A. To, . A. Simulation-1abv14-], M. Alahi, P. Bierlaire, and . Vandergheynst, APPLICATION TO INSECT SIMULATION 1. APPLICATION TO INSECT SIMULATION 1. APPLICATION TO INSECT SIMULATION 1. APPLICATION TO INSECT SIMULATION Robust real-time pedestrians detection in urban environments with low-resolution cameras, Transportation Research Part C: Emerging Technologies, issue.0, pp.39113-128, 2014.

A. Attanasi, A. Cavagna, L. D. Castello, I. Giardina, S. Melillo et al., Collective Behaviour without Collective Order in Wild Swarms of Midges, PLoS Computational Biology, vol.8, issue.7, p.82, 2013.
DOI : 10.1371/journal.pcbi.1003697.s009

[. Antonini, S. Venegas-martinez, M. Bierlaire, and J. P. Thiran, Behavioral Priors for Detection and Tracking of Pedestrians in Video Sequences, International Journal of Computer Vision, vol.28, issue.1, pp.159-180, 2006.
DOI : 10.1007/s11263-005-4797-0

S. Ali and M. Shah, Floor Fields for Tracking in High Density Crowd Scenes, ECCV, pp.1-14, 2008.
DOI : 10.1007/978-3-540-88688-4_1

A. Abbas, . Butt, T. Robert, and . Collins, Multi-target tracking by lagrangian relaxation to min-cost network flow, Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp.1846-1853, 2013.

[. Bazzani, M. Cristani, and V. Murino, Decentralized particle filter for joint individual-group tracking, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1886-1893
DOI : 10.1109/CVPR.2012.6247888

J. Berclaz, F. Fleuret, and P. Fua, Multiple object tracking using flow linear programming, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp.1-8, 2009.
DOI : 10.1109/PETS-WINTER.2009.5399488

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Brecht, T. Kolokolnikov, . Andreal, H. Bertozzi, and . Sun, Swarming on Random Graphs, Journal of Statistical Physics, vol.67, issue.6, pp.150-173, 2013.
DOI : 10.1007/s10955-012-0680-x

L. Boudet and S. Midenet, Pedestrian crossing detection based on evidential fusion of video-sensors. Transportation Research Part C: xix BIBLIOGRAPHY Emerging Technologies Artificial Intelligence in Transportation Analysis: Approaches, Methods, and Applications, pp.484-497, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00506354

A. Bera and D. Manocha, Realtime Multilevel Crowd Tracking Using Reciprocal Velocity Obstacles, 2014 22nd International Conference on Pattern Recognition, pp.91-97, 2014.
DOI : 10.1109/ICPR.2014.714

URL : http://arxiv.org/abs/1402.2826

N. Butail, M. Manoukis, . Diallo, M. C. José, D. Ribeiro et al., The dance of male anopheles gambiae in wild mating swarms Continuous limit of a crowd motion and herding model: analysis and numerical simulations, J. Med. Entomol. Kinet. Relat. Models, vol.50, issue.44, pp.552-559, 2011.

D. Michael, F. Breitenstein, B. Reichlin, E. Leibe, L. Koller-meier et al., Robust tracking-by-detection using a detector confidence particle filter, Computer Vision IEEE 12th International Conference on, pp.1515-1522, 2009.

]. J. Bsc-+-06, D. J. Buhl, I. D. Sumpter, J. J. Couzin, E. Hale et al., From disorder to order in marching locusts, Science, issue.5778, pp.3121402-1406, 2006.

[. Babenko, M. Yang, S. Cividini, C. Appert-rolland, and H. Hilhorst, Robust object tracking with online multiple instance learning. Pattern Analysis and Machine Intelligence Diagonal patterns and chevron effect in intersecting traffic flows Crowd motion capture The pag crowd: A graph based approach for efficient data-driven crowd simulation, CC07] Nicolas Courty and Thomas Corpetti, pp.1619-1632, 2007.
DOI : 10.1109/tpami.2010.226

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Camazine, J. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz et al., Self-Organization in Biological Systems Eurographics Association, Chenney. Flow tiles Proceedings of the 2004 ACM SIG- GRAPH/Eurographics Symposium on Computer Animation, pp.79-233, 2003.

I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, Collective Memory and Spatial Sorting in Animal Groups, Journal of Theoretical Biology, vol.218, issue.1, pp.1-11, 2002.
DOI : 10.1006/jtbi.2002.3065

S. Curtis and D. Manocha, Pedestrian simulation using geometric reasoning in velocity space Comparison of pedestrian fundamental diagram across cultures A hierarchy of heuristic-based models of crowd dynamics, Pedestrian and Evacuation Dynamics (PEDS), 2012. 29, ii [CSC09] Ujjal Chattaraj, Armin Seyfried, and Partha Chakroborty Advances in Complex Systems, pp.393-4051033, 2009.

[. Degond, C. Appert-rolland, J. Pettré, G. Theraulaz, M. R. D-'orsogna et al., Vision-based macroscopic pedestrian models. arXiv preprint arXiv:1307 Selfpropelled particles with soft-core interactions: Patterns, stability, and collapse, EG09] Markus Enzweiler and Dariu M Gavrila. Monocular pedestrian detection: Survey and experiments. PAMI, pp.104302-73, 1953.
DOI : 10.3934/krm.2013.6.809

URL : https://hal.archives-ouvertes.fr/hal-00842083

D. [. Flierl, S. Grünbaum, D. Levins, and . Olson, From Individuals to Aggregations: the Interplay between Behavior and Physics, Journal of Theoretical Biology, vol.196, issue.4, pp.397-454, 1999.
DOI : 10.1006/jtbi.1998.0842

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Friedman, The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance, Dinesh Manocha, and Pradeep Dubey Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation , SCA '09, pp.675-701, 1937.
DOI : 10.1080/01621459.1937.10503522

S. J. Guy, S. Curtis, M. C. Lin, and D. Manocha, Least-effort trajectories lead to emergent crowd behaviors, Physical Review E, vol.85, issue.1, pp.16110-16156, 2011.
DOI : 10.1103/PhysRevE.85.016110

[. Grabner, M. Grabner, and H. Bischof, Real-Time Tracking via On-line Boosting, Procedings of the British Machine Vision Conference 2006, p.6, 2006.
DOI : 10.5244/C.20.6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Golas, R. Narain, and M. Lin, Hybrid long-range collision avoidance for crowd simulation, Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D '13, pp.29-36, 2013.
DOI : 10.1145/2448196.2448200

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. J. Guy, J. Van-den-berg, W. Liu, R. Lau, M. C. Lin et al., A statistical similarity measure for aggregate crowd dynamics, ACM Transactions on Graphics, vol.31, issue.6, pp.1-190, 2012.
DOI : 10.1145/2366145.2366209

R. Hess, A. Fernhfv00, ]. D. Helbing, I. Farkas, and T. Vicsek, Discriminatively trained particle filters for complex multi-object tracking In Computer Vision and Pattern Recognition Simulating dynamical features of escape panic Multi-modal traffic signal control with priority, signal actuation and coordination, CVPR 2009. IEEE Conference onHHD14] Qing He, K. Larry Head, and Jun Ding Transportation Research Part C: Emerging Technologies, pp.240-247, 2000.

D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Physical Review E, vol.51, issue.5, pp.4282-4286, 1995.
DOI : 10.1103/PhysRevE.51.4282

URL : http://arxiv.org/abs/cond-mat/9805244

A. [. Hansen and . Ostermeier, Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation, Proceedings of IEEE International Conference on Evolutionary Computation, pp.312-317, 1996.
DOI : 10.1109/ICEC.1996.542381

H. John and . Holland, Genetic algorithms, Scientific american, vol.267, issue.1, pp.66-72, 1992.

[. Hare, A. Saffari, H. Philip, and . Torr, Struck: Structured output tracking with kernels, Computer Vision (ICCV), 2011 IEEE International Conference on, pp.263-270, 2011.
DOI : 10.1109/iccv.2011.6126251

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Roger and . Hughes, The flow of human crowds Annual review of fluid mechanics, pp.169-182, 2003.

Z. Jin and B. Bhanu, Single camera multi-person tracking based on crowd simulation, Pattern Recognition (ICPR), 2012 21st International Conference on, pp.3660-3663, 2012.

M. E. Ju, M. Choi, J. Park, K. H. Lee, S. Lee et al., Morphable crowds, ACM Transactions on Graphics, vol.29, issue.6, pp.1-140, 2010.
DOI : 10.1145/1882261.1866162

H. Jiang, S. Fels, J. James, and . Little, A Linear Programming Approach for Multiple Object Tracking, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383180

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Xxii, D. Johansson, . Helbing, K. Pradyumn, and . Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data Advances in complex systems, pp.271-288, 2007.

[. Khan, T. Balch, and F. Dellaert, An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets, Computer Vision-ECCV 2004, pp.279-290, 2004.
DOI : 10.1007/978-3-540-24673-2_23

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. C. Lau, D. Lin, . Manocha, P. Brvo-ioannis-karamouzas, P. Heil et al., Predicting pedestrian trajectories using velocity-space reasoning A predictive collision avoidance model for pedestrian simulation Tiling motion patches, Proceedings of the 2Nd International Workshop on Motion in Games, MIG '09 Proceedings of the 11th ACM SIG- GRAPH/Eurographics conference on Computer Animation, pp.46-87, 2009.

[. Kirkpatrick, D. Gelatt-jr, and M. P. Vecchi, Optimization by simulated annealing. science Group motion editing, Proc. of the 2008 ACM SIGGRAPH Conference, SIG- GRAPH '08, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Kratz, K. Skinner, and S. J. Guy, Going with the flow: pedestrian efficiency in crowded scenes Emergent dynamics of laboratory insect swarms Scientific Reports Evaluating multiple object tracking performance: the clear mot metrics Universal power law governing pedestrian interactions, EURASIP Journal on Image and Video Processing Phys. Rev. Lett, vol.3, issue.25, pp.558-572, 1073.

[. Kapadia, S. Singh, W. Hewlett, P. Kapadia, M. Wang et al., Egocentric affordance fields in pedestrian steering Scenario space: characterizing coverage, quality, and failure of steering algorithms, Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D '09 Proc. of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '11, pp.215-223, 2009.

M. G. Kang-hoon-lee, Q. Choi, J. Hong, and . Lee, Group behavior from video: a data-driven approach to crowd simulation, Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp.109-118, 2007.

A. Lerner, Y. Chrysanthou, and D. Lischinski, Crowds by Example, Computer Graphics Forum, vol.1, issue.4, pp.655-664, 2007.
DOI : 10.1111/j.1467-8659.2004.00783.x

W. Liu, A. B. Chan, R. W. Lau, and D. Manocha, Leveraging Long-Term Predictions and Online Learning in Agent-Based Multiple Person Tracking, IEEE Transactions on Circuits and Systems for Video Technology, vol.25, issue.3, p.89, 2014.
DOI : 10.1109/TCSVT.2014.2344511

[. Lerner, Y. Chrysanthou, A. Shamir, and D. Cohen-or, Data Driven Evaluation of Crowds, Proc. of the 2nd International Workshop on Motion in Games, MIG '09, pp.75-83, 2009.
DOI : 10.1007/978-3-642-10347-6_7

[. Lerner, Y. Chrysanthou, A. Shamir, and D. Cohen-or, Context-Dependent Crowd Evaluation, Computer Graphics Forum, pp.2197-2206, 2010.
DOI : 10.1111/j.1467-8659.2010.01808.x

F. Lamarche and S. Donikian, Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments, Computer Graphics Forum, vol.21, issue.4, pp.509-518, 2004.
DOI : 10.1038/35035023

URL : https://hal.archives-ouvertes.fr/inria-00432199

W. Li, D. Wolinski, J. Pettré, and M. C. Lin, Biologically-Inspired Visual Simulation of Insect Swarms, Computer Graphics Forum, vol.106, issue.14, pp.425-434, 2015.
DOI : 10.1111/cgf.12572

A. Mogilner and L. Edelstein-keshet, A non-local model for a swarm, Journal of Mathematical Biology, vol.38, issue.6, pp.534-570, 1999.
DOI : 10.1007/s002850050158

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Moussaïd, D. Helbing, and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proceedings of the National Academy of Sciences, pp.6884-6888, 2011.
DOI : 10.1073/pnas.1016507108

A. Mcnamara, A. Treuille, Z. Popovi?, J. Stam-narain, A. Golas et al., Fluid control using the adjoint method Aggregate dynamics for dense crowd simulation, xxiv BIBLIOGRAPHY [NWK90] J. Neter, W. Wasserman, and M.H. Kutner. Applied Linear Statistical Models, pp.449-456, 1990.

A. Okubo, Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds, Advances in Biophysics, vol.22, issue.71, pp.1-94, 1986.
DOI : 10.1016/0065-227X(86)90003-1

A. Olivier, A. Marin, A. Crétual, and J. Pettré, Minimal predicted distance: A common metric for collision avoidance during pairwise interactions between walkers, Gait & Posture, vol.36, issue.3, pp.399-404, 2012.
DOI : 10.1016/j.gaitpost.2012.03.021

URL : https://hal.archives-ouvertes.fr/hal-00759480

J. [. Ond?ej, A. Pettré, S. Olivier, and . Donikian, A synthetic-vision based steering approach for crowd simulation, ACM Trans. Graph, vol.291239, issue.4, pp.1-123, 2010.

A. Okuma, N. Taleghani, . De-freitas, J. James, . Little et al., A boosted particle filter: Multitarget detection and tracking Trajectory extraction and density analysis of intersecting pedestrian flows from video recordings, Computer Vision-ECCV 2004 Proc. of the 2011 ISPRS conference on Photogrammetric image analysis, pp.28-39, 2004.

A. [. Pellegrini, K. Ess, L. Schindler, and . Van-gool, You'll never walk alone: Modeling social behavior for multi-target tracking Improving data association by joint modeling of pedestrian trajectories and groupings, Computer Vision IEEE 12th International Conference on Computer Vision?ECCV 2010, pp.261-268, 2007.

J. Puckett, D. Kelley, and N. Ouellette, Searching for effective forces in laboratory insect swarms, Scientific Reports, vol.193, issue.75, pp.2014-79
DOI : 10.1038/srep04766

A. Ond?ej, A. Olivier, S. Cretual, and . Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers xxv BIBLIOGRAPHY [PPD07] Sébastien Paris, Julien Pettré, and Stéphane Donikian. Pedestrian reactive navigation for crowd simulation: a predictive approach, Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '09, pp.189-198, 2007.

S. Jur-van-den-berg, M. C. Curtis, D. Lin, and . Manocha, Directing crowd simulations using navigation fields, IEEE Transactions on Visualization and Computer Graphics, vol.17, issue.17, pp.244-254, 2011.

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, vol.21, issue.4, pp.25-34, 1987.
DOI : 10.1145/37402.37406

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. C. Rey99 and . Reynolds, Steering behaviors for autonomous characters, Game Developers Conference 1999, pp.763-782, 1999.

M. Rodriguez and J. , Data-driven crowd analysis in videos Kinects and human kinetics: A new approach for studying pedestrian behavior, ICCV, pp.1235-1242, 2011.

A. Schadschneider, Cellular automaton approach to pedestrian dynamics -theory, p.45, 2001.

[. Strefler, U. Erdmann, L. Schimansky-geier-sebastian, R. Seriani, and . Fernandez, Swarming in three dimensions Pedestrian traffic management of boarding and alighting in metro stations, Phys. Rev. E Transportation Research Part C: Emerging Technologies, vol.78, issue.30, pp.31927-73, 2008.

. Sha and . Shark, diku.dk/shark/sphinx_pages/build/html/ index.html. iv [SHN12] Pramod Sharma, Chang Huang, and Ram Nevatia. Unsupervised incremental learning for improved object detection in a video, CVPR, pp.3298-3305, 2012.

S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, SteerBench: a benchmark suite for evaluating steering behaviors, Computer Animation and Virtual Worlds, vol.1538, issue.3, pp.533-548, 2009.
DOI : 10.1002/cav.277

[. Topaz, A. Bertozzi, and M. Lewis, A Nonlocal Continuum Model for Biological Aggregation, SIGGRAPH '06, pp.1601-1623, 2006.
DOI : 10.1007/s11538-006-9088-6

URL : http://arxiv.org/abs/q-bio/0504001

K. Takahashi, T. Yoshida, . Kwon, J. Kang-hoon-lee, S. Y. Lee et al., Spectral-Based Group Formation Control, Computer Graphics Forum, vol.25, issue.45, pp.639-648, 2009.
DOI : 10.1111/j.1467-8659.2009.01404.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Vcbj-+-95-]-tamás, A. Vicsek, E. Czirók, I. Ben-jacob, O. Cohen et al., Novel type of phase transition in a system of self-driven particles, Physical Review Letters, vol.75, issue.6 8, pp.1226-1229, 1995.

J. Van-den-berg, M. Lin, and D. Manocha, Reciprocal Velocity Obstacles for real-time multi-agent navigation, 2008 IEEE International Conference on Robotics and Automation, pp.1928-1935, 2008.
DOI : 10.1109/ROBOT.2008.4543489

]. J. Van-den-berg, J. Snape, S. J. Guy, and D. Manocha, Reciprocal collision avoidance with acceleration-velocity obstacles, 2011 IEEE International Conference on Robotics and Automation, pp.3475-3482, 2011.
DOI : 10.1109/ICRA.2011.5980408

D. Wolinski, S. Guy, A. Olivier, M. Lin, D. Manocha et al., Parameter estimation and comparative evaluation of crowd simulations, Wil45] Frank Wilcoxon. Individual comparisons by ranking methods, pp.303-312, 1945.
DOI : 10.1111/cgf.12328

URL : https://hal.archives-ouvertes.fr/hal-01059493

X. Wang, X. Jin, Z. Deng, and L. Zhou, Inherent Noise-Aware Insect Swarm Simulation, Computer Graphics Forum, vol.19, issue.5-6, pp.73-74, 2014.
DOI : 10.1111/cgf.12277

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Wu, J. Lim, and M. Yang, Online Object Tracking: A Benchmark, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2411-2418, 2013.
DOI : 10.1109/CVPR.2013.312

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Yamaguchi, C. Alexander, . Berg, E. Luis, T. L. Ortiz et al., Who are you with and where are you going?, CVPR 2011, pp.1345-1352, 2011.
DOI : 10.1109/CVPR.2011.5995468

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl et al., Inherent noise can facilitate coherence in collective swarm motion, Proceedings of the National Academy of Sciences, pp.5464-5469, 2009.
DOI : 10.1073/pnas.0811195106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667078

A. Yilmaz, O. Javed, and M. Shah, Object tracking, ACM Computing Surveys, vol.38, issue.4, p.86, 2006.
DOI : 10.1145/1177352.1177355

B. Yersin, J. Maïm, J. Pettré, and D. Thalmann, Crowd patches, Proceedings of the 2009 symposium on Interactive 3D graphics and games, I3D '09, pp.207-214, 2009.
DOI : 10.1145/1507149.1507184

URL : https://hal.archives-ouvertes.fr/inria-00555638

B. Yang and R. Nevatia, Multi-target tracking by online learning of non-linear motion patterns and robust appearance models, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp.1918-1925

X. Zhao, D. Gong, G. Medioni, . Zhang, . Klingsch et al., Tracking using motion patterns for very crowded scenes Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, ECCV, pp.315-328, 2012.

L. Zhang, Y. Li, R. Zangenehpour, L. F. Miranda-moreno, and N. Saunier, Global data association for multi-object tracking using network flows Automated classification based on video data at intersections with heavy pedestrian and bicycle traffic: Methodology and application, Computer Vision and Pattern Recognition CVPR 2008. IEEE Conference on, pp.1-8, 2008.

B. Zhou, X. Tang, and X. Wang, Coherent Filtering: Detecting Coherent Motions from Crowd Clutters, Computer Vision?ECCV 2012, pp.857-871, 2012.
DOI : 10.1007/978-3-642-33709-3_61

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Zhang, L. Zhang, and M. Yang, Real-Time Compressive Tracking, ECCV, pp.864-877
DOI : 10.1007/978-3-642-33712-3_62

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=