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Génération de Maillages Anisotropes

THÈSE
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Résumé

Nous étudions dans cette thèse la génération de maillages anisotropes basée sur la triangulation
de Delaunay et le diagramme de Voronoi.

Nous considérons tout d’abord les maillages anisotropes localement uniformes, développés par
Boissonnat, Wormser et Yvinec. Bien que l’aspect théorique de cette approche soit connu, son utilité
pratique n’a été que peu explorée. Une étude empirique exhaustive est présentée et révèle les avantages,
mais aussi les inconvénients majeurs de cette méthode.

Dans un second temps, nous étudions les diagrammes de Voronoi anisotropes définis par Labelle
et Shewchuk. Nous donnons des conditions suffisantes sur un ensemble de points pour que le dual
du diagramme soit une triangulation plongée en toute dimension; un algorithme générant de tels
ensembles est conçu. Ce diagramme est utilisé pour concevoir un algorithme qui génère efficacement
un maillage anisotrope pour des domaines de dimension intrinsèque faible plongés dans des espaces
de dimension large. Notre algorithme est prouvable, mais les résultats sont décevants.

Enfin, nous présentons le diagramme de Voronoi Riemannien discret, qui utilise des avancées
récentes dans l’estimation de distances géodésiques et dont le calcul est grandement accéléré par
l’utilisation d’un graphe anisotrope. Nous donnons des conditions suffisantes pour que notre structure
soit combinatoirement équivalente au diagramme de Voronoi Riemannien et que son dual utilisant des
simplexes droits mais aussi courbes est une triangulation plongée en toute dimension. Nous obtenons
de bien meilleurs résultats que pour nos autres techniques, mais dont l’utilité reste limitée.

Mots-clés: Anisotropie, Génération de maillages, Triangulation de Delaunay, Diagramme de Voronoi,
Géometrie Riemannienne.
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Abstract

In this thesis, we study the generation of anisotropic meshes using the concepts of Delaunay
triangulations and Voronoi diagrams.

We first consider the framework of locally uniform anisotropic meshes introduced by Boissonnat,
Wormser and Yvinec. Despite known theoretical guarantees, the practicality of this approach has only
been hardly studied. An exhaustive empirical study is presented and reveals the strengths but also
the overall impracticality of the method.

In a second part, we investigate the anisotropic Voronoi diagram introduced by Labelle and
Shewchuk and give conditions on a set of seeds such that the corresponding diagram has a dual
that is an embedded triangulation in any dimension; an algorithm to generate such sets is devised.
Using the same diagram, we propose an algorithm to generate efficiently anisotropic triangulations
of low-dimensional manifolds embedded in high-dimensional spaces. Our algorithm is provable, but
produces disappointing results.

Finally, we study Riemannian Voronoi diagrams and introduce discrete Riemannian Voronoi di-
agrams, which employ recent developments in the numerical computation of geodesic distances and
whose computation is accelerated through the use of an underlying anisotropic graph structure. We
give conditions that guarantee that our discrete structure is combinatorially equivalent to the Rie-
mannian Voronoi diagram and that its dual is an embedded triangulation, using both straight and
curved simplices. We obtain significantly better results than with our other methods, but the overall
utility of our techniques remains limited.

Keywords: Anisotropy, Mesh generation, Delaunay triangulation, Voronoi diagram, Riemannian
Geometry.
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General Introduction

To visualize, simulate and understand phenomena and systems of our world, models are devel-
oped. As an exact description is often unknown or undesirable – because too complicated – these
models generally seek to offer a simplified yet faithful representation of these phenomena and systems.
Scientific models are for example used to represent the currents in the atmosphere and the oceans in
climatology, predict the trajectories of astronomical objects, or understand earthquakes and determine
the composition of planets in seismology. However, modeling is not limited to the study of natural
phenomena: geometric modeling, which describes shapes, finds uses in the motion planning of robots,
the design of buildings in architecture and machines in mechanical engineering, and in many more
domains such as animation, topography, cartography...

A scientific model, while already being an approximation of a real world phenomenon, is often still
too complex to be solved analytically. Numerical analysis, one of the oldest fields of mathematics,
seeks to provide approximate yet accurate solutions to mathematical problems, ranging from the
evaluation of square roots to the resolution of difficult partial differential equations. The use of
computers to perform numerical analysis computations spawned the field of numerical simulation,
whose capabilities and fields of application are ever expanding, thanks to the constant increase in
the computational power of computers. However, the objects and domains of our continuous world
– whether they are used for scientific or geometric modeling – cannot usually be exactly represented
in the inherently finite systems of computers. Numerical simulation of systems and visualization of
objects must thus first go through a discretization of the domains of interest. This is generally achieved
by retaining only pointwise information from the real input, and linking these points together to form
a network that approximates the domain – a mesh. Numerical techniques and algorithms, such as
spectral method, combine a scientific model and a mesh to approximately simulate a system and have
imposed themselves as powerful and necessary tools in many different industries.

Figure 1: Two applications of meshes: the simulation of the pressure around the Orion capsule and
its launch escape system (left, [1]) and a video game (right, [109]).
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General Introduction

Despite a large number of theoretical and practical studies, the automatic generation of a mesh is
still a challenging problem. Indeed, the large amount of applications creates a wide range of different
types of domains that must be meshed, from intricate mechanical pieces to vast layers of crust, making
it difficult to provide a single satisfactory algorithm. Additionally, the desired mesh of a given domain
generally differs depending on the purpose of the mesh: in the context of simulation, the elements
forming a mesh must for example allow the adaptation of the model to this discretization. Finally,
the geometrical faithfulness of the mesh to the input and the shape of its elements are of tremendous
importance to obtain a faithful simulation or representation. These requirements on shape of the
elements of the mesh are diverse (angles, edge lengths, ...) and can be very specific to a model. For
instance, to ensure the numerical stability of a simulation using the Finite Element method in a three-
dimensional setting, it is necessary that the tetrahedra have bounded aspect ratio. The combination of
these independent constraints have made mesh generation the typical bottleneck in modeling, pushing
many industries to still spend weeks – and even months – generating meshes that fits their need
manually.

Figure 2: Multi-domain isotropic mesh of a human, [118].

Simplicial meshes

Meshes are generally made up of simple geometric elements for practical reasons: a mesh built
using simple polygons (or polyhedra) is simpler to generate, implement, or modify; in the context of
simulation, continuous models also are more easily adapted. For similar reasons, while it is possible
to use so-called hybrid meshes that simultaneously combine different kinds of geometric elements, it is
preferred to keep the same type of elements over the whole mesh. In the large amount of literature on
the subject, various types of elements have been studied such as quads, cubes, pentagons, hexahedra.

Meshes can be divided into two categories: structured meshes, that use regularly placed points and
identical elements, and unstructured meshes, whose points are irregularly placed and allow the shape
of the elements to vary. Unstructured meshes have become very popular for their flexibility, allowing
precise approximations of the domain. However, the increased faithfulness of the discretization is only
obtained at the cost of a more difficult mesh generation process.

Simplicial meshes, whose elements are triangles in a two-dimensional setting, tetrahedra in a three-
dimensional setting, and more generally n-simplices (the convex hull of n+1 points) in a n-dimensional
setting, constitute one of the most common types of meshes due to the simplicity of the base element.
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They have subsequently received much attention and are used in major numerical methods, such as
for example the finite element method. The quality of a simplex, generally determined by its closeness
to the regular simplex, is primordial to obtain accurate simulations and faithful representations. The
generation of an unstructured simplicial mesh must therefore avoid the creation of poorly shaped
simplices.

Delaunay triangulation

The Delaunay triangulation is an extensively studied simplicial mesh that is characterized by
many useful properties. While different definitions can be given, the Delaunay triangulation of a
set of points P is generally defined through the empty sphere property: the circumsphere of any
simplex in a Delaunay triangulation is empty of any other vertex of P. The Delaunay triangulation
is characterized by many useful properties and can be shown to be unique under mild assumptions.
Notably, it maximizes the smallest angle out of all the triangulations of a point set in a two-dimensional
setting, thus providing shape guarantees on the simplices of the mesh.

Figure 3: Delaunay triangulation (white) and Voronoi diagram (blue).

These good properties have made the Delaunay triangulation the basis of various structures, al-
gorithms and methods in diverse fields, ranging from surface reconstruction to crystallography. Con-
sequently, the generation of Delaunay meshes has received considerable attention and many ways are
available to construct the Delaunay triangulation of a set of points P. For example, edge flipping algo-
rithms are able to reach the Delaunay triangulation starting from any other triangulation of P. It can
also be obtained by constructing the convex hull of the set of points P lifted to a higher-dimensional
space. Finally, the Delaunay triangulation is intrinsically linked to another renowned structure of
computational geometry, the Voronoi diagram. The Voronoi diagram of a set of points can be seen as
a decomposition of space into domains of influence, also called Voronoi cells. The neighboring infor-
mation of the cells of a Voronoi diagram of a set of points provides a natural graph structure between
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points, which can be shown to be dual to the Delaunay triangulation of the points, thus providing
another way to build the Delaunay triangulation.

As important as the connectivity of the mesh, the placement of the points is crucial to generate
high-quality meshes. In early isotropic meshing techniques, Delaunay triangulations were constructed
from existing point sets generated through other means. The seminal works of Ruppert and Chew
incorporated the Delaunay triangulation in the generation of the point set: they introduced a two-
dimensional refinement algorithm based on the iterative insertion of the circumcenter of simplices
whose quality, in terms of size or circumradius to shortest edge ratio, is below a certain threshold. This
refinement algorithm is proven to terminate and provides guarantees on the quality of the simplices.
Building upon these results, more elaborate refinement algorithms have been devised to obtain robust
and quality-guaranteeing mesh generation algorithms for complex domains such as surfaces with sharp
features.

Anisotropic mesh generation

The ideal shape of simplex has so far been described as the regular simplex, but this is not always
the case. Many physical systems and objects naturally exhibit anisotropy, that is the presence of privi-
leged directions in the system: the flow of air, liquid or plasma in fluid dynamics and electromagnetism
are examples of natural phenomena characterized by anisotropy.

Figure 4: Simulation of fluids in a brain (left, [81]) and of a plasma chamber (right, [77]).

For models associated with anisotropy, the accuracy of the simulations has been shown to be
enhanced when elements are adapted to the anisotropy, meaning that the simplices are elongated
and follow the directionality of the anisotropy. From an equivalent point of view, the use of meshes
whose elements are stretched according to the anisotropy of the phenomenon requires a lower number
of elements to achieve the same precision of the result of the simulation. When stretched elements
are used, the mesh is said to be anisotropic. Additionally to providing increased accuracy in the
simulations of scientific modeling, anisotropic meshes also find use in geometric modeling as they can
improve the visualization of objects, and lower the number of vertices required to represent a shape or
interpolate a smooth function. By requiring fewer elements, anisotropic meshes thus provide another
way to accelerate mesh generation, and increase the quality and the speed of computations. Where
the main improvements in the accuracy of modeling only came from increased computation power and
denser meshes for isotropic meshes, anisotropic mesh generation offers another independent way to
obtain faster and more accurate results.
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While anisotropic meshes offer many benefits, their generation is also much harder than the tra-
ditional isotropic meshes. Due to its wide range of applications, several classes of methods have been
proposed, yet no solution is satisfying for all classes of domains and anisotropy. Moreover, while
isotropic meshes and their generation are now well studied from a theoretical point of a view, almost
all the algorithms on anisotropic mesh generation are heuristic. With this observation in mind, we
seek to develop methods that are both provable, robust, and practical.

Contributions

The different approaches that we consider in this thesis are all based upon extending the notions
of Voronoi diagrams and Delaunay triangulations to the anisotropic setting as we hope to benefit
from the known results and theoretical soundness of the isotropic Delaunay triangulation and Voronoi
diagram to generate anisotropic meshes with provable and practical meshing techniques. As all our
methods are based upon the same structures, we dedicate a chapter to introducing the notions that
will be used throughout this thesis. Our main chapters follow a logical progression, with each method
taking more metric information into account to determine the connectivity and placement of points
than the previous ones.

We begin with a thorough practical investigation of the framework of locally uniform anisotropic
meshes, a theoretically sound meshing technique proposed by Boissonnat et al. that is based on the idea
of constructing at each point a triangulation that is well adapted to the local metric. The theoretical
aspect of their approach has been extensively described, but its practicality is comparatively lesser
known. We detail our implementation, which is both more robust and faster than the one previously
presented in the short experiment investigation of the algorithm for surfaces, investigate the role of
the numerous parameters, and give some results. Limitations of the approach are then exposed, along
with our attempts to address those.

In the Euclidean setting, the Delaunay triangulation of a point set can be constructed by first gen-
erating the Voronoi diagram of the point set and then computing the dual of this diagram. Anisotropic
Voronoi diagrams have been considered to build anisotropic triangulations, however the dual of an
anisotropic Voronoi diagram is not necessarily a valid triangulation and elements can be inverted. Dif-
ferent distances are possible to create such anisotropic Voronoi diagrams. We consider in Chapter II.5
the anisotropic distance proposed by Labelle and Shewchuk. Along with the introduction of their
anisotropic distance, Labelle and Shewchuk presented a refinement algorithm that generates a point
set for which their anisotropic Voronoi diagram has a valid dual triangulation. However, their method
is limited to the setting of planar domains. We give requirements on point sets such that the dual of
the anisotropic Voronoi diagram is a nice triangulation and propose a refinement algorithm to gener-
ate such point set. Our proof links anisotropic Voronoi diagrams built using the distance of Labelle
and Shewchuk with the framework of locally uniform anisotropic meshes, relating along the way the
concepts of quasi-cosphericity (used in locally uniform anisotropic meshes) and of protection of a point
set. The second part of this chapter introduces a refinement algorithm based on the combination of the
alternative point of view of the anisotropic Voronoi diagram as the restriction of a high-dimensional
power diagram to a fixed paraboloidal manifold and the tangential Delaunay complex, a structure
used in manifold reconstruction that is well-adapted to the high-dimensional setting. We detail our
implementation, study its theoretical grounds and investigate the practicality of the algorithm.

Anisotropic Voronoi diagrams studied by previous authors compute and compare distances using
a fixed metric, justifying this approximation by invoking the computational and time complexity
of computing geodesics in a domain endowed with a metric field. In Chapter III.6, we introduce
discrete Riemannian Voronoi diagrams, an accurate approximation of Riemannian Voronoi diagrams
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that aims at palliating some of the disadvantages of using geodesics. The speed of classical geodesic
computations is greatly improved by the use of a non-embedded anisotropic graph generated with
the algorithm presented in Chapter I.4. The algorithm produced good results for planar and surface
domains. Chapters III.7 and III.8 are devoted to the proof of the theoretical soundness of our approach
first in two dimensions, and finally in any dimension.
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1. State of the Art

Anisotropic mesh generation

Due to its wide array of practical applications, anisotropic mesh generation has received consid-
erable attention and several classes of methods have been proposed. We categorize these past works
into three main categories: algorithms based on the concepts of the Delaunay triangulation and the
Voronoi diagram, algorithms based on an embedding of the input domain to simplify the problem,
and algorithm based on the optimization of particles. The boundaries between each category is not
hermetic and methods often draw from more than one of these categories. Approaches are sorted
according to what we felt was the primary category.

From a historical point of view, the generation of isotropic unstructured triangulations was origi-
nally tackled using packing, and advancing front (triangles or tets are placed from the boundary and
advance towards the interior of the domain) methods. Parameterization techniques are based on cre-
ating meshes in simpler domains and mapping them back to the original domain. Finally, Delaunay
refinement was introduced and combined iterative insertions with the Delaunay triangulation to offer
robust algorithms. Comprehensive descriptions of structured and unstructured meshing algorithms
have been published by Owen [113], and Frey and George [72].

The same chronology has been roughly followed in the context of anisotropic mesh generation.
Bossen and Heckbert proposed a method called pliant mesh generation that is based on the use of
repulsion, smoothing, insertion, and deletion within a loop. Similarly, Vallet combined insertion,
deletion, smoothing and re-meshing techniques [136].

Jiao [82] used the quadratic metric tensor of Heckbert and Garland [75] and proposed a set of edge
operations to allow anisotropic adaptation of a triangular mesh of a static or evolving surface.

Particle-based methods

Modifying the position of a point is a popular technique in mesh generation and optimization [132].

Shimada proposed a series of algorithms based on the packing of bubbles with the idea that they
provide good approximations of the Voronoi diagram. The bubble method can be summarized as a
sequence of two steps: pack spheres (or bubbles) closely in the domain, and connect their centers. First
applied to isotropic mesh generation [129], Shimada extended this idea to the anisotropic setting by
considering ellipses instead of spheres [130], and to three-dimensional domains using ellipsoids [142].

Adaptive Smoothed Particle Hydrodynamics by Shapiro, anisotropic mesh adaptation.

Optimal Delaunay triangulations were introduced by Chen et al. [44, 42, 43] as the triangulation
that minimizes the interpolation error ‖u− û‖ of a function u and its piecewise interpolation û over
the mesh. The advantage of this minimization is double as it is both topological and geometrical.
First applied to isotropic mesh generation using u(x) = x2 [6, 134], optimal Delaunay triangulations
were naturally extended to anisotropic metric fields derived from the Hessian of a convex function
through the use of weighted Delaunay triangulations [97, 106]. However, as shown by Boissonnat et
al. [16], a Riemannian metric field generally cannot be expressed as the Hessian of a convex function.
Chen et al. [42] attempted to palliate this restriction by locally approximating the metric field with
local convex functions, but their algorithm may fail to converge or achieve the desired anisotropy. Fu
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et al. [73] tweaked this approach by including feedback from the neighboring vertices in the expression
of the local energy, with more success.

The smoothing process that is inherent to any method based on optimization is a double-edged
sword: while it provides visually pleasant meshes and makes methods robust to geometric or metric
noise, it can also result in the loss of anisotropy in regions of a domain where the metric field is changing
rapidly as the result of multiple smoothing creates an isotropic mesh. Furthermore, smoothing is often
badly controlled in the case of piecewise inputs, with the metric field on a polygonal face dribbling on
the adjacent faces. Finally, none of these methods can prove that their optimization process converges
or that the mesh is an anisotropic mesh of good quality.

Delaunay refinement

The good properties of the Delaunay triangulations have made it a powerful tool in mesh genera-
tion.

In early isotropic meshing techniques, Delaunay triangulations were constructed from existing
point sets, generated through other means. Incorporating the Delaunay structure of the point set in
the generation of the point set was pioneered in 2D by Chew [52] and Ruppert [123]. They proposed
to iteratively insert the circumcenters of triangles that do not fit a given set of criteria, such as the size
or shape of elements. This technique allowed to generate meshes with lower bounds on the smallest
angle of triangles and was then extended to 3D domains. In 3D, although no guarantee can be made
on the dihedral angles of simplices, the radius-edge ratio of tetrahedra can be shown to be bounded.

An efficient algorithm to insert a vertex in an isotropic Delaunay triangulation, now known as
the Bowyer-Watson algorithm, was proposed simultaneously and independently by Bowyer [34] and
Watson [138]. The simplices whose Delaunay ball contains the simplex are collected and removed from
the triangulation, which forms a cavity. Linking the refinement point to the vertices of the border of
the cavity creates the new Delaunay simplices of the triangulation.

In the context of anisotropy, the generation of points was also originally done independently from
the construction of the triangulation, using for example anisotropic quad trees. Mavriplis first con-
sidered the idea of stretched Delaunay methods [102, 135, 103] and using nodes generated from an
anisotropic advancing front technique; the connectivity is set by first constructing a large isotropic
mesh and then inserting vertices with the Bowyer-Watson algorithm adapted to the anisotropic set-
ting. The stretching of the space is obtained by computing gradients of the solution. Good results were
achieved, but the swapping techniques employed do not extend nicely to higher-dimensional settings.

Borouchaki et al. [33] formalized the approach of stretching spaces of Mavriplis through the use of
Riemannian metric tensors and introduced the anisotropic Delaunay kernel, their anisotropic version of
an anisotropic Bowyer Watson algorithm. Along with this new insertion algorithm, they introduced a
Delaunay refinement algorithm based on edge swapping, merging and splitting techniques to generate
meshes whose edges’ lengths are close to 1 in the metric at each of their endpoints. Many developments
have sprouted from this approach: 3D mesh generation [60], periodic anisotropic mesh generation [61],
metric-orthogonal mesh generation [101].

While these algorithms produce good results and have seen much use in the context of computa-
tional fluid dynamics [4], theoretical results are limited for these algorithms and there are no guarantees
on either the termination or the robustness of algorithms, nor on the quality of the elements produced
by these techniques.

A theoretically sound approach to anisotropic Delaunay triangulations was proposed by Boissonnat
et al. [30], who introduced the framework of locally uniform anisotropic meshes. In their algorithm,
the star of each vertex v is composed of simplices that are Delaunay for the metric at v. Each star is
built independently and the stars are stitched together in the hope of creating an anisotropic mesh.
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The star structure was first introduced by Shewchuk [128] to handle moving vertices in finite element
meshes and considering stretched stars was first proposed by Schoen [126]. Two stretched stars may
be combinatorially incompatible, a configuration called an inconsistency. Boissonnat et al. proved
that inconsistencies can be resolved by inserting Steiner points, yielding an anisotropic triangulation.
The algorithm works in any dimension, can handle complex geometries and provides guarantees on
the quality of the simplices of the triangulation. This algorithm will be investigated thoroughly in
Chapter I.4.

Voronoi diagrams

The well-known duality between the Euclidean Voronoi diagram and its associated Delaunay tri-
angulation has inspired authors to compute anisotropic Voronoi diagrams, with the hope of obtaining
a dual anisotropic triangulation.

The approaches of Labelle and Shewchuk [89] and Du and Wang [64] aim at approximating the
geodesic distance between a seed and a point of the domain by considering that the metric is constant
and equal to the metric at the seed (in the case of Labelle and Shewchuk [89]) or at the point (in the case
of Du and Wang [64]). Contrary to the isotropic setting, the dual of an anisotropic Voronoi diagram
is not necessarily a triangulation and inverted elements can be present in the dual triangulation. The
algorithms were initially introduced for two-dimensional (Labelle and Shewchuk [89]) and surface (Du
and Wang [64]) domains and have since then been studied and extended by various authors. Canas
and Gortler [38] proved that point sets could be generated (in 2D) such that the dual of the Voronoi
diagram obtained with the distance of Du and Wang is a triangulation. The approach of Labelle
and Shewchuk was shown to be theoretically sound in 2D, but the approach of the proof does not
extend to higher dimensions. This result was extended to surfaces by Cheng et al. [50] by locally
approximating the surface with a plane and then using a density argument similar to the proof of
Canas and Gortler [38].

Centroidal Voronoi tessellations, which are Voronoi diagrams for which the seeds are the centers
of mass of their associated Voronoi cell, are known to create elements of good quality. The famous
Lloyd algorithm [100] iteratively moves the seeds to the center of mass of their respective cell and
recomputes the Voronoi diagram of this new seed set. This algorithm was modified to be used in the
anisotropic Voronoi diagram of Du and Wang, but the process is computationally expensive.

Embedding and parametrization

The generation of anisotropic meshes being a difficult problem, various authors have tried to
simplify the problem by preemptively transforming the input domain to a target domain that is easier
to study and mesh. The connectivity of a mesh generated in this simpler setting is then transported
back to the input point set, creating – if the deformation is well chosen – a triangulation of the input
with elements stretched as desired. Although isometric embeddings are theoretically usable and would
have the benefit of translating the problem to the familiar setting of isotropic mesh generation, but
they are not necessarily the optimal solution. Indeed, the dimension of the embedding space is often
large and due to the curse of dimensionality, traditional methods of mesh generation cannot efficiently
be applied. Alternative methods must thus be considered to compute both the embedding and the
generation of a mesh in the deformed space.

Lévy and Bonneel [92] proposed to lift an input surface mesh embedded in a 3D space by adding
to the coordinates of the vertices the coordinates of the normal to the surface, hence obtaining six-
dimensional points. They then compute an high-dimensional Euclidean centroidal Voronoi diagram,
made efficient through the use of Voronoi Parallel Linear Enumeration. Unfortunately, no control is
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Chapter 1. State of the Art

given to the user over the choice of the metric field. To overcome this problem, Zhong et al. [144]
incorporated metric information in their high-dimensional repulsive vertex-repositioning technique, al
Nivoliers et al. [110] added features.

While these works claim to produce curvature-adapted anisotropic meshes, the results are often
closer to an isotropic mesh whose features (sharp edges) have been meshed anisotropically, which does
not provide any of the benefits that a curvature-based metric field offers. For example, meshes of
cylinder-shaped parts of the input have isotropic elements on the bases and side, with anisotropic
elements only appearing along the (circular) border of the bases. While theses meshes are certainly
anisotropic, they do not stretch or even follow the principal curvatures of the surface and thus do
not help providing a better approximation for a lesser amount of vertices as a proper curvature-based
mesh would [56].

Zhong et al. [145] proposed to use a conformal parameterization of the domain upon which they
compute a weighted centroidal Voronoi diagram whose connectivity is mapped back to the original
point set. Their approach is however slow and the dimension of the embedding is unknown, requiring
a tedious incremental search.

None of these methods can prove that the result is a triangulation in the lower dimension and
often require post-processing such as the use of hole filling techniques.

Quad and polygonal anisotropic mesh generation

Anisotropic mesh generation is not restricted to simplicial meshes and it is interesting to consider
what has been done for quadrangular or polygonal meshes as one can build a correspondence between
quadrangular and triangular meshes, and between hexahedral and tetrahedral meshes, the anisotropic
mesh generation techniques for non-simplicial meshes are relatively similar to those presented above:
packing methods, optimization, etc.

Alliez et al. [5] proposed an algorithm based on the idea of following curvature lines as done in
sketches to produce anisotropic quad-dominant meshes of surface. While giving good result, this
method is heuristic, relies on a heavy parameterization of the domain and a produces a large number
of polygonal elements, making it difficult to use in scientific simulations. The latter issue was remedied
by Marinov and Kobbelt who extended the technique as to not rely on a global parameterization of
the mesh, but the anisotropy poorly conforms to the curvature.

Embedding techniques have also been considered in the context of quadrangular mesh generation,
for example by Panozzo et al. [114], who warped an input frame field on a surface into a cross field
without increasing the dimension. Consequently, the surface contains self intersections, but they can
nevertheless create an isotropic quad mesh of the deformed surface.

10



2. Background

The different approaches to anisotropic mesh generation considered in this thesis share a common
core of notions: anisotropy is expressed through Riemannian metric tensors, final meshes are simplicial
complexes, and all our algorithms are built upon the concepts of Voronoi diagrams and Delaunay
triangulations. In this chapter, we recall the definitions of objects and structures that will be regularly
used in the following chapters.

Metrics and metric fields are introduced to quantify the desired anisotropy over a domain. We
detail basic operations such as the interpolation of metrics and the smoothing of metric fields. The
concept of distortion, which was introduced by Labelle and Shewchuk [89] and allows to measure
metric variation, is recalled.

Riemannian geometry is found in all chapters, and we thus present essential notions such as geodesic
path, geodesic distance, and exponential map.

The Voronoi diagram and the Delaunay triangulation are the basis of all our work. In Chapter I.4,
we will study Delaunay triangulations computed in an anisotropic metric. In Chapter II.5, we prove
results on anisotropic Voronoi diagrams and adapt the tangential complex, a structure based on
the Delaunay triangulation, to generate anisotropic meshes. Finally, in Chapter III.6, we introduce a
practical approach to the computation of Riemannian Voronoi diagrams. We thus recall the definitions
of Voronoi diagram and Delaunay triangulation in the general setting of Riemannian geometry, but
also in the particular case of the Euclidean distance.

Lastly, the definition of nets, which are point sets with assumptions on density and sparsity, is
given. Nets are constantly used throughout this thesis to construct structures with guarantees on
the quality of the elements. Alongside nets, the concept of protection of point set is introduced.
Power protection is a specific assumption made on Delaunay triangulations, which allows us to deduce
another set of quality guarantees on the elements of the triangulation.
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2.1 Basic notions

We usually consider an n-dimensional (open) domain Ω in R
n, or an m-manifold M embedded

in the n-dimensional Euclidean space R
n. Euclidean distances are determined by the standard norm,

‖·‖
E
. We refer to the distance between two points p and q as ‖q − p‖ or d(p, q). A ball B(c, r) is

the set of points x of Rn such that d(c, x) < r. The boundary of a set X is denoted by ∂X and its
affine hull by Aff(X). The cardinality of a finite set P is #(P) or |P|. A bijection is a one-to-one
correspondence between two sets. A homeomorphism is a continuous bijection whose inverse is also
continuous. A diffeomorphism is a differentiable homeomorphism whose inverse is also differentiable.

2.2 Metric tensor

The adaptation of meshes based on a metric tensor was introduced by Borouchaki et al. [33, 59, 76]
and has imposed itself as the standard way to describe and prescribe anisotropy. A metric tensor, or
simply a metric, in R

n is defined by a symmetric positive definite (SPD) quadratic form, represented
by a n× n matrix G. The quadratic form defines an inner product

〈u, v〉G = utGv = 〈u,Gv〉,

and the norm of a vector u with respect to G is then given by

‖u‖G =
√
〈u, u〉 =

√
utGu.

Using this norm, the distance between two points p and q in Ω can be measured in the metric G as

dG(x, y) = ‖x− y‖G =
√

(x− y)tG(x− y).

This definition can be naturally extended to higher-dimensional G-volume measures by integration.

Given a metric G, the G-sphere SG(c, r) with center c and radius r is the set of points p such
that dG(c, p) = r, and, likewise, the closed G-ball BG(c, r) is defined as the set of points p such
that dG(c, p) ≤ r. A metric G can be visualized by its unit sphere SG(c, 1), which is an ellipsoid in R

n.
Indeed, since G is a SPD matrix, it is diagonalizable as G = OTDO, where O is an orthogonal matrix
and D is a diagonal matrix. The equation of the unit sphere is

xTGx = 1 ⇐⇒ xTOTDOx = (Ox)TD(Ox) =
n∑

i=1

((Ox)i)
2 λi = 1

12



2.2. Metric tensor

One recognizes the equation of an ellipsoid with semi-axis lengths 1/
√
λi. Since O is an orthonormal

matrix, it can also be seen as a rotation matrix and the unit sphere in the metric is thus an ellipsoid
in R

n whose axes’ directions are given by the eigenvectors {vi} of G and whose semi-axis lengths are
equal to 1/

√
λi in the direction vi, where λi is the eigenvalue corresponding to vi. Incidentally, this

construction proves that there is a natural bijection between ellipsoids and metrics.

√

1

λ1

√

1

λ3

√

1

λ2

Figure 2.1: Representation of a 3D metric with eigenvalues λ1, λ2 and λ3 as an ellipsoid.

Metric transformation Given a symmetric positive definite matrix G, we denote by F any matrix
such that det(F ) > 0 and F tF = G. The matrix F is called a square root of G. The square root
of a matrix is not uniquely defined: the Cholesky decomposition provides, for example, an upper
triangular F , but it is also possible to consider the diagonalization of G as OTDO, where O is an
orthonormal matrix and D is a diagonal matrix; the square root is then taken as F = OT

√
DO. The

latter definition is more natural than other decompositions since
√
D is canonically defined and F is

then also a symmetric definite positive matrix, with the same eigenvectors as G. Regardless of the
method chosen to compute the square root of a metric, we assume that it is fixed and identical for all
the metrics considered.

The square root F offers a linear bijective transformation between the Euclidean space and a
metric space, noting that

dG(x, y) =
√

(x− y)tF tF (x− y) = ‖F (x− y)‖ = ‖Fx− Fy‖ ,

where ‖·‖ stands for the Euclidean norm. Thus, the metric distance between x and y in Euclidean
space can be seen as the Euclidean distance between two transformed points Fx and Fy living in the
metric space of G.

2.2.1 Metric field

The desired anisotropy ratio and directions are generally not constant over the domain and a
single metric is thus not sufficient to completely express anisotropy. A metric field g, defined over a
domain Ω ⊂ R

n, associates a metric g(p) = Gp = F tpFp to any point p in Ω. When the map g : p 7→ Gp
is constant, the metric field is said to be uniform.

In the following, we shall replace the subscript Gp by p to avoid double subscripts, and simply write
Xp instead of XGp . Figure 2.2 shows two metric fields defined over a planar domain, the Euclidean
metric (left), and a radial metric field (right) whose definition is detailed in Section A.6 in Appendix A.
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Chapter 2. Background

Figure 2.2: Isotropic (left) and anisotropic (right) 2D metric fields. The metric at each sample point
is expressed by its (2) eigenvectors, each scaled by its respective eigenvalue.

In the following, we assume that Ω ⊂ R
n is a compact domain endowed with a continuous Lipschitz

metric field g.

Ambient and intrinsic metric fields

If the domain is a m-manifoldM embedded in an ambient space of dimension n, metric fields can
be defined in the ambient space (the metric is given by a n× n SPD matrix), but also intrinsically on
the manifold (the metric at p ∈ M is then represented by a m ×m SPD matrix whose eigenvectors
live in the tangent space TpM).

Since the intersection of an ellipsoid with an affine space is a lower-dimensional ellipsoid [87], it is
possible to go from the ambient to the intrinsic setting (but not conversely).

2.2.2 Distortion

The notions of metrics and metric fields are introduced to convey the stretching of spaces. To
create a solid theoretical framework, it is required to be able to express how differently two metrics
see distances and geometrical objects. For this purpose, Labelle and Shewchuk [89] introduced the
concept of distortion between two metrics. We recall here their definition. Properties and limitations
as well as a new alternative that remedy those shortcomings are proposed in Section 3.1 in Chapter 3.

Defining distortion: first approach

Labelle and Shewchuk [89] introduced the concept of distortion between two points p and q of Ω
as

ψ(p, q) = ψ(Gp, Gq) = max
{∥∥∥FpF−1

q

∥∥∥ ,
∥∥∥FqF−1

p

∥∥∥
}
,

where ‖·‖ is the Euclidean matrix norm, that is ‖M‖ = supx∈Rn
‖Mx‖

‖x‖ . Observe that ψ(Gp, Gq) ≥ 1

and ψ(Gp, Gq) = 1 when Gp = Gq.
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2.2. Metric tensor

A fundamental property of the distortion is to relate the two distances dGp and dGq . Specifically,
for any pair x, y of points, we have

1

ψ(p, q)
dGp(x, y) ≤ dGq(x, y) ≤ ψ(p, q) dGp(x, y). (2.1)

Indeed,

dp(x, y) =
∥∥∥Fp(x− y)

∥∥∥ =
∥∥∥FpF−1

q Fq(x− y)
∥∥∥ ≤

∥∥∥FpF−1
q

∥∥∥
∥∥∥Fq(x− y)

∥∥∥ ≤ ψ(Gp, Gq) dq(x, y),

and the other inequality is obtained similarly.

Remark 2.2.1 The distortion provides a measure of difference between metrics, but there is no direct
link between distortion and anisotropy. For example, it is possible for two metrics to have a low
distortion but to encode very large anisotropy. The extreme case is that of a uniform metric field
where the distortion is 1 between any two points but the anisotropy ratio can be as large as desired.

Despite being easy to define and compute, this definition lacks a geometrical understanding. Addi-
tionally, the guarantee of good behavior of algorithms will often come through bounds on the distortion
between neighboring sample points. While it is possible to extract a sampling condition from a distor-
tion bound, it requires unreasonable assumptions on the metric field, see Section 3.1 in Chapter 3. For
these reasons, we will introduce a new alternate definition of distortion in Section 3.1 in Chapter 3.

Distortion of multiple points The distortion between two points can naturally be extended to
sets of points, domains or objects as the maximum distortion between any two points of the structure
considered. For example, the distortion of a simplicial complex K is given by

ψ(K) = max
pi,pj∈K

ψ (pi, pj) .

2.2.3 Operations on metric fields

We detail in this section some basic operations on metric fields that are sometimes required in
practice.

Interpolation of metrics

Although our definition of metric field is continuous, a metric field is not always provided continu-
ously in input. For example, the computation of a metric field derived from the Hessian of the solution
of a partial differential equation or from the numerical estimation of the curvature of a piecewise do-
main usually yields a metric field that is known only at the vertices of the input mesh. To provide
knowledge of the metric field at new or displaced vertices, we must be able to extend a discrete metric
field continuously over the complete domain.

The estimation of the metric field at a query point p on Ω is done by locating p in the domain and
interpolating the metrics of neighboring vertices. These neighboring vertices are either known ahead of
the interpolation or computed through (isotropic or anisotropic) nearest neighbor search algorithms.
The weight of a point is usually based on the anisotropic distance between this point and the query
point. If the input domain is a simplicial complex (see Section 2.5), fast algorithms are known [58]
to locate queries. If the neighbors are defined as the vertices of the simplex that contains the query,
barycentric coordinates are a natural choice for weights.

Once the neighbors and their respective weights are known, various interpolation techniques can
be used. We now recall some of these techniques, along with their properties. Further details can be
found in the works of Kindlmann [86].
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Linear The linear interpolation of a family of matrices {Gi}i=1...N with associated (positive) weights
{ωi}i=1...N such that

∑
i ωi = 1 is defined by

G =
N∑

i=1

ωiGi

G is a positive combination of symmetric tensors and therefore has no negative eigenvalues. This
property can be proved by contradiction. Assume that G has some negative eigenvalues. Then there
exists a vector x that satisfies xtGx =

∑
i=1...N

ωix
tGix < 0. Since all Gi are symmetric tensors,

xtGix ≥ 0 and, since according to the definition, ωi ≥ 0, we have xtGx ≥ 0, which provides a
contradiction.

The simplicity of the definition and the implementation of the linear interpolation comes at the
cost of a “swelling effect” on the interpolated metric: the determinant of the interpolated tensor is
greater than those of the interpolated metric tensors.

Ellipse intersections Borouchaki et al. [33] proposed various types of interpolations, and in par-
ticular used the geometric representation of metrics as ellipsoids to define the intersection of ellipses.
The intersection of two metrics is given by the largest ellipsoid that can be fitted in the geometrical
intersection of the two ellipsoids. From an analytical point of this view, this can be computed through
simultaneous reduction of the metric tensors. It is however non-commutative and is difficult to use
with multiple metrics.

Affine-Euclidean Batchelor et al. [13] sought to create a rigorous framework for the interpolation of
metric tensors. They define the interpolation between two metric tensors by considering the geodesic
between these two metrics in the space of metric tensors. When interpolating between more than 2
metrics, this requires solving numerically a system, making it inexact and expensive to compute.

Log-Euclidean The Log-Euclidean Fréchet mean was introduced by Arsigny et al. [10]. Contrary
to the geodesic-loxodrome and affine-Euclidean interpolations, it has the advantage of being easy and
fast to compute.

For a family of metrics {Gi}i=1...N and associated weights {ωi}i=1...N such that
∑
i ωi = 1, the

interpolated metric is given by:

G = exp

(
n∑

i=1

ωi ln(Gi)

)
,

where the matrix exponential is given by the series

exp(M) =
∞∑

k=0

Mk

k!
.

If M is diagonalizable with decomposition M = P−1∆P , where ∆ = Diag{λ1, . . . , λn}, then
(
P−1
L ∆LPL

)k
=
(
P−1
L ∆LPL

) (
P−1
L ∆LPL

)
. . .
(
P−1
L ∆LPL

) (
P−1
L ∆LPL

)

︸ ︷︷ ︸
k

= P−1
L ∆k

LPL,

and Mk = P−1∆kP . The exponential is therefore directly applied to the entries of the diagonal
matrix:

exp(M) = P−1 exp(∆)P = P−1




eλ1

. . .

eλn


P. (2.2)

16



2.2. Metric tensor

The logarithm of a matrix is defined as the inverse operator of the exponential, and, similarly, we have
for diagonalizable matrices that

ln(M) = P−1 ln(∆)P.

The matrix L =
∑n
i=1 ωi ln(Gi) is a well-defined metric tensor. It is symmetric, so it is diagonal-

izable with real eigenvalues as L = P−1
L ∆LPL. As for Equation 2.2, we have

G = exp(L) = P−1
L exp(∆L)PL.

The interpolated G is symmetric positive definite, and is thus a metric.
Note that the Log-Euclidean interpolation reduces to a geometric mean of the family of matrices

if the matrices commute:

exp

(
n∑

i=1

ωi ln(Mi)

)
=

n∏

i=1

Mωi
i

Figure 2.3 the Log-Euclidean interpolation of three random metric tensors defined at the vertices
of a triangle and their interpolation at various points of the triangle.

Figure 2.3: Log-Euclidean interpolation of three random metric tensors (colored red, green and blue).

Conveniently, the Log-Euclidean interpolation can be directly computed on the square root Fp.
Indeed, the interpolated of the family {Fi} of square roots of {Gi} with the weights ωi is given by

F = exp

(∑

i

ωi ln (Fi)

)
.
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We have on the other hand that

G = exp

(∑

i

ωi ln
(
F ti Fi

))

= exp

(∑

i

ωi ln
(
F ti

)
+
∑

i

ωi ln
(
Fi

))
since Fi and F ti commute

= exp

(∑

i

ωi ln
(
F ti

))
exp

(∑

i

ωi ln
(
Fi

))

=

(
exp

(∑

i

ωi ln
(
Fi

)))t
exp

(∑

i

ωi ln
(
Fi

))
= F tF ,

using ln(M t) = ln(M)t and exp(M t) = exp(M)t. This is particularly useful in the context of lo-
cally uniform anisotropic meshes (see Chapter I.4), where we make extensive use of the stretching
transformation provided by Fp.

Metric interpolation and distortion The distortion between metrics plays a central role in the
generation of anisotropic meshes. When judging the quality of an anisotropic mesh, one evaluates the
shape of its elements, by for example computing its smallest angle. Naturally, this evaluation must be
done in the metric and we usually evaluate the shape of an element in the metrics of all of its vertices.
Therefore, the lower the distortion, the easier it is to create anisotropic elements that conform to the
metric field.

Not only is the Log-Euclidean the fastest and easiest method to compute among those described
above, but it is also the interpolation technique that produces – on average – the lowest distortion
when interpolating the metrics of the vertices of an element and the refinement point of that element
(which is generally its circumcenter as we study Delaunay complexes, see Section 2.6).

Geodesic-loxodrome Kindlmann et al. [86] introduced another form of interpolation as a shortest
path in the tensor space: they impose that the path between two metrics should keep the same bearing,
that is the same shape. The interpolation between both metrics is thus a geodesic, but only on the
tensor space of metrics with the same shape. This results in a finer interpolation between tensors
and especially avoids the appearance of isotropic tensors during the interpolation of two very different
anisotropic tensors, which might sometimes happen in other methods. However, the interpolation is
obtained through numerical computations, and is more complex than the Log-Euclidean and thus was
discarded.

Smoothing of metric fields

In practice, noise is often present in a metric field and can have different sources: a geometrically
imprecise input, inaccuracies in the solution evaluation, or simply a poor numerical evaluation of the
metric field (for example, in the computation of the curvature). Smoothing a metric field correspond
to (closely) approximating it by a more regular metric field that leaves out highly local and rapid
variations. Our smoothing process of a metric field is described below.

Denote Np a chosen set of neighboring vertices of p (for example the geodesic k-nearest vertices of
p in the domain). The smoothed metric tensor G̃p at a vertex p is computed from Gp and from the
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metric tensors Gq at neighboring vertices q ∈ Np, using the interpolation operator previously defined:

G̃p = exp


ω(p, p) ln(Gp) +

∑

q∈Np
ω(p, q) ln(Gw)




with

ω(p, q) = µ(p, q)

/
µ(p, p) +

∑

q∈Np
µ(p, q)




where µ(p, q) = e−‖p−q‖2/r2
and r is a parameter that controls the locality of the smoothing. By

default, r can be computed by averaging the distance to the vertices in Np. The interpolant G̃p is a
metric tensor by construction from the Log-Euclidean interpolation.

Remark 2.2.2 Our smoothing operation is based on the Log-Euclidean interpolation (defined in Sec-
tion 2.2.3), but any other interpolation could be also used to define another smoothing operator.

2.3 Riemannian geometry

Ideally, the computation of the anisotropic distance between two points would use the metric
field information continuously. From a theoretical point of view, this corresponds to the framework
of Riemannian geometry. This theoretical setting will be regularly used and we thus recall some
definitions of differential geometry.

A path between two points x, y of Ω is a function γ : [0, 1]→ Ω such that γ(0) = x and γ(1) = y.
The Riemannian length of a path γ is defined as

ℓg(γ) =

∫ 1

0

√
γ̇(t)tg(γ(t))γ̇(t) dt.

A geodesic between x and y is a locally length-minimizing curve. Let Γ(x, y) be the set of paths from
x to y on Ω: Γ(x, y) = {γ : [0, 1] → Ω | γ(0) = x and γ(1) = y}, we define the Riemannian geodesic
distance between two points as given by

dg(x, y) = min
γ∈Γ(x,y)

ℓg(γ).

The shortest path between x and y is given by arg min dg(x, y). In the following, we replace the
subscript dg by simply g to avoid double subscripts, and write Xg instead of Xdg .

Remark 2.3.1 We define the geodesic distance dg(x, y) between two points as the length of the shortest
path between x and y and not the length of any geodesic between x and y.

Most geometrical objects previously described can be generalized using the geodesic distance. For
example, the geodesic (closed) ball centered on p ∈ Ω and of radius r is given by Bg(p, r) = {x ∈ Ω |
dg(p, x) ≤ r}. Equation 2.1, which relates distortion and distances for two metrics, can be extended
to relate geodesic distances with respect to two metric fields g and g′ (see Lemma 3.1.4).

Let v be a vector living in the tangent space TpM. From the unique geodesic γ satisfying γ(0) = p
with initial tangent vector γ̇, one can define the exponential map exp(v) : TpM→M by exp(v) = γ(1).
If geodesics can be extended infinitely, the manifold is said to be geodesically complete. When M is
geodesically complete, the exponential map is defined over the whole tangent space, but this does not
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imply that the exponential map is a homeomorphism over the whole tangent space. The injectivity
radius at a point p ofM is the largest radius for which the exponential map at p is a diffeomorphism.
The injectivity radius of the manifoldM is defined by the infimum of the injectivity radii at all points.
For any p ∈M and for a two-dimensional subspace H ⊆ TpM, we define the sectional curvature at p
for H as the Gaussian curvature at p of the surface expp(H).

In the theoretical studies of our algorithm, we will generally assume that the domainM is geodesi-
cally complete and has no boundaries in order to avoid punctures.

2.4 Voronoi diagram

The Voronoi diagram of a set of points P = {pi} with respect to a distance function d, denoted
by Vord(P), is a partition of a domain Ω in a set of regions {Vd(pi)}. The region Vd(pi) is called the
Voronoi cell of the seed pi and is defined by

Vd(pi) = {x ∈ Ω | d(pi, x) ≤ d(pj , x),∀pj ∈ P \ pi}.

For a fixed set of seeds, different distances naturally produce different Voronoi diagrams.
We will make regular use of a number of geometrical objects related to Voronoi diagrams. A

Voronoi face is the intersection of a set of Voronoi cells. Specifically, a Voronoi k-face is a face of
dimension k and is the intersection of n+ 1− k Voronoi cells. The boundary of a Voronoi k-face W is
the union of the (k− 1)-faces that are incident to W . If the dimension of the face is 0 or 1, the terms
Voronoi vertex and Voronoi edge are respectively employed. The bisector of two seeds p and q is the
set BS(p, q) = {x ∈ Ω, d(p, x) = d(q, x)}. An orphan is a region of a cell that is not connected to its
seed.

Voronoi diagrams have been intensively studied for various metrics, such as the Euclidean metric,
the Manhattan and Moscow metrics [112], or Lp metrics [93]. We focus on the Euclidean Voronoi
diagram, defined using the Euclidean distance, and the Riemannian Voronoi diagram, defined using
the geodesic distance. The former is presented below, and the latter is detailed in Section 2.8.

2.4.1 Euclidean Voronoi diagram

When the Euclidean distance dE is used, the (Euclidean) Voronoi cell Vi of pi is defined by

VE(pi) = {x ∈ Ω | ‖pi − x‖ ≤ ‖pj − x‖ ,∀pj ∈ P \ pi}.

The subspace of points equidistant to two seeds p, q with respect to dE is given by

BS(p, q) = {x ∈ Ω | dE(p, x) = dE(q, x)}.

Since
|x− p|2 = |x− q|2 ⇐⇒ 2x(p− q) + q2 − p2 = 0,

the bisector of two seeds in an Euclidean Voronoi diagram is an hyperplane and a Voronoi cell is thus
the intersection of a set of half-spaces forming a (possibly unbounded) convex polytope.

2.5 Simplices and complexes

Before defining Delaunay triangulations, we introduce the more general concept of simplicial com-
plexes. Since the standard definition of a simplex as the convex hull of a set of points does not extend
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well to the Riemannian setting (see Dyer [65]), we approach these definitions from a more abstract
point of view.

A simplex σ is defined as a non-empty finite set. The elements of σ are called the vertices of σ
and the set of vertices of σ is noted Vert(σ). The dimension of σ is given by dim σ = #(σ)− 1, and
a j-simplex refers to a simplex of dimension j. If a simplex σ is a subset of τ , we say that it is a
face of τ , and write σ ≤ τ . A 1-dimensional face is called an edge and a facet of τ is a face σ with
dim σ = dim τ − 1.

For any vertex p ∈ σ, the face opposite to p in σ is the face determined by the other vertices
of σ, and is denoted by σp. If σ is a j-simplex, and p is not a vertex of σ, we may construct
a (j + 1)-simplex τ = p ∗ σ, called the join of p and σ as the simplex defined by p and the vertices
of σ.

The length of an edge is the distance between its vertices. A circumscribing ball for a simplex σ is
any n-dimensional ball that contains the vertices of σ on its boundary. If σ admits a circumscribing
ball, then it has a circumcenter, C(σ), which is the center of the unique smallest circumscribing ball
for σ. The radius of this ball is the circumradius of σ, denoted by R(σ). The height of p in σ
is D(p, σ) = d(p,Aff(σp)). The dihedral angle between two facets is the angle between their two
supporting planes. If σ is a j-simplex with j ≥ 2, then for any two vertices p, q ∈ σ, the dihedral
angle between σp and σq defines an equality between ratios of heights (see Figure 2.4).

sin∠(Aff(σp),Aff(σq)) =
D(p, σ)

D(p, σq)
=

D(q, σ)

D(q, σp)
.

p

q

u

v

u

v

p

q

θ

θ

D(p, σ)D(p, σq)

Figure 2.4: Acute and obtuse dihedral angles

2.5.1 Simplicial complexes

Simplicial complexes form the underlying framework of Delaunay triangulations. An abstract
simplicial complex is a set K of simplices such that if σ ∈ K, then all the faces of σ also belong to K.
The union of the vertices of all the simplices of K is called the vertex set of K. The dimension of a
complex is the largest dimension of any of its simplices. A subset L ⊆ K is a subcomplex of K if it
is also a complex. Two simplices are adjacent if they share a face and incident if one is a face of the
other. If a simplex in K is not a face of a larger simplex, we say that it is maximal. If all the maximal
simplices in a complex K of dimension n have dimension n, then the simplicial complex is pure. The
star of a vertex p in a complex K is the subcomplex S formed by set of simplices that are incident to
p. The link of a vertex p is the union of the simplices opposite of p in Sp.
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Chapter 2. Background

A geometric simplicial complex is an abstract simplicial complex whose faces are materialized, and
to which the following condition is added: the intersection of any two faces of the complex is either
empty or a face of the complex.

Figure 2.5: A simplicial complex (left) and a pure simplicial complex (center). On the right, the star
of the white vertex is highlighted in blue, and its link in red.

2.6 Delaunay complex

The Delaunay complex has been widely studied and a few equivalent definitions are possible. We
choose to stay in an abstract setting, in accordance with the way we introduced simplicial complexes.

A Delaunay ball is a maximal empty ball. Specifically, B = B(x, r) is a Delaunay ball if any empty
ball centered at x is contained in B. A simplex σ is a Delaunay simplex if there exists some Delaunay
ball B such that the vertices of σ belong to ∂B ∩ P. The Delaunay complex is the set of Delaunay
simplices, and is denoted by Del(P).

A cosphericity is the configuration where n+2 points lie on the same (n+1)-sphere. This degenerate
configuration must be avoided to preserve the uniqueness of the Delaunay triangulation for a set of
points. In the following, we always assume that the vertices in P are in general position, meaning that
there is no cosphericity in the point set.

2.7 Duality of the Delaunay and Voronoi structures

The nerve of a finite covering C is defined as N (C) := {D ⊆ C | ∩D 6= ∅}. We follow the definition
of Edelsbrunner and Shah [69] and define the realization of the nerve as a simplicial complex K and a
bijection ϕ between N (C) and K that preserves the inclusion, that is τ and σ are simplices of K such
that τ ⊂ σ if, and only if, there exists Dσ = ϕ(σ) and Dτ = ϕ(τ) in N (C) such that Dσ ⊂ Dτ . In the
following, we identify K and the realization of the nerve.

The nerve of a Voronoi diagram Vord(P) is given by

N (Vord(P)) = {{Vd(pi)} | ∩i Vd(pi) 6= ∅, pi ∈ P}.
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2.8. Riemannian Voronoi diagram

Note that there is a complete combinatorial equivalence between N (Vord(P)) and the Delaunay com-
plex as defined in the previous section. A (partial) geometric realization of N (Vord(P)) with vertices
in P is called a dual of the Voronoi diagram.

If there exists an abstract homeomorphism between the nerve N (C) and the domain, then we say
that the realization of the nerve is a triangulation.

Figure 2.6: Delaunay triangulation (white) and Voronoi diagram (blue).

2.7.1 Dual of a simplex

The dual of a simplex is the set of centers of empty Delaunay balls. Equivalently, the dual of a
k-simplex is a (n−k)-Voronoi face defined by the intersection of the k+ 1 Voronoi cells of the vertices
of the simplex. For example in a 3D setting, the dual of a cell (a 3-simplex) is a Voronoi vertex (a
0-face), the dual of a facet (a triangle) is a Voronoi edge, the dual of an edge is a Voronoi 2-face and
the dual of a point is a Voronoi cell.

2.8 Riemannian Voronoi diagram

Given a metric field g, the Riemannian Voronoi diagram of a point set P, denoted by Vorg(P), is
the Voronoi diagram built using the geodesic distance dg. Formally, it is a partition of the domain in
Riemannian Voronoi cells {Vg(pi)}, where

Vg(pi) = {x ∈ Ω | dg(pi, x) ≤ dg(pj , x),∀pj ∈ P \ pi}.

The Riemannian Voronoi diagram has received comparatively little attention as the complexity of
computing geodesics makes it often undesirable to use in practice, especially when the manifold is
endowed with an arbitrary metric field. Chapters III.6, III.7 and III.8 are devoted to the theoretical
and practical study of this particular type of Voronoi diagram.
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2.9 Riemannian Delaunay triangulations

In this thesis, we will consider both abstract simplices and complexes, as well as their geometric
realization in R

n with vertex set P. We now introduce two realizations of a simplex that will be useful,
one curved and the other one straight.

The straight realization of a n-simplex σ with vertices in P is the convex hull of its vertices. We
denote it by σ. In other words,

σ̄ = {x ∈ Ω ⊂ R
n | x =

∑

p∈σ
λp(x) p, λp(x) ≥ 0,

∑

p∈σ
λp(x) = 1}. (2.3)

The curved realization, noted σ̃ is based on the notion of Riemannian center of mass [83, 65]. Let
y be a point of σ̄ with barycentric coordinate λp(y), p ∈ σ. We can associate the energy functional
Ey(x) = 1

2

∑
p∈σ λp(y)dg(x, p)

2. We then define the curved realization of σ as

σ̃ = {x̃ ∈ Ω ⊂ R
n | x̃ = arg min Ex̄(x), x̄ ∈ σ̄}. (2.4)

The edges of σ̃ are geodesic arcs between the vertices. Such a curved realization is well defined provided
that the vertices of σ lie in a sufficiently small ball according to the following theorem of Karcher [83].

Theorem 2.9.1 (Karcher) Let the sectional curvatures K of Ω be bounded, that is Λ− ≤ K ≤ Λ+.
Let us consider the function Ey on Bρ, a geodesic ball of radius ρ that contains the set {pi}. Assume
that ρ ∈ R

+ is less than half the injectivity radius and less than π/4
√

Λ+ if Λ+ > 0. Then Ey has a
unique minimum point in Bρ, which is called the center of mass.

Given an (abstract) simplicial complex K with vertices in P, we define the straight (resp., curved)
realization of K as the collection of straight (resp., curved) realizations of its simplices, and we write
K̄ = {σ̄, σ ∈ K} and K̃ = {σ̃, σ ∈ K}.

We will consider the case where K is Delg(P). A simplex of Delg(P) will simply be called a

straight Riemannian Delaunay simplex and a simplex of D̃elg(P) will be called a curved Riemannian
Delaunay simplex, omitting “realization of”. In Chapters III.7 and III.8, we give sufficient conditions
for Delg(P) and D̃elg(P) to be embedded in Ω, in which case we will call them the straight and the
curved Riemannian Delaunay triangulations of P.

Remark 2.9.2 A curved Riemannian Delaunay n-simplex σ also satisfies the empty ball property: σ̃
is circumscribed by a geodesic ball that does not contain any point q ∈ P such that q 6∈ Vert(σ).

2.10 Power diagram

For a chosen distance and seed set, other diagrams related to the Voronoi diagram can be con-
structed by enriching the definition of the cell of a seed pi. For example, the farthest Voronoi diagram
is defined through the cell

Vd(pi) = {x ∈ Ω | d(pi, x) ≥ d(pj , x),∀pj ∈ P \ pi},

meaning that a Voronoi cell is now the set of points that are farther from pi than any other seed.
Another possibility is to attribute weights to the seeds, either multiplicatively:

Vd(pi) = {x ∈ Ω | ωid(pi, x) ≤ ωjd(pj , x),∀pj ∈ P \ pi},
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2.11. Restricted Delaunay triangulation

or additively:

Vd(pi) = {x ∈ Ω | d(pi, x) + ωi ≤ d(pj , x) + ωj ,∀pj ∈ P \ pi}.
When additive weights are used along with the squared Euclidean distance, one obtains the additively
weighted Voronoi diagram, also known as the power diagram or the Laguerre diagram of a set of points,
which we denote by PDd(P). The power cell Vω

d (pi) is given by

Vd(pi) = {x ∈ Ω | d(pi, x)2 + ωi ≤ d(pj , x)2 + ωj ,∀pj ∈ P \ pi}.

Geometrical objects related to the power diagram are tagged with the power prefix: the distance is
called the power distance, a face of the power diagram is called a power face, etc.

These new types of Voronoi diagrams can be considered using any distance – including the geodesic
distance – but the study of these diagrams goes beyond the scope of this thesis and our use of power
diagrams is limited to the Euclidean setting.

Sectional Voronoi diagram The intersection of an Euclidean Voronoi diagram Vor(P) living in
an ambient space Ω with an affine space A ⊂ Ω is a lower-dimensional power diagram PD(P ′), where
P ′ is obtained by projecting orthogonally P onto A. Indeed, letting ΠA be the orthogonal projection
onto A and taking pi ∈ P, we have

∀x ∈ A, ‖x− pi‖2 = ‖x−ΠA(pi)‖2 + ‖ΠA(pi)− pi‖2 .

In the ambient space, the Voronoi cell of pi is the set of points x ∈ Ω such that

‖x−ΠA(pi)‖2 + ‖ΠA(pi)− pi‖2 ≤ ‖x−ΠA(pj)‖2 + ‖ΠA(pj)− pj‖2 ,

for pj ∈ P with pj 6= pi. This inequality can be equivalently seen as the definition of the power cell of
the point ΠA(pi) with associated weight ωi = −‖ΠA(pi)− pi‖2 in the affine space A.

2.10.1 Regular Delaunay triangulation

The dual of a power diagram is a triangulation, called the regular Delaunay triangulation. As the
power diagram generalizes the Voronoi diagram, the regular Delaunay triangulation generalizes the
Delaunay triangulation.

2.11 Restricted Delaunay triangulation

The Delaunay and Voronoi structures presented so far are built from (almost) arbitrary point
sets living in R

n. It is possible to employ these structures to approximate bounded domains. The
restriction of a Delaunay complex Del(P) to a domain Ω is the subcomplex (the restricted Delaunay
complex) Del|Ω(P) composed of the simplices of Del(P) whose dual Voronoi face intersects Ω.

Restricted Delaunay triangulations were introduced by Chew [53] and allow to accurately capture
complex geometric objects. For example, it can be shown that under the condition of good sampling of
a surface, the restricted Delaunay triangulation and the domain are homeomorphic [9]. Thanks to these
good properties, restricted Delaunay triangulations have often been used to create provably correct
refinement algorithms in the case of surfaces [45, 27, 120]. It was however proven by Boissonnat,
Guibas and Oudot [26] that this does not extended to higher-dimensional settings. Nevertheless,
restricted Delaunay triangulations will be consistently used in the refinement algorithms considered
and presented in this thesis.
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Figure 2.7: a 2D Delaunay triangulation of a set of vertices (black) restricted to a curve (blue). Voronoi
edges are represented in teal, and in pink if they intersect the curve. The Voronoi vertices are marked
with orange circles. Restricted Delaunay edges are drawn in yellow, and restricted Delaunay triangles
are drawn in green.

2.12 Assumptions on point sets

Studying and inferring properties on geometric structures is difficult when using completely random
point sets. It is thus natural to assume hypotheses on the point set: for example, one of the most
basic assumptions made when building Delaunay complexes is that points are in general position
(see Section 2.6). We introduce two different notions to control the quality of the samplings that we
consider and of the elements that we generate with such point sets.

Definitions are given here in a Riemannian setting (meaning, with respect to the geodesic distance),
but can naturally be applied to simpler distances: the isotropic distance in R

n can for example be
seen as a Riemannian manifold endowed with a Euclidean metric field.

2.12.1 Nets

Controlling the density and the sparsity of a point set allows to deduce properties on the shape of
simplices of the complexes built using the point set. The idea of imposing such constraints on point
sets is not recent and appears in various domains: Delone 1 sets, for example, employ a packing radius
to ensure that every point of the domain is close to a sample point and are used in coding theory and
crystallography. More closely to our topic, nets have notably found use in surface reconstruction [8,
25] where they are used to create “good” (with respect to the algorithm) samplings of the domain.
The concept of nets presented here conveys these requirements through sampling and separation
parameters.

1Delone and Delaunay are in fact the same person.
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Sampling The sampling parameter is used to control the density of a point set: if Ω is a bounded
domain, P is said to be an ε-sample set for Ω with respect to a metric field g if dg(x,P) < ε for
all x ∈ Ω.

Separation The sparsity of a point set is controlled by the separation parameter: the set P is said
to be µ-separated with respect to a metric field g if dg(p, q) ≥ µ for all p, q ∈ P. We assume
that the separation parameter µ is proportional to the sampling parameter ε and thus there exists a
positive λ, with λ ≤ 1, such that µ = λε.

If P is an ε-sample set that is µ-separated, we say that P is an (ε, µ)-net. Figure 2.8 shows an
Euclidean net with λ = 1/3.

Figure 2.8: An Euclidean net with ε/µ = 3. The red circles represent the separation and the green
circles the density of the sample.

Remark 2.12.1 Every point set is a net for a sufficiently small µ and a sufficiently large ǫ, but the
quality of the result is generally increased for stricter conditions.

Building Delaunay triangulations and Voronoi diagrams using nets guarantee properties on the
quality of their elements; those properties will be detailed in Chapter 3.

2.12.2 Protection and power protection of point sets

Protection of simplices is a concept formally introduced by Boissonnat, Dyer and Ghosh [17], which
targets Delaunay triangulations. The main idea is that no vertex should lie close to the circumscribing
balls of the Delaunay simplices of a triangulation. A similar scheme was first introduced by Funke
et al. [74], who perturbed vertices of a Delaunay triangulation away from the Delaunay balls of
other simplices to ensure arithmetical robustness of the triangulation. The concept of protection was
extended by Boissonnat et al. [22].

We now define the protection of a simplex, and of a point set. Let σ be a Delaunay simplex whose
vertices belong to P, and whose (empty) Delaunay ball is noted B(c, r), where c is the circumcenter
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and r is the circumradius. For 0 ≤ δ ≤ r, we associate to B(c, r) the dilated balls B+δ = B(c, r + δ)
and B+δ

p = B(c,
√
r2 + δ2). We say that σ is δ-protected (resp. δ-power protected) if B+δ (resp. B+δ

p )

is empty of any vertex in P \Vert(σ). The balls B+δ (resp. B+δ
p ) is the power (resp. power-protected)

ball of σ. If all the simplices of Del(P) are δ-protected (resp. δ-power protected) then P is δ-protected
(resp. δ-power protected). We assume that the protection parameter δ is proportional to the sampling
parameter ε, thus there exists a positive ι, with ι ≤ 1, such that δ = ιε. We will prefer power protection
to protection, as we often compare squared distances. Figure 2.9 shows a protected point set with the
protection zones.

Figure 2.9: A protected point set. The (Euclidean) Delaunay triangulation is drawn in white. The
circumcenters are red circles. For each Delaunay simplex, the Delaunay ball is the black circle, the
green zone the protection zone and the dotted circle the protected Delaunay ball.

Adopting the point of view of the Voronoi diagram, we can define protection and power protection
as follows. If v, a Voronoi vertex, is the intersection of n+1 Voronoi cells {Vd(pi)} with {pi} := P ′ ⊂ P,
then the simplex dual of v is

• protected, if d(v, pj) > d(v, pi) + δ

• power protected, if d(v, pj)
2 > d(v, pi)

2 + δ2

for pj 6∈ P ′. This point of view is also useful when the use of balls is not convenient or adapted to the
distance considered.

Remark 2.12.2 Similarly to nets, every point set that is not degenerate is protected (or power pro-
tected) for a small enough δ.

Assuming that a point set is protected is specifically useful to deduce bounds on the separation of
non-adjacent Voronoi entities (and in particular of Voronoi vertices), that is the existence of a lower
bound on the distance between two non-adjacent Voronoi entities. These properties are detailed in
Chapter 3 and will be essential to prove the theoretical correctness of both the anisotropic Voronoi
diagram defined by Labelle and Shewchuk in Chapter II.5 and of our discrete Riemannian Voronoi
diagrams in Chapters III.7 and III.8.
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Relating protection and power protection

The concepts of protection and power protection are closely related. Indeed, if we assume δp-
protection, we have by definition that

d(c, q) ≥ r + δp,

and

d(c, q)2 ≥ r2 + δ2
p + 2rδ,

giving δpp-power protection with δpp =
√
δ2 + 2rδ = δ

√
1 + 2r

δ .

On the other hand, if we assume δpp-power protection, we have that

d(c, q)2 ≥ r2 + δ2
pp.

Thus

d(c, q) ≥
√
r2 + δ2

pp = r

√

1 +
δ2
pp

r2
= r

(
1 +

1

2

δ2
pp

r2
+ o(r2)

)
= r +

δ2
pp

2r
+ o(r),

and δp ∼ δ2
pp

2r .

Whether protection or power protection is thus only linked to the other objects being considered.
If squared distances are being compared, it is simpler to work with power protection.

2.13 Unit mesh

In the case of Delaunay refinement algorithms, the generation of meshes is governed by a set of
criteria, arbitrarily-chosen rules that all simplices must satisfy for the refinement to finish. Refinement
algorithm traditionally employ a sizing criterion to control the maximal size of simplices, by imposing
an upper bound on either the maximal lengths of any edge or the circumradius of a simplex. While
this upper bound can be constant over the domain, elements of varying sizes are generally desired
(similarly to how a single metric is not sufficient to describe the anisotropy over the domain). A
sizing field is naturally defined to provide a scalar map which associates to any point of a domain, the
maximal allowed length of edges (or circumradius). For example, Ruppert [122] defines a size function
that depends on the distance to the boundary.

Remark 2.13.1 If the sizing criterion applies a maximal value on the length of the circumradius, it is
nevertheless possible to compute a bound on the length of edges of the same simplex since the length of
an edge of a triangle in a Delaunay triangulation is bounded by twice the circumradius of the triangle.

When the edges of a triangulation have length 1, the mesh is said to be unit [72]. Naturally, a
mesh whose edges are unit is difficult (if it is even physically possible) to achieve. A tolerance ς > 1
is generally introduced to allow the construction of almost-unit meshes whose edges have a length
between 1/ς and ς.

In the context of anisotropic meshes, the lengths of edges are computed in the metric and the
metric thus naturally encodes a sizing information through its eigenvalues. A sizing field is thus
already incorporated within the metric field. A change in the scale of the sizing field can be simply
achieved by scaling the eigenvalues.
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2.13.1 Unit meshes and distortion

When computing edge lengths in the metric of the edge’s endpoints, the distortion between adjacent
vertices of a mesh can be bounded when that mesh is unit. Indeed, we know that the distortion ψ(p, q)
between two points p and q can be used to relate the distance in the metrics Gp and Gq (Equation 2.1).
Thus if we allow a tolerance ς on the unit mesh, the maximal distortion that is possible in a unit mesh
is ς2. In various mesh generators, the tolerance is set to

√
2, and thus the distortion between two

adjacent vertices cannot be greater than 2, or the mesh is not unit.
When creating metric fields, the sizing field is always reasonably chosen (small enough) such that

a unit mesh is physically possible.
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3. Preliminary results

This chapter details properties of the basic notions introduced in Chapter 2 and results inferred
using these notions. As it mainly consists of technical lemmas that are stepping stones towards central
results in Chapters II.5, III.7 and III.8, it can be skipped on first reading and simply consulted as
needed.

The three important notions upon which a majority of our work rests are the notions of distortion,
net and power protection. The first part of this chapter is dedicated to a short study of the distortion.
We first look into some properties and shortcomings of the classical definition of Labelle and Shewchuk,
and introduce an alternate definition for the distortion to remedy these disadvantages. The subsequent
sections present properties that are inferred assuming that the point set is a power protected net. We
study the Euclidean Voronoi diagram and the Euclidean Delaunay triangulation when built from
power protected nets. We expose lower bounds on the distance between non-adjacent Voronoi faces
and lower and upper bounds on the dihedral angles between adjacent faces of these structures. The
combination of these results allows to deduce the stability of the power protected net assumption when
metrics and metric fields are perturbed.

Contributions All the results detailed in this chapter are new. We explain how to compute the
sampling parameter of a sample such that the point set satisfies an upper bound on the distortion
between adjacent vertices (for the original definition given by Labelle and Shewchuk). We propose
an alternate definition for the distortion that possesses the same properties as the original definition,
but is more meaningful geometrically and does not require strong assumptions to be related to the
sampling of the points.

Some lemmas of the second part of this chapter are close to known results or aim to prove similar
properties, for example the stability of the power protection hypothesis with respect to metric per-
turbation. However, both the assumptions – on the (power) protection and the distortion – as well
as the path followed to achieve the result differ sufficiently for us to consider these results new. We
nevertheless indicate when it is the case, and where the previous result has been introduced.

Contents

3.1 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Geodesic distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Separation of Voronoi entities . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Separation of Voronoi vertices . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Separation of Voronoi faces . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Dihedral angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Bounds on the dihedral angles of Euclidean Voronoi cells . . . . . . . . . . 40

3.3.2 Bounds on the dihedral angles of Euclidean Delaunay simplices . . . . . . 41

3.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Stability of the protected net hypothesis under metric transformation . . . 50

3.4.2 Stability of the protected net hypothesis under metric perturbation . . . . 51

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

31



Chapter 3. Preliminary results

3.1 Distortion

In previous works on anisotropic mesh generation [89, 50, 38] as well as in the study of our own
algorithms, the good behavior of algorithms, for example the embedding of a triangulation, is generally
guaranteed by upper bounds on the density of the point set and on the maximal distortion between
adjacent vertices. A bound on the distortion is needed as it is difficult to handle widely changing
metric fields, similarly to how it is difficult to handle manifolds with poor sampling.

A requirement on the maximal distortion between adjacent vertices being somewhat abstract, we
seek to express a bound on the distortion as a requirement on the sampling of the point set. We
first achieve this correspondence for the distortion introduced by Labelle and Shewchuk, but at the
cost of unreasonable assumptions on the metric field. Consequently, we introduce a new definition of
distortion between two metrics.

Locality of the Labelle-Shewchuk distortion

Given a bound on the maximal distortion in a region, we wish to compute the maximal distance
between two points of the sample such that their distortion satisfies the bound. Such a link can be
exposed if we assume that the metric field is bi-Lipschitz. Indeed, Assume that there exists ζ ∈ R

such that
1

ζ
‖p− q‖ ≤ ‖g(p)− g(q)‖ ≤ ζ ‖p− q‖ ,∀p, q ∈ Ω.

Lemma 3.1.1 gives the relation between the size of a neighborhood and the maximal distortion between
two points of that neighborhood.

Lemma 3.1.1 Let g be a ζ-bi-Lipschitz Riemannian metric field. Let p0 be a point of Ω and ψ0 ≥ 1
a distortion bound. If ψ(g(p), g(p0)) ≤ ψ0, then

∥∥∥p− p0

∥∥∥ ≤ ζ
(
1 + ψ2

0

) ∥∥∥g(p0)
∥∥∥.

Proof. We have
∥∥∥g(p)− g(p0)

∥∥∥ =
∥∥∥g(p)

1
2 g(p0)− 1

2 g(p0)g(p0)− 1
2 g(p)

1
2 − g(p0)

∥∥∥

≤
∥∥∥g(p0)

∥∥∥+
∥∥∥g(p)

1
2 g(p0)− 1

2 g(p0)g(p0)− 1
2 g(p)

1
2

∥∥∥

≤
∥∥∥g(p0)

∥∥∥+
∥∥∥g(p)

1
2 g(p0)− 1

2

∥∥∥
∥∥∥g(p0)

∥∥∥
∥∥∥g(p0)− 1

2 g(p)
1
2

∥∥∥

≤
∥∥∥g(p0)

∥∥∥
(
1 + ψ2

0

)

Since the metric field is ζ-bi-Lipschitz, we have

1

ζ
‖p− p0‖ ≤ ‖g(p)− g(p0)‖ ,

giving us a condition on ‖p− p0‖:

‖p− p0‖ ≤ ζ(1 + ψ2
0) ‖g(p0)‖ .

�

A bi-Lipschitz requirement is however unrealistic as most metric fields are in fact not bi-Lipschitz:
uniform metric fields are, for example, not bi-Lipschitz.
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3.1. Distortion

A new definition of the distortion

As we cannot reasonably assume that the metric field is bi-Lipschitz, we introduce a new definition
of distortion. A prerequisite to our definition is that the metric field is (only) ζ-Lipschitz, meaning
that ‖Gp −Gq‖ ≤ ζ |p− q| with ζ ∈ R

+. Contrary to the bi-Lipschitz assumption that was previously
needed, this is perfectly reasonable. Our distortion is given by

ψ(p, q) = ψ(Gp, Gq) = max





1(
1−

√
2ζrp
√
λp,max

λp,min

) , 1 +

√
2ζrp

√
λp,max

λp,min




, (3.1)

where rp is a bound on the distance between p and q measured with respect to Gp, and λp,min and λp,max

are respectively the smallest and largest eigenvalues of Gp.

A first observation is that we have ψ(Gp, Gq) ≥ 1 for two metrics Gp and Gq. However, there is a
small difference for the limit case of ψ = 1. Indeed, we do not have that Gp = Gq implies ψ(Gp, Gq) = 1
as Labelle and Shewchuk do. Nevertheless, the distortion goes to 1 with equality in the limit as the
neighborhood becomes smaller (i.e. the bound rp goes to 0).

That our definition does not automatically attribute a small distortion to metrics that are far (even
if they are close) is not an issue and might even be seen as a beneficial trait: a small distortion with the
definition of Labelle and Shewchuk can sometimes be misleading, e.g. by concluding that the metric
field is relatively constant between two distant points because their distortion is small, even though
important variations may exist in between. Our distortion expresses more clearly the convergence of
the distortion between two points as they become closer.

We prove in Lemma 3.1.2 that our definition also allows to relate distances in different metrics.

Lemma 3.1.2 Let U be a neighborhood centered on p and of radius rp with respect to Gp = g(p). Let
q ∈ U . The distances dp and dq can be related by

1

ψ(p, q)
dp(x, y) ≤ dq(x, y) ≤ ψ(p, q) dp(x, y)

with ψ(p, q) defined as in Equation 3.1.

Proof. Let Gq = Gp + E. We have

γ̇t(Gq −Gp)γ̇ = γ̇tEγ̇

Thus ∣∣∣γ̇t(Gq −Gp)γ̇
∣∣∣ ≤

∣∣∣γ̇tEγ̇
∣∣∣ = γ̇ · (Eγ̇) ≤ |γ̇| |Eγ̇| ≤ ‖E‖ |γ̇|2 = ‖E‖ γ̇ · γ̇.

Because metrics are given by symmetric matrices, the eigenvalues of Gp can be used to obtain bounds:

λp,min γ̇ · γ̇ ≤ γ̇tGpγ̇ ≤ λp,max γ̇ · γ̇, (3.2)

33



Chapter 3. Preliminary results

where λp,min and λp,max are the smallest and largest eigenvalues of Gp respectively. We see that

∣∣ℓGq(γ)− ℓGp(γ)
∣∣ =

∣∣∣∣
∫ √

γ̇tGqγ̇ dt−
∫ √

γ̇tGpγ̇ dt

∣∣∣∣

=

∣∣∣∣
∫ √

γ̇t(Gq −Gp)γ̇ dt

∣∣∣∣

≤
√
‖E‖

∣∣∣∣
∫ √

γ̇ · γ̇ dt

∣∣∣∣

≤
√
‖E‖

∣∣∣∣∣

∫ √
γ̇tGpγ̇

λp,min
dt

∣∣∣∣∣

=

√
‖E‖
λp,min

ℓGp(γ),

where ℓGq(γ) and ℓGp(γ) denote the lengths of γ with respect to Gq and Gp respectively. This means
that (

1−
√
‖E‖
λp,min

)
ℓGp(γ) ≤ ℓGq(γ) ≤

(
1 +

√
‖E‖
λp,min

)
ℓGp(γ),

Let us focus on the second inequality, and let γ(x,y),Gp denotes the shortest path with respect to Gp
connecting x and y. We find

dg(x, y) ≤ ℓGq
(
γ(x,y),Gp

)
≤
(

1 +

√
‖E‖
λp,min

)
ℓGp

(
γ(x,y),Gp

)
=

(
1 +

√
‖E‖
λp,min

)
dGp(x, y).

A similar statement holds for the first inequality:
(

1−
√
‖E‖
λp,min

)
dGp(x, y) ≤ dg(x, y) ≤

(
1 +

√
‖E‖
λp,min

)
dGp(x, y).

We assume that any metric field that we consider is ζ-Lipschitz, that is

‖E‖ = ‖Gp −Gq‖ ≤ ζ |p− q| .
Note that, because of (3.2) and using similar reasoning as before, we have

√
λp,min dGp(p, q) ≤ |p− q| ≤

√
λp,max dGp(p, q).

Which means that
(

1−
√

2ζrp
√
λp,max

λp,min

)
dGp(x, y) ≤ dg(x, y) ≤

(
1 +

√
2ζrp

√
λp,max

λp,min

)
dGp(x, y),

where rp is a bound on the size of the neighborhood. �

Note that our distortion was developed so that both distortions satisfy the same equations, which
means that when this property is used, it does not matter which definition of the distortion is used.

Remark 3.1.3 We have intentionally used geodesic distance expressions (that is, considering
∫
γGp(t)

and not simply dGp) despite only considering metrics. This can be seen as abusively considering the
two metrics as uniform metric fields over the domain. Additionally, while the relation that was proven
concerned dGp and dGq , we did not make use of the constancy of Gq in the proof. Therefore, we
could actually reproduce the proof for a non-uniform metric field g instead of Gq, therefore linking the
“uniform” distance dp and the geodesic distance dg.
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3.1. Distortion

All the core properties of the distortion proposed by Labelle and Shewchuk are thus also present
in our definition.

Although slightly more demanding on the metric field and more technical, our definition only
requires the metric field to be Lipschitz continuous (and not bi-Lipschitz, as was needed in Section 3.1),
follows a more natural geometrical approach, and offers a clear link between sampling and distortion,
as proven in the next section.

Locality with our new distortion

For a given distortion bound, we obtain immediately a local upper bound sought on the distance
between points. Indeed, if ψ(p, q) ≤ ψ0, we must have

1(
1−

√
2ζrp
√
λp,max

λp,min

) ≤ ψ0 and 1 +

√
2ζrp

√
λp,max

λp,min
≤ ψ0.

Equivalently,

rp ≤
(

1− 1

ψ0

)2 λp,min

2ζ
√
λp,max

and rp ≤ (1 + ψ0)2 λp,min

2ζ
√
λp,max

.

Both conditions can be merged, giving

rp ≤ min

{(
1− 1

ψ0

)2 λp,min

2ζ
√
λp,max

, (1 + ψ0)2 λp,min

2ζ
√
λp,max

}
. (3.3)

Meshes that we consider in this thesis are generated with variations of the classical Delaunay
refinement algorithm. There is generally a size constraint that is imposed on elements, through an
upper bound on the circumradius of simplices. The bound in Equation 3.3 can be converted into a
sizing field constraint by noting that if circumradii are bounded by ℓ, the maximal length of an edge
in the complex is bounded by 2ℓ. Thus, if p and q were two adjacent vertices in a triangulation for
which we must have ψ(p, q) ≤ ψ0, a sizing bound on the sample would be given by ε ≤ rp/2.

In practice We give here an example of the way this relation is used in practice. In the proofs of
the good behavior of our anisotropic Voronoi diagram, we will generally consider a neighborhood U
around a point p0 of an ε-sample P and require U to contain at least the Voronoi cell V(p) and the
Voronoi cells of the neighbors of p0. To achieve results, we will approximate the anisotropic Voronoi
cell with a simpler cell, which is only reasonable if the distortion within U is below a given bound
ψ0. Assuming that the metric field is Lipschitz, we can then translate the distortion bound ψ0 to a
sampling bound on ε, the sampling parameter of P. Indeed, we know that the ball Bg(p0, r0) with
r0 >= 5ε contains V(p0) and its adjacent Voronoi cells; therefore, we must have ε ≤ r0/5. The value
of r0 is obtained from ψ0 by Equation 3.3.

3.1.1 Geodesic distortion

The concept of distortion was originally introduced to relate distances with respect to two metrics,
but, as claimed in Section 2.2.1, this result can be (locally) extended to geodesic distances.
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Chapter 3. Preliminary results

Lemma 3.1.4 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U and
r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Then, for all x, y ∈ U ,

1

ψ0
dg(x, y) ≤ dg′(x, y) ≤ ψ0 dg(x, y),

where dg and dg′ indicate the geodesic distances with respect to g and g′ respectively.

Proof. Recall that for p ∈ Bg(p0, r0) and, for any pair x, y of points, we have

1

ψ0
dg(p)(x, y) ≤ dg′(p)(x, y) ≤ ψ0 dg(p)(x, y).

Therefore, for any curve γ(t) in U , we have that

1

ψ0

∫ √
〈γ̇, γ̇〉

g(γ(t))
dt ≤

∫ √
〈γ̇, γ̇〉

g′(γ(t))
dt ≤ ψ0

∫ √
〈γ̇, γ̇〉

g(γ(t))
dt.

Considering the infimum over all paths γ that begin at x and end at y, we find that

1

ψ0
dg(x, y) ≤ dg′(x, y) ≤ ψ0dg(x, y).

�

Note that this result is independent from the definition of the distortion and is entirely based on
the inequality comparing distances in two metrics (Equation 2.1), which was shown to be fulfilled for
both definitions of the distortion (see Section 3.1.2).

3.2 Separation of Voronoi entities

Power protected point sets were introduced to create quality bounds for the simplices of Delaunay
triangulations built using such point sets [17]. We will show that power protection allows to deduce
additional useful results for Voronoi diagrams. In this section we show that when a Voronoi diagram
is built using a power protected sample set, its non-adjacent Voronoi faces, and specifically its Voronoi
vertices are separated. This result is essential to our proofs in Chapters II.5, III.7 and III.8 where we
approximate complicated Voronoi cells with simpler Voronoi cells without creating inversions in the
dual, which is only possible because we know that Voronoi vertices are far from one another.

3.2.1 Separation of Voronoi vertices

The main result provides a bound on the Euclidean distance between Voronoi vertices of the
Euclidean Voronoi diagram of a point set and is given by Lemma 3.2.4. The following three lemmas
are intermediary results needed to prove Lemma 3.2.4.

Lemma 3.2.1 Let B = B(c,R) and B′ = B(c′, R′) be two n-balls whose bounding spheres ∂B and ∂B′

intersect, and let H be the bisecting hyperplane of B and B′, i.e. the hyperplane that contains the
(n− 2)-sphere S = ∂B ∩ ∂B′. Let θ be the angle of the cone (c, S). Writing ρ = R′

R and ‖c− c′‖ = λR,
we have

cos(θ) =
1 + λ2 − ρ2

2λ
. (3.4)

If R ≥ R′, we have cos(θ) ≥ λ
2 .
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3.2. Separation of Voronoi entities

Proof. Let q ∈ S; applying the cosine rule to the triangle △cc′q gives

λ2R2 +R2 − 2λR2 cos(θ) = R′2, (3.5)

which proves Equation (3.4). If R ≥ R′, then ρ ≤ 1, and cos(θ) ≥ λ/2 immediately follows from
Equation (3.4). �

c c′
θ θ̃

B

B′

B′+δ

q
q̃

H

˜

H

Figure 3.1: Construction used in Lemmas 3.2.1 and 3.2.2.

Lemma 3.2.2 Let B = B(c,R) and B′ = B(c′, R′) be two n-balls whose bounding spheres ∂B and
∂B′ intersect, and let θ̃ be the angle of the cone (c, S̃) where S̃ = ∂B ∩ ∂B′+δ. Writing ‖c− c′‖ = λR,
we have

cos(θ̃) = cos(θ)− δ2

2R2λ

Proof. Let q̃ ∈ S̃, applying the cosine rule to the triangle △cc′q̃ gives

λ2R2 +R2 − 2λR2 cos(θ̃) = R′2 + δ2.

Subtracting (3.5) from the previous equality yields δ2 = 2λR2(cos(θ) − cos(θ̃)), which proves the
lemma. �

Lemma 3.2.3 Let σ = p ∗ τ and σ′ = p′ ∗ τ be two Delaunay simplices sharing a common facet τ .
(Here ∗ denotes the join operator.) Let B(σ) = B(c,R) and B(σ′) = B(c′, R′) be the circumscribing
balls of σ and σ′ respectively. Then σ′ is δ-power protected with respect to p, that is p 6∈ B(σ′)+δ if

and only if ‖c− c′‖ ≥ δ2

2D(p,σ) .

Proof. The spheres ∂B and ∂B′+δ intersect in a (n−2)-sphere S̃ which is contained in a hyperplane
H̃ parallel to the hyperplane H = Aff(τ). For any q̃ ∈ S̃ we have

d(H̃,H) = d(q̃, H) = R(cos(θ)− cos(θ̃)) =
δ2

2 ‖c− c′‖ ,

37



Chapter 3. Preliminary results

where the last equality follows from Lemma 3.2.2 and d(H̃,H) denotes the distance between the two
parallel hyperplanes. See Figure 3.1 for a sketch. Since p ∈ ∂B, p belongs to B(σ′)+δ if and only if p
lies in the strip bounded by H and H̃, which is equivalent to

d(p,H) = D(p, σ) <
δ2

2 ‖c− c′‖ .

The result now follows. �

We can make this bound independent of the simplices considered, as shown in Lemma 3.2.4.

Lemma 3.2.4 Let P be a δ-power protected (ε, µ)-sample. The protection parameter ι is given by
δ = ιε. For any two adjacent Voronoi vertices c and c′ of Vor(P), we have

∥∥c− c′∥∥ ≥ δ2

4ε
=
ι2ε

4
.

Proof. For any simplex σ, we have D(p, σ) ≤ 2Rσ for all p ∈ σ, where Rσ denotes the radius of the
circumsphere of σ. For any σ in the triangulation of an ε-net, we have Rσ ≤ ε. Thus D(p, σ) ≤ 2ε,

and Lemma 3.2.3 yields ‖c− c′‖ ≥ δ2

4ε . �

Remark 3.2.5 In this section, we have computed a lower bound on the distance between two (adja-
cent) Voronoi vertices. Later on in this chapter, we shall show that Voronoi vertices are stable under
metric perturbations, meaning that when a metric field is slightly modified, the position of a Voronoi
vertex does not move too much. The combination of this separation and stability will then be the basis
of many proofs in this thesis.

3.2.2 Separation of Voronoi faces

Similar results can be obtained on the distance between a Voronoi vertex c and faces that are not
incident to c, also referred to as foreign faces. Note that we are still in the context of an Euclidean
metric.

The following lemma can be found in the context of ordinary protection in [21, Lemma 3.3].

Lemma 3.2.6 Suppose that c is the circumcenter of a δ-power protected simplex σ of a Delaunay
triangulation built from an ε-sample, then all foreign Voronoi faces are at least δ2

8ε removed from c.
We denote by p0 an (arbitrary) vertex of σ, and by q a vertex that is not in σ but is adjacent to p0 in
Del(P).

Proof. Let x be a point in B(c, r) ∩ VE(p0), with 0 < r < δ2/4ǫ. The upper bound for r is chosen
with Lemma 3.2.3 in mind: we are trying to find a condition such that x ∈ VE(p0). The notations are
illustrated in Figure 3.2.

Because of the triangle inequality, we have that

|d(c, q)− d(x, q)| ≤ d(x, c)

|d(c, pi)− d(x, pi)| ≤ d(x, c).

By power protection, we have that d(c, q)2 ≥ d(c, pi)
2 + δ2. Therefore,

(d(x, q) + r)2 ≥ (d(x, pi)− r)2 + δ2

d(x, q)2 + 2rd(x, q) ≥ d(x, pi)
2 − 2rd(x, pi) + δ2

d(x, q)2 ≥ d(x, pi)
2 − 2r(d(x, pi) + d(x, q)) + δ2.
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3.2. Separation of Voronoi entities

p0

q

p1

x

r

p2

c

c′

c′′

p3

p4

V (p0)

σ

Figure 3.2: Illustration of the notations for the proof of Lemma 3.2.6. The simplex σ is dashed in
beige and has vertices p0p1p2. The distances cc′ and cc′′ are lower bounded by δ2/4ǫ.

Without loss of generality, we can assume that q is the seed closest to c and thus d(x, q) < d(x, c).
If P is an ε-net, we have

d(x, pi) + d(x, q) ≤ d(x, pi) + d(c, q) ≤ ε+ 3ε = 4ε,

so

d(x, q)2 ≥ d(x, pi)
2 − 8rε+ δ2.

This implies that as long r < δ2/8ε, x lies in a Voronoi object associated to the vertices pi of σ. �

Further progressing, we can show that Voronoi faces are thick, with Lemma 3.2.7. This property is
useful to construct a triangulation that satisfies the hypotheses of Sperner’s lemma (see Chapter III.8).

Lemma 3.2.7 Let P be a δ-power protected (ε, µ)-net. Let V0 be the Voronoi cell of the seed p0 ∈ P
in the Euclidean Voronoi diagram VorE(P). Then for any k-face F0 of V0 with k ∈ [1, . . . , n], there
exists x ∈ F0 such that

d(x, ∂F0) >
δ2

16ε
,

where ∂F0 denotes the boundary of the face F0.

Proof. All the vertices of F0 are circumcenters of VorE(P). Consider the erosion of the face F0 by

a ball of radius δ2

16ε and denote it F−
0 . If F−

0 is empty, we contradict the separation Lemma 3.2.6. �
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3.3 Dihedral angles

The use of nets allows us to deduce bounds on the dihedral angles of faces of the Delaunay
triangulation, as well as on the dihedral angles between adjacent faces of a Voronoi diagram. Those
bounds are frequently used throughout this thesis, and specifically to prove stability of Voronoi vertices
(see Section 3.4). Since we are interested in dihedral bounds in the Euclidean setting, the point set is
first assumed to be a net with respect to the Euclidean metric field. We complicate matters slightly
with Lemma 3.3.6 by assuming that the point set is a power protected net with respect to an arbitrary
metric field that is not too far from the Euclidean metric field (in terms of distortion), and still manage
to expose bounds with respect to the Euclidean distance.

3.3.1 Bounds on the dihedral angles of Euclidean Voronoi cells

Assuming that a point set is an (ε, µ)-net allows us to deduce lower and upper bounds on the
dihedral angles between adjacent Voronoi faces when the metric field is Euclidean.

Lemma 3.3.1 Let Ω = R
n and P be an (ε, µ)-net with respect to the Euclidean distance on Ω. Let

p ∈ P and V(p) be the Voronoi cell of p ∈ P. Let q, r ∈ P be two seeds such that V(q) and V(r) are
adjacent to V(p) in the Euclidean Voronoi diagram of P. Let θ be the dihedral angle between BS(p, q)
and BS(p, r). Then

2 arcsin

(
µ

2ε

)
≤ θ ≤ π − arcsin

(
µ

2ε

)
.

c

q

p

r

θ1

θ2

p

q

r

c

mpq

mpr

α

θ

Figure 3.3: Construction and notations used in Lemma 3.3.1.

Proof. We consider the plane H that passes through the seeds p, q and r. Notations used below are
illustrated in Figure 3.3.
Lower bound. Let mpq and mpr be the projections of the seed p on respectively the bisectors BS(p, q)
and BS(p, r). Since P is an (ε, µ)-net, we have that lq = |p−mpq| ≥ µ/2, lr = |p−mpr| ≥ µ/2 and
L = |p− c| ≤ ε. Thus

θ = arcsin

(
lq
L

)
+ arcsin

(
lr
L

)
≥ 2 arcsin

(
µ
2

ε

)
= 2 arcsin

(
µ

2ε

)
.
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3.3. Dihedral angles

Note that since 0 < µ < 2ε, we have 0 < µ/2ε < 1.
Upper bound. To obtain an upper bound on θ, we compute a lower bound on the angle α = q̂pr at
p, noting that θ = π − α. Let lqr = |q − r|, and R = |c− r|. By the law of sines, we have

lqr
sin(α)

= 2R.

Since P is an (ε, µ)-net, we have lqr ≥ µ and R ≤ ε. Finally,

α ≥ arcsin

(
µ

2ε

)
=⇒ θ ≤ π − arcsin

(
µ

2ε

)
.

�

3.3.2 Bounds on the dihedral angles of Euclidean Delaunay simplices

Bounds on the dihedral angles of simplices guarantee the thickness – the smallest height of any
vertex – of simplices, and thus their quality. Additionally, they can be used to show that circumcenters
of adjacent simplices are far from one another, thus proving the stability of circumcenters and of
Delaunay simplices.

Using power protection with respect to the Euclidean metric field

We first assume that the metric field g is the Euclidean metric field gE and show that the simplices
of an Euclidean Delaunay triangulation constructed from a power-protected net are thick.

Recall that the dihedral angle can be expressed through heights as

sin∠(Aff(σp),Aff(σq)) =
D(p, σ)

D(p, σq)
=

D(q, σ)

D(q, σp)
.

The bound on dihedral angles is obtained by bounding the height of vertices in a simplex. An obvious
upper bound on the height of a vertex p in σ is D(p, σ) < 2ε. A lower bound was already obtained in
Lemma 3.2.3: we have that D(p, σ) ≥ δ2/2 ‖c− c′‖ = δ2/4ε. The following lemma is more technical
but provides a tighter bound. The proof is similar to that of Lemma [19, Lemma 3.3], but our notions
of metric distortion differ and power protection is here assumed instead of protection.

Lemma 3.3.2 Let P be an (ε, µ)-net with respect to the Euclidean metric field gE. Let σ = q ∗ τ be a
simplex of Del(P). Suppose also that τ ≤ σ′ and that σ is not a face of σ′. Denote B = BRn(c, r) and
B′ = BRn(c′, r′) the respective Delaunay balls of σ and σ′, and H = Aff(∂B ∩ ∂B′). The protection
parameter ι is given by δ = ιε and the separation parameter λ is given by µ = λε. If σ′ is δ-power
protected with respect to gE, then

d(q,H) > Aλ,ιε,

where Aλ,ι is a constant that depends on the separation and protection parameters λ and ι and will be
detailed in the proof. It follows that if P is δ-power protected, then

D(q, σ) > Aλ,ιε.

Proof. We first look to bound the distance d(q,H). Everything will be performed in the plane Q
spanned by q, c and c′ (see Figure 3.4). This plane is orthogonal to the (n − 1)-flat H and thus the
projection q∗ of q onto H is such that d(q, q∗) = d(q,H).
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a

b

r
S

cc′

S′

q
H

H

c c
′

q∗

q∗q

γ α

β

Figure 3.4: Construction and notations for the Lemma 3.3.2.

IfH separates q from c (as in Figure 3.4, left), then ∂B′ separates q from q∗ and d(q, q∗) > d(q, ∂B′).
Let qB′ be the point on ∂B′ that realizes the distance d(q, ∂B′). Since σ′ is δ-power protected, we
have

d(q, qB′) = d(c′, q)− d(c′, qB′) ≥
√
r′2 + δ2 − r′

≥ r′

√

1 +
δ2

r′2 − r
′.

To simplify computations, we wish to find a bound on d(q, qB′) that is proportional to r′. Therefore,

we seek to express
√

1 + δ2

r′2 as r + f(δ, r′). By concavity of f(x) =
√

1 + x, we have on [0;x0] that

(1 + x)
1
2 ≥ 1 +

(1 + x0)
1
2 − 1

x0
x. (3.6)

Figure 3.5 illustrates the inequality with a graph of the two functions involved in Inequality 3.6.

1

(x0,
√

1 + x0)

(0, 0)

y =
√

1 + x

y = 1 +
√

1+x0−1
x0

x

Figure 3.5: Illustration of Inequality 3.6.

Since δ = ιε and µ/2 ≤ r′ ≤ ε, we have

δ2

r′2 ≤
4ι2ε2

µ2
=

4ι2

λ2
.

In the following, we use α = 4ι2

λ2 .
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Thus, (
1 +

δ2

r′2

) 1
2

≥ 1 +

√
1 + α− 1

α

δ2

r′2 .

Let ν := 1
α

(√
1 + α− 1

)
. We have

d(q, qB′) ≥ r′

√

1 +
δ2

r′2 − r
′ ≥ r′

(
1 + ν

δ2

r′2

)
− r′ = ν

δ2

r′ .

Finally, since r′ ≤ ε we have d(q,H) ≥ ν δ2

ε = νι2ε.
Assume now that q and c lie on the same side of H (as in Figure 3.4, right). Let S′ = Q ∩ ∂B′

and S = Q∩ ∂B. Let a and b be the points of intersection S ∩ S′.
We bound d(q,H) by exhibiting a bound on the angle γ = q̂ab. Without loss of generality, we

assume that γ ≥ q̂ba. We can assume that γ ≥ π
2 , otherwise q∗ = qB′ and we have immediately

d(q,H) = d(q, ∂B′) ≥ ν δ2

ε .

Since d(a, q) ≥ ν δ
2

ε , we have d(q, q∗) = d(a, q) sin(π − γ) ≥ ν δ
2

ε sin(γ). Let α = q̂ac and β = ĉab.
We have

cos(α) =
d(a, q)

2r
≥ ν

2

δ2

ε2
=
νι2

2
,

thus α ≤ arccos
(
ν
2
δ2

ε2

)
≤ π

2 . On the other hand, we have |cc′| ≥ δ2

4ε by Lemma 3.2.4. Similarly, we

deduce that β ≤ arcsin
(
ι2

8

)
≤ π

2 . Combining both results, we have π
2 ≤ γ = α+ β ≤ γ′ with

γ′ = arccos

(
νι2

2

)
+ arcsin

(
ι2

8

)
.

Since π
2 ≥ γ ≥ γ′ ≥ π,

d(q,H) ≥ ν δ
2

ε
sin(γ) ≥ ν δ

2

ε
sin(γ′)

= ν
δ2

ε
sin

(
arccos

(
νι2

2

)
+ arcsin

(
ι2

8

))

≥ ν δ
2

ε

[
sin

(
arccos

(
νι2

2

))
cos

(
arcsin

(
ι2

8

))
+
νι2

2

ι2

8

]

≥ ν δ
2

ε



√

1−
(
νι2

2

)2
√

1−
(
ι2

8

)2

+
νι4

16




≥ Aλ,ι ε,
with

Aλ,ι =



√

1−
(
νι2

2

)2
√

1−
(
ι2

8

)2

+
νι4

16


 νι2.

Since Aff(τ) ⊂ H, it follows that D(q, σ) ≥ d(q,H). �

This new bound is not always tighter. In fact, Aλ,ι is only greater than ι2/4 when
√
ι2/2 ≤ λ

(value obtained by direct computation). In a generic configuration, this condition tends to be satisfied
and we therefore shall use the bound using Aλ,ι in the rest of this thesis. Note that the choice of the
bound has no consequence on the results further deduced. The comparison between both bounds ι2/4
and Aλ,ι is shown in Figure 3.6.
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Figure 3.6: Comparison between the bounds provided by Lemmas 3.2.3 and 3.3.2. ι2/4 is drawn in
blue, and Aλ,ι in orange.

Lemma 3.3.3 Let P be a δ-power protected (ε, µ)-net with respect to the Euclidean metric field g0.
Let ϕ be the dihedral angle between two facets τ1 and τ2 of a simplex σ of Delg0(P). Then

arcsin(s0) ≤ ϕ ≤ π − arcsin(s0),

with s0 =
Aλ,ι

2 and Aλ,ι defined as in the previous Lemma.

Proof. This is a consequence from Lemma 3.3.2, which gives

D(q, σp) ≥ D(q, σ) ≥ Aλ,ι ε,

and from the observation that D(q, σ) ≤ 2ε. We have ϕ = ∠(Aff(σp),Aff(σq)). Recall that

sin(ϕ) = sin∠(Aff(σp),Aff(σq)) =
D(p, σ)

D(p, σq)
=

D(q, σ)

D(q, σp)

Therefore

sin∠(Aff(σp),Aff(σq)) ≥
Aλ,ι ε

2ε
=
Aλ,ι

2
=: s0

Note that 0 < s0 < 1 and thus

arcsin(s0) ≤ ϕ ≤ π − arcsin(s0).

�
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Using power protection with respect to an arbitrary metric field

When considering a Voronoi diagram built using the geodesic distance induced by an arbitrary
metric field g, the assumption of a power protected net is naturally made with respect to this geodesic
distance. To prove the stability of the power protected assumption under metric perturbation, we will
however need to deduce lower and upper bounds on the dihedral angles between faces of the simplices
of the Delaunay complex with respect to the Euclidean metric field . We prove here that if the point
set P is a δ-power protected (ε, µ)-net with respect to an arbitrary metric field g and if the distortion
between g and the Euclidean metric field gE is small, then the dihedral angles of the simplices of the
Euclidean Delaunay triangulation of P can be bounded.

We first give a result on the stability of Delaunay balls which expresses that if two metric fields have
low distortion, the Delaunay balls of a simplex with respect to each metric field are close. Naturally,
one of those metric fields will then be taken as the Euclidean metric field. A similar result can be
found in the proof of Lemma 5 in the theoretical analysis of locally uniform anisotropic meshes of
Boissonnat et al. [31].

Lemma 3.3.4 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U and
r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Assume furthermore that g′ is the Euclidean
distance (thus dg′ = dE). Let B = Bg(c, r) be the geodesic ball with respect to the metric field g,
centered on c ∈ U and of radius r. Assume that BE(c, ψ0r) ⊂ U . Then B can be encompassed by two
Euclidean balls BE(c, r−ψ0) and BE(c, r+ψ0) with r−ψ0 = r/ψ0 and r+ψ0 = ψ0r.

Proof. This is a straight consequence from Lemma 3.1.4. Indeed, we have for all x ∈ U that

1

ψ0
dE(c, x) ≤ dg(c, x) ≤ ψ0dE(c, x),

and similarly
1

ψ0
dg(c, x) ≤ dE(c, x) ≤ ψ0dg(c, x).

Thus,

x ∈ BE

(
c,
r

ψ0

)
⇐⇒ dE(c, x) ≤ r

ψ0
=⇒ 1

ψ0
dg(c, x) ≤ r

ψ0
,

giving us BE(c, r−ψ0) ⊂ B. On the other hand, we have

x ∈ Bg(c, r) ⇐⇒ dg(c, x) ≤ r =⇒ 1

ψ0
dE(c, x) ≤ r,

giving us B ⊂ BE(c, r+ψ0). �

Note that r−ψ0 and r+ψ0 go to r as ψ0 goes to 1.
We now use this stability result to provide Euclidean dihedral angle bounds assuming power

protection with an arbitrary metric field that is close to gE. We first require the intermediary result
given by Lemma 3.3.5.

Lemma 3.3.5 Let H be a hyperplane in Euclidean n-space and τ an n− 1-simplex whose vertices lie
at most η from the H and whose minimum height is hmin. Then the angle ξ between Aff(τ) and H is
bounded from above by

sin(ξ) ≤ ηd

hmin

.
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Proof. By definition, the barycenter of a (n−1)-simplex has barycentric coordinates λi = 1/d. This
means that it has distance a hmin/n to each of its faces. So the ball centered on the barycenter with
radius hmin/n is contained in the simplex. This means that for any direction in Aff(τ) there exists a
line segment of length 2hmin/n that lies within τ . Moreover the end points of this line segments lie at
most η from H because the vertices of the τ do. This means that the angle ξ is bounded by

sin(ξ) ≤ 2η

2hmin/d
=

ηd

hmin
.

�

We can now give the main result which bounds Euclidean dihedral angles, assuming power pro-
tection with respect to the arbitrary metric field.

Lemma 3.3.6 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U and
r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU be a δ-power protected (ε, µ)-net over
U , with respect to g. Let B = Bg(c, r) and B′ = Bg(c

′, r′) be the geodesic Delaunay balls of σ = τ ∗ p
and σ′ = τ ∗ p′, with σ, σ′ ∈ Delg(PU ). Assume that PU is sufficiently dense such that U contains B
and B′. Then the minimum height of the simplex satisfies

hmin =

√√√√√√1−


n

(r2 + r′2)
(

1
ψ2

0
− ψ2

0

)

8εhmin




2

·




(r2 + r′2)
(

1
ψ2

0
− ψ2

0

)
+ δ2

ψ2
0

4ε
−

n
(r2+r′2)

(
1

ψ2
0

−ψ2
0

)

8εhmin√√√√√1−

n

(r2+r′2)

(
1

ψ2
0

−ψ2
0

)

8εhmin




2
(r + r′)




.

Note that this is the height of p in σ with respect to the Euclidean metric.

We proceed in a similar fashion as the proof Lemma 3.2.1. However, a significant difference is that
we are interested here in only proving that power protection with respect to the generic metric field
provides a height bound in the Euclidean setting (rather than an equivalence).

Proof. We use the following notations, illustrated in Figure 3.7:

• B±ψ0

E
and B′±ψ0

E
are the two sets of (Euclidean) enclosing balls of respectively B and B′ defined

as in Lemma 3.3.4.

• B′+δ is the power protected ball of σ′, given by B′+δ = B(c′,
√
r′2 + δ2).

• B′+δ,±ψ0

E
are the two Euclidean balls enclosing B′+δ.

• S = ∂B−ψ0 ∩ ∂B′+ψ0 , S̃ = ∂B+ψ0 ∩ ∂B′+δ,−ψ0 and S′ = ∂B+ψ0 ∩ ∂B′−ψ0 .

• q is a point on S, q̃ is a point on S̃ and q′ is a point on S′.

• H is the geodesic supporting plane of τ , that is {arg min(
∑
vi∈τ λidg(x, vi))}.
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• HE, H̃E and HE are the two Euclidean hyperplanes orthogonal to [cc′] passing through respec-
tively q, q̃ and q′.

• θ = ĉ′cq θ̃ = ĉ′cq̃, and λc = |cc′| /r.

c c′

θ̃

B

B′+δ

q

q̃

HE
˜HE

B′

p

p′

r

r′

√

r′2 + δ2

θ

B−ψ0

B+ψ0

B′+δ,+ψ0

B′+δ,−ψ0

B′+ψ0

B′−ψ0

H

Figure 3.7: Construction and notations used in the proof of Lemma 3.3.6

While the vertices of τ live on H, AffE(τ) is not necessarily orthogonal to [cc′] and consequently

dE(p,HE) ≤ dE(p, τ).

The separation between the hyperplanes HE and H̃E provides a lower bound on the distance dE(p, τ),
thus on the height DE(p, σ). We therefore seek to bound dE(HE, H̃E).

By definition of the enclosing Euclidean balls, we have that

|cq| = r

ψ0
, |cq̃| = ψ0r,

∣∣c′q
∣∣ = ψ0r

′, and
∣∣c′q̃

∣∣ =
1

ψ0

√
r′2 + δ2

Using the law of cosines in the triangles △cc′q and △cc′q̃, we find

r′2 + δ2

ψ2
0

= λ2
cr

2 + ψ2
0r

2 − 2λcψ0r
2 cos(θ̃)

ψ2
0r

′2 = λ2
cr

2 +
r2

ψ2
0

− 2
λcr

2

ψ0
cos(θ),
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where λcr = |c− c′|. Subtracting one from the other, we obtain

ψ2
0r

′2 − r′2 + δ2

ψ2
0

=
r2

ψ2
0

− ψ2
0r

2 + 2λcψ0r
2 cos(θ̃)− 2

λcr
2

ψ0
cos(θ)

⇐⇒ r

ψ0
cos(θ)− ψ0r cos(θ̃) =

r2

ψ2
0
− ψ2

0r
′2 + r′2+δ2

ψ2
0
− ψ2

0r
2

2λcr

⇐⇒ r

ψ0
cos(θ)− ψ0r cos(θ̃) =

(r2 + r′2)
(

1
ψ2

0
− ψ2

0

)
+ δ2

ψ2
0

2λcr
,

so that

d(HE, H̃E) =
r

ψ0
cos(θ)− ψ0r cos(θ̃) =

(r2 + r′2)
(

1
ψ2

0
− ψ2

0

)
+ δ2

ψ2
0

2λcr
.

Similarly we can calculate the distance dE(HE, H
′
E
) to be:

dE(HE, H
′
E) =

1
ψ2 (r′)2 + |c− c′|2 − ψ2r2

2|c− c′| −
ψ2(r′)2 + |c− c′|2 − 1

ψ2 r
2

2|c− c′|

=
(r2 + r′2)

(
1
ψ2

0
− ψ2

0

)

2|c− c′| .

≤
(r2 + r′2)

(
1
ψ2

0
− ψ2

0

)

4ε

Lemma 3.3.5 gives us that the angle ξ between HE and Aff(τ) is bounded by

sin(ξ) ≤ ndE(HE, H
′
E
)

2hmin
.

The vertices of τ lie in between HE and H ′
E

and inside BE(c′, ψr′). Thus, if we restrict to the q̃cc′

plane, distance between the point where Aff(τ) intersects HE and the orthogonal projection πHE
(q̃) of

q̃ on HE is at most ψ(r + r′). This in turn implies that the line connecting πHE
(q̃) and q̃ intersects

Aff(τ) at most distance (r + r′) tan(ξ) from HE. This also gives us that the distance from q̃ to its
orthogonal projection πAff(τ)(q̃) on Aff(τ) is bounded by

cos(ξ)(d(H̃E, HE)− tan(ξ)(r + r′)) =

√

1−
(
ndE(HE, H

′
E
)

2hmin

)2

·

d(H̃E, HE)−

ndE(HE,H
′
E

)

2hmin√
1−

(
ndE(HE,H

′
E

)

2hmin

)2
(r + r′)


 .

Here we note that hmin originally referred to the minimum height of a face, but because the height of
a face is always greater than the height in the simplex we may read this in a general way, that is we
regard hmin as a universal lower bound on the height. Because |q̃ − πAff(τ)(q̃)| bounds the height of
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the simplex we get the following relation:

hmin =

√

1−
(
ndE(HE, H

′
E
)

2hmin

)2


d(H̃E, HE)−

ndE(HE,H
′
E

)

2hmin√
1−

(
ndE(HE,H

′
E

)

2hmin

)2
(r + r′)




hmin =

√√√√√√1−


n

(r2 + r′2)
(

1
ψ2

0
− ψ2

0

)

8εhmin




2

·




(r2 + r′2)
(

1
ψ2

0
− ψ2

0

)
+ δ2

ψ2
0

4ε
−

n
(r2+r′2)

(
1

ψ2
0

−ψ2
0

)

8εhmin√√√√√1−

n

(r2+r′2)

(
1

ψ2
0

−ψ2
0

)

8εhmin




2
(r + r′)




To make the expression a bit more readable, we introduce

s1 =
(r2 + r′2)

(
1
ψ2

0
− ψ2

0

)

4ε

so that

hmin =

√

1−
(
n

s1

2hmin

)2




(
s1 +

δ2

4εψ2
0

)
−

n s1
2hmin√

1−
(
n s1

2hmin

)2
(r + r′)




hmin + n
s1

2hmin
(r + r′) =

√

1−
(
n

s1

2hmin

)2
(
s1 +

δ2

4εψ2
0

)
.

Multiplying with hmin and squaring we find:

(h2
min + n

s1

2
(r + r′))2 =

(
h2

min −
(
n
s1

2

)2
)(

s1 +
δ2

4εψ2
0

)2

We note that in the limit ψ → 1, s1 tends to zero, we therefore expand hmin is terms of s1. Using a
computer algebra system we find

h2
min =

δ4

210ψ4ε2
+

(
δ2

128ψ2ε
− n(r + r′)

)
s1

− δ4
(
16n2 − 1

)
+ 214n2ψ4ε2(r + r′)2

64δ4
s2

1 +O(s3
1)

We emphasize that this equation gives hmin = δ2/4ε as ψ tends to 1. This means that for sufficiently
small metric distortion the height of a protected simplex will be strictly positive. �

Lemma 3.3.7 Let g be a metric field and P be a point set defined over R
n. Let ψ0 = ψ(g,E). Assume

that P is a δ-power protected (ε, µ)-net over R
n. Let φ be the dihedral angle between two faces of a

simplex τ ∈ DelE(P). Then
arcsin(s0) ≤ φ ≤ π − arcsin(s0),

with s0 detailed in the proof.
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Proof. Denote hmin the lower bound on D(q, σ) obtained in the previous lemma. We also immediate
have that

D(q, σ) ≤ 2ε.

Let ϕ be the dihedral angle between Aff(σp) and Aff(σq). Recall that

sin(ϕ) = sin∠(Aff(σp),Aff(σq)) =
D(p, σ)

D(p, σq)
=

D(q, σ)

D(q, σp)

Thus

sin(ϕ) ≥ hmin

2ε
=: s0.

For s0 to make sense, we want s0 > 0, which is bound to happen as ψ0 goes to 1, as shown in
Lemma 3.3.6: hmin goes to δ2/4ε thus hmin/4ε goes to ι2/4 > 0. �

3.4 Stability

The notion of stability designates the conservation of a property despite changes of other param-
eters. In our context, the main assumptions concern the nature of point sets: we assume that point
sets are power protected nets and wish to preserve these hypotheses despite (small) metric pertur-
bations. The stability is important both from a theoretical and a practical point of view. Indeed, if
an assumption is stable under perturbation, we can simplify matters without losing information. For
example, we will prove that if a point set is a net with respect to a metric field g, then it is also a net
(albeit with slightly different sampling and separation parameters) for a metric field g′ that is close
to g (in terms of distortion) In a practical context, the stability of an assumption provides robustness
with respect to numerical errors (see, for example, the work of Funke et al. [74] on the stability of
Delaunay simplices).

3.4.1 Stability of the protected net hypothesis under metric transformation

The square root of a metric allows us to switch between the embedding space of the domain
endowed with the Euclidean metric and the metric space endowed with the Euclidean metric. It is
rather immediate that the power protected net property is preserved when the point set is transformed
between these spaces, as shown by the following lemma.

Lemma 3.4.1 Let P be a δ-power protected (ε, µ)-net in Ω. Let g = g0 be a uniform Riemannian
metric field and F0 a square root of g0. If P is a δ-power protected (ε, µ)-net with respect to g0 then
P ′ = {F0pi, pi ∈ P} is a δ-power protected (ε, µ)-net with respect to the Euclidean metric.

Proof. This results directly from the observation that

d0(x, y)2 = (x− y)tg0(x− y) = ‖F0(x− y)‖2 = d(F0x, F0y)2.

�
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3.4.2 Stability of the protected net hypothesis under metric perturbation

Metric field perturbations are small modifications of a metric field in terms of distortion. Since a
generic Riemannian metric field g is difficult to study, we will generally consider a uniform approx-
imation g0 of g within a small neighborhood, such that the distortion between both metric fields is
small over that neighborhood. In that context, the perturbation of g is the act of bringing g onto g0.
Stability of the assumption of power protection was previously investigated by Boissonnat et al. [22]
in the context of manifold reconstructions.

Stability of the net property

The following lemma shows that the “net” property is preserved when the metric field is perturbed:
a point set that is a net with g is also a net with respect to g′, a metric field that is close to g.

Lemma 3.4.2 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U and
r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU be a finite point set in U . Suppose that
PU is an (ε, µ)-net of U with respect to g. Then PU is an (εg′ , µg′)-net of U with respect to g′ with
εg′ = ψ0ε and µg′ = µ/ψ0.

Proof. By Lemma 3.1.4, we have that

∀x, y ∈ U, 1

ψ0
dg′(x, y) ≤ dg(x, y) ≤ ψ0dg′(x, y).

Therefore
∀x ∈ U,∃p ∈ PU , dg(x, p) ≤ ε⇒ ∀x ∈ U,∃p ∈ PU , dg′(x, p) ≤ ψ0ε,

and
∀p, q ∈ PU , dg(p, q) ≥ µ⇒ ∀p, q ∈ PU , dg′(p, q) ≥ µ

ψ0
.

And, with εg′ = ψ0ε and µg′ = µ/ψ0, P is an (εg′ , µg′)-net of U . �

Remark 3.4.3 We assumed that µ = λε. By Lemma 3.4.2, we have ε′ = ψ0ε and µ′ = µ
ψ0

. Therefore

µ′ =
λε

ψ0
=

λ

ψ2
0

ε′.

Stability of the power protection property

It is more complex to show that the assumption of power protection is preserved under metric
perturbation. Previously, we have only considered two similar but arbitrary Riemannian metric fields g
and g′ on a neighborhood U . We now restrict ourselves to the case where g′ is a uniform metric
field. We shall always compare the metric field g in a neighborhood U with the uniform metric field
g′ = g0 = g(p0) where p0 ∈ U . Because g0 and the Euclidean metric field differ only by a linear
transformation, we simplify matters and assume that g0 is the Euclidean metric field.

We now give conditions such that the point set is also protected with respect to g0. A few
intermediary steps are needed to prove the main result:

• Given two seeds, we prove that the bisectors of these two seeds in the Voronoi diagrams built
with respect to g and with respect to g′ = gE are close (Lemma 3.4.5).
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• We prove that the Voronoi cell of a point p0 with respect to g, Vg(p0) can be encompassed by two
scaled versions (one larger and one smaller) of the Euclidean Voronoi cell VE(p0) (Lemma 3.4.12).

• We combine this encompassing with bounds on the dihedral angles of Euclidean Delaunay sim-
plices given by Lemma 3.3.7 to compute a stability region around Voronoi vertices where the
same combinatorial Voronoi vertex of lives for both Vg(p0) and VE(p0) in 2D (Lemma 3.4.13).
We then extend it to any dimension by induction (Lemma 3.4.14).

The main result appears in Lemma 3.4.16 and gives the stability of power protection under metric
perturbation.

We first define the scaled version of a Voronoi cell more rigorously.

Definition 3.4.4 (Relaxed Voronoi cell) Let ω ∈ R. The relaxed Voronoi cell of the seed p0 is

V+ω
g (p0) = {x ∈ U | dg(p0, x)2 ≤ dg(pi, x)2 + ω for all i 6= 0}.

The following lemma expresses that two Voronoi cells computed in similar metric fields are close.

Lemma 3.4.5 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U and
r0 ∈ R

+, such that ∀p ∈ Bg(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a finite point set in U . Let
Vp0,g denote a Voronoi cell with respect to the Riemannian metric field g.

Suppose that the Voronoi cell V
2ρ2(ψ2

0−1)
g′ (p0) lies in a ball of radius ρ with respect to the metric g′,

which lies completely in U . Let ω0 = 2ρ2(ψ2
0−1). Then Vg(p0) lies in V+ω0

g′ (p0) and contains V−ω0
g′ (p0).

Proof. Let BSg(p0, pi) be the bisector between p0 and pi with respect to g. Let y ∈ BSg(p0, pi) ∩
Bg′(p0, ρ), where Bg′(p0, ρ) denotes the ball centered at p0 of radius ρ with respect to g′. Now
dg(y, p0) = dg(y, pi), and thus

|dg′(y, p0)2 − dg′(y, pi)
2| =

∣∣∣dg′(y, p0)2 − dg(y, p0)2 + dg(y, pi)
2 − dg′(y, pi)

2
∣∣∣

≤
∣∣∣dg′(y, p0)2 − dg(y, p0)2

∣∣∣+
∣∣∣dg′(y, pi)

2 − dg(y, pi)2
∣∣∣

≤ (ψ2
0 − 1)(dg′(y, p0)2 + dg′(y, pi))

2

≤ 2ρ2(ψ2
0 − 1).

Thus dg′(y, p0)2 ≤ dg′(y, pi)
2 + ω and dg′(y, p0)2 ≥ dg′(y, pi)

2 − ω with ω = 2ρ2(ψ2
0 − 1), which gives

us the expected result. �

Remark 3.4.6 Lemma 3.4.5 does not require g′ to be a uniform metric field.

We clarify in the next lemma that the bisectors of a Voronoi diagram with respect to a uniform
are affine hyperplanes.

Lemma 3.4.7 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U and
r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a finite point set in U . Let g′

be a uniform metric field. We refer to g′ as g0 to emphasis its constancy. Let p0 ∈ PU . The bisectors
of V±ω0

g0
(p0) are hyperplanes.
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Proof. The bisectors of V±ω0
g0

(p0) are given by

BS±ω0
g0

(p0, pi) =
{
x ∈ Ω | dg0(p0, x)2 = dg0(pi, x)2 ± ω0

}
.

For x ∈ BS±ω0
g0

(p0, pi), we have by definition that

‖x− p0‖2g0
= ‖x− pi‖2g0

± ω0

⇐⇒ (x− p0)tg0(x− p0) = (x− pi)tg0(x− pi)± ω0

⇐⇒ 2xtg0(pi − p0) = ptig0pi − pt0g0p0 ± ω0.

which is the equation of an hyperplane since g0 is uniform. �

The cells V±ω0
g0

(p0) are unfortunately impractical to manipulate as we do not have an explicit
distance between the boundaries ∂Vg0(p0) and ∂V±ω0

g0
(p0). However that distance can be bounded;

this is the purpose of the following lemma.

Lemma 3.4.8 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U
and r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a finite point set in U .
Assume furthermore that g0 is the Euclidean metric field. Let p0 ∈ PU . We have

dg0(∂Vg0(p0), ∂V±ω0
g0

(p0)) := min
x∈∂Vg0 (p0)

y∈∂V
±ω0
g0

(p0)

dg0(x, y) ≤ ρ2
0(ψ2

0 − 1)

µ0
,

with ρ0 defined as ρ is in Lemma 3.4.5.

Proof. Let mω0 be the intersection of the segment [p0, pi] and the bisector BS−ω0
g0

(p0, pi), for i 6= 0.
Let m be the intersection of the segment [p0, pi] and ∂Vg0(p0), for i 6= 0. We have

{
mω0 ∈ BS−ω0

g0
(p0, pi) ⇐⇒ 2mT

ω0
(pi − p0) = pTi pi − pT0 p0 − ω0

m ∈ ∂Vg0(p0) ⇐⇒ 2mT (pi − p0) = pTi pi − pT0 p0

Therefore

2(m−mω0)T (pi − p0) = ω0.

Since (m−mω0) and (pi − p0) are linearly dependent,

ω0 = 2 |m−mω0 | |pi − p0| .

P is µ0-separated, which implies that

ω0 ≥ 2 |m−mω0 |µ0,

and

|m−mω0 | ≤
ω0

2µ0
=
ρ2

0(ψ2
0 − 1)

µ0
.

�
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Definition 3.4.9 In the following, we use ρ = 2ε0, and therefore ω0 = 8ε2
0(ψ2

0 − 1). We show that
this choice is reasonable in Lemma 3.4.15. Additionally, we define

η0 =
ρ2

0(ψ2
0 − 1)

µ0
.

We are now ready to encompass the Riemannian Voronoi cell of p0 with respect to an arbitrary
metric field g with two scaled versions of the Euclidean Voronoi cell of p0. The notions of dilated and
eroded Voronoi cells will serve the purpose of defining precisely these scaled cells.

Definition 3.4.10 (Eroded Voronoi cell) Let ω ∈ R. The eroded Voronoi cell of p0 is the mor-
phological erosion of Vg(p0) by a ball of radius ω:

EV−ω
g (p0) = {x ∈ Vg(p0) | dg(x, ∂Vg(p0)) > ω}.

Definition 3.4.11 (Dilated Voronoi cell) Let ω ∈ R. The dilated Voronoi cell of p0 is:

DV+ω
g (p0) =

⋂

i6=0

Hω(p0, pi),

where Hω(p0, pi) is the half-space containing p0 and delimited by the bisector BS(p0, pi) translated
away from p0 by ω0 (see Figure 3.8).

The second important step on our path towards the stability of power protection is the encom-
passing of the Riemannian Voronoi cell, and is detailed below.

Lemma 3.4.12 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U and
r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a finite point set in U . We
have

EV−η0
g0

(p0) ⊆ V−ω0
g0

(p0) ⊆ Vg0(p0) ⊆ V+ω0
g0

(p0) ⊆ DV+η0
g0

(p0).

These inclusions are illustrated in Figure 3.8.

Proof. Using the notations and the result of Lemma 3.4.8, we have

|m−mω0 | ≤ η0.

Since the bisectors BSω0
g′ (p0, pi) are hyperplanes, the result follows. �

In Figures 3.8 and 3.9, DV+η0
g0

and EV−η0
g0

are shown in green and Vg0 in yellow.
The next step is to prove that we have stability of the Voronoi vertices of Vg(p0), meaning that

a small perturbation of the metric only creates a small displacement of any Voronoi vertex of the
Voronoi cell of p0. The following lemma shows that Voronoi vertices are close if the distortion between
the metric fields g and g0 is small. The approach is to use Lemmas 3.4.5 and 3.4.12: we know that
each (n−1)-face of the Riemannian Voronoi cell Vg(p0) and shared by a Voronoi cell Vg(q) is enclosed
within the bisectors of DVg0(p0) and EVg0(p0) (which are translations of the bisectors of Vg0(p0)) for
the seeds p0 and q. These two bisectors create a “band” that contains the bisector BSg(p0, q). Given a
Voronoi vertex c in Vg(p0), c can be obtained as the intersection of n+ 1 Voronoi cells, but also as the
intersection of n Voronoi (n− 1)-faces of Vg(p0). The intersection of the bands associated to those n
(n−1)−faces is a parallelotopic-shaped region which by definition contains the same (combinatorially
speaking) Voronoi vertex, but for Vg0(p0). Lemmas 3.4.13 and 3.4.14 express this reasoning, which is
illustrated in Figure 3.9 for 2D and 3.10 for any dimension.
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p0

η

η

Vg0
(p0)

DV +η0

g0
(p0)

EV −η0

g0
(p0)

V +ω0

g0
(p0)

V −ω0

g0
(p0)

Figure 3.8: The different encompassing cells around p0. The Riemannian Voronoi diagrams with
respect to g and g0 are traced in dark cyan and black respectively. The Voronoi cell Vg0(p0) is colored
in yellow. The cells DV+η0

g0
and EV−η0

g0
are colored in green, and the cells V±ω0

g0
(p0) are colored in

purple.

Lemma 3.4.13 We consider here Ω = R
2. Let U ⊂ Ω be open, and g and g′ be two Riemannian

metric fields on U . Let ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a
ball Bg(p0, r0), with p0 ∈ U and r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi}
be a finite point set in U . Assume furthermore that PU is a δ0-power protected (ε0, µ0)-net with respect
to g0 (the Euclidean metric). Let p0 ∈ PU . Let c and c0 be the same Voronoi vertex in respectively
Vg(p0) and Vg0(p0). Then dg0(c, c0) ≤ χ2 with

χ2 =
2η0√

1 + µ0

2ε0
−
√

1− µ0

2ε0

=
2η0√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

.

where λ is given by µ0 = λ
ψ2

0
ε0 (see Lemma 3.4.3).

Proof. We use Lemma 3.4.12. Vg(p0) lies in DV+η0
g0

and contains EV−η0
g0

. The circumcenters c and
c0 lie in a parallelogrammatic region centered on c0, itself included in the ball centered on c0 and with
radius χ. The radius χ is given by half the length of the longest diagonal of the parallelogram (see
Figure 3.9). By Lemma 3.4.2, P is an (ε0, µ0)-net with respect to g0. Let θ be the angle of the Voronoi
corner of Vg0(p0) at c0. By Lemma 3.3.1, that angle is bounded:

θm = 2 arcsin

(
µ0

2ε0

)
≤ θ ≤ π − arcsin

(
µ0

2ε0

)
= θM .

Since π − θM < θm, χ is maximal when θ > π/2. We thus assume θ > π/2, and compute a bound on
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χ as follows:

sin

(
π − θ

2

)
=
η0

χ
=⇒ χ =

η0

sin
(
π−θ

2

)

≤ η0

sin
(

1
2 arcsin

(
µ0

2ε0

))

≤ 2η0√
1 + µ0

2ε0
−
√

1− µ0

2ε0

=: χ2,

using sin(1
2 arcsin(α)) = 1

2

(√
1 + α−

√
1− α ).

c′

c

χ

EV −η0

g0
(p0)

η0

θ

c′

Vg0
(p0)DV +η0

g0
(p0)

θ

η0

Vg0
(p0) EV −η0

g0
(p0)

η0

DV +η0

g0
(p0)

c

η0χ

Figure 3.9: Black lines trace Vorg0 and cyan lines trace Vorg. The cell Vg0(p0) is colored in yellow and
the cell Vg(p0) is dashed. The green regions correspond to DV+η

g0
(p0) and EV−η

g0
(p0). On the left, the

configuration where θ < π/2; on the right, θ > π/2.

�

The result obtained in Lemma 3.4.13 can be extended to any dimension using induction and the
stability of the Voronoi vertices of facets.

Lemma 3.4.14 We consider here Ω = R
n. Let U ⊂ Ω be open, and g and g′ be two Riemannian

metric fields on U . Let ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a
ball Bg(p0, r0), with p0 ∈ U and r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi}
be a δ0-power protected (ε0, µ0)-net with respect to g0 (the Euclidean metric). Let p0 ∈ PU . Let c and
c0 be the same Voronoi vertex in respectively Vg(p0) and Vg0(p0). Then dg0(c, c0) ≤ χ with

χ =
χ2

sinn−2
(ϕ0

2

) .

where χ2 is defined as in Lemma 3.4.13, and ϕ0 is the maximal dihedral angle between two faces of a
simplex.

Proof. We know from Lemma 3.4.5 that Vg(p0) lies in DV+η0
g0

and contains EV−η0
g0

. The circumcen-
ters c and c0 lie in a parallelotopic region centered on c0 defined by the intersection of n Euclidean
thickened Voronoi faces. This parallelotope and its circumscribing sphere are difficult to compute.
However, it can be seen as the intersection of two parallelotopic tubes defined by the intersection of
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Figure 3.10: Left, a simplex, the duals of two faces and their respective thickened duals (cylinders);
the orange thickened dual is orthogonal to the purple face (and inversely). Right, the intersection of
the two tubes, seen from above, illustrates the proof of Lemma 3.4.14.

n− 1 Euclidean thickened Voronoi faces. From another point of view, this is the computation of the
intersection of the thickened duals of two facets τ1 and τ2 incident to p0 of the simplex σ ∈ Delg0(P),
dual of c (and c0), see Figure 3.10 (left).

The stability radius χ is computed incrementally by increasing the dimension and proving stability
of the circumcenters of the faces of the simplices. We prove the formula by induction.

The radius of each tube is given by the stability of the radius of the circumcenter in the lower
dimension of the facet. The base case, Rn = R

3, is solved by Lemma 3.4.13, and gives

χ2 =
2η0√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

.

We now consider two facets τ1 and τ2 that are incident to p0. Denote D1 and D2 their respective
duals. By Lemma 3.4.5, D1 and D2 lie in two cylinders C1 and C2 of radius χ2. C1 and C2 are also
orthogonal to τ1 and τ2 and c and c0 lie in C1 ∩ C2. The angle ϕ between C1 and C2 is exactly the
dihedral angle between τ1 and τ2. By Lemma 3.3.7, we have

arcsin(s0) ≤ ϕ ≤ π − arcsin(s0) with s0 =
1

2

[
ι2

4ψ2
0

− 1

2

(
ψ2

0 −
1

ψ2
0

)]

Let ϕ0 = arcsin(s0) = π − arcsin(s0). We encompass the intersection of the cylinders, difficult to
compute, with a sphere whose radius can be computed as follows (see Figure 3.10, right):

χ3 =
χ2

cos(α)
with α =

π

2
− ϕ0

2
.

Thus,

χ3 =
χ2

sin
(ϕ0

2

) .

Recursively,

χ =
χ2

sinn−2
(ϕ0

2

) .

�
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We have assumed in different lemmas that we could pick values of ρ0 or ω0 that fit our need. The
following lemma shows that these assumptions were reasonable.

Lemma 3.4.15 Lemmas 3.4.12 and 3.4.14 allow us to characterize the parameter ρ0 more precisely.
Indeed, an assumption of Lemma 3.4.5 was that Vω0

g0
(p0) is included in a ball Bg0(p0, ρ0). If the

sampling of P is sufficiently dense, such an assumption is reasonable.

Proof. By definition, the Voronoi cell Vω0
g0

(p0) is included in the dilated cell DV+η0
g0

(p0). Since the
point set is an ε-sample, we have dg0(p0, x) ≤ ε0 for x ∈ Vg0(p0). By Lemma 3.4.14, we have for
x ∈ DV+η0

g0
(p0)

dg0(p0, x) ≤ ε0 + χ.

Recall from Lemma 3.4.14 that
χ =

χ2[
sin
(

1
2 arcsin (s0)

)]n−2 .

with η0 =
ρ2

0(ψ2
0−1)
µ0

and s0 = 1
2

[
ι2

4ψ2
0
− 1

2

(
ψ2

0 − 1
ψ2

0

)]
. We require Vω0

g0
(p0) ⊂ Bg0(p0, ρ0), which is

verified if DV+η0
g0

(p0) ⊂ Bg0(p0, ρ0), that is if

ε0 +
χ2[

sin
(

1
2 arcsin (s0)

)]n−2 ≤ ρ0

⇐⇒ 4η0(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 ≤ ρ0 − ε0

⇐⇒ 4ρ2
0(ψ2

0 − 1)

µ0

(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 ≤ ρ0 − ε0

⇐⇒ 4(ψ2
0 − 1)

(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 ≤
µ0(ρ0 − ε0)

ρ2
0

⇐⇒ 4ψ0(ψ2
0 − 1)

(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 ≤
λε(ρ0 − ε0)

ρ2
0

, by Remark 3.4.3.

The parameter ρ0 can be chosen arbitrarily as long as it is greater than ε0, and we have taken
ρ0 = 2ε0 (see Definition 3.4.9), which imposes

ψ2
0(ψ2

0 − 1)
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 ≤
λ

16
. (3.7)

Recall that the parameter λ is fixed. By continuity of the metric field, limε→0 ψ0 = 1, therefore the
left hand side goes to 0 and Inequality (3.7) is eventually satisfied as the sampling is made denser. �

Finally, we can now show the main result: the power protection property is preserved when the
metric field is perturbed.

Lemma 3.4.16 Let U ⊂ Ω be open, and g and g′ be two Riemannian metric fields on U . Let ψ0 ≥ 1
be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U
and r0 ∈ R

+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Assume that PU is a δ-power protected
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(ε, µ)-net in U with respect to g. If δ is well chosen, then PU is a δ0-power protected net with respect
to g0, with

δ2
0 =

(
1

ψ2
0

− ψ2
0

)
(ε+ χ)2 − 4εχ

ψ2
0

+
δ2

ψ2
0

.

Proof. By Lemma 3.4.2, we know that PU is (ε0, µ0)-net with respect to g0. Let q ∈ PU , with q not
a vertex in the dual of c. Let c0 be the combinatorial equivalent of c in Vg0(P) Since P is a δ-power
protected net with respect to g, we have dg(c, q) >

√
r2 + δ2, where r = dg(c, p). On the one hand, we

have

dg0(c0, q) ≥ dg0(q, c)− dg0(c, c0)

≥ 1

ψ0
dg(q, c)− χ

≥ 1

ψ0

√
r2 + δ2 − χ.

by Lemma 3.4.13. On the other hand, for any p ∈ PU such that p is a vertex of the dual of c, we have

r0 = dg0(c0, p) ≤ dg0(c, p) + dg0(c0, c)

≤ ψ0dg(c, p) + χ

≤ ψ0r + χ.

Thus δ0-power protection of PU with respect to g0 requires

1

ψ0

√
r2 + δ2 − χ > χ+ ψ0r

⇐⇒
√
r2 + δ2 > ψ0(2χ+ ψ0r).

This is verified if

δ2 > (ψ0(2χ+ ψ0r))
2 − r2 = 4χ2ψ2

0 + 4χψ3
0r + ψ4

0r
2 − r2

= 4χ2ψ2
0 + 4χψ3

0r + (ψ4
0 − 1)r2,

for all r ∈ [µ/2, ε]. This gives us

δ2 > 4χ2ψ2
0 + 4χψ3

0ε+ (ψ4
0 − 1)ε2. (3.8)

This condition on δ is only reasonable if the right hand side is not too large. Indeed, since P is
an ε-sample, we must have dg(c, q) < 2ε. However, we have that dg(c, q)

2 > dg(c, p)
2 + δ2 by δ-power

protection of P with respect to g. Because dg(c, p) < ε, it suffices that δ < ε. We will now show that
this is reasonable by examining the limit of the right hand side of Inequality (3.8).

We note, see Lemma 3.4.14, that

χ =
χ2

sinn−2
(ϕ

2

) =
4η

(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2 ,
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where ε0 = ψ0ε and µ0 = µ/ψ0 = λε/ψ0 (see Remark 3.4.3). So that

4χ2ψ2
0 + 4χψ3

0ε+ (ψ4
0 − 1)ε2 = 4




16εψ4
0(ψ2

0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2




2

+ 4
16εψ3

0(ψ2
0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2ψ
3
0

+ (ψ2
0 − 1)(ψ2

0 + 1)ε2. (3.9)

This means that the right hand side of (3.8) is of the form f(ψ0)(ψ2
0 − 1)ε2, where f(ψ0) is a function

that tends to a constant as ψ0 goes to 1:
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So the bound given in Equality (3.8) may be easily satisfied if the metric distortion is sufficiently
small.

We now provide an explicit value for δ0 in terms of δ. Let ξ = dg(c, q) and ξ0 = dg0(c0, q0). We
have the following bounds on r0 and ξ0:

1

ψ0
(r − ξ) ≤ r0 ≤ ψ0(r + ξ)

1
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√
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√
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If we had δ̃-power protection, we would have
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Therefore we can take δ2
0 = δ2

ψ2
0

+
(

1
ψ2

0
− ψ2

0

)
(ε+ χ)2 − 4εχ

ψ2
0

. Note that with this definition, δ0 goes

to δ as ψ0 goes to 1, which proves that our value of δ0 is legitimate. �

3.5 Conclusion

We have proved in this chapter various results on the quality of Delaunay triangulations and
Voronoi diagrams built from specific types of point sets, power protected nets. These results form the
basis of all the theoretical work on the algorithms presented in other chapters of this thesis.
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Anisotropic Delaunay triangulations
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4. Locally uniform anisotropic meshes

The Delaunay triangulation has been extensively studied and is well known to possess useful and
well-defined properties (see Preparata and Shamos [117]). Attempts have been made to extend the
notion of Delaunay triangulation to the anisotropic setting either by adapting the famous Bowyer-
Watson algorithm (Mavriplis [102], Borouchaki [33], Dobrzynski [60], Alauzet [4]) or as the dual of an
anisotropic Voronoi diagram (see Labelle and Shewchuk [89], Du and Wang [64]). However, neither
class of method offer in all dimensions the theoretical guarantees nor the practical robustness that we
are interested in.

A theoretically sound framework for Delaunay-based anisotropic meshes was introduced by Bois-
sonnat et al. [30], called “locally uniform anisotropic meshes”. Locally uniform anisotropic meshes are
simplicial complexes in which the star of each vertex is Delaunay for the metric attached to the vertex.
The use of anisotropic stars, inspired by the works of Shewchuk [128] and Schoen [126], is combined
with the sliver removal techniques proposed by Li and Teng [94, 96]. These techniques are adapted to
the anisotropic setting to construct a star-based refinement algorithm that cleverly selects refinement
points. The algorithm works in any dimension and offers guarantees on its termination and on the
quality (size and shape) of the final simplices.

While the theoretical aspect of the approach has been thoroughly studied [30, 31], its practicality is
comparatively not as well explored. This chapter intends to fill this gap and presents a comprehensive
empirical study of the algorithm. We first recall the required theoretical basis and detail some minor
changes brought to the theory after practical experimentation. We then dive in the heuristic analysis
of the behavior of the algorithm and its parameters and propose some improvements. A strong focus
is put on the phenomenon of inconsistencies, which turns out to be a real issue of the algorithm.

Contributions We introduce an implementation of the anisotropic Delaunay refinement algorithm
introduced by Boissonnat et al. [30]. We specifically detail the technical issues, and their solution, that
arise when aiming for efficiency. This implementation of the star set is completely new and results in
significant improvements in terms of computational speed, robustness and genericity over the former
implementation that was used in [28].

The empirical study of our implementation and of the algorithm is comprehensive and produce (mi-
nor) theoretical improvements. We investigate the practicality of the algorithm, analyze its limitations
and propose various fixes that attempt to remedy these limitations.
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4.1. The star set

4.1 The star set

Many algorithms have been devised to construct Euclidean Delaunay triangulations, but they can-
not be simply extended to arbitrary metric fields. Although the computation of a curved Riemannian
Delaunay triangulation is difficult, it is easy to compute the Delaunay triangulation of a set of points
P with respect to the metric Gp (Delp(P)). Indeed, recall from Chapter 2 that

dp(a, b) =
√

(a− b)tF tpFp(a− b) = ‖Fp(a− b)‖ ,

where Fp is the square root of Gp. Any metric-dependent geometric construction on a set of points
P, like the Voronoi diagram or a simplex circumcircle, can therefore be obtained for the metric Gp
by the following set of operations. First, compute the transformed point set Fp(P). Then, compute
the construction with the Euclidean norm on Fp(P) and transform the result back through F−1

p . The
triangulation Delp(P) is thus simply the image through the stretching transformation F−1

p of the
Euclidean Delaunay triangulation Del(Fp(P)) where Fp(P) = {Fppi, pi ∈ P}.

As explained in the Section 2.2 of Chapter 2, a sphere in metric space is an ellipsoid in the Euclidean
space. Each simplex of a uniformly anisotropic Delaunay triangulation Delp(P) thus possesses an
empty circumscribing ellipsoid, the inverse-transformed Delaunay ball from metric to Euclidean space
(see Figure 4.1).

Figure 4.1: An anisotropic uniform Delaunay triangulation (orange) and the corresponding stretched
Delaunay balls and circumcenters (black circles).

The central idea of the framework of locally uniform anisotropic meshes is to approximate at each
vertex p a given arbitrary metric field g by the uniform metric defined by extending Gp over the
domain (that is the metric field g0 : q ∈ Ω 7→ Gp). Similarly to the way affine functions are locally
good approximations of a generic continuous function, the approximation of an arbitrary metric field
by a uniform metric will be accurate as long we stay in a small neighborhood. At each vertex, a
Delaunay triangulation that conforms to the uniform metric field of that vertex is constructed. These
independent triangulations can – under some density conditions – be combined to obtain a final
triangulation of the domain.

4.1.1 Stars and inconsistencies

The star of a vertex p in a simplicial complex K, denoted by Sp, is defined as the subcomplex of K
formed by the set of simplices that are incident to p. The idea of considering independent stars at the
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vertices of a point set was first conceived by Shewchuk [128] to handle moving vertices in finite element
meshes. This structure was also employed by Schoen [126], who introduced anisotropic stars whose
connectivity is obtained by building an isotropic Delaunay mesh of a transformed point set. The star
Sp of p ∈ P is in that case extracted from the complex Delp(P). This construction was described
in the previous section and forms the core of the locally uniform anisotropic mesh framework. The
collection of all the stars is called the (anisotropic) star set of P and is noted S(P).

As the connectivity of each star is set according to the metric Gp at the center of the star, a given
n-simplex has n + 1 different Delaunay balls, one with respect to the metric of each vertex of the
simplex. Consequently, there are in general inconsistencies among the stars of the sites: a simplex τ ,
appearing in the stars of some of its vertices, may not appear in the stars of all of them (Figure 4.2). If
a simplex is involved in such configuration, it is said to be inconsistent. Stars containing such simplices
are inconsistent stars and a star set with at least one inconsistent star is also said to be inconsistent.
Oppositely, a star whose simplices are consistent is said to be consistent and a star set is consistent if
all of its stars are consistent.

q

r

s

Bp(pqr)

Bp(pqs)

Bq(qrs)

p

Figure 4.2: Two stars Sp and Sq forming an inconsistent configuration.

The main idea of the algorithm is to refine the set of sites P while maintaining the set of stars
S(P) until each star Sp in S(P) is composed of simplices that are well shaped and well sized in the
metric Gp, and until there are no more inconsistencies among the stars. Once a consistent star set
is achieved (which is proven to happen), all the stars can be stitched into a single triangulation: a
locally uniform anisotropic mesh that conforms to the specified metric field and offers guarantees on
the quality of the simplices.

4.1.2 Slivers and quasi-cosphericities

To be able to merge a star set into a triangulation, the stars must have compatible connectivity;
in other words, the star set must be consistent.

It can be shown (see Lemma 4.1.2) that once the point set P is dense enough such that the
distortion between adjacent points is bounded, inconsistencies are only created by quasi-cosphericities,
a degenerate geometrical configuration where n+2 points all lie almost on a n+1-sphere. Some of these
quasi-cosphericities are related to slivers, well-known problematic elements of simplicial meshes [94,
127, 133]. Both notions are now recalled and the link between inconsistencies, quasi-cosphericities and
slivers is explained.
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4.1. The star set

Sliver The definition of a sliver with respect to a metric is derived from the isotropic definition of
Cheng et al. [49]. For a k-simplex τ , the circumscribing Gp-ball of τ is given by Bp(cp(τ), rp(τ)) and
the shortest edge Gp-length is given by ep(τ). The radius-edge ratio is a classical indicator of the
quality of a simplex and is defined as ρp(τ) = rp(τ)/ep(τ). The sliverity ratio σp(τ) is given by the

ratio
(
Volp(τ)/ekp(τ)

) 1
k , where Volp(τ) is the Gp-volume of τ . Two (positive) constant parameters, ρ0

and σ0, control how degenerate a simplex can be before it is called a sliver. The simplex τ is said to
be

• well-shaped for Gp, if ρp(τ) ≤ ρ0 and σp(τ) ≥ σ0;

• a sliver for Gp, if ρp(τ) ≤ ρ0 and σp(τ) < σ0;

• a k-sliver for Gp, if it is a sliver but all its (k − 1)-faces are well-shaped.

Slivers are undesirable simplices as they can compromise the convergence and quality of numerical
simulations.

Quasi-cospherical configurations Let ψ0 be a bound on the distortion and G a metric. A subset
P ′ of n+ 2 points is said to be a (ψ0, G)-cosphericity if there exists two metrics G′ and G′′ such that

• ψ(G,G′) ≤ ψ0, ψ(G,G′′) ≤ ψ0 and ψ(G′, G′′) ≤ ψ0,

• the triangulations DelG′(P ′) and DelG′′(P ′) are different.

A quasi-cosphericity involves multiple simplices, some of whom might be slivers. When the values of
G and ψ0 are obvious or irrelevant, the term quasi-cosphericity is used. Figure 4.3 shows a quasi-
cosphericity involving 4 vertices.

p

q

r

BG(τ) BG′(τ)

s

τ

Figure 4.3: A quasi-cosphericity involving the simplex τ and the point s: s belongs in the BG(τ), but
not in BG′(τ).

Remark 4.1.1 In the definition of a cosphericity, all points play a symmetric role.
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The following lemma relates quasi-cospherical configurations and inconsistencies.

Lemma 4.1.2 Let τ be an inconsistent simplex of star Sp. If ψ(τ) < ψ0, then there exists a site q ∈ P
such that the configuration (τ, q) is (ψ0, Gp)-cospherical.

Proof. This result is a direct consequence from the definition of an inconsistency: an inconsistency
is a geometrical configuration in which a simplex τ exists in a star Sp, but not in another star Sq
(with p, q ∈ τ). In other words, there exists a point r such that r ∈ Bq(τ) but r 6∈ Bp(τ), which is the
definition of a quasi-cosphericity. �

The intent is thus to refine the star set while avoiding the apparition and presence of quasi-
cosphericities in the star set: by contrapositive, the absence of quasi-cosphericities gives us the absence
of inconsistencies when the mesh is dense. However, quasi-cosphericities that contain slivery simplices
cannot be avoided (see the proof of the Picking Lemma in [31]); slivery simplices must therefore be
eliminated first.

4.2 Refinement algorithm

The simplest idea to refine a simplex τ in a star Sp is to insert a new site at the center cp(τ) of
the Delaunay Gp-ball of τ . This technique is very common in Delaunay refinement algorithm as the
Delaunay ball of the simplex is by construction not empty after the insertion of its center and thus
the simplex cannot appear in the new Delaunay triangulation.

This simple strategy may unfortunately lead to cascading occurrences of inconsistencies, for the
same reason that the refinement of Delaunay meshes cannot remove slivers. An alternative strategy
is devised, inspired by the work of Li and Teng [95, 96] to avoid slivers in isotropic meshes. The
adaptation of Li and Teng’s techniques to the present algorithm and the development of the refinement
algorithm are described in detail in the following.

4.2.1 The Pick_valid procedure

The central idea in the work of Li and Teng is to relax the choice of the refinement point of a
simplex: the refinement point is no longer the center of the Delaunay ball, but is instead carefully
chosen from a small picking region around this center. In the framework of locally uniform anisotropic
meshes, the wiggle room in the choice of the refinement point allows to find refinement point who
destroy inconsistent simplices without creating new quasi-cosphericities.

The region in which refinement points are picked is called the Gp-picking region of a simplex τ in
the star Sp is defined as the Gp-ball Bp(cp(τ), δrp(τ)) and is denoted by Pp(τ). The constant parameter
δ < 1 is the picking ratio, which controls the size of this small region. A refinement point picked in
the picking region is called a candidate (point). These definitions are illustrated in Figure 4.5.

By construction, a candidate point p in Pq(τ) is included in Bq(τ) since δ < 1. The simplex τ
is thus sure to be removed from Sq when p is inserted in Delq(P) since τ is not a Delaunay simplex
anymore. However, the insertion of p in the star set should not result in the creation of new slivers
or inconsistencies. It is, in fact, not always possible to completely avoid the formation of new in-
consistencies when choosing a refinement point in the picking region Pp(τ) of a simplex τ of Sp. A
refinement point p ∈ Pq(τ), is said to be valid if the insertion of p in the star set does not trigger the
appearance of small inconsistent facets, where a simplex τ ′ in Sq is considered small if the Gq-radius
rq(τ

′) of its Delaunay ball is less than βrq(τ), for a given parameter β ≥ 1.
The Pick_valid procedure is detailed in Algorithm 1.
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Algorithm 1 Pick_valid(τ,Gq)

Step (1) Pick randomly a point p in the picking region Pq(τ)

Step (2) Avoid small slivers
if the insertion of p in some star Sr, creates a k-simplex τ ′, with k ≤ d such that τ ′ is a
k-sliver (ρr(τ

′) ≤ ρ0 and σr(τ
′) ≤ σd0) with Gr-circumradius less than βr, then

discard p and go back to step 1.

Step (3) Avoid small quasi-cosphericities
if the point p forms an inconsistent d-simplex with distortion less than γ0 in some star Sr,
with a Gr-circumradius smaller than βrp(τ), then

Discard p and go back to step 1.

Step (4) Return p.

As shown in the next sections, it can be proven that once the distortion of simplices is low enough,
valid points exist in the picking region.

Forbidden zones

The Pick_valid algorithm tries to avoid the creation of small slivers and small quasi-cosphericities
during the insertion of the refinement point. These bad geometrical configurations are created by
combinations of vertices neighboring the refinement point. In R

n, a set of n + 1 vertices S creates
regions of the domain where the refinement point should not lie in order to not create small slivers or
small quasi-cosphericities. This region is called a forbidden region. By definition, the forbidden region
of a simplex σ is the union of points in Ω that fall within at least one Delaunay ball of σ but do not
fall within all the n + 1 Delaunay balls. Due to the multitude of neighbors around a vertex, many
forbidden regions usually exist.

To simplify theoretical purposes, we can encompass a forbidden region within two G-spheres (with
G an arbitrary metric), as done in Figure 4.4. These two spheres create a forbidden G-ring of σ, which
we denote FG(σ).

p

q

rc

Br(τ )

Bq(τ )

Bp(τ ) Fp(τ )

τ

Figure 4.4: The forbidden region (dashed) and forbidden ring (colored red) of a simplex, illustrated
in Euclidean space.
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Remark 4.2.1 The notion of forbidden ring depends on the choice of a metric, while the notion of
forbidden region does not.

When picking a point p to refine a simplex σ in a star Sq, if p does not belong to the Gq-ring of σ,
then it does not create a quasi-cosphericity with the vertices of σ. The intersection of the forbidden
Gq-ring and the picking region Pq(σ) of a simplex is called a forbidden zone of the picking region.
There is by definition no valid point when forbidden zones cover entirely the picking region.

Figure 4.5 illustrates all the notions used in the Pick_valid algorithm.

p

q

s

u
v

w
τ Pq(τ)

Bq(τ)

Fq(uvw)

Fq(rst)

r
t

cq(τ)

Figure 4.5: A simplex τ , its Delaunay ball Bq(τ) (in the metric Gq) and the picking region P(τ), in
blue. Two forbidden rings (in red) are created by neighboring vertices, one created by s and t along
with a vertex of τ , r; and one created by u, v, w. One possible valid refinement point in Pq(τ) is
drawn in green and one possible invalid point in red.

Thickness of a forbidden zone Simply applying the definition of a quasi-cosphericity, the forbid-
den ring associated to a simplex τ is a region of space where points fall in at least one but not al of the
Delaunay balls of τ . Therefore, the area of a forbidden ring is proportional to the distortion between
the metrics of the vertices of the simplex: the larger the distortion, the larger the difference between
the Delaunay balls and the wider the forbidden ring. The Pick_valid procedure is thus unlikely to
find a valid point when the distortions between neighboring vertices are large.

To improve the odds of finding a solution, the refinement algorithm ensures that the distortion
is low between neighboring vertices before the Pick_valid procedure is called. This is achieved
by imposing a maximum value on the distortion allowed within a simplex, where the distortion of
a simplex τ – denoted by ψ(τ) – is the maximum distortion between any two vertices of τ . This
maximum distortion is controlled a constant parameter of the algorithm, denoted by ψ0.

A proper choice of the algorithm parameters ψ0, δ, and β is essential to ensure the existence of
valid refinement points in the picking regions (see Section 4.2.4).
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4.2.2 Criteria

The refinement algorithm aims to produce a set of stars whose simplices are Delaunay, satisfy
quality constraints and are consistent. We detail below the criteria that are used to drive the refinement
process. These criteria can be split in two categories depending on their role.

Size and quality

As for classical isotropic refinement algorithms, the anisotropic refinement algorithm includes size
and quality criteria.

• The size of simplices is controlled by comparing the circumradius of simplices with a user-defined
sizing field sf. A simplex τ ∈ Sp is oversized if the Gp-circumradius rp(τ) of its Delaunay Gp-ball
is greater than sf(cp(τ)).

Remark 4.2.2 The metric field already incorporates a sizing field, rendering this parameter
redundant. For this reason, we (almost) always consider sf = 1 and the sizing constraint is
modified directly within the metric field (see Section 2.13 in Chapter 2 for further details).

• The quality of a simplex τ with respect to metric Gp of a vertex p ∈ τ is estimated through its
radius-edge ratio ρp(τ), which measures the ratio between theGp-circumradius and theGp-length
of the shortest edge of τ . A simplex τ ∈ Sp is badly shaped if its radius-edge ratio ρp(τ) is greater
than a constant parameter ρ0.

Consistency

The purpose of the criteria described below is to help the resolution of inconsistencies.

• As we have explained above, inconsistencies are difficult to solve when the distortion is large
within simplices. A simplex τ ∈ Sp is distorted if its distortion ψ(τ) is greater than a constant
parameter ψ0.

• Once the distortion is low in all simplices, only quasi-cosphericities are responsible for the pres-
ence of inconsistencies in the star set. Quasi-cosphericities that involve slivers are difficult to deal
with and thus removing slivers ensure the removal of this type of quasi-cosphericities and, by
extension, of inconsistencies that result from these low-quality configurations (see Section 4.1.2).
A simplex τ ∈ Sp is slivery if its sliverity ratio σp(τ) is greater than σ0.

Oversized, badly shaped, distorted, slivery and inconsistent simplices are bad simplices that must
be destroyed.

4.2.3 Algorithm

Starting from a small set of initial vertices, points are iteratively inserted until all simplices satisfy
a given set of criteria. While there exist bad simplices in the star set, the algorithm selects one such
simplex τ and inserts a new point, called the refinement point or Steiner point of τ . Inserting a new
point in the star set involves maintaining the connectivity of all the stars in the star set S(P).

For a distorted or oversized simplex τ in some star Sp, the refinement point is simply chosen to be
the Gp-circumcenter cp(τ) of the simplex. However, to guarantee the termination of the refinement
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process, the algorithm must carefully choose the refinement point of a slivery or inconsistent simplex
in order to avoid the cascading appearance of inconsistent configurations.

The algorithm relies on the Insert procedure (Algorithm 2) to insert a new point in the data
structures, and on the Pick_valid procedure (see Section 4.2.1) to select the location of the new site
when the refinement point is not the circumcenter.

Algorithm 2 Insert(p)

Create the new star Sp
Insert p in any star Sq ∈ S(P) where p will appear as a vertex

A greedy approach is employed: the rules of Algorithm 3 are applied with a priority order, meaning
that Rule (i) is applied only if no Rule (j), with j < i, can be applied.

Algorithm 3 Refinement algorithm

Rule (1) Distortion:
If ∃ p ∈ P and τ ∈ Sp such that ψ(τ) ≥ ψ0,

then Insert(cp(τ));

Rule (2) Size:
If ∃ p ∈ P and τ ∈ Sp such that rp(τ) ≥ sf(cp(τ)),

then Insert(cp(τ));

Rule (3) Shape:
If ∃ p ∈ P and τ ∈ Sp such that ρv(τ) > ρ0,

then Insert(τ,Gp);

Rule (4) Sliver elimination:
If ∃ p ∈ P and τ ∈ Sp such that τ is a sliver (i.e. ρv(τ) ≤ ρ0, σp(τ) < σ0),

then Insert(Pick_valid (τ,Gp));

Rule (5) Consistency:
If ∃ p ∈ P and τ ∈ Sp such that τ is inconsistent,

then Insert(Pick_valid (τ,Gp));

The algorithm ends when no rule applies anymore, which is proven to happen (see Section 4.2.4).
The star Sp of any vertex p ∈ P is Delaunay for the metric Gp of its central vertex and since the
criteria are satisfied, all the simplices of Sp have guaranteed size and shape quality with respect to Gp.
Lastly, the stars are consistent and can be stitched together to form a triangulation D(P), which is
thus a locally uniform anisotropic mesh whose simplices have guaranteed quality in the local metric.

4.2.4 Termination

The termination of the algorithm is proved by showing that the radius of insertion, the minimum
distance between a point being inserted in the star set and the existing vertices of the star set, is
lower bounded and observing that since the domain has finite volume, the number of vertices must be
bounded. Since we insert a vertex at each iteration, the refinement process must therefore finish.

An important step to obtain the termination of the algorithm is to show that the Pick_valid

cannot fail indefinitely as the mesh gets denser. Recall that the picking region of a simplex, a scaled
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down version of the Delaunay ball of the simplex, is intersected by forbidden rings, which are com-
posed of candidates points that would create (small) quasi-cosphericities with nearby vertices and
are thus invalid (see Section 4.2.1). It can be proven that since refinement points are taken near the
circumcenters of simplices, there is only a finite and relatively constant number of forbidden rings
that can intersect a given picking region. Additionally, the thickness of a forbidden ring is linked to
the distortion of the simplex and vanishes as the distortion goes to 1 (see Section 4.2.1). By another
volume argument, the procedure must eventually finds valid points.

Details can be found in the thorough theoretical study of the algorithm by Boissonnat et al. [31].
Note that the final step is missing in their analysis: a consistent star set does form an abstract
triangulation, but it must be shown that it is a good triangulation of the input domain. This result
can nevertheless be obtained using Boissonnat et al. [15, Theorem 7.13].

4.3 Mesh generation of domains

We have so far recalled a refinement algorithm (Algorithm 3) that constructs a triangulation
satisfying a set of criteria from an initial set of points. However, practical mesh generation must be
able to handle bounded domains and to capture the boundary precisely. In the following, we assume
that the domain Ω is embedded in R

3 and bounded by a smooth 2-manifold (a surface) M = ∂Ω.
This is only done to simplify the presentation and the concepts and algorithms detailed below could
be applied to higher dimensions, and even to the case of manifolds of arbitrary co-dimension.

In the context of isotropic mesh generation, the use of restricted Delaunay triangulations combined
with a criteria-based meshing algorithm has been proved to create meshes that are faithful approxima-
tions of the boundary [53, 27]. Additionally, the definition of restriction to a domain allows to easily
mesh implicit surfaces, polyhedral surfaces, and any other type of surfaces, provided that we are able
to know if a dual entity intersects the domain (or the surface) and to compute the intersection point.
This powerful approach is thus employed and adapted here to produce good anisotropic triangulations
of domains.

We now describe how to create an anisotropic mesh of Ω, based on the refinement algorithm
previously described.

4.3.1 Restricted and surface stars

As we construct at each point a Delaunay triangulation, it is natural to consider the restriction of
each of these Delaunay triangulations, and specifically the restriction of stars. The notion of restricted
Delaunay complex is thus smoothly applied on the structure of the star set.

To each star Sp is associated the volume star Svp, formed by the cells in Sp whose dual Voronoi
vertex belongs to Ω. The set of volume stars is called the volume star set and is denoted by Sv(P).
Similarly, we associate to each star Sp the surface star Ssp, formed by the facets in Sp whose dual
Voronoi edge intersects the boundaryM. Each facet σ of a surface star Ssp has a Gp-surface Delaunay
ball, i.e. an Gp-circumscribed ball centered on the surface and including no point of P. The surface
Gp-circumball of σ is denoted by Bp(σ), its radius rp(σ) and its center cp(σ), which is the intersection
of the dual of σ with the surface. The set of surface stars is called the surface star set and is denoted
by Ss(P).

Similarly to the first refinement algorithm that we recalled, there are in general inconsistencies
among restricted stars. Indeed, A simplex τ that appears in the volume stars of some of its vertices
may not appear in the volume stars of all of them. Likewise, a simplex σ that appears in the surface
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stars of some of its vertices may not appear in the surface stars of all of them. The sets of stars Sv(P)
and Ss(P) thus do not necessarily form a triangulation of the domain or of the boundary.

Remark 4.3.1 It should be emphasized that to obtain a triangulation, there must be consistency of
both the volume and the surface star sets. While it is relatively easy to obtain a consistent surface star
set without having a consistent volume star set, it is also possible for a tetrahedron to be consistent
and to have a restricted facet that is not consistent. This results from the fact that whether a restricted
facet is consistent or not does not depend purely on combinatorics but also whether it is restricted in
the stars of all its vertices.

As in Algorithm 3, it is necessary to cleverly select refinement points to obtain the consistency
of both star sets. The picking region of a volume star is defined as in Section 4.2.1. The Gp-picking
region of a facet σ in Ssp, denoted by Pp(σ), is slightly more complex and is the intersection of the
Gp-ball Bp(cp(σ), δrp(σ)), with 0 < δ < 1, and of the surface M (see Figure 4.6).

D

B(σ)

σ c

M

Bs(σ)

cM

PV (σ)

Figure 4.6: The picking region of a surface facet σ in the case n = 2 and m = 1. D is the dual of σ, B
its surface Delaunay ball, and cM the center of B. The scaled down ball Bs has radius δrB where rB
is the radius of B.

4.3.2 Algorithm

The refinement process must now handle two different star sets, Sv(P) and Ss(P). The rules and
criteria for volume stars are identical to those defined for Algorithm 3: distortion, size, shape, sliverity,
and inconsistency. Some of these rules are identical for the surface star set – size, shape, consistency
– but two new rules, specific to the boundary, are also introduced:

• An approximation rule is introduced to control the maximum distance between facets and the
surface. The approximation error of a facet σ, denoted by hp(σ) is computed as the Euclidean
distance from the barycenter of σ to the surface. As the approximation and size criteria are
related, the approximation is incorporated within the sizing criterion.

• The second rule handles topological defects, which are defined as facets σ for whom not all the
vertices are on the surfaceM. This condition is an important indicator of the conformity of the
mesh to the topology of the input domain (see Rineau [120]).
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Remark 4.3.2 The sliverity rule does not make sense for facets in the case of a surface embedded in
R

3, but would be required in the case of a manifold of higher dimension.

The refinement algorithm for a domain with smooth boundary is presented in Algorithm 4. Rules
are here again applied with a priority order: Rule (i) is applied only if no Rule (j), with j < i, can be
applied.

Algorithm 4 Refinement algorithm for a domain with a smooth boundary

Rule (1) Facet distortion:
If ∃p ∈ P and σ ∈ Ssp such that ψ(σ) ≥ ψ0,

then Insert(cp(σ));

Rule (2) Facet size:
If ∃p ∈ P and σ ∈ Ssp such that rp(σ) ≥ sf(cp(σ)) or h(σ) ≥ h0,

then Insert(cp(σ));

Rule (3) Facet topology:
If ∃p ∈ P and σ ∈ Ssp such that σ has a vertex q not on M,

then Insert(cp(σ));

Rule (4) Facet shape:
If ∃p ∈ P and σ ∈ Ssp such that ρp(σ) > ρ0,

then Insert(cp(σ));

Rule (5) Tetrahedron distortion:
If ∃p ∈ P and τ ∈ Svp such that ψ(τ) ≥ ψ0,

then Insert(cp(τ));

Rule (6) Tetrahedron size:
If ∃p ∈ P and τ ∈ Svp such that rp(τ) ≥ sf(cp(τ)),

then Insert_or_snap(τ,Gp));

Rule (7) Tetrahedron shape:
If ∃p ∈ P and τ ∈ Svp such that ρp(τ) > ρ0,

then Insert_or_snap(τ,Gp);

Rule (8) Tetrahedron sliver removal:
If ∃p ∈ P and τ ∈ Svp such that ρp(τ) ≤ ρ0 and σp(τ) < σ0),

then Insert_or_snap_valid(τ,Gp);

Rule (9) Facet Consistency:
If ∃p ∈ P and σ ∈ Ssp such that σ is inconsistent,

then Insert(Pick_valid(σ,Gp));

Rule (10) Tetrahedron consistency:
If ∃p ∈ P and τ ∈ Svp such that τ is inconsistent,

then Insert_or_snap_valid(τ,Gp);
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The Insert_or_snap and Insert_or_snap_valid procedures are explained and detailed below in
Section 4.3.3.

Note that the rules – whether surface or volume rules – that rely on the Pick_valid procedure
to select the refinement point are assigned the lowest priority, in hope that a slivery or inconsistent
simplex is destroyed by a criterion that does not require the use of the costly Pick_valid procedure.

Pure mesh generation Algorithm 4 describes the process that refines both the inner region and
the boundary of the domain. It is however possible to ignore the refinement of one of the two types of
stars: ignoring volume star rules yields a consistent surface mesh of the domain, and ignoring surface
rules yields a triangulation of the domain (but whose boundary is usually roughly approximated).
When one of the star set is ignored, we use the keyword pure: either a pure surface, or a pure volume
mesh is constructed.

4.3.3 Encroachment

While refining a volume star, a chosen Steiner point p might fall in a surface Delaunay Gp-ball
of a facet σ ∈ Sp. If it is the case, q is said to encroach σ. If a refinement point is to be inserted
to destroy a cell and and it encroaches a surface fact, then the facet is refined instead. The inser-
tion of points in volume stars is thus done through two procedures that are modified version of the
Insert and Pick_valid procedures to incorporate the possibility of encroachment: Insert_or_snap

(Algorithm 5) and Insert_or_snap_valid (Algorithm 6).

Algorithm 5 Insert_or_snap(τ,Gq)

Let c = Gq-circumcenter of τ
if c encroaches some facet σ in some restricted surface star Ssr then

Insert(cr(σ))
else

Insert(c)

Algorithm 6 Insert_or_snap_valid (τ,Gq)

Let c = Pick_valid (τ,Gq)
if c encroaches some facet σ in some restricted surface star Ssr then

Insert(Pick_valid (σ,Gr))
else

Insert(c)

4.3.4 Features preservation

In practice, three-dimensional domains are rarely bounded by a smooth surface, but rather possess a
piecewise-smooth boundary. A mesh of the domain is then expected to include a faithful representation
of the 1-dimensional features of the boundary. A natural idea would be to create a third type of star
set, for the edges, with its own set of rules, along with a notion of encroachment between facets and
edges, as was done by Rineau [120]. However, this technique fails in the isotropic setting when small
angles exist between these features and this configuration can also occur in our context (with small
angles computed in the metric).
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To remedy this problem, the technique of protecting balls, inspired by Cheng et al. [46, 47],
was used to handle 1-dimensional features robustly in the isotropic setting. The method could be
extended to the framework of locally uniform anisotropic meshes by considering anisotropic balls,
but this approach was not pursued in theory nor in practice due to unrelated shortcomings of the
algorithm, see Sections 4.7 and 4.8.

4.3.5 Initial sampling

The algorithm requires a few initial points to start the refinement process. We generate a rough
isotropic mesh and a sample of its vertices are extracted to form the initial set of sites of the anisotropic
star set.

Poles When constructing a pure surface mesh, it was recommended to add a few initial points on
the medial axis in addition to the initial points on the surface, called poles, for the sake of numerical
robustness [28]. A good way to obtain those poles is to use the Voronoi vertices of the initial isotropic
mesh; Figure 4.7 shows in yellow the poles corresponding to an isotropic triangulation of the “Dino”
surface.

Figure 4.7: The “Dino” surface (leftmost). An isotropic mesh of the “Dino” surface (middle and
rightmost) and its poles (yellow).

In practice, experiments show that poles are never required for robustness with our implementation
and these degeneracies are thus a theoretical concern. Worse, the use of poles can even be harmful if
they are close to the boundary of the domain as this will create a local over-refinement spot due to
the shape criterion.

However, poles proved useful when both volume and surface rules are used, as they limit the size of
the initial tetrahedra within the domain. Since the surface stars are first refined in Algorithm 4, this
plays an important role in the speed of the algorithm: without poles, volume stars might possess an
extremely large number of vertices once the size and shape surface rules are satisfied. By employing
well-positioned poles within the domain, we can ensure that the number of vertices on the link stays
low, thus greatly reducing the running time of the first few insertions, which would otherwise be large.

Remark 4.3.3 This insertion of well-spaced interior points to ensure a good run time of the algorithm
is not unlike the techniques proposed by Miller et al. [104] to produce so-called linear-size meshes.
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4.4 Implementation

The algorithm is straightforward and a naive implementation would be trivial: simply build all the
complete Delaunay triangulations at all the vertices, and create the final mesh by extracting each star
Sp from the triangulation Delp(P). A new point q would be inserted in all the triangulations Delp(P),
regardless of the proximity between p and q, and the new star Sq is obtained by building Delq(P ∪ q).
Such an approach is clearly unreasonable in practice, both in terms of memory and time: the simple
insertion of one point in the star set structure would carry an O(n logn) complexity. We therefore
aim to implement the locally uniform anisotropic mesh theory efficiently and robustly.

Our code is based on the C++ library CGAL [2], and specifically on the Triangulation packages
that provide fast and robust implementations of the Delaunay, weighted Delaunay and constrained
Delaunay triangulations. The framework of our implementation is inspired by that of the isotropic
mesh generators of CGAL [80] and is designed to be as generic as possible and is thus heavily
templated. We describe our current implementation in detail, from its general structure to the smaller
tricks used to increase the speed of the algorithm.

The algorithm is implemented for planar domains, surfaces and volume domains with smooth
boundaries.

4.4.1 General structure of the implementation

The core architecture of the implementation is similar to that of the isotropic mesh generators of
CGAL, Mesh_2 and Mesh_3, and can be divided into three large sets of classes:

Data structures

A star is represented through a class called Stretched_Delaunay_Triangulation that derives
from the CGAL class Delaunay_Triangulation. It provides the basic operations that a star requires
such as the insertion and removal of a point, the computation of cavities and the combinatorial
predicates used to answer queries such as “is the simplex σ found in this star?”. The star set is, as its
name implies, represented by a vector of stars and each star is assigned an index, its position in the
star set. A Star_set class handles the insertion and removal of a point in the star set, the verification
of consistency between stars, and various miscellaneous tasks such as the input and output functions.

Refinement

Refinement-related classes are largely independent from the classes that implement data structures.
A class Criteria is in charge of providing the test functions associated with the different criteria,
for example the computation of the circumradius and the comparison of the circumradius with the
sizing parameter. Refinement queues are given their own specific classes, which contain the different
priority queues for each criterion, and provide the insertion and removal of bad simplices from queues,
as well as various query operations such as returning the worst element across all queues (which gives
the next simplex to refine). More details are given on the efficient implementation of the refinement
queue in Section 4.4.3.

Input parameters

The last set of classes concerns the two principal inputs: the domain and the metric field. The
implementations of these inputs provide each one important function to the refinement algorithm,
referred to oracles.
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The class that implements the domains answers whether a point is inside, on the border or outside
of the domain. This oracle is then used to compute whether a volume simplex is restricted, or to
compute the intersection of the dual of a facet (either a ray or a segment) with the boundary of the
domain, to test whether a facet is restricted.

The class that implements the metric fields computes the metric at any point of the domain.

Both classes are made as generic as possible by providing two base classes Domain and Metric_field

that implement the basic operations. For example, the Metric_field can compute the stretching
transformation of geometrical entities (points, simplices, boxes, etc.). Any domain or metric field is
easily constructed by deriving from the respective base classes and only providing the specific ora-
cle. All the metric fields and domains that are used in our experiments are presented in detail in
Appendices A and B respectively.

We have so far described a number of classes that implement independent functionalities of the
process. A skeleton is needed to link all these parts together; this is the topic of the next section.

4.4.2 Mesher levels

The process of inserting a point in the star set to destroy a simplex can be seen as a cycle of the
refinement algorithm. The different rules of the algorithm (see Section 4.3.2) naturally split the set
of cycles in surface cycles and volume cycles, depending on the kind of simplex that is refined during
the cycle. Surface and volume cycles share a common core of tasks: retrieve the next bad simplex,
compute the refinement point, insert the refinement point, maintain the star set S(P) and actualize
the list of bad simplices.

These common tasks involve all the classes that were described in the previous section are involved:
the simplex to destroy is selected from the refinement queues; the position of the refinement point is
computed using the domain and its metric by the metric field; the insertion naturally is performed
within the data structure classes; finally, gathering the new bad simplices is done with the help the
Criteria classes and the insertion of bad simplices requires once again the refinement queue classes.

In the context of isotropic mesh generation, Rineau and Yvinec [119] introduced the notion of
Mesher level, a class that creates the link between the different classes involved in a refinement algo-
rithm and implements the different tasks shared by all types of cycle.

However, surface and volume cycles differ in the manner in which they perform some of these tasks;
for example, the refinement point for a volume cycle is the center of a tetrahedron while the refinement
point of a surface facet is the center of its surface Delaunay ball. Furthermore, tasks might need to be
performed differently even within the same type of cycle, depending on the rule that is governing the
insertion of the point: a tetrahedron that is a sliver calls upon the Pick_valid algorithm to determine
the refinement point while an oversized tetrahedron is simply refined with its circumcenter.

It is thus necessary to create multiple mesher levels, each corresponding to a set of rules that
perform the different tasks in the same manner. In the case of the rules of algorithm 4, there are thus
four mesher levels:

• A facet level that handles the distortion, size and approximation, topology and shape of facets
– Rules (1− 4).
• A cell level that handles Distortion, size, shape and sliverity of cells – Rules (5− 8).
• A facet consistency level that handles the consistency of facets – Rule (9).
• A cell consistency level that handles consistency of cells – Rule (10).

The complete refinement algorithms is obtained by stacking and tying together those mesher levels,
according to the priority order of the rules: each mesher level can access the first mesher level with
higher priority. If a mesher level M1 is told to process an element (i.e. to perform the tasks of one
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cycle) and a mesher level M2 with higher priority still has simplices to refine, M1 will not start a
cycle and M2 will process an element instead. Note that the mesher level M2 will itself check if the
next mesher level with higher priority has simplices to refine before starting the cycle. The refinement
process is started by selecting the mesher level with lowest priority (usually a consistency mesher level)
and telling it to process one element.

Communication from a higher priority mesher level to a lower priority mesher level is also sometimes
needed, for example during the actualization of the refinement queues at all levels. To avoid problems
in the initialization of the mesher levels due to circular dependency, the concept of visitor patterns –
described in [3] – is used: to each mesher level is associated one visitor that points to the first mesher
level with lower priority. Rather than a member of the mesher level, a visitor is passed by argument
to the functions of that mesher level. Figure 4.8 shows the connectivity between mesher levels for
Algorithm 4.

Null mesher level

Facet level

Cell level

Facet consistency level

Cell consistency level

Null visitor

Facet visitor

Cell visitor

Facet consistency visitor

Cell consistency visitor

Figure 4.8: Pipeline of the hierarchical refining algorithm presented in Algorithm 4. “Null” mesher
levels are empty mesher levels that are only needed for consistency. The dashed arrows signify that
the functions of the mesher level are provided the corresponding visitor.

As mesher levels share a large amount of identical functions and a number of tasks with similar
purpose but different execution, the usage of virtual functions impose itself naturally. The implemen-
tation of the mesher levels is based on the Curiously Recurring Template Pattern (CRTP), described
by [54], to avoid the runtime cost of virtual functions.

The mesher level framework provides a powerful implementation of the algorithm as one can easily
insert, modify, or change the priorities of a rule. For example, a pure surface mesher or a pure
tetrahedral mesher can be obtained immediately by linking the mesher levels differently.

4.4.3 Refinement queues

The algorithm uses a greedy approach to refine simplices that do not satisfy the set of criteria.
Each rule r is attributed a priority queue Qr of simplices that are bad for this rule and that is sorted
decreasingly, such that the simplex that is the worst for the criterion corresponding to r has the

82



4.4. Implementation

highest priority in the queue. For example, oversized simplices (Rule (1)) are sorted by decreasing size
of circumradius. Retrieving the next bad simplex to refine is done by finding the top of the refinement
queues, that is the worst simplex in the highest priority queue amongst the non-empty queues. The
bad simplex is removed from its queue once the insertion has been performed.

While the insertion of a point p that refines a bad simplex σ might destroy additional bad simplices
{σj}j , only σ is removed from the refinement queue at the end of a cycle. The top of the refinement
queue might thus be a simplex that does not exist anymore. If that is the case, the top of the refinement
queue is removed and we consider the new top of the refinement queue (and so forth until either the
top is a valid simplex or the queue is empty). Maintenance functions to retrieve the next element to
refine, insert elements or print the state of queues are implemented in a straightforward way.

The simplest implementation of the refinement queues is to use existing data structures and im-
plement each rule using – for example – an std::priority_queue structure. However, the star set
is a combination of many triangulations with each simplex living in multiple stars, creating redun-
dancy in these queues. This issue is detailed in the next section, and an improvement to the naive
implementation of the refinement queue is sought.

Redundancy

Due to the star-based structure of our algorithm, the same combinatorial simplex usually exists
in multiple stars – and even in the star of all its vertices if it is consistent. On the other hand, a bad
simplex σ will often be bad in more than one star:

• the distortion of a simplex is the same for all the metrics at its simplices. If the simplex is
distorted, it will be immediately distorted for all the stars in which it appears. A similar
reasoning can be applied to the topology and consistency criterion.

• if the distortion within a simplex is small, the evaluations of size, shape, approximation or
sliverity will yield similar results in all the stars in which the simplex exists. If the simplex is
bad for one star, it is likely to be bad for the others.

Furthermore, a bad simplex that is refined in one star (or destroyed by the refinement of another
simplex) is probably also destroyed in the other stars of its vertices when the refinement point is
inserted in the star set, but is only removed once from the refinement queues. Naively adding all the
bad simplices to the corresponding priorities queues thus results in a lot of redundancy at different
times.

This concern is not only theoretical: running the three dimensional example of a cube of side 3
endowed with a unidimensional shock metric field (see Section A.8 in Appendix A), we observe that
after 3000 vertex insertions in the star set, the refinement queue is composed of 112437 different –
maximal – simplices but the insertion of a bad simplex that already existed in the refinement queue
has been performed 87064 times.

To prevent superfluous information in the refinement queues, we introduce a set that contains
all the bad simplices with a uniqueness condition on the combinatorial information of simplices. We
detail this approach and the necessary changes in the refinement queue implementation that go with
it.

Data structures and complexity

We detail in this section the data structures and implementation of our improvement refinement
queues.

Note first that a bad simplex σ in a star Sp is fully characterized by the following variables:
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• Sp – the star in which it is considered,
• Cσ – the indices of its vertices in the star set,
• iσ – the index of the rule for which it is bad,
• bσ – its badness score for that rule.

Bad simplex are implemented with a class called Bad_simplex.

To preserve the uniqueness of a bad simplex in the refinement queues, a set of bad simplices Σ is
built using an (unordered) set of Bad_simplex. A combinatorial simplex is thus allowed to appear
only once. If a simplex is bad in multiple stars, the version that is kept in the refinement queue is the
bad simplex that is bad for the rule with the highest priority. If the same simplex is bad for the same
rule in multiple star – which often happens – the occurrence with the worst badness score is kept.

In practice, each priority queue Qr (associated to the rule r) is a multiset of iterators sit, each
pointing to an element σ in Σ, and is sorted by the values vσ associated to the entry σ. For practical
reasons, the position of a bad simplex σ in the queue Qrσ , an iterator qitσ of multiset, is also a member
of the class Bad_simplex. The addition and removal of a bad simplex in the refinement queue are
detailed in Algorithms 7 and 8 respectively.

Algorithm 7 Insertion of a bad simplex σ(Sp, Cσ, iσ, bσ) in the refinement queue

if ∃σ′ ∈ Σ such that Cσ = Cσ′ then
if rσ < rσ′ or rσ = rσ′ and bσ > vσ′ then

Delete σ′ from the refinement queue
Insert σ in Σ
Insert σ in Qiσ

else
insert σ in Σ

Algorithm 8 Deletion of a bad simplex σ(Sp, Cσ, iσ, bσ) from the refinement queue

Remove σ from Σ
Remove σ from Qiσ

Using standard structures from the Boost library, our refinement queue enjoys average constant
complexity for the insertion and deletion of a bad simplex in the set Σ, and for the deletion of an
entry from the refinement queue. The only operation that has non constant – or average constant
– complexity is the insertion of an iterator sitσ in the Qrσ . For this operation, the complexity is
logarithmic in the size of Qrσ , which is thus also the complexity of the insertion of a bad simplex in
the refinement queue.

In the following, we assume that our implementation uses this structure and will explicitly use the
term naive when referring to the simpler implementation that ignores duplicates (and was described
at the beginning of this section).

Maintaining the refinement queue

Once a point p has been inserted in the star set(s) Sv(P) and Ss(P), the refinement queue has
to be updated. The bad simplex σ0 that was killed by the insertion of p is removed as explained
in algorithm 8. The last step of a cycle is to collect the new bad simplices and insert them in their
respective refinement queues. Since it is not reasonable to test all the simplices of all the stars of the
star set, we must gather a list (as small as possible) of L of potentially bad simplices. To build the
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list L, we gather the simplices of the new star and the simplices of the stars that were modified by
the insertion of p. Unfortunately it is not sufficient to guarantee that we will find all the new bad
simplices.

Tricky situations It might happen that a simplex that was consistent before the insertion of p has
been destroyed in at least one – but not all – of the triangulations it appeared in. This simplex is
now inconsistent but the stars in which it still appears might not have been modified by the insertion
of p and thus has not been collected by L. Note that this issue will appear even if using a naive
implementation of the refinement queues.

Imposing the combinatorial uniqueness of elements greatly complicates the task of maintaining the
refinement queues. Consider for example a bad simplex σ(Sσ, Cσ, rσ, vσ) that is different from σ0 (the
simplex destroyed by the insertion of the new point p), but also has been destroyed by the insertion
of p. The same (combinatorial) simplex might still exist and be bad in at least one of the stars of its
vertices, giving another bad simplex σ(Sσ′ , Cσ′ , rσ′ , vσ′) – with Cσ = Cσ′ . Even though σ is not a valid
entry in the queue anymore, it has not been removed from the refinement queue (only σ0 has been).
Therefore, σ′ will not be inserted since it has lower priority than σ (since σ was in the queue, not
σ′). This creates an obvious problem as σ will be discarded (since it doesn’t exist anymore) when it
is retrieved as the next simplex to refine, but σ′ might still be an existing bad simplex that has never
been marked for refinement. We must therefore preemptively remove the destroyed simplex σ from
the refinement queue and add σ‘ to L.

These two tricky situations are solved by complex – but relatively cheap – combinatorial checks in
modified stars.

Finally, all the simplices of L are tested against the criteria of the algorithm, and inserted in the
appropriate refinement queues if they are found to be bad.

Naive vs unique implementation of the refinement queues

Unfortunately, only tiny gains in speed were observed in practice as a result of our improved queue.
This result is not completely unexpected as operations related to the refinement queue have in average
constant or logarithmic complexity and are thus not heavily influenced when the number of elements
is lowered by a factor.

In the settings that we usually mesh, these gains in time obtained by enforcing the combinatorial
uniqueness of the elements in the queue are probably not worth the complexity of the implementation.
However, one might expect that the difference would become more significant in a higher-dimensional
setting, or for exceptionally large star sets.

4.4.4 Insertion of a point in the star set

A cycle can be broken down in four important steps: retrieving the next bad simplex to refine,
computing the refinement point, inserting the refinement point in the star set and collecting the new
bad simplices. The first two steps are described in Sections 4.4.3 and 4.2.1 respectively and the last
one in Section 4.4.3. We focus in this section on the implementation details of the tasks performed
after the refinement point is known. The two central tasks of the insertion of the point in the star set
is the insertion of the point in existing stars, and the creation of the new star.
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Efficiently inserting a new point in existing stars

Before describing our insertion algorithm, we first need to define a few notions related to the
insertion of a point in a star.

A point p is said to be in conflict with some simplex σ of Sq if p is included in the Gq-circumball
of σ. By extension, we say that a point is in conflict with a star if it is in conflict with one of its
simplices. To ease the narration, we symmetrize the relation and say that a simplex (resp. star) is
in conflict with a point if a point is in conflict with the simplex (resp. star). The conflict zone of Sq,
denoted by Zq, is the union of the Gq-circumballs Bq(σ) of all the simplices σ of Sq. A point p is in
conflict with a star Sq, if it belongs the conflict zone of Sq. By definition, a point p will belong to
Sq after insertion in Delq(P) if p is in Zq. A star Sq for whom p ∈ Zq is said to be modified by the
insertion of p in Delq(P).

Insertion in a stretched triangulation The insertion of a refinement point p in a triangulation
Delq(P) for q ∈ P and q 6= p is thus performed by transforming the new point to the metric space and
simply using traditional techniques such as the Bowyer-Watson algorithm [34, 138]. The insertion of
a point is described in Algorithm 9.

Algorithm 9 Insertion of p in Delq(P) with the Bowyer Watson algorithm

Compute the transformed point Tp = Fqp (where Fq is the square root of Gq, the metric at q)
Compute the conflict zone of Tp in the Delaunay triangulation Fq(Delq(P))
Delete all simplices that are in the conflict zone
Triangulate the hole with Tp, thus obtaining Fq(Delq(P ∪ p))

The insertion of a point in a star is illustrated in Figure 4.9.

p

q qq

p

s s

p

Figure 4.9: A star, its conflict zone (light blue), the refinement point (s) is in conflict with 2 Delaunay
balls (red). The cavity computed during the Bowyer-Watson is dashed in orange with its borders in
yellow.

In practice, we store the Delaunay triangulation at each point in its metric space (that is we
store and maintain Fq(Delq(P))) since almost all operations are easier to perform in the metric space,
where Delq(P) is an isotropic triangulation. For efficiency and memory reasons, we do not store the
triangulation Delq(P) and only cache the position of the center of the star in Euclidean space, which
is sufficient.

Insertion in the star set A naive approach would insert a new point p in all the existing triangula-
tions Delq, with q ∈ P. As the number of stars grows, this method quickly becomes too expensive and
determining beforehand the stars {Sqi} for whom p belongs to Sq after the insertion of p in Delq(P)
is thus essential to obtain an efficient implementation.
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We can observe that a point p will belong in Sq only if p is in conflict with the simplices of Sq.
Rather than inserting the point p in Delq(P), we can thus only test if a point belongs to the conflict
zone of a star and only insert the point in Delq(P) if it belongs to Zq, thus preventing many meaningless
insertions. However, unions of spheres are difficult to handle swiftly, and traversing the full star set
structure with each insertion is still not acceptable complexity-wise. To obtain an efficient detection
of the conflicted stars, we use a bounding box-based filter: an AABB tree.

AABB tree To each conflict zone Zq, we associate its Euclidean axis-parallel bounding box that we
call simply the bounding box of q and denote by Bp. The bounding boxes of the current set of vertices
P are maintained in a bounding volume hierarchy, an AABB tree [7]. Figure 4.10 shows the bounding
boxes of a planar star and of a surface star.

Figure 4.10: In blue, the mesh and the domain. In yellow, the Delaunay balls. In green, the box. On
the right, yellow points are centers of the surface Delaunay balls and red points are facet circumcenters.

When inserting a new site p, we first query the AABB data structure and report all the boxes that
contain p. If p belongs to some box Bq, we further check whether p belongs to the conflict zone Zq
and, in the affirmative, we insert p in the triangulation Sq.

A small issue arises from the fact that the bounding box of a star does not always decrease when
a point is inserted in the star, see for example Figure 4.11. When this configuration is detected, the
AABB tree must be rebalanced. Since this is a O(n logn) operation (with n the number of entries
in the tree), it might seem problematic. However, this is a very rare phenomenon that only appears
when the domain is not yet well approximated and consequently does not occur when the number of
vertices is large.

Creation of a new star

The last step of a cycle is to create the new star Sp. The naive idea of building the complete
triangulation Delp(P) is once again computationally unreasonable. We must therefore find all points
in P that will belong to Sp, but not (much) more. The stars {Sqi} that are modified by the insertion of
p provide a good starting set of points that are likely to belong to Sp: {qi}. However, since the metric
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Figure 4.11: The box of Sp is growing after the insertion of s. The point t is an imaginary troublesome
point used in Section 4.4.5.

field is generally non-uniform, there might be other points {ri} whose star was not modified by the
insertion of p but still belong to Sp. Another filter, a k-d tree, is used to find these points efficiently.

k-d tree The current point set P is itself maintained in a k-d tree Kd(V ) [14]. While the AABB
provides the knowledge of boxes containing a point, the k-d tree allows to quickly find which points
are in a rectangular query.

The triangulation Delp(P) of the new site is initialized as the star of p in the Delaunay triangulation
of p and of all the vertices qi whose star Sqi(P) has been modified by the insertion of p. We then
compute the bounding box Bp of the current conflict zone Zp, and query the k-d tree Kd(V ) to collect
the set of vertices {ri} that fall within the bounding box. Each point ri is inserted in Delp(P) if it
belongs to the current conflict zone Zp.

Note that the insertion of a vertex modifies Zp, thus there might exist a point si in conflict with
Sp after the insertion of a point ri, despite not being in conflict with Sp before insertion of ri. This
configuration is illustrated in Figure 4.11, where the point t is not in conflict with Sp until s is inserted
in Sp. Thus, after each insertion, the conflict zone Zp and the bounding box Bp must be updated,
and the k-d tree queried again. This must repeated until there are no more vertices in conflict with
Zp. Individually cheap, this check is very costly over the whole meshing process. For example, in the
generation of a mesh of 7000 vertices for a square endowed with a hyperbolic shock metric field, 10
seconds out of a total of 31 seconds are devoted to this check. The running time of this check naturally
depends on how often the star set is cleaned (see Section 4.4.5).

Cavity caching

The boundary and internal simplices of the cavity Cq are used multiple times each cycle: when
checking if a star is modified by the insertion of a point, when inserting a new point in a star, and
finally when collecting elements that must be tested against the criteria. The cavity of a star is thus
cached throughout a cycle.
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4.4.5 Cleaning the star set

Storing all the triangulations of all the vertices would be costly from a memory point of view: if we
stored all the triangulations Delp(P), each point would appear as many times as there are points in the
star set; and from a computational point of view: some operations, for example finding the location
of a point, take longer in large Delaunay triangulations. To merge local triangulations Delp(P) in a
consistent triangulation of the domain, we thankfully do not actually need to maintain Delp(P) for
all q ∈ P, but simply Sp(P), which is a relatively constant number of vertices since we are using a
Delaunay refinement algorithm.

In practice, we store for each p ∈ P a triangulation Del′p(P) that is kept close to Sp by trimming
every nc (this value is discussed below) the vertices that are not incident to p, which happens as we
insert new vertices in Del′p(P), a process referred to as cleaning. To not have to seek which stars must
be cleaned, we keep in memory a list of stars that have been modified since the previous time stars
were cleaned.

The value nc naturally influences the runtime of the algorithm (but not its result) and must thus
be carefully picked: when nc is chosen too small, the cost of regularly rebuilding stars outweighs the
benefit of handling small triangulations; the opposite happens when nc is too large. Table 4.1 shows
the effect on the runtime for different values of nc.

Table 4.1: Influence of cleaning on the computational time. The final mesh has 22731 vertices.

Cleaning every 1 5 10 50 75 100

Time (s) 617.86 593.80 544.23 556.49 572.33 588.49

Cleaning every 250 500 1000 5000 10000 20000

Time (s) 595.14 599.39 615.86 648.98 705.17 1060.69

These results are relatively consistent over all our results and we thus use nc = 50, which provides
a good balance between both the cost of cleaning and the size of triangulations. Note that except for
the degenerate case of a point set with a size smaller than nc, this value is independent of the total
size of the mesh as it compares the cost of rebuilding a star (which is a completely local operation
if we assume that we keep correct stars at all times) of stars versus the cost of inserting in a local
neighborhood.

4.4.6 Parallelization

At first glance, the star structure of the algorithm might seem perfect for parallelization. In
practice, it is more difficult: simply parallelizing the insertions of a point in each of the conflicted
stars – even including finding the new bad simplices and their insertions in the refinement queues
of the new bad simplices – will actually result in a slow down of the algorithm, due to cache issues.
Indeed, the class Stretched_Delaunay has a heavy memory footprint caused by a large amount of
members: a Delaunay triangulation, a metric, multiple combinatorial information caching structures,
filters (see Section 4.4.4), etc.

Another option would be to parallelize the algorithm in a similar fashion to the isotropic mesh
generator Mesh_3 [80], with each thread handling the refinement of a single simplex at a time. In
the parallel version of Mesh_3, the principle of locks are used to avoid refining simplices that are
too close from each other. The implementation is however technical and tedious, and the anisotropy
of stars makes the locality of locks more difficult to handle. While this technique would potentially
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accelerate the refinement process, it was not pursued due to other unrelated issues with the algorithm
(see Section 4.7).

A parallel approach, based on surface segmentation, is nevertheless investigated in Chapter III.6
where we will need to build inconsistent star sets swiftly.

4.5 Discussion on the parameters

The algorithm relies on various parameters: ψ0, r0, ρ0, σ0, β, δ... It can be difficult, at first
glance, to estimate their influence on the outcome in term of speed, number of vertices or quality of
the produced mesh. We investigate each parameter independently.

4.5.1 Parameter ψ0

The rule with the highest priority in the algorithm is the distortion rule, which bounds the maximal
distortion in a simplex to be at most ψ0, with the intent of increasing the odds of finding a valid solution
when the Pick_valid procedure is called later in the algorithm. The value ψ0 has naturally a strong
impact over both the computation time and the final mesh: if ψ0 is chosen too large, the Pick_valid

procedure will be at first largely unsuccessful, causing many unsuccessful and costly insertions till the
sampling increases and valid points are be found. Oppositely, if ψ0 is chosen too small, simplices might
be refined even if they already satisfy all other criteria – including consistency – which is pointless
and costly and thus undesirable.

To determine what is the optimal value for ψ0, we look at the number of vertices in a final mesh, the
number of calls to the Pick_valid procedure and their success percentage, and the computation time
for various values of ψ0. All the parameters except for ψ0 are kept constant and the sizing constraint
r0 is chosen large enough as to only be responsible for a negligible number of vertices added. The
domain is a square of side 4 and centered on c = (0, 0) endowed with the hyperbolic shock (detailed
in Section A.3 in Appendix A). Results are shown in Figure 4.12.

For the sake of completeness, we also consider a three-dimensional domain, a cube of side 3 and
centered on c = {1.5, 1.5, 1.5}, endowed with a unidimensional shock metric field (see Section A.8 in
Appendix A). Since the goal is to compare the influence of ψ0 for the refinement of cells, we disable the
refinement of surface stars and construct a pure volume mesh. Results can be found in Figure 4.13.

These experiments provide a lot of interesting and unexpected information:

• The success percentage of the Pick_valid procedure increases when ψ0 decreases, as the theory
predicts. However, a low value of ψ0 will very quickly be responsible for the insertion of an
exceptionally large number of vertices (red curves).

• The final number of points is greater whenever ψ0 is used than when it is not (blue curves).

• However small ψ0 is, there are still inconsistencies that appear (the teal curves show the number
of vertices inserted to solve inconsistencies), proving that the Pick_valid procedure is a neces-
sary part of the algorithm. Even more interestingly, they add a relatively constant number of
vertices, indicating that the distortion rules did not help.

• Despite Rule 1 inserting only the circumcenter, for no value of ψ0 is time gained by using
the distortion criterion: the mesh was generated fastest when no simplex was refined for the
distortion (green curves).
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Figure 4.12: Influence of the parameter ψ0 in a two-dimensional domain (shown on the left). In blue,
the final number of vertices (Np). In teal, the number of calls to the Pick_valid procedure (NPV ).
In red, the percentage of success of the Pick_valid procedure. In green, the time (in deciseconds).
The value ∞ means that the distortion queue is disabled.
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Figure 4.13: Influence of the parameter ψ0 in a three-dimensional domain (shown on the left). In blue,
the final number of vertices (Np). In teal, the number of calls to the Pick_valid procedure (NPV ).
In red, the percentage of success of the Pick_valid procedure. In green, the time (in seconds). The
value ∞ means that the distortion queue is disabled.

Additionally, the comparison between Figures 4.12 and 4.13 shows that while the profiles of all curves
are similar in 2 and 3D, the bound below which ψ0 is responsible for a large increase in the number
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of vertices in the final mesh is different, making it difficult to choose a value of ψ0 if the Rule 1 s
beneficial.

In conclusion, the distortion queue is – in practice – a rule that is at best not useful, and at worst
extremely harmful to the algorithm. We shall modify the general algorithm to take into account these
observations, see Section 4.6.1.

4.5.2 Parameters r0 and ρ0

The values of r0 (size criterion) and ρ0 (shape criterion) naturally affect the number of vertices as
additional vertices must be inserted to satisfy these criteria. In isotropic mesh generation, the number
of vertices follows roughly the square of the sizing field in 2D and the cube in 3D: if the sizing field is
divided by 2, there are 4 times more vertices in 2D and 8 times more vertices in 3D.

As explained in Section 2.13 in Chapter 2 and in Section 4.2.2, the size parameter is usually left at
1 as the size of the elements can be directly encoded in the metric. We exceptionally scale r0 instead
of the metric field in this experiment for the purpose of clarity. The results are shown in Figure 4.14.
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Figure 4.14: Influence of the parameter r0 on the final number of vertices. Nr0 is the number of points
added by the sizing criterion. Np is the total number of points in the final mesh.

This relation is somewhat similar in the case of anisotropic mesh generation. Here again, the
number of points added by the inconsistency queue (that can be roughly computed as the difference
of the green and blue curve) is more or less constant, even when the number of points inserted for the
size rule is important.

The shape parameter ρ0 and its corresponding rule ensure that all simplices satisfy shape re-
quirements, which is both useful in itself but also improve the odds of finding valid solutions in the
Pick_valid procedure. This parameter has, in practice, very little influence and the corresponding
rule is very rarely called upon. This can be seen as a consequence from the fact that Rules 1 and 2
(distortion and size) insert the circumcenter, an already appropriate choice to create meshes of good
quality (see Ruppert).

4.5.3 Parameters β and δ

Contrary to the parameters ψ0 and ρ0, who serve to satisfy quality requirements on simplices
ahead of Pick_valid procedure calls, the parameters β and δ are directly involved in the Pick_valid
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procedure. Indeed, the parameter β controls the size of acceptable inconsistencies and δ determines
the size of the picking region Pp(τ) as its radius is given by δrp(τ).

We use a cubic domain of side 1, centered on (0.5, 0.5, 0.5) and endowed with a unidimensional shock
metric field with maximal anisotropy 3 (see Section A.8 in Appendix A). The number of Pick_valid

tries is fixed at 60 but the value of δ varies. We investigate the final number of vertices in the mesh
and the quality of the simplices. For planar and surface domains, the quality is estimated with the
formula of Zhong et al. [144]:

Q = 4
√

3
A

ph
.

where A is the area of the triangle, p the perimeter and h the longest edge (all computed in the
metric). For cells, we use the quality estimation of Frey and George [71]:

Q = 216
√

3
V 2

A3
Σ

.

where V is the volume of the tetrahedron, and AΣ the sum of the areas of the four facets (all compute
in the metric). Both these quality measures live between 0 and 1, with 1 signaling the highest quality.
Results are detailed in Table 4.2.

Table 4.2: Comparison of the number of vertices and quality of the mesh for different values of δ.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Points 1173 734 497 364 356 368 427 490 678 720

PV success 345 204 146 92 95 118 148 194 310 354

PV failures 635 386 231 161 158 156 177 178 234 228

Quality (min) 0.05 0.02 0.01 0.03 0.03 0.02 0.04 0.08 0.001 2× 10−3

Quality (max) 0.993 0.989 0.976 0.980 0.984 0.986 0.975 0.980 0.987 0.993

Quality (avg) 0.703 0.704 0.684 0.678 0.648 0.631 0.610 0.600 0.566 0.549

As expected, more solutions are available in the pick valid algorithm when the picking region is
enlarged, resulting in smaller meshes. However, the metric is followed more loosely and the simplices
of the meshes have lower quality. Note that in extreme cases – δ close to 1 – the final number of
vertices starts to increase again, as the refinement points are often not creating satisfying elements
with respect to other criteria, such as the shape.

The parameter β is assigned the value 2.5 by default, but changing this value (within 1 to 5) has
barely any influence on the outcome.

4.5.4 Parameters σ0

The parameter σ0 controls the maximal sliverity of the simplices (as defined in Section 4.1.2). A
majority of inconsistencies do not stem from slivery quasi-cosphericities, and thus this parameter has
little influence on the outcome. By increasing its value, one simply trades the removal of inconsistencies
for the removal of silvers, but the result stays the same. Furthermore, the slivery and inconsistent
queue both rely on the Pick_valid procedure to insert a point and thus there is no difference in the
running time of the algorithm either.
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4.6 On the usage of Pick_valid

Once other criteria are satisfied, it is necessary to solve inconsistencies before the star set can be
merged to form a triangulation. The Pick_valid procedure seeks Steiner points that can refine incon-
sistent simplices without creating new inconsistencies. It is proven both theoretically (see Boissonnat
et al. [31]) and empirically (see Section 4.5.1) that the procedure is essential to the termination of the
algorithm.

Estimating beforehand whether a valid Steiner point can be found by the Pick_valid procedure
is difficult. Even if we knew that a valid candidate exists in the picking region, how should we proceed
to find the solution quickly? These questions are important from a practical point of view as picking
and testing a candidate point is an expensive process (as will be shown in this Section).

Additionally, the algorithm described in Algorithm 1 to test the validity of a candidate is rather
theoretical: a valid candidate should not form a (small) quasi-cosphericity with any combination of
n vertices in P. Recall that a set of n + 1 points (in dimension R

n) defines a forbidden ring whose
geometry is a thickened ellipsoid (or a thickened sphere, in the metric space); the intersection of a
forbidden ring with the picking region is called a forbidden zone.

Remark 4.6.1 Note that we have assumed that all criteria are now solved: the distortion is suffi-
ciently low, and the slivers have been removed. Thus, all the inconsistencies in the mesh are created
by quasi-cosphericities that do not involve any slivers.

In practice, there are many possible combinations, with most of them creating a forbidden ring
that does not intersect the picking region and is thus irrelevant. It is thus not reasonable to compute
all of the forbidden rings. How should one test the validity of a candidate efficiently ?

Validity of a candidate

Collecting and computing all the quasi-cosphericities around a simplex is difficult and computa-
tionally expensive. We proceed instead in a naive approach: we simulate the insertion of a candidate
in the star set and scan the newly simplices for bad cosphericities. In the presence of such bad con-
figurations, the insertion is reverted, otherwise, the candidate is a valid point and the insertion has
already been performed.

Consequently, testing a single candidate point has the complexity of inserting a point in the star
set.

Search for valid candidates

In the description of the Pick_valid procedure, candidate points are randomly selected within the
picking region. Using random points might not seem like the optimal choice since forbidden zones of
the picking region are predictable geometries determined by neighboring vertices. Indeed, forbidden
zones invalidate points along thickened ellipsoids in the picking region (see Figure 4.5) and one could
hope to exploit this fact. Three possibilities were investigated to try to improve the speed of pick
valid.

Analytical approach A first approach to improve the selection of candidates is entirely analytical
and based on the following reasoning: if we could compute closed forms for both the forbidden rings
and of the picking region, we could then intersect these regions to determine if a valid candidate exists,
and where.

94



4.6. On the usage of Pick_valid

Placing ourselves in the metric, the circumscribing balls of simplices is a sphere, hence the picking
region is a sphere and the quasi-cosphericities are thickened spheres (whose thickness can be bounded
relatively tightly). It is thus easy to compute each region independently. However, forbidden rings
are created by any combination of n+ 1 vertices in the neighboring vertices around the simplex being
refined (including the vertices of the simplex itself); there is often a large number of forbidden rings
that intersect the picking region. Consequently, we must compute the intersection of multiple spheres.
It is not easy to do so, and even less to perform it on-the-fly and fast.

A rough evaluation of these sizes is computed in the proof of termination of the algorithm which
gives an upper bound on this volume. Unfortunately the bound simply sums the volumes of the
thickened spheres of each quasi-cosphericity and this is far too rough to be used in practice.

The analytical approach thus cannot be used efficiently.

Griding the picking region To avoid complicated calculations, a second approach is based on the
discretization of the picking region with either a grid or a triangulation. When a candidate point is
found to be invalid, the forbidden zone that invalidated the candidate is computed and all the vertices
of the grid that fall within the forbidden zone are also invalidated. The next candidate is then picked
from the set of remaining non-invalidated points. The discretized pick valid region of a simplex is
illustrated in Figure 4.15.

Figure 4.15: Discrete point set of the pick region of a simplex. Invalid points are marked in red and
orange, and valid points in green. The geometry of the two forbidden rings is clearly distinguishable.

This approach performs better than our first idea but is not practical in the end: either few
forbidden rings intersect the picking region and a valid point will be rapidly found with random
draws, or there are only few solutions and the discretization needs to be dense. In the latter case, the
computational cost is shifted from testing points to generating and maintaining the grid; overall, no
time is gained compared to a random approach.

Random selection with memory The last approach tried to capitalize once again on the pre-
determined geometry (a sphere, in the metric space) of forbidden rings to pick candidates. In the
event of a random point p not being valid, the next random point p′ is picked by moving away from
the center(s) of the forbidden ring(s) that invalidated p with the idea that we move away from the
thickened sphere that is the quasi-cosphericity.

Estimating a direction using the last k forbidden zones (for variable k) was tested, but this was
not effective in practice for similar reasons as the second method. The number of forbidden zones is
again the culprit of the impracticality of this approach: if there are only few forbidden rings, a valid
random point is likely to be found quickly; but if there is a large number of forbidden zones, it is
difficult to take them all into account as we decide of the direction towards which to move after an
invalid point.
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In conclusion, it is simply easier and quicker to try random points and test whether they are valid
or not. However, since there is not necessarily a solution, the number of tries has to be limited. It is
not necessarily clear how many times should one try, and we investigate this question next.

Generation of random points The generation of a random point in the picking region of a simplex
of a volume star is performed using the geometric object generator package of CGAL. The picking
region of a surface facet τ is defined as the intersection of the manifold M that bounds the domain
and a scaled down version B′(τ) of the surface Delaunay ball of the facet. To generate points in this
region, we pick two random points in Bs (see Figure 4.6) and intersect the segment formed by joining
these two points with M.

Number of random tries

Since random tries turn out to be the most convenient approach and knowing that there is not
always a valid solution, we must set a maximum number of tries that we should attempt lest we get
stuck in the procedure. As no clear value can be guessed, we study the influence of the number of
tries on the success of the procedure, and the effects on the final mesh. For consistency, we consider
the same input as in previous experiments, a square centered on 0 and of side 1.5 endowed with the
hyperbolic metric field (described in Section A.3 of Appendix A). The distortion queue is disabled and
the sizing criterion is here again made irrelevant; (almost) every insertion thus requires the Pick_valid

procedure. Figure 4.16 shows the results in terms of final number of vertices and computational time
for two choices of the maximal number of tries.
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Figure 4.16: Influence of the parameter Nt over the final number of vertices and the computational
time. The domain is a square of side 3, endowed with the hyperbolic shock (the mesh is shown on the
left). The blue curve shows the final number of vertices and the green curve the time, in seconds.

From the blue curve, we can conclude that the number of vertices required to obtain consistency
significantly drops when the amount of tries grows, but only up to a certain point. As a side note, we
can observe that the computational time is almost linear with respect to the number of tries (green
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curve), which confirms that the picking and testing a candidate point in the Pick_valid algorithm
is thus as expensive as the insertion of a point. This is not surprising since the testing for validity is
literally the insertion of the candidate in the star set. It shows however that all other maintenance
related functions have negligible cost compared to the insertion of a vertex in the star set.

In accordance with the result of this experiment – other inputs provide similar results – the maximal
number of tries is set to 60.

4.6.1 Improvements to the Pick_valid procedure

As shown by experiments in Section 4.6, the Pick_valid procedure is, from a runtime point
of view, the clear bottleneck of the algorithm. Minor modifications were made to the Pick_valid

procedure to minimize the amount of calls to this procedure and increase the speed of the test of a
candidate’s validity. These changes affect both the runtime of the procedure, but also its success rate.
The first two modifications are used to avoid calling the Pick_valid procedure if it is unlikely to find
a valid point, or if its result is irrelevant, thus preventing useless and expensive computations. The
third improvement acts on the order of simplices in the refinement queues, and aims to increase the
speed by reducing the number of vertices in the final mesh.

Distortion skip in the Pick_valid procedure

In Section 4.5.1, we have proved that using a distortion criterion was in fact harmful to the
algorithm. Nevertheless, we know that in theory the Pick_valid procedure is more likely to fail for
large distortions. To measure this success probability, we disable the distortion criterion and observe
the outcome of the Pick_valid procedure during a single Delaunay refinement run. In particular,
we study the likelihood of the Pick_valid procedure to succeed with respect to the distortion of the
simplex being refined. Note that this is slightly different from Figures 4.12 and 4.13 as the distortion
queue was then used and ensured that the distortion within all simplices was below a bound, which is
not necessarily the case here.

From Figure 4.17, we observe that – as expected – the Pick_valid procedure is unlikely to find
valid points for large distortions. A lower percentage of success compared to Figures 4.12 and 4.13 can
be explained by the fact that the Pick_valid procedure heavily depends on vertices that neighbor
the simplex and that the distortion between all the neighboring vertices might be larger than the
distortion of the simplex.

To take into account the results of this experiment in our algorithm, we introduce a “skip” based
on the distortion in the Pick_valid procedure: if a simplex σ ∈ Sp must be refined through the
Pick_valid procedure but its distortion ψ(σ) is larger than a chosen bound ψ0, then σ is simply
destroyed by inserting its circumcenter cp(σ). While it may seem very similar to the distortion rule
that was discarded, this skip is a much better version as it only applies within the Pick_valid

procedure and will thus not over-refine the mesh. The improved Pick_valid procedure is presented
in Algorithm 10.

The algorithm avoids unnecessary calls to the Pick_valid procedure without the downsides of a
distortion queues. Figure 4.18 shows the results obtained with this skip for various values of ψ0; ∞
means that the distortion skip was not used. The modification has a non negligible cost, which can
be seen by the slight increase in computational time when activating the skip but using a very large
ψ0 (10). However, the skip then allows for increasing gains of speed. As for the original distortion
queue (see Section 4.5.1), a value of ψ0 chosen too low creates a large number of points that are not
otherwise required. A small enough bound ψ0 will eventually cause the cost of adding superfluous
points balance to increase and reduce the usefulness of the skip, which can be seen on for values
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Figure 4.17: Success of the Pick_valid procedure for 60 and 1000 tries. On the graph, circular
entries are obtained using Ntries = 60, and triangular entries are obtained using Ntries = 1000.
Entries referring to the percentage are linked together with black segments. Unlinked entries indicate
how many tries were needed on average for success. A green entry indicates that the Pick_valid

procedure usually succeeded, while a red entry means that the procedure almost always failed.

Algorithm 10 Improved Pick_valid procedure

if ψ(τ) < ψ0 then
while No valid point has been found do

Pick randomly a point p in the picking region Pp(τ)
if p is valid then ⊲ Checked as in Algorithm 1

Return p

else
Return cp(τ)

ψ0 < 1.3 on the graph. In practice, we use ψ0 = 2 as it reduces significantly the computational time
without increasing the number of vertices.

Encroachment skip in Pick_valid

In Section 4.3.3, we have described how a refinement point that encroaches a lower mesher level is
discarded, and the lower mesher level is instead called to refine the simplex whose Delaunay ball the
refinement fell in. Checking whether a candidate encroaches a lower mesher level before testing its
validity is another small change that can avoid costly calls to the Pick_valid procedure. This change
is obviously beneficial but the extent of the gain depends on too many criteria (approximation error,
sizing of facets and cells, domain) to produce some meaningful comparison.
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Figure 4.18: Influence of the distortion skip for various values of ψ0.

A related but rougher change is to completely bypass the Pick_valid procedure if the center of the
picking region encroaches a lower mesher level, and to simply call the Pick_valid procedure directly
at the lower mesher level. It is qualified of “rougher” because in theory – and this is confirmed in
practice – it might be possible to find non-encroaching valid points in the picking region even if the
center of the picking region encroaches a facet Using this “skip” is a way to trade a larger number of
vertices for a lower running time.

Temporary rejection in the refinement queues

In the original algorithm, the elements are put in priority queues and sorted such that the worst
element of a queue is treated first. In the case of the inconsistency queue, the volume of simplices is
used to order elements: the larger the volume, the higher the priority. We focus here on queues that
use the Pick_valid procedure to find a refinement point: shape, sliverity and inconsistency rules.
From previous experiences, we see that failures in the Pick_valid procedure are costly as they often
mean that we end up adding a point – the circumcenter – which creates inconsistencies and we try
again on a new simplex (with slightly better odds).

We have seen that increasing the number of tries helps reducing the number of points (see Sec-
tion 4.6). However, if the maximum number of tries Nt is fixed, could simply delaying the refinement
of an element for which the Pick_valid procedure failed (instead of adding the circumcenter) and
considering the next bad simplex improve the number of points? Indeed, there might exist bad sim-
plices for which the Pick_valid procedure succeeds and the insertion of the (valid) point also destroys
a simplex for which we had no solution.

We investigate the effect of delaying the refinement of a simplex for which the Pick_valid proce-
dure does not find a valid point. The bad simplex is moved to the back of the queue by artificially
changing its badness score (to that of the last element minus a small value). Moving an element to
the bottom of the queue is fast: removal and insertion in the multiset can here be done with hints,
thus resulting in average constant complexity. To avoid cyclical failures, the rejection of a simplex to
the back of the queue is limited to a maximum of a single rejection.

The final Pick_valid procedure that uses all the modifications of these three sections is presented
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in Algorithm 11.

Algorithm 11 Final Pick_valid algorithm

Let number_of_tries = 0
if ψ(τ) > ψ0 then Return cp(τ)

while number_of_tries < Nt do
Pick randomly a point p in the picking region Pp(τ)
if p encroaches a lower mesher level then

Continue
if p is valid then

Return p.

if τ is not the last element in the queue AND τ has not already failed a pick valid test then
Move τ to the bottom of the queue
Try to refine the next element of the queue

else
Return cp(τ)

Comparison

We analyze the improvements brought by our modified Pick_valid procedure by comparing it
with the former algorithm. We consider the cube of side c = 1, centered on the (0.5, 0.5, 0.5) and
all the default parameters. Table 4.3 shows the difference between the two Pick_valid procedures
depending on the amount of tries we fixed. For each procedure, the table lists the final number of
vertices in the mesh, the number of calls to the procedure, the time spent in the procedure and the
time spent updating the queue.

Table 4.3: Effectiveness of the modified Pick_valid algorithm. “OPV” stands for Origin Pick_valid

and “NPV” for New Pick_valid.

Tries 1 15 30 60 125 250 500 1000 2000

Points (OPV) 6396 1594 1167 823 640 575 452 481 397

Calls of PV 6380 1578 1151 807 624 559 436 465 381

Time in PV 59.38 32.18 34.03 36.624 44.11 80.69 117.32 244.11 370.80

Total Time 154.20 42.173 40.84 41.06 46.58 82.81 118.84 245.76 372.12

Points (NPV) 1774 585 562 452 391 319 338 234 245

Calls of PV 20730 4933 4607 3606 3144 2552 2940 1636 1842

Rejections 14972 4364 4061 3170 2767 2249 2618 1418 1612

Time in PV 46.96 65.773 120.47 183.49 317.82 499.7 1144.43 1166.25 1216.3

Time Updating 0.02 0.01 0.01 0.01 0.01 0 0 0 0

Total Time 61.14 67.98 122.68 185.41 319.042 500.7 1145.48 1166.81 1216.7

For a constant amount of tries, the rejection trick results in a large number of additional calls to the
Pick_valid procedure, and thus a longer run time. However, the number of vertices is significantly
cut. While this does not help improving the speed of the algorithm, it is nevertheless interesting that
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this trick can help reduce the number of vertices in the final mesh, similarly to an increase of the
maximal number of tries in the Pick_valid procedure.

4.7 Results and limitations

We now present meshes produced by our implementation. Domains and metrics fields are picked
as diversely as possible to explore the full capabilities of the algorithm. Details on inputs can be found
in Appendices A for metrics and B for domains respectively. Unless explicatively stated otherwise, the
parameters are set to their default value: ψ0 =∞ (no distortion refinement), r0 = 1 (for faces, facets,
or cells), ρ0 = 3, β = 2.5 and δ = 0.3. The Pick_valid procedure uses a maximum of 60 random
tries, and uses all its improvements.

Remark 4.7.1 When aiming to build unit meshes (see Section 2.13 in Chapter 2) with a fixed toler-
ance (say

√
2), not every metric field is physically possible. We always choose carefully the sizing field

parameter of our metric fields such that it is physically possible to construct a unit mesh of the input.

The results are presented in this section with only light commentary; we will provide a deeper
analysis in Section 4.8. A table of in-depth statistics for all results is provided in Section 4.7.6 and
the speed of the performance of our implementation is described in Section 4.7.7.

4.7.1 Uniform metric fields

A uniform metric field associates to any point of the domain the same metric. Note that since all
the metrics are identical, neighboring stars necessarily have compatible connectivities and there can
be no inconsistencies. It should be noted that in the setting of uniform metric fields, an anisotropic
mesh can simply be obtained by stretching the domain through the usual metric transformation (the
square root of the metric), meshing isotropically in the metric space and finally stretching back the
constructed isotropic Delaunay triangulation to obtain an anisotropic Delaunay triangulation – which
is in fact what is done in each star, but for different metrics in the general case.

This setting is handled without any issue by the algorithm and our implementation, whether in
the setting of planar, surface or volume domains: the algorithm terminates, all criteria are honored
and we obtain edges that have a length close to 1 (see Section 4.7.6). As the algorithm perform most
computations in the metric space – where triangulations are isotropic – the algorithm is extremely
robust and can handle anisotropy ratios up to 1017; numerical issues appear in the transformations
for higher ratios, which could easily be fixed by changing number types (but no one realistically deals
with such ratios).

4.7.2 Shock-based metric fields on planar domains

We depart from uniform metric fields and consider a planar domain – a square – endowed with
various metric fields. These artificial metric fields are chosen to exhibit different phenomena:

• Straight shock — A region of high-anisotropy along a relatively constant direction in between
two regions of lower anisotropy. This corresponds to a change in the eigenvalues of the metric.
Waves along a (straight) shore is a good illustration of such phenomenon.

• Rotational anisotropy — A region where the anisotropy ratio is constant, but the direction of
the stretching is changing. This corresponds to a change in the eigenvectors of the metric. We
will sometimes say that the metric is rotating to describe such regions.
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These two phenomena are the primal blocks and can be combined and scaled to form any more complex
or “real-world” metric fields.

Starred

Our first example uses the “Starred” metric field, detailed in Section A.5 of Appendix A. The
anisotropy of this metric field varies between 1 and 10. The “Starred” metric field possesses long –
compared to the prescribed size of the elements – regions of straight anisotropy, and regions where
the metric field is rotating (and the anisotropy ratio is lower) in between, thus providing a good first
example of an arbitrary metric field. The domain is a square of side 10, centered on the origin.

Figure 4.19: A square of side 10 and centered on the origin, endowed with the “Starred” metric field
(left). The final mesh is composed of 47126 vertices and 94366 triangles. On the right, a zoom on one
of the rotating regions.

The algorithm terminates without any issue and the size and shape criteria are solved quickly
(4499 vertices are needed). However, the resolution of inconsistencies is difficult and requires around
40000 additional vertices. While regions where the metric field is rotating are clearly suffering from
inconsistencies, regions where the metric field is straight fare only slightly better and also require
many vertex insertions to solve inconsistencies.

Hyperbolic

The “hyperbolic shock” metric field has already been used several times in previous sections (in
Sections 4.5.1 and 4.6, for example) and its definition is detailed in Section A.3 in Appendix A. This
metric field is characterized by an anisotropy ratio that varies between 1 and 15 and is interesting as
its anisotropy ratio does not vary (too much) along the shock, despite the shock being shaped like
a sinusoidal curve. We shall refer to the regions of the shock where the eigenvectors change rapidly
as the “turns”. In these turns, the process of generating a good anisotropic mesh is difficult as the
eigenvectors of the metrics are changing rapidly. As larger meshes have already been produced in
other sections and very dense refinement was observed at the turns, we here zoom on one of these
regions. The result is shown in Figure 4.20.

The size and shape constraints are quickly satisfied and only require around 414 vertices, but the
final mesh is composed of 4621 vertices. Indeed, the resolution of inconsistencies is difficult – especially
within the shock – and many vertices are required to obtain a consistent mesh despite a relatively low
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Figure 4.20: Anisotropic triangulation of a rectangle endowed with the hyperbolic shock metric field.
The final mesh is composed of 4621 vertices.

maximum anisotropy ratio. Consequently, the metric field is honored (and consequently the sizing
field is too), but simplices are often much smaller and then resolution of inconsistencies much longer
than what we hoped for.

Swirl

The “Swirl” metric field aims to represent a whirling phenomenon and is detailed in Section A.4
of Appendix A. Contrary to the two previous metric fields, the “Swirl” metric field has a relatively
constant anisotropy ratio and is rotating almost everywhere. Figure 4.21 shows the mesh obtained by
our implementation for a square of side 6 endowed with this metric field.

The result exhibits the same issues as in the previous experiments: the resolution of inconsistencies
is difficult and many vertices are required to solve inconsistencies after all other criteria are satisfied.

4.7.3 Curvature-based metrics fields on surfaces

We now consider the setting of domains embedded in R
3, and the generation of pure surface meshes.

The metric field induced by the curvature of the domain is known to prescribe an anisotropy that
is – asymptotically – optimal: a mesh whose elements follow this metric field will require the lowest
number of element (out of all the meshes) to achieve a given approximation of the domain [57, 107].
It is thus interesting to observe the results produced by our algorithm for this specific metric field.
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Figure 4.21: A square of side 6 and centered on the origin, endowed with the “Swirl” metric field. The
final mesh is composed 28157 vertices and 56342 triangles.

The computation of curvature metric fields for implicit and polyhedral surfaces is defined in Sec-
tion A.2 in Appendix A.

Implicit surface

An ellipsoid with semi-axes lengths a, b and c (see Section B.6 of Appendix B) is endowed with
a curvature based metric field. The ellipsoid is a surface where no curvature vanishes (all points are
elliptic), clearing us from the issue that arise from the presence of parabolic points (see Section A.2.1
in Appendix A). We study the variation of the number of vertices when this surface is stretched while
keeping the approximation error h0 constant. The anisotropic mesh is also compared to an isotropic
mesh for the same approximation error, which is also generated by our mesher.
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To be able to compute the area easily, we consider a specific type of ellipsoid – prolate ellipsoids
– which are characterized by a > b = c. The surface area of a prolate can be computed exactly, with
the following formula:

S = 2πc2
(

1 +
a

ce
arcsin(e)

)
,

where e2 = 1− c2

a2 .

The stretching of the ellipsoid is obtained by varying the ratio r := a/b. Thanks to the robustness
of our implementation, we can handle ratios as high as 1017 and produce meshes that conform to such
metric field. The approximation error upper bound is fixed at h0 = 0.001 and all the other criteria are
set to their default value (r0 = 1.0, ρ0 = 3.0, 60 tries maximum in the Pick_valid algorithm, etc.).
Figure 4.22 shows two sections of one of the anisotropic meshes.

Figure 4.22: Anisotropic Delaunay mesh of an ellipsoid a = 100, b = c = 1 with r0 = 0.1, ρ0 = 3.0
and h0 = 0.001. The green and red rectangles show a zoom on middle and end sections respectively.

Table 4.4 shows the number of vertices of the final mesh, and the density (vertices per surface
unit) for each ellipsoid.

From Table 4.4, we can observe that the size of the anisotropic meshes is barely affected by the
stretching: the number of vertices steadily increases as the stretching ratio increases, but this increase
is slow. Even for the ellipsoid with a stretching ratio r = 1017, fewer than 20000 vertices are required.
On the contrary, the density of the isotropic mesh stays relatively constant and consequently the
number of vertices greatly increases as the ellipsoid is stretched. One can estimate the number of
vertices needed for an isotropic mesh with a ratio of r = 1017 from Table 4.4: around 1019 vertices
would be required to achieve the same approximation error.

Polyhedral domains

The “Oni” and “Cow” domains (see Appendix B) are rough polyhedral surfaces, with only 1435
and 2904 vertices respectively. We endow both domains with the metric field naturally induced by
their respective curvatures. Figures 4.23 and 4.24 show the results.
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Table 4.4: Isotropic and anisotropic meshes obtained by stretching an ellipsoid with h0 constant.

r = 10 r = 50 r = 100 r = 200 r = 500 r = 1000 r = 10000

Surface area 99.15 493.58 987.01 1973.95 4934.81 9869.61 98674.23

Number of vertices
24872 126298 250941 502272 1257633 2512782 25133302

(isotropic)

Density 250.85 255.88 254.24 254.45 254.85 254.60 254.71

Number of vertices
6502 6734 6866 6900 7119 7300 7835

(anisotropic)

Density 65.58 13.64 6.96 3.50 1.44 0.74 0.079

Figure 4.23: The “Oni” polyhedral surface endowed with its curvature metric field, 179214 vertices.

Figure 4.24: The “Cow” polyhedral surface endowed with its curvature metric field, 512514 vertices.

Both results are visually unpleasant, with countless over-refined local regions where consistency is
very difficult to achieve.

The many inconsistencies that appear here are caused by the sensitivity of the algorithm to dis-
continuities and noise in the metric field. Indeed, stars are built using only the metric of the center
of the star and any sudden change in the metric field thus requires a great deal of refining to ease
the discontinuity. Since these two inputs are sparse compared to the level of detail of the model, the
curvature metric field that was computed is rough, which creates these abrupt changes in the two
polyhedral domains. While inconsistencies are once again a problem in these results, this experiment
mainly illustrates the need to have a relatively “clean” input metric field. Smoothing the metric field
will greatly help in the case of rough inputs, as seen in Section 4.8.2.
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4.7.4 Shock-based metric fields on surfaces

The polyhedral surfaces “Oni” and “Elephant” are endowed this time with the hyperbolic shock
(Section A.3 in Appendix A). As for planar domains, we now evaluate our implementation with shock-
based metric fields. The “Elephant” domain is chosen over the cow because its genus is larger and it
contains thin cylinder-like parts which are interesting to mesh for Figure 4.25 shows the two results.

Remark 4.7.2 The extension of two-dimensional metric to a three-dimensional metric is achieved by
adding a third (null) coordinate to all vectors and points and defining a third eigenvector orthogonal
to the first two with associated eigenvalue 1.

Figure 4.25: The “Oni” (left) and “Elephant” (right) surfaces endowed with the same hyperbolic shock
metric field.

Despite a metric field that is not “natural” to the surfaces, the algorithm recovers the topology and
achieves the desired approximation, showing the strength of the combination of restricted Delaunay
triangulation-based and star-based approaches. As for the number of vertices in the final meshes, the
results are similar to those obtained in the setting of a planar domain endowed with a hyperbolic shock:
the meshes honor the metric field, but difficulties are encountered in the resolution of inconsistencies,
causing a large number of vertices to be required to solve inconsistencies.

4.7.5 Shock-based metric fields in three-dimensional domains

We start our study of the performance of the algorithm of three-dimensional domains with a simple
domain, a cube, and a simple metric field, the unidimensional shock metric field. This metric field
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contains three wave-like shocks, each along a Cartesian axis (but translated away from the origin),
with respective maximal anisotropy ratios 10, 3 and 20. The metric field is detailed in Section A.8 in
Appendix B.

This configuration has been used in Section 4.5.1 and the result can be seen in Figure 4.13. Similarly
to the other experiments, inconsistencies are troublesome as more than 100000 vertices are needed to
obtain a consistent mesh, but fewer than 5000 vertices are required to satisfy all the other criteria.

Radial shock

The classical polyhedral domain “Fandisk” represents a mechanical piece and is characterized by
flat faces and sharp features. As explained in Section 4.3.4, these sharp features (edges) are not
honored by our implementation as this is not our primary concern. The domain is endowed with a
radial shock (see Section A.7 in Appendix A) that can be thought of as the propagation of a wave
from a singular point, outwards. We set the maximal anisotropy ratio within the shock to 3 and place
the center of the shock on one of the faces of the Fandisk. Figure 4.26 shows the result.

Figure 4.26: The “Fandisk” domain endowed with a radial shock. The mesh is composed of 199283
vertices and 1170393 tetrahedra.

Once again, the sizing, shape and approximation criteria are satisfied very quickly (less than a
thousand vertices), but a huge number of vertices is required to obtain consistency (almost 200000),
despite a very low maximal anisotropy. If the anisotropy ratio of the shock is doubled (6), achieving
consistency requires several millions of vertices.

4.7.6 Mesh quality

We now give detailed statistics for the meshes presented above. The following measures are listed
in Table 4.5:

• The edge length. To determine how well the algorithm fares at producing a unit mesh, we
compute the lengths of edges with respect to the metric at both endpoints. We list the smallest
(ℓmin), average (ℓavg) and largest ℓmax lengths of edges.

• The distortion. As the resolution of inconsistencies is the criterion with lowest priority and
generates the largest amount of vertices, the final distortion of simplices is a good indication
of the distortion at which inconsistencies are finally solved. We compute the distortion of all
simplices and list the smallest (ψmin) and average (ψavg) distortion from all the simplices.
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• The smallest angle. Angles are a good measure of the quality of a triangulation. For each
simplex, we compute its smallest angle (dihedral angle in the case of three-dimensional domains).
We list the minimum (αmin) and average (αavg) of the smallest angles of all simplices.

• The quality. A second measure of quality is computed. For planar and surface domains, we
use the formula presented by Zhong et al. [144]:

Q = 4
√

3
A

ph
.

where A is the area of the triangle, p the perimeter and h the longest edge (all computed in the
metric). For cells, we use the quality estimation introduced by Frey and George [71]:

Q = 216
√

3
V 2

A3
Σ

.

where V is the volume of the tetrahedron, and AΣ the sum of the areas of the four facets (all
compute in the metric). Both these measures live between 0 and 1, with 1 signaling the highest
quality. We list the lowest (Qmin) and average (Qavg) quality over all simplices.

Table 4.5: Statistics on the results shown in the previous sections. The following metric fields are
used: Swirl (Sw), Starred (St), Hyperbolic shock (Hy), Curvature (Cu), Smoothed curvature (Sm-Cu)
(detailed later), Unidimensional shock (UD) and Radial shock with a maximal anisotropy of 3 (Ra).
Definitions can be found in Appendix A.

ℓmin ℓavg ℓmax ψmin ψavg αmin αavg Qmin Qavg
Square (Sw) 6.1× 10−5 0.08 1.38 1 1.19 10.92 41.35 0.27 0.76

Square (St) 0.04 0.27 1.8 1 1.20 10.78 26.99 0.31 0.77

Square (Hy) 5× 10−4 0.03 0.06 1 1.07 12.56 45.50 0.31 0.80

Fertility (Cu) 0.01 0.50 1.9 1.02 1.82 1.17 39.92 0.03 0.69

Oni (Cu) 1.2× 10−4 5× 10−3 0.97 1 1.42 0.26 18.78 4× 10−2 0.74

Oni (Smooth-Cu) 3.2× 10−3 0.04 1.49 1.01 1.39 1.61 41.91 0.05 0.77

Cube 3D (UD) 0.03 0.13 1.01 1 1.08 1.89 43.15 3× 10−3 0.73

Oni 3D (Hy) 0.02 0.32 1.96 1 1.08 1.8 42.7 2× 10−3 0.73

Fandisk 3D (Ra) 1.8× 10−5 0.01 0.07 1 1.03 1.25 40.1 0 0.71

We can make the following observations:

• As expected, the meshes have consistently much shorter edge lengths than prescribed by the
sizing information of the metric field due to the over-refinement caused by the inconsistencies.

• The distortion within simplices is small, showing once again that the resolution of inconsistencies
is difficult for large distortions, especially in the case of three-dimensional domains. The very low
distortion for three-dimensional domains is particularly troublesome as many more vertices are
required to achieve a given distortion in 3D compared to planar or surface domains – similarly
to the way the number of vertices scales with the square of the sizing field in 2D, but with the
cube of the sizing field in 3D.
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• The minimum angle in planar domains is consistently much higher than in the other settings.
This is a consequence from the circumcenter-based refinement algorithm: it is known that
Delaunay-based refinement algorithm guarantees a lower bound on the minimum angle in 2D
(up to 20◦ for Ruppert’s algorithm [123]). Since our minimum angle is much lower than the tra-
ditional values obtained for isotropic meshes, we can conclude that the Pick_valid algorithm
has a bad influence on the angles, and thus the quality of simplices.

• Finally, while the average quality is decent in all domains, the element with worst quality has
very low quality (close to 0), which is very problematic as a single badly shaped element can be
enough to ruin simulations (see Shewchuk [127]). However, no particular care has been given
to the optimization of the mesh, which is usually needed to obtain high-quality meshes in the
isotropic setting.

Overall, the results are thus relatively disappointing, mainly due to inconsistencies. This phenomenon
will be investigated in Section 4.8.

4.7.7 Performance

We investigate in this section the run time of our algorithm on various models. Figure 4.27 shows
the elapsed times to generate various meshes in the case of planar and pure surface (only facets are
refined) and volume meshes (only cells are refined). Figure 4.28 shows the run time for the generation
of a complete mesh (both facet and cell refinement) of the “Oni” domain endowed with the hyperbolic
shock.
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Figure 4.27: Timers for the generation of a planar and surface meshes. The red, blue, and green curves
correspond to a square endowed with respectively the starred, hyperbolic, and swirl metric fields. In
orange, a pure surface mesh of the Oni surface endowed with its curvature metric field.

While our implementation handles planar, surface and volumes domains, Boissonnat et al. [28] only
presented results in the setting of pure surfaces. In this framework, we are approximately ten times
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Figure 4.28: Timers for the generation of a surface mesh (blue) and for a three-dimensional domain
with boundary (red).

faster than their results (25 seconds to generate the first 10000 vertices compared to 200 seconds).
Although this might not seem such a large improvement, our implementation is also significantly more
robust as a number of difficult configurations – see Section 4.4 – were not handled. The increased
robustness naturally has a non-negligible computational cost.

In Chapter III.6, we shall make use of anisotropic star sets for which we do not need consistency
and we will be able to discard some of these robustness tests, further increasing the

Linear speed

The graphs in Figures 4.27 and 4.28 reveal that the computational speed is roughly piecewise-
constant: each curve can be broken into two segments. Each segment corresponds to a different types
of rules: the rules that insert the circumcenter are cheap and thus the first segment has a low slope;
on the other hand, the rules that use the Pick_valid procedure are expensive and the slop is much
higher.

That the computational speed is much lower when the Pick_valid procedure is used is no surprise
in light of the previous experiments (see Section 4.6), but the fact that the computational speed is
roughly constant for each type of rule might be more surprising. This can however be explained
by observing that a cycle of the algorithm (the refinement of a bad simplex) actually has roughly
constant complexity. Indeed, despite handling a triangulation at each vertex, these triangulations are
kept small and thus the insertion of a point in a star is almost constant time. Additionally, the positions
of refinement points ensures that a relatively constant number of stars is modified by the insertion of
a new point. The computation of a refinement point is either the evaluation of the circumcenter of the
bad simplex or a call to the Pick_valid procedure. However, as explained in Section 4.6, finding a
valid point is simply simulating the insertion of a random point in the star set and observing whether
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Chapter 4. Locally uniform anisotropic meshes

it creates bad geometrical configurations. Therefore, as expensive as the procedure might be, it also
runs in roughly constant time. Finally, the number of faces to test for badness since the points are
well spread.

In a cycle, only two steps do not enjoy constant complexity: the creation of a new star (points
that belong in the new stars must be found) and the detection of the stars modified by a new point.
However, intensive use of filters greatly reduces the cost of these operations (see Section 4.4.4).

An interesting phenomenon appears in practice: as the number of vertices increases, the computa-
tional cost of the filters increases naturally; however, the resolution of inconsistencies becomes easier
(as illustrated in Figure 4.17) and the average cost of the Pick_valid is thus reduced. While these
two phenomena balance each other for a time, the non-linearity created by filter operations can be
observed for large meshes – for example on the red curve in Figure 4.27.

Individual cost of functions

Cost-wise, collecting the stars that are in conflict with a candidate or refinement point eclipses all
the other procedures: it is by far the most expensive operation in our algorithm. The detection of the
stars in conflict with a point p is decomposed in two steps:

• filtering the full star set (using the AABB tree) to obtain a list of stars whose bounding box
contains p and have thus a good chance to be in conflict with the point.

• Test if p is actually conflicted with the stars: check for each star if p belongs to a Delaunay ball
of a simplex.

Since our refinement algorithm creates a good sampling, the AABB tree returns a roughly constant
number of stars potentially in conflict. For similar reasons, there is a relatively constant number of
simplices per star. Thus computing whether a star is actually in conflict with the refinement point is
a constant approximation. Despite being a constant cost procedure, its cost greatly exceed – in the
meshes that we have considered (at most a few millions vertices)– the cost of filtering the stars with
the AABB tree, which has non constant cost.

As the percentage of stars in conflict with a point within the set of filtered stars depends on
the metric field and the domain as the bounding boxes are axis-aligned. This explains the different
computation speeds for different domains and metrics in Figure 4.27.

Comparison with isotropic mesh generators

As our mesher is strongly based on the isotropic mesh generators Mesh_2 and Mesh_3, it is
interesting to compare its computational speed with theirs.

We compute the runtime for both algorithms to create meshes of 100000 vertices (the average
size of our meshes). The run time of isotropic mesh generators is obtained for very simple domains
(a circle and a sphere), with no particular care given to the borders and with parallelism disabled.
Mesh_3 takes 91 seconds to generate 96141 vertices, hence a little more than 10000 vertices per
second. Mesh_3 (cells only) is slightly slower, with approximately 2000 vertices per second.

When the algorithm destroys simplices by inserting their circumcenter, our implementation has
comparatively decent speed and is slightly more than twice slower in 2D and 20 times slower for pure
volume meshes. A slower speed is nevertheless expected as each point inserted with our algorithm is
the creation of one Delaunay triangulation and the insertion of a point in a roughly constant number
of existing triangulations. Additionally, achieving robustness for our algorithm requires combinatorial
checks that are not needed when a single triangulation is considered, which naturally takes its toll on
the computational speed.
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Remark 4.7.3 The number of stars modified by the insertion of a point naturally depends on the
dimension of the mesh. On average (taken over all the results mentioned above), 6.5 stars are modified
in 2D and 14 stars in 3D.

These good results must unfortunately be tempered. Indeed, the Pick_valid procedure is a time
sink and the algorithm is considerably slowed down as soon as the procedure is used. While the
small modifications that we have introduced in Section 4.6.1 do help, testing a candidate has a cost
equivalent to the insertion of a point in the mesh. In other words, the call to a single Pick_valid

procedure that uses 60 maximal tries (and fails) will cost approximately 60 insertions of circumcenters.
(Note that this was already observed in the experiment of Section 4.6.) Worse, since a great number
of vertices are required to solve inconsistencies – a rule that requires the Pick_valid procedure –
the algorithm is overall very slow. This is especially noticeable in the generation of 3D meshes with
boundaries, where the cost of dealing with inconsistencies is extreme.

4.7.8 Conclusion

As proven in theory, the algorithm always terminates and produces a mesh whose anisotropy
conforms to the anisotropy prescribed by the metric field. The implementation is robust and reasonably
fast when the refinement point is the circumcenter of a bad simplex. However, the presence and
resolution of inconsistencies is difficult and requires – consistently over all our experiments – a large
number of additional vertices after other criteria are satisfied. This issue is double as the resolution
of one inconsistency is much more expensive than the simple insertion of a point.

As explained in Section 2.13 in Chapter 2, a unit mesh with a tolerance of
√

2 is characterized by at
most a distortion of 2 between adjacent vertices if the length of an edge is measured in the metric at its
endpoints. Inconsistencies generally only can be resolved when neighboring stars have low distortions
with experiments showing values of 1.5 for planar surfaces and 1.1 (and lower) for three-dimensional
domains (see Section 4.7.6). While it might seem that the difference between a maximum distortion
of 1.1 and 2 is not that important, it actually requires a great deal more vertices to achieve. In
the context of three-dimensional meshes, this makes it almost impossible to mesh any domain with
a metric field whose anisotropy is not completely negligible (say, above 5) without having to insert
absurdly large quantities of vertices. For practical purposes, the current state of the algorithm is thus
not acceptable.

The next section is devoted to the studies of inconsistencies and of potential ways to remedy this
issue.

4.8 Inconsistencies

Experiments in the previous section have showed that inconsistencies prevent the practicality of
our meshing algorithm. While it is certain that, given enough time and memory, all the refinement
algorithms (be it 2D, surface, or 3D) will provide a criteria-abiding triangulation for any given domain
and metric field, the resolution of inconsistencies is extremely costly in term of both time and number
of vertices required, usually resulting in overly large meshes.

This has problematic consequences:

• We cannot impose a maximal number of vertices as nothing guarantees that the star set will be
consistent with this number of vertices. This makes it impossible to reliably use our refinement
algorithm with the purpose of increasing the accuracy of a solution for a constant number of
vertices.
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Figure 4.29: An inconsistent region during the refinement process. Inconsistent simplices are drawn
in red, consistent simplices are drawn in teal. The blue and orange simplex illustrate one inconsistent
configuration.

• We cannot guarantee a rough lower bound on the lengths of edge. In the case of isotropic
refinement algorithms, the sizing rule is generally the main criterion that drives the algorithm.
Thus, the input sizing field gives an expectation of the length of edges of the final mesh. In
our case, each star of a consistent star set will satisfy the size criterion, but the resolution of
inconsistencies usually creates meshes whose edges are much smaller than what was expected
with the sizing field (see Table 4.5).

• As a consequence of inconsistency issues, the algorithm requires many vertices and calls to the
Pick_valid procedure and is thus extremely slow.

One might think that the difficult resolution of inconsistency is only due to overly difficult metric
fields being considered, but other anisotropic mesh generators, while themselves possessing flaws, have
shown to be able to produce close to unit meshes for similar domains and metric fields. For example,
the mesh obtained by Liu et al. [73, Figure 1] for a cube endowed with a radial shock metric field with
an anisotropy ratio that varies between 1 and 40 (see Section A.6 in Appendix A) is composed of 6554
vertices. For the same domain and metric field, the star set also requires around 6000 vertices for the
sizing and shape criteria... and then requires a few millions of additional elements before it becomes
consistent. Both cubes are presented in Figure 4.30 with the cube of Liu et al. on the left, and our
mesh on the right.

4.8.1 Creation

One might wonder why the inconsistencies are so numerous and difficult to solve. Since the problem
of over-refining appears consistently in two-dimensional, surface and three-dimensional domains, it
cannot stem from simply the presence of slivery simplices in quasi-cosphericities. Rather, it can be
seen as a consequence of both

• the rigidity of the star structure: for two different metrics, the Delaunay balls of a simplex with
respect to each metric quickly differs as distortion grows
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Figure 4.30: 6554 are necessary to produce an almost unit mesh with Liu et al’s algorithm. For the
same domain and metric field, more than 2 millions vertices are needed for our implementation.

• the isolation of stars: no neighboring metric information is taken into account.

The combination of these two characteristics makes it easy to create inconsistencies, even for relatively
low distortions, whose resolution is impossible at distortions that are not close to 1. In comparison,
adjacent vertices in the shock region (where the anisotropy is maximal) of the left mesh in Figure 4.30
have distortions up to 5, allowing a much sparser made to obtained.

Remark 4.8.1 The maximal distortion of 5 between two adjacent vertices in the cube on the left
in Figure 4.30 implies immediately that this mesh is only a unit mesh with a large tolerance (see
Section 2.13 in Chapter 2). Analyzing the length of the edges of their result, we see that indeed the
lengths of edges vary between 0.2 and 2.6; the mesh is thus unit with a tolerance of 5, which is thus
not completely satisfying either.

Resolution We aim to find heuristical ways to reduce the cost of consistency, and present the various
attempts at achieving this goal. Most of the techniques described are applied (possibly multiple times,
and even combined) just before starting the refinement of inconsistent simplices. At this point, we
are faced with an inconsistent star set that satisfies all the other criteria (size, shape, sliverity, etc.),
which we would like to render consistent without any additional point insertion.

4.8.2 Smoothing

Inconsistencies require low distortion between neighboring points to be solved. Consequently, could
the metric field be modified (simplified) to help the algorithm in difficult zones ?

The technique of “smoothing” a metric field, introduced in Section 2.2.3 of Chapter 2, allows for
such modifications of the metric field. Different smoothing-based approaches are considered.

• The metric field is preemptively smoothed in input as described in Section 2.2.3 of Chapter 2:
each point is reassigned the Log-Euclidean interpolation of himself and his first n (variable
parameter) rings on the input domain. In the case of a non-discretized domain (e.g. an implicit
surface), we first generate a dense-enough isotropic mesh of the domain. This method works very
well to smooth out noise: Figure 4.31 shows the same domain as in Section 4.7 but the curvature
metric field has been smoothed beforehand. Comparing with Figure 4.23, all the over-refined
spots created by abrupt metric changes are gone.
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Figure 4.31: The “Oni” domain endowed with a smoothed curvature metric field.
The mesh has 8172 vertices and 16097 triangles. Comparatively, 179214 were
necessary when the curvature induced metric field was not smoothed (Figure 4.23).

For metric fields that are already smooth (which is the case of most metrics that we have con-
sidered), it has however either little influence on the output or massively reduces the anisotropy.

• When the queue of inconsistencies is reached, we smooth the metric field directly on the
anisotropic star set: at each point, we attribute a metric defined from a Log-Euclidean interpo-
lation of its k-nearest neighbors (geodesic neighbors in the case of a pure surface mesh). The
process is repeated until the distortion between neighbors is below a given bound, consistency
is achieved or a maximum number of iterations is reached.

While we can often achieve consistency without inserting new vertices with this method, it
generally comes at the cost of an important loss of anisotropy. Additionally, many smaller issues
are present: perturbing the metric of a star after construction is costly and each pass requires
a full update of the star set. Finally, it is not assured that the distortion will decrease as we
smooth and if it does, the number of passes needed to achieve consistency is not clear and .

• The last smoothing-based approach is slightly different from the previous ones and allows the
insertion of new vertices after all criteria (but inconsistencies) are satisfied. However, the refine-
ment point p is attributed a metric G′

p that is not defined as the value of the metric field g at
p but as the Log-Euclidean interpolation of the metrics of the stars modified by the insertion
of that refinement point. Additionally, the metrics of stars affected by the insertion of p are
reciprocally modified slightly by G′

p. With this new definition, the metric field is still continuous
and thus the algorithm terminates. Far fewer vertices are required in the case of implicitly-
defined metric fields, but the results are plagued with local over-refinement spots (where g(p)
and G′

p are too different). This is visually unpleasant, and not much more satisfying than a
global over-refinement.

In conclusion, the preemptive smoothing of the metric field is effective to remove noise if the
metric field was evaluated numerically, but smoothing does not help with respect to the resolution of
inconsistencies. These poor results for inconsistencies are somewhat expected: it is difficult to imagine
how an implicitly-defined metric field could be simplified. Consider a simple straight shock metric

field, for example g(p) =

(
exp(x) 0

0 1

)
. The distortion between the point p = (0, 0) and q = (10, 0) is
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exp(5). If the endpoints of an edge must have a distortion lower than 1.5, we require a certain amount
of vertices along (Ox) (that could be computed, but it is besides the point). The only way to simplify
this metric field would be to to reduce the “intensity” of the shock, that is to reduce the distortion
between p and q.

Reducing the anisotropy to achieve consistency with a reasonable amount of vertices is often easy
to do, but generally results in a complete loss of anisotropy. For example, to obtain a consistent star
set of the cube endowed with the radial shock metric field (see Figure 4.30), with 6554 vertices (to
match the number of vertices in the cube of Liu et al.), the anisotropy ratio of the shock must be
reduced from 40 to...

√
2. (This value was found by simply reducing the maximal anisotropy ratio

until the consistent star set had the required number of vertices.) This obviously cannot be considered
a viable solution.

4.8.3 Relaxed consistency

We study in this section the effect of relaxing the consistency criterion: what if we only require
the final star set to be away from a consistent star set by a known set of operations on the star set?

Flip-consistency

Edge flips offer an easy way to switch between different triangulations and have thus been regularly
used in mesh generation and optimization. We incorporate the notion of flips in consistency and
consider that a simplex σ is flip-consistent if σ can be found in all of the stars of its vertices if we
allow a simple diagonal flip to happen. Assuming that we manage to create a flip-consistent mesh, we
can then apply manual flips to obtain a consistent mesh.

Flip-consistency is, by definition, weaker than consistency and the notion of consistency implies
flip-consistency. If a simplex is not flip-consistent, it is said to be flip-inconsistent.

We first limit the technique to two-dimensional and pure surface domains, as flip operations in
surface stars are simpler to handle than in volume stars. From an implementation point of view, we
introduce a flip-inconsistency refinement rule that deals with this relaxed inconsistency: a simplex
that is not flip-consistent must be refined. This queue, like the inconsistency queue it replaces, has the
lowest priority out of all the queues in the algorithm. The refinement of a flip-inconsistent simplex is
similar to an inconsistent simplex: the Pick_valid procedure is called and tries to find vertices that
would not create flip-inconsistencies.

Results In practice, this approach does not have any significant effect and, consistently across
all inputs, many inconsistencies are not flip-consistencies. Figure 4.32 shows the progression of the
resolution of inconsistencies in a difficult region of the hyperbolic metric field. While many simplices
are flip-consistent, the situation does not improve overall as the algorithm solves inconsistencies.

Allowing more than one flip would certainly help, and even potentially solve inconsistencies. We
have chosen however to only allow one diagonal simple flip for two reasons:

• We seek a relatively simple method that extends to all inputs. While flipping in planar domain
is relatively straightforward, investigating the combinatorial of stars while allowing multiple flips
in 3D seems very difficult.

• If we allow too many flips to happen, the locally uniform anisotropic mesh approach is somewhat
lost as we obtain an algorithm that is very close to the work of Mavriplis [102] or Borouchaki [33].

Therefore, this technique is put aside.
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Figure 4.32: Flip-inconsistency and consistency. The consistent facets are in blue, the flip-consistent
facets are in green and the inconsistent facets that are not flip-consistent are in red. The domain is
the square centered on the origin and of side 1.5, but the images are zoomed in on a difficult part of
the hyperbolic metric field. The full star sets possess 1000 (top), 2000 (middle) and 8450 (bottom)
vertices. Note that the bottom picture is slightly zoomed out to give a larger view of the difficult
region.
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Age-based consistency

We define another type of relaxed consistency with the notion of consistency with stars older than
i: a simplex τ is consistent if τ is present in the stars of its vertices whose index (the position in the
star set) is smaller than i (thus were created first and are older). This new type of relaxed consistency
will be used in the next section.

4.8.4 Perturbing vertices

The modification of a vertex position is a classic method used in mesh generation, usually to
improve the quality of meshes [132].

We attempt to solve inconsistencies without inserting new points by moving points, with the
hope of finding better positions that would reduce the number of inconsistencies. The candidate new
position of a point is picked in a small sphere centered on the point and of radius 1/3 of the distance
to its closest neighbor. The validity of the move is tested as in the Pick_valid procedure: no small
quasi-cosphericities must be created (see Section 4.2.1). This first approach is largely unsuccessful
and only removes a negligible percentage of inconsistencies across all the meshes.

A variation using age-based consistency (defined in Section 4.8.3) is considered, with the idea
that points are moved such that they do not create problematic configurations with points that have
already been moved. The modified algorithm is as follows:

Algorithm 12 Inconsistency solving: Moving points attempt

Define MOV ES = 0,MAX_MOV ES
for Each star Sp of index idp and center point p do

if Sp is consistent with stars older than idS then
CONTINUE

while MOV ES < MAX_MOV ES do
Move p
if p is such that all the modified stars are consistent with stars older than idS AND

p does not create inconsistencies in unmodified stars older than S then
Proceed to next star

else
Increase MOV ES

Reset p to its original position ⊲ no improvement found in MAX_MOV ES moves

Update all the refinement queues

A very simple combination of domain and metric field is considered to investigate the performance
of this algorithm. The domain is an ellipsoid with a = 10 and b = c = 1 endowed with the curvature-
induced metric field and the same parameters as in Section 4.7.3. This input has very few issues
with consistency with the normal refinement algorithm, and requires very few additional points to
finish: the final mesh has 6502 and only 212 vertices are required for consistency. We interrupt the
algorithm at 6290 vertices (before the inconsistency queue) and try to resolve inconsistency with point
displacement.

This is successful: moving vertices with the age-based consistency criterion successfully gets rid
of inconsistencies. However a number of simplices do not honor other criteria (size, approximation,
shape) anymore after their vertices have been moved. Refining these facets to satisfy once again the
criteria takes around 200 insertions and we thus obtain the same number of vertices as if we had
simply refined inconsistencies.
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In the case of more complicated metric fields and domains, point perturbation has barely any effect
on the consistency, whether using full consistency or age-based consistency. This is not completely
unexpected: the Pick_valid procedure is in a sense already an optimization of the position of points
with respect to the consistency criterion.

Weight-based perturbations

Another type of optimization that is often used in mesh optimization is the weighting of vertices:
for example, transforming a Delaunay triangulation into a regular triangulation is one of the way
slivers can be removed from isotropic meshes [133, 48].

We adapt this technique to our context and modify the underlying structure of stars to be regular
Delaunay triangulation instead of Delaunay triangulations. Thanks to our CGAL implementation,
this change is trivial and is simply changing the base class of our Stretched_Delaunay class to be
a weighted Delaunay triangulation instead of a Delaunay triangulation. We then attempt to weight
vertices to remove quasi-cosphericities, but results were poor. This result can be explained by the
fact that weighting vertices and perturbing their metric (smoothing) are similar operations and by the
fact that only for quasi-cosphericities for a low distortion was weighting able to solve an inconsistency
without creating another.

4.8.5 Vertices removal

We investigate in this section the necessity of vertices once consistency has been achieved: could
it be possible that a large amount of points are simply needed as “scaffolding” and could be discarded
afterwards? Removing a point p from the star set is done in two steps, as shown in Algorithm 13.

Algorithm 13 Removing a vertex from the star set

Remove the point p from all the stars Sq in which it appears.
Remove Sp from the set of stars.

Naturally, we must ensure that any star Sq in which p belonged and has been removed has the
correct connectivity and is not missing any vertex (due to star cleaning, for example – see Section 4.4.5).

We first attempt to remove any point from the star set, on the condition that this does not create
any inconsistency. Consistently across domains and metric fields, only a few points are removed,
proving that all the points are indeed necessary.

Removal with relaxed consistency

Behind relaxed consistency is the hope of obtaining an inconsistent star set that we can make
consistent using simple operations, and in particular without adding any new point. Using the flip-
consistency notion defined in Section 4.8.3, we try to remove points from consistent meshes without
losing the flip-consistency of the star set. The algorithm devised is presented in Algorithm 14. Heavy
caching of the stars can be used to make this algorithm fast.

The results of this new algorithm are barely better than when using full consistency: across various
domains and metric fields, only a handful of points are removed from the mesh.

In conclusion, we can see that no vertex is superfluous in the final mesh.
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Algorithm 14 Inconsistency solving: removing points attempt

for each star Sp in the star set do
Remove the corresponding center vertex p from the stars that contain it
Remove Sp from the star set
if Any active star is flip-inconsistent then Re-insert Sp in the star set

4.8.6 Constrained stars

In an inconsistent configuration, two stars Sp and Sq disagree on which simplices are Delaunay.
What would happen if we decided that one star was “correct”, say Sp, and somehow forced Sq to
constrain itself such that no inconsistency exists with Sp anymore? The following section describes
an heuristic to obtain a triangulation for a given metric field g and a given set of points P. This
heuristic is based on rebuilding the star set iteratively, but each star Sp only sees a restricted set of
points Pp that varies for each star; this set is picked such that no inconsistencies will be created with
already-rebuilt stars.

The initial point set P can be (and is, in the examples) computed through the classic Delaunay
refinement algorithm used in the star set algorithm. The algorithm then iteratively rebuilds the star
set as follows: we start by picking one star Sp. The connectivity of Sp is then imposed to others: for
any simplex τ ∈ Sp and any q ∈ τ with q 6= p, we must have τ ∈ Sq. Additionally, we must not
have any simplex τ ∈ Sq with p ∈ τ but such that p 6∈ Sp. These two conditions ensure that no
inconsistency are formed. At each step, we consider a point q ∈ P, and the star Sq is rebuilt according
to the previous conditions. The simplices of Sq are then in turn imposed to other stars.

Implementation wise, imposing the simplices of other stars to a star being rebuilt is done by
deriving our Stretched_Delaunay class from constrained Delaunay triangulations, which are also
available in the CGAL library. As in Section 4.8.4, this is a very simple change, implementation-wise.
To ensure that the imposed simplices are not broken by other points, we do not insert (in the star
being rebuilt) any vertex that is in conflict with an imposed simplex, that is no point that falls in the
Delaunay sphere – in the metric – of an imposed simplex is added to the star.

Although we cannot ensure the termination of this algorithm in all dimensions, the algorithm will
terminate since every polygon is decomposable into triangles with only interior edges.

Results Figure 4.33 shows the intermediate steps in the rebuilding of an inconsistent star set. The
domain is a square of side 5 endowed with the hyperbolic shock metric field. The final mesh has 7739
vertices; in comparison, the final mesh that had to solve inconsistencies had 43495 vertices.

While this method does provide triangulations, the quality of the final meshes is very low in regions
that were inconsistent, for example on the “turns” (the regions where the eigenvectors of the metric
are rotating) of the hyperbolic shock metric field. This is especially noticeable when the starting star
set is mostly composed of inconsistencies. Figure 4.34 shows an example of such mesh; the domain is
almost entirely covered with inconsistencies before we refine for the inconsistency rule. Our algorithm
terminates and provides a consistent triangulation, but the simplices hardly conform to the prescribed
metric and, even visually, the quality is everywhere very low.

Constraining simplices is the first of the methods that we have investigated that manages to create
a consistent star set given a set of points. Unfortunately, the solution cannot be called satisfying.

121



Chapter 4. Locally uniform anisotropic meshes

Figure 4.33: Progression of the sweeping (1000, . . . , 7000) points and final mesh (bottom right).

4.8.7 Using third party vertices

In a last attempt, we considered using points obtained by other Delaunay-based anisotropic mesher
generators in the setting of domains and metric fields where a unit mesh was achieved. We extract
the position of the vertices from their results, and construct a star set from these points. We generally
obtain many inconsistencies. Applying the refinement algorithm to this star set adds a large number
of vertices to achieve consistency, as if we had started from scratch.
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Figure 4.34: Sweeping process with a radial shock metric field. The result has very poor quality.

4.9 Conclusion

We have presented an empirical study of the locally uniform anisotropic meshes framework, intro-
duced by Boissonnat, Worsmer, and Yvinec [30]. During this study, we have introduced minor changes
to the theory and provided a robust and generic implementation of the algorithm.

While the algorithm is simple to understand, the computation speed of a naive implementation
would be unreasonable. We presented an implementation of the algorithm that is both robust and
fast, which is more difficult to achieve. Our implementation is slow compared to other (isotropic
or anisotropic) mesh generators, but this is inherent to the algorithm as the insertion of a refine-
ment point must be performed in multiple stars. Additionally, the algorithm relies heavily on the
Pick_valid procedure to select refinement points, which is extremely costly: testing the validity of a
single candidate is more expensive than inserting a vertex in the star set. The large number of invalid
candidates generally tested before finding a valid point multiply this cost. While this slowdown can
be tolerated in a two-dimensional setting, the additional computational cost becomes important in
3D: inserting a vertex through the Pick_valid procedure can have in 3D the same computational
cost as the insertion of up to a thousand points in a standard isotropic mesh like the 3-dimensional
isotropic mesh generator Mesh_3 of CGAL. The speed of our implementation might though be im-
proved by dissociating our star class from the use of CGAL’s classes and using instead a dictionary
data structure, as Shewchuk suggests for stars [128], as to avoid the redundancy of each point and
simplex usually appearing in multiple stars. However, our CGAL-based implementation allows for a
robust and powerful implementation. As an example of this, it was trivial to change stars from being
Delaunay triangulations to weighted or constrained Delaunay triangulations in Section 4.8.

The effect of the heavy cost of the Pick_valid procedure is amplified by the excessively large
number of vertices that must be chosen (using the Pick_valid procedure) and inserted to solve
inconsistencies, which forms the major drawback of the algorithm. While the algorithm always ter-
minates and provides an anisotropic triangulation that honors the criteria and the metric field, this
will almost always require a much larger number of vertices than expected before the star set becomes
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consistent. Indeed, the resolution of inconsistencies is generally unsuccessful until very low distortions
are achieved between adjacent vertices. Similarly to theoretical bounds on the termination of the al-
gorithm, the theoretical bounds on the quality unfortunately do not translate to good quality meshes
either and the lowest and average quality of simplices is generally poor. However, no optimization was
performed, which is essential to obtain high quality meshes, even in isotropic settings.

Following these observations, we focused our attention on the resolution of inconsistencies and
different approaches were considered to help the resolution of inconsistencies. Unfortunately, no
method has been able to significantly improve the situation.

On the bright side, although the algorithm requires low distortion between the vertices of the mesh,
it can handle extremely high anisotropy ratios. Additionally, the algorithm is extremely robust to all
kinds of input and metric fields, and will provide an anisotropic mesh that conforms to any continuous
metric field, given enough time and memory. Finally, despite this shortcoming, the framework of
locally uniform anisotropic meshes remains one of the few approaches that offer provable anisotropic
mesh generation.

While the approach is not practical to generate anisotropic meshes, we make use of inconsistent
anisotropic star sets to help the computation of geodesic Voronoi diagrams. We will then be able to
ignore the resolution of inconsistencies, and the refinement algorithm described in this chapter becomes
much more useful as it is only a few times slower than an isotropic mesh generator but provides locally
Delaunay triangulations whose simplices have good shape and bounded edge size. This use of locally
uniform anisotropic meshes will be described in detail in Chapter III.6.
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5. On the Labelle and Shewchuk approach
to anisotropic Voronoi diagrams

The empirical study of Chapter I.4 has revealed that locally uniform anisotropic meshes are not
practical. This can be partially attributed to the rigidity of the stars as a Delaunay star does not take
into account any metric but the metric of its center point.

We depart from the structure of independent stars and move towards the definition of triangulations
as duals of Voronoi diagrams, with the hope that Voronoi cells being dependent on the metric of their
neighbors, the increased amount of metric information taken into account will be beneficial to the
output triangulation. Several authors have considered Voronoi diagrams using anisotropic distances
to obtain triangulations adapted to an anisotropic metric field.

Du and Wang [64] defined the anisotropic Voronoi cell of a point pi in a domain Ω endowed with
a metric field g as

VDW
g (pi) = {x ∈ Ω | dg(x)(pi, x) ≤ dg(x)(pj , x), ∀pj ∈ P\ pi}.

Labelle and Shewchuk [89] had independently the same idea of using only discrete metric information
of important points, but their definition of Voronoi cell differs slightly:

VLS
g (pi) = {x ∈ Ω | dg(pi)(pi, x) ≤ dg(pj)(pj , x), ∀pj ∈ P\ pi}.

Unfortunately, while the dual of an Euclidean Voronoi diagram is a Delaunay triangulation for
any point set (in general position), this property does not hold for a generic distance. Canas and
Gortler [37, 38] and Cheng et al. [50] proved that under sufficient sampling conditions, the dual of the
Voronoi diagram using the distance of Du and Wang is a triangulation for planar and surface domains,
but no result is known for higher-dimensions. In the case of the distance of Labelle and Shewchuk,
the associated theory on the embeddability of the dual covers the planar setting, but its extension to
higher dimensions faces inherent difficulties. There are thus no proofs in higher dimensions for either
diagrams.

We choose to specifically investigate the definition of Labelle and Shewchuk as it fits best with
the rest of our work. Additionally, other authors have previously studied this diagram: Canas
and Gortler [37] showed that under some sampling conditions, the Voronoi diagram of Labelle and
Shewchuk does not possess any orphans, which are parts of a Voronoi cell that are disconnected from
the seed. However, they could not prove that the dual of an orphan-free anisotropic Voronoi diagram is
a triangulation. Boissonnat et al. [29] proposed an alternative construction of the anisotropic Voronoi
diagram of Labelle and Shewchuk as the intersection of a high-dimensional power diagram with a fixed
parametrized surface. They proposed a theoretically sound refinement algorithm using this alternative
point of view to construct anisotropic Voronoi diagrams whose dual is a triangulation. Unfortunately,
as in the original work of Labelle and Shewchuk, this theory is limited to the case of two dimensional
domains.

This chapter is divided in two relatively-independent parts. In the first part, we expose conditions
on a set of seeds such that the dual of the Voronoi diagram – for the definition of Labelle and Shewchuk
– of these seeds is a triangulation, in any dimension, and introduce an algorithm to generate such point
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sets. In the second part, we present a refinement algorithm based on the alternate construction intro-
duced by Boissonnat et al. [29]. The refinement algorithm uses a “dual” point of view by constructing
a star set, with each star locally approximating the dual of the anisotropic Voronoi diagram of Labelle
and Shewchuk. We detail the theoretical issues and investigate its practicality.

Contributions We first give sufficient conditions such that the straight dual (simplices realized
as the convex hull of their vertices) of Labelle and Shewchuk’s Voronoi diagram is an embedded
triangulations in any dimension. Our proof makes use of power protection which can be shown to
be linked to the concept of quasi-cosphericities that appeared in the framework of locally uniform
anisotropic meshes in Chapter I.4. We present a refinement algorithm to create such point set. These
requirements can incidentally be used to prove that multiplicatively-weighted Voronoi diagrams have
an embedded dual when generated with similar point sets.

We use the alternative construction of Boissonnat et al. [29] along with an efficient point set recon-
struction algorithm, the tangential complex [25] to propose a new refinement algorithm that attempts
to build a triangulation that is dual of Labelle and Shewchuk’s diagram. The tangential Delaunay
complex structure is slightly modified in this setting, which allows for an efficient algorithm despite
handling high-dimensional entities. We show that under some density condition, our triangulation
is the dual of the anisotropic Voronoi diagram of Labelle and Shewchuk, and can thus be made a
triangulation. Finally, we provide an experimental study of the algorithm.

Contents

5.1 Labelle and Shewchuk anisotropic Voronoi diagram . . . . . . . . . . 129

5.2 Dual of the anisotropic Voronoi diagram . . . . . . . . . . . . . . . . . 130

5.2.1 Detailing of the proof of Theorem 5.2.1 . . . . . . . . . . . . . . . . . . . . 131

5.2.2 Overview of the proof of the embeddability of the dual . . . . . . . . . . . 131

5.2.3 Intermediary steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Protection and quasi-cosphericities . . . . . . . . . . . . . . . . . . . . 134

5.4 Generation of power protected point nets . . . . . . . . . . . . . . . . 136

5.5 A star-based construction of the dual of the anisotropic Voronoi di-
agram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5.1 Multiplicatively weighted Voronoi diagrams . . . . . . . . . . . . . . . . . 139

5.5.2 The power diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.3 The paraboloid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.4 Equivalence of the constructions . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5.5 Refinement algorithm and proofs . . . . . . . . . . . . . . . . . . . . . . . 141

5.6 The tangential complex . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.1 Star and inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.7 Combined works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.7.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.7.2 Refinement algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.7.3 Theoretical aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.7.4 A star-based proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.7.5 Computing refinement points . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.8.1 Brute force approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

128



5.1. Labelle and Shewchuk anisotropic Voronoi diagram

5.8.2 Tangential complex results . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.1 Labelle and Shewchuk anisotropic Voronoi diagram

Labelle and Shewchuk [89] introduced an anisotropic Voronoi diagram where each seed sees dis-
tances in its own metric. The anisotropic Voronoi cell of a seed pi is defined by

VLS
g (pi) = {x ∈ Ω | dg(pi)(pi, x) ≤ dg(pj)(pj , x), ∀pj ∈ P\ pi}.

We denote VorLSg (P) the corresponding anisotropic Voronoi diagram of a point set P and with the
metric field g. Figure 5.1 shows an example of such a diagram for the hyperbolic shock metric field
(see Section A.3 in Appendix A). Although different definitions are possible for an anisotropic Voronoi
diagram, we will make almost-exclusive use of this definition and shall therefore refer to the anisotropic
Voronoi diagram using the Labelle and Shewchuk distance as simply anisotropic Voronoi diagram and
will often discard the superscript LS in the rest of this chapter. When considering any other type of
anisotropic Voronoi diagram, we shall explicitly indicate which distance is used.

Figure 5.1: Anisotropic Voronoi diagram using the distance of Labelle and Shewchuk.

The anisotropic Voronoi diagram Vorg(P) is relatively easy to compute as its bisectors are quadric
surfaces (or simply conics in a two-dimensional setting). This can be immediately verified by writing
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down the definition of a bisector:

BS(p, q) = {x ∈ Ω | dp(p, x) = dq(q, x)},

and noting that dp(p, x) = dq(q, x) ⇐⇒ (x− pi)tg(pi)(x− pi) = (x− pj)tg(pj)(x− pj).

5.2 Dual of the anisotropic Voronoi diagram

The construction of the dual of a Voronoi diagram must first go through the choice of the geometry
of the dual complex: should simplices be drawn using geodesics, segments, piecewise segments? We
study here the straight dual of the anisotropic Voronoi diagram, meaning the realization of the nerve
that uses the classical definition of simplices as the convex hull of a set of points. Since we do not
consider any other dual of the anisotropic Voronoi diagram in this chapter, we shall omit the keyword
“straight” in the rest of the chapter. The duality between the Voronoi diagram and the Delaunay
triangulation is well known in the Euclidean setting, but, as for most other Voronoi diagrams, the
dual of the anisotropic Voronoi diagram Vorg(P) is generally not a triangulation.

A source of potential issues preventing the embeddability of the dual are orphans, region of faces
or cells that are disconnected from their seed, which can be present in Vorg(P). While orphans are
not always responsible for the non-embeddability of the dual of the diagram, they are symptomatic of
a poorly-sampled Voronoi diagram (Figure 5.2).

Figure 5.2: Two Voronoi diagrams exhibiting an orphan cell. On the left, the dual is unaffected by
the orphan. On the right, the dual is not a triangulation.

In the two-dimensional setting, Labelle and Shewchuk proposed a theoretically sound refinement
algorithm that generates a point set for which the dual of the anisotropic Voronoi diagram is a
triangulation of the domain. Their proof is based on a visibility argument that ensures that the
bisector between two seeds is not too “curved”. Unfortunately, the proof cannot be extended to higher
dimension – or even surfaces.

We now give sufficient conditions in term of density and quality of the point set for the dual of the
anisotropic Voronoi diagram to be an embedded triangulation and introduce a refinement algorithm
to point sets that satisfy these requirements. We shall prove the following theorem.

Theorem 5.2.1 Let P be a point set over an unbounded n-manifold M endowed with a metric field
g. Denote by Vorg(P) If P is a δ-power protected (ε, µ)-net, with δ sufficiently large and ε sufficiently
small, then the dual of Vorg(P) using straight simplices is a triangulation of M.
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5.2.1 Detailing of the proof of Theorem 5.2.1

We will introduce in Chapter III.6 the discrete Riemannian Voronoi diagram, a structure that
approximates discretely the complete Riemannian Voronoi diagram of a set of points – the Voronoi
diagram built using shortest paths on a Riemannian manifold –. Chapters III.7 and III.8 are devoted
to the theoretical study of this approach and we expose in particular conditions such that the straight
dual of our discrete Riemannian Voronoi diagram is an embedded triangulation, in any dimension.

Due to the many similarities in terms of approach, requirements, and intermediary results be-
tween the proofs of the embedding of the dual of the anisotropic Voronoi diagram (using Labelle and
Shewchuk’s distance) and of the embedding of the dual of our discrete Riemannian Voronoi diagram,
we do not detail the proofs in this chapter but simply describe the path that is followed.

Precise computations, lemmas and theorems are however presented in Chapters 3 and III.8 to prove
the embedding of the dual of our discrete diagram in the setting of Riemannian Voronoi diagrams,
which include the necessary tools and results to prove the embedding of the dual of the anisotropic
Voronoi diagram of Labelle and Shewchuk. The results of these chapters – some of them mentioned
below – assume arbitrary metric fields, but can be translated to the setting of Labelle and Shewchuk’s
anisotropic Voronoi diagrams.

5.2.2 Overview of the proof of the embeddability of the dual

We consider in this section an unbounded domain Ω endowed with an arbitrary metric field g. Our
approach stems from the observation that as the point set P becomes denser, the distortion between
neighboring vertices decreases and the bisectors become less and less “curved”. At a point p, the
anisotropic Voronoi diagram Vorg(P) is thus well approximated by the uniform anisotropic Voronoi
diagram VorGp(P). Using the notion of power protected nets, we can show that the duals are identical
and, by combining this information for all vertices, that the dual of Vorg(P) is a triangulation.

Orphans

Our approach relies on combinatorial information and is slightly complicated by the presence of
orphans, which we thus get rid of preemptively.

Canas and Gortler [38] introduce samples which are samples specifically designed for the anisotropic
distance of Labelle and Shewchuk: a point set P is an asymmetric ε-sample if for all x ∈ Ω, there
exists a seed p ∈ P such that dLSGp (p, x) < ε. Using this type of point set, they show that an anisotropic
Voronoi diagram can be made orphan-free if ε is small enough.

The notion of nets (see Section 2.12.1 in Chapter 2) that we employ could also be defined asym-
metrically. However, we shall use nets defined with respect to g and for the geodesic distance dg,
meaning for example that P is an ε-sample if for all x ∈ Ω, there exists p ∈ P such that dg(p, x) < ε.
This choice is made for consistency reasons: most of the results that we achieve in other chapters are
obtained with nets. It also allows us to define a common refinement algorithm for point sets used in
this chapter and in Chapter III.6.

This difference of definition is anyway relatively minor as we can easily construct an asymmetric
net from a (Riemannian) net by using the distortion to relate the distances dg and dp (see Lemma 3.1.4
in Chapter 3).

Locality

The central idea of our approach is to consider a neighborhood Up around each seed p ∈ P and
to approximate over Up the anisotropic Voronoi diagram Vorg(P) by a uniform anisotropic Voronoi
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diagram, VorGp(P) with Gp = g(p). The neighborhood Up is chosen large enough to include both
Vg(p) and VGp(p).

We then compare the sets of simplices incident to p in the dual of both diagrams – the stars Sg(p)
and SGp(p) – with the hope of equating them. Indeed, in the setting of a uniform metric field g0,
the Voronoi diagram of a point set P with respect to g0 is simply the affine transformation (by the
inverse of the square root of g0) of the Euclidean Voronoi diagram of the point set P transported to
the metric space of g0. Hence it is clear that the dual of Vorg0(P), and specifically the star Sg0(p) of
p, is a triangulation.

Unfortunately, the Voronoi vertices of an arbitrary point set can be arbitrarily close. Consequently,
the (obvious) embedding of the dual of an anisotropic Voronoi diagram with respect to a uniform metric
field does not guarantee the embedding of the dual of the anisotropic Voronoi diagram with respect to
an arbitrary metric field, regardless of its proximity – in terms of distortion – with the uniform metric
field.

Separation of Voronoi vertices

The power protection of a set of points P with respect to a metric g0 enforces that no point in P
lives close to the Delaunay ball of a simplex in the Delaunay triangulation Delg0(P) (see Section 2.12.2
in Chapter 2). Assuming that our seed set is power protected is the key to making our approach based
on local approximations viable.

Indeed, we can show that if the point set P is power protected with respect to Gp, then the Voronoi
vertices of the Voronoi diagram VorGp(P) are separated, meaning that the distance between any two
adjacent Voronoi vertices is lower bounded. Additionally, assuming that the point set is also a net,
we can prove that Voronoi vertices are stable with respect to metric changes: the distance between
a Voronoi vertex of Vg(p) and its combinatorial equivalent in VGp(p) can be upper bounded. The
combination of these two results, illustrated in Figure 5.3, allows us to deduce that the Voronoi cells
Vg(p) and Vg0(p) have the same combinatorial information.

Under these conditions, the union of the simplices of the dual of Vorg(P) that are incident to p –
in other words, the star Sg(p) – is exactly the star of SGp(p). Since SGp(p) is a triangulation, Sg(p)
also forms a triangulation.

Combinatorial compatibility of the stars

To obtain a triangulation of the domain, we must verify that the connectivity of all the stars is
compatible: a simplex must exist in the star in all of its simplices.

We use the continuous aspect of Vorg(P) to show that this is indeed the case. To each k-simplex
of the star SGp(p) corresponds a (n− k)-face F in the Voronoi diagram VorGp(P). By combinatorial
equivalence of the Voronoi diagram with respect to Gp and Vorg(P), this (n− k)-face is also found in
Vorg(P). Using once again the combinatorial equivalence, the (n− k)-face F will appear in the local
uniform Voronoi diagram VorGq(P) with respect to all the seeds q such that F ⊂ Vg(q) (that is all
the vertices of the simplex dual of F ).

We have now a consistent star set, which can be proven to be a good triangulation of the domain,
similarly to the star set studied in Chapter I.4 (see Section 4.2.4).

5.2.3 Intermediary steps

Our proof can be decomposed in a list of successive results that must be obtained. As explained
in Section 5.2.1, all the necessary tools are presented in detail in other chapters for the generic setting
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p

ℓv
ℓs

Figure 5.3: The Voronoi diagrams Vorg(P) (orange) and VorGp(P) (thick black lines). The blue circles
represent the stability regions for the Voronoi vertices. The distance ℓv is lower bounded when P is
power protected. When the distortion is sufficiently low, the radius of the blue circles is small and the
distance ℓs is positive, giving Sg(p) = SGp(p).

of Riemannian Voronoi diagrams. We adjoin links to the proofs.

Remark 5.2.2 Since a uniform metric field is only a linear transformation away from the Euclidean
metric field, we simplify matters in the proofs by assuming that the local metric Gp is the Euclidean
metric field gE.

We must:

• Prove that if the point set P is a power-protected net with respect to the arbitrary metric field
g, and that g and the Euclidean metric field gE are close, then P is also a power protected net
with respect to gE. This is done in Lemmas 3.4.2 and 3.4.16 in Chapter 3 for the net and power
protection properties respectively.

• Prove that for a given set of seeds P and a seed p ∈ P, the bisectors of the Voronoi cell Vg(p)
are close to the bisectors of the Euclidean Voronoi cell VE(p) when the sampling is dense. This
is done from Lemma 3.4.5 up to Lemma 3.4.12 in Chapter 3.

• Prove that in an Euclidean Voronoi diagram built from a power protected net, the distance be-
tween two adjacent Voronoi vertices is lower bounded. This is done in Lemma 3.2.4 in Chapter 3.

• Prove that when the sampling is dense, the same Voronoi vertex in the cell Vg(p) and in the cell
Vp(p) are much closer than their separation distance in Vp(p). This last part is simply combining
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the previous results, and is done in detail in Section 7.3.3 in Chapter III.7 and in Section 8.3.3
in Chapter III.8.

In these conditions, the star Sg(p) is a triangulation equal to SGp(p) and the dual of the anisotropic
Voronoi diagram is a triangulation for the reasons detailed in the previous section.

5.3 Protection and quasi-cosphericities

By considering at each seed the connectivity of the diagram using a uniform metric field defined by
the metric of the seed, we are in fact bringing the anisotropic Voronoi diagram of Labelle and Shewchuk
within the framework of locally uniform anisotropic meshes presented in Chapter I.4, with the small
twist that we are here principally looking at the dual of stars (a Voronoi cell and its neighbors).

In the framework of locally uniform anisotropic meshes, the obstacle that prevents a set of stars
from being a triangulation of the domain is the presence of inconsistencies in the stars, a configu-
ration where adjacent stars have incompatible connectivities. It can be shown (see Section 4.1.2 in
Chapter I.4) that once the distortion between adjacent vertices is small enough, inconsistencies are
only created when a point lives outside of the Delaunay G-ball of a simplex σ, but inside the De-
launay G′-ball of σ. Denoting ψ0 the distortion ψ(G,G′), this geometrical configuration is called a
ψ0-quasi-cosphericity (see Figure 5.4, left).

p

q

r

BG(τ) BG′(τ)

s

τ

τ

p

s

q

r

B

B+δ

Figure 5.4: A quasi-cosphericity (left) and a simplex τ that is not δ-protected (right).

It may seem surprising that we are able to show that the dual of the anisotropic Voronoi diagram
is a star set that can be merged to form a triangulation – and is thus consistent – despite not using
the notion of quasi-cosphericities. However, we have used the notion of power protection and, as we
shall now explain, power protection and quasi-cosphericities are related.

Power protection and the absence of quasi-cosphericities

The assumption of power protection in fact implies the lack of quasi-cosphericity for a well-chosen
distortion. We first give a rough idea of the proof, before detailing the computations.

By definition, if a point set is power protected with respect to G, then there can be no vertex
close to the Delaunay G-ball of a simplex of σ. On the other hand, for a small metric perturbation
G′ of G, the Delaunay G′-ball of σ is close to the Delaunay G-ball. Thus there exists a distortion
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bound ψ0 that is small enough such that all the Delaunay G′-balls are included in the power protected
(thickened) Delaunay ball of σ. In other words, there are no ψ0-quasi-cosphericities.

We now expose the precise computations. Notations used are illustrated in Figure 5.5.

τ
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Figure 5.5: The simplex τ is power-protected, which implies no quasi-cosphericities for a distortion
bound ψ0 sufficiently small.

Assume that P is a δ-power protected (ε, µ)-net with respect to a uniform metric field G. Consider
a n-simplex σ, with a dual Voronoi vertex c in VorG(P). By definition of the power protection, we
have that for any p ∈ σ and s ∈ P\Vert(σ),

dG(c, s)2 > dG(c, p)2 + δ2.

We wish to find a ψ0 such that σ is involved in no ψ0-quasi cosphericities. Consider now a second
uniform metric field G′ such that ψ(G,G′) < ψ0, and denote by c′ the dual Voronoi vertex of σ in
VorG′(P). We want to prove that for any s ∈ P\Vert(σ),

dG′(c′, p) < dG′(c′, s), (5.1)

that is s is outside of the Delaunay ball BG′(σ), and thus σ is not involved in a ψ0-quasi-cosphericity.
The most useful property of the distortion is to relate the distances with respect to two metric

fields: for x, y in Ω, we have

1

ψ(G,G′)
dG′(x, y) ≤ dG(x, y) ≤ ψ(G,G′)dG′(x, y).

135



Chapter 5. On the Labelle and Shewchuk approach to anisotropic Voronoi diagrams

Therefore, if we have ψ(G,G′)dG(c′, p) < 1
ψ(G,G′)dG(c′, s) then Equation 5.1 is satisfied.

We prove in Chapter 3 (Lemma 3.4.14) that Voronoi vertices are stable with respect to metric per-
turbations: the distance dG(c, c′) is bounded by a function f that depends on the distortion ψ(G,G′).
(The (ε, µ)-net hypothesis is needed specifically to prove Lemma 3.4.14.) The function f is compli-
cated and tedious to manipulate, but its most important property is that it goes to 0 as the distortion
goes to 1. Denote by χ the value f(ψ(G,G′)), which is the maximal distance between c and c′ for
two metrics with distortion ψ(G,G′). (Note that this corresponds to the radius of the blue circles in
Figure 5.3.) It is clear that

{
dG(c′, s) > dG(c, s)− dG(c, c′) = dG(c, s)− χ
dG(c′, p) < dG(c, p) + dG(c, c′) = dG(c, p) + χ.

Additionally, we have that dG(c, s) >
√
dG(c, p)2 + δ2 by δ-power protection of P with respect to G.

Thus, Equation 5.1 is verified if

ψ(G,G′) (dG(c, p) + χ) <
1

ψ(G,G′)

(√
dG(c, p)2 + δ2 − χ

)
.

Equivalently, it suffices that

[
ψ(G,G′)2 (dG(c, p) + χ) + χ

]2
− dG(c, p)2 < δ2. (5.2)

Since χ goes to 0 as ψ goes to 1, it clear that the left hand side goes to 0 (from above) and that there
exists a value ψ0 > 1 such that Inequality 5.2 is satisfied.

For this value of ψ0 we have thus that dG′(c′, p) < dG′(c′, s) for any metric G′ with ψ(G,G′) < ψ0

and for any s ∈ P\Vert(σ), hence proving that there are no ψ0-quasi-cosphericities involving σ.

Remark 5.3.1 At no point have we used that G and G′ were metrics (uniform metric fields), and
thus this result could be extended trivially to arbitrary metric fields.

Reverse implication

Power-protection implies an absence of quasi-cosphericities, but the converse is not true. This
results from the fact that given a distortion bound ψ0, the union of all the Delaunay G′-balls with
ψ(G,G′) < ψ0 does not create a protecting layer around the Delaunay G-ball. Indeed, a Delaunay
G′-ball of a simplex σ is an ellipsoid that contains σ and goes through the n+1 vertices of σ. Consider
the pyramidal double cone spanned by a vertex of σ and its opposite facet. By convexity of a Delaunay
ball, no point can live in the region of the cone that does not contain the facet (see Figure 5.6). Thus
however small ψ0 is chosen, we can chose a point as close as we wish to the vertex that spans the
cone, without creating a quasi-cosphericity. This implies that there does not exist a δ > 0 such that
the simplex is δ-power protected.

5.4 Generation of power protected point nets

The lemmas used in the proof of the embeddability of the dual of the anisotropic Voronoi diagram
impose requirements on the sampling and on the power protection of the seed set. We describe in
this section how to generate a point set that fulfills these requirements. Many of the Lemmas used in
Chapter 2, III.7 and III.8 also require a bound on the distortion within the neighborhood considered.
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Figure 5.6: Illustration of the fact that an absence of quasi-cosphericities does not imply consistency.
The vertex s can be picked in the red dashed zones as closely as wanted to B, without ever creating
quasi-cosphericities.

The neighborhood is usually centered on a seed p and is large enough to include the Voronoi cell
of p and its neighboring Voronoi cells. Section 3.1 in Chapter 3 describes how to translate a bound
expressed through distortion as a bound expressed through sampling, under some mild assumptions
on the metric field. We thus wish to generate a δ-power protected (ε, µ)-net that satisfies ε < ε0 and
δ > δ0 = ιε.

Remark 5.4.1 It is not a mistake that it reads δ0 = ιε and not δ0 = ιε0: as the mesh gets denser, the
power protection required by our intermediary results can be made weaker as the sampling increases.
This is very natural: an increased sampling reduces the difference between the Delaunay balls of a
simplex, and the δ coefficient can thus be smaller.

Our algorithm makes use of the similarities between power protection and the lack of quasi-
cosphericities that was exposed in the previous section. Similarly to the locally uniform Delaunay
method proposed by Boissonnat et al. [30] (see Chapter I.4), our algorithm refines an initial (small)
set of points by iteratively inserting vertices whose position is chosen carefully.

In the framework of locally uniform anisotropic meshes, the refinement point of a simplex σ is
picked in a small zone around the circumcenter, called the picking region, denoted by P(σ). Within a
picking region, there might exist forbidden zones, formed by the points in P(σ) whose insertion would
create quasi-cosphericities with nearby existing points from the point set and must thus be avoided
– if possible. In the setting of Boissonnat et al. [30], the thickness of quasi-cosphericities (and thus
of forbidden regions) depends on the local distortion and goes to 0 as the distortion becomes small.
This allows to prove that for a sufficiently small distortion, the picking region of a simplex is not
entirely covered with forbidden zones, and a refinement point that does not create inconsistencies or
quasi-cosphericities can be found (Figure 5.7).

As explained in the previous section, the concepts of power protection and quasi-cosphericities
are very similar. In the context of a refinement algorithm, avoiding quasi-cosphericities and ensuring
power-protection can be achieved with the same idea of inserting vertices away from forbidden zones.
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Figure 5.7: A simplex τ , its Delaunay ball Bq(τ) (in the metric Gq) and the picking region P(τ), in
blue. Two forbidden rings (in red) are created by neighboring vertices, one created by s and t along
with a vertex of τ , r; and one created by u, v, w. One possible valid refinement point in Pq(τ) is
drawn in green and one possible invalid point in red.

In our context, the forbidden zones are given by the difference between the power-protected (thickened)
Delaunay ball and the Delaunay ball (this corresponds to the rings colored in green in Figures 5.4
and 5.3). The thickness of this new type of forbidden zones is given by the δ0 coefficient of the power
protection.

The key to prove that valid refinements points eventually exist in the framework of locally uniform
anisotropic meshes is that the thickness of the forbidden zones goes to 0 as the sampling increases and
the distortion goes to 1. Similarly, our bound δ0 also goes to 0 as the distortion becomes small, which
happens as the sampling gets denser.

Remark 5.4.2 Not only does δ0 goes to 0 as ε0 goes to 0, but δ0/ε0 goes to 0 as ε0 goes to 0 (see
Equation 3.8 in Chapter 3). This means that our theoretical requirements can use a smaller parameter
of the power protection as long as the mesh is denser. This is critical: if δ0/ε0 converged to a non-null
constant, it would not be possible to prove that there exist a dense enough sampling such that the
forbidden zones do not cover the picking region.

The refinement algorithm that prevents quasi-cosphericities in the framework of locally uniform
anisotropic meshes can thus be easily adapted to create power protected nets. The set of seeds P is
initialized with a few random points on the domain and the refinement algorithm is composed of two
main criteria:

• A sizing criterion to obtain an ǫ-sample. Simplices are refined with the insertion of their circum-
center.

• A power protection criterion to obtain a δ-power protected point set. A good refinement point
is chosen with a procedure similar to the Pick_valid routine (see Chapter I.4 for details). If
no good refinement point exists (yet) in the picking region, the circumcenter is instead inserted,
which lowers the sampling parameter of our point set, thus allowing a lower power protection
parameter and increasing the probability of finding a valid refinement point at a further step.
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We do not detail the proofs that the algorithm terminates and produces the expected result, as those
would be very similar to the work of Boissonnat et al. [31]. A summary of the proof has been given
in Section 4.2.4 in Chapter I.4.

The separation of the point set has not been addressed in the description of the algorithm. However,
we do not have in theory any hard requirement on the separation parameter µ and a value of µ is
implicitly obtained through the lower bound on the insertion radius (which can be computed as in
any traditional Delaunay refinement algorithm).

In conclusion, our refinement algorithm allows to obtain a δ-power protected (ǫ, µ)-net with ε < ε0

and δ > δ0.

5.5 A star-based construction of the dual of the anisotropic Voronoi
diagram

In the case of low-dimensional domains embedded in a high-dimensional spaces, the complexity
of traditional algorithms to compute Delaunay triangulations or Voronoi diagrams is not satisfying,
due to the curse of dimensionality. We introduce a new algorithm to generate good point sets based
on the dual of the anisotropic Voronoi diagram of Labelle and Shewchuk. This algorithm adapts the
tangential Delaunay complex, a structure that is derived from the Delaunay complex and is used in
manifold reconstruction, to the alternative construction of the anisotropic Voronoi diagram as the
restriction of a power diagram restricted to a paraboloid proposed by Boissonnat et al. [29]. The
complexity of the algorithm is based almost entirely on the intrinsic dimension of the domain, and
not on the dimension of the embedding space.

The alternative construction of the anisotropic Voronoi diagram of Labelle and Shewchuk that was
proposed by Boissonnat et al. [29] finds its roots in the view of a multiplicatively weighted Voronoi
diagram as the intersection of a power diagram and a (fixed) paraboloidal manifold. We recall this
equivalence, first detailed by Aurenhammer [11].

5.5.1 Multiplicatively weighted Voronoi diagrams

Multiplicatively weighted Voronoi diagrams are based on the distance

d(pi, x) = ωi ‖x− pi‖ .

In this case, the bisector of two seeds is a sphere:

BS(pi, pj) : {x ∈ Ω, ω2
i (x− pi)2 = ω2

j (x− pj)2}. (5.3)

Reformulating the equality in Equation 5.3, we obtain

ω2
i (x− pi)2 = ω2

j (x− pj)2 ⇐⇒ x2 − 2
2
(
ω2
i pi − ω2

j pj
)

ωi − ωj
x+

ω2
i p

2
i − ω2

j p
2
j

ωi − ωj
= 0. (5.4)

Since (x− c)2 = r2 ⇐⇒ x2 − 2cx+ (c2 − r2) = 0, Equation 5.4 is the equation of a sphere centered
on c and of radius r, where 




c =
2(ω2

i
pi−ω2

j
pj)

ωi−ωj

r =

(
2(ω2

i
pi−ω2

j
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Representing the sphere (c, r) of R
n as a point in R

n+1 (a traditional technique when handling
Delaunay triangulations), it can be shown that a multiplicatively weighted Voronoi diagram in R

n

can be obtained as the intersection of a (n + 1)-dimensional power diagram with the paraboloid
Q : (x, ‖x‖2), where x ∈ R

n (see Boissonnat and Yvinec [32]). The seeds of this power diagram are
the {p′

i = (ωipi,−ωi
2 )} with the weight ω′

i = ωip
2
i associated to the point p′

i.

This approach can be extended to the distance dg(x, pi) = (pi − x)Gi(pi − x) used by Labelle
and Shewchuk. The construction is slightly more complicated and relies on a high-dimensional space
of dimension n(n + 3)/2. It is detailed over the next sections, with the final result produced in
Theorem 5.5.2.

5.5.2 The power diagram

As for multiplicatively weighted Voronoi diagrams, the anisotropic Voronoi diagram can be ob-
tained as the restriction of a high-dimensional power diagram to a fixed surface. We first detail how
the seeds and weights of this power diagram are computed.

Let M be a smooth m-manifold embedded in R
n and endowed with a Lipschitz-smooth metric

field g. A finite sample of points P lives on the manifold M. At each point p ∈ P is associated a
metric Gp = g(p). The metric Gp can be represented by a n × n matrix: Gp = (Gl,mp )(l,m=1,...,n).
For multiplicatively weighted Voronoi diagrams, the extra dimension can be seen as a way to have a
bijection between a point in R

n and a weight, and a point in R
n+1. Here, the metric is a n×n matrix,

with n2 entries, but by symmetry of G only n(n+ 1)/2 entries are necessary to entirely determine the
metric. To each point p are associated:

• the point qp = (qr,sp , 1 ≤ r ≤ s ≤ n) ∈ R
n(n+1)

2 with

◦ qr,rp = −1
2Gp

r,r, for 1 ≤ r ≤ n and

◦ qr,sp = −Gpr,s, for 1 ≤ r < s ≤ n.

• The point p̂ = (Gp p, qp) ∈ R
n(n+3)

2 .

• The weight ωi =
√
‖p̂‖2 − ptGpp.

In the following, we use N = n(n+3)
2 .

Let M̂ = {x̂, x ∈ M}. We will often need to go from x ∈ M to the corresponding x̂ ∈ M̂, and
reversely. For that purpose, we introduce the transformation h : R

n → R
N such that h(p) = p̂ =

(Gpp, qp). The inverse of h is denoted by Πh.

The point set P and the transformation h define the point set P̂ = {p̂i, pi ∈ P}. The high-
dimensional power diagram is now built using the weighted point set P̂ω = {(p̂i, ωi) , pi ∈ P}. Let PD(P̂ω)
be the power diagram generated by the P̂ω. The power cell corresponding to the seed p̂i (p̂i ∈ P̂) in
PD(P̂) is denoted by PCi.

5.5.3 The paraboloid

In the setting of multiplicatively weighted Voronoi diagrams, the power diagram is restricted to
the simple paraboloid Q : (x, ‖x‖2) (where x ∈ R

n). The anisotropic diagram is similarly constructed
as the intersection of a power diagram and a quadric surface, that we also refer to as “paraboloid”.
We now introduce this quadric surface.

To each point x = (x1, . . . , xd) of M are associated :
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5.6. The tangential complex

• the point x̄ = (xrxs, 1 ≤ r ≤ s ≤ n) ∈ R
n(n+1)

2 ,

• the point x̃ = (x, x̄) ∈ R
n(n+3)

2 .

For example, if n = 2, x̄ = (x2
1, x1x2, x

2
2) ∈ R

3, and x̃ =
(
x1, x2, x

2
1, x1x2, x

2
2

)
∈ R

5.

Let Q be the n-manifold living in R
N and defined by the parametrization x̃ = (x, x̄). We denote

{x̃, x ∈M} by M̃. Observe that the manifold M̃ is a subset of Q.
As for x and x̂, we will often need to switch from x to x̃, and reversely. The transformation

t : Rn → R
N is given by x̃ = t(x) = (x, x̄). The inverse of t is denoted by Πt.

Remark 5.5.1 The notation Π used for the inverses of h and t is not accidental: the transformations
Πt and Πh are projections to lower dimensional spaces. These projections are peculiar in the sense
that they are also bijections, as it will be shown in Section 5.7.1.

5.5.4 Equivalence of the constructions

Theorem 5.5.2 proves the equivalence of the constructions.

Theorem 5.5.2 The anisotropic diagram of P is the image by Πt of the intersection of the power
diagram of P̂ω and the manifold Q.

Proof. We have

dpi(x, pi)
2 = xtGix− 2ptiGix+ ptiGipi

= −2qti x̃Gix+ ptiGipi

= −2p̂i
tx̂+ ptiGipi

This implies that dpi(pi, x) < dpj (x, pj) if, and only if,

‖x̂− p̂i‖2 −
(
‖p̂i‖2 − ptiGipi

)
< ‖x̂− p̂j‖2 −

(
‖p̂j‖2 − ptjGjpj

)

�

Figure 5.8 illustrates the different notions with n = 1 (and thus N = 2). The metric field considered
is g(p) = g(x) = 1 + cos2(x) and M̂ is thus parametrized by

(
x(1 + cos2(x)),−0.5(1 + cos2(x))

)
.

5.5.5 Refinement algorithm and proofs

Using their alternative construction, Boissonnat et al. [29] proposed a theoretically sound refine-
ment algorithm to obtain a point set for which the Voronoi diagram has a dual triangulation. However,
as in the original work of Labelle and Shewchuk, the approach cannot be extended from 2D.

5.6 The tangential complex

We now recall the definition of the tangential Delaunay complex, a subcomplex of the Delau-
nay complex introduced by Flötotto [70, 23] that we will modify and combine with the alternative
construction of the anisotropic Voronoi diagram.

The restricted Delaunay triangulation (see Section 2.11 of Chapter 2), another subcomplex of the
Delaunay complex, is an effective tool to accurately capture a domain and its boundary when the
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Figure 5.8: Illustration of the notations and concepts (n = 1). The manifold is here a straight line,
identified with y = 0 in the ambient space. The colored areas are the power cells of the power diagram.
The black lines are the bisectors of the ambient power diagram. The metric field is g(x) = 1+cos2(x).

domain is known. However, this is not always the case (for example in the context of surface recon-
struction). The tangential Delaunay complex aims to approximate the restricted Delaunay complex
by considering the restriction not to the domain, but to the tangent spaces of the domain passing
through each sample point, which are generally either known or easily computable. The restriction of
the ambient Delaunay complex to a tangent space produces a lower-dimensional Delaunay complex,
which is locally a good approximation of the domain. Under certain conditions, the local connectiv-
ities of all lower-dimensional Delaunay complexes can be merged together to form a provably good
triangulation of the domain.

By computing mostly in the tangent spaces of the manifold, the algorithm has the advantage of
having a complexity that depends almost exclusively on the intrinsic dimension of the manifold rather
than the dimension of the ambient space, making it ideal for the reconstruction of low-dimensional
manifolds embedded in high-dimensional spaces.
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5.6.1 Star and inconsistencies

In the rest of this chapter, we consider an m-manifold M embedded in a n-dimensional ambient
domain and

The tangential complex approximates at each point p ∈ M the restriction to the manifold M of
the exact Delaunay triangulation Del(P) by the restriction to the tangent plane TpM. Note that this
tangent space is purely geometrical and there is no direct use of Riemannian geometry in this chapter.

The restriction at each sample point pi ∈ P of the ambient n-Delaunay complex Del(P) to the
tangent plane TpiM, denoted by Delpi(P), is formed by the simplices of Del(P) whose dual intersects
TpiM. If the tangent plane is close to the manifold, the triangulations Delpi(P) are – locally – good
approximations of the manifold. Consequently, only a local subset of each Delaunay triangulation
Delpi(P) is kept, the star, formed by the set of simplices that are incident to pi. The star of pi ∈ P is
denoted by Si and the set of stars is denoted by S(P).

Remark 5.6.1 From the dual point of view, the subcomplex Delpi(P) is the dual of the intersection
of the ambient Voronoi diagram Vor(P) – the dual of Del(P) – and TpiM. It is known that the inter-
section of a Voronoi diagram with an m-affine space is an m-dimensional weighted Voronoi diagram
with seeds in the affine space (see Section 2.10). Each restricted triangulation Delpi(P) is thus the
computation of a regular triangulation from a set of (weighted) seeds that are the projections of P onto
TpiM.

As for locally uniform anisotropic meshes (see Chapter I.4), the hope is to merge these stars to
obtain a good triangulation of the domain. However, inconsistencies between stars might here as well
exist: a simplex might not appear in the star of all of its vertices, which prevents the merging of the
stars in a triangulation (Figure 5.9).

While introducing the tangential Delaunay complex, Flötotto [70] showed that when the dimension
m of the manifold is 1, it was possible to refine an input point set such that merging the stars would
create a triangulation of the domain. Boissonnat and Ghosh [25, 24] extended the proof to any
dimension m, and proposed a refinement algorithm based on the tangential Delaunay complex that
is provably correct and produces a triangulation of a manifold, starting from a rough sampling of
the manifold. The triangulation is proven to be isotopic to the manifold and to be close in term
of Hausdorff distance. Except for the computation of the refinement point, the complexity of their
algorithm only depends on the dimension of the manifold.

5.7 Combined works

The last sections have been devoted to introducing the necessary notions, and we are now ready
to combine both approaches. We want to construct a point set P such that the dual of the anisotropic
Voronoi diagram of P is a triangulation. Summarizing the notions introduced so far, we know that:

• the anisotropic Voronoi diagram can be reformulated as the intersection of a power diagram
restricted to a low-dimensional manifold embedded in a high-dimensional space;

• the tangential Delaunay complex and the refinement algorithm of Boissonnat and Ghosh [24]
allow to efficiently compute and refine a star set and obtain, in fine, a triangulation that is
isotopic to the manifold.

We shall apply the tangential Delaunay complex to the paraboloid Q defined in Section 5.5.3, with
the idea that tangent planes are locally a good approximation of the domain.
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Figure 5.9: An inconsistent tangential complex. Tangent planes are drawn in green, the Voronoi
diagram in blue and the stars in red. Inconsistencies are indicated with dotted red arrows.

The two methods cannot be immediately combined for two reasons. Firstly, we do not have an
ambient Voronoi diagram, but a power diagram; this is however a minor concern. A more serious
departure from previous works is that the basic tangential Delaunay complex assumes that the seeds
are on the manifold. Additionally, the tangent planes are taken at the seed of the ambient Voronoi
diagram. In our setting, the ambient power diagram is generated by seeds that live on M̂, but the
manifold that we want to construct a triangulation of is Q and thus the tangent planes are near Q.

In the following sections, we present our modified tangential Delaunay complex. We first introduce
its theoretical aspect and the issues that arise when trying to prove its soundness, and then study the
practical behavior of the algorithm.

5.7.1 Formulation

We combine both the alternative construction of the anisotropic Voronoi diagram with the tan-
gential complex structure by dissociating the points at which we evaluate the tangent spaces and the
seeds of the ambient Voronoi diagram: the tangent spaces are defined as tangent spaces of points
chosen on the paraboloid Q and the ambient diagram will be generated by points on M̂. We detail
now our construction.

The ambient diagram

The ambient diagram whose intersection with Q we shall approximate with tangent planes, is the
power diagram of the seeds P̂ω (see Section 5.5.2). In the original tangential Delaunay complex, the
ambient diagram is an Euclidean Voronoi diagram. Here, we are considering an ambient diagram
that is already a power diagram (the seeds are weighted). Construction-wise, this is not an issue as
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the intersection of a power diagram with an affine space is simply another power diagram. These
computations will be detailed in Section 5.7.1. We denote by PD(P̂) the ambient power diagram and
by Delω(P̂) the ambient regular complex. Recall that P̂ is a set of weighted points.

Center of the star and tangent planes

In the original tangential Delaunay complex, a tangent space at a point p aims to locally approx-
imate the manifold in the neighborhood of the point. Tangent planes are not defined as clearly in
our setting since the seed p̂i do not lie on Q, and we must thus choose meaningful tangent planes to
approximate Q. Denote by Tx̃Q the tangent space of Q at x̃ ∈ Q. We now show that considering the
tangent plane Tp̃iQ at p̃i, where pi is a seed in P, is a good idea.

In the following, we will simply refer to the tangent spaces Tp̃iQ as Ti. The projection on Ti is
denoted by ΠTi , or simply Πi. Recall that for each pi ∈ P, we have defined p̂i = h(pi) and p̃i = t(pi)
(see Section 5.5.2).

The restriction of Delω(P̂) to Ti is denoted by DelωTi(P̂), or Delωi (P̂), and the intersection of the

power diagram PD(P̂) with Ti is noted PDTi(P̂), or PDi(P̂). We know that the intersection PDi(P̂)
can be obtained as a m-dimensional power diagram of a set of seeds living in Ti. These seeds are
computed by projecting P̂ onto Ti, and are denoted by p̂j

i ∈ P̂ i, with associated weight ωij . The

computations of the p̂j
i and their weights are detailed in Section 5.7.1. We have thus the alternative

notations Delω(P̂ i) for Delωi (P̂), and PD(P̂ i) for PDi(P̂). Figure 5.10 illustrates the various notations.

Star The star Si is formed by the simplices that are incident to the vertex p̃i, with p̂i ∈ P̂, in the
regular complex Delωi (P̂). The choice of Ti is reasonable since p̃i belongs to the region t(V(pi)) of the
paraboloid. Indeed, we have dGi(pi, pi) = 0 and therefore t(pi) = p̃i ∈ PCi ∩Q = t(V(pi)). In other
words, the center of the star will always appear in the star.

To obtain the final mesh of our input point, the connectivity of each star Si is extracted and
applied to the point set P.

Computing the tangent spaces Ti

Contrary to the manifold reconstruction setting in which the tangential Delaunay complex can be
used, the manifold Q is here fully known. This allows the tangent places to be accurately computed,
rather than approximated.

A basis B of the tangent space at x̃ ∈ Q can be obtained through the partial derivatives of
the parametrization of Q evaluated at x̃. For example, if n = 1, the paraboloid Q is given by the
parametrization (x, x2). The partial derivative is here a full derivative, giving (1, 2x). A basis of the
tangent plane at x̃ = (0, 0) is then B0 = {(1, 0)}.

Computation of the points and weights on the tangent space

Due to the high dimensionality of the ambient space, we cannot afford to compute the regular
triangulation Delω(P̂) nor the power diagram PD(P̂). Thankfully, the intersection of PD(P̂) with the
tangent space Ti is simply another power diagram, PDi(P̂), whose seeds are given by the orthogonal
projections of the seeds of PD(P) on Ti. Indeed, we have:

∀x ∈ Ti, ‖x− p̂j‖2 = ‖x−Πi(p̂j)‖2 + ‖Πi(p̂j)− p̂j‖2 .
The power cell of pj in the ambient space is the set of points x such that

‖x−Πi(p̂j)‖2 + ‖Πi(p̂j)− p̂j‖2 − ωp̂j ≤ ‖x−Πi(p̂k)‖2 + ‖Πi(p̂k)− p̂k‖2 − ωp̂k ,
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Figure 5.10: Illustration of the notations and concepts (n = 1). The colored areas are the power cells
of the power diagram. The lines are the bisectors. The metric field is g(x) = 1 + cos2(x).

for pk ∈ P with pk 6= pj . This can be equivalently seen as the definition of the power cell of the seed
Πi(ph) with weight ω′

j = ωj−‖p̂j −Πi(p̂j)‖2, where ωj is the weight of p̂j given by ωj = ‖p̂i‖2−ptiMpipi,
in the affine space Ti.

The coordinates of Πi(p̂ℓ) can be obtained by taking the scalar product of p̂ℓ with a basis Bi of the
tangent space. We compute Bi through the partial derivatives of the parametrization of the paraboloid
(see Section 5.7.1). Figure 5.11 illustrates the anisotropic Voronoi diagram of a set of seeds and the
power diagram in two tangent planes.

Projections and transformations

We now prove that the transformations h and t are homeomorphisms, which will be useful in our
theoretical analysis of the algorithm.

Lemma 5.7.1 Both transformation t and h are nice:

• h|M is a homeomorphism from M to M̂.

• t|M is a homeomorphism from M to M̃.
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Figure 5.11: Anisotropic Voronoi diagram for the hyperbolic shock metric field (left). Middle and right,
the power diagram PDi(P̂) for two adjacent seeds; the nerves are different, creating an inconsistency.

Proof. We prove each property independently.

• The point h(p) is given by (Gpp, qp) =: (yp, yq). The point qp lives in R
n(n+1)

2 and, by construction,
its coordinates entirely determine Gp. Once Gp is known, G−1

p can be computed and p = G−1
p yp.

On the other hand, it is trivial that if p0 6= p1 then h(p0) 6= h(p1) because Gp is a positive

symmetric definite matrix. Thus h is a bijection between M and M̂.

The metric field g is smooth, therefore all the coordinates of x̂ are smooth functions or can be
decomposed as sums or products of smooth functions. We need to also prove that the inverse
Πh|M̂ is continuous. Let P̂ ∈ M̂ = (P1, . . . , PD). (Pn+1, . . . , PD) determine fully GP . Since GP

is a metric (definite positive symmetric matrix), its inverse exists and Πh(P̂ ) = G−1
P .(P1, . . . , Pn).

We can compute G−1
P using the matrix of cofactors. All the coefficients are continuous, and

1/ |det(GP )| > 0 is continuous too. Again, by sums and products of continuous functions, Πh|M̂
is continuous and h :M→ M̂ is a homeomorphism.

• t is a homeomorphism because Πt is a bi-continuous bijective vertical projection.

�

This proves that M, Q and M̂ are homeomorphic.

5.7.2 Refinement algorithms

Along with the alternate construction of the anisotropic Voronoi diagram, Boissonnat et al. [29]
proposed a theoretically sound refinement algorithm. This algorithm comes with guarantees in the
setting of planar domains, but these guarantees do not extend to higher-dimensional settings.

A refinement algorithm was presented for the tangential Delaunay complex by Boissonnat and
Ghosh [24, 17]. This algorithm is relatively similar to the refinement algorithms introduced in Chap-
ter I.4 and in Section 5.4: the refinement point of a simplex σ is chosen as the intersection of the
manifold and of the normal space passing through the dual of σ in the tangent space, or through a
point close to that dual.

There are two difficulties in the original refinement algorithm. Firstly, the dual of a simplex might
intersect the tangent plane, but not the domain itself. Secondly, the Voronoi cell of the refinement
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M M
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Figure 5.12: The simplex pq in the star Sp is refined by the insertion of its dual and the manifoldM.
The ambient power diagram is drawn with thin black lines. The circles represent the weights of the
points (the radius of the circle is the squared weight).

point might not intersect the tangent plane. Boissonnat and Ghosh show that if the sampling of
the point set is sufficiently dense, then those two issues do not appear and the refinement process
terminates and produces a good triangulation.

In our context, the normal space does not necessarily approaches the dual of the simplices correctly
and the refinement points computed by the original refinement algorithms would not be useful. Instead,
we refine bad simplices in the stars by computing the intersection of the dual of the simplex (in the
ambient space) with the domain. These computations will be detailed in Section 5.7.5. A theoretical
analysis of the refinement algorithm in our context is carried out in Section 5.7.3.

Domains and boundary

We have so far considered domains without boundaries. If we wish to compute a mesh for a bounded
domain Ω ∈ R

n (for example a 3D surface), it is necessary to know how to compute a refinement point
on the domain – and on the boundary. The notion of restricted Delaunay triangulation will once again
be applied: the domain and its boundary are lifted to the paraboloid with the map t (see Section 5.5.2)
and a simplex is restricted to the domain if the intersection of its dual with the paraboloid is within
t(Ω). If we wish to compute a refinement point on the boundary (for example, to refine only the
boundary), the point will be chosen as the intersection of the dual with the boundary lifted onto the
paraboloid Q.

5.7.3 Theoretical aspect

We now look towards the theoretical side of our algorithm and would like to prove that the
refinement algorithm terminates, that under sufficient conditions the star set is consistent, and that
the resulting triangulation is homeomorphic to Q.

We present a detailed road map that could be developed into a complete proof with a fair bit of
technical work. We first give an overview of the difficulties that appear due to our modifications of
the tangential Delaunay complex.
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The difficulties

Two modifications have been made to the original tangential complex algorithm, each complexifying
the theory.

Firstly, the ambient diagram is a weighted Voronoi diagram and not a Voronoi diagram. Since the
restriction of a power diagram to an affine (tangent) space is a power diagram, this change has no
consequence from a construction point of view. However, it is much harder to prove that a refinement
point kills the simplex that it is supposed to. Even in the simpler setting where seeds of the ambient
power diagram are on the manifold that we are triangulating, it is not clear that a new point should
have a weight that is large enough for the new power cell to intersect the tangent space (and thus the
simplex is not refined on the tangent plane). This situation is illustrated in Figure 5.13, where the
new point (in orange) has a weight so small that its power cell does not intersect the tangent plane.
This is however a relatively minor concern: assuming continuity of the weights in the ambient space
– which is the case since our weights derive from the metric field, which is continuous – we can show
that there exists a lower bound on the sampling such that a refinement point will insert a point that
refines the simplex, as done by Boissonnat et al. [18].

M M

TpMTpM

p pq q

r r

s

Figure 5.13: The insertion of s (the intersection of the dual of the simplex pq withM) does not refine
the simplex pq in the star TpM. The circles represent the weights of the points (the radius of the
circle is the squared weight).

The second modification creates more serious issues. Indeed, we are ultimately interested in a
triangulation of the point set P, but our construction builds a star set with vertices P̂. Admitting
that we have obtained a consistent star set, which was merged in a triangulation D̂, we would like to
carry the connectivity of D̂ onto P. However, while we know that the map Πh is a homeomorphism
between M̂ and M, the simplices of D̂ are not necessarily sent nicely onto the simplices obtained by
applying the connectivity of D̂ to the point set P: inversions could be created and the embedding of
the dual would subsequently be lost.

Remark 5.7.2 If we had a triangulation with vertices in Q̃ that was homeomorphic to Q since Πt is
a real projection in the sense that an n-simplex with seeds in {p̃i} would project onto the n-simplex
defined as the convex hull of the {pi} := {Πt(p̃i)}.

We now present the detailed layout of our proof.

149



Chapter 5. On the Labelle and Shewchuk approach to anisotropic Voronoi diagrams

5.7.4 A star-based proof

To prove that the connectivity of the star set brought back to P is a good triangulation of the
input domain, we shall prove that at each point p ∈ P, the star of p in the star set S(P) has the same
connectivity as the star of p in the dual of the anisotropic Voronoi diagram Vor(P). We are thus going
to almost completely ignore the points p̂i and p̃i and consider the ambient power diagram PD(P̂ω)
and its restriction PDp(P̂) to the tangent space Tp̃Q.

Consider a point p in P. Let {qi} be the seeds of the Voronoi cells adjacent to Vg(p) in Vorg(P) and
let SLSg (p) be the star of p in the dual of Vorg(P), that is the set of simplices incident to p in the dual
of Vor(P). Denote by Sp(p) the star of p in the star set S(P) (that is the star of p̂ with connectivity
given by PDp(P̂)) We thus want to show that SLSg (p) and Sp(p) have the same connectivity.

We shall again make use of power protected point sets. Recall that the support of the dual of
a simplex σ is Aff(σ⋆), with σ⋆ the dual of σ. Our result will stem from the combination of a few
observations. Assuming that the sampling is dense, we have that:

• The map h (see Section 5.5.2) is smooth and the image of M by h (denoted by M̂ earlier) is a
smooth manifold (see Lemma 5.7.1 below). Thus if two points in P are close, then their lifted
equivalents are close in the ambient space.

• The anisotropic Voronoi cells in Vorg(P) are not too large. This is a direct consequence of
Equation 2.1 as the distortion bounds the difference between the anisotropic distance of Labelle
and Shewchuk and the uniform distance using the metric of p. Simplices of the stars SLSg (p) and
Sp(p) are thus formed with vertices in P that are close to p.

• The duals of the maximal simplices of the star SLSg (p) (which are (N − n)-dimensional power
cells in the ambient Voronoi diagram) are roughly parallel to one another because the vertices
of the stars are close (and thus are close on M̂. Note that the support of those duals intersect
Q at the Voronoi vertices of Vg(p) and, if the dual (and not simply its support) also intersects
the tangent plane, the intersections are the Voronoi vertices of the power cell of p̃ in PDp(P).
Additionally, note that the duals do not become orthogonal to the tangent plane as the sampling
increases, but we only need to know that they are more or less parallel from one another.

• The region of interest in the tangent plane (the neighborhood that includes the power cell of p̃
in PDp(P)) is small and is thus close to the paraboloid.

• The Voronoi cell Vg(p) of p in Vorg(P) is close to the Voronoi cell VGp(p). If P is a power
protected net, the Voronoi vertices of VGp(p) are separated (see Lemma 3.2.4 in Chapter 3) and
thus the Voronoi vertices of Vg(p) are separated.

The combination of these observations result in the following statement: if P is a dense power
protected net, then the intersections of the supports of the duals of the simplices in SLSg (p) with Tp̃Q
are far from one another. Moreover, the orientation is preserved. This is illustrated in Figure 5.14: the
supports of the duals of the simplices of the star SLSg (p) (“vertical” black lines) are roughly parallel.
Since the tangent plane is close to Q and the Voronoi vertices of Vg(p) (red circles) are separated,
then the red squares (the intersection of the supports of the duals with Tp̃Q) are separated.

Remark 5.7.3 We have drawn in Figure 5.14 the setting of a two-dimensional paraboloid. By defini-
tion, when the intrinsic dimension is n = 2, we have an ambient dimension N = 5. As we cannot draw
five-dimensional objects, we have drawn duals as one-dimensional objects instead of three-dimensional
objects. This is a harmless change as the objects of interest are the intersections of the duals with Q
and Tp̃Q and both are always points (we ignore degenerate cases).
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TpQ

p

U

Q

Figure 5.14: The paraboloid Q and a tangent plane Tp̃Q. The Voronoi vertices of Vg(p) are marked
with red circles and the intersections of the support of the duals (black lines) of the maximal simplices
of SLSg (p) with Tp̃Q are marked with red squares. Since the supports of the duals are roughly parallel
and the Voronoi vertices are far from one another, the red squares are also far from one another.

It remains to ensure that the duals actually intersect the tangent plane to have the equivalence
between the stars. This is not trivial and points arbitrarily far can have power cells that are very
close to the paraboloid in ambient space, despite a good sampling of the domain. As we do not have
a solution to this issue, we modify slightly our definition of star.

Local stars

We wish to ensure that the dual of a maximal simplex in SLSg (p) (the star of p in the dual of the
anisotropic Voronoi diagram of Labelle and Shewchuk) also intersects the tangent plane Tp̃Q.

Consider a bisector BS, dual of a maximal simplex of SLSg (p). We know that when points are close,
they form simplices whose duals are roughly parallel from one another, that the tangent space and
the paraboloid are close and that the Voronoi vertices on Q are separated. For the bisector BS not to
intersect Tp̃Q, it means that it is intersected by another bisector somewhere “between” Q and Tp̃Q.
The simplex corresponding to such dual must involve points that are far from p, otherwise its bisector
would be relatively parallel to BS and since the manifold and the tangent plane are close and the
Voronoi vertices are separated, they cannot intersect “between” Q and Tp̃Q. Thus, if we only build
the star Sp(p) with points that are close to p in P, we ensure that the dual BS will also intersect Tp̃Q.

Gathering the points close to p can be done through nearest neighbor techniques with respect to
the uniform metric field g0 = g(p), for example.

Conclusion

Using these modified stars, we have that the stars SLSg (p) and Sp(p) have equal combinatorics when
the point set is a dense power protected net. Thus if the dual of the anisotropic Voronoi diagram is a
triangulation (as done in Section 5.2.1), our star set is also a triangulation.
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5.7.5 Computing refinement points

We now investigate the practical side of the algorithm. In their two-dimensional refinement algo-
rithm, Boissonnat et al. [17] compute Voronoi vertices directly in the planar domain as the intersection
of the bisectors (conics). This does not extend easily to higher dimensions and we propose alterna-
tive methods, based on the alternative construction of the anisotropic Voronoi diagram and our new
modified tangential Delaunay complex. In this section, we explain how to compute refinement points
of a simplex in any dimension.

Problem statement

Consider a maximal simplex σ, living in a star of S(P), with vertices Vert(σ) = {p̂i}. Its dual σ∗

is the intersection of the power face obtained by intersecting the power cells of the vertices of σ. In
our refinement algorithm, the refinement point of σ is, equivalently to a Voronoi vertex in Vorg(P),
the intersection of a (N−n) power face (σ∗) and the manifold Q. To simplify computations, we firstly
consider the intersection of Q with the support of σ∗, Aff(σ∗). The solutions are then filtered to keep

the one(s) that belong to σ∗. The vectors
−−→
p̂0p̂1,. . . ,

−−→
p̂0p̂n form a basis of the supporting plane of σ,

Aff(σ). Denote by c the power center of the simplex σ that lives in Aff(σ). Writing Xi for the i-th
coordinate of the point or vector X, the points x in the support of the dual must satisfy :

N∑

i=1

(−−→
p̂0p̂j

)
i
xi =

N∑

i=1

(−−→
p̂0p̂j

)
i
ci, ∀j = 1 . . . n.

Each equation simply describes the dual of the edge [p0pj ]: an hyperplane orthogonal to [p0pj ] that
passes through c. If we additionally impose that x ∈ Q, x must satisfy :

N∑

i=1

(−−→
p̂0p̂j

)
i
(t(x))i =

N∑

i=1

(−−→
p̂0p̂j

)
i
ci, ∀j = 1 . . . n. (5.5)

This is a non-linear system of n equations and n unknowns. We explain how to solve it in the case of
n = 2, but this method can be extended to higher dimensions.

Bivariate polynomials Let us rename, for visibility,
(−−→
p̂0p̂1

)
i

and
(−−→
p̂0p̂2

)
i

respectively to ki and ℓi,

and the right hand side to respectively f1 and f2. Proceeding by substitution, the system is given by
two equations:

{
k1x1 + k2x2 + k3x

2
1 + k4x1x2 + k5x

2
2 − f1 = 0

ℓ1x1 + ℓ2x2 + ℓ3x
2
1 + ℓ4x1x2 + ℓ5x

2
2 − f2 = 0

(5.6)

Note that we could potentially have ℓ3 = 0, and more generally there is no reason for a coefficient –
be it a simple ki, li, or a sum and product of ki and li – not to be null.

We solve this system using a resultant-based approach, which is based on Bézout’s theorem. The
approach of Busé [35] is employed almost entirely as a black box, and we thus do not go in detail.
Nevertheless, we specify the necessary matrices below.

The resolution is based on the computation of the generalized eigenvalues and eigenvectors of the
companions matrices of the Bézout matrix of the system 5.6. In our case, the matrix can be computed
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analytically: the Bézout matrix BM = (BM)i,j is here a 2× 2 matrix given by

BM0,0 =− k3ℓ5x+ k5ℓ3x− k2ℓ5 + k5ℓ2

BM0,1 =− k4ℓ5x
2 + k5ℓ4x

2 − k1ℓ5x+ k5ℓ1x− k0ℓ5 + k5ℓ0

BM1,0 =− k4ℓ5x
2 + k5ℓ4x

2 − k1ℓ5x+ k5ℓ1x− k0ℓ5 + k5ℓ0

BM1,1 = k3ℓ4x
3 − k4ℓ3x

3 − k1ℓ3x
2 + k2ℓ4x

2 + k3ℓ1x
2

− k4ℓ2x
2 − k0ℓ3x− k1ℓ2x+ k2ℓ1x+ k3ℓ0x− k0ℓ2 + k2ℓ0.

The two companions matrices A = (A)i,j and B = (B)i,j are computed from the Bézout matrix
and are 6× 6 matrices:

A =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a4,0 a4,1 a4,2 a4,3 a4,4 a4,5

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5



,

where

a4,0 = −k2ℓ5 + k5ℓ2, a4,1 = −k0ℓ5 + k5ℓ0, a4,2 = −k3ℓ5 + k5ℓ3,

a4,3 = −k1ℓ5 + k5ℓ1, a4,4 = 0, a4,5 = −k4ℓ5 + k4ℓ4,

a5,0 = −k0ℓ5 + k5ℓ0, a5,1 = −k0ℓ2 + k2ℓ0, a5,2 = −k1ℓ5 + k5ℓ1,

a5,3 = −k0ℓ3 − k1ℓ2,+k2ℓ1 + k3ℓ0 a5,4 = −k4ℓ5 + k5ℓ4, a5,5 = −k1ℓ3 + k3ℓ1 − k4ℓ2 + k2ℓ4,

and

B =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −k3ℓ4 + k4ℓ3




Computing the generalized eigenvalues of A and B, that is finding the eigenvalues λi and corre-
sponding eigenvectors vi such that Avi = λiBvi, is the last computational step. Each eigenvalue is
then the x-coordinate of a solution of the system. The associated y-coordinate is given – with the
matrix expressions above – by the quotient of the last two coordinates of the eigenvector associated
to the eigenvalue that we have picked as x-coordinate.

Finally, we test whether the solution is within σ∗.

A simpler approach The approach explained above is complicated and can be prone to numerical
errors, which pushed us to seek a simpler method to compute the intersection of the dual with the
paraboloid. A first observation is that the intersection of the support of the dual Aff(σ∗) and the
paraboloid can be reformulated so that we do not need to know the power center; instead of the
system 5.5, we use the system:

‖p̃0 − t(x)‖2 − ωp̃0
= ‖p̃j − t(x)‖2 − ωp̃j , ∀j = 1 . . . n. (5.7)

We describe an algorithm based on the system 5.7 to compute an approximation of the intersection.
While being simpler, this algorithm also makes use of our tangential complex-based construction.
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There are two steps in the algorithm: we first compute the intersection with the dual and the tangent
space, and from this first approximation, attempt to find the real one on the manifold Q.

We first consider the intersection of the support of the dual Aff(σ∗) with one of the tangent planes
corresponding to a vertex of σ, say Tp̃0

Q (noted simply T0 in the following). We have now a linear
system with N equations: the support of the dual is given by the intersection of n hyperplanes and
the tangent plane is given by the intersection of (N − n) hyperplanes.

To compute the hyperplanes whose intersection gives T0, we note that the equation of the tangent
plane is given similarly to the first order of a Taylor expansion:

f(x) = f(a) +
∑

i

∂f

∂xi
(a)(x− a)i.

The linearization of the parametrization of Q gives (N − n) equations and takes two different forms
for a given n ≤ k < N ,

• if xk = x2
i , the linearization is p̃0

2
i + 2p̃0i(xi − p̃0i);

• if xk = xixj with i 6= j, the linearization is p̃0ip̃0j + p̃0j(xi − p̃0i) + p̃0i(xj − p̃0j).

The system possesses thus n equations to express that the intersection belongs to the dual of σ and
(N − n) equations to express that the intersection lives on the tangent space. For example, if the
intrinsic dimension n is 2, the intersection is given by:




2(p̂0 − p̂1)1 . . . . . . . 2(p̂0 − p̂1)5

2(p̂0 − p̂2)1 . . . . . . . 2(p̂0 − p̂2)5

2p̃01 0 −1 0 0
p̃02 p̃01 0 −1 0
0 2p̃02 0 0 −1







x1

x2

x3

x4

x5




=




ωp̂1
− ωp̂0

− p̂1
2 + p̂0

2

ωp̂2
− ωp̂0

− p̂2
2 + p̂0

2

p̃0
2
1

p̃01p̃02

p̃0
2
2.



.

This is a linear system, which can be solved easily by conventional means. Note however that it is
not guaranteed that the determinant of A should be non-null and it might be necessary to change
the tangent plane T0 to obtain a non-degenerate system. A weighted sums of tangent planes Ti (with
pi ∈ σ) can also be used if needed. This is a theoretical concern and this issue never occurs in practice.

Once the system is solved, the solution is a point s ∈ R
N and can be moved to Q by chang-

ing its (N − n) last coordinates to match the parametrization. For example, if n = 2, we take
sQ := (x, y, x2, xy, y2). This approximation can either be kept (but can be really rough), or the real
Voronoi vertex can be sought.

Resolution To find the real Voronoi vertex, we solve the system presented in Equation 5.7 with
Newton’s method, using sQ as our initial guess. For the system of equations E of Equation 5.7, the
update at each iteration is

x←− x− J(x)−1H(x),

where J is the Jacobian of the system E (an n× n matrix).

As for any gradient descent method, one must avoid det(J) ≈ 0, which might happen in our case.
We monitor the determinant of the Jacobian matrix, and use the classical technique of weighting its
diagonal if its determinant becomes too small.

Since the system 5.7 expresses the intersection of Aff(σ∗) – and not σ∗ – with Q, we must check
that the solution of the system belongs to σ∗, which is always the case in practice.
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Inserting a point

We have detailed how to compute efficiently the intersection of the dual of a simplex of the ambient
regular Delaunay triangulation with the paraboloid.

The refinement point that we consider in our algorithm is computed from the intersection of the
(N − n)-flat with Q, or computed similarly to the picking point in the original tangential complex
algorithm. This gives a p̃ point on Q, and its corresponding p̂ = h(Πt(p̃)) is added to the seeds P̂.

5.8 Results

The implementation of our algorithm is similar to our implementation of locally uniform anisotropic
meshes (see Section 4.4 in Chapter I.4). A Star class represents the local triangulation and a system
of refinement queues and mesher levels take care of the refining process.

To compute the star of p̂i efficiently, we project only a subset of P of points that are close to p̂i on
the tangent plane Ti and build a local regular triangulation on this plane. This subset is computed
through filters to be large enough to ensure that the star of pi is correct.

As the projected points are still N -dimensional entities, the construction of the n-dimensional
regular triangulation on Ti is done by creating local points whose coordinates are the coordinates of
Πi(P̂) in the basis B chosen for Ti.

5.8.1 Brute force approach

To verify that the computations of duals are correct, we first implement a “brute force” approach
that constructs the ambient regular Delaunay triangulation dual of PD(P̂) and computes its restriction
to the paraboloid Q. The connectivity of the restriction of the Del(P̂) applied to P is expected to be
the exact the dual of the anisotropic Voronoi diagram Vorg. Note however that the restriction to Q is
a triangulation embedded in R

N , and it is the action of transferring its connectivity to P that creates
inversions. By nature, the tangential complex introduces inconsistencies, which are – with inversions –
another type of problematic configurations that prevent the . Computing the brute force result is thus
also a good way to observe issues for a given point set that are not linked to the use of the tangential
complex.

Regular Delaunay triangulations in arbitrary dimension are available in the CGAL [2] library. For
planar cases (n = 2), the dimension of the ambient space is 5 and thus the computational time is still
reasonable (as long as the number of vertices is not too large). Additionally, while P̂ lives in R

N , the
regular triangulation’s dimension can have an intrinsic dimension lower than N as P̂ can live on a
k-flat (with n ≤ k < N); for example, if the metric is uniform, then the N − n last coefficients of all
the points in P̂ are identical.

We firstly compare the anisotropic Voronoi diagram for the distance of Labelle & Shewchuk with
the result obtained through the brute force implementation. A random point set is generated over

a square endowed with the metric field defined at a point p(x, y) by M(x, y) =

(
exp(x) 0

0 1

)
. This

point set is intentionally sparse to create orphans and degenerate configurations. The result is shown
in Figure 5.15; as expected, the two structures are dual.

5.8.2 Tangential complex results

We now present some results obtained with the star set based refinement algorithm. Due to the
issues previously mentioned (see Section 5.7.3 and Figure 5.13), the refinement algorithm will often
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Figure 5.15: Anisotropic Voronoi diagram of a set of seeds (left) and the restriction of the high-
dimensional regular Delaunay triangulation to the paraboloid Q (right).

fail to destroy simplices in the tangent planes if the sampling is not already dense. We thus start
with relatively dense point sets, generated by our implementation of the locally uniform anisotropic
framework (see Chapter I.4) for the same domain and metric field.

Figure 5.16 shows the star set obtained for a square endowed with two different metric fields,
a two-dimensional version of the unidimensional shock and the hyperbolic shock metric fields (see
Sections A.7 and A.3 in Appendix A). These two examples are sufficient to obtain a good idea of
the potential of the method as they exhibit various anisotropic configurations. In the case of the
unidimensional shock metric field (left, in the figure), the star set was initially inconsistent, but was
refined and eventually achieved consistency. Similarly to locally uniform anisotropic meshes, many
insertions were needed to solve inconsistencies. The result on the right in Figure 5.16 is left unrefined
to show the state of the star set after the insertion of the initial vertices. Despite a relatively dense and
well positioned point set, the star set contains many inconsistencies in regions where the algorithm
described in Chapter I.4 also had issues.

In conclusion, this algorithm suffers unfortunately from the same issues that were encountered in
the empirical study of the locally uniform anisotropic mesh framework, in Chapter I.4: consistency is
hard to achieve between the stars of the tangential complex and many insertions are required. Similar
issues were observed using point sets generated with other anisotropic mesh generators.

As for locally uniform anisotropic meshes, we attempted to improve the resolution of inconsistencies
from other means than point insertion (through the perturbation of the weight and position of vertices,
for example), but with no success here either.

5.9 Conclusion

Our interest for the anisotropic Voronoi diagram introduced by Labelle and Shewchuk stemmed
from the its simple definition and computations.

In this chapter, we have introduced requirements on a set of seeds which guarantee that the dual
of the anisotropic Voronoi diagram built from these seeds is a triangulation. We require that the seed
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Figure 5.16: Two results obtained with the tangential complex. On the left, a result obtained by
refining a point set; a consistent star set is obtained. On the right, the inconsistencies (in red) in the
star set before the refinement algorithm finishes.

set forms a net of the domain, meaning that it is a good sampling of the domain and the seeds are
not too close from one another. More importantly, we require that the seed set is power protected.
Indeed, a consequence of power protection is that the Voronoi vertices are separated, allowing us to
locally approximate the anisotropic Voronoi diagram of Labelle and Shewchuk with a Voronoi diagram
built using a uniform metric field. We presented alongside a refinement algorithm to construct power
protected nets and exposed the similarities between power-protection and quasi-cosphericities. The
construction of anisotropic Voronoi diagrams from actual power protected nets was not investigated
in practice and this should be the topic of future research. One could hope that the theoretical
requirements do not need to be met in practice.

In a second part, we have introduced an alternative way to construct the dual of the Labelle and
Shewchuk’s Voronoi diagram using the tangential Delaunay complex. The modifications brought to
the original Delaunay triangulation, and specifically the fact that the seeds of the ambient diagram
do not belong to the manifold, make it hard to extend the original theory. The issues preventing the
theory from being extended are well known and their resolution will be the topic of future work. In
practice, this approach yields results that are similar to those of Chapter I.4: meshes that honor the
metric field, but are over-refined. As for locally uniform anisotropic meshes, this is not satisfying.

In the following chapters, we shall completely abandon star set-based approaches and take interest
in the Riemannian Voronoi diagram. Often considered as too expensive to compute, we propose a
new discrete structure that captures its nerve. Our algorithm is theoretically sound and some positive
results are obtained.
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Part III

Riemannian Voronoi diagrams
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6. Discrete Riemannian Voronoi diagrams

Several authors have considered Voronoi diagrams based on anisotropic distances to obtain triangu-
lations adapted to an anisotropic metric field. These authors hoped to build upon the well-established
concepts of the Euclidean Voronoi diagram and its dual structure, the Delaunay triangulation, for
which many theoretical and practical results are known [12].

The Voronoi diagram of a set of points P = {pi} in a domain Ω with respect to a distance d is a
partition of Ω in a set of regions {Vd(pi)}. The region V(pi) is called the Voronoi cell of the seed pi
and is defined by

V(pi) = {x ∈ Ω | d(pi, x) ≤ d(pj , x), ∀pj ∈ P\ pi}.
Du and Wang [64] defined the anisotropic Voronoi cell of a point pi in a domain Ω endowed with

a metric field g as

VDW
g (pi) = {x ∈ Ω | dg(x)(pi, x) ≤ dg(x)(pj , x), ∀pj ∈ P\ pi}.

Canas and Gortler [37, 38] and Cheng et al. [50] proved that under sufficient sampling conditions, the
dual of this Voronoi diagram is a triangulation for planar and surface domains. With the same idea,
Labelle and Shewchuk [89] introduced slightly different Voronoi cells:

VLS
g (pi) = {x ∈ Ω | dg(pi)(pi, x) ≤ dg(pj)(pj , x), ∀pj ∈ P\ pi}.

While the diagram obtained is easier to trace since bisectors are quadrics, the associated theory
only covers the planar setting and its extension to higher dimensions faces inherent difficulties. In
Chapter II.5, we have shown that this theory could be extended to any dimension using a specific type
of point sets, power protected nets, and proposed a refinement algorithm to generate such point sets.

Both these diagrams aim to approximate the Riemannian Voronoi diagram (Vor) whose cells are
defined by

Vg(pi) = {x ∈ Ω | dg(pi, x) ≤ dg(pj , x),∀pj ∈ P\pi}.
where dg(p, q) is the geodesic distance on the Riemannian manifold. Riemannian Voronoi diagrams
have been previously considered when the surface is endowed with the natural Euclidean metric
field. Peyré and Cohen [115] use isotropic Riemannian Voronoi diagrams on surfaces and devise a
farthest point refinement algorithm to achieve isotropic adaptive remeshing. Similarly, Liu et al. [99]
employ the Riemannian Voronoi diagram to obtain the intrinsic Delaunay triangulation of a surface.
Riemannian Voronoi diagrams with polyline sources are considered by Xu et a. [141] and methods to
draw three-dimensional Riemannian Voronoi diagrams are introduced by Naß [108].

Judged too expensive to consider, the Riemannian Voronoi diagram of a manifold endowed with a
metric field has not been the subject of any practical work. However,the Riemannian Voronoi diagram
comes with the benefit of providing a more favorable framework to develop a theoretically sound
method. For example, it is devoid of orphan cells, which are regions of the domain disconnected from
their seed. These orphans, who might prevent the dual from being a triangulation, appear in the other
anisotropic Voronoi diagrams previously mentioned. Finally, the Riemannian Voronoi diagram is by
definition the diagram that captures best the variations of metrics and we wish to study the quality
of the approximation of other anisotropic Voronoi diagrams.
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We approach the Riemannian Voronoi diagram and its dual with a focus on both practicality and
theoretical robustness and introduce an algorithm to compute a discrete Riemannian Voronoi diagram.
The idea of building Voronoi diagrams in a discrete manner has been studied before in the isotropic
setting by Hoff [78]. Cao et al. [39] studied the digital Voronoi diagram, a discrete structure diagram
obtained by flooding from the seed and proved that they obtain a geometrically and topologically
correct dual. Their work is however limited to the 2D isotropic setting.

The theoretical study of the algorithm will be the topic of Chapters III.7 and III.8.

Contributions This chapter presents a first step towards practical Riemannian Voronoi diagrams.
We introduce a novel structure to approximate Riemannian Voronoi diagrams, along with a refinement
algorithm that is generic with respect to the choice of the method used to compute geodesic distances.

We obtain a significant speed up over standard geodesic distance computations by using locally
uniform anisotropic meshes (presented in Chapter I.4) as the underlying structure upon which geodesic
distances are computed. Additionally, our method produces meshes that do not suffer from the over-
refinement that was observed in Chapters I.4 and II.5. Consequently, we obtain thus an algorithm
that produces good results (albeit with some other defaults) and is provable, as shall be seen in
Chapters III.7 and III.8. The structure and the implementation are described and the practicality is
investigated.
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6.1 The discrete Riemannian Voronoi diagram

The computation of geodesic path lengths in any domain is a difficult task as there is generally no
closed form available. The wide range of domain can be shrunk, through mesh generation, to consider
only piecewise-linear domains. Even in this simpler setting, the computation of geodesic distances and
paths is still a complex problem to which much work has been dedicated in the last decades. Despite
many studies, geodesic distances still cannot be obtained exactly for most domains endowed with an
arbitrary metric field. Nevertheless, we introduce a discrete structure that is, under some conditions,
combinatorially equivalent to the Riemannian Voronoi diagram and whose duals are triangulations.

6.1.1 Computation of geodesic distances

Historically, geodesic distances were first evaluated with respect to the Euclidean metric naturally
derived from the embedding of the domain in R

n. In this context, many approaches are available
depending on the expectations on the geodesic distance: exact or approximate, heuristical or with
theoretical guarantees, ... (see Peyré [116]).

Algorithms have more recently been introduced to compute geodesic distances when the domain is
endowed with a prescribed metric field that exhibits anisotropy. We describe some of these methods,
which we have empirically evaluated.

Konukoglu et al. [88] proposed a heuristical method to extend the fast marching method to the
anisotropic setting by inserting a recursive correction scheme in the standard algorithm. However,
this causes the loss of theoretical convergence of the fast marching method and the added recursivity
induces a heavy computational cost. Mirebeau [105] introduced a grid-based variation of the fast
marching method. The algorithm comes with theoretical guarantees, but the underlying grid structure
does not extend easily to manifolds. A very different approach was considered by Crane et al. [55], who
solve linear elliptic equations to compute a global geodesic distance map, obtaining an approximate
distance between any two points of the domain. The algorithm is much faster than front propagation-
based methods, but its parameters require delicate tuning and the approximation is generally much
worse, making it unattractive for our work. Campen et al. [36] proposed a heuristical approach based
on a modified Dijkstra algorithm, which we shall use, and describe in more detail in the section.

Short-term vector Dijkstra

The algorithm of Campen et al. [36] is inspired by the concept of vector-Dijkstra introduced by
Schmidt et al. [125], who measure the geodesic distance between the endpoints of a path L (composed
of edges of a triangulation) as the length of the segment e between the endpoints of the path, rather
than the sum of the lengths of the edges {li} that compose the path. This technique is adapted to
the anisotropic setting by Campen et al. by subdividing the segment e between the endpoints of the
path into smaller segments {ei} whose length is computed in a metric. Specifically, the subsegments
{ei} are obtained by projecting the edges li of the path L onto the segment e. The length of e is
then defined as the sum of the lengths of the edges ei computed with the metric li. This process is
illustrated in Figure 6.1.

This method of estimating lengths is then combined with a traditional Dijkstra approach, with the
nuance that the distance at the neighbor n of a fixed point p is computed not by simply adding the

163



Chapter 6. Discrete Riemannian Voronoi diagrams

p

q

e1
e2

e3

e4

e5

l1
l2

l3 l4

l5

Figure 6.1: Computation of the distance between the vertices p and q. The triangulation is drawn
with black edges and the path between p and q with thickened black edges.

distance d(n, p) to the distance between p and the source s, but by finding the point pk that minimizes
the sum d(n, pk) + d(pk, s), where d(n, pk) is computed with the vector approach explained above.
Additionally, not every pk is eligible to be the minimizer: pk must be at most the k-th ancestor of p,
where an ancestor of a point p is the neighbor of p from which the distance between p and its closest
seed is minimum (and recursively, a k-th ancestor of p is the ancestor of the (k− 1)-th ancestor of p).
The value of k is a parameter of the algorithm and must be appropriately chosen.

Although the short-term vector Dijkstra algorithm does not offer guarantees, it is nevertheless fast
and precise, with little requirement on the quality of the discrete domain. This method additionally
is well defined for surfaces, and does not require an embedded triangulation to compute geodesic
distances, which will be particularly useful in our work. For these reasons, we shall principally use
this method to compute geodesics.

6.1.2 Canvas

We refer to the discretization of the domain Ω upon which geodesic distances are computed as the
canvas, and denote it C. Notions related to the canvas will explicitly carry canvas in the name (for
example, an edge of C is a canvas edge). By default, the canvas is assumed to be a good isotropic
triangulation of the domain, based on the notion of restricted Delaunay triangulations (see Section 2.11
in Chapter 2). From Section 6.2 on, we will also make use of anisotropic canvasses, but we assume
that the canvas is an isotropic triangulation until then. The generation of canvasses is detailed in
Section 6.1.6.

6.1.3 Generation of the Discrete Riemannian Voronoi Diagram

Extending the metaphor, we now describe the process of “painting” the canvas, that is the attri-
bution of a color – which corresponds to a seed of the diagram – to all of its vertices. We assume in
this section that the canvas and the seed set are known and fixed. The generation of the set of seeds
will be the topic of Section 6.1.7. The canvas is colored with a process that is similar to the classic
Dijkstra algorithm, which we now describe.

Initialization

Three fields are associated to each vertex of the canvas:

• a color: the color of the closest Voronoi seed (represented with an integer and initialized at −1).
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6.1. The discrete Riemannian Voronoi diagram

• a distance: the current smallest geodesic distance to a seed (initialized at ∞),

• a status: known, trial or far (initialized at far),

The initialization of the canvas is described in Algorithm 15. It is assumed that the canvas is sufficiently
dense for multiple seeds to not fall within the same canvas simplex.

done by locating each seed on the canvas, that is

Algorithm 15 Initialization of the canvas

for each seed si ∈ P do
Find a canvas simplex σC which contains the seed
for each vertex pofσC do

Set the status of p to trial

Set the color to the color of the seed si
Set the distance to the distance to the seed

Remark 6.1.1 If a seed belongs to the boundary of the domain, it is possible that the seed does not
fall within an interior canvas simplex. In this case, it will nevertheless fall within a surface Delaunay
ball and the canvas simplex whose surface Delaunay ball contains the seed is chosen as the canvas
simplex that “contains” the seed.

Propagation

Colors are spread from the vertices of the canvas simplices that were initialized to the rest of the
canvas through simultaneous front propagations. For this purpose, trial canvas vertices are kept in
a priority queue R that is sorted by increasing distance to the vertex’s closest seed. At each iteration,
the vertex v with lowest distance to a seed p is removed from the queue and its status is changed
to known. For each neighbor n of v whose status is not known, the distance d to the seed p is
evaluated. If d is smaller than the current distance dold between n and its current closest seed pold,
the fields of n are modified accordingly (the status becomes trial, the color that of p, the distance is
set to d), and the priority queue R is updated. The full procedure is detailed in Algorithm 16.

Algorithm 16 Computation of the discrete Riemannian Voronoi diagram

Initialize the canvas with default values
for each seed si ∈ P do

Initialize the canvas with the seed si (Algorithm 15)

while R is not empty do
Pick the trial vertex p with smallest distance to a seed sp
Remove p from R
Mark p as known

for each vertex n neighbor of p with status not known do
Compute the geodesic distance d at n from sp
if d is smaller than the current distance at n then

Color n with the color of p
Assign d as the distance at n
Mark n as trial and insert it (or update its position) in R
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All the geodesic distance computation algorithms described in Section 6.1.1 can be adapted for use
in Algorithm 16, with varying degrees of difficulty and practicality to compute the discrete Riemannian
Voronoi diagram.

Termination

Since one vertex is switched from trial to known every iteration, the queue is eventually empty
and the vertices of the canvas are all colored. An example of fully colored canvas is exposed in
Figure 6.2.

From the completely colored canvas, we build our discrete Riemannian Voronoi diagram, defined
below.

Definition 6.1.2 (Discrete Riemannian Voronoi diagram) Consider a point set P and a canvas
C. To each seed pi, we associate its discrete cell Vd

g(pi) defined as the union of all canvas simplices
with at least one vertex of the color of pi. We call the set of these cells the discrete Riemannian
Voronoi diagram of P, and denote it by Vord(P).

Note that, by construction, a vertex can only take the color of one of its known neighbors, and
thus a discrete cell is connected. Observe additionally that, contrary to typical Voronoi diagrams, our
discrete Riemannian Voronoi diagram is not a partition of the domain. Indeed, there is a 1 canvas
simplex-thick overlapping due to each canvas simplex belonging to all the Voronoi cells whose color
appears in its vertices. This is intended and allows for a natural definition of the nerve of this diagram
(see Section 6.1.4).

6.1.4 Extraction of the nerve of the discrete diagram

Since our main interest resides in anisotropic triangulations, we are interested in the dual of discrete
Riemannian Voronoi diagrams. To construct this dual, the combinatorial information of the diagram
must first be extracted from the canvas.

The nerve of the discrete Riemannian Voronoi diagram is given by

N (Vordg(P)) =
{
{Vd

g(pi)} | ∩i Vd
g(pi) 6= ∅, pi ∈ P

}
.

Using a triangulation as canvas offers a very natural way to construct the nerve N (Vordg(P)) since
each canvas k-simplex σ of C has k + 1 vertices {v0, . . . , vk} with respective colors {c0, . . . , ck}, which
correspond to seeds {pc0 , . . . , pck} ∈ P. Indeed, a canvas σ simplex belongs to each Voronoi cell whose
color appears in the vertices of σ. The intersection of the Voronoi cells whose color appears in the
vertices of σ is thus non-empty and the set D of these Voronoi cells belongs to the nerve. In that case,
we say that the simplex σ witnesses (or is a witness of) D. By extension, if (K, ϕ) is a realization of
N (Vordg(P)), we also say that σ witnesses the simplex ϕ(D). For example, if the vertices of a 3-simplex
τ have colors red–blue–blue–red, then the intersection of the discrete Voronoi cells of the seeds pred
and pblue is non-empty and D := {Vd

g(blue),V
d
g(red)} belongs to N (Vordg(P)). The simplex τ thus

witnesses the (abstract, for now) edge between pred and pblue.

For all D ∈ N (Vordg(P)), if there exists σ ∈ C such that σ witnesses ϕ(D), and ∀σ ∈ C the simplex

witnessed by σ belongs to ϕ(N (Vordg(P))) then we say that C captures N (Vordg(P)). A Voronoi cell
is said to be captured if all its Voronoi vertices are witnessed by the canvas. Figure 6.2 illustrates a
canvas, the discrete Voronoi cells, and the notable witnesses of the nerve.
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6.1. The discrete Riemannian Voronoi diagram

Figure 6.2: The canvas simplices colored in red are witnesses of Voronoi vertices. The canvas simplices
colored in grey are witnesses of Voronoi edges. Canvas simplices whose vertices all have the same color
are colored with that color.

Remark 6.1.3 If
⋂
i=0...k Vd

g(pci) is non-empty, then the intersection of any subset of {Vd
g(pci)}i=0...k

is non-empty. In other words, if a canvas simplex σ witnesses a simplex ϕ(D), then for each face τ
of ϕ(D), there exists a face of σ that witnesses τ . This implies that, assuming that the dual of the
Riemannian Voronoi diagram is pure, it is sufficient to only consider maximal canvas simplices whose
vertices have all different colors to build N (Vordg(P)). As we shall use this remark for an unbounded
domain endowed with an Euclidean metric field, this assumption will be satisfied.

6.1.5 Geometric realizations of the nerve

Once the nerve of the diagram is known, a mesh can be obtained by tracing classical simplices
(defined as the convex hull of the vertices) between the seeds, accordingly to the combinatorial infor-
mation of the nerve. This yields the straight Riemannian Delaunay triangulation, which we denote by
Delg(P).

Although we are primarily focused on the generation of “straight” anisotropic triangulations, it
should be noted that we have constructed an approximation of the Riemannian Voronoi diagram, and
the curved realization of the dual is in a way more natural since the diagram is after all computed
using geodesic distances.

Curved Riemannian Delaunay triangulations (see Section 2.9 in Chapter 2) have received some
theoretical attention [91, 66, 65], but there is no work on the practical side of the subject. To
investigate this practical side, we are required to know how to trace curved Riemannian simplices. In
the case of planar and surface domains, simply computing the geodesic paths between the vertices of
a simplex provides the complete curved Riemannian simplex. However, drawing curved Riemannian
simplices in higher dimensions is far more complicated since curved Riemannian simplices are defined
through a minimization process at each point.

We will consider both realizations of the nerve in our theoretical and practical studies.

6.1.6 Generation of the canvas

We now detail the process of generating the canvas, the underlying structure upon which geodesics
are computed.

Observe that if the canvas is too sparse or badly approximates the domain, the discrete Riemannian
Voronoi diagram of a set of seeds might be combinatorially notably different from the Riemannian
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Voronoi diagram, as illustrated for example in Figure 6.3. Our algorithm aims to be a discrete yet
accurate version of the Riemannian Voronoi diagram. The canvas must therefore be adapted to our
input domain, metric field and set of seeds.

Figure 6.3: Two discrete Riemannian Voronoi diagram in the simple case of a plane endowed with
the Euclidean metric field. The seeds are drawn with squares, the canvas with thin black segments
and the canvas vertices with circles. The Riemannian Voronoi diagram is drawn with thick black
segments. On the left, the canvas is not dense enough to capture the combinatorial information of the
Riemannian Voronoi diagram.

For now, we limit the nature of the canvas to an isotropic triangulation of the domain, generated
by a classical isotropic refinement Delaunay algorithm that is driven by a sizing constraint. The main
unknown is the necessary value of sizing field for the canvas to capture the nerve of the Riemannian
Voronoi diagram. To simplify matters, we assume that the sizing field is constant.

Two possibilities arise, depending the knowledge of the set of seeds.

Known seeds

Firstly, consider the case where the seeds are known before the generation of the canvas. The sizing
field of the canvas must then be a factor smaller than the minimum distance between two Voronoi
vertices of the Riemannian Voronoi diagram. Although this value could be computed, seeds are almost
never known beforehand: using seeds obtained through simpler (to compute) diagrams, such as Labelle
and Shewchuk’s, or from other anisotropic methods (for example using a locally uniform anisotropic
mesh) do not in practice yield “good” Riemannian Voronoi diagrams in term of embeddability of the
dual nor in term of quality of the simplices. Therefore, we skip the computation of the required sizing
field of the canvas in this (pointless) case.

Unknown seeds

The more complicated case, but also the realistic one, is that we do not know the seeds in advance
and use the canvas to generate well-positioned seeds. The canvas must thus be generated preemptively
and be adapted to the set of seeds that is going to be generated upon this very same canvas.
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In theory In Chapters III.7 and III.8, we shall prove that if the set of seeds is a δ-power protected
(ε, µ)-net (see Sections 2.12.1 and 2.12.2 in Chapter 2 for the respective definitions), then we can com-
pute an upper bound on the sizing field of the canvas such that the canvas captures the combinatorial
information of the Riemannian Voronoi diagram if the sizing field is honored. A rough understanding
of these requirements is that the net assumption gives us a dense and separated point set, and the
power protection ensures that the Voronoi vertices are far from one another, making it possible to
compute a bound on the sizing field of the canvas such that issues like the one illustrated in Figure 6.3
do not happen.

In practice The theoretical upper bound on the sizing field of the canvas is extremely small, but
thankfully does not need to be honored in practice. In practice, we estimate the required sizing field
by computing the smallest potential edge length, as detailed below.

Similarly to the generation of the canvas, the generation of our anisotropic triangulations is driven
by a sizing constraint, with the purpose of creating meshes whose edge lengths are close to unit (see
Section 2.13 in Chapter 2). The seed set thus honors a sizing field with a constant parameter r0,
meaning that the shortest path between a seed and a Voronoi vertex is at most r0. In the discrete
context, this means that the distance between any vertex of a canvas simplex witnessing a Voronoi
vertex of the Riemannian Voronoi diagram and the corresponding closest seed it smaller than r0. As
explained in Section 2.13 in Chapter 2, it is more convenient to encode the sizing field directly into
the metric field and we thus always use r0 = 1.

If the seeds are well spread, there exists a lower bound ℓ on the distance between two seeds. By

definition, a unit ball in the metric Gp at a point p is an ellipsoid with semi-axis lengths 1/
√
λip, thus

the smallest distance (in Euclidean space) between a seed and a point on the unit ball is given by

mini 1/
√
λip = 1/

√
maxi λip. The sizing field of the canvas is then taken as:

hC = min
p∈P

ℓ

10
√

maxi λip
.

This ensures that we have at least 10 canvas simplices between two Voronoi seeds, which is generally
enough to guarantee that the Riemannian Voronoi diagram of the set of seeds is captured. The
generation of the seeds is the topic of the next section.

Remark 6.1.4 As we need to compute accurate geodesic distances, the sizing field should also be
sufficiently low with respect to metric distortion. If the canvas is extremely sparse, the sizing field will
be thus determined by this criterion. However, in the common case, this constraint is automatically
satisfied because the set of seeds is sufficiently dense with respect to metric distortion.

6.1.7 Generation of the seeds

For the reasons explained in the previous section, we generally do not know the seeds beforehand.

In theory Our theoretical analysis of our discrete structure (in Chapters III.7 and III.8) shows
that if the set of seeds is a δ-power protected (ε, µ)-net (with known bounds on δ and ε), then the
discrete diagram has exactly the same combinatorial structure as the (exact) Riemannian Voronoi
diagram, as long as the canvas is dense enough. We have presented in Section 5.4 in Chapter II.5
an algorithm to generate such point sets. However, this algorithm is undesirable in practice as it
relies on finding “valid” points through trial and error, similarly to the Pick_valid algorithm used
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in the locally uniform anisotropic meshes (see Chapter I.4). The heavy cost of this algorithm greatly
contributed to the non-practicality of the framework of locally uniform anisotropic meshes.

In practice Fortunately, we obtain good results for 2D domains and surfaces when seed sets are
generated through a simple farthest point refinement algorithm. A farthest point refinement algorithm
iteratively inserts in the diagram the circumcenter that is farthest from its seed until the prescribed
sizing field r0 is satisfied. Using such refinement algorithm, the dual of our discrete Riemannian
Voronoi diagram rapidly becomes an embedded triangulation, even for a relatively small number of
vertices (see Section 6.4 and specifically Figure 6.9).

Since we do not enforce power protection for our actual set of seeds, two adjacent Voronoi vertices
can be in theory arbitrarily close. This situation also occurs in practice, but while this might seem very
problematic, the spreading aspect of our algorithm ensures that only a single diagonal is captured –
even if two Voronoi vertices (for the Riemannian Voronoi diagram) are located within the same simplex
(see Figure 6.4).

Figure 6.4: As a consequence of not enforcing power protection, Voronoi vertices can be arbitrarily
close. The color code is the same as in Figure 6.2. to simplify the comprehension, we have drawn the
color at some canvas vertices. This does however not create any issue in the dual triangulation.

The question of the generation of a three-dimensional set of seeds is trickier as a farthest point
refinement algorithm is not sufficient to create embedded duals. We will further discuss this issue in
Section 6.4.2.

Location of a new seed

Both our theoretical and practical refinement algorithms insert new seed near Voronoi vertices
(circumcenters). However, a Voronoi vertex c on the discrete Riemannian Voronoi diagram is actually
a canvas simplex σC whose vertices have all different colors. This is not punctual information and
therefore cannot be inserted. Three options are possible to extract a Voronoi vertex from the canvas
simplex, ordered below in decreasing amount of simplicity:

• Choose as Voronoi vertex c the canvas vertex of σC that is farthest from its closest seed.

• Choose as Voronoi vertex c the barycenter of the canvas simplex.
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• Recursively break down the canvas simplex σC into smaller simplices (typically with a barycentric
subdivision) and compute the colors of the vertices of these new canvas simplices. Continue until
the simplex is under a certain size and pick one of the first two options.

From empirical observations, there is no significant difference between any of the methods and we
therefore use the first option since it is the lightest, from a computational point of view.

Insertion of a new seed

A new seed p is easily inserted into an existing discrete diagram: the Voronoi cell of a p is
obtained by locating p on the canvas and spreading from the initial canvas simplices with a single
front propagation algorithm. The discrete Voronoi cell of p is found when no point reached has a
lower distance to p than to its current closest seed.

When the sampling of the seed set is dense on the domain, the insertion of a new seed is a local
operation since only a relatively small number of canvas simplices carry the color of any seed.

6.2 Canvas adaptation

The evaluation of geodesic distances is well known to be a computationally expensive (and thus
slow) process. To make things worse, the canvas must be composed of a large number of vertices for
multiple reasons:

• The canvas needs to be dense with respect to the desired sizing field of the final mesh: the
main justification behind the use of geodesics is that the metric field provides significant infor-
mation that is relevant to the position of vertices and to the combinatorics of the anisotropic
triangulation, and which is lost when we only consider the values of the metric field at the seeds.

• The canvas needs to be sufficiently dense with respect to the variations of the metric field and
to the reach of the manifold, so that geodesic lengths are accurately estimated.

• The canvas needs to be sufficiently dense so that the nerve is captured.

The requirements mentioned in the second and third items will be precisely described in the theoretical
chapters III.7 and III.8.

Remark 6.2.1 The first item also implies that the metric field must be known in much finer manner
compared to the size of the final anisotropic triangulation or the metric field will simply be interpolated
between known values, greatly reducing the usefulness of geodesics.

The combination of the high computational cost of computing geodesic distances and of the re-
quired large size of the canvas makes the coloring of the discrete Riemannian Voronoi diagram the
(expected) bottleneck of the algorithm. This cost could be reduced in two independent ways: im-
proving the speed of geodesic distance computations and decreasing the amount of geodesic distance
estimations. We rely on previous work for the estimation of the geodesic distances and improving the
current methods goes beyond the scope of this work. However, we significantly decrease the number
of geodesic computations required by changing the nature of the canvas, as we shall now explain.
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6.2.1 Anisotropic canvasses

To illustrate the reasoning behind our approach, let us consider a short thought experiment.
Assume that a number of consecutive canvas edges form a line in the domain; if the metric were
constant along this line, the accuracy of the computation of the geodesic distance would not be
improved by a larger number of (smaller) edges. Extrapolating from that simple example, one can
intuit that it is not ideal to use an isotropic discretization of the domain as canvas: directions in
which the metric field does not vary much could be discretized only sparsely – as long as the canvas
honors other constraints (detailed in the bullet points above). In other words, one would rather use
an anisotropic canvas. Unfortunately, an anisotropic mesh is exactly what we want to construct.

Salvation comes from the fact that for most geodesic computation methods, a triangulation of
the domain is used as canvas but is in fact not necessary: a graph is sufficient. Even better, the
embedding of the graph is not required. Both these observations mean that we can use inconsistent
star sets obtained from locally uniform anisotropic meshes – a concept introduced and discussed
extensively in Chapter I.4 – to construct easily such (anisotropic) graphs. We briefly recall in the next
section the framework of locally uniform anisotropic meshes.

6.2.2 Locally uniform anisotropic meshes

The framework of locally uniform anisotropic meshes, introduced by Boissonnat, Wormser, and
Yvinec [30], and studied in Chapter I.4, is an attempt at extending the concept of Delaunay triangu-
lation to non-Euclidean settings by computing independently at each vertex its connectivity to other
vertices. The algorithm constructs at every vertex p ∈ P the Delaunay triangulation in the metric Gp
of p, which is the image through the stretching transformation F−1

p of the Euclidean Delaunay trian-
gulation Del(Fp(P)), with Fp a square root of Gp. The star Sp of p in Delp(P) is the subcomplex of
Delp(P) formed by the simplices that are incident to p. The collection of all the stars is called the
(anisotropic) star set of P, noted S(P).

Since the connectivity of each star is set according to the metric at the center of the star, incon-
sistencies may exist amongst the stars of the sites: a simplex σ that appears in Delp(P) might not
appear in Delq(P) with p, q ∈ σ. The algorithm refines the set of sites P until each simplex conforms
to a set of a criteria (size, quality, etc.) and there are no more inconsistencies amongst the stars,
which is proven to happen.

Unfortunately, the algorithm requires in practice a large number of vertices to solve inconsistencies
when dealing with non-uniform metric fields, making it impractical (see Section 4.8 of Chapter I.4).
Figure 6.5 shows an example of metric field for which the resolution of inconsistencies is difficult.
The algorithm required 4430 vertices to achieve consistency, a number considerably higher than our
method, as can be seen on the results produced in Section 6.4.

6.2.3 Anisotropic star set canvasses

Despite the generation of locally uniform anisotropic meshes not being competitive, a graph can
be obtained by merging the stars and extracting the 1-dimensional skeleton. Due to the potential
presence of inconsistencies in a star set, this graph is not necessarily embedded: the edges of the
graph do not necessarily only intersect at endpoints. Nevertheless, it can be used to compute geodesic
distances and we are thus able to follow exactly the same algorithm as for the case of an isotropic
canvas (Algorithm 16): the seeds are located on the canvas, the vertices of a star set are colored by
spreading from the seeds, and the discrete Voronoi diagram is eventually obtained. Although a star
set can be created using an isotropic metric field, the advantage of this type of canvasses will come
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Figure 6.5: Example of a difficult metric field for the local Delaunay algorithm. The algorithm required
4430 vertices to achieve consistency, a number considerably higher than our method as can be seen
on the results produced in Section 6.4.

from building a star set which follows the (anisotropic) input metric field. For these reasons, a canvas
based on a star set is called an anisotropic canvas. The theoretical study presented in Chapters III.7
and III.8 generally assumes that the canvas is an isotropic triangulation for simplicity, but these results
can be extended, under some conditions, to anisotropic canvasses.

Remark 6.2.2 The usage of star-based canvasses is not unlike the stencil-based geodesic distance
computation method of Mirebeau [105], which we have described in Section 6.1.1, if one thinks of stars
as non-uniform stencils. Although stars offer fewer guarantees than Mirebeau’s stencils, they are more
flexible and allow one to handle easily the case of (curved) manifolds.

Orientation of the graph

An anisotropic star in the locally uniform anisotropic mesh framework reflects a local connectivity
that is computed according to the metric at the center of the star. An edge that is incident to the
center of a star thus possesses a natural orientation: from the center of the star to its other endpoint,
on the link. While merging stars, two choices are available:

• Keep the orientation of edges, according to the local connectivities of the stars. One then obtains
a directed graph, but this is not a problem in Algorithm 16: spreading from one known canvas
vertex p is only done to its neighbors, the vertices of the link of the star Sp.
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• Reciprocate the ownership relations and create an undirected graph by considering that p ∈ Sq
and q ∈ Sp are equivalent. In that case the neighbors of p are the vertices on the link of Sq but
also all points q such that p ∈ Sq. The consequence is a slightly heavier computational cost, but
more directions are available from each point, thus improving the accuracy of geodesic distance
computations.

The use of reciprocal neighbors (see Section 6.2.3) has in practice no significant impact on the
quality of the computation of geodesic distances. This can be explained by observing that we compute
geodesics with the algorithm by Campen et al. [36], which uses a vector-valued Dijkstra approach (see
Section 6.1.1. With their method, the length of a path over a mesh is estimated by (vectorially)
summing edges before measuring the length of the sum. Consequently, the most accurate geodesic
distance between two canvas points is not necessarily obtained for the path that is as close as possible
to the geodesic between both points. In conclusion, there is no need to maintain an oriented graph.

Nerve of an anisotropic canvas

The extraction of the nerve in the case of anisotropic canvasses is achieved similarly to the case of
isotropic canvasses: we traverse the star set and consider the simplices of all the stars. Each simplex
is processed by considering the different colors of the vertices of the simplex, and adding the set of
corresponding discrete Voronoi cells to the nerve.

Star set canvas generation

Similarly to the isotropic canvas generation, theoretical bounds on the necessary sizing field of the
canvas exist, but thankfully do not need to be honored. In practice, the generation of a good star set
canvas is even easier than the generation of isotropic canvasses: we simply scale down by a constant
factor the sizing field that is chosen for the goal triangulation. Due to the regularity of the point
set implied by its the power protected net assumption, this ensures a relatively constant number of
canvas edges between two vertices of the final triangulation. The value 0.1 is chosen for this scaling
factor and the sizing field of the canvas is thus 0.1r0 (with r0 the sizing field of the set of seeds). Once
the refinement process has terminated, we obtain an (anisotropic) star set with Delaunay stars that
conforms to the metric field.

As in the case of an isotropic canvas, an issue arises: will the lack of power protection on the point
set not create any issue due to Voronoi vertices being too close from one another? This problem is made
worse for anisotropic canvasses by the fact that star sets are generally not consistent. Nevertheless,
the answer is fortunately here again negative for planar and surface domains and we always obtain
embedded duals.

6.2.4 Advantages over isotropic canvasses

To ensure that the nerve of the Riemannian Voronoi diagram is captured in the case of an isotropic
triangulation used as canvas, the (uniform) sizing field of the canvas must be small enough such that
Voronoi bisectors are clearly distinct (see Section 6.1.6). As the anisotropy ratio increases, Voronoi
cells become thinner and the number of canvas vertices required to capture the nerve rapidly grows
(Figure 6.6, left and center).

On the other hand, the placement of vertices in an anisotropic canvas is by construction not
uniform and does not suffer from the same issue: as the anisotropy of the metric field grows, Voronoi
cells and canvas simplices become thinner in tandem. The number of canvas vertices in a Voronoi cell
is thus relatively constant regardless of the anisotropy.
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Figure 6.6: Isotropic and anisotropic canvas sampling. In the case of an isotropic canvas, increasing
the anisotropy of a cell increases the number of vertices required to properly capture it (left and
middle). This is not the case if the canvas can be anisotropic (left and right).

As the star set satisfies a sizing field of 0.1r0, the canvas edges are roughly 10 times smaller than
the distance between seeds. Consequently, the canvas is composed of approximately 10n more vertices
than seeds, with n the intrinsic dimension of the domain.

The use of an anisotropic canvas greatly decreases the computational time as the number of vertices
in the canvas is drastically reduced, without any change in the extracted nerve (see Section 6.4).
Figure 6.7 shows an example of the same region of a domain with a triangulation (left) and a star set
(right) used as canvasses.

6.3 Implementation

Our implementation is generic: the two types of canvas and the various geodesic distance com-
putation procedures are modules that can be easily swapped in the main algorithm. The CGAL

library [2] is used to generate isotropic Delaunay canvases and our implementation (see Section 4.4 in
Chapter I.4) of the locally uniform anisotropic mesh framework for the generation of star sets. The
algorithm was implemented for planar, surfaces and 3D domains.

6.3.1 Geodesic distance computations

The different geodesic distance computation algorithms described in Section 6.1.1 were imple-
mented and evaluated, with practicality in mind. Although the method proposed by Campen et
al. [36] does not offer any theoretical guarantee, its accuracy and convergence were in practice sat-
isfactory: on all the domains considered, increasing the density of the mesh yielded similar geodesic
distance maps, meaning that converge is already achieved. The accuracy was estimated by running
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Figure 6.7: Discrete Riemannian Voronoi diagram of the same seed set on two different canvas. On
the left, an isotropic triangulation (1M vertices). On the right, an inconsistent star set (40k vertices).
The nerves of both discrete Riemannian Voronoi diagrams are identical. The canvas simplices colored
in red are witnesses of Voronoi vertices. The canvas simplices colored in grey are witnesses of Voronoi
edges.

the method in simple cases where the result is known in advance. Furthermore, the speed of Campen’s
et al.‘s algorithm a significant advantage over other methods. Finally, it requires practically no change
to be used in the setting of non-embedded and directed graphs, while still providing accurate results.

6.3.2 Computational speed of the construction of the star set

The computational speed of our implementation of the locally uniform anisotropic mesh frame-
work is low (see Section 4.7 in Chapter I.4), for multiple reasons: the inherent redundancy that comes
with a star set (a point is inserted and lives in multiple stars), the necessary combinatorial checks
for robustness, and, mainly, the resolution of inconsistencies. Since we do not care about the con-
sistency of our star set here, the meshing algorithm is much faster. Additionally, it is possible to
discard all inconsistency-related combinatorial checks (see the maintenance of the refinement queues
in Section 4.4.3 in Chapter I.4).

Robustness The algorithm can be accelerated furthermore by trading robustness for speed. Indeed,
a number of checks were required in the implementation of the algorithm of Chapter I.4 to guarantee
that we are building the correct anisotropic star set. For example, the combinatorial structure of a
new star repeatedly uses a filtering structure (a k-d tree) to find nearby points that we might have
missed during the construction of the star (see Section 4.4.4 in Chapter I.4). These checks carry a
non-negligible computational cost at each iteration but, although they rarely have an impact, are
needed if we wish to construct a consistent star set. Since we are now manipulating inconsistent star
sets with no care for consistency, we can allow ourselves to not build the exact star set of a set of
vertices: a missing vertex never makes a significant difference in the accuracy of the computation of
geodesic distances over a large canvas. These tests are thus disabled, and computational speed is
increased.

With no particular care needed to be given to inconsistencies, almost all the downsides of the
locally uniform anisotropic meshes framework are eliminated: the slow computational time and the
large number of vertices were indeed direct consequences of the tedious resolution of inconsistencies.
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Parallelization

Parallelization of the locally uniform anisotropic mesh refinement algorithm is difficult (see Sec-
tion 4.4.6 in Chapter I.4) and was not pursued due to the non practicality of the algorithm.

The results obtained by our approach are much better, renewing the interest in a fast locally
uniform anisotropic meshes. Additionally, our method makes uses of geodesic computations, which
are notoriously slow, thus making any gain in the algorithm attractive (even if the generation of the
canvas is relatively cheap compared to the computation of geodesic distances).

The fact that we can get away with approximate anisotropic star sets (thanks to the vector-Dijkstra
method used by Campen et al. [36]) allows us to use a lazy approach to parallelism. Instead of using the
local insertion coupled with a lock system, as done for example in the parallel version of the isotropic
mesh generator Mesh_3 [80] of cgal, we simply split the domain in zones that are independently
meshed. Each zone is made to have a small overlap with the nearby zone, of thickness 0.4r0 (meaning
an overlap of around two canvas simplices).

Remark 6.3.1 The partition of the input mesh is computed with the METIS library [84]. Another
possibility would be to use the Scotch library [51]. Note that these libraries compute non-overlapping
partitions, but it is trivial to enlarge a subdomain with neighboring elements until we are satisfied of
its size. In the case of an implicit surface, we first generate a (relatively rough) isotropic mesh of the
domain.

Once a size-abiding star set has been created for each subdomain, we stitch them together by
inserting the center of the stars within the overlap region in the stars that are nearby the border in
(both regions) region. This is a local and thus swift process.

This approach to parallelism is qualified of lazy because there is no control on the correctness of
the stars at the borders and we thus might not building the proper star set. But once again, this is
not important here as we only seek a relatively dense and anisotropic star set.

Limitations This subdivision is naturally most efficient when the partition is adapted to our domain.
For example, if we are considering a cube of side 10 endowed with the radial shock metric field (see
Section A.7 in Appendix A), dividing the cube in 8 smaller identical cubes is not a good partition
as most of the anisotropy is only contained in one of the small cubes. This issue was not resolved
automatically, but a possible solution would be to use the adapted partitioning algorithm of METIS.

6.3.3 Extraction of the nerve

The extraction of the nerve is performed on the fly during the coloring the canvas: when a canvas
simplex is first fully colored, its combinatorial information is extracted and added to the nerve. Since
capturing the Voronoi vertices is sufficient to extract all the combinatorial information of the nerve
(see Remark 6.1.3), we tag canvas simplices as soon as they have two vertices with identical colors so
that their combinatorial information is ignored.

6.3.4 Geodesic paths

To compute curved Riemannian Delaunay triangulations, one must be able to draw geodesic paths
and simplices. Geodesic paths are traced by backtracking along the gradient of the geodesic distance
map, as described by Yoo et al. [143]. Note that the gradient must be orthogonal to the level sets
with respect to the metric field. Figure 6.10 (right) illustrates the gradient map of five Voronoi cells
on a discrete Riemannian Voronoi diagram of the “Chair” surface, illustrated on the left.
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6.4 Results

In this section, we present results obtained by our discrete Riemannian Voronoi diagram structure
and its refinement algorithm. We first exhibit discrete Voronoi diagrams and their corresponding duals
for our typical metric fields, before investigating the computational speedup induced by our use of
anisotropic canvasses. We compare this new approach to our previous approach, to other definitions
of anisotropic Voronoi diagram, and to other anisotropic meshing algorithms. Finally, we expose and
discuss issues that arose in the three-dimensional setting.

6.4.1 Duals of the discrete Riemannian Voronoi diagram

As our structure is a close approximation of Riemannian Voronoi diagrams, we can construct two
different duals: the curved dual (see Section 2.9 in Chapter 2) and the straight dual whose simplices
are defined as the convex hull of the vertices in the domain. We present results for both of these duals,
and detail some issues that appeared during the experiments.

We will first consider two-dimensional and surface domains; the case of three-dimensional domains
is discussed at the end of the section. The metric fields and domains employed in these results are
detailed in Appendices A and B respectively.

Straight Riemannian Delaunay triangulation

By definition, the Riemannian Voronoi diagram captures the metric field more accurately than
other methods that typically only consider the metric at the vertices. This additional input of in-
formation allows us to construct curved Riemannian Delaunay triangulations, but also has a positive
influence on the straight realization of the diagram.

Figure 6.8 shows the different structures involved in our algorithm during the generation of an
anisotropic meshes for the sphere endowed with a hyperbolic shock metric field. On the left is the
canvas (an isotropic triangulation here); the middle sphere shows the discrete Riemannian Voronoi
diagram computed upon this canvas; finally, the right picture shows the dual of the discrete diagram,
an anisotropic triangulation. Contrary to the previous approaches introduced and investigated in
Chapters I.4 and II.5, no over-refinement is observed, including in the regions where the eigenvectors
of the metric field are rotating (where the shock “turns”). The final mesh has slightly fewer than 4000
vertices, which is the number of vertices that was required by our locally uniform anisotropic mesher
(Chapter I.4) to generate a mesh of a only small region of that domain (see Figure 6.5).

Figure 6.9 shows the polyhedral surface “Fertility” that we endow with a curvature induced metric
field. As for the sphere, the dual rapidly becomes a triangulation during the refinement process: as
few as 200 vertices are needed to obtain a triangulation (that is also visually pleasing). Comparatively,
our previous algorithms required more than 13000 points to obtain a consistent star set.

Across various experiments, meshes are obtained in a reasonable amount of vertices, often giving
close to unit meshes (see Table 6.1).

curved Riemannian Delaunay triangulation

The large amount of additional information that is provided by the canvas allows to construct
curved Riemannian Delaunay triangulations, which have not been produced before. Figure 6.10 shows
the discrete diagram and the curved Riemannian Delaunay triangulation for the “Chair” surface
endowed with a curvature-induced anisotropic metric field. In the computation of the curvature
metric field, the value ǫ = 0.7 is used (see Section A.2.1 in Appendix A). The curvature of the
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Figure 6.8: The unit sphere endowed with the hyperbolic metric field (approximately 4000 vertices).
Isotropic canvas (left), discrete Riemannian Voronoi diagram (center), and straight Riemannian De-
launay triangulation (right).

Figure 6.9: the “Fertility” surface endowed with a curvature induced metric field, straight Rieman-
nian Delaunay triangulation with 220 seeds (left), discrete Riemannian Voronoi diagram (center) and
straight Riemannian Delaunay triangulation with 6020 seeds (right).

simplices is noticeable and the metric field is well captured with only few curved Riemannian simplices.
Comparatively, a straight dual would require more elements to obtain the same approximation

Figure 6.11 shows the curved Riemannian Delaunay triangulation dual of the Riemannian Voronoi
diagram for the hyperbolic shock metric field. We obtain an aesthetically pleasing curved mesh that
conforms closely to the metric field.

The computation of geodesics is relatively expensive as it requires a gradient descent to draw
each geodesic edge. Instead, one can follow the list of ancestors between the two seeds, where an
ancestor a is a point of the canvas that provided the minimum of the distance d(s, a) + d(a, p) from a
seed s to a point p (see Section 6.1.1 for further details) during the geodesic distance computations.
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Figure 6.10: On the left, the discrete Riemannian Voronoi diagram of 1020 seeds on the “Chair” surface,
with a curvature induced metric field; the edges of the curved Riemannian Delaunay triangulation are
traced in black. On the right, the geodesic gradient map used to compute geodesics (for 5 adjacent
Voronoi cells picked from the complete diagram). The center of the cells is marked with a red dot and
each red line is the gradient at a vertex of the canvas.

Figure 6.12 shows the approximation of the curved Riemannian Delaunay triangulation in Figure 6.11
using segments between ancestors rather than geodesic. Despite only using around 5 segments per
geodesic, we obtain a close approximation, at only a fraction of the cost since ancestors can be stored
during the process of coloring the canvas.

6.4.2 Three-dimensional setting

The results for three-dimensional domains are more mixed. In the setting of planar and surface
domains, it was not necessary for the seed set to be a power protected net as our theory imposes: a
farthest point refinement algorithm was enough to create good triangulations. This pleasant result
does not extend to the three-dimensional setting: the straight duals of our discrete diagrams generated
with a farthest point refinement algorithm are never embedded, due to a low percentage of simplices
intersecting nearby elements (see the tetrahedra colored in red in Figure 6.13, right).

Investigating more closely, this is always caused by quasi-cosphericities (the presence of two Voronoi
vertices close from one another). The use of power protected nets would entirely prevent such occur-
rences, and we are thus hopeful that anisotropic meshes could be created this way. Unfortunately, the
cost of generating power protected nets in the context of Riemannian Voronoi diagrams is far beyond
reasonable and we have thus not progressed farther in this direction.

It should nevertheless be noted that there are fewer issues in three-dimensional triangulations
created as duals of discrete Riemannian Voronoi diagrams than in the star set-based approaches, for
the same number of vertices. Indeed, the mesh obtained in Figure 6.13 (left) is composed of only 1350
vertices, but is much closer to being a good triangulation than a star set created using the framework
of locally uniform anisotropic meshes – which required more than 110000 vertices to create a consistent
star set for this same input (see Section 4.7 in Chapter I.4).

180



6.4. Results

Figure 6.11: Discrete Riemannian Voronoi diagram (top) and curved Riemannian Delaunay triangu-
lation (bottom) of 751 vertices on a planar region endowed with the hyperbolic shock metric field.
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Figure 6.12: Approximating geodesics with segments between ancestors (black dots). Far fewer points
are required in comparison with Figure 6.11.

Figure 6.13: Dual of the discrete Riemannian Voronoi diagram for the unidimensional shock metric
field. The simplicial complex is composed of 1350 vertices but is not embedded. Problematic elements
are drawn in red on the exploded view (faces are scaled down) on the right.

6.4.3 Computational speed

The computational speed of geodesics has always been the justification to approximate Riemannian
Voronoi diagrams. We first investigate the computational speed of our algorithm, and specifically at
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the gain allowed by the use of a star set canvas. For consistency, the seed set is (exceptionally) assumed
to be known beforehand. Note that in all cases, the construction of the nerve and of the geometric
realizations of the duals have a negligible cost compared to the computation of geodesic distances.

Figure 6.14 uses an isotropic canvas of a square of side 4 and centered on the origin, endowed with
a “Swirl” metric field (see Section A.4 in Appendix A). The canvas is composed of 1, 286, 862 vertices
and took 29 seconds to generate with Mesh_2. The computation of the curved Riemannian Delaunay
triangulation and of the straight Delaunay triangulation then took around 40 minutes. Comparatively,
the same results were obtained using a star set of only 101, 264 stars (vertices) in around a minute
and a half, including 50 seconds to generate the star set.

Figure 6.14: On the left, the discrete Riemannian Voronoi diagram of 4000 seeds in a square endowed
with a swirly metric field. On the right, the straight dual of the discrete Riemannian Voronoi diagram.

For the same input, increasing the number of seeds to 15000 (see Figure 6.20) yields similar results:
the isotropic mesh is generated in 53 seconds and contains 2509300 vertices. Coloring this mesh takes
slightly more than an hour. Comparatively, the anisotropic requires 151274 vertices, which were
generated in 118 seconds, and the coloring takes less than a minute. This improvement becomes even
more significant as the anisotropy increases.

Finally, an isotropic mesh is not even conceivable for larger cases: in our three-dimensional experi-
ments (see Section 6.4.2), we use an anisotropic canvas composed of 1179017 vertices. With our choice
of sizing field, the smallest edge has length 0.001, meaning that the isotropic mesh generator would
be given the task of meshing a unit cube with an a maximal edge length of 0.0001 (see Section 6.1.6).
This would generate a mesh with hundreds of millions of vertices whose coloring would take days.

Generation of seeds

We have so far compared the running times of our algorithms for different canvasses, assuming
that the seeds are known.

In reality, we generate the seeds through a farthest point refinement algorithm, as seeds obtained
from other means do not produce satisfying Riemannian Voronoi diagram – at least for small seed
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sets. This generation of seeds is a major downside of the algorithm, from a computational point of
view. Indeed, the insertion of a new seed obliges us to compute its cell, which is done by growing
the cell of a new seed from the canvas simplex that contains the seed until it reaches vertices of the
canvas that are closer to their seed than to the new seed (see Section 6.1.7). If the seed set is already
dense, this is a fast operation as we are only changing the color of a small number of canvas vertices.
However, for a certain number of insertions at the beginning (variable depending on the input), large
amounts of vertices change colors, which takes a considerable amount of time.

6.4.4 Quality

The quality of a mesh can be evaluated through the measure (in the metric) of its angles and
of the lengths of its edges. We evaluate the edge lengths and the angles of the point set shown in
Figure 6.19 (the straight Riemannian Delaunay triangulation is shown) for both the curved and straight
Riemannian Delaunay triangulations. The angle of a curved Riemannian simplex at a vertex p is given
by the angle between the two geodesic edges sent to the tangent space at p using the exponential map
(both geodesic edges are then straight edges), which is equivalent to the angle between the tangent of
the geodesic edges at a.

The point sets are generated with a sizing criterion intended to create unit meshes, that is curved
Riemannian Delaunay triangulations whose geodesic edges have a length close to 1.
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Figure 6.15: Histograms for the optimized mesh shown in Figure 6.19. On the left, edge lengths of the
curved Riemannian Delaunay triangulation; on the right, angles values for the straight Riemannian
Delaunay triangulation.

Results on the lengths of the edges of the curved Riemannian Delaunay triangulation and on the
angles of the straight Riemannian Delaunay triangulation are shown in Figure 6.15 and show good
control on both the edge lengths and the angles. We also observe that while the results are naturally
better for the curved Riemannian Delaunay triangulation since the point set is generated with respect
to the geodesic distance, the quality of the elements of the straight Riemannian Delaunay triangulation
stays relatively close to that of the curved Riemannian Delaunay triangulation.

6.4.5 Comparison

Despite great gains brought by the use of anisotropic meshes, the algorithm is still slow. We
investigate in this section the benefits of using a geodesic approach by comparing our results with
other methods.
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Anisotropic Voronoi diagrams

The heavy cost of computing geodesic distances is the fundamental reason behind the approxima-
tion of the distance with respect to a metric field with simply a distance with respect to a metric. It is
thus particularly interesting to compare our results to anisotropic meshes created for other anisotropic
Voronoi diagram, namely using the distance of Labelle and Shewchuk, and the distance of Du and
Wang.

We first consider the two-dimensional setting. The hyperbolic shock metric field is a good example
of metric field that can be difficult for the anisotropic Voronoi diagrams of Labelle and Shewchuk and
Du and Wang. Indeed, other anisotropic Voronoi diagrams who only consider the metric at a single
point are prone to inverted elements when the (eigenvectors of the) metric field is rotating, which is the
case for the hyperbolic shock metric field. On the contrary, our discrete Riemannian Voronoi diagram
takes metric information into account continuously, and is thus not as heavily affected by change in
eigenvectors. Consequently, the dual of our diagram becomes a triangulation with fewer seeds than
the other anisotropic Voronoi diagram. This is illustrated on Figures 6.16 and 6.17. The number of
seeds is fixed for a given example, and the seeds are generated by each algorithm specifically for its
distance.

Figure 6.16: Duals of anisotropic Voronoi diagram for a planar domain endowed with the hyperbolic
shock metric field (discrete Riemannian Voronoi diagram on the left, AVD of Labelle and Shewchuk on
the right). Both Voronoi diagrams contain 250 points by farthest point refinement. Issues preventing
the dual from being a triangulation are drawn in red.

Although our diagram does reach the state of having an embedded dual much faster, this advan-
tage is only limited as other anisotropic Voronoi diagrams also reach this state very quickly. The
triangulations produced in that short window are also often under-sampled and the result is thus not
pleasing visually nor from a quality point of view (for example in Figure 6.16).

Surface Discrete Riemannian Voronoi diagrams produce much better results than other anisotropic
Voronoi diagram-based methods on surfaces. Indeed, the geodesic distance captures the geometry
of a surface much more accurately and generating an anisotropic triangulation with very few points,
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Figure 6.17: Duals of anisotropic Voronoi diagram for a planar domain endowed with a radial shock
metric field (discrete Riemannian Voronoi diagram on the left, VLS in the middle and V DW on the
right). All Voronoi diagrams contain the same number of seeds. Issues preventing the dual from being
a triangulation are drawn in red.

such as the “Fertility” surface composed of 220 vertices in Figure 6.9 (left), is impossible with other
anisotropic diagrams.

Star set-based approaches

Two star set-based approaches have been studied previously in this thesis: the framework of locally
uniform anisotropic meshes (Chapter I.4) and the use of a modified tangential Delaunay complex to
construct the dual of the Labelle and Shewchuk anisotropic Voronoi diagram. In practice, both meshes
suffered greatly from inconsistencies, requiring large numbers of vertices to obtain triangulations.

We present below (Table 6.1) statistics on our straight meshes obtained from discrete Riemannian
Voronoi diagrams.

Table 6.1: Statistics on the results shown in the previous sections and comparisons with previous
results obtained in Table 4.5 (indicated by “LU”). The following metric fields are used: Swirl (Sw),
Starred (St), Hyperbolic shock (Hy), Curvature (Cu) (detailed later), Unidimensional shock (UD).
Definitions can be found in Appendix A.

ℓmin ℓavg ℓmax ψmin ψavg αmin αavg Qmin Qavg
Square (Sw) - LU 6.1× 10−5 0.08 1.38 1 1.19 10.92 41.35 0.27 0.76

Square (Sw) 0.89 1.58 3.25 1 1.25 7.2 44.23 0.15 0.80

Square (Hy) - LU 5× 10−4 0.03 0.06 1 1.07 12.56 45.50 0.31 0.80

Square (Hy) 0.64 0.93 1.67 1 1.25 9.78 46.3 0.16 0.82

Fertility (Cu) - LU 0.01 0.50 1.9 1.02 1.82 1.17 39.92 0.03 0.69

Fertility (Cu) 0.18 0.75 6.9 1 1.61 2.17 42 0.02 0.74

Cube 3D (UD) - LU 0.03 0.13 1.01 1 1.08 1.89 43.15 3× 10−3 0.73

Cube 3D (UD) 0.32 0.65 1.56 1 1.44 0.1 36.86 2× 10−3 0.67

The following measures are listed in Table 6.1:

• The edge length. To determine how well the algorithm fares at producing a unit mesh, we
compute the lengths of edges with respect to the metric at both endpoints. We list the smallest
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(ℓmin), average (ℓavg) and largest ℓmax lengths of edges.

• The distortion. As the resolution of inconsistencies is the criterion with lowest priority and
generates the largest amount of vertices, the final distortion of simplices is a good indication
of the distortion at which inconsistencies are finally solved. We compute the distortion of all
simplices and list the smallest (ψmin) and average (ψavg) distortion from all the simplices.

• The smallest angle. Angles are a good measure of the quality of a triangulation. For each
simplex, we compute its smallest angle (dihedral angle in the case of three-dimensional domains).
We list the minimum (αmin) and average (αavg) of the smallest angles of all simplices.

• The quality. A second measure of quality is computed. For planar and surface domains, we
use the formula presented by Zhong et al. [144]:

Q = 4
√

3
A

ph
.

where A is the area of the triangle, p the perimeter and h the longest edge (all computed in the
metric). For cells, we use the quality estimation introduced by Frey and George [71]:

Q = 216
√

3
V 2

A3
Σ

.

where V is the volume of the tetrahedron, and AΣ the sum of the areas of the four facets (all
compute in the metric). Both these measures live between 0 and 1, with 1 signaling the highest
quality. We list the lowest (Qmin) and average (Qavg) quality over all simplices.

For each result, we reproduce the statistics of the corresponding mesh that we had obtained in
Chapter I.4 as a locally uniform anisotropic mesh.

The anisotropic triangulations obtained with our new method are much better: thanks to a lower
number of vertices required to obtain a triangulation, the edge length is closer to the goal of a unit
mesh. A second observation is that despite the visually pleasing results that we obtain with our new
method, the angle and the quality of the meshes is lower than the anisotropic meshes produced by
Chapter I.4. This is a testament to the rigorousness of the locally uniform anisotropic meshes as every
simplex must be a good quality Delaunay simplex in its star for the algorithm to finish. It is however
also due to the fact that we have build an anisotropic Voronoi diagram with respect to a geodesic
distance but taken the dual with straight simplices, and the position of the seeds might not be optimal
for that dual.

Other anisotropic mesh generators

As a first observation, it is clear that our mesher is much slower than most anisotropic mesh
generation methods.

The meshes produced by our algorithm do have some benefits compared to other meshing algo-
rithms, for example our planar experiments produce visually pleasing results with decent quality. The
most notable advantage is however that the metric field is thoroughly satisfied. Preprocessing the
metric field, typically with a Laplacian smoothing, is a technique often used (see for example [73]),
which lowers the fidelity to the input metric field and can even nullify the anisotropy, thus resulting
in isotropic elements. This is noticeable for example in the “turns” of hyperbolic shock metric field,
that is where the eigenvectors of the metrics rotate (pictured for example in Figure 6.5). It is quite
common to see meshing algorithms then produce close to isotropic elements in these regions. On the
contrary, our algorithm produces a Voronoi diagram that honors the metric field closely and produces
triangulations with anisotropic elements that conform much more closely to the metric field.
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6.5 Optimization

The optimization of a mesh is often a necessary step in the creation of high-quality meshes. The
main tools of mesh optimization are vertex perturbations and combinatorial changes.

Many different optimization methods are known [132], but the concept of centroidal Voronoi tes-
sellations is particularly useful when optimizing structures linked to Voronoi diagrams [64]. Centroidal
Voronoi tessellations (CVT) are Voronoi diagrams whose seeds are also the centers of mass (centroids)
of their respective cells. The famous Lloyd algorithm [100] iteratively moves the seeds to the center
of mass of their respective cell and recomputes the Voronoi diagram of this new seed set. In the
Euclidean context, if a Voronoi cell V is partitioned with simplices {ti}, the center of mass can be
obtained with the formula:

c =

∑
i ci |ti|∑
i |ti|

, (6.1)

where ti is the Euclidean area of the simplex ti.
Many variations have been made to include density fields or using different distances (including

anisotropic distances) [62, 63, 64, 98]. Wang et al. [137] used CVTs in the context of isotropic geodesic
Voronoi diagrams on surfaces: the center of mass of the geodesic Voronoi cell is computed by sending
the Voronoi cell to the tangent space via the exponential map, optimizing in that space, and sending
the new centroid back to the surface. Their approach is robust and produces visually pleasing results.

6.5.1 Anisotropic Riemannian CVT

Since our method is based upon the Voronoi diagram, it is natural to try and extend centroidal
Voronoi tessellations to our context.

The first idea is to simply use the formulation of Wang et al. [137]: send the Voronoi vertices to
the tangent space via with the exponential map, and compute the Euclidean center of mass there. It is
however not completely painless as our geodesics are approximated upon a piecewise linear domains,
and two different geodesics can sometimes have the same tangent vector at the seed (which cannot
happen if geodesics are exactly computed).

While this method gives acceptable results, we introduce a second method, which does not require
the exponential map and makes use of the canvas. We approximate the Riemannian Voronoi center
of mass of a cell V that corresponds to a seed s with colors cs with the following formula:

cg =

∑
i ci |ti|gi∑
i |ti|gi

, (6.2)

where |ti|gi is the area of the triangle ti in the metric gi and the ti are canvas simplices whose vertices
have color cs

Remark 6.5.1 We have also considered including triangles ti that have at least one vertex of color
cs. This does not change produce any significant change in the output.

Equation 6.2 is exactly the formula of the Euclidean setting (Equation 6.1), except that the area
is computed with respect to the local metric. The canvas conveniently provides the decomposition of
a geodesic Voronoi cell in small triangles, making the approximation of cg accurate.

As its Euclidean counterpart, this algorithm comes with no guarantees (not even for termination)
but works well in practice. Figure 6.18 shows the optimization of five seeds in a square centered on
the origin and of side 4, endowed with the swirl metric field (see Section A.4 in Chapter A). Three
seeds are initially grouped together in the bottom left region.
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Figure 6.18: Optimization of 5 seeds in a square endowed with a swirl metric field. The canvas is a
star set. Colors show the distance from to the closest seed. (Seeds are thus in the middle of the deep
blue regions). The algorithm converges quickly and produces a well-spread output.

The formula in equation (6.2) does not extend to surfaces as the result of the weighted sum might
not lie on the domain. Projecting the canvas simplices to the tangent planes and computing the
center of mass there (or variations of this idea) unfortunately do not yield results as good as for two-
dimensional domains. In this setting, we must thus use a process similar to Wang et al. [137], that is
to consider the exponential map.

Results

A first observation is that our optimization is functional, despite not relying on the explicit com-
putation of the center of mass through the exponential map. Additionally, there are no noticeable
difference in the result of the optimization whether an isotropic canvas or a star set canvas is used
(see Figure 6.18).

In Figure 6.19, the initial straight Riemannian Delaunay triangulation of 320 seeds has been
optimized with 100 iterations. (Note however that only the first 10 iterations made significant changes
to the position of vertices).

With only few elements, the metric field is well captured and aesthetically pleasing. Observe that
the elements stay anisotropic in the rotational region, a region that is often smoothed and rendered
isotropic by other methods, or is very difficult for the other algorithms introduced in this thesis (see
Chapters I.4 and II.5).

Figure 6.20 illustrates a denser version of the mesh shown in Figure 6.14, obtained by reducing the
sizing field within the metric field. The final mesh has 15000 vertices and was then optimized with 10
iterations of our optimizer (which was enough to converge).
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Figure 6.19: The optimized straight Riemannian Delaunay triangulation of 4000 seeds in a planar
domain endowed with a hyperbolic shock induced metric field (left). On the right, a zoom on a
rotational region of the metric field shows the difference between pre- (above) and post- (bottom)
optimization.
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Figure 6.20: Optimization of the a mesh obtained for a square endowed with the “Swirl” metric field.
The final mesh has 15000 vertices. On the left, the optimized mesh after 10 iterations. On the right,
the quality measure of the facets at three different iterations.

6.6 Conclusion

In this chapter, we have introduced a new approach to create anisotropic meshes based on a discrete
structure that approximates the Riemannian Voronoi diagram of a set of seeds. This approach allows

190



6.6. Conclusion

Figure 6.21: Zoom on a region of the optimized swirl surface, after 10 iterations of optimization.

to consider duals composed of straight simplices, but also of curved Riemannian simplices, which has
never been considered previously. Our farthest point refinement algorithm generates good results for
planar and surface domains and we achieve great improvements over the results we had obtained
using the star set-based approaches of locally uniform anisotropic meshes and tangential Delaunay
complex (Chapter I.4 and II.5). Finally, we proposed a simple yet effective optimization algorithm that
extends the concept of centroid Voronoi tessellations to (anisotropic) Riemannian Voronoi diagrams
and produce visually pleasing meshes with good edge and size control. It should also be noted that
the points of our diagram are placed for the geodesic distance, and the straight dual is not the most
“natural” realization of the nerve.

Comparing our results with other anisotropic Voronoi diagrams, we observe that our diagram
requires fewer vertices to possess an embedded dual, notably in regions where the metric field rotates.
This advantage only lasts for a relatively small amount of time, and there is – unsurprisingly – no
difference between all diagrams as the set of seeds becomes denser.

Locally uniform anisotropic meshes, which produced disappointing results in practice due to over-
refinement, provide here a powerful tool to generate anisotropic canvas and allow to greatly reduce
the computational cost of computing our diagram by lowering the number of geodesic distance com-
putations. However, the computational time is the obvious limiting factor in our algorithm and the
runtime of our algorithm is still large, specifically in 3D, which limits the interest in practical appli-
cations. Nevertheless, various improvements are still possible to increase the speed: a natural albeit
complicated parallelism can be applied to the coloring of of the canvas, for example.

Our results in 3D are disappointing: the computational time is unreasonable and a farthest point
refinement algorithm does not produce embedded duals. Nevertheless, there are fewer issues than for
our older methods, and there is good hope that if we could generate power protected nets in reasonable
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time, we would obtain good results. Additionally, there is little doubt that this type of seed sets could
be used by other anisotropic Voronoi diagrams to create good triangulations: we have even already
proved that under certain conditions a power protected net would produce a diagram whose dual is
embedded. However, the generation of protected point nets is currently tedious and this is thus not
an option.

We shall show in Chapters III.7 and III.8 that under some conditions on the quality of the point
set and on the density of the canvas, we can prove that our structure captures the structure of the
Riemannian Voronoi diagram and that our duals – both Riemannian and straight – are embedded.
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7. Theoretical study of 2-dimensional
discrete Riemannian Voronoi diagrams

The discrete Riemannian Voronoi diagram, introduced in Chapter III.6, is a structure that aims
to build an accurate approximation of Riemannian Voronoi diagrams of manifolds endowed with an
arbitrary metric field. As its name indicates, we consider discrete information by coloring the vertices
of an underlying triangulation called the canvas and extracting the combinatorial information from
the simplices of the canvas to build the dual of the diagram.

Our interest residing in anisotropic triangulations, we have investigated in Chapter III.6 two possi-
ble duals of our diagram, using either curved or “straight” Riemannian simplices. With the former, we
obtain the curved Riemannian Delaunay complex, more intuitive since a discrete Riemannian Voronoi
diagram is defined using the geodesic distance but also a mostly theoretical realization. With the
latter, we obtain a more classical complex that is both easier to construct and to use. For either real-
ization, these complexes are not necessarily triangulations, in the sense that they are not necessarily
embedded. We investigate in this chapter the theoretical aspect of our structure and specifically under
which conditions the duals can be proven to be embedded.

Curved Riemannian Delaunay triangulations have previously received some theoretical attention:
Leibon studied the curved dual of the Riemannian Voronoi diagram in 2D [90] and gave conditions
such that the curved Riemannian Delaunay complex is a triangulation. Together with Letscher [91],
he extended this study to curved Riemannian Delaunay triangulations of any dimension, but their
analysis was shown to be flawed and corrected by Boissonnat et al. [17], at the expense of additional
conditions. Dyer et al. [66] improved the two-dimensional and surface work of Leibon, with better
bounds.

In this chapter, we restrain ourselves to the setting of two-dimensional manifolds. This allows
us to present proofs that are simpler and to obtain slightly better bounds than in the next chapter,
which will extend results to any dimension. Results on Euclidean Voronoi diagrams and Riemannian
geometry presented in Chapter 3 provide us the tools necessary to prove the theoretical soundness of
our approach.

Contributions We prove the theoretical soundness of our discrete Riemannian Voronoi diagram
structure (introduced in Chapter III.6) in the settings of a 2-manifold embedded in either R

2 (planar
domain) or R

3.

We exhibit sampling conditions such that the discrete and Riemannian Voronoi diagrams have
combinatorially equivalent nerve, such that the dual of the Riemannian Voronoi diagram is a triangu-
lation and, finally, such that the geodesic edges of a curved Riemannian Delaunay triangulation can
be “straightened” without losing the embeddability of the dual, thus obtaining the embeddability of
the straight dual of our diagram.

While results on the embeddability of the dual of a curved Riemannian Voronoi diagram in a
two-dimensional setting are already known, we offer a new point of view by using an approach based
upon Whitney’s lemma rather than Edelsbrunner and Shah’s topological ball property [68] (as was
done by Dyer et al. [66]). Along the way, we fix a small flaw in Dyer et al. [66] in a result on the
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intersection of convex bodies.
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7.1 Background

We first recall some concepts introduced in the previous chapter which will be useful in this
theoretical work. Details can be found in Chapter III.6.

We consider a set of seeds P in a domain Ω, and each seed is attributed a color. The domain is
endowed with an arbitrary metric field g, and the geodesic distance between two points, denoted by
dg, is the length of the shortest path between these two points. The Voronoi diagram constructed
with the geodesic distance is the Riemannian Voronoi diagram Vorg(P). As this diagram is difficult
to compute, we approximate the geodesic distance and the diagram Vorg(P) by considering a discrete
underlying structure, the canvas C, whose vertices are colored according to their closest seed. This
coloring is obtained through a multiple-front Dijkstra algorithm from the seeds. The discrete Voronoi
cell of a seed is the set of simplices that possess at least one vertex colored with the color of the seed.
The discrete Riemannian Voronoi diagram Vordg(P) is the set of discrete Voronoi cells. An example of
such a diagram is illustrated on Figure 7.1. The nerve of a Voronoi diagram Vord(P) is a formal way
to express its combinatorial structure and is defined by

N (Vord(P)) = {{Vd(pi)} | ∩i Vd(pi) 6= ∅, pi ∈ P}.

The straight and curved duals of a Voronoi diagram are realizations of the nerve with vertices in P
and using respectively straight and curved Riemannian Delaunay simplices (see Sections 2.7 and 2.8
in Chapter 2 for additional details on the definition). If a dual is embedded in the domain, we say
that it is a triangulation.
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Figure 7.1: Discrete Riemannian Voronoi diagram over an isotropic canvas.

7.2 Overview

Contrary to the Euclidean setting, the dual of a Riemannian Voronoi diagram is generally not a
triangulation, even if the points are in general position. To prove the embedding of both the curved and
straight duals, one might first think of working directly on the discrete Riemannian Voronoi diagram
and exposing sufficient conditions, similarly to the work of Cao et al. [39] on digital Euclidean 2D
Voronoi diagrams. Although Cao et al. are able to provide conditions such that the dual of their
digital Voronoi is a triangulation, the case of a Riemannian manifold endowed with a metric field is
much more complicated.

Instead, we follow a less direct path. We first give requirements such that the discrete and Rieman-
nian Voronoi diagrams have the same nerve (combinatorial structure). This result is then combined
with known results on curved Riemannian Delaunay triangulations [17, 90, 65] – which we reformulate
with a new approach – to provide sampling requirements for the curved dual to be a triangulation.
Finally, we prove that under some sampling conditions, “straightening” geodesic edges will not cause
the loss of the embedded property of the realization. The fact that the curved dual is a triangulation
will therefore be both a result and a step in the proof that the straight dual is a triangulation.

We first give an overview of the three parts of this chapter.

7.2.1 Equivalence of the nerves of the discrete Riemannian Voronoi diagram and
the Riemannian Voronoi diagram

The first part of the theory aims to show that while our discrete Riemannian Voronoi diagram uses
by definition only discrete information, its combinatorial structure can be under sufficient conditions
identical to the one of the Riemannian Voronoi diagram. When this is the case, we say that the nerves
of the diagrams are equivalent and write N (Vordg(P)) ∼= N (Vorg(P)).

Remark 7.2.1 This equivalence is only combinatorial: the nerve of a Voronoi diagram being a set of
sets of Voronoi cells, it is impossible for both nerves to be equal since the Voronoi cells of the same
seed is different in each diagram. However, there is a natural equivalence between a set {Vg(pi)} and
a set {Vd

g(pi)} (where Vd
g(pi) is the cell of pi in the discrete Voronoi diagram, see Definition 6.1.2 in

Chapter III.6) of the same seeds. For this reason, we use the ∼= notation.

As noted in Remark 6.1.3 in Chapter III.6, the combinatorial structure of the discrete Riemannian
Voronoi diagram can be extracted by only looking at the maximal canvas simplices whose vertices
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have all different colors, as long as the dual complex is pure (but we shall not consider the degenerate
case where it is not). To have equivalence between the nerves of the diagrams, we must ensure that

(1) for every Voronoi vertex in the Riemannian Voronoi diagram, there is at least one canvas simplex
that possesses the corresponding colors;

(2) no canvas simplex witnesses combinatorial information that does not belong to the nerve (that
is, no canvas simplex has vertices whose colors are those of non-adjacent Riemannian Voronoi
cells).

Requirements on the canvas

To satisfy Condition (1), the density of the canvas must depend on the smallest distance between
Voronoi vertices to ensure the equivalence. Figure 7.2 illustrates this observation: on the left, the
canvas is too sparse to capture accurately N (VorE(P)): the canvas simplices marked in red will create
simplices that do not belong to the dual of the (exact) Riemannian Voronoi diagram; on the right, the
canvas is sufficiently dense and the green simplices correctly capture the combinatorial information
of the Riemannian Voronoi diagram. To satisfy Condition (2), it is sufficient to prevent any canvas

Figure 7.2: Two discrete Riemannian Voronoi diagram in the simple case of a plane endowed with the
Euclidean metric field. The seeds are drawn with squares, the canvas with thin black segments and
the canvas vertices with circles. The Riemannian Voronoi diagram is drawn with thick black segments.

edge from having endpoints in two non-adjacent Voronoi edges. Both conditions are thus satisfied,
provided that the canvas is sufficiently dense.

Requirements on the set of seeds

Using seeds generated by other methods yields in practice unsatisfactory results. Consequently, the
canvas is also used to generate seeds (see Section 6.1.6 in Chapter III.6). Since the canvas is generated
before the seeds, seeds cannot be – in theory – in arbitrary position, otherwise the distance between
Voronoi vertices could be arbitrarily small and it would be impossible to preemptively construct a
canvas that reliably captures the nerve. The concept of power protected nets, recalled in Sections 2.12.1
and 2.12.2 of Chapter 2, will provide these guarantees for the seed set as we have shown in Chapter 3
that a Voronoi diagram built from a power protected set of seeds has separated adjacent Voronoi
vertices (see specifically Lemma 3.2.4).

196



7.2. Overview

Approach

We obtain the equivalence of the nerves incrementally, observing that a manifold with an arbitrary
metric field is locally well approximated by a flat domain with a uniform metric field, which is only
a linear transformation away from considering the Euclidean metric field. In this simpler setting,
sufficient conditions to obtain the equivalence of the nerves are exposed (Theorem 7.3.1) using the
separation of the Voronoi vertices induced by the power protected net hypothesis. These conditions are
finally pulled back to the general setting, and the equivalence of the nerves for an arbitrary 2-manifold
endowed with an arbitrary Lipschitz-continuous metric field is shown in Section 7.3.3.

7.2.2 Embeddability of the curved Riemannian Delaunay triangulations

Once it is proven that our discrete diagram has the same combinatorial structure as the Rieman-
nian Voronoi diagram, we can simply build upon known results that have been introduced on the
Riemannian Voronoi diagram and the curved Riemannian Delaunay triangulation. We show that,
under sufficient conditions, the dual of the Riemannian Voronoi diagram – and thus of our discrete
diagram, assuming that sufficient conditions are satisfied – can be embedded as a triangulation (mesh)
of the point set, with edges drawn as geodesic arcs (Section 7.4). Although the results we use on the
embeddability of the curved Riemannian Delaunay triangulation are known, our approach and proofs
are based on Whitney’s lemma instead of Edelsbrunner and Shah’s closed ball property [69]. The
main result is given in Theorem 7.4.18.

7.2.3 Embeddability of the straight Riemannian Delaunay triangulations

The last part of the chapter is devoted to exposing requirements such that the straight dual of a
Riemannian Voronoi diagram is a triangulation. We assume that conditions are met for the curved
Riemannian Delaunay triangulation to be embedded and give conditions such that “straightening” the
curved simplices into straight simplices does not produce any inversion.

The key intermediary result is the computation of a bound on the distance between a point on
a geodesic edge and its equivalent on the straightened edge. This bound depends on the quality of
the seed set and on the local distortion of the metric field and is computed in Section 7.5. With the
knowledge of this bound, we encompass the geodesic edges within “tubes” (in beige in Figure 7.3).
These tubes can be shown to not cover simplices entirely, thus proving that no inversion appear
when deforming the curved Riemannian Delaunay triangulation into a straight Riemannian Delaunay
triangulation (Theorem 7.5.3).

7.2.4 Nature of the canvas

To simplify computations, we assume in this chapter that the canvas is an isotropic Delaunay tri-
angulation of the domain. We further assume that this triangulation is generated through a Delaunay
refinement algorithm driven by a uniform sizing field hC that bounds the circumradius of Delaunay
simplices. This assumption does not reduce the genericity of the approach: these proofs can be easily
extended to star set canvasses as a star set canvas eventually becomes a consistent triangulation using
well-chosen canvas vertices (see Chapter I.4).
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Figure 7.3: The geodesic edges between seeds P -R and P -Q lie in their respective protection tubes
(colored in beige) around the straight edges

7.3 Equivalence of the nerves of the discrete and Riemannian Voronoi
diagrams

The first step on the path to proving that the dual of our discrete Riemannian Voronoi diagram is
a triangulation is to show that the discrete and Riemannian Voronoi diagrams have combinatorially
equivalent nerve. Our analysis is divided in four parts.

• We first consider at the most basic case of a flat domain endowed with the Euclidean metric
field. Results from Chapter 3 on the shape of Euclidean Voronoi cells and the separation of
Voronoi vertices allow conditions to be deduced on P and C such that the nerves are equivalent.

• The requirements exposed in the basic setting can be transported to the setting of a uniform
metric field through the use of a stretching transformation computed from the metric.

• An arbitrary Riemannian metric field is considered over the plane, and the fact that a metric
field can be locally well approximated by a uniform metric field is used to extend the results
from the previous cases.

• We solve the case of a general surface by locally approximating the manifold at a point with its
tangent plane.

We start with the setting of a flat domain endowed with the Euclidean metric field in the next
section.

7.3.1 Euclidean metric field

The setting of a planar domain endowed with the Euclidean metric field is the simplest setting
possible. As explained in Section 7.2, we must ensure that Voronoi vertices cannot be arbitrarily
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close to each other, otherwise we cannot guarantee that canvas simplices capture the correct nerve.
We show that the notions of net and power protection can be employed for the seed set and give
conditions on the density of the canvas such that the nerves of the diagrams built from these points
sets are equivalent.

The main result is given by Theorem 7.3.1.

Theorem 7.3.1 Assume that P is a δ-power protected (ε, µ)-net of R2 with respect to gE. Denote by
C the canvas, a Delaunay triangulation of R2, with sizing field hC. If

hC <
δ2µ

8ε2

√

1−
(
µ

2ε

)2

,

then
N (Vordg(P)) ∼= N (Vorg(P))

.

Lemmas 7.3.2 and 7.3.3 are intermediary results used to prove Theorem 7.3.1, which correspond
nicely to Conditions (1) and (2).

Lemma 7.3.2 Assume that P is a δ-power protected (ε, µ)-net of R
2 with respect to the Euclidean

metric field gE. Consider a seed p0 ∈ P and let VE(p0) be its corresponding Voronoi cell in VorE(P).
If

hC <
δ2µ

8ε2

√

1−
(
µ

2ε

)2

,

then no edge of C intersects two non-adjacent Voronoi faces of VE(p0).

Lemma 7.3.3 Assume that P is a δ-power protected (ε, µ)-net of R
2 with respect to the Euclidean

metric field gE. Consider a seed p0 ∈ P and let VE(p0) be its corresponding Voronoi cell in VorE(P).
If

hC <
δ2µ

8ε2

√

1−
(
µ

2ε

)2

,

then every Voronoi vertex of VE(p0) is witnessed by a canvas simplex.

Observe that, Lemma 7.3.2, by preventing canvas simplices from capturing combinatorial informa-
tion that is not in N (VorE(P)), ensures that for every element (a set of Voronoi cells) in N (VordE(P))
there exists a combinatorial equivalent inN (VorE(P)). Conversely, Lemma 7.3.3 ensures that for every
element in N (VorE(P)), there exists a combinatorial equivalent in N (VordE(P)) since every Voronoi
vertex of VorE(P) is witnessed by the canvas (the contrapositive). Their combination therefore proves
Theorem 7.3.1.

The rest of this section is dedicated to proving Lemmas 7.3.2 and 7.3.3; we start by proving the
former.

Proof of Lemma 7.3.2

Assume that the Voronoi cell VE(p0) has at least 3 vertices, otherwise we are done as any Voronoi
edge of VE(p0) is adjacent to the other Voronoi edges. Let {Fi} be the set of faces (edges) of the
Voronoi cell VE(p0). We seek a lower bound on the distance between non-adjacent faces

d(Fj , Fk) = min
x∈Fj ,y∈Fk

dE(x, y),
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Chapter 7. Theoretical study of 2-dimensional discrete Riemannian Voronoi diagrams

where Fj and Fk are not adjacent. Since a Voronoi cell is a convex polytope, the minimum of this
distance will be attained at a vertex of a face. We thus obtain the following result:

Lemma 7.3.4 Assume that P is a δ-power protected (ε, µ)-net. Let ℓ = min
i,j

dE(vi, Fj) where Fj is a

Voronoi edge whose endpoints are not vi. The length ℓ can be bounded from below by

ℓ ≥ ℓm =
δ2µ

8ε2

√

1−
(
µ

2ε

)2

.

v0 v1

p

θ
ℓ

s

v2

v3

v4v5

Figure 7.4: Corner of a Voronoi cell. ℓ is the minimal distance between two non-adjacent edges.

Proof. Figure 7.4 shows a generic Euclidean Voronoi cell with 6 Voronoi vertices. Assume without
loss of generality that v1 and F = [v0; v5] are the arguments that realize the minimum of the distance
and let θ be the angle at v1. Since we have δ-power protection, the Voronoi vertices of VE(p0) are
separated and |v0 − v1| ≥ δ2/4ε using Lemma 3.2.4 in Chapter 3. If θ ≥ π/2, we immediately have
ℓ ≥ δ2/4ε. Assume now that θ ≤ π/2. Let v = |v0 − v1|. By Lemma 3.3.1 in Chapter 3, we have

θ ≥ 2 arcsin

(
µ

2ε

)
.

Therefore,

ℓ = sin(θ)v ≥ sin

(
2 arcsin

(
µ

2ε

))
δ2

4ε
=
δ2µ

4ε2

√

1−
(
µ

2ε

)2

,

using sin(2α) = 2 sin(α)
√

1− sin2(α). Since

µ

ε

√

1−
(
µ

2ε

)2

≤ 1,

the minimum is attained when θ ≤ π/2 and we have

ℓm =
δ2µ

4ε2

√

1−
(
µ

2ε

)2

.

�
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As the canvas C is an isotropic Delaunay mesh driven by a sizing field hC that bounds the length
of the circumradius of a Delaunay simplex, if C honors a uniform sizing field hC , all the canvas edges e
in C have length |e| < 2hC . Thus if hC < ℓm/2, then no edge crosses two non-adjacent Voronoi edges.
This ensures that for all D ∈ N (VordE(P)), there exists D′ ∈ N (VorE(P)) with the same combinatorial
information, which proves Lemma 7.3.2.

Proof of Lemma 7.3.3

We now prove Lemma 7.3.3, that is, if hC is small enough then every Voronoi vertex is witnessed
by a at least one canvas simplex.

Since C is a partition of the domain Ω ⊂ R
2, every Voronoi vertex of VorE(P) is located in a

maximal canvas simplex σC,i ∈ C.

Remark 7.3.5 A Voronoi vertex vi might be located on a canvas edge (or even a canvas vertex) and
belong to more than one canvas simplex. This does not create any issue in the following proofs, and
when we refer to the canvas simplex that contains vi, any canvas simplex that contains the Voronoi
vertex can be arbitrarily – but consistently – chosen.

If the canvas is not dense enough, multiple Voronoi vertices might share a canvas simplex, which
is troublesome. Additionally, even if there are no two Voronoi vertices in the same canvas simplex,
the canvas simplex σC,i in which vi is located might not witness vi. This happens when a canvas edge
crosses over two adjacent Voronoi edges, which is not prevented by Lemma 7.3.2. This geometric
configuration is illustrated in Figure 7.5.

v
v

v

Figure 7.5: Two discrete Riemannian Voronoi diagrams. The canvas is traced with thin black lines,
the Riemannian Voronoi diagram with thick black lines. The seeds of the diagram are drawn with
squares, and the canvas vertices with circles. On the left, the canvas simplex containing the Voronoi
vertex v does not witness the dual of that Voronoi vertex.

The following lemmas prove that these two issues do not appear when the canvas is dense enough.

Lemma 7.3.6 If hC < δ2/8ε, then no two Voronoi vertices are located in the same maximal canvas
simplex.
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Chapter 7. Theoretical study of 2-dimensional discrete Riemannian Voronoi diagrams

Proof. If hC is the sizing field of C, then any edge of C has its length bounded by 2hC . Since we have
assumed δ-power protection of the Delaunay simplices, the Voronoi vertices are separated by δ2/4ε
by Lemma 3.2.4 in Chapter 3. Therefore, if hC < δ2/8ε then every Voronoi vertex falls in a different
canvas simplex. �

Recall that for a given vi, σC,i is the associated canvas simplex that contains vi. Assume that not
every σC,i is also a witness of vi (otherwise we are done since we have a bijection between {vi} and
{σC,i} by Lemma 7.3.6). Without loss of generality, we can assume that v0 is such vertex (hence we
assume that σC,0 is not a witness of v0). We will show that if hC ≤ ℓm/2, there exists a canvas simplex
that witnesses of v0, and that we can find it by walking on the canvas as illustrated on Figure 7.6.

q0

q2

q1

q3

q4

q5

q6

v0

Figure 7.6: The Riemannian Voronoi diagram is traced with thick black lines, the canvas is shown
with thin black lines. The algorithm starts in the triangle ∆q0q1q2 and eventually finds the witness
∆q4q5q6 of v0.

We now detail the walking algorithm that starts at the simplex σC,0 and eventually finds the
witness of v0 in C. An preliminary result is needed to prove that our starting simplex only has two
colors.

Lemma 7.3.7 The vertices of σC,0 are colored with exactly two different colors.

Proof. In this two-dimensional setting, a canvas simplex is colored with at most three different
colors. Since we have assumed that σC,0 does not witness v0 and that hC is small enough such that
the Voronoi vertices fall in different canvas simplices, σC,0 is not colored with three different colors.
The vertices cannot either have all the same colors because v0 is located in σC,0 and Voronoi cells are
convex. Therefore, the vertices of σC,0 are painted with two different colors. �

Walking process Assume that the conditions of Lemma 7.3.2 are fulfilled. Consequently, no canvas
edge can intersect two non-adjacent Voronoi faces. Let q0, q1 and q2 be the vertices of σC,0. Without
loss of generality, we can assume that q0 is the vertex that has a different color (see Figure 7.6 for an
illustration). Let c0 and c1 be the colors at respectively q0 and q1. Let c2 be the color that is “missing”
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7.3. Equivalence of the nerves of the discrete and Riemannian Voronoi diagrams

to capture v0. Let p0, p1 and p2 be the seeds of the cells V0, V1 and V2 (whose respective colors are
c0, c1 and c2).

Begin by picking the edge e0 of σC,0 that is closest to the seed p2. This is an edge e0 = [p0, pi]
with i = 1 or 2. Again without loss of generality, assume that i = 1. Consider the neighboring canvas
simplex σC,1 that shares the edge e0 with σC,0. Let q3 and c3 be the vertex of σC,1 that does not belong
to e0 and its color. There are three possibilities:

• c3 = c2. We are done: σC,1 witnesses v0.

• c3 = c0 or c3 = c1. The same process is repeated: pick the edge of σC,1 that is closest to p2 and
has two different colors; find the adjacent σ2 and look at the color of its third vertex. This will
eventually finishes since we move closer to p2 with every step (and the mesh is finite).

• c3 = c4 with c4 6= c0, . . . , c2. This is impossible because it implies that one of the edges of σC,1
crosses two non-adjacent Voronoi edges, which contradicts our density assumption.

Therefore, we eventually reach a σC,i that has three different colors, and witnesses v0. The algorithm
is illustrated in Figure 7.6.

This proves Lemma 7.3.3 and ensures that ∀D ∈ N (VorE(P)), there exists D′ ∈ N (VordE(P)) with
the same combinatorial information. Thus if

hC < min

(
ℓm
2
,
δ2

8ε

)
=
ℓm
2

=
δ2µ

8ε2

√

1−
(
µ

2ε

)2

,

then both lemmas are proven and thus Theorem 7.3.1 is proven, and N (VorE(P)) ∼= N (VordE(P)).

7.3.2 Uniform metric field

We now consider the setting of Ω = R
2 endowed with a uniform metric field g0 and use the results

obtained in the Euclidean case to give density conditions on the sampling of the point set and on the
canvas such that the nerves of Vordg0

(P) and Vorg0(P) are combinatorially equivalent.
By Lemma 3.4.1 in Chapter 3, we have stability of the net and power protection assumption

through a metric transformation. That is, if a point set P in R
2 is a δ-power protected (ε, µ)-net with

respect to a uniform metric field g0 (for all x ∈ Ω, g0(x) = G0), then the point set P ′ = {F0pi, pi ∈ P},
where F0 is the square root of G0, is a δ-power protected (ε, µ)-net with respect to the Euclidean
metric. We can deduce from this result an upper bound on the sizing field of C in the case of a
uniform metric field using the results of Section 7.3.1 in the Euclidean setting.

Theorem 7.3.8 Let g0 be a uniform metric field on Ω (for all x ∈ Ω, g0(x) = G0). Assume that P is
a δ-power protected (ε, µ)−net in Ω with respect to g0. Denote by C the canvas, and hC its sizing field.
Let {λi} and {vi} be respectively the eigenvalues and the normalized eigenvectors of the matrix G0. If

hC <
(

min
i

√
λi

)
δ

2µ

8ε2

√

1−
(
µ

2ε

)2

 ,

then N (Vorg0(P)) ∼= N (Vordg0
(P).

Proof. Consider R = Vordg0
(P) over C. Let F0 be a square root of G0. The matrix F0 provides

a stretching operator between the Euclidean and the metric spaces. Let P0 = {F0p, p ∈ P} be the
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Chapter 7. Theoretical study of 2-dimensional discrete Riemannian Voronoi diagrams

transformed point set and C0 be a canvas (an isotropic Delaunay triangulation) of the transformed
space. Denote by R0 the discrete Riemannian Voronoi diagram of P0 with respect to gE over C0. Let
hC0 be the upper bound on the sizing field of C0 provided by Theorem 7.3.1 such that DelE(P0) is
captured by C0.

Since P0 is a δ-power protected net with respect to gE, we can invoke Theorem 7.3.1 and we must
thus have

hC0 <
δ2µ

8ε2

√

1−
(
µ

2ε

)2

,

for the canvas C0 to capture N (VorE(P0)).
Let C′

0 be the image of C by F0. Note that C′
0 and C0 are two different triangulations of the same

space. If any edge of C′
0 is smaller (with respect to the Euclidean metric) than 2hC0 , then C′

0 satisfies

hC′
0
<
δ2µ

8ε2

√

1−
(
µ

2ε

)2

and thus C′
0 captures N (VorE(P0)).

Recall that given an eigenvector vi of G0 with corresponding eigenvalue λi, a unit length in the
direction vi in the metric space has length 1/

√
λi in the Euclidean space. Therefore, if the sizing field

hC of C is smaller than αhC0 , with

α =
1

max
i

(
1√
λi

) = min
i

√
λi,

then every edge of C′
0 is smaller than 2hC0 . This implies that C′

0 captures N (VorE(P0)) and therefore
C captures N (Vorg0(P)). �

This settles the case of a uniform metric field.

7.3.3 Arbitrary metric field

We now consider an arbitrary metric field g over the domain Ω = R
2. The key to proving the

equivalence in this setting is to locally approximate the arbitrary metric field with a uniform metric
field, a configuration that we have dealt with in the previous section. We shall always compare the
metric field g in a neighborhood U with the uniform metric field g′ = g(p0) where p0 ∈ U . Because g′

and the Euclidean metric field differ by a linear transformation, we can simplify matters and assume
that g′ is the Euclidean metric field gE. The main argument of the proof will be once again that a
power protected net has stable and separated Voronoi vertices.

We now introduce the main result of this section, Theorem 7.3.9.

Theorem 7.3.9 Let g be an arbitrary metric field on Ω. Assume that P is a δ-power protected
(ε, µ)−net in Ω with respect to g. Denote by C the canvas, and hC its sizing field. If

hC < min
p∈P

hC,p,

where hC,p is given in Lemma 7.3.10 below, and if ε is sufficiently small and δ is sufficiently large
(both values will be detailed in the proof), then N (Vorg(P)) ∼= N (Vordg(P)).

We will prove Theorem 7.3.9 by computing for each point p ∈ P the necessary sizing field of the
canvas such that the Voronoi cell Vg(p) is captured correctly. Conditions on ε and δ shall emerge from
the intermediary results on the stability of power protected nets.
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7.3. Equivalence of the nerves of the discrete and Riemannian Voronoi diagrams

Lemma 7.3.10 Let ψ0 ≥ 1 be a bound on the metric distortion and g be a Riemannian metric field
on U . Let U be an open neighborhood of Ω = R

2 that is included in a ball Bg(p0, r0), with p0 ∈ U
and r0 ∈ R

+ such that ∀p ∈ B(p0, r0), ψ(g(p), gE(p)) ≤ ψ0. Let PU be a finite point set in U and let
p0 ∈ PU .

Suppose that PU is a δ-power protected (ε, µ)−net of with respect to g. Let Vg(p0) be the Voronoi
cell of p0 in Vordg(PU ).

If

hC,p0 <
1

2
min
i

(√
λi
)

sin(θ)


L0 −

2η

tan
(
θ
2

)


 ,

with {λi} the eigenvalues of g0, and if ε is sufficiently small and δ is sufficiently large (both values
will be detailed in the proof), then the cell Vg(p0) is captured.

Approach

Our approach is composed of essentially two steps: we first bring ourselves back to a setting that
we have solved and then use the previous results. For readability, the many intermediary results
needed to prove Theorem 7.3.9 are moved to Chapter 3. We refer to them at appropriate times.

We consider a seed p ∈ P and first prove that the Voronoi cell Vg(p) is close to the Euclidean
Voronoi cell VE(p). Specifically, we show (Lemma 3.4.12 in Chapter 3) that the Riemannian Voronoi
cell can be encompassed into two scaled versions of the Euclidean Voronoi cell: an eroded cell EV−η

E
(p)

and a dilated cell DV+η
E

(p), defined respectively by

EV−η
E

(p0) = {x ∈ VE(p0) | dE(x, ∂VE(p0)) > η},

and

DV+η
E

(p0) =
⋂

i6=0

Hη(p0, pi),

where Hη(p0, pi) is the half-space containing p0 and delimited by the bisector BS(p0, pi) translated
away from p0 by η. The constant η is the thickness of this encompassing and depends on the bound
on the distortion ψ0 in the neighborhood, and on the sampling and separation parameters ε and µ.
We have that η goes to 0 as ψ0 goes to 1. Figure 7.7 illustrates the notations.

We then show that if P is a power protected net with respect to g then P is locally a power
protected net with respect to gE (Lemmas 3.4.2 and 3.4.16 in Chapter 3). From this conclusion, the
separation and stability of the Voronoi vertices of VE(p) can be obtained. We then expose conditions
on the quality of the seed set such that the Voronoi vertices of EV−η

g (p) are separated (Lemma 7.3.12
of this chapter).

Remark 7.3.11 There is so far no involvement of the canvas whatsoever, and hence this procedure
can be almost exactly used to prove the embedding of the dual of the anisotropic Voronoi diagram of
Labelle and Shewchuk (see Chapter II.5).

Finally, we expose conditions such that EV−η
g (p) – and thus Vg(p) – is captured by the canvas

through density requirements. Considering the minimum for all points p ∈ P, we obtain the final
metric field.
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p0

η

VE(p0)

DV
+η
E (p0)

EV
−η
E (p0)

η

Figure 7.7: The different encompassing cells around p0. The Riemannian Voronoi diagrams with
respect to g and gE are respectively traced in dark cyan and black. The Voronoi cell VE(p0) is colored
in yellow. The cells DV+η

E
and EV−η

E
are colored in green.

Proof of Lemma 7.3.10

As recalled above, Lemma 3.4.5 in Chapter 3 gives us that Vg(p0) lies in DV+η
E

(p0) and contains
EV−η

E
(p0). Since Vg(p0) contains EV−η

E
(p0), if hC is small enough such that EV−η

E
(p0) is captured by

C, then Vg(p0) is also captured.

In the Euclidean setting (see Section 7.3.1), we have used the power protection of P with respect to
gE to deduce a lower bound on the distance between two adjacent Voronoi vertices (see Lemma 3.2.4
in Chapter 3). Since we know that P is a power protected net for gE by stability, we can apply the
separation bound to the vertices of VE(p0), but not to those of EV−η

E
(p0). Nevertheless, we can still

extract the critical property that the Voronoi vertices are separated, as shown in the next lemma.

Lemma 7.3.12 (Separation of the Voronoi vertices of the eroded Voronoi cell) Let U , g and
ψ0 be defined as in Lemma 7.3.10. Assume that the point set PU is a δ-power protected (ε, µ)-net with
respect to the Riemannian metric field g. Then the Voronoi vertices of EV−η

E
(p0) are separated, under

sufficient conditions on δ and ε. (Those values will be made explicit in the proof.)

Proof. The notations used in this proof are illustrated in Figure 7.8. By Lemmas 3.4.2 and 3.4.16, P
is δ0-power protected (ε0, µ0)-net with respect to gE. The δ0-power protection property of PU induces
a separation bound L0 := δ2

0/4ε0 between the Voronoi vertices of VE(p0) (see Lemma 3.2.4). Denote
by ℓ be the distance between any two adjacent Voronoi vertices of EV−η

E
(p0). When a seed set is a

net, we can deduce a bound on the angle of a corner of the Voronoi cell VE(p0) (using Lemma 3.3.1
in Chapter 3); denote this bound by θ = 2 arcsin (µ0/2ε0). Note that the lower bound on the smallest
angle θ in a Voronoi cell is unchanged by the erosion of the Voronoi cell.
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η

ℓ
L

θ

η
EV −η(p0)

p0

V (p0)

ℓ0

Figure 7.8: Eroded Voronoi cell and a zoom on one of the corners.

We have

ℓ = L− 2ℓ0, with ℓ0 =
η

tan
(
θ
2

) .

Observing that

tan (arcsin(x)) =
x√

1− x2
=

1√
1
x2 − 1

,

we obtain

ℓ = L− 2
η

tan
(
θ
2

)

≥ L0 − 2
η

tan
(
arcsin

(
µ0

2ε0

))

= L0 − 2η

√(
2ε0

µ0

)2

− 1

≥ δ2
0

4ε0
− 2

(2ε0)2(ψ2
0 − 1)

µ0

√(
2ε0

µ0

)2

− 1, (7.1)

since η =
ρ2

0((2ε0)2−1)
µ0

(see Definition 3.4.9 and Lemma 3.4.15 in Chapter 3). To have separation of the

Voronoi vertices of EV−η
E

(p0), we need ℓ to be positive. This can be achieved by enforcing that the
lower bound is positive:

δ2
0

4ε0
> 2

(2ε0)2(ψ2
0 − 1)

µ0

√(
2ε0

µ0

)2

− 1.
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By Lemma 3.4.2, we have that ε0 = ψ0ε, µ0 = λε/ψ0 and ρ0 = 2ψ0ε. Using this notation we see that
ℓ > 0 if

δ2
0 >

32

λ
(ψ2

0 − 1)ε2ψ4
0

√√√√
(

2ψ2
0

λ

)2

− 1. (7.2)

This condition is easy to satisfy when ψ0 goes to 1, because the right hand side of Inequality (7.2)
is proportional to (ψ2

0 − 1)ε2.
The intermediary results that we use already impose some conditions on δ and ε, and we thus

would like to give the condition in Equation 7.2 in terms of δ, so that it may be compared with
Inequality (3.8) (this will be done in Remark 7.3.13). In Lemma 3.4.16, we have seen that

δ2
0 =

δ2

ψ2
0

+

(
1

ψ2
0

− ψ2
0

)
(ε+ χ2)2 − 4εχ2

ψ2
0

,

with, by Lemma 3.4.13 in Chapter 3,

χ2 =
8ψ3

0ε(ψ
2
0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) .

Thus

δ2

ψ2
0

+

(
1

ψ2
0

− ψ2
0

)
(ε+ χ2)2 − 4εχ2

ψ2
0

>
32

λ
(ψ2

0 − 1)ε2ψ4
0

√√√√
(

2ψ2
0

λ

)2

− 1,

which is equivalent to

δ2 >
32

λ
(ψ2

0 − 1)ε2ψ6
0

√√√√
(

2ψ2
0

λ

)2

− 1−
(
1− ψ4

0

)
(ε+ χ2)2 + 4εχ2.

After simplifying the (ε+ χ2)-term, we find

δ2 >
32

λ
(ψ2

0 − 1)ε2ψ6
0

√√√√
(

2ψ2
0

λ

)2

− 1 +
32ψ3

0(ψ2
0 − 1)ε2

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) +
(
ψ2

0 − 1
)
ε2
(
ψ2

0 + 1
)
. (7.3)

When this bound is satisfied, the Voronoi vertices of EV−η
E

(p0) are separated, which concludes our
proof. �

Remark 7.3.13 Proving Lemma 3.4.12 in Chapter 3 required us to prove various intermediary lem-
mas, which already introduced requirements on the sampling. If we compare Equation 7.3 to the bound
given by Inequality (3.8) (made explicit in Inequality (3.9)) in the proof of Lemma 3.4.16, namely

δ2 >
256(ψ2

0 − 1)ψ2
0

λ2
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)2 (ψ2
0 − 1)ε2

+
32ψ3

0

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

)(ψ2
0 − 1)ε2

+(ψ2
0 + 1)(ψ2

0 − 1)ε2. (7.4)
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We see that the two final terms in the sum in Inequalities (7.3) and (7.4) are of equal magnitude. The
final terms would in fact agree if we would not have simplified the equation, because χ2 is of order
ε(ψ2

0 − 1). The first term disappears for Inequality (7.4) in the limit where ψ0 tends to 1, while this is
not the case for the first term in Inequality (7.3).

This means that – at least when ψ0 goes to 1 – Equation 7.3 provides the tougher bound.

We can now provide a bound on the sizing field hC of the canvas such that EV−η
E

(p0) is captured
and prove Lemma 7.3.10. Similarly to the Euclidean case (see Theorem 7.3.1 and Lemmas 7.3.2
and 7.3.3), the bound on the sizing field is computed by combining the separation distance ℓ (given
in Equation 7.1) and the lower bound θ on the angle of a corner of an Euclidean Voronoi cell, giving
the requirement

hC,p0 <
1

2
sin(θ)


L0 −

2η

tan
(
θ
2

)


 .

We should not forget that we have assumed that g0 is the Euclidean metric field, which is generally
not the case, we must in fact proceed like for the case of a uniform metric field (Theorem 7.3.8):

hC,p0 <
1

2
min
i

(√
λi
)

sin(θ)


L0 −

2η

tan
(
θ
2

)


 ,

with {λi} the eigenvalues of g0.
Therefore, if the seed set satisfies the previous conditions on ε and δ and the canvas honors the

sizing field hC , then EV−η
E

(p0) is captured, and thus Vg(p0) is captured, which proves Lemma 7.3.10.

Proof of Theorem 7.3.9

Taking the minimum of all the sizing field values over all p ∈ P, we obtain a sizing field such that
all the Voronoi cells are captured. If the canvas C satisfies

hC < min
p∈P


1

2
min

λi∈ev(g(p))

(√
λi
)

sin(θ)


L0 −

2η

tan
(
θ
2

)




 ,

where ev(g(p)) are the eigenvalues of the matrix Gp = g(p), then every cell is captured properly and
N (Vordg(P)) ∼= N (Vorg(P)) in the general setting, when the geodesics are exactly computed.

7.3.4 Extension to surfaces

The previous results may be generalized to surfaces embedded in R
3. We shall assume that, apart

from the metric induced by the embedding of the domain in Euclidean space, there is a second metric
g defined on M. Let πp : M → TpM be the orthogonal projection of points of M on the tangent
space TpM at p. For a sufficiently small neighborhood Up ⊂ TpM, πp is a local diffeomorphism (see
Niyogi [111]).

Denote by PTp the point set {πp(pi), pi ∈ P} and PUp the restriction of PTp to Up. Assuming that
the conditions of Niyogi [111] are satisfied (which are simple density constraints on ε compared to the
reach of the manifold), the pullback of the metric with the inverse projection (π−1

p )∗g defines a metric
gp on Up such that for all q, r ∈ Up,

dgp(q, r) = dg(π
−1
p (q), π−1

p (r)).
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This implies immediately that if P is a δ-power protected (ε, µ)-net onM with respect to g then PUp
is a δ-power protected (ε, µ)-net on Up. We have thus a metric on a subset of a two-dimensional space,
in this case the tangent space, giving us a setting that we have already solved.

It is left to translate the sizing field requirement from the tangent plane to the manifoldM itself.
Note that the transformation πp is completely independent of g. Boissonnat et al. [17, Lemma 3.7]
give bounds on the metric distortion of the projection on the tangent space. This result allows to
carry the canvas sizing field requirement from the tangent space to M.

7.3.5 Approximate geodesic distance computations

We have so far assumed that geodesics are computed exactly, which is generally not the case in
practice. Nevertheless, once the error in the approximation of the geodesic distances is small enough,
the computation of the discrete Riemannian Voronoi diagram with approximate geodesic distances
can be equivalently seen as the computation of a second discrete Riemannian Voronoi diagram using
exact geodesic distances but for a slightly different metric field.

Denote by d̃g the geodesic approximation and dg the exact geodesic distance with respect to the
metric field g. Assume that in a small enough neighborhood U (see Lemma 3.1.4 in Chapter 3), the
distances can be related as ∣∣∣dg(p0, x)− d̃g(p0, x)

∣∣∣ ≤ ξdg(p0, x),

where ξ is a function of x that goes to 0 as the sampling parameter ε goes to 0. We can formulate a
lemma similar to Lemma 3.4.5 in Chapter 3 to bound the distance between the same bisectors between
seeds for the exact and the approximate diagrams.

Lemma 7.3.14 Let ψ0 ≥ 1 be a bound on the metric distortion and g and g′ be two Riemannian
metric fields on U . Let U be an open neighborhood of Ω = R

2 that is included in a ball Bg(p0, r0),
with p0 ∈ U and r0 ∈ R

+ such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let PU = {pi} be a finite point
set in U and let p0 ∈ PU . Let Ṽp0,g denote a Voronoi cell with respect to the approximate geodesic
distance.

Suppose that the Voronoi cell V +2ξρ̃
g (p0) lies in a ball of radius ρ̃ with respect to the metric g, which

lies completely in U . Then Ṽp0,g lies in V +2ξρ̃
g (p0) and contains V −2ξρ̃

g (p0).

Proof. Let B̃Sg(p0, pi) be the bisector between p0 and pi with respect to the approximate geodesic

distance. Let y ∈ B̃Sg(p0, pi) ∩ Bg(p0, ρ), where Bg(p0, ρ) denotes the ball centered at p0 of radius ρ

with respect to the exact geodesic distance. Now d̃g(y, p0) = d̃g(y, pi), and thus

|dg(y, p0)2 − dg(y, pi)2| =
∣∣∣dg(y, p0)2 − d̃g(y, p0)2 + d̃g(y, pi)

2 − dg(y, pi)2
∣∣∣

≤
∣∣∣dg(y, p0)2 − d̃g(y, p0)2

∣∣∣+
∣∣∣dg(y, pi)2 − d̃g(y, pi)2

∣∣∣

≤ 2ξ(dg(y, p0)2 + dg(y, pi))
2

≤ 2ξρ̃2.

Thus dg(y, p0)2 ≤ dg(y, pi)
2 + ω̃ and dg(y, p0)2 ≥ dg(y, pi)

2 − ω̃ with ω̃ = 2ξρ̃2, which gives us the
expected result. �

Denote by Ṽ (p0) the Voronoi cell of p0 with the approximate metric. We can then incorporate
Lemma 7.3.14 to obtain a result similar to Lemma 3.4.12.
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7.4. Curved Riemannian Delaunay triangulation

Lemma 7.3.15 Let U , ψ0, g, g0 and PU be defined as in Theorem 7.3.9. Then we can find η′
0 and

ω′
0 such that

EV
−η′

0
g0 (p0) ⊆ V

−ω′
0

g0 (p0) ⊆ V−ω̃
g (p0) ⊆ Ṽg(p0) ⊆ V+ω̃

g (p0) ⊆ V
+ω′

0
g0 (p0) ⊆ DV

+η′
0

g0 (p0).

These inclusions are illustrated in Figure 7.9.

p0

Vg0(p0)

DV +η′0
g0

(p0)

EV −η′0
g0

(p0)

V +ω′0
g0

(p0)

V −ω′0
g0

(p0)

∂
˜

Vg(p0)

∂V −ω̃
g (p0)

∂V +ω̃
g (p0)

Figure 7.9: Illustration of the different encompassing cells around p0 in the context of an approximate
geodesic distance. The RVDs with respect to g and g0 are respectively traced in red and black. The
dilated Voronoi cells are traced in blue and green. The Voronoi cell Vg0(p0) is colored in yellow. The

cells DV
+η′

0
g0 and EV

−η′
0

g0 are colored in green, and the cells V
±ω′

0
g0 (p0) are colored in purple.

The subsequent lemmas and proofs are similar to what was done in the case of exact geodesic
computations and we do not detail them.

7.4 Curved Riemannian Delaunay triangulation

In the previous section, we have given sufficient conditions for the nerves of the discrete and
Riemannian Voronoi diagrams to be equivalent. The next step is to prove that the curved Riemannian
Delaunay complex is homeomorphic to the manifold. Several works have been dedicated to conditions
that guarantee this, see for example Edelsbrunner and Shah [69] and Boissonnat et al. [19, 20]. We
shall be relying on the latter ones for many results.

In two dimensions, the Delaunay complex is homeomorphic to the surface under very light condi-
tions: it is sufficient for three points not to lie on a geodesic, see Rustamov [124], Dyer et al. [65], or
Wintraecken [140]. We prove the same results using a more geometrical approach where we “paint”
the Delaunay simplex on the manifold in an intrinsic manner and, along the way, fix a flaw in Dyer et
al. [67]. The main result is given in Theorem 7.4.18.
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Chapter 7. Theoretical study of 2-dimensional discrete Riemannian Voronoi diagrams

For each simplex σ in the Delaunay complex, we consider its curved realization (see Section 2.9 in
Chapter 2 for the exact definition). As in the work of Dyer [65], we can define the non-degeneracy of
a geometric simplex as follows

Definition 7.4.1 The curved realization of a Delaunay simplex, σ̃, is said to be non-degenerate if,
and only if, it is homeomorphic to ψ, where ψn is the n-dimensional standard simplex with coordinates
λ = (λi), that is

ψn = {(λi) ∈ R
n+1 | λi ≥ 1,

∑

i

λi = 1}.

We are interested in conditions that guarantee that the curved realization of the Delaunay complex
gives a homeomorphism between the Delaunay complex Del and the manifoldM. The homeomorphism
is in fact a piecewise smooth homeomorphism where the homeomorphism per simplex σ̃ is given by
the maps Bσ. It is of course necessary that all simplices σ̃ in the complex are non-degenerate.

We first recall some definitions:

Definition 7.4.2 A mapping f of an oriented simplicial complex K that is a n-manifold (with bound-
ary), into Euclidean space E

n endowed with an orientation, is called simplex-wise positive if for each
top dimensional simplex σni , f is smooth and bijective in σni (the partial derivatives being continuous
on the boundary), as well as orientation preserving. For any simplicial complex L, let Lk, or (L)k,
denote the subcomplex containing all cells of L of dimension ≤ k. With f in K as above, any point q
of En \ f(Kn−1) is in the image of a certain number of h of n-simplices of K; we say that q is covered
h times.

Lemma 7.4.3 (Whitney’s lemma [139]) Let f be simplex-wise positive in K. Then for any con-
nected open subset R of En \f(∂K), any two points of R not in f(Kn−1) are covered the same number
of times. If this number is 1, then f , considered in the open subset R′ = f−1(R) of K only, is bijective
onto R.

We recall some definitions and a lemma introduced by Leibon [90] and Dyer [67].

Definition 7.4.4 (Strong convexity radius) A geodesic disk Br(x) centered at x on a Riemannian
surface is called strongly convex if for any two point in the closed disk B̄r(x) there is exists a unique
minimizing geodesic connecting these points which lies in the interior of Br(x). The strong convexity
radius is the largest radius for which the disk is strongly convex.

We have the following bound on the convexity radius by Chavel [41, Theorem IX.6.1]:

Lemma 7.4.5 Suppose the sectional curvatures of M are bounded by K ≤ Λ+, and iM is the injec-
tivity radius. If

r < min

{
iM
2
,

π

2
√

Λ+

}
,

then B̄M(x; r) is convex. (If Λ+ ≤ 0, we take 1/
√

Λ+ to be infinite.)

Remark 7.4.6 If the vertices of an intrinsic simplex lie inside a convex disk, then the simplex is
wholly contained in the convex disk.

Definition 7.4.7 (Pseudo-disks – Boissonnat and Oudot [27]) A family of topological disks on
a surface are Pseudo-Disks if for any two distinct disks, their boundary either do not intersect, or they
intersect tangentially at a single point, or they intersect transversely at exactly two points.
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7.4. Curved Riemannian Delaunay triangulation

Lemma 7.4.8 (Small circle intersection – Dyer et al. [67], Leibon [90]) All geodesic disks
whose radius is strictly smaller than the strong convexity radius are pseudo-disks.

We assume that there are at least two intersection points of the two circles, and want to prove that
there are not more than 2. We refer to the work of Dyer et al. [67] for the other cases. However, this
is precisely where the proof of [67] has a hole. Indeed, it is claimed that given two convex bodies C1

and C2 in dimension 2, the boundary of ∂C1 ∩ ∂C2 consists of 2 connected arcs, one on ∂C1 and one
on ∂C2. This is not true as can be seen by taking two ellipses and rotating one by π.

Proof. Assume that two geodesic circles of radius r and 1 intersect twice on one side of the extended
geodesic between the two centers c1 and c2. Denote the intersection points by A and B. Two of the
geodesics between A and B and c1 and c2 respectively must intersect in the point p, because of the
uniqueness of geodesics. Without loss of generality, we can assume that Ac2 and Bc1 intersect. Denote
the lengths of the geodesics Ap by a1, the length pc2 by a2, the length Bp by b1, and the length pc1 by
b2. By definition, we have that a1 + a2 = 1 and b1 + b2 = r, thus a1 + a2 + b1 + b2 = 1 + r. Because p
does not lie on the geodesic Bc2 or Ac1, we have a1+b2 > 1 and a2+b1 > r and a1+a2+b1+b2 > 1+r.
The latter inequality yields a contradiction. �

c1 c2

B

A

r1

r2

c1 c2

r1 r2

A
B

Figure 7.10: Illustrations for the proof of Lemma 7.4.8

We want to prove that the curved realization of the Delaunay complex induces a homeomorphism
from the complex to the surface.

Corollary 7.4.9 Two curved Riemannian Delaunay triangles t1 and t2 lying within a disk of radius
less than the convexity radius on a Riemannian surface, of which no three vertices lie on a geodesic,
that share an edge intersect only in this edge.

Proof. Let v1 and v2 be the two vertices that are shared by t1 = {v1, v2, v3} and t2 = {v1, v2, v4},
and denote by γv1v2E the extended geodesic between v1 and v2. If v3 and v4 lie on either side γv1v2E ,
there is nothing to prove. If v3 and v4 lie on the same side side of γv1v2E (say the left), we consider the
geodesic circumscribing circles of t1 and t2, the boundaries of the disks Dv3 and Dv4 . Lemma 7.4.8
implies that these circles only intersect in v1 and v2. Moreover, the arc given by the part of ∂Dv3 on
the left side of γv1v2E is contained in Dv4 or vice versa the arc given by the part of ∂Dv4 on the left
side of γv1v2E is contained in Dv3 . This contradicts the empty ball property of Delaunay ball, so this
configuration cannot occur. �

Corollary 7.4.10 Let t1 and t2 be two curved Riemannian Delaunay triangles lying within a disk of
radius less than the strong convexity radius on a Riemannian surface. Suppose that no three vertices
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Chapter 7. Theoretical study of 2-dimensional discrete Riemannian Voronoi diagrams

lie on a geodesic, and that t1 and t2 share a vertex. Then the intersection of the interiors of t1 and t2
is empty.

Proof. Assume that this is not the case and consider the Delaunay disks for both triangles. The
Delaunay disks contain the triangles because of convexity. By hypothesis, the Delaunay circles intersect
in a common vertex, but since they must contain no vertices, they must intersect in at least two more
points, contradicting Lemma 7.4.8. �

t1

t2

Figure 7.11: The curved Riemannian Delaunay triangles t1 and t2 and their respective Delaunay balls.

Remark 7.4.11 Assume that pi is a Delaunay vertex of a Delaunay complex, then pi does not lie in
the interior or on an edge of a Delaunay triangle, otherwise it would violate the empty ball property.

Corollary 7.4.12 Let p be a Delaunay vertex and denote by ej the Delaunay edges emanating from
p. Then there exists a neighborhood U around p such that all points in U \∪iei lie in a single Delaunay
triangle.

Proof. Because of Remark 7.4.11, there exists a neighborhood U of p such that all Delaunay
triangles with empty intersection with U have p as a vertex. Corollary 7.4.10 implies that the pairwise
intersections of the interiors of the simplices that have p as a vertex is empty. The statement now
follows. �

Remark 7.4.13 Suppose that all the Voronoi cells of a Voronoi diagram Vor({pi}) are contained in a
geodesic disk of radius less than a sixth of the convexity radius. Then for any pi the Delaunay simplices
that have pi as a vertex are contained in a geodesic disk of radius less than a third of the convexity
radius.

Lemma 7.4.14 The Voronoi cells included in a convex disk are star shaped, and in particular they
are topological disks.

Proof. Let p be the center of the Voronoi cell, and b a point on the boundary. Then the geodesic
between b and p is completely contained in the Voronoi cell. If it were not the case, then there would
exist a point on the geodesic between p and q that is closer to another Voronoi center q than to p. By
definition of a geodesic, then b would also be closer to q. �
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7.4. Curved Riemannian Delaunay triangulation

Lemma 7.4.15 Let Vor({pi}) be the Riemannian Voronoi diagram of the point set {pi} on an oriented
Riemannian surface M. Suppose that no three vertices lie on a geodesic. Assume that all Voronoi
cells Vpi lie within balls of radius less than a sixth of the convexity radius. Then every Delaunay edge
is shared by at least two Delaunay triangles.

Proof. Assume that that Vp and Vq are the Voronoi cells that share a Voronoi face. Call γpq,E the
extended geodesic between p and q in a disk centered on p of radius less than the convexity radius.
The geodesic γpq,E can be subdivided into three parts, namely the geodesic γpq between p and q and
the two connected components of γpq,E \ γpq = γpq,Ep ∪ γpq,Eq, with p ∈ γpq,Ep and q ∈ γpq,Eq. It
is clear that every point in γpq,Ep is closer to p than q. The limit we have placed on the size of the
Voronoi cell now implies that the intersection of Vp and Vq consists of segments curves. Furthermore,
every Delaunay edge lies in at least one Delaunay triangle. Consider now one of the segments of the
curves. Suppose that the end points of this segment consist of intersection points between the same
three Voronoi cells. We can now consider the Delaunay balls centered at the end points and we find
two Delaunay balls intersecting in three points, which contradicts the pseudo-ball property. Therefore,
every Delaunay edge is shared by at least two Delaunay triangles. �

Lemma 7.4.16 Under the same conditions as Lemma 7.4.15, the Delaunay complex is a topological
two-manifold at every vertex.

Proof. We consider an arbitrary vertex pi. The vertex pi can not be disconnected, because there
exists by compactness at least one vertex pj for which the distance between pi and the other vertices
is minimized. Therefore pi and pj share a Delaunay edge.

By Lemmas 7.4.15 and 7.4.9, this edge lies in two triangles whose interiors do not intersect.
These triangles cannot share another edge or they would coincide. By induction over a finite (due to
compactness) number of triangles, we find the star of the vertex. No overlaps can take place because
of Lemma 7.4.10. �

We now have the following:

Corollary 7.4.17 Under the same conditions as Lemma 7.4.15, the Delaunay complex is a topological
two manifold.

With this result, we are now able to state the following:

Theorem 7.4.18 Let V{pi} be the Riemannian Voronoi diagram of the point set {pi} on an oriented
Riemannian surface M. Suppose that no three vertices lie on a geodesic. Assume that all Voronoi
cells Vpi lie within balls of radius less than a sixth of the convexity radius. Then the curved realization
of the Delaunay complex induces a piecewise smooth homeomorphism from the Delaunay complex to
the surface M.

Proof. We are going to apply Whitney’s lemma (see Lemma 7.4.3). Because we assume that no three
vertices lie on a geodesic, the curved realizations of two dimensional simplices are non-degenerate, that
is diffeomorphisms. Due to Corollary 7.4.9, we can assume that two triangles that share an edge have
compatible orientation. This means that the curved realization of the Delaunay complex Del induces
a simplex-wise positive map, which we shall call f .

We now intersect the surface at an arbitrary point with a geodesic disk of radius 1 − ε times
the convexity radius and remove all simplices that do not completely lie in the intersection. The
resulting complex is a subcomplex of the Delaunay complex and has a boundary (which may have
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more connected components and singular points). Remark 7.4.13 implies that the boundary on the
surface lies at least a distance of 2/3 − ε times the convexity radius from the center of the geodesic
disk. By Lemma 7.4.3, we now have that – with exception of the skeleton – the number of covers is
constant. Applying Corollary 7.4.12, that number is one. This means that f is locally a piecewise
smooth homeomorphism. Due to Remark 7.4.13 and because the point has been chosen arbitrarily, it
follows that f is a global piecewise smooth homeomorphism. �

This concludes our work on curved Riemannian Delaunay triangulations in a two-dimensional
setting. We now have conditions on the sampling such that the dual of the Riemannian Voronoi
diagram is an embedded triangulation. Assuming that the requirements of Section 7.3 are fulfilled,
the curved dual of our discrete Riemannian Voronoi diagram is a triangulation.

7.5 Straight realization of the Riemannian Voronoi diagram

We now investigate the embedding of the “straight” dual of the Riemannian Voronoi diagram.
Our approach is to assume that the conditions of the previous section are satisfied – the curved dual
is embedded – and to give conditions such that “straightening” the geodesic edges of the curved
Riemannian Delaunay triangulation preserves the property of being a triangulation. The main step
towards our goal is to show that under sufficient sampling conditions, the geodesic path and the
straight edge between two seeds are close from one another (Lemma 7.5.1). We then prove that
straightening edges creates no inversion of simplices or self-intersections (Theorem 7.5.3).

Lemma 7.5.1 (Distance bound between a geodesic path and a straight segment) Let ψ0 ≥
1 be a bound on the metric distortion, and g be an arbitrary metric field on U . Let U be an open
neighborhood of Ω = R

2 that is included in a ball Bg(p0, r0), with p0 ∈ U and r0 ∈ R
+ such that

∀p ∈ B(p0, r0), ψ(g(p), gE(p)) ≤ ψ0, where gE is the Euclidean metric field.
Let x and y be two points in the domain. and denote the geodesics with respect to g and gE

connecting x and y by γg and γE. If z ∈ γg then dE(z, γE) ≤ a, where

a =
1

2

√
ψ2

0 −
1

ψ2
0

dg(x, y).

Remark 7.5.2 Lemma 7.5.1 and its proof could be extended painlessly to a uniform metric field g0

instead of the Euclidean metric field gE. For this reason, we denote the Euclidean distance by dE.

Proof. Denote by π(z, γE) the point on γE that is closest to z. Note that since gE is uniform, this
point is unique. Additionally, if π(z, γE) does not equal x or y, one can use Pythagoras’ theorem:

dE(x, z)2 = dE(x, π(z, γE))2 + dE(π(z, γE), z)2

dE(z, y)2 = dE(z, π(z, γE))2 + dE(π(z, γE), y)2.

On the other hand, we have by triangular inequality that the Euclidean length LE(x, z, y) of any curve
from x to y via z is at least dE(x, z) + dE(z, y).

Let c ∈ R such that dE(π(z, γE), x) = 1
2dE(x, y)− c and dE(π(z, γE), y) = 1

2dE(x, y) + c. If π(z, γE)
does not equal x or y, then

LE(x, z, y) >

√

a2 +

(
1

2
dE(x, y)− c

)2

+

√

a2 +

(
1

2
dE(x, y) + c

)2

. (7.5)
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It is apparent from symmetry, but it can also easily be verified by hand that the right hand side of
Inequality (7.5) is minimized with respect to c when c = 0, thus

LE(x, z, y) > 2

√

a2 +

(
1

2
dE(x, y)

)2

.

Using the fundamental property of the metric distortion (Equation 2.1 in Chapter 2), we see that

Lg(x, z, y) >
2

ψ0

√

a2 +

(
1

2
dE(x, y)

)2

,

for all curves that go through z. In particular, we have assumed that z ∈ γg, therefore

dg(x, y) >
2

ψ0

√

a2 +

(
1

2
dE(x, y)

)2

⇐⇒ ψ2
0

4
dg(x, y)2 > a2 +

1

4
dE(x, y)2 ≥ a2 +

1

4ψ2
0

dg(x, y)2.

Finally, bringing the metric terms to one side, we obtain

1

4

(
ψ2

0 −
1

ψ2
0

)
dg(x, y)2 > a2.

We know that if π(z, γE) is x or y, then LE(x, z, y) ≥ a+
√
dE(x, y)2 + a2. This can be easily seen

as we are in Euclidean space, and π(z, γE) is x or y, z lies on one of the two semi-circles around x and
y. It now follows that LE(x, z, y) ≥ LE(x, z̃, y) where z̃ is one of the end points of the semi circle. By
Pythagoras’ theorem, LE(x, z̃, y) = a+

√
dE(x, y)2 + a2. �

We are ready to give the main theorem of this section.

Theorem 7.5.3 (Embedding of the straight Riemannian Delaunay complex) If the curved
dual of the Riemannian Voronoi diagram is a triangulation and if the sampling criterion ε is small
enough, then the straight dual is also a triangulation.

Proof. Consider a curved Riemannian triangle σ̃ of the curved Riemannian Delaunay triangulation
with vertices p, q and r. Notations used in this proof are illustrated in Figure 7.12.

By Lemma 3.3.1 in Chapter 3, we have bounds on the value θv of the angle at a Voronoi corner of
the Euclidean Voronoi diagram:

2 arcsin

(
µ0

2ε0

)
≤ θv ≤ π − arcsin

(
µ0

2ε0

)
.

We can thus deduce bounds on the (straight) triangle angles θt:

θm = arcsin

(
µ0

2ε0

)
≤ θt ≤ π − 2 arcsin

(
µ0

2ε0

)
= θM .

Using the definition of a given in Lemma 7.5.1, we have at a corner of the (straight) triangle ∆pqr

sin(θ) =
a

l
⇐⇒ l =

a

sin(θ)
.
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We seek a lower bound on the length of the straight edge RQ eroded by the protecting tubes of the
edges pq and pr.

l = L− (lR + lQ) ≥ µ0 −
(

aR
sin(θR)

+
aQ

sin(θQ)

)

≥ µ0 −

√
ψ2

0 − 1
ψ2

0
dg′(p, q)

2 sin(θR)
−

√
ψ2

0 − 1
ψ2

0
dg′(p, r)

2 sin(θQ)

≥ µ0 −
ε0

√
ψ2

0 − 1
ψ2

0

sin
(
arcsin

(
µ0

2ε0

))

≥ µ0 −
2ε2

0

√
ψ2

0 − 1
ψ2

0

µ0
.

P

l
R

Q

lR

lQ

θR

θQ

aQ

aR

Figure 7.12: The curved Riemannian Delaunay triangulation is shown in red and the straight Rieman-
nian Delaunay triangulation in black. The geodesic edges p-r and p-q lie in their respective protection
tubes (colored in beige) around the straight edges.

If we let the metric tend to the constant metric the curved Riemannian Delaunay triangle goes to
the straight Riemannian Delaunay triangle. This is a homotopy and the orientation of the triangles
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remains constant if l is strictly positive. Hence, we require l > 0, which is verified if
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2ε2
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,

using ε0 = ψ0ε, µ0 = µ/ψ0 and µ = λε. The left hand side is fixed and the right hand side goes to 0
as ε goes to 0 (and ψ0 goes to 1), proving that once the sampling is dense, no issue appears when the
two edges pq and pr are straightened.

The same reasoning can then be applied to the other pairs of edges in ∆pqr, giving us the existence
of a point in the interior of the triangle ∆pqr “eroded” by the protection zones. Straightening thus
preserves the orientation of the triangle. As this can be done to all the simplices of the curved Rieman-
nian Delaunay triangulation, the straight Riemannian Delaunay triangulation is also a triangulation
of the domain. �

7.6 Construction of power protected nets

Our theory introduces requirements on the canvas C (through its sizing field) and on the point
set P such that the two duals of the discrete Riemannian Voronoi diagrams are triangulations. The
canvas must be sufficiently dense, and the seed set a δ-power protected (ε, µ)-net with specific values
of δ and ε. The former requirement is easily achieved through refinement. A refinement algorithm
to construct power protected nets was described in Section 5.4 in Chapter II.5, but it is impractical.
Thankfully, neither the sampling nor the canvas need to be as dense in practice as our theory requires
them to be and a farthest point refinement can be used to generate the point set.

7.7 Conclusion

We have proved in this chapter that the discrete Riemannian Voronoi diagram and the related
algorithms introduced in Chapter III.6 are theoretically sound. These guarantees come in the shape
of a quality requirement on the point set, through the power protected net assumption, and on the
density on the canvas.

This chapter also offered a detailed approach of the reasoning that is only sketched in Chapter II.5
to prove the embeddability of the Labelle and Shewchuk anisotropic Voronoi diagram for a power
protected net. Up until the involvement of the canvas, the reasoning is exactly the same with only
slightly different proofs due to the non-continuous metric field that is used in the anisotropic Voronoi
diagram of Labelle and Shewchuk.

It is often desirable to expose quality bounds on the simplices, which we have not presented here.
Additionally, it would be interesting to estimate the loss of quality that results from straightening
Riemannian simplices into straight simplices: we have seen in practice that this can be quite significant
(see Chapter III.6).

In the next chapter, we shall investigate the theoretical soundness of our algorithm with the
assumption of a domain of arbitrary dimension. Most of the proofs that we have used in this chapter
do not extend to that setting or are not sufficient. For example, proving that the geodesic edges and
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straight edges are close is not sufficient to prove that there is no inversion when straightening a curved
Riemannian Delaunay triangulation into a straight Delaunay triangulation. We shall introduce more
complex notions, but worse bounds are often obtained.
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8. Theoretical study of n-dimensional
discrete Riemannian Voronoi diagrams

This chapter is devoted to the theoretical study of the discrete Riemannian Voronoi diagram,
introduced in Chapter III.6, in the setting of a manifold of arbitrary dimension. We have studied in
Chapter III.7 the theoretical aspect of the structure in the context of two-dimensional manifolds and
exposed sufficient conditions on the quality of the point set and the density of the canvas such that
the duals of our discrete Riemannian Voronoi diagram using both curved and straight Riemannian
simplices simplices are triangulations. Unfortunately, the proofs of Chapter III.7 do not extend to
higher dimensions.

In this chapter, we extend the results of Chapter III.7 to the setting of manifolds of arbitrary
dimension. The skeleton of this chapter is similar into three parts. We first obtain the combinato-
rial equivalence between the nerves of the discrete Riemannian Voronoi diagram and the Riemannian
Voronoi diagram. Contrary to the previous chapter, we do not introduce any new result on the em-
beddability of the curved Riemannian Delaunay complex (the dual the Riemannian Voronoi diagram
using curved Riemannian simplices) and fully rely on existing work, which is sufficient to obtain con-
ditions this embeddability. Finally, we prove that while “straightening” curved Riemannian simplices
to obtain a classical straight Delaunay triangulation we do not lose the embedding of the complex.

As both Chapters III.7 and III.8 seeks to prove identical results – albeit with a large difference in
the assumption of the dimension – and follow a similar approach, it might seem strange to split these
chapters, or to even detail the two-dimensional case. However, Chapter III.7 has the benefit of much
simpler proofs and better bounds, thus offering a clear presentation of our approach. Additionally, the
overlap in the goals and the global approach is not carried over to the results and the actual proofs.

Contributions In this chapter, we extend the theoretical study of our algorithm from the setting of
2-manifolds to any dimension. This is not straightforward and often results in an increased complex-
ity and worse bounds over the two-dimensional setting. A number of intermediary results are very
technical and were presented in Chapter 3 for clarity.

A number of results are direct generalizations of results presented in the two-dimensional setting
in Chapter III.7. These however sometimes require significantly different proofs. For example, the
embedding of the straight Delaunay triangulation is also achieved by bounding the distance between
a Riemannian and straight facet of a simplex, but the approach is unlike that of Chapter III.7. The
proof of the combinatorial equivalence between the nerves of the discrete Riemannian Voronoi diagram
and the Riemannian Voronoi diagram in a flat domain endowed with an Euclidean metric field is the
most significant change and is achieved with an elegant coloring result by Sperner.
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8.1 Background

We begin by recalling notations introduced in the previous chapter that shall be employed in this
chapter. Details can be found in Chapter III.6.

We consider a set of seeds P in a domain Ω, and each seed is attributed a color. The domain is
endowed with an arbitrary metric field g, and the geodesic distance between two points, denoted by
dg, is the length of the shortest path between these two points. The Voronoi diagram constructed
with the geodesic distance is the Riemannian Voronoi diagram Vorg(P). As this diagram is difficult to
compute in practice, we approximate the geodesic distance and the diagram Vorg(P) by considering a
discrete underlying structure, the canvas C, whose vertices are colored according to their closest seed.
This coloring is obtained through a multiple-front Dijkstra algorithm from the seeds. The discrete
Voronoi cell of a seed is the set of simplices that possess at least one vertex colored with the color of
the seed. The discrete Riemannian Voronoi diagram Vordg(P) is the set of discrete Voronoi cells. An
example of such a diagram is illustrated on Figure 8.1. The nerve of a Voronoi diagram Vord(P) is a
formal way to express its combinatorial structure and is defined by

N (Vord(P)) = {{Vd(pi)} | ∩i Vd(pi) 6= ∅, pi ∈ P}.

The straight and curved duals of a Voronoi diagram are realizations of the nerve with vertices in P
and using respectively straight and curved Riemannian Delaunay simplices (see Sections 2.7 and 2.8
in Chapter 2 for additional details on the definition). If a dual is embedded in the domain, we say
that it is a triangulation.

8.2 Overview

As is the case for most Voronoi diagrams, the (Riemannian or straight) duals of a discrete Rie-
mannian Voronoi diagram is generally not an embedded complex (triangulation). To prove the em-
beddability of the duals of the discrete Voronoi diagram, we follow the same indirect path as in the
previous chapter: we first expose conditions such that the discrete Riemannian Voronoi diagram and
the Riemannian Voronoi diagram have the same nerve (combinatorial structure). We then expose
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8.2. Overview

Figure 8.1: Slice of a three-dimensional discrete Riemannian Voronoi diagram over an isotropic canvas.
The discrete cells are drawn on the left, and the geodesic distance maps on the right.

conditions such that the curved dual of the discrete Riemannian Voronoi diagram is a triangulation.
Finally, we straighten the curved Riemannian simplices of the curved dual and show that – under
sufficient conditions – no inversion can appear in the triangulation, thus preserving an embedded
dual.

We now give an overview of the approaches followed and the theoretical results achieved in this
chapter.

8.2.1 Nerves of the discrete and Riemannian Voronoi diagrams

Although the discrete Riemannian Voronoi diagram by definition only relies on discrete infor-
mation, we show that its combinatorial structure can be precisely that of the Riemannian Voronoi
diagram. When this is the case, we say that the nerves of the diagrams are equivalent and write
N (Vordg(P)) ∼= N (Vorg(P)).

Our approach is largely identical to that of Chapter III.7; we seek to satisfy the same two sufficient
conditions that, when combined, give the equivalence, namely:

(1) for any Voronoi vertex v in the Riemannian Voronoi diagram, there is at least one canvas simplex
that possesses the colors of the Voronoi cells incident to v;

(2) no canvas simplex witnesses combinatorial information that does not belong to the nerve (that
is, no canvas simplex has vertices whose colors are those of non-adjacent Riemannian Voronoi
cells).

As in Chapter III.7, requirements are necessary on both the nature of the set of seeds and the density
of the canvas to guarantee that N (Vordg(P)) ∼= N (Vorg(P)). A recurring theme throughout this thesis,
power protected nets (defined in Sections 2.12.1 and 2.12.2 of Chapter 2) will once again show their
strength in these proofs. We discuss the generation of such seed sets in Section 8.6.

Approach

The equivalence of the nerves for a generic manifold of arbitrary dimension endowed with a generic
Lipschitz-continuous metric field is shown in Section 8.3.4 and specifically in Theorem 8.3.11.
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Chapter 8. Theoretical study of n-dimensional discrete Riemannian Voronoi diagrams

Our analysis is divided in four parts. We first prove the equivalence at the most basic case of a
flat domain endowed with the Euclidean metric field. The conditions exposed in the basic setting can
be transported to the setting of a uniform metric field by using the stretching transformation given
by the square root of a metric. An arbitrary Riemannian metric field is then considered over a flat
domain, and the fact that a metric field can be locally well approximated by a uniform metric field
is used to extend the results from the previous cases. Finally, we solve the general setting by locally
approximating the manifold at a point with its tangent plane.

Sperner’s lemma One of the most significant changes from Chapter III.7 concerns the manner
in which the combinatorial equivalence of the nerves is achieved in the setting of a flat domain en-
dowed with an Euclidean metric field significantly differs from the two-dimensional setting. To obtain
N (Vordg(P)) ∼= N (Vorg(P)), it is clearly sufficient to show that Conditions (1) and (2) are satisfied.
The latter condition is easily satisfied once a bound is known on the distance between Voronoi vertices,
but the former requires more work. In the two-dimensional setting, we have proved that, starting from
the canvas simplex that contains a Voronoi vertex, walk on the canvas and eventually find a canvas
simplex that would witness the Voronoi vertex. This method does not extend to higher dimensions,
and we employ a completely different approach.

We use Sperner’s lemma [131], a classical result of combinatorics, which can be seen as the discrete
analog of Brouwer’s fixed point theorem and gives the existence of a simplex that is colored with a
complete set of colors within a triangulation, provided that this triangulation fulfills a set of topological
and color-related assumptions. We shall apply this lemma to our canvas C and show that for every
Voronoi vertex v of the Riemannian Voronoi diagram, we can construct from a subset Cv of C a
(triangulated) simplex that fulfills the assumptions of Sperner’s lemma, thus obtaining the existence
of a canvas simplex that witnesses v.

8.2.2 Embeddability of the curved Riemannian Delaunay triangulations

Once it is proven that our discrete diagram has the same combinatorial structure as the Rieman-
nian Voronoi diagram, we build upon known theoretical results on the curved Riemannian Delaunay
triangulation to show that the curved dual of a discrete Riemannian Voronoi diagram can be – under
sufficient conditions – embedded as a triangulation of the point set using curved Riemannian sim-
plices. For this part, we entirely rely on previous results on the embeddability of curved Riemannian
Delaunay triangulations. The main result is given by Theorem 8.4.4.

8.2.3 Embeddability of the straight Riemannian Delaunay triangulations

The last part of this chapter gives conditions such that the curved Riemannian simplices of the
curved Riemannian Delaunay triangulation can be straightened to form the straight dual of the discrete
Riemannian Voronoi diagram and that this dual is also embedded. Here, the key intermediary result is
the computation of a bound on the distance between a point on a Riemannian facet and its equivalent
on the straightened facet. This bound depends on the quality of the set of seeds and on the local
distortion of the metric field. We then prove that when this point to point distance is sufficiently
bounded, no inversion can happen while deforming from a curved Riemannian simplex to a straight
simplex.
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8.3. Equivalence of the nerves of the discrete and Riemannian Voronoi diagrams

8.2.4 Nature of the canvas

To simplify computations, we assume (as in Chapter III.7) that the canvas is an isotropic Delaunay
triangulation of the domain. This triangulation is further assumed to be generated through a Delaunay
refinement algorithm driven by a uniform sizing field hC that bounds the circumradius of Delaunay
simplices. This assumption does not reduce the genericity of the approach: these proofs can be easily
extended to star set canvasses as a star set canvas eventually becomes a consistent triangulation when
well-chosen vertices are inserted (see Chapter I.4).

8.3 Equivalence of the nerves of the discrete and Riemannian Voronoi
diagrams

This section is devoted to proving the combinatorial equivalence between the nerves of the discrete
and Riemannian Voronoi diagrams: under sufficient conditions on the density of the canvas, we have
N (Vordg(P)) ∼= N (Vorg(P)).

To simplify matters, we initially assume that geodesic distances are computed exactly on the
canvas.

8.3.1 Euclidean metric field

We first consider the simplest setting of a flat domain of dimension n endowed with the Euclidean
metric field. The following theorem gives the sufficient conditions that we seek.

Theorem 8.3.1 Assume that P is a δ-power protected (ε, µ)-net of Rn with respect to the Euclidean
metric field gE. Denote by C the canvas, a Delaunay triangulation of Rn with sizing field hC. If

hC < min

{
µ

32
,
δ2

128ε

}
,

then N (VordE(P)) ∼= N (VordE(P)).

We shall prove this theorem by enforcing Conditions (1) and (2). Rephrasing the first condition, we
seek requirements on the density of the canvas C and the nature of the point set such that there
exists at least one (maximal) canvas simplex of C that has exactly the colors c0, . . . , cd of the cells in
D = {Vg(pi)}, for all D ∈ N (VorE(P)) with |D| = n+ 1.

As explained in the overview, the core of our proof is a combinatorial result by Sperner [131],
which we recall below and illustrate on Figure 8.2.

Theorem 8.3.2 (Sperner’s lemma) Let σ = (e0, . . . , en) be an n-simplex and let Tσ denote a tri-
angulation of the simplex. Let each vertex e′ ∈ Tσ be colored such that the following conditions are
satisfied:

• The vertices ei of σ all have different colors.

• If e′ lies on a k-face (ei0 , . . . eik) of σ, then e′ has the same color as one of the vertices of the
face, that is eij .

Then, there exists an odd number of simplices in Tσ whose vertices are colored with all n + 1 colors.
In particular, there must be at least one.
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Chapter 8. Theoretical study of n-dimensional discrete Riemannian Voronoi diagrams

Figure 8.2: Illustration of Sperner’s lemma in 2D. The green triangle is colored with all 3 colors.

We will apply this lemma to our canvas C and show that for every Voronoi vertex v of the Rie-
mannian Voronoi diagram, we can find a subset Cv of C that is a triangulation of a simplex that fulfills
the assumptions of Sperner’s lemma, thus obtaining the existence of a canvas simplex (in Cv and thus
in C) that witnesses the Voronoi vertex.

The construction of Cv is detailed in the following sections and illustrated in Figure 8.3: starting
from a colored canvas (left), we subdivide σv, the dual of v, to obtain Tv (middle). We then deduce a
set of simplices Cv whose central elements are canvas simplices. Cv is shown to form the triangulation
of a simplex that satisfies the hypotheses of Sperner’s lemma, giving the existence of a canvas simplex
(in green, right) that witnesses the Voronoi vertex within the union of the simplices, and therefore in
the canvas.

v
v

v

Tv

Cv

Figure 8.3: Illustration of the construction of Cv. The Riemannian Voronoi diagram is drawn with
thick orange edges and the sites are colored squares. The canvas is drawn with thin gray edges and
colored circular vertices. The middle frame shows the subdivision of the dual simplex σv with think
black edges and the triangulation Tv is drawn in yellow. On the right frame, the set of simplices Cv is
colored in purple (simplices that do not belong to C) and in dark yellow (simplices that belong to C).
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8.3. Equivalence of the nerves of the discrete and Riemannian Voronoi diagrams

Building the triangulation Tv
Consider the simplex σv dual of v. As explained in the introduction of this section, it is not possible

to ensure that a face τv of σv lives in the union of the Voronoi cells of the vertices of τv. Instead, we
apply a barycentric subdivision to σv (see Figure 8.4).

Figure 8.4: Illustration of the barycentric subdivision of an edge, a triangle and a tetrahedron.

For a given Voronoi vertex v in the Euclidean Voronoi diagram VorE(P) of the domain Ω, the
initial triangulation Tv is obtained by applying a combinatorial barycentric subdivision of simplex σv.
To each face τv of σv with dual F , we associate a point cF in F which is not necessarily the geometric
barycenter. We randomly associate to cF the color of any of the sites whose Voronoi cells intersect to
give F . For example, in a two-dimensional setting, if τv is an edge then the face F is a Voronoi edge
that is the intersection of Vred and Vblue, and cF is colored either red or blue.

Figure 8.5 illustrates the process of breaking down a facet of a tetrahedron through barycentric
subdivision: the facet prs is broken down in 6 green triangles that all live within the union of the
(Euclidean) Voronoi cells V(p), V(r) and V(s).

Remark 8.3.3 If τv is a 0-face, then F is a Voronoi cell. In that specific case, cF is not random, but
the site of the Voronoi cell is chosen as cF .

cc

p

q

r

s

p

q

r

s

q
′

Figure 8.5: Subdivision of the facet prs of the tetrahedron pqrs (blue) into 6 triangles (green). Voronoi
vertices are indicated with white circles and Voronoi edges are drawn in red.

Then, the subdivision of σv is computed by associating to all possible sequences of Voronoi faces
{F0, F1, . . . Fn−1, Fn} such that F0 ⊂ F1 · · · ⊂ Fn = V and dim(Fi+1) = dim(Fi) + 1 the simplex with
vertices {cF0 , cF1 , . . . , cFn−1 , cFn}. These barycentric subdivisions are allowed since Voronoi cells are
convex polytopes. The triangulation Tv is illustrated in Figure 8.6 in dimension 3.

As shall be proven in Lemma 8.3.5, Tv can be used to define a combinatorial simplex that satisfies
the assumptions of Sperner’s lemma.

Remark 8.3.4 Choosing a Voronoi (k + 1)-face Fk+1 that contains a Voronoi k-face Fk is simply
removing a vertex from the set P|k of seeds such that Fk = q(∩pi∈P|k

V (pi)). Since Fk is of dimension
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v

Tv

B

B

B B

B

B

v

Figure 8.6: Illustration of the triangulations Tv in 2D and 3D. The bisectors of the Riemannian Voronoi
diagram are colored in orange. Segments hidden behind Voronoi faces are either dashed or dotted.
Seeds are colored squares. On the right, a face (in green) and an edge (in red) of σS .

k, we have
∣∣∣P|k

∣∣∣ = (n+1)−k. There are thus (n+1)−k (k+1)-faces that contain Fk. The cardinality

of Σv,0 = {F , |P| = n+ 1} can be evaluated:

|Σv,0| =
n∏

i=0

(n+ 1)− i =
n+1∏

i=1

i = (n+ 1) !.

Observe that this is indeed the case in Figure 8.6: in 2D, Σv,0 has 6 triangles, and, in 3D, Σv,0 has 24
tetrahedra (there are 6 triangles per combinatorial face and each triangle makes a tetrahedron with c).

Tv as a triangulation of an n-simplex By construction, the triangulation Tv is a triangulation of
the (Euclidean) Delaunay simplex σv dual of v as follows. We first perform the standard barycentric
subdivision on this Delaunay simplex σv. We then map the barycenter of a k-face τv of σv to the
point cFi on the Voronoi face Fi, where Fi is the Voronoi dual of the k-face τv. This gives a piecewise
linear homeomorphism from the Delaunay simplex σv to the triangulation Tv. We call the image of
this map the simplex σS and refer to the images of the faces of the Delaunay simplex as the faces of
σS . We can now apply Sperner’s lemma.

Lemma 8.3.5 Let P be a point set. Let v be a Voronoi vertex in the Euclidean Voronoi diagram,
VorE(P), and let Σv be defined as above. The simplex σS and the triangulation Tv satisfy the assump-
tions of Sperner’s lemma in dimension n.

Proof. By the piecewise linear map that we have described above, Tv is a triangulation of the
simplex σS . Because by construction the vertices cFi lie on the Voronoi duals Fi of the corresponding
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Delaunay face τv, cFi has the one of the colors of of the Delaunay vertices of τv. Therefore, σS satisfies
the assumptions of Sperner’s lemma and there exists an n-simplex in Tv that witnesses v and its dual
simplex σv. �

Building the triangulation Cv

Let pi be the vertices of the k-face τS of σS . In this section we shall assume not only that τS is
contained in the union of the Voronoi cells of V (pi), but in fact that τS is a distance 8eC removed from
the boundary of ∪V (pi), where eC is the longest edge length of a simplex in the canvas.

We will now construct a triangulation Cv of σS such that:

• σS and its triangulation Cv satisfies the conditions of Sperner’s lemma,

• the simplices of Cv that have no vertex that lies on the boundary ∂σS are simplices of the
canvas C.

The construction goes as follows: We first intersect the canvas C with σS and consider the canvas
simplices σC,i such that the intersection of σS and σC,i in non-empty. These simplices σC,i can be
subdivided into two sets, namely those that lie entirely in the interior of σS , which we denote by σint

C,i,

and those that intersect the boundary, denoted by σ∂C,i.

The simplices σint
C,i are added to the set Cv. We intersect the simplices σ∂C,i with σS and triangulate

the intersection. Note that σ∂C,i ∩ σS is a convex polyhedron and thus triangulating it is not a difficult

task. The vertices of the simplices in the triangulation of σ∂C,i ∩ σS are colored according to which

Voronoi cell they belong to. Finally, the simplices in the triangulation of σ∂C,i ∩ σS are added to the
set Cv.

Since Tv is a triangulation of σS , the set Cv is by construction also a triangulation of σS . This
triangulation trivially gives a triangulation of the faces τS . Because we assume that τS is contained
in the union of its Voronoi cells, with a margin of 8eC we now can draw two important conclusions:

• The vertices of the triangulation of each face τS have the colors of the vertices pi of τS .

• None of the simplices in the triangulation of σ∂C,i ∩ σS can have n+ 1 colors, because every such
simplex must be close to one face τS , which means that it must be contained in the union of the
Voronoi cells V (pi) of the vertices of τS .

We can now invoke Sperner’s lemma; Cv is a triangulation of the simplex σS whose every face
has been colored with the appropriate colors (since σS triangulated by Tv satisfies the assumptions of
Sperner’s lemma, see Lemma 8.3.5). This means that there is a simplex Cv that is colored with n+ 1
colors. Because of our second observation above, the simplex with these n + 1 colors must lie in the
interior of σS and is thus a canvas simplex.

We summarize by the following lemma:

Lemma 8.3.6 If every face τS of σS with vertices pi is at distance 8eC from the boundary of the union
of its Voronoi cells ∂(∪V (pi)), then there exists a canvas simplex in Cv such that it is colored with the
same vertices as the vertices of σS .

The key task that we have now is to guarantee that faces τS indeed lie well inside of the union of
the appropriate Voronoi regions. This requires first and foremost power protection. Indeed, if a point
set is power protected, the distance between a Voronoi vertex c and the Voronoi faces that are not
incident to c, which we will refer to from now on as foreign Voronoi faces, can be bounded, as shown
in the following Lemma:
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Lemma 8.3.7 Suppose that c is the circumcenter of a δ-power protected simplex σ of a Delaunay
triangulation built from an ε-sample, then all foreign Voronoi faces are at least δ2/8ε far from c.

This lemma is proved in Section 3.2.2 of Chapter 3.

In almost all cases, this result gives us the distance bound we require: we can assume that vertices
{cF0 , cF1 , . . . , cFn−1 , cFn} on the Voronoi faces, which we used to construct Tv, are well placed, meaning
there is a minimum distance between these vertices and foreign Voronoi objects.

However it can still occur that foreign Voronoi entities are close to a face τS of σS . This occurs
even in two dimensions where a Voronoi vertex v′ can be very close to a face τS because of obtuse
angles, as illustrated in Figures 8.7 and 8.8.

v

v
′

Tv

v
′

v
′

Figure 8.7: The point v′ can be arbitrarily close to Tv, as shown by the red segments (left and center).
After piecewise linear deformation, this issue is resolved, as seen by the green segments (right).

Because of power protection we know that v′ is removed from foreign Voronoi objects. We can
therefore deform σS (in a piecewise linear manner) in a neighborhood of v′ such that the distance
between v′ and all the faces of the deformed σS is lower bounded.

In general, the deformation of σS is performed by “radially pushing” simplices away from the
foreign Voronoi faces of v with a ball of radius r = min

{
µ/16, δ2/64ε

}
. The value µ/16 is chosen so

that we do not move any vertex of σv (the dual of v): indeed, P is µ-separated and thus dE(pi, pj) > µ.
The value δ2/64ε is chosen so that σS and its deformation stay isotopic (no “pinching” can happen),
using Lemma 8.3.7. In fact it is advisable to use a piecewise linear version of “radial pushing”, to
ensure that the deformation of σS is a polyhedron. This guarantees that we can triangulate the
intersection, see Chapter 2 of Rourke and Sanderson [121]. After this deformation we can follow the
steps that we have given above to arrive at a well-colored simplex.

Lemma 8.3.8 Let P be a δ-power protected (ε, µ)-net. Let v be a Voronoi vertex of the Euclidean
Voronoi diagram VorE(P), and Tv as defined above. If the length eC of the longest canvas edge is
bounded as follows: eC < r = min

{
µ/16, δ2/64ε

}
, then there exists a canvas simplex that witnesses v

and the corresponding simplex σv in DelE(P).

Extreme deformation of faces An extreme configuration can have a sphere in Figure 8.8 sepa-
rating entirely a zone from the Voronoi vertex. In that case, we can chose different spheres to “push
away” faces. Figure 8.9 shows the construction. We do not detail the computations.
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≥ µ
2

≥ δ2

8ǫ

Tv

p

q

v

v
′

r

Figure 8.8: Deformation of Tv that clips a cF (this does not create any issue). Dashed parts show Tv
before deformation.

Conclusion So far, we have only proven that Condition (1), that is if there exists D ∈ N (Vorg(P)),
then there exists D′ in N (Vordg(P)) with the same combinatorial information. The other inclusion,
which corresponds to Condition (2) mentioned above, is much simpler: as long as a canvas edge is
shorter than the smallest distance between a Voronoi vertex and a foreign face of the Riemannian
Voronoi diagram, then no canvas simplex can witness a simplex that is not in N (Vordg(P)). Such a
bound is already given by Lemma 8.3.7 and thus, if hC < δ2/16ε then we have the other inclusion.
Observe that this requirement is weaker than the condition imposed in Lemma 8.3.8 and it was thus
already satisfied. It follows that N (Vordg(P)) ∼= N (Vorg(P)) if hC < min

{
µ/32, δ2/128ε

}
, which

concludes the proof of Theorem 8.3.1.

This concludes the proof of Theorem 8.3.1.

Remark 8.3.9 As expected, a low separation criterion µ or a low power protection criterion δ must
be compensated with a smaller sizing field for the canvas to ensure that the nerves are equivalent.

8.3.2 Uniform metric field

We now investigate the setting of a flat domain endowed with a uniform metric field.

By Lemma 3.4.1 in Chapter 3, if a point set P in R
n is a δ-power protected (ε, µ)-net with respect

to a uniform metric field g0 then the point set P ′ = {F0pi, pi ∈ P}, where F0 is the square root of g0,
is also a δ-power protected (ε, µ)-net, but with respect to the Euclidean metric. We can deduce an
upper bound on the sizing field of C for a uniform metric field using the results of Section 8.3.1 for
the Euclidean setting.
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≥ µ

2

≥ δ
2

8ǫ

Tv

p

q

v

v
′

r1

r2
r3

Figure 8.9: Limit case of the deformation of Tv where the pushing away would create multiple connected
components in Tv. Instead, we apply different degrees of “pushing” to preserve the isotopy between
Tv and its deformed version.

Theorem 8.3.10 Let P be a finite point set in Ω. Let g be a uniform Riemannian metric field on Ω
(∀x ∈ Ω, g(x) = g0). Let C be the canvas, and hC its sizing field. If

hC <
(

min
i

√
λi

)
min

{
µ

32
,
δ2

128ε

}
,

then N (VorE(P)) ∼= N (VordE(P)).

The proof is completely identical to the proof of Theorem 7.3.8 in Chapter III.7 and we do not
reproduce it here.

8.3.3 Arbitrary metric field

Finally, we consider an arbitrary metric field g over the domain R
n. The key to proving the

equivalence in this setting is to locally approximate the arbitrary metric field with a uniform metric
field, a configuration that we have dealt with in the previous section. We shall always compare the
metric field g in a neighborhood U with the uniform metric field g′ = g(p0) where p0 ∈ U . Because g′

and the Euclidean metric field differ by a linear transformation, we can simplify matters and assume
that g′ is the Euclidean metric field. The main argument of the proof will be once again that a power
protected net has stable and separated Voronoi vertices.
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We now introduce the main result of this section, Theorem 8.3.11.

Theorem 8.3.11 Let g be an arbitrary metric field on Ω. Assume that P is a δ-power protected
(ε, µ)−net in Ω with respect to g. Denote by C the canvas, and hC its sizing field. If

hC < min
p∈P

hC,p,

where hC,p is given by Lemma 8.3.12, and if ε is sufficiently small and δ is sufficiently large (both
values will be detailed in the proof), then N (Vordg(P)) ∼= N (Vorg(P)).

We prove Theorem 8.3.11 by computing for each point p ∈ P the necessary sizing field of the
canvas such that the Voronoi cell Vg(p) is captured correctly. Conditions on ε and δ shall emerge from
the intermediary results on the stability of power protected nets.

Lemma 8.3.12 Let ψ0 ≥ 1 be a bound on the metric distortion and g be a Riemannian metric field
on U . Let U be an open neighborhood of Ω = R

n that is included in a ball Bg(p0, r0), with p0 ∈ U
and r0 ∈ R

+ such that ∀p ∈ B(p0, r0), ψ(g(p), gE(p)) ≤ ψ0. Let PU be a finite point set in U and let
p0 ∈ PU .

Suppose that PU is a δ-power protected (ε, µ)−net of with respect to g. Let Vg(p0) be the Voronoi
cell of p0 in Vorg(PU ). If

hC,p0 < min
i

(√
λi
)

min

{
µ

6
,
ℓ0
4

}
,

with {λi} the eigenvalues of g0 and ℓ0 made explicit in the proof, and if ε is sufficiently small and δ
is sufficiently large (both values will be detailed in the proof), then N (Vordg(P)U ) ∼= N (Vorg(P)U ).

Approach

For readability, the many intermediary results needed to prove Theorem 8.3.11 are moved to
Chapter 3. We refer to them at appropriate times.

Our approach is identical to the one used to prove the equivalent result in the two-dimensional
setting, but the intermediary steps demand a lot more work. As in Chapter III.7, we use the fact that
a Riemannian Voronoi cell Vg(p0) can be encompassed into two Euclidean Voronoi cells DV+η

E
(p0) and

EV−η
E

(p0) that are scaled up and down versions of VE(p0) (Lemma 3.4.12 in Chapter 3). Specifically,
EV−η

E
(p0) and DV+η

E
(p0) are defined by

EV−ω
E

(p0) = {x ∈ VE(p0) | dE(x, ∂VE(p0)) > ω},

and
DV+ω

E
(p0) =

⋂

i6=0

Hω(p0, pi),

where Hω(p0, pi) is the half-space containing p0 and delimited by the bisector BS(p0, pi) translated
away from p0 by ω0. The constant η is the thickness of this encompassing and depends on the bound
on the distortion ψ0 in the neighborhood, and on the sampling and separation parameters ε and µ.
We have that η goes to 0 as ψ0 goes to 1.

The (local) stability of the power protected nets assumption is proved here again (Lemmas 3.4.2
and 3.4.16 in Chapter 3). From this observation, we can deduce that the Voronoi vertices of the
Euclidean Voronoi cell VE(p0) are separated, and thus that the Voronoi vertices of EVE(p0) are
separated. A bound on the sizing field can then be computed such that EVE(p0) is captured and
thus Vg(p0) is captured.
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Difficulties The increased difficulty almost entirely comes from proving the stability of the assump-
tion of power protection under metric perturbation in any dimension, that is proving that if we assume
that P is δ-power protected with respect to the arbitrary metric field g, then, in a small neighborhood
around p0, the point set P is δ0-power protected with respect to g0 = g(p). In the two-dimensional
case, the stability is obtained by proving that the Voronoi vertices are stable (Lemma 3.4.13), which
is itself proved by using separation bounds between Voronoi vertices (Lemma 3.2.4) and bounds on
the smallest angles of simplices (Lemma 3.3.1). However, while in 2D we can obtain bounds on such
angles simply through the assumption that the point set is a net, this does not extend to higher dimen-
sions due to slivers: we cannot bound the dihedral angles of simplices built from a net. Nevertheless,
assuming a power protected net does give us some bounds, but creates a tricky circular dependency
as the coefficient δ appears in the dihedral angles (Lemma 3.3.2). We remedy this issue by proving
that Euclidean dihedral angles are bounded assuming power protection with respect to the arbitrary
metric field, with Lemmas 3.3.6 and 3.3.7.

Proof of Lemma 8.3.12

Lemma 3.4.5 in Chapter 3 gives us that Vg(p0) lies in DV+η
E

(p0) and contains EV−η
E

(p0). Since
Vg(p0) contains EV−η

E
(p0), if hC is small enough such that EV−η

E
(p0) is captured, then Vg(p0) is also

captured. Proving that EV−η
E

(p0) is captured is done similarly to the Euclidean setting. While we
do not explicitly have the power protected net property for the relaxed Voronoi cells (and specifically,
EV−η

E
(p0)), we can still extract the critical property that the Voronoi vertices are separated, as shown

by the next lemma.

Lemma 8.3.13 Assume U , g, and ψ0 as in Lemma 8.3.12. Assume that the point set PU is a δ0-
power protected (ε, µ)-net with respect to the Riemannian metric field g. Then the Voronoi vertices of
EV−η

E
(p0) are separated.

Proof. By Lemmas 3.4.2 and 3.4.16 in Chapter 3, we have local stability of the power protection
and net properties. Hence, P is δ0-power protected (ε0, µ0)-net with respect to gE in U .

Let L0 =
δ2

0
4ε0

be the separation bound induced by the δ0-power protection property of PU (see
Lemma 3.2.4 in Chapter 3). Let l be the distance between any two adjacent Voronoi vertices of
EV−η

E
(p0). We know by Lemma 3.4.14 that the parallelotopic region around a Voronoi vertex is

included in a ball centered on the Voronoi vertex and of radius χ. The protection parameter ι is given
by δ = ιε. We have that

l ≥ L− 2χ

≥ δ2
0

4ε0
− 2

χ2

sinn−2
(ϕ

2

)

≥ δ2
0

4ε0
− 2

4η(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2
=: ℓ0, (8.1)

where ϕ represents the dihedral angle and s0 = 1
2

[
ι2

4ψ2
0
− 1

2

(
ψ2

0 − 1
ψ2

0

)]
. For the stability regions not

to intersect, we require l to be positive. This can be ensured by enforcing that the lower bound is
positive:

δ2
0

4ε0
>

8η(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2
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Recall that ε0 = ψ0ε, µ0 = λε/ψ0 and ρ0 = 2ψ0ε. Using these notations, we see that l > 0 if

δ2
0 >

32ε0ρ
2
0(ψ2

0 − 1)

µ0

(√
1 + λ

2ψ2
0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2

δ2
0 >

128ε2ψ4
0(ψ2

0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2
. (8.2)

This condition is easy to satisfy when ψ0 goes to 1 because the right hand side of Inequality (8.2)
is proportional to (ψ2

0 − 1)ε2.
The intermediary results that we use already impose some conditions on δ and ε, and we thus

would like to give the condition in Equation 8.2 in terms of δ, so that it may be compared with
Inequality (3.8) (as was done in Remark 7.3.13 in Chapter III.7). In Lemma 3.4.16, we have seen that

δ2
0 =

δ2

ψ2
0

+

(
1

ψ2
0

− ψ2
0

)
(ε+ χ)2 − 4εχ

ψ2
0

,

Thus

δ2

ψ2
0

+

(
1

ψ2
0

− ψ2
0

)
(ε+ χ)2 − 4εχ

ψ2
0

>
128ε2ψ4

0(ψ2
0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2
,

which is equivalent to

δ2 >
128ε2ψ6

0(ψ2
0 − 1)

λ
(√

1 + λ
2ψ2

0
−
√

1− λ
2ψ2

0

) (√
1 + s0 −

√
1− s0

)n−2

+ 4εχ

+ (ψ4
0 − 1)(ε+ χ)2.

⇐⇒ δ2 > 8εψ3
0χ+ 4εχ+ (ψ4

0 − 1)(ε+ χ)2. (8.3)

This bound is again proportional to (ψ2
0−1)ε and is very similar to the bound given by Inequality (3.8),

made explicit in Inequality (3.9), but Inequality (8.3) provides the tougher bound due to the (ε+ χ)
coefficient (see Remark 7.3.13 in Chapter III.7).

�

We can now provide a bound on the sizing field so that it captures EV−η
E

(p0) and prove Lemma 7.3.10.

From Section 8.3.1, we have that a sizing field hC = min{µ0

32 ,
δ2

0
128ε0

} ensures the capture of VE(p0) as P
is a δ0-power protected (ε0, µ0)-net with respect to the Euclidean metric field. As we want to capture
EVE(p0), we cannot directly use this result. We have nevertheless obtained the separation between
the Voronoi vertices of the eroded Voronoi cell (Equation 8.1). It is then straightforward to modify
the result of Theorem 8.3.8 by using the separation bound provided in Lemma 8.3.13 instead of the
one provided by Lemma 3.2.4. We thus choose

h0
C,p0

= min

{
µ

6
,
ℓ0
4

}
.

Remark 8.3.14 We here ignore the consequences of Remark 8.3.1 as they just complicate formulas
without changing the logical steps.
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We should not forget that we have assumed that g0 is the Euclidean metric field, which is generally
not the case, we must in fact proceed like for the case of a uniform metric field (Theorem 7.3.8):

hC,p0 < min
j

(√
λi
)

(h0
C,p0

),

with {λi} the eigenvalues of g0.

Therefore, if the seed set satisfies the previous conditions on ε and δ and the canvas honors the
sizing field hC,i, then EV−η

E
(p0) is captured, and thus Vg(p0) is captured, which proves Lemma 7.3.10.

Taking the minimum of all the sizing field values over all pi ∈ P, we obtain an upper bound on
the sizing field,

hC = min
pi∈P

hC,pi ,

such that all the Voronoi cells are captured.

In all the Lemmas necessary to obtain the local results, we have imposed conditions on ε and δ.
Similarly to hC , the domain-wide bounds on ε and δ are computed from the local values of ε and δ.

Finally, this proves that N (Vordg(P)) ∼= N (Vorg(P)U ) in the general setting (Theorem 8.3.1), when
geodesics are exactly computed.

8.3.4 Extension to surfaces

The previous results may be generalized to n-manifolds embedded in R
m. We shall assume that,

apart from the metric induced by the embedding of the domain in Euclidean space, there is a second
metric g defined onM. Let πp :M→ TpM be the orthogonal projection of points ofM on the tangent
space TpM at p. For a sufficiently small neighborhood Up ⊂ TpM, πp is a local diffeomorphism (see
Niyogi [111]).

The pullback of the metric g with the inverse projection π−1
p defines a metric on Up. We have a

metric on a subset of a n-dimensional space, in this case the tangent space, giving us a setting that
we have already solved. Boissonnat et al. [17, Lemma 3.7] give bounds on the metric distortion of
the projection on the tangent space. This result allows to translate the δ-power protected (ε, µ)-net
properties between the tangent space and the manifold. Details can be found in Section 7.3.4 in
Chapter III.7, where the reasoning is similar.

8.3.5 Approximate geodesic distance computations

We have so far assumed that geodesics are computed exactly, but this is not the case in practice.
Nevertheless, once the error in the approximation of the geodesic distances is small enough, the
computation of the discrete Riemannian Voronoi diagram with approximate geodesic distances can be
equivalently seen as the computation of a second discrete Riemannian Voronoi diagram with a slightly
different metric field and using exact geodesic distances. This is achieved exactly as in Section 7.3.5
in Chapter III.7 and we thus do not reproduce it here.

8.4 Curved Riemannian Delaunay triangulation

For each simplex σ in the Delaunay complex, we can consider its curved realization (see Section 2.9
in Chapter 2). The definition of the curved realization is based on the Riemannian center of mass [83,
65], also known as a Karcher mean [85]. This step of our theory fully relies on the work of Dyer et
al. [65], and we only summarize here their results.
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8.5. Straight realization of the Riemannian Voronoi diagram

Definition 8.4.1 The curved realization of a Delaunay simplex, σ̃, is said to be non-degenerate if,
and only if, it is homeomorphic to φn.

The following theorem gives conditions such that simplices are non-degenerate.

Theorem 8.4.2 (Non-degeneracy criteria) Suppose that M is a Riemannian manifold with sec-
tional curvatures K bounded by |K| ≤ Λ, and σM is a curved Riemannian simplex, with σM ⊂ Bρ ⊂
M, where Bρ is an open geodesic ball of radius ρ, with

ρ ≤ ρ0 = min

{
ιM
2
,
π

4
√

Λ

}
.

Then σM is non-degenerate if there is a point p ∈ Bρ such that the lifted Euclidean simplex σ(p) has
thickness satisfying

t(σ(p)) > 10
√

ΛL(σM),

where L(σM) is the geodesic length of the longest edge in σM.

This can then be extended to a domain-wide result with the following definition and theorem.

Definition 8.4.3 If p is a vertex in an abstract simplicial complex A, we define the star of p to be
the subcomplex S(p) of A consisting of all simplices that contain p, together with the faces of these
simplices. The underlying topological space (or carrier) of a complex A is denoted |A|. We say that
S(p) is a full star if |S p| is a closed topological ball of dimension n with p in its interior, and A
contains no simplices of dimension greater than n.

Theorem 8.4.4 (Triangulation criteria) SupposeM is a compact n-dimensional Riemannian man-
ifold with sectional curvatures K bounded by |K| ≤ Λ, and A is an abstract simplicial complex with
finite vertex set S ⊂M. Define a quality parameter t0 > 0, and let

h = min

{
ιM
2
,

√
nt0

6
√

Λ

}
.

If,

• for every p ∈ S, the vertices of St(p) are contained in BM(p;h), and the balls {BM(p;h)}pS
cover M,

• for every p ∈ S, the restriction of the inverse of the exponential map exp−1
p to the vertices of

St(p) ⊂ A defines a piecewise linear embedding of |St(p)| into TpM, realizing St(p) as a full
star such that every simplex σ(p) has thickness t(σ(p)) ≥ t0,

then A triangulates M, and the triangulation is given by the barycentric coordinate map on each
simplex.

8.5 Straight realization of the Riemannian Voronoi diagram

An anisotropic simplicial complex with straight simplices is usually desired for practical applica-
tions. Starting from the curved Riemannian Delaunay triangulation, we give conditions such that
“straightening” the geodesic edges of the curved Riemannian Delaunay triangulation preserves the
property of being an embedded dual.
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We first prove that, under some sampling conditions, the facet of a curved Riemannian simplex
and its straight equivalent are close from one another. This is a generalization of a result that we have
established in the planar and surface settings in Chapter III.7. The proof of Lemma 8.5.1 employs
however a different approach. The proximity between a curved Riemannian simplex and its straight
equivalent allows to then prove that “straightening” simplices creates no inversion of simplices or
self-intersections. This is achieved in Theorem 8.5.2.

8.5.1 Proximity between straight and curved Riemannian simplices

We now prove that two points p and q with the same barycentric coordinates on respectively the
geodesic facet and the straight facet are close.

Lemma 8.5.1 Let {pi} be a set of n + 1 vertices in Ω such that D = ∩pi∈PV (pi) 6= ∅. Let σ and
σ̃ be the straight and curved Riemannian simplices that realize D. Let xg be a point on the curved
Riemannian simplex σg determined by the barycentric coordinates {λi} (see Section 2.9). Let xe be
the point uniquely determined by {λi} as xe =

∑
i λipi. If the geodesic distance dg is close to dE, then

|xg − xe| ≤
√

2 · 43(ψ0 − 1)ε2.

Proof. The key observation is that given a convex function f and a function f ′ that is close, that
is f − f ′ < α with α small, then the minimum value of f ′ is at most of min f + α. If we observe that
at any point x where f(x) > min f + 2α, we also have f ′(x) > min f + α so x is not a minimum of
f ′, we see that the minima of f and f ′ can not be far apart. In particular, we have that if xf ′,min is
the point where f ′ attains its minimum, then f ′(xf ′,min) ≤ min f + α. The precise argument goes as
follows.

We again assume that (possibly after a linear transformation) the metric is close to the Euclidean
one, that is:

dg(x, y) = |x− y|+ δdg(x, y),

with |δdg(x, y)| ≤ (ψ0 − 1) |x− y|. If we assume that |x− y| ≤ 4ε and ψ0 ≤ 2, it follows that

dg(x, y)2 = |x− y|2 + δd2
g(x, y),

with
δd2
g(x, y) ≤ 43(ψ0 − 1)ε2.

Recall that xg is the point where the functional

Eλ(x) =
∑

i

λidg(x, pi)
2

attains its minimum.
Using the bounds above, we find that

∑

i

λidg(x, pi)
2 =

∑

i

λi |x− pi|2 +
∑

i

λiδd
2
g(x, pi),

where
∑
i λiδd

2
g(x, pi) ≤ 43(ψ0 − 1)ε2. We also see that

∣∣∣∣∣
∑

i

λidg(xg, pi)
2 −

∑

i

λi |xg − pi|2
∣∣∣∣∣ ≤ 43(ψ0 − 1)ε2.
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Taking f ′ to be
∑
i λidg(xg, pi)

2 in the explanation above, we find that

∣∣∣∣∣∣∣

∑

i

λidg(xg, pi)
2 −

∑

i

λi

∣∣∣∣∣∣
∑

j

λjvj − pi

∣∣∣∣∣∣

2
∣∣∣∣∣∣∣
≤ 43(ψ0 − 1)ε2,

because the Euclidean barycenter xe =
∑
i λipi is where the function

∑
i λi|xg − pi|2 attains its mini-

mum. Combining these results yields

∣∣∣∣∣∣∣

∑

i

λi |xg − pi|2 −
∑

i

λi

∣∣∣∣∣∣
∑

j

λjvj − pi

∣∣∣∣∣∣

2
∣∣∣∣∣∣∣
≤ 2 · 43(ψ0 − 1)ε2. (8.4)

This bounds the distance between xg and xe. An explicit bound can be found by observing that

∑

i

λi |x− pi|2 =
∑

i

λi

((
x1 − p1

i

)2
+ . . .+ (xn − pni )2

)

=
∑

i

λi
(
x1 − p1

i

)2
+
∑

i

λi
(
x2 − p2

i

)2
+ . . .+

∑

i

λi (x
n − pni )2

=

(
x1 −

∑

i

λip
1
i

)2

−
(∑

i

λip
1
i

)2

+
∑

i

λi
(
p1
i

)2
+ . . .

+

(
xn −

∑

i

λip
n
i

)2

−
(∑

i

λip
n
i

)2

+
∑

i

λi (p
n
i )2

=

∣∣∣∣∣x−
∑

i

λipi

∣∣∣∣∣

2

+
∑

j


−

(∑

i

λip
j
i

)2

+
∑

i

λi
(
pji

)2


 . (8.5)

Then, applying Equation 8.5 for both both x = xg and x = xe =
∑
j λjpj in Equation (8.4), we obtain:

∣∣∣∣∣

∣∣∣∣∣xg −
∑

i
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i

λipi

∣∣∣∣∣

2

≤ 2 · 43(ψ0 − 1)ε2.

which yields a distance bound of
√

2 · 43(ψ0 − 1)ε2. �

As expected, the bound goes to 0 when the distortion goes to 1 or when the sampling gets dense.

Although we have formulated this metric distortion result for simplices, the same proof extends
almost verbatim to continuous distributions. By this we mean that the barycenter with respect to a
metric g of a continuous distribution is close to the barycenter with respect to the Euclidean metric,
if g is close to the Euclidean metric. Furthermore, note that the proof does not depend on the weights
being positive.
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8.5.2 Embeddability of the straight Riemannian Delaunay triangulation

We apply Lemma 8.5.1 to the facets of the simplices of D̃elg(P). Recall that the altitude of pi in
σ is noted D(pi, σ).

Theorem 8.5.2 Let {pi} be a set of n+ 1 vertices in Ω that define D = ∩pi∈P V(pi) 6= ∅. Let σ and
σg be the straight and curved Riemannian simplices that realize D. Let τg be a facet of σg, opposite
of the vertex pi. If for all xg ∈ τg, |xg − xe| ≤ D(pi, σ), then there is no inversion created when σg is
straightened onto σ.

If this condition is fulfilled for all σg ∈ D̃elg(P), then Delg(P) is embedded.

Proof. The lower bound on D(p, σ) given in Lemma 3.3.2 in Chapter 3 is proportional to ε. The
proximity (upper) bound of Lemma 8.5.1 is proportional to

√
(ψ0 − 1)ε, therefore going to 0 much

faster. The embeddability is thus satisfied once

√
2 · 43(ψ0 − 1)ε2 < Aινι

2ε

ψ0 < 1 +

(
Aινι

2
)2

2 · 43
,

where Aι and ν are constants whose definitions can be found in Lemma 3.3.2 in Chapter 3. �

8.6 Construction of power protected nets

Our theory introduces requirements on the canvas C (through its sizing field) and on the point
set P such that the two duals of the discrete Riemannian Voronoi diagrams are triangulations. The
canvas must be sufficiently dense, and the seed set a δ-power protected (ε, µ)-net with specific values
of δ and ε. The former requirement is easily achieved through refinement. A refinement algorithm to
construct power protected nets was described in Section 5.4 in Chapter II.5.

In the two-dimensional setting, neither the sampling nor the canvas needed to be as dense in
practice as the theory required them to be. Instead, a farthest point refinement was used to generate
the point set. Results in Chapter III.7 have shown that this is not the case in higher dimensions. The
lack of power protection was shown to be the culprit of inverted elements and power protection is thus
necessary. Unfortunately, the refinement algorithm proposed in Section 5.4 in Chapter II.5 is mostly
theoretical and the runtime of such algorithm would be unreasonable.

8.7 Conclusion

We have proved in this chapter that the discrete Riemannian Voronoi diagram and the related
algorithms introduced in Chapter III.6 are theoretically sound in any dimension. These guarantees
come in the shape of a quality requirement on the point set, through the power protected net as-
sumption, and on the density on the canvas. Although we followed the same approach to prove the
theoretical soundness as the previous chapter, many new intermediary results were required.

As in the two-dimensional setting, it would be desirable to expose quality bounds on the simplices
and to estimate the loss of quality that results from straightening curved Riemannian simplices into
straight Riemannian simplices. Finally, devising a practical algorithm to generate power protected
nets ought to be an interesting subject of research, with various areas of applications.
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9. Conclusion and perspectives

This thesis has studied, introduced and investigated a number of anisotropic mesh generation
algorithms, all based on the well-known structures of the Delaunay triangulation and the Voronoi
diagram. We have sought approaches that combine theoretical soundness, that is the capacity to
prove that the desired result is obtained under certain conditions, and practicality. Our results are
mixed: while we have proposed a number of methods that were all provably correct, none of these
methods were universally practical.

The practical side of locally uniform anisotropic meshes, a framework of theoretical mesh generation
that precedes this thesis, has been thoroughly investigated. We have proposed a generic, robust,
and fast implementation based on the CGAL library. Although we obtain anisotropic meshes that
conform to the metric field, the lack of control on the resolution of inconsistencies generally created
unreasonably large – and thus impractical – meshes. This shortcoming was attributed to the inherent
rigidity in the construction of the stars as only one metric is considered. We attempted to weaken
this rigidity and improve the results by modifying and combining another star-based approach, the
tangential Delaunay complex, with an alternative construction of the anisotropic Voronoi diagram of
Labelle and Shewchuk. Unfortunately, the results were similar to those obtained in the study locally
uniform anisotropic meshes. Finally, increasing again the quantity of metric information considered in
our algorithms, we have looked to Riemannian Voronoi diagrams, an expensive but the most accurate
diagram with respect to the metric field. We introduced a discrete structure on top of which we
compute geodesics to accurately capture the combinatorial information of the Riemannian Voronoi
diagram. From a quality point of view, we obtained much better results for two-dimensional manifolds
than we have with our previous approaches. We are able to build visually pleasing meshes that are
closely conforming to the metric field, especially in difficult regions where other mesh techniques would
fail or create isotropic elements. Additionally, the use of a Riemannian Voronoi diagram allowed us to
build curved Riemannian Delaunay triangulations. Although Riemannian Voronoi diagrams require
fewer points to have an embedded dual than other anisotropic Voronoi-based methods, this advantage
only lasts for a time before every method yields similar results. Despite the use of anisotropic star sets
generated from locally uniform anisotropic meshes, the running time of our diagram is unreasonably
slow for large meshes and three and higher-dimensional domains. Finally, our farthest point refinement
algorithm does not generate seed set whose dual is a triangulation in the setting of three-dimensional
domains, and the use of power protected seed sets seems necessary.

The quintessence of the proofs of our algorithms has been to ensure that adjacent Voronoi vertices
are far from one another by assuming that we use power protected nets. We also proposed a refinement
algorithm to generate such point sets in any dimension. The strength and versatility of power protected
nets allowed us to give conditions such that the anisotropic Voronoi diagram of Labelle and Shewchuk
(and by extension multiplicative Voronoi diagrams) have an embedded dual. Proving the theoretical
soundness of our algorithms required a large number of interesting intermediary results, for example
on the stability of the hypothesis of power protection and net under metric perturbations and on the
quality of the Delaunay and Voronoi structures created from power protected nets.
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Future work

Different paths can be followed to extend this work.

Firstly, all of our theoretical work has relied on power protected nets and the generation of such
point sets is in practice a difficult task as it is generally complicated to estimate problematic config-
urations beforehand. In our implementation of the framework of locally uniform anisotropic meshes,
we have used a trial and error approach to construct such point sets, but although this method did
(eventually) construct good point sets, the running time was a big factor in the impracticality of
the algorithm. Devising a practical way to construct power protected nets would provide a major
improvement to all of our methods. Additionally, we are optimistic that their use could generate
good anisotropic triangulations as dual of discrete Riemannian Voronoi diagrams and even as duals
of anisotropic Voronoi diagram using the distance of Labelle and Shewchuk.

Still from a theoretical point of view, various tasks require more work. First of all, our proofs do
not at the moment handle manifolds with boundaries, which an arbitrary “real” domain contains. A
comprehensive study of the quality of the elements produced by our algorithms is also lacking. As most
of our methods are based on Delaunay refinement and the insertion of points near the circumcenter of
a simplex, it would be interesting to investigate theoretical bounds on the angle and shape of simplices.

Further away from our work is the question of the feasibility of a metric field: when is a unit mesh
physically possible? Our choice of sizing field in the metric fields that we have considered has always
been an estimation, and a value based on solider theoretical grounds would be useful.

Tangential complex embedding

The original tangential Delaunay complex has shown to be an effective structure in the context
of (isotropic) manifold reconstruction. It can thus be concluded that the impracticality of our tan-
gential complex-based approach lies entirely within our modifications of the original structure to the
anisotropic setting. Despite this shortcoming, the tangential Delaunay structure could still be poten-
tially used for the generation of anisotropic meshes by embedding or transforming the input domain
to a new domain where an isotropic mesh is required.

The Nash’s embedding theorem – which provides an isometric embedding – naturally comes to
mind. However, the embedding introduced by Nash is very theoretical: the concept of infinitely small
and recursive twists to the manifold do not form a domain that can be easily meshed. Authors have
previously considered the idea of embedding the input domain to ease the process of meshing: Zhong
et al. [145] used conformal embedding and Panozzo et al. [114] warped input surfaces to produce
anisotropic quadrangulations. However, these methods are limited by the dimension of the embedding
spaces to keep a reasonable runtime. The use of the tangential complex would lift such limitation as
the complexity of the tangential complex almost entirely depends on the intrinsic dimension of the
embedded manifold and not the dimension of the embedding space.

Finite element analysis

Finite element method (FEM) is a renowned numerical technique to solve partial differential equa-
tions that makes use of meshes. Recent developments have extended the use of these methods to
curved meshes, whose faces are often described by Bézier curves and patches. Another line of research
could be the adaptation of the finite element method to curved Riemannian elements. Indeed, curved
Riemannian simplices are defined through a pointwise minimization process based on a (λi) barycentric
coordinate vector and we thus immediately have a pointwise deformation between a curved Rieman-
nian simplex and the traditional reference simplex of the finite element. Since curved Riemannian
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elements follow by definition the metric field absolutely, they could provide – in theory – a great level
of accuracy.
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A. Metrics

This appendix details the analytical expressions or methods used to compute the metric fields used
in this work.

A.1 Size of a metric

As explained in Section 2.13 of Chapter 2, the metric field can be seen as directly encoding a sizing
field in the amplitude of its eigenvalues. We detail below the various metric fields that we consider in
this thesis. All these metric fields are computed by detailing the eigenvectors and the eigenvalues of
the matrix at a point p of the domain. Scaling the metric at a point is simply scaling the (inverse of
the) eigenvalues. For example if e1 and e2 are two eigenvalues of a matrix at a point, considering the
same matrix with eigenvalues e1/10 and e2/10 multiplies the radius of the unit sphere at this point
by 10.

Remark A.1.1 The scaling must be identical for all the eigenvalues, otherwise the anisotropy is
modified.

A.2 Curvature

We detail in this section how to compute a metric field induced by the curvature for implicit and
polyhedral domains.

A.2.1 Implicit surfaces

Let S be an implicit surface defined by f(x, y, z) = 0. At each point p of S, we denote by N the
normal vector −∇f/ ‖∇f‖ and by H the Hessian of f . The principal curvatures cmax, cmin are the
eigenvalues of the matrix

C = P ·H ′ · P,
where H ′ = H ‖∇f‖ and P = I3 −N ·N t,

see e.g. [79]. By convention, we define cmax to be the eigenvalue with the maximal absolute value. Let
Umax, Umin and N be the normalized eigenvectors of C, and let U = [Umax, Umin, N ]. The metric at
the point p is defined by Mp = F tpFp, where:

Fp = U ·∆ · U t,
with ∆ = Diag{emax, emin, en},

emax =
√
|cmax|,

emin =
√
|cmin|.

The value of en does not significantly affect the shape of the facets of the mesh since those facets
are almost tangent to the surface. Experimental evidence indicates that en should be of the same
order of magnitude as the global maximum of

√
cmax.
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If one of the curvature values vanishes, we replace it with a small strictly positive value ε such
that the metric stays positive definite. The value of ε plays an important role in the final mesh and
is difficult to choose, as explained in the next section.

The ε criterion

We first illustrate the influence of the value of ε over the final mesh. The “Chair” surface is used
(see Section B.1 in Appendix B). This surface is characterized by the presence of parabolic points
along a circle (similarly to the top of a torus) on each of its “side” and in a saddle-type of region near
the center of the surface. Figure A.1 illustrates the two different types of parabolic points met on
that surface. The positions of parabolic points are distinguishable in Figure A.2 (leftmost) due to the
over-refinement around these points.

Figure A.1: The two configurations of parabolic points present on the “Chair” surface. In both case,
the curvature along the green vector is null.

The different meshes obtained for different values of ε for the “Chair” surface, using the algorithm
described in Chapter I.4. The other parameters, and specifically the approximation, are kept constant.

Figure A.2: Meshes produced by the algorithm presented in Chapter I.4 for different values of ε and
constant parameters. The value of ε increases from left to right: 0.1, 0.3, 0.5, 0.9.
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The rightmost value provides the lowest number of vertices for the set of parameters and is what
is generally expected as result. However, the corresponding value of ε was found by trial and error
and is completely specific to this surface and to the choice of the other parameters; simply scaling the
domain would already change the “optimal” value of ε. Worse, this “optimal” value of ε might not in
fact be optimal for both types of parabolic points present on the “Chair” surface. This can be more
easily seen on the “cyclide” surface (see Section B.3 in Appendix B). The cyclide surface is a torus
with varying small radius, also characterized by the presence of parabolic points along a circle. No
single value of ε can be satisfying: if ε is chosen too small, the mesh will be over-refined where the
small radius is largest (and possibly over-refined everywhere if ε is really small, like in Figure A.3); if ε
is chosen too large, the elements are not as anisotropic as they could be, and there are more elements
than an optimal mesh could have.

Figure A.3: cyclide surface for a low value of ε.

It would thus be desirable to consider a varying ε, but it is difficult to evaluate what its value
should be. We attempted to solve this problem heuristically but no satisfying method was found and
this is thus still an open problem.

A.2.2 Polyhedral Surfaces

We can estimate the curvature tensor of S̃ from S. This is done in two steps.

1. Curvature estimation at the vertices of S
We first estimate the curvature tensor at each vertex p ∈ S as follows. We compute the Euclidean
k-nearest vertices of p and then apply the jet-fitting algorithm of [40] to estimate the two principal
curvatures cmax and cmin, the corresponding unit vectors Umax and Umin, and the normal vector
N at p.

From the estimated curvatures, we compute emax and emin as in the case of an implicit domain.
We choose en as in the case of implicit domains and store at each vertex p a resulting estimated
metric tensor G(p) = U∆2U t, with U = [Umax, Umin, N ] and ∆ = diag{emax, emin, en}.
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2. Blending metric tensors
To estimate the metric tensor at any prescribed query point on S, we smoothly blend the metric
tensors computed in the previous step as described in Section 2.2.3 in Chapter 2.

A.3 Hyperbolic shock

If E denotes such a scalar field defined in R
3 and Ω a domain, we may want to mesh Ω to provide

the best approximation of E on Ω. The triangles are elongated orthogonally to the direction of the
gradient ∇E and the density depends both on the norm and the changing rate of the gradient.

We define the metric field as follows :

FM = U ·Diag{1/(1 + ϕ ‖∇E‖), 1, 1} · U t

where U = [ ∇E
‖∇E‖ , U1, U2], U1 and U2 being two arbitrary unit vectors that form an orthogonal basis of

the orthogonal complement of ∇E. If the gradient is zero, the metric field is isotropic. The parameter
ϕ controls how the facets are stretched with respect to the norm of the gradient.

The hyperbolic shock is an arbitrary sine-shaped shock function that can be described by the
following equation:

E(x, y, z) = tanh

(
1

λ
(2x− sin(5y))

)
+ x3 + xy2,

with λ = 0.6. The metric field is derived from E as described above.

A.4 Swirl

The Swirl metric field is based on a uniform vector field that creates a swirl to which an anisotropy
ratio that depends on the distance to the center is attached. The metric field has a parameter ν that
controls the circular motion; we use ν = 3. The metric M at a point p(x, y) is constructed as follows.

First, construct the eigenvectors v1 and v2 of the matrix:

v1,x =
−(xs+ yc) + (xc− ys)(1− x2 − y2)2

r2

v1,y =
(xc− ys) + (xs+ yc)(1− x2 − y2)2

r2

n =
√
v2

1,x + v2
1,y

v1 =

(
v1,x

n
,
v1,y

n

)
v2 =

(−v1,y

n
,
v1,x

n

)

where r2 = x2 + y2, c = cos(ν) and s = sin(ν).
Then construct the eigenvalues e1 and e2 (responsible for the anisotropy ratio):

f =
3
√
r +
√
r

2

e1 =
1

|50(1− (f − 1)2)| , e2 = 1.

We can now assemble the matrix :

U = (v1, v2)

∆ = Diag(e1, e2)

F = U t ·∆ · U.
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A.5. Starred

And finally M = F t · F .

A.5 Starred

The starred metric field is similar to the hyperbolic shock but has more emphasis on long unidi-
rectional anisotropic regions. The metric at p(x, y) is computed as follows:

v1 = 3x2 − xy

5
− y2 +

3x2

10

v2 = −x
2

10
− 2xy

n =
√
v2

1 + v2
2,

and

V =

(
v1/n −v2/n
v2/n v1/n

)
.

The anisotropy is controlled by a single variable a = max
{
α, 1

1+ψn

}
; we take α = 0.1 and ψ = 1. The

complete metric Gp at p is defined by:

Gp = V t ·
(
a2 0
0 1

)
· V.

A.6 Radial shock

The radial shock metric field can be thought to model the propagations of circular shocks from a
pointwise origin outwards. The metric at p(x, y) is computed as follows:

r = x2 + y2

v1 =
x√
r

v2 =
y√
r
,

and

V =

(
v1 −v2

v2 v1

)
.

Letting s = sin(r/5) and c = cos(r/5), the eigenvalues are given by:

e1 =
−5s− 2r(c− 3s2)

(rs2)
3
2

e2 =
s

rs2
.

The complete metric Gp at p is defined by:

Gp = V t ·
(
e1 0
0 e2

)
· V.
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A.7 Radial shock (3D)

The 3-dimensional radial shock metric field can be thought to model the propagations of one
circular shock from a pointwise origin outwards. The metric at p(x̄, ȳ, z̄) is computed as follows.

r =
√
x̄2 + ȳ2 + z̄2

x =
x̄

r
y =

ȳ

r
z =

z̄

r

v2y = − yz√
r2(x2 + y2)

v2x =
v2yx

y

v2z =

√
1− v2

2y

(
1 +

x2

y2

)
.

The anisotropy is determined by the following

α = 0.025

e1 = α+ (1− exp
(
−0.01

∣∣∣r2 − 0.15
∣∣∣
)
)

e2 = 1

e3 = 1.

The maximum anisotropy ratio, at the center of the shock, is given by 1/α (thus 40 with the default
value of 0.025). The matrix of eigenvectors is given by

V =



x v2x yv2z − zv2y

y v2y zv2x − xv2z

z v2z xv2y − yv2x


 .

Finally, the complete metric Gp at p is defined by:

Gp = V t ·



e2

1 0 0
0 e2

2 0
0 0 e2

3


 · V.

A.8 Unidimensional shock

We denote unidimensional shocks any metric field for which the eigenvectors of the metric are
aligned with the axis at all point. In other words, the metrics are diagonal matrices.

Different kind of shocks are possible, but we keep a preference for exponential-based shocks, as
they can be easily linked with the Log-Euclidean interpolation. A typical unidimensional shock in 3D
might be given by the following eigenvalues at a point p = (x, y, z) of the domain:

e1(p) = 0.1 + (1− exp(− |x− 0.6|))
e2(p) = 0.3 + (1− exp(− |y − 0.7|))
e3(p) = 0.05 + (1− exp(− |z − 0.2|)).
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A.8. Unidimensional shock

Meaning, for example, that the anisotropy along (Oy) is maximal at y = 0.7, with a stretching
of 1/0.3 ≈ 3 and decreases as |y − 0.7| increases.

The complete metric G at p is given by the matrix

G =



e−2

1 0 0

0 e−2
2 0

0 0 e−2
3


 .
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B. Domains

B.1 Chair

“Chair” is a non-convex implicit surface defined by the equation:

f(x, y, z) =
(
x2 + y2 + z2 − ak2

)2
− b

(
(z − k)2 − 2x2

) (
(z + k)2 − 2y2

)
.

We use a = 0.8, b = 0.4, k = 1.0.

B.2 Cow

“Cow” is a rough polyhedral surface of a cow. A data file for the “cow” can be found in the CGAL

library in the folder:
cgal/Surface_mesh_shortest_path/test/Surface_mesh_shortest_path/data/

B.3 Cyclide

The cyclide is a geometric inversion of the torus. In implicitly form, it is given by:

x2 + y2 + z2 − µ2 + b2)2 − 4(ax− cµ)2 − 4b2y2 = 0.

We take a = 7, b =
√

48, c =
√
a2 − b2 and µ = 3. Note that if a = b, we obtain a standard torus.

B.4 Dino

The “Dino” surface is a polyhedral surface of a brachiosaurus that is characterized by cylinder-like
parts (long neck and legs). A data file for the “Dino” can be found in the CGAL library in the folder:

cgal/Surface_mesh_segmentation/benchmark/Surface_mesh_segmentation/data/

B.5 Elephant

“Elephant” is a polyhedral surface of an elephant that is particularly interesting from a topological
point of view as it possesses many thin regions and holes. A data file for the “Elephant” can be found
in the CGAL library in the folder:

cgal/Surface_mesh/examples/Surface_mesh/data/

B.6 Ellipsoid

The equation of an ellipsoid is:
x2

a2
+
y2

b2
+
z2

c2
= 1.

where a, b and c are the lengths of the semi axis of the ellipsoid.
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B.7 Fandisk

“Fandisk” is a polyhedral surface of a mechanical piece characterized by large flat surfaces and
sharp edges. A data file for the “Fandisk” can be found in the CGAL library in the folder:

cgal/Surface_mesh_shortest_path/benchmark/Surface_mesh_shortest_path/data/

B.8 Fertility

“Fertility” is a polyhedral surface of a statue that is overall very smooth with various cylinder-like
parts. It is taken from the AIM@SHAPE repository.

B.9 Oni

The “Oni” surface is an open polyhedral (sur)face. A data file for the “Oni” surface can be found
in the CGAL library in the folder:

cgal/Surface_mesh_parameterization/test/Surface_mesh_parameterization/data
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