studies (Blennow et al., 2010).

Figure 1.7 shows typical MRI scans of an older cognitively normal Normal Control (NC)

subject, an amnestic mild cognitive impairment (aMCI) subject, and an Alzheimer’s disease

AD subject From the ADNI dataset. As it can been seen in the figures, there is an increasing

medial temporal atrophy, MRI cortical thickness shrivels up, a loss of hippocampus volume

(C) and ventricular, enlargement (B) in AD when compared with NC . In the case of AD,

the volume losses appeared together with an increase of CSF, illustrated by dark area in the

degenerated area.

In Figures 1.10 and 1.11, we illustrate the same phenomena on the images taken from

the ADNI dataset witch is the main experimental dataset in the current work. They show

respectively representative T1-weighted intensity histograms for healthy and Alzheimer’s

disease (AD) patient selected from the ADNI dataset. The units of the y-axis correspond to

the number of voxels, and the units of the x-axis are the intensity values. The histograms

allow us to see where peaks of intensity occur or disappear. The observed variability in the

shape of the histograms is due to varying tissue proportions across the MRIs. For example,

the NC brain contains relatively small amount of CSF and hence the lowest intensity peak

is practically missing from its histogram. The proportion of CSF is increased in AD due

to the enlargement of ventricles, leading to reappearance of the lowest intensity peak. This

brain, however, contains only a small amount of gray matter (GM), thus decreasing the

middle peak of the image histogram. In addition, the AD histogram has large CSF amount

compartments compared to that seen in the normal histogram. Additionally, in the diseased

brain, the contrast between gray and white matter is considerably reduced, and the two

histograms peaks have merged.
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Figure 1.7: A: T1-weigthed MRI scans( 1.5 Tesla) of an older cognitively normal (CN) subject,
a Mild Cognitive Impairment (MCI) subject, and an Alzheimer’s disease (AD) subject in tree
cases ( NC ,MCI and AD) B: Lateral Ventricles enlargement (Green). C : Progressive atrophy
of Hippocampus structure ( Red).

1.3.2 AD diagnosis methods

Computer Aided Diagnosis (CAD) tools based on medical imaging are a very valuable help

for clinicians in the AD diagnosis. They can offer meaningful comparison between normal

and diseased persons by analyzing, detecting and quantifying the brain abnormalities. The

effectiveness of MRI as a valuable diagnostic technique in neurological diseases has been

widely proved, usually on the T1-weighted imaging data. Such popularity comes from the

obtained good contrast between soft tissues, giving the possibility of identifying the distri-

bution of changes in neuroanatomical structures, such as estimates of damaged tissue or

atrophy rates. During the last decade, various works in AD diagnosis have been reported. A

thorough review of all these studies is beyond the scope of this section.
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Figure 1.8: Structural MRI of the 136-S0299
AD subject from the ADNI dataset

Figure 1.9: Structural MRI the 007-S1206
NC subject from the ADNI dataset

Figure 1.10: Structural MRI of the 136-S0299
AD subject from the ADNI dataset

Figure 1.11: Structural MRI the 007-S1206
NC subject from the ADNI dataset

Quantitative Region of Interest methods/Volumetric approaches

Volumetric methods are quantitative and have been used to extract three-dimensional (3D)

measurements of specified brain structures on MRI scans. The 3D nature of volumetric

approaches let them exploit complete spatial information of the scans.
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Recently, a variety of ROI-based volumetric methods have been proposed to demonstrate

significant differences in volumes of specific Regions of interest (ROI) across population in the

aim of AD diagnosis (Chetelat and Baron, 2003; Tapiola et al., 2008; Convit et al., 1997, 2000;

Querbes et al., 2009; Coupé et al., 2012). Indeed, such volumetric measurements, require the

segmentation of these ROI from the MR images, most often manually. Furthermore, a priori

assumptions about the expectedly affected brain structures is needed to select the appropriate

ROI.

Manual segmentation Tracing and quantifying the volume of medial temporal lobe struc-

tures (for example, the hippocampus or entorhinal cortex) or posterior cingulate have been

used in Alzheimer’s disease diagnosis and provide an efficient quantification of tissue atrophy.

However, manual measurements are tedious and time-consuming .

Automated and semi-automated techniques Although other automatic or semi auto-

matic methods of ROIs segmentation have been developed over the past decade. In the recent

past, methods have been proposed to automatically parcellate GM volumes, hippocampus

or cortical surfaces into ROIs. Those automated and semi-automated methods are useful for

large-scale studies because they do not require a significant manual intervention.

Figure 1.12: SACHA: automatic segmentation of the hippocampus and the amygdala from
MRI (Chupin et al., 2009b)

Volumetric Analysis Several studies based on structural MRI volumetric measurements

of specific ROIs, have demonstrated significant results in discriminating AD patients from

2014/2015 Olfa Ben Ahmed



1.3. ALZHEIMER’S DISEASE DIAGNOSIS USING SMRI 50

normal controls. Several works have been proposed that use the hippocampal volume (Colliot

et al., 2008; Chupin et al., 2009b; Klöppel et al., 2008). The volume of the Entorhinal cortex

or the lateral ventricle have been also considered for the same propose. In the AD-related

research, the volumetric analysis of hippocampus is the most extensive study. Several au-

tomatic hippocampus segmentation approaches have been proposed (Chupin et al., 2009a;

Colliot et al., 2008; Chupin et al., 2009b), those methods show significant variability in the

measurement of atrophy rates due to differences in the detection of the hippocampal bound-

aries. On the other hand, manual segmentation of the hippocampus by experienced radi-

ologists suffer from inter-rater variability. Volumetric methods present an advantage which

consists in the fact that the measurements describe a known anatomic structure that (in the

case of the hippocampus) is closely related to the pathological symptoms of the disease.

Shape Analysis However, volumetric analysis can identify hippocampal atrophy in MCI,

but may not localize the local structural changes. In the contrary, shape analysis has the

potential to provide important information beyond simple volume measurements. It may

characterize abnormalities in the absence of volume differences and localize the region of

statistically significant structural changes. One notable 3D shape analysis approach explore

spherical harmonics (SPHARM) coefficients. In (Gerardin et al., 2009; Gutman et al., 2009),

the authors characterize the shape of the hippocampus as a series of parameters illustrated

by spherical harmonics. It means that they consider the geometrical information of the

hippocampus, rather than the intensity or the volume. Some recent works showed that

shape measures reveal new information in addition to size or volumetric differences, which

might assist in the understanding of structural differences due to neuroanatomical diseases.

For instance, (Yang et al., 2010) combines volume features and shape features to classify AD

from NC using neural network (ANN) classifier.

Traditional ROI-based methods give global differences in structure and it is not easy to

obtain information on specific localized structural changes. In addition, the disadvantage of

using a single region of interest to boost 3D information as a disease marker is that it is

spatially limited and does not explore all of the available information in a 3D Image. Finally,

Those approaches need a priori definition of regions of interest. This can be avoided by the
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application of recently developed Morphometric analysis.

Morphometric methods

Aside from volumetric approaches, morphometric methods have gained great interest because

they first help to detect structural changes in MRIs and second, do not depend on the clin-

ician abilities. Morphometric methods are voxel-based approaches which where specifically

implemented for various imaging modalities such as T1-weighted MRI or diffusion tensor

imaging (DTI). In such methods, brain images are first non-linearly registered to a common

template, and then univariate statistical tests are performed in each voxel to detect signifi-

cant group differences. The results are probability maps often referred to as ”concentration

map” of the three brain tissues (cerebrospinal fluid, white and gray matter). Indeed, the

brain tissue are obtained from the fuzzy segmentation step performed prior to the non-linear

registration to the template.

However, morphometric methods are not restricted to analysis of voxels from the entire

brain, but can be applied to specific regions also. The idea consists in grouping neighboring

voxels into anatomical regions using an anatomical atlas (Ye et al., 2008). For instance in

(Magnin et al., 2009; Lao et al., 2004), probability maps are divided into 116 regions of

interest using the Automatic Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002).

Then, the average intensities inside each region are taken as features for the classification

step. However, such fragmentation of the brain may not be suitable for Alzheimer’s disease:

the border of the affected areas do not necessarily represent those of the atlas. For this

reason, (Fan et al., 2007) proposed an adaptive segmentation of the brain with a study

group, to obtain a set of homogeneous regions. This method has been used in many studies

such as (Christos et al., 2008; Fan et al., 2008; Misra et al., 2009). By statistically analyzing

these voxel-wise measures, it is possible to determine which voxels are significantly different

between the subject groups, and maps presenting the brain regions that are related to the

disease can be created (Vemuri et al., 2008; Klöppel et al., 2008; Magnin et al., 2009; Stefan

et al., 2007; Duchesne et al., 2010; Fan et al., 2008; Christos et al., 2008; Hinrichs et al.,

2009). In addition, those voxel-wise measures can be taken as features, which are then fed

to a classifier such as Support Vector Machines (SVMs), in the aim to discriminate between
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normal controls and early-stage AD.

Here, the features are extracted at the voxel level, features may be voxel intensity from

the probabilistic map of gray matter or CSF (Christos et al., 2008; Klöppel et al., 2008). For

instance, in (Magnin et al., 2009),

each MRI scan were parcellated into ROIs. An histogram analysis of the intensity dis-

tribution in all voxels is then performed in order to identify the amount of WM, GM, and

CSF in the ROI. The extracted parameter from this analysis represents the relative weight

of GM compared to WM and CSF. Finally, based upon this parameter estimated in all the

brain ROIs, the authors classify the subjects with an SVM.

Univariate and multivariate voxels-based analysis Traditional univariate voxel-

based analysis quantifies changes in brain tissue density or volume between groups in a

voxel-wise manner such that each voxel is individually compared. It neither consider group

differences in the patterns of covariance across brain regions, nor explicitly tests the interre-

lationship among brain regions.

Recently there is a growing interest in studies using a multivariate approach to ana-

lyze brain imaging data in an attempt to overcome the limitations inherent to univariate

voxel-based approaches. The Multivariate approach focuses on the analysis of the images

by extracting features (voxels GM/WM/CSF density) to distinguish between AD and nor-

mal subjects. Multivariate pattern analysis is a machine-learning- based pattern recognition

technique that can be used to classify data by discriminating between two or more classes

(or groups). Multivariate approaches can provide unique information that is over-looked by

univariate approaches. Whereas univariate analysis can reveal which particular brain regions

differ on a relevant dimension (e.g., GM volume) between participant groups, multivariate

analysis can show which set of brain voxels, in combination, can be used to discriminate

between two participant groups. Among different morphometric approaches, we distinguish

the following:

Voxel Based Morphometry (VBM) It is a well-known computational neuroimaging

analysis (Ashburner and Friston, 2000). VBM compares regional patterns of brain between

groups of subjects by performing statistical tests across all voxels in the MRI scan. VBM
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has been widely applied to study the GM probability map (Busatto et al., 2003; Shiino et al.,

2006; Mechelli et al., 2005; Vasconcelos et al., 2011; Frisoni et al., 2005). The probabilistic

segmentations of the gray and white matter tissues are compared voxel by voxel. Figure 1.13

presents an example of GM density maps comparison.

Figure 1.13: Example of VBM comparison results of AD patients and normal controls. Maps
of significantly lower grey matter density (Lehericy, 2007)

Deformation-Based Morphometry (DBM) It considers the properties of the de-

formation field that results from the non-linear registration step (Gaser et al., 2001). The

deformation field gives information about both position and volume differences.

Tensor-Based Morphometry (TBM) TBM (Studholme et al., 2006) is a variant of

DBM and uses the voxel wise Jacobian determinant of this deformation field. This measure

represents the volume change.

Object-Based Morphometry (OBM) It analyzes the deformation of specific pre-

segmented anatomical structures of interest (Mangin et al., 2003).
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Voxel based methods work directly on the voxel grid and are computationally very effi-

cient. An advantage of these approaches,compared to the ROI-based volumetric methods, is

the fact that they do not require a priori assumptions about the location, the size or number

of ROIs to be analyzed, since they provide voxel wise measures determined in the entire

brain. Nevertheless, they are less accurate due to the limited resolution of the voxel grid and

less robust to noise. Then, and as mentioned above, these approaches always require an inter-

subject registration to a template, in order to guarantee that the statistical analysis compares

homologous structures across all subject brains. However, this kind of one-to-one correspon-

dence between subjects need not be achieved for every case, mainly because of the inherent

inter subject anatomical variability and the effects of a brain pathology. Indeed, not all sub-

jects may have the same anatomical structure, or may exhibit different morphologies across

the group. In addition, some pathologies may affect not only a single anatomical structure or

interconnected regions, but specific structures localized far away from each other. This kind

of patterns are difficult to find and analyze with the standard morphometrical techniques.

To cope with this issue, features based methods, that can be able to model such patterns

have been proposed. This will be further discussed in the next chapter.

1.4 Alzheimer’s disease diagnosis using DTI

For nearly twenty years, considerable progress has been made in the acquisition and process-

ing of MRI data. Alongside these advances, many studies have investigated the potential of

these techniques in AD diagnosis.

1.4.1 Alzheimer’s disease in DTI

Recent works have been focused on the use of diffusion MRI in the AD and MCI patients.

Indeed, DTI measurements correlate with tissue damage that is not detectable in conventional

sMRI. Increased MD and decreased FA in medial temporal lobe structures including the

entorhinal cortex, hippocampus and parahippocampal white matter for both AD patients

and MCI patients were reported (Mielke et al., 2009; B. Parente et al., 2008; Rose et al.,

2008).
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Microstructural abnormalities on DTI are promising biomarkers for AD. Indeed, pro-

gressive loss of the cellular barriers that restrict water molecules motion (neuronal loss) or

degeneration of structural barriers can be sensitively detected by DTI as pathologically in-

creased MD (Basser and Pierpaoli, 1996; Kale et al., 2006; Mielke et al., 2009). Hence,

hippocampal shrinkage observed on diffusion tensor imaging may be a biomarker for AD

diagnosis. A higher MD of the hippocampus compared with controls has been found in mild

cognitive impairment or Alzheimer’s disease subjects (Cherubini et al., 2010; Müller et al.,

2007; Yakushev et al., 2010; den Heijer et al., 2012). (Müller et al., 2007) showed that high

diffusivity within the hippocampus is more predictive than hippocampal volume atrophy

in predicting dementia onset in mild cognitively impaired patients. Several MRI findings

have shown that white matter is heavily affected in Alzheimer’s disease, even at early stages

(Medina et al., 2006; Naggara et al., 2006; Serra et al., 2010; Stahl et al., 2007; Liu et al.,

2013). However, regional patterns of white matter (WM) damage are still difficult to study

due to lack of discernible anatomical features of white matter in structural MRI. Here, DTI

has become the method of choice for detecting white matter alterations in the human brain

(Bihan, 2003). It has been reported that FA values of Alzheimer’s disease (AD) subjects

tend to be lower than those of NC subjects in several regions of white matter (Patil et al.,

2013; Nir et al., 2013; Radanovic et al., 2013; Liu et al., 2013).

MD and FA maps are scalar values ranging from 0 diffusion to 1. Grayscale images, may

be generated encoding values from the unitary interval [0, 1] to the gray color space [0, 255].

From the level of intensities presented on the MD and/or FA maps we can deduce if the

corresponding subject is healthy or presents an AD. The Figures below show the fractional

anisotropy and the mean diffusivity maps of one healthy subject and on AD patient. Maps

are selected from the ADNI dataset.

Note that the bright signal intensities in the grey-scale FA map (Figure 1.15) image due to

high diffusion anisotropy highlight the ordered structures in which water moves in a preferred

direction and the darker pixels regions of isotropic diffusion, for example ventricles full of CSF

in the case of NC or the shrinked area in the case of AD. On the other hand, MD is higher

in areas where the water is relatively unrestricted, like in the ventricles and surrounding

CSF and it is lower in the WM where the diffusion of water is more restricted (Figure 1.14).
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Figure 1.14: MD map of a Normal Control subject from the ADNI dataset : 021-S-4254 and
MD map of AD patient from the ADNI dataset: 094-S-4089

Increased mean diffusivity in grey matter ROIs is due to the cells degeneration in those ROIs

which may be a biomarkers for AD. MD increase is presented in the MD grey-scale image by

bright pixels.

The number of studies employing DTI to investigate microstructural changes in AD and

MCI has greatly increased over time. The next section presents the most used methods for

structural changes detection and analysis.

1.4.2 DTI analysis methodologies

Several methods of DTI data analysis have been proposed. This section summarizes the

main categories for patient-control comparison of diffusion MRI data. We can divide them

in three main groups : Region-of-Interest (ROI)-based methods, voxel-based approaches and

tract-based spatial statistics (TBSS). Those studies used DTI measures of MD and FA as

markers of cerebral integrity.

Region-of-Interest (ROI)-based methods

DTI-studies mostly use fractional anisotropy (FA) and mean diffusivity (MD) measurements

in a priori defined regions of interest (ROI) (Naggara et al., 2006; Bozzali et al., 2002; Stahl
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Figure 1.15: FA map of AD patient from the ADNI dataset: 094-S-4089 and FA map of a
Normal Control subject from the ADNI dataset :021-S-4254

Figure 1.16: Methods for representing diffusion tensor imaging (DTI) data. A = regions of
interest (in color) placed directly on DTI image; B = voxel-based morphometry (VBM); C
= mean skeleton of white matter tracts from tract-based spatial statistics (TBSS); D = fiber
tracking of white matter pathways. Image courtesy of Simon Davis, University of Cambridge
(Madden et al., 2012).

et al., 2007; Zhang et al., 2007).

Hippocampus is one of the first brain region to be affected by AD pathology, and mi-

crostructural alterations within hippocampus have been quantified in vivo using DTI. Mean

diffusivity, as a marker of microstructure, appears to be a more sensitive marker of hippocam-

pal integrity than macrostructural measurements with MR volumetry (Clerx et al., 2011).
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In contrast, FA is not as accurate for quantifying microstructural integrity of hippocampus

in AD (Andreas and Igor, 2011). Recent works reported reduced FA in white matter regions

as well as increased MD in the hippocampus and other medial temporoparietal regions using

ROI approaches (Cherubini et al., 2010; Müller et al., 2007; Kantarci K, 2005).

Voxel-based methods

Voxel-based Approaches (VBA) are widely used in DTI studies to localize macro-structural

changes related to AD (Takahashi S, 2002; Tabelow K, 2008; Stoub TR, 2005; Stricker NH,

2009; tebbins GT, 2007; Medina et al., 2006). A growing number of studies employ VBA

using statistical parametric mapping (SPM) (Wellcome Department of Cognitive Neurology,

1 to compare voxels value extracted from FA or MD map. VBA is a fully automatic method.

Tract-Based Analysis Techniques (TBSS)

Voxel-based analysis and tract-based spatial statistics (TBSS) was recently introduced to

perform voxel-wise statistical analyses of FA (Smith et al., 2006). TBSS has been found

to overcome the drawbacks of VBA by minimizing the effects of misalignment and provides

more consistent results across subjects and sessions. TBSS has been used in sevral studies

to compare patients with AD and MCI with healthy controls (Haller et al., 2010; Zhuang

et al., 2010; Damoiseaux et al., 2009; Liu et al., 2011; Serra et al., 2010). TBSS pipeline is

provided in the FSL software package.

In addition, several DTI works for Alzheimer’s disease extract FA and/or MD values

together with stuctural MRI voxel values improves classification accuracies Dyrba et al.

(2012) Mesrob et al. (2012) Cherubini et al. (2010) of AD subjects. (Haller et al., 2010;

O’Dwyer et al., 2012) used support vector machines to classify MCI versus healthy controls

using DTI data.

1http://www.fil.ion.ucl.ac.uk
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1.5 Conclusion

In this chapter, we gave an overview of some important concepts related to the Structural

MRI and Tensor Diffusion imaging modalities. Then, we briefly presented the main methods

of AD diagnosis using those two modalities. Actually, most of the methods cited above

were proposed for group analysis and cannot be used to classify individual patients. Thus,

quantifying image features which may not be present in all subjects is a major challenge. In

order to overcome all these limitations, computer vision tools and features-based approaches

have been proposed. The next chapter introduces and elaborates the role of content-based

image indexing and classification for the categorization of Alzheimer’s disease patients.
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2.1 Introduction

MRI can be described using either global or local features. Global features are calculated

based on the whole image while local features extraction consists in describing the local im-

age neighborhoods computed at specific region. Indeed, global features present significant

limitations such as difficulties to reflect localized details of an image. Whereas, local de-

scriptors are able to offer robustness against rotation and translation in localized regions of

the images. Recently, a class of local features-based methods has demonstrated impressive

level of performance for Alzheimer’s disease related patterns description. In this chapter, we

will introduce particularly the fundamental theory of content-based indexing and retrieval

approach. Then, we will present the concept of CBIR-based CAD. Next, we will briefly

review some recent research features-based methods for Alzheimer’s disease diagnosis in the

literature. Finally, a summary about state-of-the-arts classification-based CAD systems will

be presented.

2.2 Generic methodology of MRI (CAD) system

The traditional diagnosis way is based on the clinician’s experience and his wisdom of collect-

ing useful information and interpreting medical images. Actually, the clinician looks carefully

into the scan and identifies the corresponding patient’s disease. To attain a correct diagnosis,

clinicians need to learn and archive previous studied cases which may provide a valuable ref-

erence in a new case diagnosis. Actually, a good clinician does not need to have a particularly

good eyes but a sensible ability to precise what he/she is looking for when examining a scan.

However, clinician diagnosis is made based on subjective judgment. CAD has been proposed

as a way to support clinicians decision.

The concept of CAD was founded by the University of Chicago, in the mid-1980s. The

idea was to provide a computer output as a ”second opinion” to aid radiologists in analyzing

images.

Figure 2.1 shows a diagram of the CAD process. The system consists of several steps

namely image preprocessing, ROI segmentation, feature extraction and final classification.

Indeed, the extracted features are classified to build decision model. This model helps clin-
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Figure 2.1: Typical Computer-assisted diagnostic-system flowchart according to (El-Dahshan
et al., 2014)

icians making decision about the disease. Consequently, appropriate image processing tools

and methods may improve the performance of the CAD system. The interpretation and

the formulation of diagnosis consists in merging two main sources of clinical information:

computer-extracted image features and radiologist-interpreted findings. Although CAD as-

sists in decision support in the diagnosis process but the final decision is to be made by the

doctor.

Hence, the application of general image analysis and classification techniques in this

specialized domain is a well-established field of research. Recently, CBIR-based CAD or

classification-based CAD systems have shown potential to provide clinicians with ”visual aid”

to make better decision with confident and quicker process as compared to the traditional

manual diagnosis (Welter et al., 2012).

2.3 Content-Based Image Retrieval (CBIR)

Content-Based Image Retrieval (CBIR) also known as content-Based Visual Image Retrieval

(CBVIR) has been active and fast advancing research area since the 1990s (Smeulders et al.,
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2000). CBIR makes use of information directly derived from the content of images themselves

rather than their textual information. Indeed, this technique refers to the use of visual

descriptors to represent image content, and machine learning techniques to retrieve and

compare those images. The visual content descriptor can be compared either globally (the

whole image) or within an image region (locally). Traditional features include color feature,

texture feature, and shape feature. Those features present the image or the ROI as a vector

of n-numerical values in a n-dimensional space. Content-based image retrieval computes

visual similarities between a given image and the images of a database. The system returns

a number of images ranked by their similarities with the query image. To have optimal

performance of visual content-based system, one needs to select appropriate descriptors for

the specific type of images to be processed, and to find best distance metric to compare

images. However, in many cases especially when the high-level concepts in the user’s mind

are difficult to express, the use of such low-level features can not give satisfactory retrieval

results, this is the so-called ”semantic gap” problem.

The challenge of CBIR here consists in optimizing and mapping the low-level features to

high-level semantic concepts by using object ontology to define high-level concepts. That have

been almost done by using machine learning tools to associate low-level features with query

concepts, including user relevance feedback functionality, and combining the visual content of

images with its textual information. Moreover, the choice of the important relevant features

refereeing to the domain knowledge of the application contributes to effective image retrieval.

Survey in CBIR can be found in (Long et al., 2003).

Actually, CBIR techniques have been intensively investigated in many applications such

as image classification, fingerprint identification, biodiversity information systems, digital

libraries, crime prevention, historical research and medicine for health care and computer-

aided diagnosis. We can cite among others three prominent research projects on medical

CBIR :

• cbPACS: the content-based Picture Archiving and Communication System (cbPACS):

A Content-Based Retrieval Architecture for the PACS (picture archiving and commu-

nication system) which is an evolving health-care technology for the short and long

term storage, presentation and distribution of medical images (Mortensen and Barrett,
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1995).

• MedGIFT: the medical GNU Image retrieval system 1 is an adaptation of the GIFT,

an open source CBIR framework developed at the Geneva University Hospitals.

• IRMA : the Image Retrieval in Medical Applications project 2 for the classification of

images into anatomical areas, modalities and viewpoints (Lehmann et al., 2004).

2.4 CBIR-based Computer-Aided Diagnosis

Actually, Content-Based Medical Image Retrieval (CBMIR) is based on automatically ex-

tracted features that specify visual content such as morphology, shape, and texture. The

popular approach to image-based CAD consists in providing image interpretation as a sec-

ond opinion to radiologists. The CAD performance and reliability depends on a number of

factors, including data preprocessing, features extraction and features classification. A re-

view of medical image retrieval systems and future directions can be found in (Ghosh et al.,

2011; Müller et al., 2004; Müller and Deserno, 2011; Kumar et al., 2013; Ridha et al., 2006).

CBMIR have been applied to many diseases diagnosis such as breast cancer detection which

is based on the visual analysis of mammograms (Nazari and Fatemizadeh, 2010; Quellec

et al., 2011; Chen et al., 2011; Jiang et al., 2014; Kinoshita et al., 2007; Quellec et al., 2010),

brain tumor detection (Huang et al., 2014; Arakeri, 2013; Huang et al., 2012; Kim et al.,

2006; Zacharaki et al., 2009), Schizophrenia (Castellani et al., 2012, 2009) using MRI scans

and more recently to Alzheimer’s disease diagnosis (Unay, 2010; Toews et al., 2010; Agarwal

and Mostafa, 2010; Akgul et al., 2009; Mizotin et al., 2012; Daliri, 2012; Rueda et al., 2012;

Ridha et al., 2007; Felipe et al., 2003; Qin et al., 2013; Chen et al., 2014).

Up to now, few CBIR-based CAD systems have been integrated and evaluated in clinical

practice. Nevertheless, they showed very promising results as that they can be accepted by

the clinicians as a helpful tool allowing significant improvement in the diagnosis accuracy

(Shyu et al., 1999; Aisen et al., 2003; Keysers et al., 2002). In terms of clinical diagnosis,

MRI provides visual information regarding the brain ROI abnormalities. In that respect,

1http://medgift.hevs.ch/silverstripe/
2http://ganymed.imib.rwth-aachen.de/irma/
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Content-Based Visual Information Retrieval (CBVIR) has become an attractive technique

for computer-aided diagnosis (Dy et al., 2003; Balmashnova et al., 2007; Kim et al., 2006;

Quellec et al., 2010; Tamaki et al., 2013; Müller et al., 2004; Toews et al., 2010). Therefore,

the knowledge of the CBIR approach may be disseminated to discrimination between the

normal and abnormal brain MRI based on extracted features.

2.5 Local Features-based approach for Alzheimer’s dis-

ease diagnosis

Brain atrophy in the case of Alzheimer’s disease is localized in some ROIs known to be

affected at an early stage. Therefore, features-based approaches consider that the most

reliable information in brain MRI is local and thus trend to describe image in terms of a

local visual appearance.

2.5.1 Features-based methods: literature review

Several methods have been proposed to classify AD and NC subjects (Beg et al., 2013).

Spherical harmonics (SPHARM) (Gutman et al., 2009; Gerardin et al., 2009) and Statistical

Shape Models (SSMs) (Shen et al., 2011) are recently used to model the localized disease-

related shape changes by performing the shape analysis upon the hippocampus. However,

due to complex tissues present in the 3D MR brain, images classification through shape fea-

tures is hard to achieve. In addition, the extracted ROI may be corrupted by occlusions or

noise as a result of the image segmentation process. Recent methods show a tendency of

using local features in disease discrimination, since they are able of identifying the subtle

disease-specific patterns associated with the effects of the disease on human brain. In this

section, we give an overview of this line of research.

Actually, CVBIR has been recently explored for research in medical diagnostics of

Alzheimer’s disease. In this area, the approaches used are fundamentally features-based.

Here, features are the characteristic vectors computed on small areas-patches in images ac-

cording to a chosen prior model. These patches can be selected around the so-called char-

2014/2015 Olfa Ben Ahmed



2.5. LOCAL FEATURES-BASED APPROACH FOR ALZHEIMER’S DISEASE
DIAGNOSIS 66

acteristic points in image that exhibit signal singularities, or on the contrary, they can be

chosen arbitrarily in an image space. The specific nature of MRI vs general purpose image

databases requires in-depth studies of specific features which have to be designed to explain

visible and invisible abnormalities in a diagnostics process. Attempts to follow the CBVIR

approach with feature-based similarity were made for subject discrimination and showed per-

formances that argue for pursuit of feature-based approaches. Table 2.1 presents a list of the

major works conducted in the area of features-based methods in AD diagnosis and highlights

the adopted features per work. The cited works used the structural MRI modality. However,

no previous works on the DTI modality, which is a relatively new MR modality, have been

reported. To the best of our knowledge, CBIR has not been yet investigated on DTI for AD

diagnosis.

Works Modalities features

(Unay and Ekin, 2011) sMRI HOG
(Unay et al., 2010) sMRI LBP + KLT
(Li M1, 2014) sMRI LBP
(Toews et al., 2010) sMRI SIFT
(Wang et al., 2012) sMRI SIFT
(Agarwal and Mostafa, 2010) sMRI LBP+DCT
(Akgul et al., 2009) sMRI LBP+Inten-

sity+Gradient
(Daliri, 2012) sMRI SIFT
(Rueda et al., 2012) sMRI SIFT
(Jiang et al., 2014) sMRI SIFT
(Lopes Simoes et al., 2012) sMRI Local texture

maps
(Qin et al., 2013) sMRI SIFT
(Chen et al., 2014) sMRI SIFT

Table 2.1: Features-based CAD for Alzheimer’s disease

In (Unay et al., 2010), the authors propose a ROI retrieval method for brain MRI, they

use the Local Binary Pattern (LBP) and Kanade-Lucas-Tomasi (KLT) features to extract

local structural information. The proposed method is invariant to intensity variations and

geometric transformations. (Lopes Simoes et al., 2012) classifies between normal controls and

MCI patients using local statistical texture maps (co-occurrence matrix based). In the latter,

textural information is extracted from local neighborhood of each voxel. It does not take into
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account the localization of the affected ROI. (Li M1, 2014; Nanni et al., 2010) differentiates

AD or MCI from NC using gray-level invariant features (LBP) as well. The basic idea behind

the LBP approach is to use the information about the texture from a local neighborhood.

Other kind of descriptors can contain coefficients of a spectral transform of image signal,

e.g. Fourier or Discrete Cosine Transform coefficients (DCT), statistics on image gradients

(Rueda et al., 2012; Daliri, 2012), etc. In (Agarwal and Mostafa, 2010), the authors are

focusing on integrating different types of information, including textual data, image visual

features extracted from scans as well as direct user (doctor) input. Features used in (Agarwal

and Mostafa, 2010) to describe brain images are LBP and DCT. (Akgul et al., 2009) uses

visual image similarity to help early diagnosis of Alzheimer. (Akgul et al., 2009; Ridha et al.,

2007) prove the performance of user feedback for brain image classification.

Some works on MRI classification for AD diagnosis such as (Daliri, 2012) and (Rueda

et al., 2012) evaluate the suitability of the BoVW approach for automatic classification of MR

images in the case of Alzheimer’s disease. In (Daliri, 2012), the authors use SIFT descriptors

extracted from the whole subject’s brain to classify between brain with and without AD. In

(Rueda et al., 2012), the authors show that the Bag Of Features (BOF) approach is able to

describe the visual information for discriminating healthy brains from those suffering from

the AD. However, both works do not address the MCI case which has become an important

construct in the study of AD. The BoVW model represents a whole brain scan or a ROI as

a histogram of occurrence of quantized visual features, which are called visual words. The

latter received the name of visual signature of an image/ROI. (Unay and Ekin, 2011) presents

an automated method for dementia diagnosis using search and retrieval of brain MRI with

a tailored version of histogram of oriented gradients (HOGs) as features. (Qin et al., 2013)

introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA),

the proposed method describes image based on disease-related anatomical features, which

should be helpful for diagnosis. (Chen et al., 2014) combined Feature Based Morphometry

(FBM) and the SVM classifier, the latter used SIFT features to identify disease-related,

healthy-related and noisy features then SVMs are applied to classify extracted features. An

illustrating of SIFT features extraction on MRI brain is presented in Figure 2.2

In the next section, we presents the popular state-of-the-art local descriptors that have
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Figure 2.2: Example of a brain slice with identified SIFT features (Chen et al., 2014)

been used to extract visual information from MRI for a Alzheimer’s disease diagnosis.

2.5.2 Local features

The development and analysis of low-level primitives in medical imaging have been exten-

sively studied earlier. In the flowing we will present the state-of-the-art local descriptors:

SIFT, SURF and the most successful descriptor in medical image indexing: the Local Bi-

nary Pattern (LBP). Appendix 7.1 A contains more mathematical of SIFT, SURF and LPB

descriptors.

SIFT SIFT developed by (Lowe, 2004) is one of the most widely used descriptors in

computer vision domain. It is stable in regard to change in rotation, scale and illumination.

SIFT descriptros are well localized in both the spatial and the frequency domains, reducing

the probability of disruption by occlusion, clutter, or noise.

SURF While SIFT is based on multi-scale space theory and the feature detector is

based on Hessian matrix, (Bay et al., 2008) SURF (Speed Up Robust Features) descriptor

is based on similar properties as SIFT. SIFT and SURF perform well in computer vision

applications, and recently are investigated in medical image application (Sargent et al., 2009;

Tamaki et al., 2013) such as image description (Lecron et al., 2012; Castellani et al., 2012),

segmentation (Meijuan Yang and Yan, 2011), registration (Li-jia et al., 2009), and image

retrieval (Lecron et al., 2012). In this thesis we will use both of those descriptors to extract
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relevant information from MRI scans. Performances of those descriptors on Alzheimer’s

disease subject recognition will be compared to CHFs features which will be introduced and

discussed in the next chapter.

LBP Texture is a commonly used feature in the analysis and interpretation of medical

images. It is characterized by a set of local statistical properties of pixel intensities. Several

descriptors have been used to extract texture features from MRI. Local Binary Pattern (LBP)

is a computationally efficient non parametric local image texture descriptor. Indeed, the local

primitives such as curved edges, points, corners, flat areas etc. can be also described using

LBP. LBP operator is invariant to any monotonic lighting condition changes in gray-level,

and it is very fast to calculate (Ojala et al., 2002). The idea is to analyze how similar or

different are the texture in voxels neighborhoods. The application of LBP to medical images

and specifically MRI images has been explored in (Nanni et al., 2010; Oliver et al., 2007;

Chang et al., 2012; Unay et al., 2008; Oppedal et al., 2012). In addition to local descriptors,

machines learning methods will be used to recognize diseased subject from healthy ones.

2.6 Classification-based CAD

Machine learning techniques have been widely used to support the diagnosis of neurological

diseases such as AD. Classical CBIR approaches consist in comparing between sets of fea-

tures or images signatures on an appropriate metric space. Hence, the response to a query

are ranked according to the distance between signatures or appropriate distance function.

Nevertheless, the methodological progress make the modern CBIR approach to become a

classification task. Specifically in our case of CAD, we need to identify a category of query

subject (AD, NC,MCI). Hence, In addition to CBIR-CAD system, Classifier-based CAD can

be seen as good decision support in AD diagnosis. The estimation of the searched category

can be seen as a binary classification problem between two classes. The task is to determine

whether the two images are sufficiently similar for further consideration. This is treated as

a two-class pattern classification problem. In this thesis, we consider the use of machine

learning techniques such as Support Vector Machine (SVM) and the Bayesian classifier. In
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the rest of this chapter we will review the use of SVM in AD diagnosis and we will introduce

their mathematical background. In the end of section we will present the Bayesian Classifier

technique.

2.6.1 SVM-based computer-aided diagnosis of the Alzheimer’s dis-

ease

Pattern recognition techniques are widely used in CAD. In particular, Support Vector Ma-

chines (SVMs) classifiers have proven to be efficient to perform individual diagnosis. Here,

the aim of SVM is to identify patterns that allow for the discrimination of individual subjects

(for review, see (Haller et al., 2011). Thus, SVMs require a training group, i.e., well- charac-

terized subjects (for instance healthy subjects and diseased patients), in order to categorize

new subject, who belong to the so-called test group, into one of the classes the subjects of the

training population belong to. It is noteworthy that SVMs analyses for individual classifica-

tion are fundamentally different from the group level ROI or voxel-wise analyses presented

in chapter 1. Indded, such voxel-wise analyses are univariate tests, which separately ana-

lyze each included ROI or voxel between two (or more) groups. Recently, SVMs have been

used for computer-aided AD diagnosis using several MRI modalities (Bicacro et al., 2012;

Ortiz et al., 2013; Fung and Stoeckel, 2007; Oppedal et al., 2012; Haller et al., 2011; Fung

and Stoeckel, 2007; Montagne et al., 2013; Illán et al., 2011; Zhiqiang et al., 2004; Ramirez

et al., 2013; Beg et al., 2013). SVMs have been successfully applied by several works for

discriminating between AD patients, Normal control and MCI using structural MRI. Table

2.2 presents a literature review of some SVM-based methods for AD diagnosis. It is to note

that most of literature works are focus in a binary classification ( AD versus NC, NC versus

MCI and AD versus MCI).
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Work Features Groups comparison Data
(Vemuri et al., 2008) GM + WM + CSF voxels NC vs AD 380
(Christos et al., 2008) GM, WM and CSF volumes MCI vs AD 30
(Fan et al., 2008) voxels NC vs AD NC vs MCI

AD vs MCI
210

(Klöppel et al., 2008) GM NC vs AD 90
(Chupin et al., 2009a) Hippocampus volumes AD vs NC 59
(Gutman et al., 2009) hippocampus shape AD vs NC 112
(Gerardin et al., 2009) hippocampal shape features

(SPHARM)
NC vs AD NC vs MCI 71

(Cuingnet et al., 2011) Various AD vs NC, AD vs
MCI

509

(Shen et al., 2012) hippocampal shape features
(Statistical shape models)

NC vs AD 237

(Magnin et al., 2009) Histogram of voxels inten-
sity distribution in GM,
WM, and CSF regions

NC vs AD 38

(Zhang et al., 2011) GM volume (93 ROIs) NC vs AD 202
(Liu et al., 2009) Neuropsychological

tests,hippocampal vol-
ume, regional cortical
thickness measures

NC vs AD NC vs MCI
AD vs MCI

351

(Wee et al., 2013) Correlation and ROI based
morphological features

AD vs NC 598

(Yang et al., 2012) CSF and hippocampus vol-
ume

NC vs AD NC vs MCI
AD vs MCI

211

(Farhan et al., 2014) GM, WM, CSF and hip-
pocampus

AD vs NC 85

Table 2.2: Literature review of some SVM-based classification methods for Alzheimer’s dis-
ease diagnosis with structural MRI

MCI case recognition is the most challenging task and it is actually the topic of interest

in the current research related to AD diagnosis. Most of works extracted different features,

including the hippocampus and the cortical thickness. The region of interest tends to be

the GM, the WM, as well as the CSF. These features are the common used. Some other

works use their own features (Gutman et al., 2009; Gerardin et al., 2009; Shen et al., 2012).

High recognition rates are achievable (SVM) focused on brain ROI (Gerardin et al., 2009;

Cuingnet et al., 2011; Gutman et al., 2009; Klöppel et al., 2008; Fan et al., 2008; Magnin

et al., 2009; Zhang et al., 2011; Christos et al., 2008; Zhiqiang et al., 2004; Duchesne et al.,
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2010; Vemuri et al., 2008; Liu et al., 2009; Apostolova, 2008; Chupin et al., 2009b). However,

the lack of studies using multiple methods on the same data has made it difficult to directly

compare the results of the different techniques. Recently (Cuingnet et al., 2011) compares

ten high-dimensional classification methods applied to 509 baseline ADNI 1.5 T MR images.

In the latter, two methods use only the hippocampal shape or volume, while the remainder

are whole-brain approaches.

In addition, SVMs have been investigated for the DTI modality (Lee et al., 2013; Haller

et al., 2010; O’Dwyer et al., 2012; Mesrob et al., 2012; Patil and Ramakrishnan, 2014). For

instance, in (Haller et al., 2010), Fractional anisotropy and longitudinal, radial, and mean

diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group

comparisons and individual classification of MCI cases using SVM.

Fundamentals

Support Vector Machine, known as SVM is a supervised learning technique developed in In

1992 by Boser, Guyon, and Vapnik (Boser et al., 1992). SVM have been successfully used

in a number of image processing applications including content-based image retrieval (Tao

et al., 2006) and medical imaging diagnosis (Chen et al., 2012)

Practically, SVM is committed to find the maximum margin between two classes. In

author word, SVM can find the hyperplane that leaves the largest possible number of points

of the same class on the same side, while maximizing the distance of either class from the

hyperplane.

Given a training of instance label pairs (xi, yi), i = 1, ..., l where xi ∈ Rn and y ∈ {1,−1},

xi is the feature vector in n dimensions that describes the data point and yi is the corre-

sponding label of xi we need to bridge a mapping between the instances and their labels. In

this thesis, we only consider the binary classification. Therefore, if xi is positive, its yi is 1:

otherwise, yi is -1. The problem solution consists in finding a function f(x), which is able to

predict the y for each given x.
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Linear SVM

From very beginning, the SVM was to classify two classes. In addition, it was assumed that

there should be a linear function that could reach the goal.

wTx+ b = 0 (2.1)

In Equation 2.1, f(x) is the mapping that we have to find. The separated hyperplane

can be parametrized by its normal vector w and a constant b. Two classes locate at opposite

sites of the hyperplane. Therefore, we may use the hyperplane as the discriminant of the two

classes. In each region, the data points which are closest to the hyperplane are called support

vectors. They are considered to be the most important data from the training set, since they

are the only data points used to determine the equation of the separating hyperplane.

H+ and H− are the hyperplanes which are parallel to the separating hyperplane and

contain the support vectors. These hyperplanes are defined by:

H+ : wTxi + b = +1 (2.2)

H− : wTxi + b = −1

Figure 2.3 illustrates the so-called decision boundary between regions classified as positive

and negative of the classifier. The support vectors are presented by the circled points,

the examples that are closest to the decision boundary. They determine the margin which

separate the two classes. Note that any point from the training set falls between these two

hyperplanes. Thus, every training data satisfy:

wTxi + b >= +1 then yi = +1 (2.3)

wTxi + b <= −1 then yi = −1

These equations represent parallel bounding hyperplanes that separate data thay can

compactly rewritten in the flowing way:
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Figure 2.3: Illustrative example of a linearly separable binary example with SVM.

yi(w
Txi + b) >= 1∀i (2.4)

To select the best hyperplane from this separating bounding hyperplanes, its margin

should be maximized. The distance between the hyperplane and the nearest vector is given

by:

The distances from H + and H - to the origin are, respectively, b+1
‖w‖ and b−1

‖w‖ . The margin

M is defined as the distance between H + and H- , that is:

M =
b+ 1

‖w‖
− b− 1

‖w‖
=

2

‖w‖
(2.5)

The optimal hyperplane allows to separate data with the maximum margin possible and

is determined by minimizing ‖w‖2 , subject to constraints. This leads to a quadratic opti-

mization problem

Therefore, to find the maximum margin is to minimize‖w‖. We can summarize it as a
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particular in quadratic programming problem:

minimizew,b
1

2
‖w‖2 (2.6)

Subject to yi(w
Txi + b) >= 1 ∀i

The problem is a constrained optimization problem which cannot be solved directly.

Lagrangian multipliers αi (Fletcher, 1987a) is used to transform it into unconstrained form.

The optimization problem is formulated as:

L =
1

2
‖w‖2 −

N∑
i=1

(αi

[
yi(w

Txi + b)− 1
]

(2.7)

subject to αi >= 0

Lp must be minimized with respect to w, b and maximized with respect to αi . The

solution is given by the saddle point [10]. This is a convex quadratic optimization problem,

since the objective function is itself convex and the points satisfying the constraints also form

a convex set. For this reason, it is possible to make use of the Karush-Kuhn- Tucker (KKT)

conditions to solve the problem [ref] and, therefore, the gradient of L should vanish:

∂L

∂w
= 0 ⇒ w =

N∑
i=1

αiyixi (2.8)

∂L

∂b
= 0 ⇒

N∑
i=1

αiyi = 0 (2.9)

The primal form of the Lagrangian L 2.8 may be equivalently written in dual form by

substituting the above expression for w. The dual form expresses the optimization criterion

in terms of inner products of the feature vectors:
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maxα L (α) = maxα

{
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxixj

}
(2.10)

subject to αi >= 0 and
N∑
i=1

αiyi = 0

The decision surface is thus expressed in terms of the support vectors, since only their

corresponding αi are non-zero (According to the quadratic programming theory). b is found

by the average of a Nsv support vectors:

b =
1

Nsv

Nsv∑
i=1

(wTxi − yi) (2.11)

This is an important property for the creation of nonlinear SVM classifiers.

Soft-margin SVM

In the case of noisy data where no linear hyperplane can separate the data, the soft-margin

SVM formulation is applied and slack variables εi are introduced. Those variables measure

the degree of misclassifcation of the feature vectors. The optimization becomes trade-off

between maximizing the margin and minimizing the degree of misclassifcation. This trade-off

is controlled by the penalty parameter C, such that the constrained optimization may be

expressed as:

minw,ε,b

{
1

2
‖w‖2 + C

N∑
i=1

εi

}
(2.12)

subject to yi(w
Txi + b) >= 1− εi andεi >= 0∀i

By using Lagrange multipliers, the problem may be re-expressed as the unconstrained

optimization
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L =
1

2
‖w‖2 + C

∑
i

εi −
N∑
i=1

(αi

[
yi(w

Txi + b)− 1 + εi
]
−

∑
i

µiεi (2.13)

subject to αi >= 0

Again, according to the KKT conditions ( Karush- Kuhn-Tucker) (Fletcher, 1987b) , the

derivatives of L are set to zero:

∂L

∂w
= 0 ⇒ w =

N∑
i=1

αiyixi (2.14)

∂L

∂b
= 0 ⇒

N∑
i=1

αiyi = 0 (2.15)

∂L

∂εi
= 0 ⇒ C − αi − µi = 0 (2.16)

The dual for of Equation 2.14 is written as:

maxα L (α) = maxα

{
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxixi

}
(2.17)

subject to 0 =< αi <= C and
N∑
i=1

αiyi = 0

Kernel SVM

The main idea of Non-Linear SVM is to apply a suitable non-linear transformation to map

the problem to a new space, called the feature space, where a linear model can be used. The

linear model in the feature space corresponds to a non-linear model in the input space (I).

This is known as the ”Kernel Trick”. In cases where the data are not linearly separable in

the input feature space, a nonlinear function φ(x) maps data points into higher-dimensional

(H). The d Kernel trick consists in replacing the inner product of the original points with

the inner product of point with kernels and then the non-linear problem is transformed inti
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linear classification problem, which could be solved by SVM. AS it is Illustrated in Figure

2.4, the original data is non-linearly separable. After the mapping of a trick function φ, they

can be linearly separate.

φ : I → H (2.18)

Figure 2.4: Illustrative example of a non linearly separable data.

This function use a kernel K witch take data points from the input space I and return

their inner product in the feature space

The function K(xi, xj) = φ(xi)φ(xj) is known as the kernel function.

The two parameters w and b of the hyperplane are determined by solving a constrained

minimization problem using Lagrange multipliers αi. The final decision function is as the

flowing:

f(x) = sgn(
N∑
i=1

yiαiK(xi, xj) + b (2.19)

Several kernel may be used to map data, for instance:

• Radial Basis Function: K(xi, xj) = exp(−γ ∗ |xi − xj|2)

• Sigmoid: K(xi, xj) = tanh(γ ∗ xT
i ∗ xj + r)
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2.6.2 Bayesian Classifier

Bayesian methods are being used increasingly in clinical research (Berry, 2004). A naive

Bayes is a probabilistic classifier based on the application of Bayes theorem.

Given a set of feature vectors, x1, x2, ....xn, the objective is to construct the posterior

probability for the class Cj among a set of possible outcomes set of classes C1, C2, ..., Cm.

Using the Bayes theorem, the posterior probability of class Cj being X can be written as

follows:

p(Cj|X1, ..., Xn) =
p(Cj)p(X1, ..., Xn|Cj)

p(X1, ..., Xn)
(2.20)

where p(Cj) is the prior probability of class Cj, p(X1, ..., Xn|Cj) is the likelihood of X

given Cj and p(X1, ..., Xn) is the evidence.

In fact, only in the numerator of that fraction is of interest, since the denominator does

not depend on C and the values of the features X are known, so that the denominator is

constant. The numerator is equivalent to the flowing probability model:

p(Cj, X1, . . . , Xn) = p(Cj)P (X1, . . . , Xn|Cj) (2.21)

= p(Cj)p(X1|Cj)p(X2, . . . , Xn|Cj, X1)

= · · · = p(Cj)p(X1|Cj)p(X2|Cj, X1) . . . p(Xn|Cj, X1, X2, . . . , Xn−1)

The nave conditional independence assumptions guarantees that each feature vector Xi

is conditionally independent of every other feature vector Xk for 6= i. This means that:

p(Xi|Cj, Xk) = p(Xi|C) (2.22)

and thus the joint model can be expressed as:
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p(Cj, X1, . . . , Xn) = p(Cj)p(X1|Cj)p(X2|Cj) . . . p(Xn|Cj) (2.23)

p(Cj) =
n∏

i=1

p(Xi|Cj)

The naive Bayes classifier combines the model above with a decision rule. One common

rule is to choose the hypothesis that is most probable. This is known as the maximum a

posterior (MAP) decision rule. The corresponding classifier is the equation defined as follows.

Ĉ(X1, . . . , Xn) = maxcp(Cj)
n∏

i=1

p(Xi|Cj) (2.24)

The use of this independence assumption is at the basis of the naive Bayesian classifier.

Tow major advantages of the use of Bayes classifier. First, it is robust to missing values

because these values are simply ignored in computing probabilities and thus have no impact

on the final decision. Second, it is with reduced computational time for training because it

requires relatively small set of training data to estimate classification’s parameters. Naive

Bayesian classifiers have proven to be powerful probabilistic models for solving classification

problems in a variety of domains. Most notably in computer aided diagnosis domain (Nissan

et al., 2010; Hani et al., 2010)

2.7 Conclusion

In this chapter, we firstly gave a brief introduction to both concepts of CBIR and Computer-

Aided Diagnosis system. Then, we presented an overview of recent researches related to the

local features-based methods for Alzheimer’s disease diagnosis. Finally, we introduced some

mathematical backgrounds of descriptors and classifiers used in this thesis. In addition, an

overview of recent researches related to the image-based classification of AD subjects has

been presented. The later chapters incorporate more focused and detailed review of the

most recent related research in both medical and image processing fields. The following
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four chapters will give the main contributions of this thesis. Next chapter will present the

preprocessing and the features extraction methods used to build a signature-related atrophy.
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Chapter 3
Visual disease-related signature generation:

methods and materials
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3.1 Introduction

As we showed in Chapter 1, ROIs-based methods which are focus on extracting features from

specific regions of the brain are of growing interest. Indeed, ROI’s segmentations performed

by an expert or by a specific software are challenging. In fact, they are time-consuming

and can present poor results in a boundary detection of brain regions. On the other hand,

atlas-based parcellation can be used as a standard and automated method for automatically

labeling ROIs on MR brain images. However, the latter reveals less inter-subject variability

and then is not able to represent atrophy information. Hence, in this chapter, we will present

and explain our methodology in generating Alzheimer’s disease-related signature using an

atlas ROI extraction method. The intuition is that the variations in the brain/ROI anatomy

can be represented as a set of local features illustrating the presence or absence of atrophy in

the specific tissue overlapping with atlas parcels. In this chapter, we will start by explaining

the adopted MRI preprocessing pipeline. Then, we will present the visual disease-related

signature generation method. Next, we will introduce the CHFs descriptors and present

their interest in extracting MRI local information. Finally, we will introduce the data used

to test our methods.

3.2 Spatial normalization of MRI data

Brain scans alignment is mandatory for ROIs extraction. Two types of alignment: linear

or non-linear can be applied accordingly to the common practices (Salmond et al., 2002).

The linear transform, either ”rigid body” or affine, allows only a coarse registration of global

geometrical differences, e.g. rotation and magnification. Fine anatomical structures will

not be aligned precisely by the linear transform because of natural inter-subject anatomical

variance. Non linear deformable registration allows a more precise alignment of fine brain

structures. However, it is difficult to guarantee that images are not ”over-aligned”, which

would mean the loss of the individual patterns in brain structures. A more detailed analysis

of this problem is presented in (Ridha et al., 2007). The authors note several shortcomings

of the Voxel-Based Mophometry (VBM) approach, which is based on nonlinear registration.

First, the deformable registration is not desirable for feature-based approaches, as it deforms
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the features itself, while we want to preserve specific local patterns. Second, our approach

analyzes the brain ROIs slice-by-slice (Chapter 5 and Chapter 6). Linear registration gives us

roughly corresponding slices for the selection of ROIs. The similar slice-based technique was

used in (Akgul et al., 2009). In addition, affine registration preserves specific local patterns.

Thus, in our work we adopt to an affine registration of all scans to the MNI 152 brain template

(Frisoni et al., 2005) through using the freely available VBM8 toolbox 1 using the Statistical

Parametric Mapping (SPM)2 software as illustrated in Figure 3.1.

Figure 3.1: MRI spatial normalization to the MNI space using the SPM software (Image
are structural MRI of an AD patient from the ADNI dataset)

1http://dbm.neuro.uni-jena.de/vbm/
2http://www.fil.ion.ucl.ac.uk/spm/software/
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3.2.1 The Montreal Neurological Institute (MNI) template

This is the most common template used for spatial normalization. It is developed by the

Montreal Neurological Institute (ICBM, NIH) 3. The MNI is designed to define a brain that is

more representative of the population. Indeed, it is average of large numbers of T1-weighted

images of 152 healthy individuals who have been registered into a common space.

In SPM, the standard space is defined by the template image ”T1.nii” supplied with the

SPM toolbox. The default configurations include source image smoothing with 8 mm, affine

regularization with ICBM space template, a nonlinear frequency cutoff of 25, 16 nonlinear

iterations. Figure 3.2 shows a screen shot of the spatial normalization results done by the

SPM software. We normalized here an NC subject from the ADNI dataset to the MNI

template (left), the spatially normalized image is on the right.

3.2.2 Affine normalization

Generally, the affine transformation includes translation, rotation, scaling and shearing and

it preserves collinearity and proportions on lines (Ashburner et al., 1997). SPM uses a

12-parameter affine transform to fit the source image f to a template image g.

For each point x= (x1, x2, x3)
T from f , the transformation to point y=(y1, y2, y3)

T in g

is defined as follows:


y1

y2

y3

1

 =


m1 m4 m7 m10

m2 m5 m8 m11

m3 m6 m9 m12

0 0 0 1




x1

x2

x3

1

 (3.1)

This transformation can be broken down into a product of translation, rotation, scale and

shear in x-, y- and z-axis:

3http://www.mni.mcgill.ca
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Figure 3.2: SPM8 screenshot after spatial normalization of NC subject from the ADNI
dataset. The MNI template is in the left, the spatially normalized image is on the right.

M = MTranslation ∗MRotation ∗MZoom ∗MShare (3.2)

The parameters q1,q2, q3 correspond to 3 translation parameters, q4, q5 and q6 correspond

to 3 rotations parameters. q7, q8 and q9 to 3 zooms and finally q10, q11 and q12 are the 3

shares corresponding parameters.

where,
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MTranstation =


1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1



MRotation =


1 0 0 0

0 cos(q4) sin(q4) 0

0 − sin(q4) cos(q4) 0

0 0 0 1

 ∗


cos(q5) 0 sin(q5) 0

0 1 0 0

− sin(q5) 0 cos(q5) 0

0 0 0 1

 ∗


cos(q6) sin(q6) 0 0

− sin(q6) cos(q6) 0 0

0 0 1 0

0 0 0 1



MZoom =


q7 0 0 0

0 q8 0 0

0 0 g9 0

0 0 0 1



MShare =


1 q10 q11 0

0 0 q12 0

0 0 1 0

0 0 0 1


The normalization function done with 12 degrees of freedom, minimizing the sum of

squares of intensity differences (SSD) (Equation 3.3) between each subject image and the

brain template (Ashburner and Friston, 1999).

SSD(f, g) =
1

N

∑
(x,y)∈N

(f(x, y)− g(x, y))2 (3.3)

Thus, normalization can also be used within modalities exclusively. If we want to nor-

malize an individual T1-weighted anatomical scan, we have to fit it onto a T1 template.
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3.3 Disease-related signature generation

Alignment of individual brain scan to a common template deforms the individual morphology.

Hence, in our approach we do not segment the aligned scan. We propose to generate a visual

signature of ROI using a statistical description, which is supposed to be robust to such

deformation. Hence, we need only roughly localize ROI in the scans. Therefore, we resort to

an Atlas-based method for ROI selection.

Broadly speaking, MRI signal varies across tissue characteristics and/or types. Quantifi-

cation of the amount of brain cell loss in terms of signal variation across individual brains

may provide information about the disease. In this section, we present the process of visual

signature or the so-called ”disease-related signature” generation. A signature per subject is

generated to reflect brain atrophy at the individual level. We will not use a segmentation step

to extract region of interest to be described, we propose an atlas-based features generation

approach. We use the atlas parcels to characterize brain abnormalities in terms of intra-ROI

local pattern. The pattern overlapping with the extracted ROI mask shows different signals

presented inside the ROI itself, those signals present the ROI atrophy and then this signal

variations inside the ROI anatomy will be represented as a set of local features. Extracted

features are leveraged to distinguish normal from abnormal ROI area. It should be noted

that we are working in the 2D plane and image processing is done slice by slice.

Using global descriptors, local details of an image are hard to be reflected. Hence, in the

current work, we investigate the local features, which will be discussed further below. We use

local descriptors because they are able to offer robustness against translation and rotation

and in localized points of the image. Also ensure that the extracted features is well related

to the AD, we have to extract feature from ROIs known to be involved in the AD. This is

our interest in the next sections.

3.3.1 ROI extraction using AAL

Since each brain image is affinely mapped with a normalized atlas in 3D space and resliced

in the same way as the atlas, we are able to identify a region of interest (ROI) by mapping

the image with the atlas slice by slice. The regions investigated in this work are suggested
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by our medical partners. These are regions known could have potential relevance to disease

classification of individual MR scans. To select the ROIs, we used a brain atlas called

Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002). The AAL atlas is

a single-subject atlas based on the MNI Colin27 T1 atlas. Figure 3.3 shows the standard

AAL template (different projections) which comprises 116 brain anatomical regions. The

selection process consists in superimposing geometrically aligned individual brain volume

and the AAL.

Figure 3.3: The Automated Anatomical Labeling (AAL) (axial, coronal and sagittal pro-
jections)

3.3.2 Features extraction and signatures generation

After brain alignment and ROIs selection, we compute image features. As it was already

noted, we need to extract only those features that contain visual information related to

the presence or absence of the Alzheimer’s disease. Hence, in the current research SIFT and

SURF descriptors are used to extract local information from brain tissues. In addition, we use

the Circular Harmonic Functions (CHFs). An important issue here lies in the representation
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of extracted features for comparison purpose. One of the most popular models in CBVIR

is the Bag-of-Visual-Words. It is an adaptation of the bag-of-words scheme proposed in the

text retrieval problem area and it was further adapted for image analysis (Csurka et al., 2004;

Sivic and Zisserman, 2009). This model represents a whole image or a ROI as a histogram

of occurrence of quantized visual features, which are called ”visual words”. The histogram

received the name of ”visual signature” of an image/ROI. Some works in MRI classification

for diagnostics of AD evaluate the suitability of the BoVW approach. In (Daliri, 2012), the

authors use SIFT features extracted from the whole subject’s brain to classify brains with

and without AD. Successful results with BoVW approach are also reported in (Rueda et al.,

2012). The two last mentioned works used an SVM to classify signatures obtained by BoVW

representation on the open-access dataset OASIS 4. However, (Daliri, 2012), (Rueda et al.,

2012) and (Toews et al., 2010) have not addressed the MCI case which is considered in our

work.

The good tissue contrast of T1-weighted MRI enables to obtain accurate structural MRI

analysis, which may be used as a biomarker for diagnosing AD. In the current work, addition-

ally to conventional SIFT and SURF descriptors we propose the use of Circular Harmonic

Functions (CHFs) descriptors. CHFs are used for selection of contrasted patterns in brains,

and their coefficients form the descriptors of these patterns. In the flowing section, we will

introduce the CHFs descriptors.

Circular Harmonic Functions keypoints detector and descriptors

The choice of the initial description space (features) is of a primary importance as it has

to be adapted to the nature of the images. Indeed, despite the good performances of SIFT

features reported in (Rueda et al., 2012), there is still place for an intensive investigation

of the descriptors choice. SIFT or their approximated version SURF ( More computational

details are given in Appendix 7.1), widely used in classification of general purpose image data

sets, are not optimal for MRI with the lack of pronounced high frequency texture and clear

structural models.

Circular Harmonic Functions (CHFs) give interesting approximations of blurred and noisy

4http://www.oasis-brains.org/
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signal as we have it in MRI. CHFs were first introduced in the pattern recognition domain

(Sorokin et al., 2011). They have several advantages over other descriptors particularly for

MRI. CHFs present a decomposition of image signal on the orthonormal functional brains.

They allow for capturing local direction of image signal as this is the case in SIFT and

SURF. But what is even more important, they allows for capturing intermediate frequencies

in the signal similarly to Fourier decomposition. This is not the case of SIFT and SURF. We

hypothesize that this propriety is more convenient for MR images with smooth contrasts.

According to (Sorokin et al., 2011; Sorgi et al., 2006), these descriptors in some cases

are superior to SIFT which is a current benchmark. Furthermore, computing the CHFs

descriptors on densely sampled patches in brain brings the statistical variety necessary for

overcoming the problem of inter-subject instability of signal singularities. Furthermore, these

features as computed on patches inside the ROI or selected on the whole brain, convey local

structural information of image signal. Figure 3.5 presents an example of (SIFT and CHFs)

keypoints placement in selected MRI slices.

CHFs, these are complex, polar separable filters, characterized by harmonic angular shape

allowing the descriptors to be rotationally invariant. CHFs were yet proposed for rotation

invariant pattern recognition in (Arsenault and Sheng, 1986). They possess the interest-

ing characteristic of being efficacious to extract visual relevant features and rich frequency

extraction .

LG-CHF is complete orthogonal set of functions on the real plane. Thus, the image

I(x, y) can be expanded in the analysis point x0 , y0 for fixed scale σ in Cartesian system. The

coefficients of the partial expansion of local neighborhood can be used as a feature descriptor.

The advantages of these features are such that they capture both the direction and smooth

variations of image signal. Their drawback is in a rather slow convergence, hence a sufficient

number of coefficients has to be retained for image description. The number of coefficients

retained define the dimensionality of the descriptor. The reasonable dimensionality of 150

coefficients (Mizotin et al., 2012) was used in the present work. Hence, the dimension of the

descriptor is comparable with that one of conventional SIFT.
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Keypoint detection

Let us consider a family of complex orthonormal and polar separable functions:

Ψ(r, θ;σ) = Ψ|α|
n (

r2

σ
)eiαθ (3.4)

Ψ|α|
n (x) =

1√
n!Γ(n+ α + 1)

x
α
2 e

−x
2 Lα

n(x) (3.5)

where n = 0, 1, ...;α ± 1,±2... and Lα
n(x) are Laguerre polynomials. r, θ are polar coor-

dinates, σ is a scale parameter and Γ is a gamma function.

Lα
n(x) = (−1)nx−αex

d

dxn
(xn+αe−x) (3.6)

The Laguerre functions Ψα
n(x) can be calculated using the following recurrence relations:

Ψα
n+1(x) =

(x− α− 2n− 1)√
(n+ 1)(n+ α + 1)

Ψα
n(x)− (3.7)√

n(n+ α)

(n+ 1)(n+ α + 1)
Ψα

n−1(x),

n = 0, 1...,Ψα
0 (x) =

1√
Γ(α + 1)

xα/2e−x/2,Ψα
−1(x) ≡ 0

These functions Ψα
n, called Laguerre-Gauss Circular Harmonic (GL CH) functions, are

referenced by integers n ( referred by ”radial order”) and α (referred by ”angular order”)

(Figure 3.4).

The LG-CH functions are self-steerable, i.e. they can be rotated by the angle θ using

multiplication by the factor eiαθ. They also keep their shape invariant under Fourier trans-

formation and they are suitable for multi-scale and multicomponent image analysis.

For a brain scan slice S(x, y) defined on the real plane from one projection plane R2, due

to the orthogonality of the Ψα
n family, the slice S(x, y) can be expanded in the analysis points

(x0 , y0) for fixed σ in Cartesian system as follows:
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Figure 3.4: Illustrating of Laguerre Gauss Pyramid at different scales

S(x0, y0) =
∞∑

α=−∞

∞∑
n=0

gα,n(x0, y0;σ)Ψ
α
n(r, θ, σ), (3.8)

where

gα,n(x0, y0;σ) =

∫ ∞

−∞

∫ ∞

−∞
S(x0, y0)Ψα

n(r, θ, σ)dxdy,

And

r =
√

(x− x0)2 + (y − y0)2,

θ = arctg(
y − y0
x− x0

)

For more details on the use of these functions in image analysis we refer the reader to

(Sorokin et al., 2011).
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Gauss-Laguerre Keypoint descriptors

For the keypoint description, which are in our case the centers of a regular grid of patches,

each point K = (x, y, σ) is associated to a local descriptor χ = {χ(n, α, j)}. This is a complex

valued vector consisting of local image projection to a set of LG-CH functions Ψα
n at 2jmax

scales neighbor to the keypoint K reference scale σ . The χ elements are defined as:

χ(n, α, j) = Anorm.gα,n(x, y;σj)e
−iαφj , (3.9)

n = 0, ..., nmax, α = 1, ..., αmax,

j = −jmax, ..., jmax.

Where σj is the j
th scale following σ if j > 0, or preceding the σ if j < 0 in discretized scale

space. Anorm is the normalization coefficient that makes descriptor invariant to illumination

changes. The phase shift e−iαφj is used to make descriptors invariant to the keypoint pattern

orientation, where φj = arg(g1,0(x, y;σj)).

Construction of the Bag-of-Visual-Words signature

Recently BoVW has been successfully applied in various tasks of medical image classification

and retrieval and specially for computer aided diagnosis. This method represents an image

as a distribution of local salient (or dense) patches. Usually, there is two ways to localize

relevant features would be extracted. The Keypoint-based analysis and dense-sampling. In

this thesis, we used a dense sampling scheme with a regular-grid-based extraction. This is

done by partitioning images using a regular grid, and taking each grid item as a patch of fixed

size. Such sampling scheme may provide a rough model of clinician vision and results in a

good coverage of the entire scan and a constant amount of features per image area. Regions

with less contrast contribute equally to the overall image representation. As illustrated in

Figure 3.6 , the visual words construction process can be decomposed into three main steps :
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Figure 3.5: Example of features placement in MRI slices (from slice number 60 to slice
number 63), extracted features here are SIFT and CHFs

First stage: Visual words detection

The first stage through the Bag-of-Visual-Word approach consists in extracting small patches

from the images. To extract visual features from the images, several descriptors are used such

as SIFT, SURF and CHFs.

Second stage: Learning the visual vocabulary

Derived from local image descriptors, the visual vocabulary is computed through clustering of

all descriptors calculated from the training images. This is done using the k-means clustering
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Figure 3.6: Process of the BoVW representation illustrating the three steps 1) Local features
extraction, 2) Visual vocabulary construction 3) Histogram generation

method (Jain et al., 1999) which is one of the simplest but well known clustering algorithms.

It simply aims to cluster n vectors or features into k clusters and return the k cluster centers

(Algorithm 1).

Algorithm 1 Features clustering: K-means

Input: The number of clusters k and the set of n features F := f1, f2, ..., fn
Output: A set of k clusters Cj.

Step 1: Choose a1, a2.., ak centroids randomly as the initial centers of the clusters
Step 2: Repeat
2.1: Assign each feature to their closest cluster center using Euclidean distance.
For every i, ci := argminj‖fi − aj‖2

2.2: Compute new cluster center: For every j, ai =
∑n

i=1 1{ci=j}fi∑n
i=1 1{ci=j}

Until
No change in cluster center or No feature changes its clusters.
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Third stage: Visual words quantization to construct the histogram

Finally, once the cluster centers are identified, each feature vector in an image is assigned to

the closest cluster centroid using the Euclidean metric. Each image is then represented by

a k-bin histogram of these cluster centers by simply counting the occurrence of the words

appear in an image. The obtained histogram is called image signature.

3.4 MRI Alzheimer’s disease Data

Data used in the experiments of the current research come from two sources. First, we used

subsets of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Second, we

used a real cohort of a large French study. Those two data are explained in detail in the next

section. It is to note otherwise that only baseline images have been used in the current work.

Also, only one scan per subject has been used.

3.4.1 ADNI data

Data used in the preparation of this work were obtained from the ADNI database 5. The goal

of the ADNI is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)

as predictors and outcomes for use in clinical trials of AD treatments (Weiner et al., 2010).

”The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administra-

tion (FDA), private pharmaceutical companies and non-profit organizations, as a 60 million,

5-year public-private partnership. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Deter-

mination of sensitive and specific markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor their effectiveness, as well

as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is

5adni.loni.usc.edu
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Michael W. Weiner, MD, VA Medical Center and University of California San Francisco.

ADNI is the result of efforts of many co-investigators from a broad range of academic institu-

tions and private corporations, and subjects have been recruited from over 50 sites across the

U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been

followed by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500

adults, ages 55 to 90, to participate in the research, consisting of cognitively normal older

individuals, people with early or late MCI, and people with early AD. The follow up dura-

tion of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2”.

Images used in this thesis are T1-weighted scans obtained from different scanner types

using the volumetric MPRAGE sequence. All image are preprocessed as described in the

ADNI website 6including distortion correction and B1 non uniformity correction.

Figure 3.7: Example of an MRI scan of an AD subject of the ADNI data set: subjectID:
003S4136

3.4.2 Bordeaux-3City cohort

Second data used in this work is a subset from the 10-year follow-up of a population-based

cohort (Bordeaux-3City) from of the Three-City (3C) study 7.

The Three-City (3C) study was established in 1999 to investigate the influence of vascular

factors on the risk of dementia and cognitive impairment. The Three-City Study, a French

6http://www.adni.loni.usc.edu/
7http://www.three-city-study.com/the-three-city-study.php
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prospective study designed to evaluate the risk of dementia in persons aged 65 years and

older. Participants were recruited from three French cities: Bordeaux (South-West), Dijon

(North-East) and Montpellier (South-East). The 9,294 eligible participants who participated

in the baseline examination have since been invited to three waves of follow-up, 2001-2002,

2003-3004, and 2006-2007. At the time of the baseline examination, 60% of the participants

were female and they were, on average, 74 years old. The participants are a subset from

the Bordeaux site (2104 subjects) of the Three-City (3C) study , a longitudinal multicenter

population-based cohort designed to evaluate risk factors of dementia. Subjects were non

institutionalized individuals age 65 years and older and were randomly recruited from elec-

toral lists. The study protocol was approved by the ethics committee of Kremlin-Bicetre

University Hospital (Paris, France), and all participants provided written informed consent.

MRI data were collected at 1.5 T using a Gyroscan Intera system (Philips Medical Sys-

tems, Best, The Netherlands) equipped of 20 mT/m gradients and a quadrature head coil.

Each subject underwent a high-resolution 3D T1-weighted anatomic scan with acquisition

parameters as followed: TR/TE = 8.5/3.9 ms. A total of 124 slices (thickness 1 mm), were

acquired with a 256 x 256 matrix and a field of view (FOV) of 240 mm (voxel size = 0.9

mm x 0.9 mm x 1 mm). The diffusion weighted imaging was performed by using single

shot spin-echo echo-planar imaging with the following parameters: TR/TE = 6940/89 ms.

Diffusion gradients were applied in 6 spatial directions. The b values used were 0 s/mm2 and

800 s/mm2. Diffusion data results from 8 signal averages. Images were acquired with a 96

x 96 matrix, which were reconstructed to 128 x 128 over a FOV of 230 mm. The resulting

voxel size was 1.8 mm x 1.8 mm x 2.5 mm (number of slices = 35, with no gap). The imag-

ing sections were positioned to make the section parallel to the anterior commissureposterior

commissure plan (ACPC). Head motions were minimized by the use of tightly padded clamps

attached to the head coil. The total scan duration was 11 min 06.(Catheline et al., 2010;

Pelletier et al., 2013).

3.4.3 Subjects used in the current research

Here, subjects are selected randomly and their clinical and demographic informations are

reported.
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Figure 3.8: Example of slices of the MRI data from subject f4395. Left column: Coronal
plane. Middle column: Sagittal plane. Right column: Transverse plane.

• Demographic informations contain gender (M/F) and age.

• Clinical Examination: The Mini-Mental State Examination (MMSE), is a brief 30-point

questionnaire test that assess different cognitive abilities, with a maximum score of 30

points. An MMSE score of 27 and above is suggestive of not having a Dementia related

disease.

Structural Data

In this thesis, three groups of structural MRI data were collected:

Group 1 (ADNI) contains a total of 188 baseline structural MRIs from the ADNI

dataset. Table 3.1 presents a summary of the demographic characteristics of the selected

subjects (including the number, age, gender and MMSE of the subjects).

Diagnosis Number Age Gender (M/F) MMSE
AD 41 72.5 ± 8.79 16/25 24.5± 2.1
NC 60 75.2 ± 4.74 23/37 29.1± 0.6
MCI 87 75.06 ± 7.75 55/32 27 ± 1.3

Table 3.1: Demographic description of the ADNI studied population (Group 1). Values
are denoted as mean ± standard deviation

Group 2 (ADNI) contains 218 baseline structural MRIs from the ADNI dataset with

35 Alzheimer’s Disease (AD) patients, 72 cognitively normal (NC) and 111 Mild Cognitive
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Impairment (MCI) subjects. Images are standard 1.5 T screening baseline T1-weighted

obtained using volumetric 3D MPRAGE protocol. Demographic information about this

group is given in Table 3.2.

Diagnosis Number Age Gender (M/F) MMSE
AD 35 74 ± 7 20/15 22± 2
NC 72 76 ± 5 37/35 30± 0.8
MCI 111 74 ± 6.8 77/34 26 ± 1

Table 3.2: Demographic description of the ADNI subset (Group 2). Values are denoted
as mean ± standard deviation

Group 3 (”Bordeaux-3City”) The third group of subjects is selected from a study of

AD on a real cohort, called ”Bordeaux-3City” 8 (Catheline et al., 2010). This group contains

37 structural MRIs (16 AD and 21 NC). Table 3.3 presents the demographic characteristics

of the selected subjects (including the number, age, gender and MMSE of the subjects)

Diagnosis Number Age Gender (M/F) MMSE
AD 16 77.6 ± 9.7 9/7 20.3 ± 3
NC 21 82.7 ± 4.5 9/12 27 ± 1

Table 3.3: Demographic description of ”Bordeaux-3City” dataset (Group 3). Values
are denoted as mean ± standard deviation

Diffusion Tensor Imaging Data

Three groups of subjects are used: we first selected a subset of Diffusion Tensor Imaging and

their corresponding structural MRI from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database. Table 3.4, Table 3.5 and Table 3.6 present a summary of the demographic

characteristics of the studied groups (including the number, age, gender and MMSE of the

subjects).

Group 4 (ADNI) This group contains 25 AD and 32 NC subjects.

8http://www.incia.u-bordeaux1.fr/
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Diagnosis Number Age Gender (M/F) MMSE
AD 25 77.3 ± 4.1 10/15 22.6± 0.3
NC 32 74± 3.3 12/20 28.7± 1

Table 3.4: Demographic description of the ADNI studied population (Group 4). Values
are denoted as mean ± standard deviation

Group 5 (ADNI) This group contains 25 NC, 24 AD and 21 MCI subjects.

Diagnosis Number Age Gender (M/F) MMSE
AD 24 68 ± 5.3 10/14 24.1± 2.4
NC 25 72.3± 3 12/13 29.7± 1.3
MCI 21 73 ± 2.9 8/13 27±0.8

Table 3.5: Demographic description of the ADNI studied population with MCI cases
(Group 5). Values are denoted as mean ± standard deviation

Group 6 (”Bordeaux-3City”) A subset of a real cohort: the 10-year follow-up of a

population-based cohort ”Bordeaux-3City” (Pelletier et al., 2013). We select 21 NC subjects.

However, for the AD group, we have only 7 DTI scans with their corresponding structural

MRI.

The resolution of DTI scans is 224 x 224, with 60 slices, and with a voxel of size 1 x 1 x

1.5 mm3. Informations about this group is presented in Table 3.6

Diagnosis Number Age Gender (M/F) MMSE
AD 7 85.5 ± 3 2/5 25.57 ± 2.4
NC 21 82.7 ± 4.5 9/12 27 ± 1

Table 3.6: Demographic description of ”Bordeaux-3City” ( Group 6). Values are
denoted as mean ± standard deviation

3.5 Conclusion

In this chapter, we introduced the preprocessing pipeline of MRI data. We presented the

feature extraction approach which is guided by a ROIs atlas-based parcellation method.

Next, we presented the Bag of Visual Words approach and the Circulars Harmonic Func-

tions detectors and descriptors theory. Finally, we presented the imaging data used in this
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thesis. In the next chapter, we will present a late fusion scheme of visual features-based clas-

sifiers. Investigated features are extracted from the the most involved region in AD called

”Hippocampus”.
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Alzheimer’s disease diagnosis using late fusion

of hippocampal visual features-based classifiers
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4.1 Introduction

The multimodal nature of multimedia data yielded an active research in fusion of heteroge-

neous data for classification purposes (Ayache et al., 2007). Nevertheless, an efficient appli-

cation of image classification methods in Computer-Aided Diagnosis of AD is not straight-

forward. Indeed, the specific nature of MRI collections vs general purpose image databases

requires an in-depth study of the specific features that explain visible and invisible abnor-

malities for the diagnosis process.

Hence, in this chapter we develop an automatic content-based framework for recognition

of Alzheimer’s disease subjects using MRI scans. There are three different categories of

subjects to recognize: Normal Control (NC), Alzheimer’s Disease (AD) patients and the

most challenging group Mild Cognitive Impairment (MCI). We extract visual features from

the hippocampal region to emphasize the difference or similarity of subjects with respect to

AD. Two kinds of features are extracted: visual local descriptors using SIFT, SURF and

CHFs and the amount of CSF pixels in the hippocampal area. These features are of different

nature. Hence, it is appropriate to deploy the multimedia fusion approaches despite we are

working with the same imaging modality. Hence, we propose a late fusion scheme, where the

probabilistic outputs of classifies on both local features and the amount of CSF are fused to

perform the final classification of the MRI scans. Our approach has been evaluated on the

baseline MR images of 218 subjects from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database and then on the MRI subset ”Bordeaux-3City” (see Section 3.4).

The rest of this chapter is structured as follows: section 2 explains the visual interpretation

of hippocampus atrophy. In section 3, we explain the visual content description with its

particularities for this kind of data. In section 4, we present the late fusion scheme for

subjects classification. In section 5, we give experiments and results and the final section

concludes the chapter.
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4.2 Visual interpretation of hippocampus shrinkage re-

ferring to the domain knowledge

In AD, the most common pronounced change in the brain structure is the reduction of

the hippocampus volume (Villain et al., 2008). Several works in the literature use extracted

features from the hippocampus region of interest (ROI) for the purpose of diagnosis (Gerardin

et al., 2009; Chupin et al., 2009a; Cuingnet et al., 2011; Gutman et al., 2009). Most of

the recently proposed approaches do not take into account the local visual morphological

changes in brain regions, which is our goal. Furthermore, the most of proposed methods for

AD diagnosis are built on the basis of a fine image segmentation. However, hippocampus

is not sufficient for the separation of subject with MCI and AD. Other features derived

from known biomarkers can be of help. Recent studies on AD diagnosis found that the

quantity of Cerebrospinal Fluid (CSF) in hippocampal region is a biomarker of AD (Shaw

et al., 2009). Indeed, smaller hippocampal volume is associated with greater CSF amount.

Also, the authors in (Yang et al., 2012) proved that the combination of CSF amount and

MRI biomarkers provides better prediction than either MRI or CSF alone. From Figure 4.1,

one can see the difference between a normal and an affected hippocampus ROI. It is clear

to see from the presented T1-weighted MRI slices that hippocampus structure undergoes a

significant cells loss in the AD stage and CSF volume increases to fill the extra space (black

area).

Figure 4.1: From left to right: Bounding box around hippocampus ROI of respectevely NC,
MCI and AD subjects from the ADNI dataset
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4.3 Visual content description

Two kinds of features are extracted here to quantify the hippocampus atrophy: structural

local features of the hippocampus ROI and the amount of CSF in this ROI.

4.3.1 Extraction of local features from hippocampal area

The overall bloc diagram for visual pattern description of the hippocampus ROI is presented

in Figure 4.2. We first select the ROI. Then, visual features are extracted and finally signature

is build using the BoVW approach. We will detail each step in the next sections.

Actually, visual features extraction is a common step in the overall processing chain

yielding image interpretation and classification. Applied to MRI, it has to be populated by

particular techniques already in use for brain MRI analysis.

Hippocampus ROI extraction

As the visual information has to be extracted from a specific anatomical region, an atlas-based

selection of this region has to be performed. Hence, in this work, an affine registration is

applied to the MRIs to the MNI space because we look for preserving a specific pattern of

the ROI and avoiding features deformation. For more detail, reader can refer to Section 3.1.

Since each brain scan is affinely registered with the MNI template in 3D space and resliced in

the same way as the atlas, we superimpose the registered brain slice by slice with AAL and

only voxels which are labeled in AAL as hippocampal are selected. An example of labeled

hippocampus ROI for one slice on three planes is presented in Figure 4.3.

Local descriptors extraction

In this work, Circular Harmonic Functions (CHFs) were used for selection of contrasted

patterns in brains. In addition the SIFT and SURF descriptors are used for comparison

purposes with CHFs. We have already given the reason why we privilege CHFs descriptors

over conventional SIFT in Chapter 3. Here, we extract also SIFT ans SURF feature from

the hippocampus ROI.
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Figure 4.2: Visual feature extraction from the hippocampus ROI and signature generation

We use a ”dense sampling” strategy to capture all the relevant information. Thus, the

scans are densely sampled in a selected hippocampal ROI by a grid of circular patches and

the signal decomposition on a CHFs basis is computed for each patch. These patches could

cover the hippocampal area at a microscopic level. Figure 4.4 shows the CHFs features

placement on the hippocampus ROI (axial, coronal and sagittal projections). The extracted

feature points ”support areas” (i.e. where the descriptors are computed) are denoted with

yellow circles. We perform 2D CHFs transform computation slice-by-slice. Hence, the whole
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Figure 4.3: Hippocampus ROI selection in three planes of an MRI slice

description of the hippocampal volume is a collection of 2D CHFs descriptors for each slice

and each projection of the selected volume. It is to note that the CHFs coefficients extracted

from several areas overlapping with the AAL mask are different and hence depend on the

signal presented in the ROI (atrophy or not).

Figure 4.4: CHFs features placement on the hippocampus ROI (axial, coronal and sagittal
planes) of an MRI slice of an ADNI subject

2014/2015 Olfa Ben Ahmed



4.3. VISUAL CONTENT DESCRIPTION 111

Signature generation: ROI-specific bag of words generation

The Bag-of-Visual-Words (BoVW) approach is used to model the hippocampus ROI pattern.

The role of BoVW model is to cluster extracted features from hippocampus in order to build

a visual vocabulary. The region’s shape differs from one projection to another. Thus, we

choose to perform clustering three times from different planes (sagittal, axial and coronal)

and to generate one visual vocabulary per projection. This allows to capture the maximum

of atrophy information. Firstly, all features f s
n,i , here n and i stand respectively for slice

and feature indexes, are extracted from the ROI on all slices for the sagittal projection

then features are clustered by k-means algorithm. The same is done for axial and coronal

projections. All features f s
n,i, f

a
n,i , f

c
n,i and centers of clusters csk ,cak, cck obtained by k-means

(where K is the codebook size) here have the same dimensionality of the descriptor being

used. In case of SIFT it is 128 and for CHF it is 150. According to the BoVW approach, we

then call cluster centers ”visual words”. Once the visual words have been determined, the

image signature per projection is generated. Each feature is assigned to closest visual word

using the distance d(f s
n,i, cs), in our case the Euclidean distance is used. Then each projection

is represented by a normalized histogram of occurrence of visual words. The image signature

h is built by concatenating the histograms from all projections h = [hshahc].

The difference between our proposed scheme and the traditional BoVW model explained

in (Chapter 3) is that only features extracted from the hippocampus ROI are used rather

than all image’s pixels in an scan to create the vocabularies. This process makes the created

vocabularies more region-specific and make the signature more disease-specific.

4.3.2 CSF volume computation

The increased quantity of CSF in the hippocampal region is an important visual biomarker

for AD diagnosis. Indeed in the case of AD, the hippocampus shrinks and the liberated

volume is filled with CSF. To analyze the shrinkage, we count the CSF pixels in the region

of the hippocampus. In the MRI T1 scans the CSF is appearing as dark areas (Chapter 1),

thus we can select it just by thresholding.

B∗(x, y, z) < Tdark
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Figure 4.5: CSF on the hippocampus region : a) AD brain, b) Healthy: MRI slices in coronal
projection

The choice of Tdark is not straightforward due to the large difference in brightness and

contrast of MRI scans. Hence, all scans need to be transformed in such a way that, similar

intensities will have similar tissue-specific meaning. In our work, we perform the grey-scale

normalization method proposed in (Nyúl et al., 2000) which consists in equalization of his-

tograms of all scans. In order to select the optimal threshold, the following procedure is

performed: all voxels from the hippocampus regions from all scans are collected together

and the threshold between dark (hyposignal) and bright (hypersignal) voxels is estimated

using Otsu’s method (Otsu, 1979). In fact, one threshold for all images is computed. How-

ever, normal patients have a little CSF amount in the hippocampus area. Thus, to ensure

correct delineation when computing the threshold by Otsu’s method (mathematical details

are presented in Appendix .3), we add additional regions where CSF is always present: The

Lateral Ventricles (LV) by referring to the domain knowledge. In addition, adding some pix-

els from the Lateral Ventricles may improve the discrimination results because AD patients

show more CSF in the LV than do MCI and NC subjects. Using this procedure, the volume

of the CSF in a normalized hippocampal area is measured in a quantity of voxels. It will

be later denoted by V . Figure 4.5 illustrates the results of detection of CSF (in green) in

hippocampal region. The CSF (green color) is situated around the hippocampus (red color)
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boundaries. The added region is marked with a yellow rectangle (LV). It can be seen that

the quantity of CSF in the case of AD (a) is higher.

4.4 Late fusion scheme for subjects classification

The proposed classification approach aims to combine the two sources of information: visual

signature and the amount (volume) of CSF in a global decision framework to discriminate

between AD versus NC, NC versus AD and AD versus MCI subjects. Taking into account

the advances in multimedia fusion research in the literature, we propose to do it by a late

fusion scheme. The overall diagram of the approach is presented in Figure 4.6. Classifiers are

applied separately on the two kind of features and the probabilistic outputs of each classifier

are concatenated and provided as inputs of another SVM. The CHF-based visual signatures

are first classified between the categories two by two with a state-of-the art SVM approach

with an Radial Basis Function (RBF) kernel. The classification of subjects on the basis of the

CSF volume is performed by a Bayesian classifier. Indeed, we have here a scalar feature and

the class probabilities can reasonably be a priori trained (AD are much more rare in patients

cohorts, than NC and MCI for instance). Both classification schemes give a decision output.

We transform it into an homogeneous probabilistic output and form the second order feature

vectors of dimension 2. The latters are then submitted to the trained SVM binary classifier

for each classification problem given above.

We stress that in this work we address a binary classification problem as the goal is to

assess the discriminative power of using both hippocampal shape expressed by CHFs features

and CSF volume biomarkers in an automatic classification of cohorts. In the following, we

will present the details of each step of the approach.
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Figure 4.6: Late Fusion scheme

4.4.1 Support Vector Machines classifier for visual signatures clas-

sification

In the current research, we solve a set of binary classification problems AD vs NC, NC vs

MCI and AD vs MCI. The unknown subject is classified by maximizing the score of these

three classifiers. We use the well known SVMs classifier in the visual description space of

signatures built with CHFs descriptors. At training step it separates a given set of training

data of instance label pairs (xi, yi), i = 1, ..., l where xi ∈ Rn and y ∈ {1,−1} by maximizing

the distances to the hyperplane that separates the two classes in a kernel-transformed space.

Then the classification of unknown data is performed in this space accordingly to their

position with regard to the hyperplane. For more details on SVMs we refer the reader to

Section 2.6.1. In this work, we use the RBF kernel defined by: exp(−γ ∗ |u− v|2). In many

settings, for a given input sample and for a given classifier we are more interested in the

degree of confidence that the output should be +1. In such cases it is useful to produce a

probability P (y = 1|x). Given k classes, for any x, the goal is to estimate

pi = P (y = i|x), i = 1....k

We first estimate pairwise class probabilities by Platt approximation (Platt, 1999)
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ri =
1

1+eAfi+B

where f is the decision value at x. A and B are estimated by minimizing the negative log

likelihood of training data (using their labels and decision values). For each binary classifier

we will have the probabilistic output PSVMi
(x).

4.4.2 Bayesian classifier for CSF based features classification

The Bayesian classifier (Section 2.6.2) uses the parametric model of Probability Density

Function (PDF) for each class which we suppose Gaussian. It gives the most likely class for

a given observation. Let V denote the CSF volume for a given subject, Y is the subject class

label (Y = AD, NC or MCI), and C = 2 (binary classification) is the number of classes.

The problem consists in classifying the sample v to the class c∗ maximizing P (Y = c|V = v)

over c = 1, , C. Applying Bayes rule gives:

P (Y = c|V = v) = P (V=v|Y=c)P (Y=c)
P (V=v)

and reduces the original problem to:

c∗ = argmaxc=1,...CP (V = v|Y = c)P (Y = c)

we denote the related probability of a sample by PBayesi(x)

4.4.3 Fusion Strategy: Probabilistic information fusion

The probabilistic outputs of SVM-based signature classification and CSF volume-based

Bayesian classification are now available for each binary classification problems. We form

the 2 dimensional feature vectors as flows:

Zi(x) = (PSVMi
(x), PBayesi(x))

T

Finally, the obtained vectors are submitted as inputs to the second SVM classifier in

cascade using Leave-One-Out Cross-Validation. The classification method is presented in

Figure 4.6. The latter use a linear SVM kernel.
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4.5 Experiments and results

4.5.1 Metrics of evaluation

Metrics used to evaluate final late fusion classification performance are :

• Accuracy (Acc) =
(TP + TN)

(TP + TN + FN + FP )

• Sensitivity (Sen) =
TP

(TP + FN)

• Specificity (Spe) =
TN

(TN + FP )

• BAC = 0.5 ∗ (Sensitivity + Specificity)

Here True Positives (TP) (True Positives) are AD patients correctly identified as AD,

True Negatives (TN) are controls correctly classified as controls, False Negatives (FN) are AD

patients incorrectly identified as controls and False Positives (FP) are controls incorrectly

identified as AD. Similar definition is hold for other binary classification problems NC vs

MCI and AD vs MCI.

4.5.2 Data groups

In this chapter, we selected from the ADNI dataset the same subjects number as (Yang

et al., 2012), with the a comparable demographic information for each of the diagnosis groups

(NC, AD and MCI). The data sample consists of 218 baseline structural MRIs with 35

AD patients, 72 NC and 111 MCI subjects (Group 2). The second source of data is the

”Bordeaux-3City” data (Group 3). comprising 37 structural MRIs (16 AD and 21 NC).

Demographic characteristics of the selected subjects are given in Section 3.4.3 (Respectively

presented in Table 3.3 and Table 3.2 )

4.5.3 Results and discussion

CSF volume computation

In this section we give the figures showing the credibility of CSF quantity biomarker extracted

with our method (see Section 4.3.2). Table 4.1 presents the quantities of CSF voxels within
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the hippocampal ROI. Here, one can note that the amount of CSF increases from NC to AD

images.

Class Volume ( mean ± sd )
NC 212 ± 101
MCI 316 ± 104
AD 402 ± 126

Table 4.1: CSF amounts

Classification results

Table 4.2 presents the classification performance. It summarizes classification results of AD

versus NC, NC versus MCI and AD versus MCI for the ADNI subset (Group 2). We also

present classification results of AD versus NC obtained on the ”Bordeaux-3City” in Table

4.3. Since the latter does not contain MCI cases, relative classification problems are not

addressed in our experiments.

Firstly, we compare the performance on CHFs visual features with regard to conventional

SIFT and SURF descriptors. It can be seen that the proposed CHFs features systematically

outperform SIFT and SURF in all three quality metrics: Accuracy, Specificity and Sensitivity.

We note that the SURF features with the lowest dimension (64) between three classes of

descriptors are not applicable in our problem. In fact, they are less precise than SIFT and

give a very low sensitivity (25.73%) in a difficult case of MCI vs AD. The CHFs descriptors

are of a comparable dimension (150) with SIFT (128), but outperform them. The results

presented for visual features alone, correspond to the optimal sizes of visual vocabularies.

Codebook sizes were estimated experimentally optimizing the accuracy criterion. For SIFT

features, the size of visual dictionary per projection was 100 yielding to the dimension of 3x100

of the BoVW. For SURF features, it was of 150 yielding the signature size of 3x150. Finally,

for the CHFs features, the dictionary consisted of 150 visual words yielding a dimension

about 3x150 of the visual CHFs signature. The low cardinality of the optimal codebook can

be explained by a reasonably limited number of descriptors. Indeed, the dense sampling is

performed only on the hippocampal ROI in a limited number of slices (70 for sagittal, 97 for

axial and 42 for coronal projections respectively).
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AD versus NC
Features Specificity Sensitivity Accuracy BAC
Hippo VF (CHF) 94.45% 65.72% 85.05% 80.05%
Hippo VF (SIFT) 93% 51.43% 79.44% 72.21%
Hippo VF (SURF) 91.67% 60% 81.3% 75.83%
CSF volume 72.29% 70.5% 78.5% 71.93%
Hippo VF (CHF) +
CSF

100% 75.5% 87% 87.75%

NC versus MCI
Features Specificity Sensitivity Accuracy BAC
Hippo VF (CHF) 85.59% 57% 74.32% 71.29%
Hippo VF (SIFT) 84.69% 52.78% 72.14% 68.73%
Hippo VF (SURF) 83.78% 56.95% 73.23% 70.36%
CSF volume 48% 66% 58.47% 57%
Hippo VF (CHF)+
CSF

83.34% 70.73% 78.22% 77.03%

AD versus MCI
Features Specificity Sensitivity Accuracy BAC
HippoVF (CHF) 63.97% 42.86% 58.9% 53.41%
Hippo VF (SIFT) 55.85% 40% 52.05% 47.92%
Hippo VF (SURF) 57.6% 25.73% 50% 41.66%
CSF volume 67.39% 60% 62.33% 63.69%
Hippo VF (CHF) +
CSF

70% 75% 72.23% 72.5%

Table 4.2: Classification results: ADNI dataset (Group 2)

AD versus NC
Features Specificity Sensitivity Accuracy BAC
Hippo VF (CHF) 80% 70% 79% 75%
Hippo VF (SIFT) 76.19% 56.26% 67.56% 66.22%
Hippo VF (SURF) 40% 85.71% 66.67% 62.85%
CSF volume 72% 60% 80% 66%
Hippo VF (CHF) + CSF 81% 76% 85% 78.5%

Table 4.3: Classification results: ”Bordeaux-3City” (Group 3)

Using visual features of the hippocampus on the ADNI subset, we achieved an accuracy

of 85.05% and 74.32% respectively for AD versus NC and NC versus MCI classification.

However, structural change on hippocampus is not sufficiently accurate to be an absolute

diagnostic criterion to separate AD from MCI cases. In the case of MCI versus AD classifica-
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Figure 4.7: AD vs NC Performance compari-
son (ADNI (Group 2))

Figure 4.8: AD vs NC Performance compar-
ison (”Bordeaux-3City”)

Figure 4.9: AD vs MCI Performance compar-
ison (ADNI Group 2)

Figure 4.10: NC vs MCI Performance com-
parison (ADNI (Group 2))

tion, performance drops to 58.9%. We aimed to deal with this challenging category (MCI).

To enhance the results, CSF amount measurement was added. The CSF amount classifica-

tion using Bayesian classifier gives an accuracy of 62.33% and 58.47% for the recognition of

the MCI cases respectively from the AD and NC subjects. Moreover, we note that adding

supplementary voxels from the Lateral Ventricles helps to boost the performance of CSF

delineation and thus improve the classification results. Indeed, the accuracy of AD vs NC

classification by CSF amount increases from 74.1%to 78.5%. Hence, we retained this finding

for classification and all results in Table 4.2 were obtained with this approach. Since those
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two kinds of features were extracted from the same brain (hippocampus), our assumption

that they could provide complementary information for classification was correct.

For AD versus MCI classification, using the late fusion, we achieved 72.23% of accuracy

compared to 58.9% using only CHF features. For the NC versus MCI classification, accuracy

increases from 74.32% to 78.22%. As we can see from Figures 4.9 and 4.10, the sensitivity

values of both AD vs MCI and NC vs MCI classification accuracies undergo a significant

increase (from 42.86% to 75% for the MCI vs AD cases for example) when we use the

late fusion. These results show that CSF volume improves the classification accuracy by

an average of 9% when combined with the visual signatures especially for the MCI cases

classification which is the most challenging task due to the strong heterogeneity of this class.

We compare our work with results obtained in (Yang et al., 2012). First, the authors used

the volume and the shape of hippocampus to perform subjects categorization and second, they

added CSF bimomarkers and volume and shape of the lateral ventricles to improve results

in the case of AD and MCI recognition. From Table 4.4, we can see that our content-based

approach outperforms most of the achieved results on (Yang et al., 2012). In fact, the BAC

metric is always better in our case. In the case of the use of only the hippocampus ROI, we

achieved better classification accuracies than those reported in (Yang et al., 2012) when the

volume the hippocampus is used.

For example better classification accuracy was achieved in AD versus MCI and NC versus

MCI classification tasks using hippocampus volume is 61.9% and 42.3% respectively, which is

lower than results obtained in our present work (74.32% and 58.9% respectively). In addition

our proposed late fusion performs better than combining hippocampus volume with Lateral

ventricles and CSF volumes (Yang et al., 2012) on all three binary classification tasks. In the

case of AD or MCI categorization we reached better results (accuracy of 72.23%, a specificity

of 70% and a sensitivity of 75% ) compared to (Yang et al., 2012) in which the authors

obtained only 69.9% of accuracy, 68.6% of specificity anda 70.7% of sensitivity.

We can conclude that combining visual features of AD biomarkers performs better than

using volume or shape. Also, in (Yang et al., 2012), the authors use the Freesurfer software

1 to select region which is a very time consuming (about hours of processing) task contrarily

1http://freesurfer.net/
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to the atlas mapping used in our work. Therefore, the ability to efficiently classify MCI and

AD patients based on visual features of structural MRI might shed light on the ability to

predict the conversion from MCI to AD, which is of clinical interest.

Features Results AD vs NC MCI vs NC MCI vs AD
Volume of Hippcampus Acc 65.5% 61.9% 42.3%

(Yang et al., 2012) Sens 57.8% 57.7% 45.3%
Spe 73.3% 66.1% 39.2%
BAC 65.55% 61.9% 42.25%

CHFs Hippcampus Acc 85.05% 74.32% 58.9%
our method Sens 65.72% 57% 42.86%

Spe 94.45% 85.59% 63.97%
BAC 80.08% 71.29% 53.41%

Hippocampus volume+LV+CSF Acc 85.4% 72% 60.9%
(Yang et al., 2012) Sens 88.8% 70.1% 80.4%

Spe 82% 73.9% 41.4%
BAC 85.4% 72% 60.9%

CHFs hippocampus + CSF Acc 87% 78.22% 72.23%
our method Sens 75.5% 70.73% 75%

Spe 100% 83.34% 70%
BAC 87.75% 77.03% 72.5%

Table 4.4: Classification results comparison between our method and the volumetric ap-
proach proposed in (Yang et al., 2012)

Alzheimer’s disease is not just a disease of old age. Alzheimer’s affects people young

people. Distinguishing criterion in this case are in same cases hard to detect because the

correlation between brain structures abnormalities of both young AD patients and normal old

subjects. In the next section we aim to classify between very old subjects and AD patients

using the proposed Late fusion approach.

AD versus Normal very aged subjects

In a second part of experiments, we selected 15 MRI scans of AD (60± 3 years old) and 12

aging subject from the Normal control category ( 80±6 years old ) of theADNI dataset. Our

approach distinguishes well between young Alzheimer’s disease and the aging normal control

subjects with an accuracy of 85% and sensitivity of 76%. Hence, adding CSF amount not

only improved MCI cases classification but also helped to separate very old healthy subjects

from those suffering from AD.
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4.6 Conclusion

In this chapter, we developed an automatic classification framework for AD recognition in

structural Magnetic Resonance Images (MRI). The main contribution consists in considering

visual features from the most involved region in AD (hippocampal area) and in using a late

fusion of classification outputs of hippocampus features and CSF amount. The experiments

showed that this late fusion gave better accuracy especially when discriminating between

AD and MCI than using either visual features extraction or CSF volume computation sep-

arately. The experimental results show that our classification of patients with AD versus

NC (Normal Control) subjects achieves the accuracies of 87% and 85% for ADNI subset

and ”Bordeaux-3City” respectively. For the most challenging group of subjects (MCI),

we reached accuracies of 78.22% and 72.23% for NC versus MCI and AD versus MCI re-

spectively on ADNI Group. The late fusion scheme improves classification results by 9% in

average for the three groups. Results demonstrate very promising classification performance

and simplicity compared to the state-of-the-art volumetric AD diagnosis approaches. The

overall volumetric or shape analysis of the hippocampus does not describe the local change

of its structure, which is helpful for diagnosis contrary to our local features-based method

which describe the hippocampal atrophy in more details.

While in this chapter we applied a late fusion scheme of features-based classifiers outputs

from one ROI (hippocampus). In the next chapter we will propose an early fusion scheme

to combine features derived from two brain ROIs: hippocampus and Posterior Cingulate

Cortex.

2014/2015 Olfa Ben Ahmed



Chapter 5
Alzheimer’s disease diagnosis on structural MR

Images using late Fusion of hippocampus and

Posterior Cingulate Cortex features

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Early fusion of Hippocampus and PCC features . . . . . . . . . 108

5.2.1 Hippocampus and Posterior Cingulate Cortex ROIs Selection . . . 110

5.2.2 Local feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3 Combined signature generation . . . . . . . . . . . . . . . . . . . . 111

5.2.4 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Content-based retrieval of AD subjects using Hybrid fusion . . 112

5.3.1 Early fusion for subjects retrieval . . . . . . . . . . . . . . . . . . 112

5.3.2 Late fusion for subjects retrieval . . . . . . . . . . . . . . . . . . . 114

5.3.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Content-based classification of AD subjects using late fusion

and CHFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.1 Choice of SVM optimal parameters . . . . . . . . . . . . . . . . . . 120

123



5.1. INTRODUCTION 124

5.4.2 Metrics of evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.4 Statistical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.1 Comparison with a sate-of-the-art volumetric method . . . . . . . 126

5.5.2 Descriptor selection . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.3 Specific attention to MCI category and ROI selection . . . . . . . 128

5.5.4 Atlas-based approach vs accurate segmentation . . . . . . . . . . . 130

5.5.5 Time efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.1 Introduction

Numerous structural analysis involved hippocampus ROI as the most efficient hallmark of

AD. However, hippocampal atrophy alone is not sufficient to discriminate MCI cases and

other structures may be a more sensitive biomarker in AD diagnosis (Dickerson et al., 2001).

Therefore, fusion of measurements from many different regions or biomarkers can potentially

build signature of high discriminative power and improve diagnostic decisions. In addition to

hippocampal atrophy, PCC hypometabolism has been considered as a hallmark of early stage

of AD (Minoshima et al., 1997). Indeed, many studies have shown PCC hypometabolism in

incipient AD (Huang et al., 2002; C Nestor et al., 2003; Huang et al., 2002) associated with

PCC atrophy (Callen et al., 2001; Jones et al., 2006; Choo et al., 2010; Kemp et al., 2003;

Shiino et al., 2006). (Pengas et al., 2010) confirm that PCC atrophy is present from the

earliest clinical stage of AD and that this region is as vulnerable to neurodegeneration as the

hippocampus. Here, the question arises: Whether atrophy of both the hippocampus and the

PCC could be a more efficient criterion in Alzheimer’s disease diagnosis than hippocampus

atrophy alone.

To increase classification performance, some works typically used techniques to reduce

the dimensionality of neuroimaging data and to select the most discriminative features before
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applying SVM. Principal Component Analysis (PCA)(Jolliffe, 2002) is often used for this type

of application (Christos et al., 2008). We opted for PCA as well, as the visual signatures can

be sparse and of a high dimensionality. In terms of prior information, classification can be

improved by focusing on local visual features extraction from ROIs known to be involved in

AD. Thus, in this chapter we hypothesize that hippocampal and PCC structures are more

efficient than hippocampus alone to detect insidious case of AD.

In order to test this hypothesis, we first design a Content-based image retrieval approach

and then we propose a classification framework. The rest of this chapter is organized as

follows: Section 2 presents the early fusion of the Hippocampus and the PCC features. In

section 3, we explain the content-based MRI retrieval methods. Then, in section 4 we present

the AD subjects classifications framework. Discussion is given in section 5 and finally, section

6 concludes the chapter.

5.2 Early fusion of Hippocampus and PCC features

In this research, we follow the same methodology presented in Chapter 4. Local features

extraction is applied separably for hippocampus and PCC ROIs to build representative sig-

natures. In fact, a BoVW approach is applied to the extracted features and then a signature

is generated for each ROI. Figure 5.1 presents the methodology of combined signature build-

ing. It is to note that the same strategy is applied to the two other projections ( coronal

and sagittal) and the final ROI signature is the concatenation of the tree signatures. The

global image signature of a subject is obtained by concatenating both Hippocampus and

PCC. In order to reduce the (high) dimensionality of signatures, a Principle Component

Analysis (PCA) is applied. This late fusion will be integrated in two traditional approaches

for computer-aided diagnosis: First, in a CBIR approach then, in a classification framework.

Indeed, the first approach aims to retrieve relevant brain scans from an MRI data that are

similar to the query image. In the second, SVM classifiers are used to classify the subject’s

brain into NC, MCI or AD category.
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Figure 5.1: Framework description: Visual description of the combined signature generation
in axial projection. The method starts with brain image normalization. Then, Regions-of-
Interest (hippocampus and PCC) are extracted from normalized images to be described by
local visual descriptors and quantified in the BoVW framework.

5.2.1 Hippocampus and Posterior Cingulate Cortex ROIs Selec-

tion

The first stage of visual feature extraction aligns MRI scans to a standard brain template.

We use here the same methods explained in Chapter 3 and used in Chapter 4. All the scans

are spatially normalized to the MNI template using an affine transformation. Since each

brain image is affinely registered with a digital atlas in 3D space and resliced in the same

way as the atlas, we are able to extract the region of interest (ROI) by mapping the brain

volume with the atlas slice by slice. The regions investigated in this study are suggested

by our medical partners. To extract the two ROIs (hippocampus and PCC), we used the

2014/2015 Olfa Ben Ahmed



5.2. EARLY FUSION OF HIPPOCAMPUS AND PCC FEATURES 127

Automated Anatomical Labeling (AAL) Atlas.

5.2.2 Local feature extraction

After PCC and hippocampus ROIs selection, we extract features from the region overlapping

with the obtained masks. In this chapter, we apply a ”dense sampling” strategy. Based in

our previous results, we resort to the use of CHFs as descriptors. Here, signal variations

inside the ROI anatomy can be represented as a set of local CHFs coefficients.

Figure 5.2: Illustrating of CHF feature extraction in PCC (a) (coronal slice) and in hippocam-
pus (b) (axial slice) masks. Masks are extracted using the AAL atlas. Circles represent the
locations of features (support area). The descriptor support areas are selected by simply
scanning the mask line by line and by placing the feature centers in masked pixels of each
slice. The extracted feature points ”support areas” (i.e. where the descriptors are computed)
are denoted with circles and the ROI is marked with black.

Dense feature placement is illustrated in Figure 5.2, the support regions of the fixed size

are first generated with their centers on the regular grid including the mask and then only

regions overlapping with the mask are selected. CHFs coefficients extracted from several

areas overlapping with the mask may be different and depend on the signal variation inside

each ROI. Therefore, this signal variations may characterize between affected (diseased) and

normal tissues.

We note that these features are computed on each 2D slice separately. Figure 5.3 presents

the descriptors extraction from both hippocampus (a) and PCC (b) from one slice in three

MRI-planes.
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Figure 5.3: CHF Keypoints detection on MRI brain : Example of dense placement of local
features on brain scans of a subject from the ADNI dataset. Extracted local feature is the
descriptor of a circular support area, defined by each point of the grid and the radius of the
support area in the ROI. (a) descriptors extraction of the hippocampus ROI (sagital, coronal
and axial projections), (b) descriptors extraction on the PCC ROI (sagital coronal and axial
projections). Here, CHFs capture the image variations and extract local visual features of
each ROI.

5.2.3 Combined signature generation

In our work, we treat each ROI as a set of local features. Hence, the BoVW approach model

is applied separately to the two ROIs (hippocampus and PCC). The first stage of BoVW

approach is to cluster extracted features from the whole database in order to build the

so-called visual vocabulary (codebook). As the shapes of PCC and Hippocampus differ, each

ROI requires its proper codebook. Moreover, the region’s shape differs from one projection

to another. Thus, we choose to perform the clustering process three times from different

projections (sagittal, axial and coronal) and to generate one visual vocabulary per projection

and per ROI. The size of the resulting brain signature is 3 ∗ 2 ∗ codebooksize.

First, all features f s
n,i, where n and i stand respectively for slice and feature indexes, are

extracted from the ROI on all slices from the sagittal projection (s) then the features are

quantized by the k-means algorithm. The centers csk, k ∈ [1, K], are then calculated, where

K is the codebook size given as a parameter to the k-means algorithm. The same is done for
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axial and coronal projections. All features f s
n,i,f

a
n,i,f

c
n,i and centers csk, c

a
k, c

c
k here have the

same dimensionality of CHFs descriptor (150). Once the cluster centers have been computed,

the image signature per projection is generated. Each feature is assigned to the closest center

using the distance d(f s
n,i, c

s
k). Here we use the Euclidean distance. Then each projection is

represented by an histogram of visual words occurrence. The image signature per ROI h is

acquired by the concatenation of the histograms from all projections: h = [hs, ha, hc]. The

final scan signature is obtained by concatenating hippocampus and PCC signatures.

5.2.4 Dimensionality reduction

To obtain a meaningful representation of features, we have to remove noisy, irrelevant and

redundant features. Features dimensionality reduction could improve the performance of the

learning algorithm and reduce memory cost and computation time. Hence, to reduce the

resulting image signature dimension, we use the PCA (Jolliffe, 2002) which is a useful math-

ematical technique for reducing vector dimensionality and finding an optimal combination of

variables in a smaller set. In addition, MRI data are heavily impacted by noise. In order to

avoid modeling noise, less significant components produced by PCA are excluded from the

feature set based on the assumption that these components tend to account more for noise

than for meaningful information. In the next section, we will present the retrieval approach

using an hybrid fusion scheme of visual features.

5.3 Content-based retrieval of AD subjects using Hy-

brid fusion

5.3.1 Early fusion for subjects retrieval

Generally, we present a framework to help early diagnosis of AD from MRI using visual

descriptors, this research was initialized in (Mizotin et al., 2012). It has been shown in

(Mizotin et al., 2012) that image signature contains too much individual brain structural

information which is not relevant to characterize the disease. Also in the latter, retrieval

performances drops significantly when interring the MCI case. Hence, in the current research,
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we tackle the MCI class from CBVIR perspective and make the following contributions:

First we propose to reduce the dimensionality of the scan signature and to retain only

relevant information, we use here the PCA technique. Then, we propose to add an early

fusion scheme to improve the recognition performance especially in MCI class. Actually,

the early fusion of features is achieved by concatenating the hippocampus and the PCC

signatures (Described in Section 5.2).

Here, we propose two modes of early fusion:

• Simple concatenation.

• PCA applied on concatenated signatures.

This early fusion is the part of a global hybrid fusion approach using the preliminary

classification proposed in (Mizotin et al., 2012).

Figure 5.4: Hybrid Fusion framework description
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5.3.2 Late fusion for subjects retrieval

In (Mizotin et al., 2012), the preliminary classification was combined with similarity measure-

ment and several schemes of CBVIR were tested (Equation 5.2) but no significant difference

of results with different sampling strategies: dense or sparse for the proposed scheme of brain

image retrieval has been found. This fact corresponds with the results of the paper (Nowak

et al., 2006). Minor advantages and limits however exist. An overview of the proposed hybrid

fusion approach is presented in figure 5.4.

For a given query scan Q(x, y, z), the features are computed using the same process

resulting in its signature h∗. Image similarity is established by comparing the signatures,

smaller distance means more similarity. For histogram comparison, the metric that has been

chosen is L1:

dq = D(h∗, hq) =
6K∑
i=1

|h∗ − hq| (5.1)

Were hq is a signature of a brain q in a database and K is the codebook size.

The concatenation of histograms and application of PCA constitute the early fusion

process. Using the Bayesian classification approach from completely different perspective,

namely the presence of CSF on Hippocampus ROI, we define for the query image Q(x, y, z),

the probabilities to belong to three classes (AD, NC, MCI respectively ). The combined

dissimilarity is then obtained by multiplication fusion operator:

dclassn = (− ln(pclassof(n)) ∗ dn) (5.2)

Finally,

similarity to nth image = 1/dclassn (5.3)

This is the late fusion part of our hybrid fusion approach. We apply this fusion as it

proved to be efficient on classification into three classes in (Mizotin et al., 2012).
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5.3.3 Experiments and results

To perform the test, the ground truth data on the image similarity is needed; this information

however is not available. Moreover, the similarity from a medical point of view would be

different for different experts. Thus, in our testing procedure we only test for correct class

correspondence (AD, NC, and MCI). Indeed, the images from the same class should be more

similar than images from other classes and the retrieval precision can be calculated as the

percentage of correct image classes in the first N retrieved images. To increase the number

of experiments and precision of statistics full cross-validation is performed, (we are repeating

the test for each image in our test dataset taking as the database the rest of the images). We

compute average precision at N which is a variant of Average precision where only the top

N ranked images are considered:

• Precision at N th = Number of images correctly classified/N

Data used in this section consist in subset from of the ADNI database (Group 1). In

addition, ”Bordeaux-3City” data ( Group 3) is used to evaluate the proposed method.

Informations about subjects are given in Section 3.4.

AD-patients versus Normal Controls using only hippocampus ROI

In the first part of experiments, we evaluated the BoVW approach on the hippocampus area

to distinguish between AD and NC. For ADNI subset (Group1), we varied the codebook

size from 50 to 400. The best recognition rate was obtained for a codebook size of 210.

Retrieval results are plotted in Figure 5.5.

The performance, presented by precision at 1th, of the BoVW reaches 77.2% in the case of

only 2 classes (NC and AD) compared to (Mizotin et al., 2012) ( 74% and 68% were obtained

respectively with ”CHF one to one” and ”CHF-BOF ”schemes). For the SIFT descriptor, we

obtain 69% which is better than retrieval rate reached by ”SIFT one to one” scheme (64%)

(Mizotin et al., 2012).
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Figure 5.5: Precision of retrieval at N th on the ADNI subset (Group 1): AD versus NC.
Both SIFT and the CHF descriptors are tested. Features used are extracted from only the
Hippocampus ROI (K=210).

MCI retrieval using Hippocampus and PCC ROIs features fusion

The MCI category is the most difficult to recognize, as the structural changes in the charac-

teristic brain regions are very unequal.

Precision (% ) Descriptor Hippocampus Early Fusion Hybrid fusion
At 1th SIFT 37.6% 46.1% 50.8%

CHF 45.7% 52% 51.32%
At 3th SIFT 39% 44.3 % 48.68%

CHF 41.7% 48.1% 48.4%
At 10th SIFT 37.4% 41.7% 45.71%

CHF 40 % 42% 46.26%
At 20th SIFT 37.4 % 41% 43.67%

CHF 38.6% 42% 44.21%

Table 5.1: Average precision at N th using only Hippocampus features, early fusion of both
Hippocampus and PCC signatures and hybrid fusion. ADNI subset (Group 1)( AD, NC
and MCI).

In the case of three classes retrieval, performance using only hippocampus drops to 37.6%

for SIFT descriptor (see Table 5.1), the most likely reasons are that MCI class is a transition

between AD and NC thus the bounds are uncertain. As we mentioned in the previous sections,

the PCC alteration can be a predictive biomarker of rapid conversion to AD and hence should

characterize the MCI cases. Therefore, we extract features from both hippocampus and PCC
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areas. In the first BoVW experiment, we apply an early fusion approach and concatenate

hippocampus and PCC signatures in global BoVW from three projections and both regions

are thus concatenated in the description space. The most relevant precision was obtained

with a codebook K = 350 yielding a signature size of 2100: (K ∗ projectionsnumber ∗ 2).

In the second experiment, we used the PCA technique to reduce the signature size to 69 for

CHF and to 24 for SIFT. These dimensions were obtained experimentally by varying the

number of principal components on ADNI group. In this case, the performance was higher

by 4% for PCA on concatenated signatures compared to early signatures fusion without PCA

(Figure 5.6).

As shown in Figure 5.7, the precision of the descriptor based retrieval when using PCC

and Hippocampus signatures fusion is greater than precision when using only hippocampus

area.
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Figure 5.6: Precision of retrieval at N th on the ADNI subset (Group 1): Precision at Nth
with and without PCA concatenation.

Fusion strategy increases results by an average of 6% while the fusion by dark pixel volume

primary classification proposed in (Mizotin et al., 2012) gave only 5% of amelioration to only

hippocampus classification. From Table 5.1 it can be seen that: The performance of image

retrieval is substantially:

• improved by 10% using the hybrid fusion compared to classification using only hip-

pocampus.

2014/2015 Olfa Ben Ahmed



5.3. CONTENT-BASED RETRIEVAL OF AD SUBJECTS USING HYBRID
FUSION 135

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5  10  15  20

P
re

c
is

io
n

at N-th

SIFT-Only-Hippo
CHF-Only-Hippo

SIFT-CCP+Hippo
CHF-CCP+Hippo

SIFT-CCP-Hippo+CSF-classif
CHF-CCP-Hippo+CSF-classif

Figure 5.7: Precision of retrieval at N th on the ADNI subset (Group 1): Hybrid fusion

• obtained results exceed the reported results in (Mizotin et al., 2012) at 10th as well at

20th which are the more challenging.

• When using our early fusion approach to describe images (CHFs case), retrieval pre-

cision at 1th is about 52% while when using only preliminary classification, precision

drops to 45% (Mizotin et al., 2012).

Compared to the results presented in (Mizotin et al., 2012), the precision at 10th and 20th

obtained on the same data are higher in the case of our full fusion schemes. In Table 5.1, we

have 46.2% (column 5 line 3) versus 42% and 44.2% (column 5 line 4) versus 38%. Although

we used only a pure visual image description, we obtain better results than (Agarwal and

Mostafa, 2010) in which authors combine visual features with textual data.

In a second part of experiments, we evaluate the proposed approach on the ”Bordeaux-

3City” data (Group 3) (Section 3.6). The obtained results are presented in Figure 5.8.

Precision reaches 68% for CHF descriptors and 57% for SIFT descriptors.

From obtained results, CHFs features outperform SIFT by (∆ = 3 ± 2 %) on the ADNI

subset (Group 1) and by (∆ = 4.8 ± 3.9 %) on the ”Bordeaux-3City” subset (Group

3).

From this section, we can conclude that using visual similarity between MRI images

allowed us to provide the clinicians with semantic similarity, and thus could potentially
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Figure 5.8: Precision of retrieval at N th on ”Bordeaux-3City” (Group 3): AD versus NC
subjects. Both SIFT and CHF descriptors are tested. Features used are visual descriptors
extracted in Hippocampus and PCC ROIs.

support their diagnostic decision. PCC and hippocampus features fusion improve accuracy

on MCI case retrieval. Across a range of tests, useful level of recognition rates were achieved

with a small signature sizes for both CHFs and SIFT descriptors. In the next section, we will

increase the number of subjects and use a supervised learning approach to classify between

subjects.

5.4 Content-based classification of AD subjects using

late fusion and CHFs

In this section we propose a computer-aided approach based on classification of AD subjects.

We use features extraction from both ROIs: Hippocampus and PCC to build a signature-

related atrophy. Referring to the previous chapters, CHFs prove to be more efficient than

SIFT or SURF descriptors. Thus, in this section we retain the image decomposition on the

basis of Circular Harmonic Functions on those areas to extract representative features. Fig-

ure 5.9 depicts a block-diagram of the classification framework. The approach we propose

in this section also starts with brain image normalization, which is a standard step in brain

image comparison. Then, ROIs are extracted from normalized images to be described by
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local visual descriptors and quantified in the BoVW framework. To reduce dimensionality,

we consider percentages of total energy which is obtained from cumulative energy vector.

As the percentage of energy is reduced, the number of coefficients required also drastically

reduces, and according the candidate feature vector size is reduced for classification.

Figure 5.9: Classification framework.

In this work, libSVM package 1 was used for the binary classification (two classes ( In

our case: (AD versus NC, NC versus MCI and AD versus MCI)). Different kernels were

applied: linear, sigmoid and Radial Basic Functions (RBF) kernels. Note that typically an

SVM requires a fixed length vector that characterizes globally the subject to be classified.

This is the case in our method: due to the BoVW representation, a subject brain is encoded

by a set of quantized local features.

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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5.4.1 Choice of SVM optimal parameters

SVM searches to find the optimal hyperplane that best separates the positive and negative

training samples. The optimization problem to resolve, in the case of the so-called ”soft

margin” classification, is the following:

minimizew,ξ
1

2
‖w‖2 + C

n

n∑
i=1

ξi (5.4)

subject to yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0

The ξi are the so-called slack variables relaxing class-separators constraints and C is a

cost parameter that controls the trade-off between allowing training errors and forcing rigid

margins. The kernel function may transform the data into a higher dimensional space to

make the separation possible. In this section, several kernels are tested:

• Linear kernel : γuT ∗ v , γ = 1

• Radial Basis Function: exp(−γ ∗ |u− v|2)

• Sigmoid : tanh(γ ∗ uT ∗ v + r)

Parameter setting for Support Vector Machines is critical to obtain good performance.

Hence, we need to select optimal kernel function parameters and the soft margin parameter

C. We use a grid search on the log ratio of the parameters associated with cross validation.

Then, value pairs (C, γ) are assessed using cross validation and then the pair with highest

accuracy is chosen. The value of C and γ are exponentially varied (C = 2e−6, 2e3, ..., 2e14;

γ = 2e−15, ..., 2e10). Thus, the grid search has built dozens of SVM models with various

parameter settings, and optimal parameters relatively to the training data were selected.

Figure 5.10 illustrates an example parameters optimization using grid search in the case of

NC versus MCI classification. The kernel used is a Gaussian kernel: The numbers at the top

are what we are most interested in. The first number (32) is C, and the second number (0.5)

is γ. Note that the current cross-validation accuracy is 67.033%.
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Figure 5.10: Contour plot of grid search result showing optimum values for SVM parameters.

5.4.2 Metrics of evaluation

To evaluate classifier performance, we computed overall classification accuracy, sensitivity,

and specificity . These metrics describe the degree to which hippocampus and PCC features

are informative when predicting NC vs AD, NC vs MCI and AD vs MCI. See Section 4.5.1.

5.4.3 Experiments and results

Data used in this sections are Group 1, Group 2 and Group 3(More details in Section

3.4). Pattern classification with SVM was applied separately in each of two groups (NC vs

AD, NC vs MCI and MCI vs AD ).

We start by testing the classification approach on the Group 1. For that, we use a

(Leave One Out Cross Validation (LOOCV)) method. This approach has become increasingly

popular in Neuroimaging. Cross-validation is primarily a way of measuring the predictive

performance of a model. Therefore, the original sample set was randomly divided into k

folds. Then, one fold was used as test and the remaining k − 1 folds were used as training

2014/2015 Olfa Ben Ahmed



5.4. CONTENT-BASED CLASSIFICATION OF AD SUBJECTS USING LATE
FUSION AND CHFS 140

data. Classification results are given in Table 5.2

Only Hippocampus Hippocampus and PCC
Linear RBF Sigmoid Linear RBF Sigmoid

AD versus NC

Accuracy 73.27% 76.2% 73.24% 79.21% 80.2% 75.25%
Specificity 73.92% 78.13% 76.2% 74% 84% 77.78%
Sensitivity 71.88% 72.98% 68.43% 83.34% 75.61% 71.06%
BAC 72.9% 75.6% 72.31% 80.4% 80% 74.42%

NC versus MCI

Accuracy 64.2% 64.67% 66.22% 74.33% 78.38% 77.71%
Specificity 70.12% 70.46% 70.22% 76.05% 79.79 % 79.59%
Sensitivity 55.74% 56.67% 59.26% 71.16% 75.93% 74.55%
BAC 62.93% 63.57% 64.74% 73.60% 77.86% 77.05 %

AD versus MCI
Accuracy 70.78% 70.78% 70.08% 73.23% 74.02% 78.75%
Specificity 90.81% 91.96% 89.66% 93.11% 82.76% 90.81 %
Sensitivity 27.5 % 25% 27.5% 30% 55% 52.5%
BAC 59.16 % 58.48% 58.5 % 61.11% 68.87% 71.65%

Table 5.2: Classification results for Group 1: Performance comparison for classification
of AD versus NC, MCI versus NC and AD versus MCI on only Hippocampus features and
the fusion of both Hippocampus and PCC features. Classification is done using SVM with
several kernels: Linear, Radial Basic Function (RBF) and Sigmoid. Metrics of evaluation are
accuracy, specificity, sensitivity and BAC.

AD-patients versus Normal Controls

Comparing AD versus NC onGroup 1 we found an accuracy of 76.2%, a 72.98% of sensitivity

and a specificity of 78.13% using hippocampal CHF features alone. Combining both PCC

and hippocampus signatures resulted in an accuracy of 80.2%, a sensitivity of 75.61% and a

specificity of 84%. The best results are obtained using an RBF kernel.

Normals Controls versus Mild Cognitive Impairment

We also classified NC versus MCI subjects of the Group 1 using the hippocampus and PCC

visual features. We achieved an accuracy of 78.38%, a sensitivity of 75.93 and a specificity

of 79.79%.
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AD-patients versus Mild Cognitive Impairment

Comparing AD with MCI on ADNI subset (Group 1), we found an accuracy of 78.75%,

a sensitivity of 52.5% and a specificity of 90.81%. The best results are obtained using an

sigmoid kernel.

In the second part of experiments we take data of Group 2 for a comparison propose

with a volumetric approach proposed in (Yang et al., 2012). We used 10 fold cross validations

to evaluate classification performance. We repeated the 10 fold cross-validation 50 times for

a more general performance estimation of the classifier. Each time the 10 randomly selected

folds were generated and the final result is the average accuracy, sensitivity and specificity

of the 50 experiments. Table 5.3 summarizes the averaged results. We reported the 95%

Confidence Interval (CI) of accuracy, sensitivity and specificity. We tested classification

methods on Hpc features alone and then on Hpc and PCC features combined together.

Experiments were conducted first on the scans of Group 2 and then on the structural

MRI data from the ”Bordeaux-3City” subset (Group 3) (Table 5.4). It should be noted

that metric values presented in Table 5.4 and Table 5.3 as well as confidence interval’s

boundaries are rounded to the nearest decimal number using the Gaussian rounding method.

In this section the accuracy, sensitivity and specificity of the classifier are considered as

the average accuracy of N tests. Estimating the error and the confidence intervals (CI) in an

observation is a crucial issue in statistics if one wants to make predictions about what is likely

to happen when repeating the experiment any number of times. The CI provides information

about what is expected to result from a test, with a certain confidence level 1 − α, α value

between 0 and 1 . In other words, this interval is the range of values in between the variable

is expected to be located, with a probability 1− α.

AD-patients versus Normal Controls

When comparing performance of classification methods, we select the best results according

to the BAC metric. Comparing AD with Normal controls on the Group 2 of the ADNI

data, the best results achieved with Hippocampus ROI alone are 80.4% accuracy, 74.2%

specificity and 82.8% sensitivity. The best results achieved with early fusion of hippocampus

and PCC features are better. Namely, we obtain an increase of 3.3% in accuracy, 4.6% in
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Only Hippocampus Hippocampus and PCC
Linear RBF Sigmoid Linear RBF Sigmoid

AD versus NC
Acc%[95%CI] 75.3[74.8 75.9] 80.4[80 80.9] 79.5[79 79.7] 80.17[80 80.4] 83.7[83.2 84.3] 82.9[82.8 83]
Spe%[95%CI] 64.1[63.1 64.9] 74.2[73.5 74.8] 72.4[72.1 72.5] 71.9[71.6 72.2] 78.8[78 79.5] 75.1[74.8 75.3]
Sen%[95%CI] 79.9[79.4 80.2] 82.8[82.5 83.1] 82.1[82 82.6] 83.7[83.5 83.8] 85.7[85.6 86] 86.5[86.4 86.7]

BAC% 72 78.5 77.25 77.8 82.25 80.8
NC versus MCI

Acc%[95%CI] 60.1[59.6 60.2] 62.2[61.6 62.8] 62[61.1 62.9] 65.8[65.6.66] 66.7[66.3 67.2] 65.2[64.9 65.4]
Spe%[95% CI] 68.3[67.7 68.9] 69.1[68.6 69.6] 68.7[68 69.4] 66.8[66.6 66.9] 68.3[68 68.6] 71.3[71 71.4]
Sen%[95%CI] 51.8[51.1 52.5] 51.9[51.2 52.6] 51.8[50.6 52.9] 62.1[61.6 62.6] 62[61.1 62.9] 55.8[55.4 56]

BAC % 60.1 60.5 60.2 64.4 65.2 63.5

AD versus MCI
Acc%[95%CI] 70[69.8 70.3] 74.2[74 74.3] 70.1[68.8 70.2] 74.5[74.1 74.9] 76.5[76.2 76.9] 75.9[75 76.3]
Spe%[95% CI] 32.6[32.1 33] 39.3[38.6 40] 32.7[32.2 33] 45.3[44.2 46.4] 52.8[ 52.2 54] 49.6[49.1 50]
Sen%[95% CI] 77.8[77.7 78] 77.5[77 77.7] 77.9[77 80] 80.6[80.4 80.7] 78.9[78.6 79.2] 79.9[79.6 80.1]

BAC % 55.2 58.4 55.3 62.95 65.85 64.75

Table 5.3: Classification results for Group 2: Performance comparison for classification
of AD versus NC, MCI versus NC and AD versus MCI on only Hippocampus features and
the fusion of both Hippocampus and PCC features. Classification is done using SVM with
several kernels: Linear, Radial Basic Function (RBF) and Sigmoid . Metrics of evaluation
are accuracy, specificity and sensitivity and BAC.

Only Hippocampus Hippocampus and PCC
Linear RBF Sigmoid Linear RBF Sigmoid

Acc%[95% CI] 64.7[63.9 65.4] 65.7[65 66.3] 65.1[63.8 66.2] 73 [72.2 73.7] 78[77.3 78.6] 73.6[72.1 75.1]
Spe%[95% CI] 70.5[69.8 71.2] 69[68.3 69.7] 67.4[66.5 68.2] 78.5[77.8 79.2] 80.4[79.9 80.9] 77.9[76.4 79.3]
Sen%[95% CI] 58.3[57.5 59.1] 60.9[60.1 61.6] 61.3[59.5 63.1] 67[66.1 67.9] 74.7[73.8 75.6] 68.9[67 70.7]

BAC (%) 64.4 64.9 64.3 72.7 77.6 73.4

Table 5.4: Classification results: Group 3: Performance comparison for classification of
AD versus NC on only Hippocampus features and the fusion of both Hippocampus and
PCC features. Classification is done using SVM with several kernels: Linear, Radial Basic
Function (RBF) and Sigmoid. metrics of evaluation are accuracy , specificity, sensitivity and
BAC.

specificity and 2.9% in sensitivity. In both cases, results have been achieved with an RBF

kernel. For the ”Bordeaux-3City” group (see Table 5.4), the performance improvements

when using the fusion of ROIs features are even stronger. Indeed, the reported increase in

all metrics is more than 11%.
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Figure 5.11: AD vs NC Performance compari-
son (ADNI subest)

Figure 5.12: AD vs NC Performance com-
parison (Bordeaux-3City subset)

Figure 5.13: MCI vs NC Performance compar-
ison (ADNI subest)

Figure 5.14: MCI vs AD Performance com-
parison (ADNI subest)

Normal Controls versus MCI patients

We also classified NC versus MCI subjects of the Group 2 of the ADNI dataset using Hip-

pocampus and PCC visual features. When using the proposed fusion method, the accuracy

increases by 4.5%. Sensitivity is 10.1% higher and specificity is slightly lower (0.8%).

AD patients versus MCI patients

Comparing AD with MCI on the ADNI dataset, the use of combined visual features extracted

from two ROIs increases accuracy by 2.3% specificity by 13.5% and sensitivity by 1.4%. We
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note that when the MCI category is considered, the fusion of visual features derived from

both Hpc and PCC regions gives strong increase in reported results. Heterogeneity of MCI

class Accounts for such results. In fact, the MCI is a transition state between the Normal

and Alzheimer state and structural changes on hippocampus are not yet clearly pronounced.

We can clearly conclude that the fusion of both ROIs features outperforms the use of

hippocampus features alone. It is noteworthy that we made higher improvements in the

more challenged and important tasks: classifying AD versus MCI and NC versus MCI for

early diagnosis and treatment.

5.4.4 Statistical evaluation

To further validate the effectiveness of fusion scheme, we also assessed the statistical signif-

icance of differences between values of accuracy, sensitivity and specificity obtained when

using Hpc alone versus the fusion of hippocampus with PCC. Paired student t-tests were

conducted using the classification measures values corresponding to each of cross validation

runs, with the null hypothesis being no improvement in performance when we use the two

ROIs fusion. The tests were performed with the results obtained with an RBF kernel.

Accuracy Sensitivity specificity
p-value (AD vs NC) 3.597−7 < 0.001 3.152−7 < 0.001 7.468−9 < 0.001
p-value (MCI vs NC) 3.211e−12 < 0.001 3.828−14 < 0.001 0.0002879 < 0.001
p-value (AD vs MCI) 1.326e−9 < 0.001 1.749e−9 < 0.001 1.111e−15 < 0.001

Table 5.5: Statistical significance (paired-student t test) between the classification results
obtained from using only hippocampal features and fusion of features from hippocampus and
PCC respectively.

We found that p − value < 0.001 for all binary classification tasks (AD vs NC, NC vs

MCI and AD vs MCI) (see Table 5.5). This means that we can confidently reject the null

hypothesis and declare that adding the PCC features has shown a statistically significant

improvement in the experiment compared to the use of hippocampus features alone. This

suggests that integrating structural features from both hippocampus and PCC offers optimal

results for AD subjects classification.
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5.5 Discussion

In this chapter, we proposed a visual feature-based methods to provide clinical researchers

with semantic similarity and to assist in the diagnostic AD process. We used visual simi-

larity between baseline MRI to recognize three groups of subjects ( AD, NC and MCI). An

exact comparison with previous works is complicated since most of the proposed works in

this subjects have used different statistical methods and several image analysis methods on

different datasets. In addition, the differences demographic and clinical information of the

subjects, the size of used data, severity of disease, duration of disease might account for the

discrepancy between the current work and previous works. Furthermore, since the ADNI

study is still ongoing, several subjects labeled as MCI will progress in the future to the AD

group. In the following, we start by comparing our proposed method with a volumetric

method proposed in (Yang et al., 2012).

5.5.1 Comparison with a sate-of-the-art volumetric method

Although the images are not exactly the same, we used the same data partition with a closed

demographic characteristic as in (Yang et al., 2012). The authors in (Yang et al., 2012) use

the hippocampal volume to distinguish MCI and AD from NC as well as AD from MCI.

Our CHFs description of hippocampus preforms well in separating AD vs NC. In fact we

obtained 80.4% accuracy, 74.2% specificity and 82.2% sensitivity compared to respectively

65.5%, 73.3% and 57.8% reported in (Yang et al., 2012). For MCI vs NC, we obtained

better accuracy and specificity but lower sensitivity. In addition, for the most challenging

classification task (AD vs MCI) we obtained much better results with 74.2% accuracy and

higher sensitivity and specificity. It should be noted that the hippocampus ROI is extracted

in (Yang et al., 2012) using the Freesurfer software which is time-consuming and depends

on preliminary segmentation guided by expert knowledge of the location of the ROI. In

this work, we used an automatic atlas-based parcellisation method and we obtained highly

efficient classification results compared to the time-consuming segmentation executed by

human experts, or by a specific software. However, volumetric analysis only assesses global

changes of the ROI. On the other hand, content-based analysis methods can unveil local
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atrophy of the ROI and then give more information about the disease.

5.5.2 Descriptor selection

Each individual subject’s scan is represented as a collection of discrete features on two char-

acteristic ROIs: Hippocampus and PCC. This information was used to discriminate the MCI

and AD subjects from normal controls, as well as between the MCI and AD patients. To

position our contribution with regard to other feature-based approaches, we would cite the

work (Toews et al., 2010). Here, the authors proposed a features-based morphometry method

to analyze the structural local changes of the brain. The method is based on learning a prob-

abilistic model of local SIFT descriptors that reflect group-related anatomical characteristics.

Only classification results for AD versus NC were provided in their paper. It was performed

on the OASIS dataset. Indeed, SIFT or their approximated version SURF features, are not

optimal for MRI with the lack of pronounced high frequency texture and clear structural

models.

We used image descriptors better adapted to the MRI in the content-based approach: the

CHF features. As shown, the results of CBVIR by similarity-search approach outperformed

conventional SIFT descriptors on both ADNI and ”Bordeaux-3City” datasets. That is

why we choose to use them with a learning approach based on the SVM classifiers to classify

patients. CHFs have a good property of capturing smooth contrasts which are characteristic

of the structural brain MRI. Furthermore, these features are computed on patches inside

the ROI or selected on the whole brain. They convey local structural information of image

signals.

5.5.3 Specific attention to MCI category and ROI selection

All combinations for patients classification were considered on ADNI database: AD vs NC,

NC vs MCI and AD vs MCI. The MCI category is the most difficult to recognize, as the

structural changes in the characteristic brain regions are very unequal. Nevertheless, AD

research has shifted to MCI in recent years, in the hope of tracking AD progression and

resisting it, before individual progress to AD. We showed that the use of two characteristic
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regions (Hippocampus and PCC) systematically outperforms the classification results ob-

tained when only the Hippocampus is used. According to Table 5.3, the BAC quality metric

is increased by at least 5% when classifying groups with MCI. The similarity between MCI

and AD categories was supported by the complementary description of PCC.

Table 5.6 presents classification results of a selection of very cited works in the field of

classification AD subjects. Here, compared to other works that used the Hippocampus ROI

only (Colliot et al., 2008), where the authors proposed an individual classification based on

the Hippocampus volume, our method performs better. Indeed, (Colliot et al., 2008) achieved

a 69% of correct classification rate between MCI patients and AD, while we achieved 76.5%

accuracy for this case. Even if two ROIs were used in previous research, such as Hippocampus

and entorhinal cortex (Fan et al., 2008), our approach performs better in the case of MCI

versus AD classification. The most likely reason for this is that the Hippocampus region is less

spatially correlated with PCC than the entorhinal cortex, which makes highest discriminative

patterns for AD diagnostics. Indeed, in (Fan et al., 2008), the cross validation accuracy of

voxel-based approach for the classification of AD vs MCI is 74.3% ( and 58%when using the

ROI volumetry). In our case applied to two ROIs together, it is 76.5% on the ADNI dataset.

If we compare our approach with two ROIs: Hippocampus and PCC, with the approach

of (Zhang et al., 2011), which uses the gray matter maps, we can state the following. In the

latter, authors extract volumetric features from the 93 ROIs in the gray matter maps and

classify them using SVM (as this is the case of our classification framework). The accuracies

of the proposed methods on classifying NC vs MCI are 72% along with 78.5% sensitivity

and 59.5% specificity. Our figures on ADNI dataset are (see Table 5.3) 66.7% accuracy,

68.3% specificity and 62% sensitivity respectively. Therefore, based on this analysis, we can

conclude that the choice of Hippocampus and PCC is better for the classification problem

we have addressed.

To compare with a voxel based approach we select the work of (Klöppel et al., 2008).

In this work, the authors used temporal lobe and Hippocampus regions features analysis.

For MCI versus NC classification, the authors obtained lower accuracies than us (63% for

the whole brain and 71% for ROI), compared to 66.7% achieved by our proposed approach.

Furthermore, the ROI approach requires a segmentation step which is time-consuming and
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Works Subjects Results AD vs NC MCI vs NC MCI vs AD
Acc 84% 73% 69%

(Colliot et al., 2008) 25 AD+ 25 NC Sens 84% 75% 67%
+24 MCI Spe 84% 70% 71%

Acc 94.3%/82% 81.8%/76% 74.3%/58.3%
(Fan et al., 2008) 56 AD+ 66 NC Sens - - -

+88 MCI Spe - - -
Acc 86.2% 72% -

(Zhang et al., 2011) 51 AD+ 52 NC Sens 86 % 78.5% -
+99 MCI Spe 86.3% 59.6% -

(Klöppel et al., 2008) Acc 90% 63% -
Whole brain 23 AD+ 25 NC Sens - - -

+23 MCI Spe - - -
(Klöppel et al., 2008) Acc 86% 71% -

ROIs 23 AD+ 25 NC Sens - - -
+23 MCI Spe - - -

(Cuingnet et al., 2011) Acc 88.6% 81.17% -
162 NC + 137 AD Sens 95% 85% -

+ 76 MCI Spe 81% 73% -
Acc 81.54% 72.78% 63.43%

(Wee et al., 2013) 198 AD+ 200 NC Sens 76.92% 67.55% 65.66%
(hippocampus volume) + 200 MCI Spe 86.15% 78% 61.26%

Acc 85.4% 72% 60.9%
(Yang et al., 2012) 35 AD+ 72 NC Sens 88.8% 70.1% 80.4%

+ 111 MCI Spe 82% 73.9% 41.4%
Acc 83.7% 66.7% 76.5%

The proposed early fusion 35 AD+ 72 NC Sens 85.7% 62% 78.9%
Chapter 5 +111 MCI Spe 78.8% 68.3% 52.8%

Acc 87% 78.22% 72.23%
The proposed late fusion 35 AD+ 72 NC Sens 75.5% 70.73% 75%

Chapter 4 +111 MCI Spe 100% 83.34% 70%

Table 5.6: Classification results of Normal control (NC) Alzheimer disease (AD) and Mil
cognitive impairment (MCI) patients reported by some woks in the literature compared to
our proposed methods

for practical diagnostics we need a system that gives a quick decision. (Klöppel et al., 2008)

proposed another method based on the whole brain. In this case, features were extracted from

several brain areas and classified by SVM. They reached an accuracy of 90% which is higher

than ours. The whole brain approach gives better results but with much more information.

Furthermore, finer classification performances (specificity, sensitivity) are not available in

their paper. However, the AD group used in the latter are with 16.7 mean MMSE ( more

severe Alzheimer’s) which is more easy to detect. Finally, a thorough comparison between

our methods and others proposed works in the literature is hard to do because different data

were used. Nevertheless, on the basis of reported correct classification rates and MMSE
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values, it can be concluded that the method proposed in the current research is comparable

to volumetric/voxel-based methods and even better in same cases.

5.5.4 Atlas-based approach vs accurate segmentation

Generally, methods based on manual hippocampal delimitation reported classification rates

be- tween 80% and 95% (Xu et al., 2000; Jack et al., 1992). However, the discriminating power

of the hippocampus volume was lower in the MCI case. Classification methods that used a

manual segmentation of the hippocampus reported classification rates of raging between 60%

and 74% (Convit et al., 1997; Pennanen et al., 2004; Xu et al., 2000) for MCI patients. Hence,

our results obtained using an atlas-based method are promising and even better compared to

the results obtained with the time-consuming and user-depend manuel segmentation method.

The advantage of our approach which performs on ROIs consists in the fact, that feature-

based description compensates inaccuracies of selection of the ROIs with an atlas based

approach. It does not require any segmentation of ROI, but only a rough selection as en-

sured by AAL. The AAL can model different structures with similar intensity values. In

contrast, accurate manual segmentation techniques are time-consuming and present delim-

itation imprecision. Other proposed techniques are computationally expensive (run-time of

hours to days) (Chupin et al., 2009a) or require expert neuroanatomical knowledge (Cuingnet

et al., 2011). Therefore, they are not always practical in a clinical setting. Using a simple

atlas based method, we built a fast framework to classify AD subjects. Although AAL was

not designed for studying patients with AD, through the use of local CHF descriptors, we

can adequately capture the pathological structure (e.g. shrunken Hippocampus) vs a normal

one thanks to different signal types captured by CHFs inside the ROI. The main advantage

of our method is its ability to capture atrophy patterns of progressive neurological disorders

and then overcome the drawbacks of the Atlas based segmentation methods.

5.5.5 Time efficiency

Our platform is implemented in C/C++. The Average diagnosis time per scan (including

the preprocessing step done with matlab) is about 6.3 minutes. Tests are done using an
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Intel processor with 4 GO memory. It is to note that computational time depends on the

number of scans, software and used hardware. In our experiments it is an average spread for

one query as: 2.5 minutes for preprocessing, 0.7 minutes for features computation and 3.1

minutes for classification.Indeed, the results are obtained with a lower number of features.

Also, the proposed framework is able to classify new subjects based on a single time point

contrary to longitudinal studies.

5.6 Conclusion

In this chapter, we introduced a new approach to discriminate subjects in epidemiological

studies of AD using structural MRI. The approach does not require a precise segmentation

of ROIs, and belongs to the feature-based family of methods. The features we used, Circular

Harmonics Functions, convey 2D information in each scan. This information was used to

effectively discriminate the MCI and AD patients from normal controls, as well as between

the MCI and AD patients. Compared to our previous works, the method used two character-

istic ROIs: Hippocampus area and Posterior Cingulate Cortex. Despite difficulties in visual

inspection of the latter in the diagnosis process, the fusion of features from both regions

improves classification results.

Unlike the method requiring precise segmentation of ROIs our approach is less time-

consuming, computer-based and does not require the intervention of an expert. Results are

promising and indicate that the combination of Hippocampus and PCC atrophy captured by

specific CHF features gives a good indicator to the diagnostics.Structural MRI have demon-

strated effectiveness in detecting brain macrostructural atrophy. However, they failed in

detecting microstructural alterations. In the next chapter, we will consider the use of other

MRI modalities: the Tensor Diffusion Imaging for AD subject retrieval and classification at

the microscopic level.
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6.1 Introduction

Structural Magnetic Resonance Imaging (sMRI) have long time been the most used modality

to detect regional neurodegeneration in AD studies. Most investigations using structural MRI

have focus on measuring atrophy of some Regions of Interest known to be affected by AD

such as the hippocampus and the entorhinal cortex. Despite effectiveness of structural MRI

in detecting macro structural loss for AD diagnosis, micro-structural changes remain not

visible in anatomical scans but can be clearly delineated in other MRI modalities such as

Diffusion Tensor Imaging (DTI).

DTI is a recent MRI technique based on motion of water molecules in brain tissues(Bihan,

2003). The principle of DTI is to interpret the water diffusion in the brain as MR signal

loss. A neurodegeneration is accompanied by a loss of barriers that restrict motion of water

molecules. In case of Alzheimer’s disease the DTI-derived maps can quantify in vivo the

neurodegeneration and the structural alteration of the hippocamups (den Heijer et al., 2012;

Müller et al., 2007) which is the most affected region by AD. In fact, elevated MD and reduced

FA in hippocampal areas might be highly indicative of hippocampal atrophy (Mielke et al.,

2009). In (Müller et al., 2007), the authors showed that values of MD and FA maps in the

hippocampus were more sensitive than the hippocampal volume to discriminate AD subjects.

In Chapter 4 and Chapter 5, we showed the effectiveness of content-based structural

MRI description for AD diagnosis. However, visual features extraction from DTI-derived

maps could be a challenging problem since this modality does not contain any anatomical

information about the brain structure. Thus, in this chapter we aim to test the ability of

using visual features to highlight anatomical structure in DTI. To our best knowledge, there

is no previous work trying to investigate visual feature extraction techniques to capture

structural information within DTI for AD diagnosis. Hence, we apply the content-based

image retrieval/ classification approaches developed for sMRI in previous chapters in order

to distinguish between subjects with and without AD from DTI-derived map (MD). Features

are extracted from the most involved area in the disease : hippocampus.
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6.2 Visual interpretation of DTI-derived maps : AD-

related signature

Mean Diffusivity (MD) and Fractional Anisotropy (FA) maps are quantitative gray-scale

images that provide information about pathways and the integrity of brain structure. Both

of those maps encode each pixel by an intensity value (See Chapter 1). Here, image intensities

are related to the motion and direction of water molecules in brain tissue. Figure 6.1 shows

an example of the MD and the FA maps respectively of healthy and AD individuals. In

general, as it is shown in Figure 6.1 (a), image intensity represents the quantitative value of

the diffusion coefficient of the brain tissue at each point in the image plane. Due to the free

motion of water molecules, the diffusion in ventricles is faster and the MD map is brighter.

In white and grey matter regions, diffusion is slower and the MD pixels are darker. In the

FA map (see Figure 6.1 (b)), white pixels correspond to high values of fractional anisotropy

(FA) and dark pixels correspond to low values of FA.

Referring to the domain knowledge: when a brain is affected by Alzheimer’s disease,

hippocampus ROI undergoes a cells degeneration and then water molecules become less

hindered because of loss of barriers for diffusion motion. In this case we hypothesize that

the fast diffusion of water on the hippocampal area results in brighter pixels on the MD

maps. Hence, from MD maps, it is possible to extract features and build specific signature

to distinguish between an affected or a healthy hippocampus for AD diagnosis problem.

6.3 Data

Three groups of subjects are used to evaluated the current research: We first selected

two groups of Diffusion Tensor Imaging and their corresponding structural MRI from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. In this work, we use

only the MD maps. Group 4 contains 25 AD and 32 Normal Control (NC) subjects and

Group 5 contains 25 NC, 24 AD and 21 MCI. Then, we also evaluated our method on the

”Bordeaux-3City” (Catheline et al., 2010) dataset (Group 6). We have only 7 DTI

scans of AD and 21 NC subjects. Demographic description of those three groups are given
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Figure 6.1: Example Mean Diffusivity (a,c) and Fractional Anisotropy (b,d) maps of ( from
left to right ) a healthy and AD persons. Image are taken from the ADNI dataset.

in Section 3.4.

6.4 MD maps preprocessing

Since in this work, we aim to extract visual features related to the hippocampus alterations

from the MD map, we need to locate this ROI on the MD maps. Thus, we perform a

co-registration of MD maps to anatomical images (sMRI).

We follow here (Cherubini et al., 2010; Mesrob et al., 2012) where co-registation was used

to extract regional values of DTI parameters in some specific areas. Moreover, because of the

strong variability between individual scans and brain anatomies, before features extraction

step, DTI data have to be normalized. It is to note that all performed transformations are
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Figure 6.2: Block diagram of the preprocessing pipeline

affine in order to not deform the pattern of the features. For each subject, preprocessing of

DTI included corrections for eddy currents and head motion, skull stripping with the Brain

Extraction Tool (BET) and fitting of diffusion tensors to the data with DTIfit module of the

Software Library FSL 1. Fitting step allows the generation of the MD and FA maps.

In the current research, we retain only the MD maps. The diagram of the preprocessing

pipeline is presented in Figure 6.2. All MD image preprocessing steps were performed us-

ing Statistical Parametric Mapping (SPM8, Welcome Department of Imaging Neuroscience,

London, UK;)2 running on MATLAB (MathWorks, Sherborn,MA, USA). After MD images

alignment whose purpose is to adjust movement between slices of DTI-derived maps. Mean

1http://www.fmrib.ox.ac.uk/fsl
2http://www.fil.ion.ucl.ac.uk/spm
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diffusivity images were affinely co-registered to the corresponding anatomical scans using the

default parameters of SPM. Indeed, Anatomical scans were normalized onto the T1 template

in Montreal Neurological Institute (MNI) brain template using the VBM8 toolbox 3 imple-

mented in SPM8, (See Chapter 3) and the resulting transformation parameters were applied

to the subjects corresponding co-registered MD maps. Finally, the spatially normalized MD

maps were smoothed with a Gaussian filter to improve signal to noise ratio using the smooth-

ing module of SPM. Figures 6.3 show screen-shots of MD-maps co-registration result with

the SPM software.

Figure 6.3: Screenshot of the MD map/sMRI coregistration (using Check-Reg function in
SPM software )

3 http://dbm.neuro.uni-jena.de/vbm8/
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Figure 6.4: Screenshot of the MD map/sMRI After co-registration and Normalization (using
Check-Reg function of the SPM software)

In our work, co-registration consists in superimposing DTI-derived maps ( MD images )

on the subject’s corresponding anatomical scan. We use the registration method of SPM8

with a ”normalized mutual information” approach. Co-registration maximizes the mutual

information between two images. This helps to overlay MD values onto an individual’s own

anatomy and to check MD values overlaying on structural space as it is show in Figure

6.3. Indeed, The method maximizes the mutual information in the 2D histogram in a lim-

ited number of iterations. Because there is a limited number of iterations, it is important

in that prior to co-registration, the images are in approximately the same location. The

correspondence between obtained Normalized-Coregistred MD maps and their normalized
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corresponding anatomical scans is shown in Figure 6.4.

Mutual Information similarity measure Mutual information (MI) is a similarity mea-

sure introduced by (Maes et al., 1997) to do co-registration between two images of different

modality (West et al., 1996; Fitzpatrick et al., 1998) (such as the structural MRI and the

MD map in our case). MI consists in measuring the entropy of the joint histogram of the

two images.

According to information theory, entropy is the amount of information that contains an

image. The entropy of an image A is defined as:

H(A) =
∑
i

p(i) log p(i) (6.1)

where i is the intensity values in A and p(i) is the marginal probability distribution

function (PDF) of i. The amount of combined information of two images is measured by

their joint entropy.

For two images A and B, their joint entropy is defined as:

H(A,B) =
∑
i,j

p(i, j) log p(i, j) (6.2)

where i is the PDF of A and j is the PDF of B. Hence, the MI of A and B is given by:

MI(A,B) = H(A) +H(B)−H(A,B) (6.3)

Where H(A) and H(B) are the individual image’s entropy and H(A,B) is the joint

entropy.

However, Studholme and colleagues proved that MI measure is sensitive to changes over-

lap and proposed the Normalized mutual information (NMI) measures as an alternative to

overcome this problem (Studholme et al., 2006). The NMI is defined as:

NMI(A, b) =
H(A) +H(B)

H(A,B)
(6.4)
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6.5 Content-Based MD maps Retrieval framework

The Diffusion Tensor Imaging ( DTI) is a relatively recent technique and CBIR approaches

have not yet been developed on it. The proposed Content-Based MD maps Retrieval Frame-

work as illustrated in Figure 6.5 consists of three main steps : Image preprocessing ( explained

in section 6.4), visual features extraction and finally image retrieval.

Figure 6.5: Diagram of the proposed content-based MD maps retrieval framework

6.5.1 Features Extraction

The hippocampus ROI was extracted from an anatomical scan using the AAL template. A

binary mask of the hippocampus was thus obtained in each anatomical scan. The hippocam-

pal region of interest in MD map was obtained by superimposing the binary hippocampus

masks from anatomical scans to MD image. Then, hippocampus features were computed

on MD map by the development of the MD image signal on the basis of Circular Harmonic

Functions (CHFs). Although AAL was not designed for studying patients with AD, CHF

coefficients extracted from the areas overlapping with the mask are different and depend on

the signal presented in the ROI (atrophy or not) which can adequately capture the patholog-
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Figure 6.6: CHF features detection

ical structure. The CHF decomposition of a signal is performed on a 2D patch. We used a

”Dense Sampling” strategy to detect features. Thus the final feature vector consists of CHF

coefficients computed on the hippocampal ROI on MD map. Figure 6.6 shows an example

of features detection on a coronal projection from a MD map of an ADNI subject.

Now, to justify the choice of the signal decomposition basis we briefly remind the definition

of CHF functions. The advantages of these features are such that they capture both the

direction and smooth variations of image signal. Note that MD images are even more blurry

than anatomical scans for which the CHF features showed good results in our previous

work. They allow for capturing slow signal variations. Their draw back is in a rather

slow convergence, hence a sufficient number of coefficients has to be retained for image

description. The number of coefficients retained define the dimensionality of the descriptor.

The reasonable dimensionality of 150 coefficients was used in the present work. Hence the

dimension of the descriptor is comparable with that one of conventional SIFT.

MD maps Retrieval

Brain scans are aligned and can be compared slice by slice since the features are extracted

in a 2D space. The retrieval consists in comparing hippocampal ROIs in MD maps. Similar

regions are expected to have similar features. Since the images are aligned, we used a one-

to-one region similarity computation scheme, scans are compared slice by slice. As features

were computed using the dense sampling strategy (dense placement of features), the number

of features and their coordinates are the same for all images. We compare them by using the
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simple distance metric as described in Equation 6.5.

dn =

√√√√ S∑
s=1

Is∑
i=1

∥∥f ∗s
i − f s

n,i

∥∥2
(6.5)

Here n is the index of a MD map in the database, f s
n,i are features inside a given slice s, (we

denote the features of the query scan by f ∗s
i ), S is the total number of slices containing the

3D ROI in query image, Is is the number of features in a slice s The similarity of a query

MD map to nth map is Sim1(n) = 1/(dn + 1). Lower distance means better similarity.

In a second experiment, we tested the matching method proposed in Lowe (2004). The

approach consists in finding for every feature f ∗
i from one image the best matching feature

from other image f s
n,i. We used, as similarity measure, the formula given in Equation 6.6 to

measure similarities across images. This presents the number of matching descriptors, Indeed,

the descriptors are matching when the distance between descriptors f ∗
i , f

s
n,i is lower than a

threshold T. The threshold was found experimentally and its value for these experiments was

fixed as 0.4. Note that in our previous work, we used quantized features accordingly to a

visual dictionary in a Bag-of-Visual-Words Paradigm (see Chapter 3). Nevertheless before

we can use this paradigm, it is necessary to asses the performance of our description in th

original space, what we have done in the present work.

Sim2(n) =
S∑

s=1

Is∗∑
i=1

 1, minj=1...Is
∥∥f ∗

i − f s
n,j

∥∥ < T

0, otherwise
(6.6)

6.5.2 MD maps retrieval Results

In our testing procedure, we assess the performance of the method in terms of the ”precision

at N” metric used in information retrieval. Here the proportion of correct matches of classes

between the query image and the N returned images is computed. Then a mean precision at

N is computed for all query trials.
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• Precision at N th = Number of images correctly classified/N

The retrieval approach has been tested on the MD images. Using this test we analyze

the raw performance of the proposed descriptor-based technique. In Figure 6.7 and Figure

6.8, the percent of correct classes in N most relevant images is shown both with Sim1 and

Sim2 corresponding respectively to the ”1-to-1” matching and the (Lowe, 2004) matching

algorithm p proposed for the ”BoF”.
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Figure 6.7: Retrieval results for CHF and
SIFT descriptors: ADNI subset (Group
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Figure 6.8: Retrieval results for CHF and
SIFT descriptors: ”Bordeaux-3City”
(Group 6)

The precision at N th of CHF descriptor using the Sim1 scheme is in the worst case of

89.69% as ilustrated in Figure 6.7. No significant difference is identified between the two

matching modes except the precision at 1. One can see that the precision at 1 is the best

with the Sim2 of CHFs compared to conventional SIFT features.

The Figure 6.8 illustrates the result on ”Bordeaux-3City”. For example, the precision

value at 4th for CHFs descriptor with Sim1 base retrieval approach is about 83%. We can

see from Figure 6.7 and Figure 6.8 that both CHF and SIFT descriptors give high retrieval

results. These descriptors thus prove to be suitable for capturing the DTI image content.

Hence, in this section we proposed CBIR approach on the DTI MD maps to evaluate

the performance of these classical scheme on the recent MRI modality. Despite the tests

were conducted on a small (for cohort population reasons) test set, the results obtained are
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promising. Alone this modality shows rather high scores in a realistic situation of a small

cohort. In The next section we will design a classification framework of MD maps.

6.6 MD maps classification

6.6.1 Disease-related signature generation using the Bag-of-Words

approach

In this section, we apply the same features extraction approach we have proposed in chapter

4. The same schemes are applied to the preprocessed MD maps ( See section 6.4). Finally,

we obtain an histogram of visual words of the hippocampus ROI extracted from MD maps

using the CHFs features. The obtained signature is then reduced using the PCA technique.

6.6.2 Classification framework

SVMs are used to classify subjects, we are interested in the binary classification ( AD versus

NC), (NC versus MCI ) and the (AD versus MCI). We use 10-fold cross validations to

evaluate classification performance. We repeated the 10 fold cross-validation 10 times for a

more general performance estimation of the classifier. Each time the 10 randomly selected

folds were generated and the final result is the average accuracy, sensitivity and specificity of

the 10 experiments. The BAC metric values are reported also. All those metrics of evaluation

are presented in (Section 4.5.1).

6.6.3 Experiments and results

Signature dimensionality reduction To reduce signatures dimensionality, we con-

sider percentages of total energy which is obtained from cumulative energy vector. As the

percentage of energy is reduced, the number of coefficients required also dramatically reduces,

and according the candidate feature vector size is reduced for classification. Figure 6.9 shows

the average cumulative sum of the eigenvalues, obtained from PCA. It is depicted against the

number of eigenvalues. For instance, the ADNI group signature’s size is equal to 600 =200

x 3 with 200 is the codebook. Whereas the size of signature for the ”Bordeaux-3City”
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data is 450=150 x 3 with 150 is the codebook size. Therefore, using PCA the signatures sizes

were reduced by keeping 95% of energy (Figure 6.9).

Codebook size Variation In a second part of experiments, we plot the variation of

classification accuracy ( AD vs NC, NC vs MCI and MCI vs AD) function to the codebook

size changes ( Figure 6.10). In most cases, the accuracy can be improved with a larger code-

book size, but it can also decrease in certain cases. In general, the accuracy does not change

significantly with codebook size. A similar trend has been observed for The ”Bordeaux-

3City” data. Hence, we set the codebook sizes to 200 and 150 respectively for Group 5

(ADNI) and the ”Bordeaux-3City” group.

SVM parameters optimizations For classification, SVM is used with an RBF kernel.

In our experiments an SVM classifier is trained with value of regularization parameter C

and the scaling parameters gamma by using grid search on the log ratio of the parameters

associated with 5 fold cross validation. Then, value pairs (C, γ) are assessed using cross

validation and then the pair with highest accuracy is chosen. The value of C and γ are

exponentially varied (C = 2e−6, 2e3, ..., 2e14; γ = 2e−15, ..., 2e10). Thus, the grid search

has built dozens of SVM models with various parameter settings, and optimal parameters

relatively to the training data were selected.

Table 6.1 and Table 6.2 present the classification results in terms of sensitivity, specificity,

accuracy and BAC metrics for respectively the Group 5 (ADNI) and ”Bordeaux-3City”

data.

AD versus NC NC versus MCI AD versus MCI
Accuracy %[95% CI] 86.73 [86.10 87.37] 77.39 [ 75.67 79.12 ] 73.11[71.32 74.90]
Specificity %[95% CI] 98 [96.76 99.24] 89.20 [86.97 91.43] 77.92[76.26 79.57]
Sensitivity %[95% CI] 75[ 74 75] 63.33 [60.68 65.99] 67.62[63.7 71. 53]

BAC (%) 86.5 76.27 72.77

Table 6.1: Classification results: AD, versus NC, Nc versus MCI and AD versus MCI
(Group2)
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AD versus NC
Accuracy %[95% CI] 80.34 [77.47 83.22]
Specificity %[95% CI] 90.91 [88.09 93.73]
Sensitivity %[95% CI] 47.14 [ 43.09 51.20]

BAC (%) 69.03

Table 6.2: Classification results: AD versus NC ( Bordeaux-3City)

Classification results for (NC vs AD)

In this section, we present the classification results obtained in the first experiment, which

consisted on the classification of AD versus NC . Our method achieved classification accura-
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cies of 86.73% and 80.34% respectively for the Group 5 (ADNI) and ”Bordeaux-3City”

data (Group 6). We reported for the ADNI subset (group 5) a specificity 98% of and

a sensitivity of 75%. Indeed, for ”Bordeaux-3City” data, we reported a hight specificity

(90.91%) but lower sensitivity this could be caused by the small number of AD subjects

compared to the number of Normal control used in this experiment.

Classification results for (NC vs MCI)

A hight specificity is obtained for the NC versus MCI classification (89.20%). In addition,

an accuracy of 77.39% and a sensitivity of 63.33% were reported.

Classification results for (AD vs MCI)

The most challenging classification task concerning the Group 5 (ADNI) is to distinguish

AD from MCI patients. We obtained an accuracy of 73.11%, a specificity of 77.92% and a sen-

sitivity of 67.62%. This is presumably due to the fact that MCI is a transitory heterogeneous

stage between NC and AD.

The obtained results show how the Laguerre Gauss CHFs seems to provide a robust

representation of the hippocampus atrophy from the MD maps. The BoVW method proved

to be effective in explaining the visual richness of MD images and relations between visual

patterns and their semantic meaning.

Alone, the MD maps show rather high scores in a realistic situation of a small cohort.

Furthermore, our approach, do not require a precise segmentation of ROI, performs well not

only on sMRI, what we showed in our previous work ( Chapter 5), but also on more challeng-

ing modality such as MD maps. Combining DTI data with structural findings should further

increase its diagnostic performance. However, without the aid of an sMRI, the anatomical

information of the Hippocampus acquired by MD maps is difficult to interpret due to the

lack of anatomical information in this modality.
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6.7 Conclusion

In the current chapter, we introduced a new approach of visual-related signature of hippocam-

pus ROI on MD maps of DTI modality. This information was used to effectively discriminate

the MCI and AD patients from normal controls, as well as between the MCI and AD pa-

tients. Besides, it achieves good values of accuracy, sensitivity and specificity. The present

research is the first attempt (in our best knowledge) to apply features-based approaches on

this modality for AD diagnosis. The proposed method is based on the comparison of visual

features extracted from the hippocampal area. We use the Circular Harmonic Functions

(CHFs) to extract content from the Diffusion Tensor-derived map: Mean Diffusivity (MD).

The obtained results are encouraging and open interesting perspectives. In the perspective

of this work we will proceed with fusion of different modalities in a global classification

framework.
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Chapter 7
Main Conclusion and perspectives

7.1 Conclusion

MRI is an integral part of the clinical assessment to detect and to follow the evolution of brain

atrophy. Due to the variability of subjects, features-based methods have become popular for

AD diagnosis thanks to their statistical redundancy and selectivity of salient image areas.

Thus, in the current PhD research we proposed CAD approaches for AD detection using

classical tools of content-based image indexing, retrieval and classification . These approaches

consist of features extraction, image signature generation, similarity matching and supervised

learning. We adopted them for two MRI modalities ( Structural MRI and DTI-derived

map). Our goal throughout this thesis has been to show the effectiveness of such approaches

combined with domain knowledge in supporting AD diagnosis.

The first main contribution has been the construction of distinctive local patterns of

AD-related atrophy using an atlas-based approach without the need of a tedious ROI seg-

mentation. This help capturing different signals from a number of different tissues inside the

ROI itself. Here, we used domain knowledge of the MRI and Alzheimer’s disease character-

istics to extract the appropriate features from ROIs known to be affected by AD namely the

hippocamps and the PCC. Thus, the extracted patterns are leveraged to distinguish normal

from abnormal ROIs/Brains.

Considering sMRI modality, we showed that our approach which requires only rough

selection of the ROI is comparable and even outperforms traditional volumetric methods
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which require a tedious and interactive ROI segmentation.

We have also proposed Early and Late fusion schemes to take advantages to the domain

knowledge namely fusion of features from two characteristics regions ( hippocampus and

PCC) and fusion of output’s classifiers on CSF and structural changes in the Hippocampus.

Both MRI modalities: Structural MRI and Diffusion Tensor Imaging (DTI) are used in this

thesis. We also used supplementary biomarker such as the the augmentation of CSF amount

in brain.

As sMRI and DTI modalities are characterized by smooth contrast, we used as descriptors

the coefficients of projection of MRI signalon Circular Harmonic Functions basis. We showed

that CHFs descriptors outperform conventional SIFT and SURF both in similarity matching

and classification. They are therefore interesting to be used on MR Images. In addition, we

addressed the most challenging task of recognition of MCI subjects which is not very often

addressed in the literature due to the heterogeneity of this category.

The obtained results demonstrate promising classification performance and simplicity

compared to the state-of-the-art volumetric AD diagnosis methods. The strength of the

proposed work consists in the flowing:

• The main advantage of our methods is its capability to capture atrophy patterns of

progressive neurological disorders and also overcome the limits of fine segmentation

methods.

• Our approach is automatic, less time consuming than segmentation-based methodology

and does not require the intervention of the clinician during the disease diagnosis.

• It is extensible to other diseases that can be diagnosed by brain MRI such as Schizophre-

nia and brain tumors.

• The method uses 2D slices that allows the use of well studied mathematical models of

features

Limitations occur in the normalization process which may produce the loss of some local

information in the images. Also the atlas-based approach may generate a small amount of
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Region of Interest localization error. Finally, the DTI-derived maps suffer from noise and an

denoising step is needed to ensure more efficients classification results.

Additional work may be needed to improve work. Future work will include considering

other ROIs which may be more discriminative together for diagnosis. We intend to fur-

ther evaluate our approach performance in other datasets in the aim of predicting subject

conversion to AD rather than recognizing subject’s category. Furthermore, we think that

application of Convolutional Neural Networks (CNN) with deep learning may be interesting

for AD diagnosis using several modalities. It is also interesting to generalize this approach

for the 3D case using 3D SIFT to compare it with its 2D version. We have used classical hard

coding of quantified features and it will be interesting also to apply soft coding. moreover,

Numerous DTI studies for Alzheimer’s disease demonstrated that the use of DTI voxel values

together with stuctural MRI voxel values improves classification accuracies. In the perspec-

tive of this PhD research, we will proceed with fusion of sMRI and DTI modalities in a

global classification framework using Multiple kernel leaning technique for instance. Finally,

a graphical user interface could be developed to Computer-aided diagnosis.
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Appendix A

.1 SIFT

There are four specific steps SIFT follows to figure out robust image features. These are

1) Scale-space extrema detection 2) Key-point localization 3) Orientation assignment and 4)

Key-point descriptor

Scale space extrema detection The scale space of an image is presented by L(x, y, σ)

that is obtained from a convolution of a variable scale Gaussian G(x, y, σ), with an image

I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

Where G(x, y, σ) = 1
2Πσ2 e

−(x2+y2)/2σ2

Accordingly to (Lowe, 2004), a Keypoint corresponds to the local extrema in the Difference

Of Gaussian (DoG) function convolved with the image, D(x, y, σ) given by:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2)

= L(x, y, kσ)− L(x, y, σ)

Which is just the difference of the Gaussian-blurred images at scales σ and kσ. This

process is done for different octaves of the image in Gaussian Pyramid. It is illustrated in
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Figure 1:

Figure 1: Diagram illustrating the blurred images at different scales, and the Difference of
Gaussian computation (Lowe, 2004)

Once this DoG are functions are computed across neighboring scales, images are looked

for local extrema over scale and space. Each pixel in the DoG image is compared with its 8

neighbours at the same scale as well as 9 pixels at neighbouring scales. If the pixel is a local

extrema, it is selected as candidate keypoint (see Figure 2).

Keypoint localization The next step consists in eliminating low-contrast and edge

keypoints. Only the strong interest points are conserved, exhibiting signal particularities,

where signal changes in two directions.

Taylor series expansion of scale space is used to get more accurate location of extrema.

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2D

∂x2
x (3)
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Figure 2: Local extrema detection(Lowe, 2004)

To obtain the extremum point, the derivate should be equal to zero:

x̂ = −(
∂2D−1

∂x2
)−1∂D

∂x
(4)

D(x̂) = D +
1

2

∂DT

∂x
x̂

if the intensity of this extremum is less than a threshold value fixed to 0.03 (ifD(x̂) <=

0.03) in (Lowe, 2004)) it is rejected.

The detector first computes the Harris matrix H for each pixel in an image and then

computes its eigenvalues which indicate the principal curvature of H.

H =

Dxx Dxy

Dxy Dyy

 (Dxx+Dyy)2

DxxDyy−D2
xy

< (r+1)2

r
where r = Largest eigenvalue

smallest eigenvalue

Hessian matrix was used to compute the principal curvatures and to eliminate the low

contrast points. Lowe assume r=10. Thus, keypoints having a ratio between the principal

curvatures greater than 10 are eliminated

Orientation Assignment To determine key-point dominant orientation, histogram is

formed from the gradient orientations of sample points within a region around the keypoint.
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This step achieve invariance to image rotation since he keypoint descriptor can be represented

relatively to this orientation. The scale is used to select the Gaussian smoothed image L(x, y).

The gradient magnitude m(x, y) and the orientation θ(x, y) are computed using the pixels

differences as follows:

m(x, y) =
√

(L(x+ 1, y)− (x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (5)

θ(x, y) = arctang(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
) (6)

Keypoint descriptor The descriptor comprises histograms of image gradient ampli-

tudes, using 8 orientation bins on a 4x4 grid around each keypoint, as shown in Figure 3.

The SIFT feature vector consists of 128 elements (4x4x8). This feature vector is normalized

to enhance invariance to changes in illumination. An image with n keypoints contains nx128

features.

Figure 3: An orientation histogram in the SIFT method.
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The SIFT descriptor in particular provides ”robustness against localization errors and

small geometric distortions”.

.2 SURF

Keypoint detection While SIFT is based on scale space theory and the feature de-

tector is based on Hessian matrix. SURF (Speed Up Robust Features) (Bay et al., 2008)

descriptor is based on similar properties as SIFT. Indeed, the SURF detector finds interest

points (scale and location) as extrema of the determinant of the Hessian matrix in scale

space, det(H(x, y, σ)). Given a point X = (x, y) in an image I, the Hessian matrix H(x, y, σ)

in X at scale σ is defined as follows:

H(x, σ) =

Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

 (7)

here

Lxx(x, σ) = I(x) ∗ ∂2

∂x2
g(σ) (8)

Lxy(x, σ) = I(x) ∗ ∂2

∂xy
g(σ) (9)

Lxx(x, σ), Lyy(x, σ) and Lxy(x, σ) denote the convolution of the image with a second

order Gaussian derivative ∂2

∂x2 ,
∂2

∂y2
and ∂2

∂xy
respectively. This convolution is very costly and

it is approximated and speeded-up with the use of integral image 1. These derivatives are

known as Laplacian of Gaussians.

They are approximated by box filters and are defined as Dxx , Dxy and Dyy . From those

term, the Hessian determinant is computed as follows:

det(Happrox) = DxxDyy − (0.9Dxy)
2 (10)

1Every entry of an integral image is the sum of all pixels values contained in the rectangle between the
origin and the current position
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The Hessian matrix is calculated for various filter sizes, where the filter size corresponds

to the region around which the matrix determinant is calculated, with different scale factors.

This is repeated for several octaves. After computing the Hessian matrix at different scale

factors, the interest points are selected by calculating the local maxima (in a 3 x 3 x 3

neighborhood) in scale and image space.

Figure 4 shows an illustration of such an approximation. The advantage of this approxi-

mation is that, convolution with box filter can be easily calculated using the integral images

and it can be done in parallel for different scales.

Figure 4: Laplacian of Gaussian Approximation

SURF descriptor To describe each feature, SURF summarizes the pixel information

within a local neighborhood. The first step consists of defining a reproducible orientation

based on information from a circular region around the point of interest. And second con-

structs a square region aligned with the selected orientation, and extract the SURF descriptor

from it.

Similarly to SIFT, SURF identifies a reproachable ”orientation” of a keypoint but with

different computation manner. For that purpose, SURF uses responses of Haar wavelet in

horizontal and vertical direction for a neighborhood of size 6s around the interest point, with

s the scale at which the interest point was detected. The responses of the Haar wavelets are

weighted with a Gaussian (σ = 2.5s) centered at the point. Then, the horizontal and vertical

wavelet responses are summed within a sliding orientation window covering an angle of Π/3

in the wavelet response space (see Figure 5) in order to estimate the dominant orientation.
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The resulting maximum is then chosen to represent the orientation of the interest point

descriptor.

Figure 5: Horizontal and vertical Haar wavelet filter

The SURF descriptor describes an interest area with size 20s where s is the scale . This

region of interest is divided into 4x4 sub-regions. For each sub-region, horizontal and vertical

wavelet responses are taken and a vector is formed like this, v = (
∑

dx
∑

dy,
∑

|dx|,
∑

|dy|)

where dx and dy refer respectively to the horizontal and the vertical wavelets responses. This

when represented as a vector gives SURF feature descriptor with total 64 dimensions (see

Figure 6). Lower is the dimension, higher is the speed of computation and matching, but

provide better distinctiveness of features.

Figure 6: SURF descriptor Computation
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.3 LBP

LBP comprises a binary code that is obtained by thresholding a neighborhood according to

the grey value of its center. Given a center pixel in the image, the LBP value is computed

by comparing its gray value with its neighbors.

P∑
p=1

2(p−1)S(gp − gc) (11)

S(x) =

 1, x >= 0

0, otherwise

 (12)

Where gc is the gray value of the center pixel, gp is the gray value of its neighbors, P is

the number of neighbors, and R is the radius of the neighborhood:

gp = I(xp, yp) for p = 0...P

xp = x+R cos(2Πp
P
) and yp = y +R sin(2Πp

P
)

Figure 7: Example of LBP computation

The simple LBP operator labels the pixels of an image by thresholding a 3 x 3 neighbor-

hood of each pixel with the center value and considering the results as an 8-bit binary number

or an LBP label for that pixel and than converting the resulting binary into a decimal. Figure

7 shows step by step example of computing LBP. From left to right; the first panel shows
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a pixel along with its spatial neighborhood. The second panel shows the same pixel after

sub-tracting intensity of the inner pixel from all intensities. The third panel shows the same

pixel after applying the step function, note that the value of inner pixel is omitted as it is

no longer needed. The fourth panel shows the multipliers for corresponding neighborhood

pixels. The resulting pattern is 1 + 4 + 16 + 32 = 53.
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Otsu’s method (Otsu, 1979) is a simple and automatic thresholding technique. The algorithm

assumes that the image to be thresholded contains two classes of pixels (e.g. foreground and

background) then calculates the optimum threshold separating those two classes.

Fundamentals

Given an image I(x, y) and N is the number of its pixels. The gray-values of the image

range in [0..L] where L = 255. The number of pixels at level i is denoted by hi. The

N = h0 + h1 + ...hL−1. The occurrence probability of gray level i, in I(x, y) is given by:

pi =
hi

N
, pi >= 0,

L−1∑
i=0

pi = 1 (13)

If an Image is segmented into two clusters C0 and C1. C0 denotes the pixels level [1, ..., k]

and C1 denotes pixels level [k + 1, ..., L]. The probability of class occurrence and the class

mean levels, respectively, are given by:

ωo = P (C0) =
k∑

i=1

pi = ω(k) (14)

ω1 = P (C1) =
L∑

i=k+1

pi = 1− ω(k) (15)

where of course ωo + ω1 = 0 and The class m The class mean levels are given by:
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µ0 =
k∑

i=1

iP (i|C0) =
k∑

i=1

ipi|ω0 = µ(k)/ω(k) (16)

µ01
L∑

k+1=1

iP (i|C1) =
L∑

i=k+1

ipi|ω1 =
µT − µ(k)

1− ω(k)
(17)

For any choice of k we have:

ωoµ0 + ω1µ1 = µT (18)

where

ω(k) =
k∑

i=1

pi (19)

and

µ(k) =
k∑

i=1

ipi (20)

Hence, the class variance are given by:

σ2
0 =

k∑
i=1

(i− µ0)P (i|C0) =
k∑

i=1

(i− µ0)
2pi/ω0 (21)

σ2
1 =

L∑
i=k+1

(i− µ1)P (i|C1) =
L∑

i=k+1

(i− µ1)
2pi/ω1 (22)

Hence, the optimal class threshold can be determined by maximizing the between-class

variance:

σ2
B(k) = (i− µ1)

2pi (23)

total class variance is given by

σ2
T =

∑
i = 1L(i− µT )

2pi (24)

the optimal threshold k∗ can be determined by maximizing the following equation:
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σ2
B(k)/σ

2
T (25)
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M., Harald, H., 2007. Multivariate deformation-based analysis of brain atrophy to predict

Alzheimer’s disease in mild cognitive impairment. NeuroImage 38, 13 – 24.

Stoub TR, Bulgakova M, L.S.e.a., 2005. Mri predictors of risk of incident Alzheimer’s disease:

a longitudinal study. Neurology 64, 1520–1524.

Stricker NH, Schweinsburg BC, D.W.L.e.a., 2009. Decreased white matter integrity in late-

myelinating fiber pathways in Alzheimer’s disease supports retrogenesis. Neuroimage 45,

10–16.

Studholme, C., Drapaca, C., Iordanova, B., Cardenas, V., 2006. Deformation-based mapping

of volume change from serial brain MRI in the presence of local tissue contrast change.

Medical Imaging, IEEE Transactions on 25, 626–639.

Tabelow K, Polzehl J, S.V.e.a., 2008. Diffusion tensor imaging: structural adaptive smooth-

ing. Neuroimage 39, 1763–1773.

Takahashi S, Yonezawa H, T.J.e.a., 2002. Selective reduction of diffusion anisotropy in white

matter of Alzheimer’s disease brains measured by 3.0 tesla magnetic resonance imaging.

Neurosci Lett 332, 45–48.

Tamaki, T., Yoshimuta, J., Kawakami, M., Raytchev, B., Kaneda, K., Yoshida, S., Takemura,

Y., Onji, K., Miyaki, R., Tanaka, S., 2013. Computer-aided colorectal tumor classification

in NBI endoscopy using local features. Medical Image Analysis 17, 78 – 100.

Tao, D., Tang, X., Li, X., Wu, X., 2006. Asymmetric bagging and random subspace for

support vector machines-based relevance feedback in image retrieval. Pattern Analysis

and Machine Intelligence, IEEE Transactions on 28, 1088–1099.

Tapiola, T., Pennanen, C., Tapiola, M., Tervo, S., Kivipelto, M., änninen, T.H., äki, M.P.,

Laakso, M.P., Hallikainen, M., äm äl äinen, A.H., Vanhanen, M., Helkala, E.L., Vanninen,

R., Nissinen, A., Rossi, R., Frisoni, G.B., Soininen, H., 2008. {MRI} of hippocampus and

entorhinal cortex in mild cognitive impairment: A follow-up study. Neurobiology of Aging

29, 31–38.

2014/2015 Olfa Ben Ahmed



BIBLIOGRAPHY 204

Toews, M., Wells, W., Collins, D.L., Arbel, T., 2010. Feature-Based Morphometry: Discov-

ering Group-related Anatomical Patterns. NeuroImage , 2318–2327.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al, 2002. Automated Anatomical

Labeling of Activations in SPM using a macroscopic anatomical parcellation of the MNI

MRI single-subject brain. NeuroImage 15, 273 – 289.

Unay, D., 2010. Augmenting clinical observations with visual features from longitudinal mri

data for improved dementia diagnosis, in: Proceedings of the International Conference on

Multimedia Information Retrieval, ACM, New York, NY, USA. pp. 193–200.

Unay, D., Ekin, A., 2011. Dementia diagnosis using similar and dissimilar retrieval items, in:

Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, pp.

1889–1892.

Unay, D., Ekin, A., Jasinschi, R., 2008. Medical image search and retrieval using local

binary patterns and klt feature points, in: Image Processing, 2008. ICIP 2008. 15th IEEE

International Conference on, pp. 997–1000.

Unay, D., Ekin, A., Jasinschi, R.S., 2010. Local structure-based region-of-interest retrieval

in brain MR images. IEEE Transactions on Information Technology in Biomedicine 14,

897–903.

Vasconcelos, L.d.G., Jackowski, A.P., Oliveira, M.O.d., Flor, Y.M.R., Bueno, O.F.A., Brucki,

S.M.D., 2011. Voxel-based morphometry findings in Alzheimer’s disease: neuropsychiatric

symptoms and disability correlations-preliminary results. Clinics 66, 1045–1050.

Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., Boeve,

B.F., Petersen, R.C., Jr, C.R.J., 2008. Alzheimer’s disease diagnosis in individual subjects

using structural mr images: Validation studies. NeuroImage 39, 1186 – 1197.

Villain, N., Desgranges, B., Viader, F., et al, 2008. Relationships between hippocampal

atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s dis-

ease. The Journal of neuroscience : the official journal of the Society for Neuroscience 28,

6174–6181.

2014/2015 Olfa Ben Ahmed



BIBLIOGRAPHY 205

Wang, H., Ren, Y., Bai, L., Zhang, W., Tian, J., 2012. Morphometry based on effective and

accurate correspondences of localized patterns (meacolp). PLoS ONE 7, e35745.

Wang, L., Swank, J.S., Glick, I.E., Gado, M.H., Miller, M.I., Morris, J.C., Csernansky, J.G.,

2003. Changes in hippocampal volume and shape across time distinguish dementia of the

Alzheimer type from healthy aging. NeuroImage 20, 667 – 682.

Wee, C., Yap, P., Shen, D., 2013. Prediction of Alzheimer’s disease and mild cognitive

impairment using cortical morphological patterns. Human Brain Mapping .

Weiner, M.W., Aisen, P.S., Jack Jr, C.R., Jagust, W.J., Trojanowski, J.Q., Shaw, L., Saykin,

A.J., Morris, J.C., Cairns, N., Beckett, L.A., et al., 2010. The Alzheimer’s disease neu-

roimaging initiative: progress report and future plans. Alzheimer’s & Dementia 6, 202–211.

Welter, P., Fischer, B., Gunther, R.W., Deserno, T.M., 2012. Generic integration of content-

based image retrieval in computer-aided diagnosis. Computer Methods and Programs in

Biomedicine 108, 589 – 599.

West, J.B., Fitzpatrick, J.M., Wang, M.Y., Dawant, B.M., Maurer Jr, C.R., Kessler, R.M.,

Maciunas, R.J., Barillot, C., Lemoine, D., Collignon, A.M., et al., 1996. Comparison

and evaluation of retrospective intermodality image registration techniques, in: Medical

Imaging 1996, International Society for Optics and Photonics. pp. 332–347.

Xu, Y., Jack, C., Obrien, P., Kokmen, E., Smith, G., Ivnik, R., Boeve, B., Tangalos, R.,

Petersen, R., 2000. Usefulness of mri measures of entorhinal cortex versus hippocampus

in ad. Neurology 54, 1760–1767.
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Titre : Classification des IRM par les descripteurs de contenu : Application au 

diagnostic précoce de la maladie d’Alzheimer 
 

Résumé :  
Les outils méthodologiques en indexation et classification des images par le contenu sont 
déjà assez matures et ce domaine s’ouvre vers les applications médicales. Dans cette thèse, 
nous nous intéressons à l'indexation visuelle, à la recherche et à la classification des images 
cérébrales IRM par le contenu pour l'aide au diagnostic de la maladie d'Alzheimer (MA). 
L'idée principale est de donner au clinicien des informations sur les images ayant des 
caractéristiques visuelles similaires. Trois catégories de sujets sont à distinguer: sujets sains 
(NC), sujets à troubles cognitifs légers (MCI) et sujets atteints par la maladie d'Alzheimer 
(AD). Nous représentons l’atrophie cérébrale comme une variation de signal dans des 
images IRM (IRM structurelle et IRM de Tenseur de Diffusion). Cette tâche n'est pas triviale, 
alors nous nous sommes concentrés uniquement sur l’extraction des caractéristiques à partir 
des régions impliquées dans la maladie d'Alzheimer et qui causent des changements 
particuliers dans la structure de cerveau : l'hippocampe le Cortex Cingulaire Postérieur. Les 
primitifs  extrais  sont quantifiés en utilisant l'approche sac de mots visuels. Cela permet de 
représenter l’atrophie cérébrale sous forme d’une signature visuelle spécifique à la MA. 
Plusieurs  stratégies de fusion d’information sont appliquées pour renforcer les performances 
de système d’aide au diagnostic. La méthode proposée est automatique (sans l’intervention 
de clinicien), ne nécessite pas une étape de segmentation grâce à l'utilisation d'un Atlas 
normalisé. Les résultats obtenus apportent une amélioration par rapport aux méthodes de 
l’état de l’art en termes de précision de classification et de temps de traitement.  

Mots clés : Alzheimer, indexation des images par le contenu, classification, IRM, ITD, aide 
au diagnostic  
 

 
Title: Features-based MRI brain classification with domain knowledge: 
Application to Alzheimer's disease diagnosis 

Abstract: 
Content-Based Visual Information Retrieval and Classification on Magnetic Resonance 
Imaging (MRI)  is penetrating the universe of IT tools supporting clinical decision making. A 
clinician can take profit from retrieving subject’s scans with similar patterns. In this thesis, we 
use the visual indexing framework and pattern recognition analysis based on structural MRI 
and Tensor Diffusion Imaging (DTI) data to discriminate three categories of subjects: Normal 
Controls (NC), Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD). The 
approach extracts visual features from the most involved areas in the disease: Hippocampus 
and Posterior Cingulate Cortex. Hence, we represent signal variations (atrophy) inside the 
Region of Interest anatomy by a set of local features and we build a disease-related 
signature using an atlas based parcellation of the brain scan. The extracted features are 
quantized using the Bag-of-Visual-Words approach to build one signature by brain/ROI 
(subject). This yields a transformation of a full MRI brain into a compact disease-related 
signature. Several schemes of information fusion are applied to enhance the diagnosis 
performance. The proposed approach is less time-consuming compared to the state of the 
arts methods, computer-based and does not require the intervention of an expert during the 
classification/retrieval phase. 

Keywords : Alzheimer, MRI, DTI, CBVIR, classification, Computer-aided diagnosis 
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