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GENERAL CONTEXT – THE QUANTUM-SAFE REVOLUTION

The goal of Quantum-Safe (or post-quantum) cryptography1 is to design cryptographic primi-
tives which are secure against a classical and quantum adversary. This is a well established
academic topic mainly motivated by Shor’s milestone quantum algorithm [258]. Indeed, al-
though no classical polynomial-time algorithm has been found for the number theoretic cryp-
tographic problems used in practice – such as integer factorization (FACT), e.g., in RSA, and
discrete logarithm (DLOG), e.g., in the Diffie-Hellman key-exchange – Shor’s algorithm allows
to solve DLOG and FACT in polynomial-time on a quantum computer.
Quantum-Safe Cryptography (QSC) is an active
cryptographic topic which started soon after
Shor’s algorithm. Today, it is commonly ad-
mitted that the most promising quantum-safe
cryptosystems include [43], [242]: Quantum-
Key Distribution (QKD, [36]), code-based cryp-
tosystems [229], hash-based cryptosystems [71],
[186], isogeny-based cryptography [165], [188],
lattice-based [219] cryptosystems and finally
multivariate-based cryptosystems [109]. Among
this list, QKD is different from the others tech-
niques. It is not based on the hardness of an al-
gorithmic problem but rather on a physical as-
sumption. It can be also mentioned that finding
isogenies between supersingular curves [165],
[188] is the youngest algorithmic problem in-
troduced in QSC; the first paper [188] by De Feo
and Jao dates of 2011.

Quantum-Safe
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The status of quantum-safe cryptography is currently completely changing. It is quickly mov-
ing from a purely academic theme to a topic of major industrial interest. As such, this can
be considered as a revolution. This new industrial interest is mainly driven by the fact that
quantum-safe cryptography has received recently much attention from the standardization and
policy spectra. The trigger event is the announcement in August 2015 by the National Security
Agency (NSA) of preliminary plans for a transition to quantum resistant algorithms2:

1We adopt quantum-safe cryptography in this document.
2https://www.nsa.gov/ia/programs/suiteb_cryptography/
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General Context – The Quantum-Safe Revolution

“Currently, Suite B cryptographic algorithms are specified by the National Institute of Stan-
dards and Technology (NIST) and are used by NSA’s Information Assurance Directorate
in solutions approved for protecting classified and unclassified National Security Systems
(NSS). Below, we announce preliminary plans for transitioning to quantum resistant al-
gorithms.”

This was quickly followed by an announcement of NIST which detailed the transition process.
NIST, which has the authority to establish the security standards of the US government, re-
leased in January 2016 a call to select standards for quantum-safe public-key cryptosystems:
public-key exchange, signature and public-key encryption [78], [226]. With historical perspec-
tive, for example with the Advanced Encryption Standard, it seems likely that the quantum-safe
standards derived from this process will be widely endorsed around the world.
In parallel of the US process, Europe is also at the forefront of quantum-safe standardization
with an industry specification group (ISG) on QKD3 and a more recent ISG on quantum-safe
cryptography4; the latter focusing more on algorithmic techniques. The International Stan-
dardization Organization (ISO SC 27/WG 2) is currently in a study period on quantum-safe
cryptography. Industry-based think-tank such as the Cloud Security Alliance is also contribut-
ing to raise awareness on QSC with an industry group dedicated5 to quantum-safe security. To
complete the world tour, we mention that Asia recently started a dedicated forum on quantum-
safe cryptography6.

Gröbner Bases Techniques in Quantum-Safe Cryptography

It is clear that the effort to develop quantum-safe cryptosystems is now intensifying. Still, a key
issue for a wide adoption of future quantum-safe standards is our confidence in their security.
There is therefore a great need to develop cryptanalysis against quantum-safe cryptosystems.
Cryptanalysis is of course a much needed tool to filter out the weakest primitives. However, it
is also the only reliable technique to set the parameters of any cryptosystem and a fundamental
element in the design of future standards.
Although quantum-safe cryptosystems are based on different hardness assumptions, a goal of
this document is to show that algebraic cryptanalysis provides a general framework to analyse
these primitives. The principle of such cryptanalysis is to model a cryptographic primitive
by a set of algebraic equations. The system of equations is constructed in a way to have a
correspondence between the zeroes and a secret information of the cryptographic primitive
considered (for instance, the secret-key of an encryption scheme).
Algebraic cryptanalysis reduces the security analysis of a cryptographic primitive to the prob-
lem PoSSoq which consists of solving a system of non-linear equations over a finite field Fq
(with q = ps, p prime and s > 0). This classical NP-hard problem [176] is defined as follows:

Polynomial System Solving over a Finite Field (PoSSoq)
Input. p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) ∈ Fq[x1, . . . , xn].
Goal. Find – if any – a vector (z1, . . . , zn) ∈ Fn

q such that:

p1(z1, . . . , zn) = 0, . . . , pm(z1, . . . , zn) = 0.

3https://portal.etsi.org/tb.aspx?tbid=723&SubTB=723
4https://portal.etsi.org/tb.aspx?tbid=836&SubTB=836
5https://cloudsecurityalliance.org/group/quantum-safe-security/
6http://cps.cqu.edu.cn/
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An algebraic attack has then typically two steps : modeling the cryptosystem as a set of algebraic
equations and then solving the non-linear equations to recover a secret of this cryptosystem
(secret-key, message corresponding to a ciphertext,. . .). The NP-hardness of PoSSoq guarantees
that a modeling is always possible. This makes the approach very general. However, the NP-
hardness of PoSSoq also implies that the technique cannot be always efficient, i.e. polynomial-
time, for all cryptographic primitives.
Almost always, there are many possible modelings. The difficultly of algebraic attacks, and
the core of my research activity, is to find a “suitable” modeling. In our context, a modeling is
meaningful if the set of generated equations can be solved efficiently: that is, in polynomial-
time, sub-exponential time or solved in practice for real-life parameters of the cryptosystems
considered. The chosen modeling also depends on the technique used for solving PoSSoq (ex-
haustive search [61], Gröbner bases [67]–[69], [120], [121], [173], [174], SAT-solvers [260], char-
acteristic set algorithms [175], Agreeing-Gluing algorithms for sparse polynomials [243], [244],
[253]–[256], . . . .
A feature of my research activity is the use of Gröbner bases [68], [69]. This is fundamentally
motivated by the fact that efficient tools, the F4 and F5 algorithms [120], [121], and softwares
[59], [147] permit today to perform large scale experiments. We also have a rich set of tools from
computer algebra/algebraic geometry that allow to understand the complexity of computing
such bases. Finally, Gröbner bases algorithms turn to be quite flexible for taking advantage of
structured systems that naturally appear in algebraic cryptanalysis.
In this document, we shall see that the efficiency of our algebraic attacks depends on our ability
to capture algebraically the intrinsic structure of the cryptosystems considered. The notion of
semi-regularity ([25], [29], Definition 1.1.5) defines, in some sense, the minimal algebraic struc-
ture that we can expect. This is the sole structure used (Chapter 2) for an algebraic cryptanalysis
of a central problem in lattice-based cryptography : the Learning With Errors problem (LWE, [245]).
Another weak structure is naturally induced by solving over finite fields. As a matter of fact,
we can enumerate elements. This simple idea leads to the hybrid approach for PoSSoq (Section
1.2). The complexity of solving PoSSoq for semi-regular sequences is exponential in the num-
ber of variables. The constant depends on the ratio between the number of equations and the
number of variables as well as the size of the field. The hybrid approach allows to decrease
this constant and permits to improve the complexity of solving PoSSoq with respect to a direct
Gröbner basis computation.
More sophisticated structures will appear in multivariate cryptography (Chapter 3) and code-
based cryptography (Chapter 4). In both cases, we can model the cryptographic primitives with
algebraic equations having a multi-homogeneous structure [104], [200], [211], i.e. the equations
are homogeneous with respect to distinct blocks of variables (Definition 1.1.7).
There is no general polynomial system solving algorithm taking full advantage of the multi-
homogeneous structure. However, significant progress have been reported on the complexity
of solving structured systems which are particular sub-families of multi-homogeneous systems.
Typically, [160], [261] presented a precise complexity analysis of bi-linear systems (Definition
1.1.8), i.e. each equation is the product of two linear forms on distinct blocks of variables. In
the bi-linear case, the complexity of solving PoSSoq with Gröbner bases is exponential in the
size of the smaller block of variables (Proposition 1), and not exponential in the total number
of variables as for semi-regular sequences. We have identified a class of systems than can
be solved more efficiently than semi-regular sequences. In particular, if the smaller block is
constant then the complexity of solving PoSSoq is polynomial.
A natural strategy is then to find modeling with as close as possible to bi-linear structure. How-
ever, the structures that will appear in multivariate and code-based cryptography are in some
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General Context – The Quantum-Safe Revolution

sense less general than the multi-homogenous one but not as simple as the bi-linear one. In
Chapter 3, we can in fact consider an alternative modeling with a determinantal structure [149],
[151], i.e. equations correspond to the minors of a symbolic matrix, for which we have precise
complexity bounds. This determinantal structure turned to be well suited for the problems
considered in Chapter 3.
In Chapter 4, we show that key-recovery against the McEliece cryptosystem [214] reduces to
solving a particular multi-homogeneous system. It is probably one of the most important open
question in algebraic cryptanalysis to efficiently solve this structured algebraic system. An in-
termediate step is to consider a sub-system which has a quasi bi-linear structure, i.e. equations
defined over an extension which are bi-linear when viewed on the base field. In fact, McEliece
is a typical case where the structure on the algebraic systems will permit to discover new struc-
tural properties on the cryptosystem itself.

Organization of the Document & Main Results

Since my PhD [236], together with collaborators, I have applied and developed algebraic crypt-
analysis in various contexts : ranging from block-ciphers [4], [5], [140], [144], hash functions
[47], [264], stream-ciphers [259], elliptic curves [143] and quantum-safe cryptography [3], [4],
[6]–[8], [10]–[12], [15], [45], [46], [51], [52], [80], [122]–[126], [128]–[132], [134]–[139], [141], [142],
[158], [159].
We provide in this document a selected overview of the results obtained in the latter topic.
This choice is mainly motivated by the fact that algebraic cryptanalysis turned to be more suc-
cessful in public-key cryptography, and especially against quantum-safe cryptosystems. Also,
quantum-safe cryptography is currently experimenting a rapid transition from academia to
industry and algebraic cryptanalysis should play an important role in this quantum-safe tran-
sition.

Chapter 1. Polynomial System Solving Over Finite Fields

PoSSoq being NP-Hard [176], any algorithm for PoSSoq should be exponential in the number of
variables, i.e. any algorithm for PoSSoq has a complexity of the form:

O(2c n), (1)

with n being the number of variables and c > 0 a constant.
Due to the numerous applications of PoSSoq – including cryptology and coding theory – it is
important to minimize the value of c in the complexity (1). In Section 1.1, we recall classical re-
sults about Gröbner bases [68], [69] and the complexity of computing such bases. In particular,
we can precisely determine the value of c under some genericity assumption (Theorem 1.1.5) for
modern Gröbner bases algorithms such as Faugère’s F4 and F5 algorithms [120], [121].
In Section 1.2, we describe and analyze a hybrid approach for solving PoSSoq. Section 1.2 is
based, in particular, on:

Hybrid Approach

[49] L. Bettale, J.-C. Faugère, and L. Perret, “Hybrid approach for solving multivariate sys-
tems over finite fields”, Journal of Mathematical Cryptology, vol. 3, no. 3, pp. 177–197, 2010.
[Online]. Available: http://www-salsa.lip6.fr/~jcf/Papers/JMC2.pdf.
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HYBRID APPROACH

[52] L. Bettale, J.-C. Faugère, and L. Perret, “Solving polynomial systems over finite fields:
improved analysis of the hybrid approach”, in Proceedings of the 37th International Sympo-
sium on Symbolic and Algebraic Computation, ser. ISSAC ’12, Grenoble, France: ACM, 2012,
pp. 67–74. [Online]. Available: http://www-polsys.lip6.fr/~jcf/Papers/FBP12.pdf.

The hybrid approach is a polynomial system solving method dedicated to finite fields. The
goal is to decrease the value of c by taking advantage of the finite field structure. To do so,
we combine exhaustive search with Gröbner bases. The efficiency of the hybrid approach is
related to the choice of a trade-off between the two methods. Whilst the principle of the hybrid
approach is simple, its careful analysis leads to rather surprising and somehow unexpected
results.
All the complexity results for the hybrid approach are obtained assuming a natural algebraic
hypothesis (Assumption 1). Under this assumption, the asymptotic complexity (Theorem 1.2.1)
of the hybrid approach for solving quadratic instances of PoSSoq is

O
(

2
(

3.27−3.5 log2(q)−1
)

n
)

, assuming in particular that log(q)� n.

This is to date, the best complexity for solving PoSSoq when q > 2 [51]. This can be compared
compared with a recent work [204] where the authors presented a new technique for solving
PoSSoq. We summarize below the complexity provided in [204]:

• We can solve quadratic instances of PoSSo2 in O∗(20.8765 n) (the notation O∗ omits polyno-
mial factor),

• We can solve degree-d instances of PoSSoq in O∗(qn(1− 1
5d )n3d) when p = 2 (but q > 2 or

d > 2),

• We can solve degree-d instances of PoSSoq in O∗(qn(1− 1
200d )n3qd) when p > 2 and log(p) <

4ed, with e the Napier’s constant,

• We can solve degree-d instances of PoSSoq in O∗
(

qn
(

ekd
log(q)

)dn
)

when p > 2 and log(p) >

4ed.

Note that these complexities do not rely on any assumption. For q = 2, we also mention
that [61] describes a fast exhaustive search for solving PoSSo2 and provide the exact cost of
their approach : 4 log2(n) 2n binary operations. The best method for solving PoSSo2 is due to
[30] where the authors proposed an algorithm – called BooleanSolve – inspired but different
from the hybrid approach described in Section 1.2. When m = n, the deterministic variant of
BooleanSolve has complexity bounded by O(20.841n), while a Las-Vegas variant has expected
complexity O(20.792n). We summarize below the best complexities (dominant part) known for
solving PoSSoq. For q = 2, it is due to [30]. For the others fields, the results are obtained with the
hybrid approach (Theorem 1.2.1). For completeness, we also added in the last row the results
that can be obtained using [204].

q 2 [30] 22 23 24 25 26 28 216

20.792n 21.5n 22.08n 22.38n 22.56n 22.67n 22.82n 23n

[204] 20.8765n 21.8n 22.7n 23.6n 24.5n 25.39n 27.2n 214.4n
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General Context – The Quantum-Safe Revolution

We can also quantify the gain provided by the hybrid approach compared to a direct Gröbner
basis method. For quadratic systems, we show – again assuming a natural algebraic assump-
tion (Assumption 1) – that this gain is exponential in the number of variables. Asymptotically,
the gain (Theorem (1.2.2)) is 21.49 n when both n and q grow to infinity and log(q)� n.
All in all, Chapter 1 presents a rather simple approach that allows to take advantage of finite
fields, as well as semi-regularity. This is the minimal structure that we can expect for poly-
nomial systems occurring in algebraic cryptanalysis. This anyway permits to minimize the
complexity of solving PoSSoq.

Chapter 2. Algebraic Algorithms for LWE

The Learning With Errors problem (LWE, [245]) is a fundamental problem in lattice-based cryp-
tography. LWE can be viewed as the problem of decoding a random linear code over Fq with Gaus-
sian noise, or as the problem of solving an erroneous system of linear equations over Fq with
Gaussian errors. There are at least two prominent categories of algorithms for solving LWE :
lattice-based and combinatorial based [7], [57]. In [16], Arora and Ge introduced the first alge-
braic algorithm for solving LWE. Their approach reduces LWE to finding the common root of a
multivariate system of high-degree, error-free polynomials of the following form:

p1 = P
(
c1 −

n

∑
i=1

xjgi,1
)
, . . . , pm = P

(
cm −

n

∑
i=1

xjgi,m
)

(2)

with
(
G = (gi,j) ∈ Mn×m(Fq) × Fn

q , and P(X) = X ∏D
i=1(X + i)(X − i), where D > 1 is a

parameter. For Gaussian errors, the classical case [16], we have D = Õ(nε) where ε, 0 6 ε 6 1
is a parameter related to the Gaussian distribution and m unbounded. For uniform errors, as in
[218], D = O(1) and the number of samples m is bounded. In both cases, q ∈ poly(n) is prime.
In [16], the authors used linearization for solving the algebraic system (2). In Chapter 2, we
propose to use Gröbner bases instead and derive new asymptotic results for LWE with Gaussian
errors and LWE with binary errors (i.e. D = 2). This last variant, that we call BinaryErrorLWE,
was introduced by Micianccio and Peikert in [218]. Chapter 2 is based, in particular, on

Algebraic Algorithms for LWE

[3] M. R. Albrecht, C. Cid, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “Algebraic algorithms
for LWE problems”, IACR Cryptology ePrint Archive, vol. 2014, p. 1018, 2014. [Online].
Available: http://eprint.iacr.org/2014/1018.

[6] M. Albrecht, C. Cid, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “On the complexity of
the Arora-Ge algorithm against LWE”, in SCC ’12: Proceedings of the 3nd International
Conference on Symbolic Computation and Cryptography, Castro-Urdiales (Spain), Jul. 2012,
pp. 93–99.

We proved that the use of Gröbner basis techniques yields an exponential speed-up over the
basic Arora-Ge algorithm. For typical parameters of LWE, the Gröbner basis algorithm has a
complexity:

O(26.69 n).

This is obtained under a genericity assumption, i.e. by assuming that the algebraic system de-
rived from (2) behaves as a semi-regular sequence. We can save a logarithmic factor in the
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CRYPTANALYSIS OF MPKC

exponent with respect to the linearization approach of Arora and Ge [16]. This places it in the
same complexity class, namely 2O(n), than the best algorithms for solving LWE [13], [185] albeit
with a larger leading constant in the exponent.
This result can be improved for BinaryErrorLWE (Section 2.2). We show, for instance, that
the algebraic system (2) can be solved in subexponential time given access to a quasi-linear
number of samples m. We also give precise complexity bounds for BinaryErrorLWE in function
of the number of samples (Theorem 2.2.1). This addresses an open question by the designers
of BinaryErrorLWE.
To derive our complexity results, we use a genericity hypothesis. Informally, we state that
the algebraic systems derived from (2) are not harder to solve than semi-regular sequences
(Definition 1.1.5) of the same size. Experimental evidences seem to show that random systems
of equations tend to be semi-regular (some experiments are presented in Table 1.1). Hence, our
semi-regularity assumption essentially states that the algebraic system (2) is neither easier nor
harder to solve than random systems of equations. The genericity assumption associated to (2)
is essentially equivalent to prove that a system generated by the Dth powers of m generic linear
forms in n variables is semi-regular. This is a fundamental question essentially equivalent to the
well-known Fröberg’s conjecture ([168], [169], Section 1.1.2) about the existence of semi-regular
sequences; which is considered to be difficult in the general case. In Section 2.3, we report some
results about this open question (and the validity of our genericty assumption) in restricted
cases.
Gröbner bases are a new tool in the cryptanalytic toolbox dedicated to LWE. Chapter 2 shows
that we can obtain non-trivial asymptotic results against LWE and BinaryErrorLWE with alge-
braic attacks. There results are obtained by only using a weak structure from a Gröbner basis
point of view : semi-regularity. A challenge is improve the complexity exponents of our algo-
rithms. Another merit of this application is to establish a (somewhat unexpected) connection
with Fröberg’s conjecture about the existence of semi-regular sequences (Section 1.1.2).

Chapter 3. Algebraic Cryptanalysis of Multivariate Public-Key Cryptosystems

Multivariate cryptography is usually defined as the set of cryptographic schemes using the
computational hardness of PoSSoq, or more generally the hardness of computing a Gröbner
basis of a polynomial ideal. This is a classical candidate in quantum-safe cryptography. PoSSoq
being NP-hard, it is unlikely that it can be solved in quantum polynomial-time [35].
The most active area in the design of multivariate schemes is public-key cryptography. This
is a sub-area of multivariate cryptography – known as MPKC – which has been introduced and
popularized by Matsumoto, Imai and Patarin [212], [231]. An important part of my activity is
related to the design and security analysis of this family of schemes, e.g. [45], [46], [48]–[52],
[60], [125], [127], [128], [136], [137], [145], [159]. Chapter 3 summarizes a subset of these results.
It includes a small part of [46], but it is mostly based on:

Cryptanalysis of MPKC

[51] L. Bettale, J.-C. Faugère, and L. Perret, “Cryptanalysis of HFE, Multi-HFE and variants
for odd and even characteristic”, Designs, Codes and Cryptography, vol. 69, no. 1, pp. 1–52,
2013. [Online]. Available: http://hal.inria.fr/hal-00776072.
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[127] J.-C. Faugère, F. Levy-dit-Vehel, and L. Perret, “Cryptanalysis of MinRank”, in Advances
in Cryptology CRYPTO 2008, D. Wagner, Ed., ser. Lecture Notes in Computer Science,
vol. 5157, Santa Barbara, CA, USA: Springer-Verlag, Aug. 2008, pp. 280–296. [Online].
Available: http://www-salsa.lip6.fr/~jcf/Papers/crypto08.pdf.

[138] J.-C. Faugère and L. Perret, “On the security of UOV”, in First International Conference
on Symbolic Computation and Cryptography, SCC 08, ser. LMIB, Beijing, China, Apr. 2008,
pp. 103–109. [Online]. Available: http://www-salsa.lip6.fr/~jcf/Papers/SCC08a.
pdf.

In Section 3.1, we briefly describe the general design principle of MPKC and sketch two promi-
nent multivariate schemes : HFE [231] and UOV ([192]). The latter acronym refers to a multivari-
ate signature scheme proposed Goubin, Kipnis and Patarin in 1999. Since, its introduction no
efficient attack has been reported against UOV. HFE is probably one of the most famous MPKC. It
can be used as a public-key encryption scheme and as a signature scheme. In some sense, HFE
popularized algebraic cryptanalysis with Gröbner bases since Faugère and Joux demonstrated
[146], [155] that modern Gröbner bases could be indeed used to attack real-world parameters
of HFE.
More generally, the hard problems underlying the security of MPKC can be naturally expressed
in terms of algebraic equations and are then a natural target for algebraic attacks. Typically, the
public-key of MPKC is given by a set of multivariate equations and a message-recovery reduces
to the hardness of solving particular instances of PoSSoq. In Chapter 1, we described a method
which is currently the best generic method for solving PoSSoq. In Section 3.2, we show that this
hybrid approach can be used to forge efficiently (≈ 3 hours) a signature for some parameters
of UOV initially recommended by the designers [192]. This is not a structural attack, since the
hybrid approach only uses weak structures (semi-regularity, and finite field structure). How-
ever, it validates the relevance of the hybrid approach and shows that the parameters should be
more carefully selected. In Section 3.2, we apply the hybrid approach to derive a set of minimal
parameters for multivariate signature schemes (Table 3.2).
In Section 3.3, we focus on the MinRank problem [73], [82]. This is basic problem from linear
algebra originally introduced in [73] where the authors proved its NP-hardness. Later, it was
reformulated by Courtois [82] in the cryptographic context who described a Zero-Knowledge
scheme – that we will call ZKMR – based on MinRank.
We focus on this problem because MinRank is also fundamentally related to the security of many
multivariate schemes.
MinRank
Input. A set of k + 1 matrices M0, M1, . . . , Mk ∈ MN×n(Fq) and an integer r > 0.
Question. Find – if any – a k-tuple (λ1, . . . , λk) ∈ Fk

q such that:

Rank

(
k

∑
i=1

λi Mi −M0

)
6 r.

We summarize a first algorithmic contribution [156] on MinRank in Section 3.3. In particular,
we present an improved algebraic attack against ZKMR. To do that, we have used an algebraic
modeling due to Kipnis and Shamir [194] together with Gröbner bases. This permitted to break
3 (among 5) sets of parameters recommended by the designer of ZKMR [82]. The efficiency of the
attack can be explained by the multi-homogeneous structure of the modeling used. In [149],
[151], Faugère, Safey El Din and Spaenlehauer consider an alternative modeling of MinRank
which use symbolic minors and provide precise complexity results about solving MinRank with
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such minors. In particular, this leads to an even more efficient attack against ZKMR. We review
this approach in Section 3.3.3. An important feature of the minors is that the complexity of
solving MinRank is well mastered with this modeling (Proposition 8).
Finally, we explain in Section 3.4 how MinRank is connected to a key-recovery against HFE. This
part is based on [50], [52]. The principle of reducing key-recovery in HFE to MinRank is due to
Kipnis and Shamir [194]. In Section 3.4.1, we revisit this classical MinRank against HFE. This
leads to an easier and arguably most natural formulation of the attack from [194]. It makes
this attack practical for a wide range of parameter whereas the original attack was considered
theoretical. Finally, we build on the theoretical results [149], [151] about minors (Proposition 8)
to derive in Section 3.4.2 a complexity bound for our key-recovery in the case of HFE (Section
3.4.2). In [194], it was conjectured that the basic Kipnis-Shamir (KS) attack against HFE runs in
expected polynomial-time (but the complexity turned to be incorrect [103]). Under a regularity
assumption, we show that solving the MinRank instances of Theorem 3.4.1 is exponential in
r = dlogq (D)e, where D is the degree of the HFE polynomial (Definition 3.1.1).
Algebraic cryptanalysis is an intrinsic technique to evaluate the security of multivariate schemes.
Globally, the results of Chapter 3 provide a set of reference tools to analyze the security of MPKC.
We emphasize that after an intense period of cryptanalysis, it appears now that few schemes
resisted to the test of time : UOV (1999, and variants of HFE (1995, [192]). An open problem in this
area is to design good proposals for quantum-safe standards. In particular, Chapter 3 demon-
strates that the complexity of the best attacks against HFE are all exponential in O(logq(D)).
We have then only one parameter which allows to control the security and efficiency of this
scheme. We are now in a better position to derive secure parameters for HFE and variants such
that the minus variant (HFE-, [231]) and the vinegar variant (HFEv, [232]).

Chapter 4. Algebraic Techniques in Code-Based Cryptography

After almost forty years now, the McEliece cryptosystem still belongs to the very few public-
key cryptosystems which remain unbroken [214]. The public-key in McEliece is given by the
generator matrix of a particular linear code: a binary Goppa code (Definition 4.1.2). Its security
(message-recovery) relies upon the intractability (i.e. NP-Hardness) of decoding linear codes
[40]. Decoding a random linear code is a long-standing problem whose most effective algo-
rithms, e.g. [41], [75], [198], [199], [213], [263], have all an exponential-time complexity in the
classical [270] as well than in the quantum setting [42]. Although the complexity of the best de-
coding attack remains exponential, progress on the exact exponent have been continuously re-
ported. The latest result from [213] brings down the complexity to 20.097 n for decoding random
binary linear codes of length n. The situation is rather different for the key-recovery problem.
The reference attack used to be the so-called Support Splitting Attack (SSA) proposed by Sendrier
and Loidreau in [203]. SSA is essentially an exhaustive search on a part of the secret-key (that
is, the Goppa polynomial). SSA only weakly uses the structure of binary Goppa codes. Besides
SSA, no significant breakthrough has been been reported during the past years regarding key-
recovery in McEliece. In Chapter 4, we overview new algebraic key-recovery techniques on
McEliece and some variants from

Algebraic Cryptanalysis of McEliece

[122] J.-C. Faugère, V. Gauthier-Umana, A. Otmani, L. Perret, and J.-P. Tillich, “A distin-
guisher for high rate Mceliece cryptosystems”, IEEE Transactions on Information Theory,
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vol. 59, no. 10, pp. 6830–6844, Jun. 2013. [Online]. Available: http://hal.inria.fr/
hal-00776068.

[131] J.-C. Faugère, A. Otmani, L. Perret, F. De Portzamparc, and J.-P. Tillich, “Structural
cryptanalysis of Mceliece schemes with compact keys”, Designs, Codes and Cryptogra-
phy, pp. 87–112, Jan. 2016. [Online]. Available: https://hal.inria.fr/hal-00964265.

[133] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich, “Algebraic cryptanalysis of McEliece
variants with compact keys”, in Proceedings of Eurocrypt 2010, ser. Lecture Notes in Com-
puter Science, vol. 6110, Monaco: Springer Verlag, 2010, pp. 279–298. [Online]. Available:
http://www-salsa.lip6.fr/~jcf/Papers/Eurocrypt2010.pdf.

[135] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich, “Algebraic Cryptanalysis of McEliece
variants with compact keys – toward a complexity analysis”, in SCC ’10: Proceedings of
the 2nd International Conference on Symbolic Computation and Cryptography, London (UK),
Jun. 2010, pp. 45–55. [Online]. Available: http://www-salsa.lip6.fr/~jcf/Papers/
SCC2010a.pdf.

More precisely, Section 4.2 summarizes [131], [133], [135] and describes a new structural attack
against against McEliece-like cryptosystems; introducing algebraic cryptanalysis in code-based
cryptography. The very definition of a binary Goppa code – as alternant code (Definition 4.1.1)
– implies that key-recovery in McEliece reduces to solve the following algebraic system :

AX,Y =
t−1⋃
`=0

{
n−1

∑
j=0

gi,jX`
j Yj | 0 ≤ i ≤ k− 1

}
, where G = (gi,j) ∈ Mk×n(Fq). (3)

The solutions of this system lie in Fqm and k is an integer which is at least equal to n− tm (t is
the degree of the Goppa polynomial). We can remark that the system AX,Y is very structured.
Indeed, the only monomials occurring are of the form YjX`

j with `, 0 ≤ ` ≤ t − 1, i.e. each
equation are bi-homogeneous of bi-degree (1, `). The number of unknowns 2n and the maximum
degree t of the equations can be extremely high when cryptographic parameters are considered.
However, the system can also be largely over-determined.
The basic algebraic modeling (3) can actually be refined by using to several properties of binary
Goppa codes; leading to systems with more equations and less variables (Section 4.2). Still, it
is not clear whether an efficient algebraic attack can be mounted in general. However, the
approach can be very efficient as soon as the code used as an additional structure : typically
for variants such as Wild McEliece (Incognito) [141] (which uses special Goppa polynomials)
or compact variants [133], [142], [158] (which uses structured block matrices as a public-key).
The key point was to take into account the additional structure of these McEliece variants to
refine the modelings. This permitted to drastically improve the solving step. For instance, we
have been able to break practically all the parameters proposed in [39] for a variant of McEliece
whose public-key as a quasi-cyclic structure. In Section 4.2.2, we explain how the algebraic
cryptanalysis allows in fact to unveil a fundamental weakness of all known compact variants
of McEliece [33], [39], [220], [237].
In Section 4.3, we consider the Goppa Code Distinguishing (GD) problem. This decision problem
appeared first in [87] and aims at recognizing a generator matrix of a binary Goppa code from
a randomly drawn binary matrix. Before our algebraic distinguisher [122], it was assumed that
no polynomial time algorithm exists that distinguishes a generator matrix of a (binary) Goppa
code (or more generally alternant codes that includes Goppa codes) from a randomly picked
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generator matrix. All in all, the hardness of GD was a classical belief in code-based cryptogra-
phy, and as a consequence, a de facto assumption widely used in code-based cryptography. In
Section 4.3, we present a deterministic polynomial-time solving GD for codes whose rate R = k

n
is close to 1. This includes in particular codes encountered with the McEliece signature scheme
CFS [87], [167]. Our distinguisher is based on the algebraic modeling explained in Section 4.2.
The fundamental idea of the distinguisher is to study the behavior of a Gröbner basis computa-
tion on the algebraic system (3) where G ∈ Fk×n

q is a random matrix or a McEliece’s public-key.
The very (specific) structure of the linear codes used in McEliece will induce a specific behav-
ior at the first step of a Gröbner basis computation. This behavior is captured by the rank of
a particular linear system LP defined in Section 4.3. We derive precise formula on the rank
of LP when G is a random matrix (Theorem 4.3.1) of a McEliece’s public-key (Theorems 4.3.3
and 4.3.2). It appears that the distinguisher is valid in a certain range of parameters; typically
depending on the code rate. Let n = qm and assume that q ∈ O(1). Theorem 4.3.4 states that
when m tends to infinity, we can efficiently distinguish all codes with a rate bigger than :

1−
√

2 m log2 q
qm log2 m

(
1 + o(1)

)
.

In Chapter 4, we present a rather wide variety of algebraic techniques related to key-recovery
against McEliece cryptosystems. Before the introduction of algebraic cryptanalysis in code-
based cryptography [133], the only technique for key-recovery was essentially a partial ex-
haustive search on the secret-key [203]. All in all, the results of Chapter 4 demonstrated that
algebraic cryptanalysis is a new emerging technique to assess the security of McEliece’s public-
key cryptosystems; much more powerful than previously known key-recovery attacks.
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CHAPTER 1

POLYNOMIAL SYSTEM SOLVING OVER FINITE FIELDS

This chapter is devoted to the polynomial system solving problem over Fq (PoSSoq). In
Section 1.1, we introduction basic notions and tools used throughout this document. This
includes Gröbner bases, varieties and various tools allowing to evaluate the complexity of
solving PoSSoq with Gröbner bases. For a more detailed introduction to these topics, we
refer to classical textbooks such as [93], [177] for instance. In Section 1.2, we present an
improved method for solving PoSSoq : the so-called hybrid approach. This last part is a
summary of the results in [49], [51].

1.1 Preliminaries

The general problem of polynomial system solving over a finite filed Fq is defined as follows:
Polynomial System Solving over a Finite Field (PoSSoq)
Input. p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) ∈ Fq[x1, . . . , xn].
Goal. Find – if any – a vector (z1, . . . , zn) ∈ Fn

q such that:

p1(z1, . . . , zn) = 0, . . . , pm(z1, . . . , zn) = 0.

From a theoretical-complexity point of view, PoSSoq is NP-Hard independently on the size
q [176]. The proof is by reduction from 3-SAT to PoSSoq. We construct a set of cubic polynomials
from an instance, i.e. a set of logical expressions, of 3-SAT. The problem remains NP-Hard if we
restrict PoSSoq to equations of degree smaller than 2. To do so, we partially linearize – i.e. add
a new variable yi,j to each product xixj – the cubic polynomials obtained by reduction from an
instance of 3-SAT. This maps cubic polynomials to quadratic polynomials.
These reductions already suggest two algorithmic techniques for solving PoSSoq. Full lineariza-
tion, i.e. we add a new variable to each monomial of the equations, seems of course very
appealing. However, this approach only works if the number of equations is much bigger
than the total number of variables introduced to linearize the equations. Typically, for dense
quadratic equations, we have to introduce O(n2) new variables and the approach only works
if m ∈ Ω(n2).
3-SAT being NP-Complete, PoSSoq is equivalent to 3-SAT, i.e. there exists also a poly-time reduc-
tion from PoSSoq to 3-SAT. For q = 2, the reduction from PoSSo2 to 3-SAT is explicit. As a con-
sequence, PoSSo2 can be solved via reduction to 3-SAT. The rationale is that SAT-solvers [118],
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[221], whilst using rather simple algorithmic tools such as guessing and back-tracking, can be
extremely efficient. The domain is also very active with a SAT-solver competition organized on
a very regular basis 7.This connection was first used in [24], [85]. Since them, SAT-solvers have
been used in various attacks against symmetric ciphers, for instance [228], [247], [260], and a
dedicated SAT-solver to cryptography actually exists : CRYPTOMINISAT 8. PoSSoq is a funda-
mental problem and many others solving techniques have been proposed. Over finite fields,
these include : optimized exhaustive search for PoSSo2 [61], a recent dimension reduction approach
combined with exhaustive search in [204], characteristic set algorithms in [175], and the so-called
Agreeing-Gluing approach developed in a series of papers [243], [244], [253]–[256].
Most of these techniques are either specific to PoSSo2 ([61], SAT-solvers) or dedicated to sparse
systems (Agreeing-Gluing family of algorithms). In particular, the former technique can solve
[243] very sparse instances of PoSSoq in

q
n

5.7883 +O(log n) = q0.17n+O(log n).

This complexity is obtained for instances of PoSSoq such that m = n and where each equation
contains at most 3 distinct variables.
In contrast, the recent dimension reduction technique from [204] is general and can solve :

• quadratic instances of PoSSo2 in O∗(20.8765 n) (the notation O∗ omits polynomial factor),

• degree-d instances of PoSSoq in O∗(qn(1− 1
5d )n3d) when p = 2 (but q > 2 or d > 2),

• degree-d instances of PoSSoq in O∗(qn(1− 1
200d )n3qd) when p > 2 and log(p) < 4ed, with e

the Napier’s constant,

• degree-d instances of PoSSoq in O∗
(

qn
(

ekd
log(q)

)dn
)

when p > 2 and log(p) > 4ed.

The characteristic set method [175] is another interesting general technique for PoSSoq. How-
ever, its complexity in the worst-case is not better than exhaustive search. As demonstrated in
[175], the technique is however relevant and can perform much better than exhaustive search
on some particular instances of PoSSoq (typically, systems arising in the algebraic cryptanalysis
of stream ciphers). It is still an open problem to derive sharper bounds for the complexity of
such method [175].
In this document, we consider another tool for solving PoSSoq : Gröbner bases [68], [69]. These
bases allows to solve any instance of PoSSoq. We have also efficient algorithms, F4 and F5, due to
Faugère [120], [121] for computing Gröbner bases as well as efficient softwares [59], [63], [147].
Gröbner bases also come with a wider variety of theoretical tools for the complexity analysis
of Gröbner bases algorithms. Also, the Gröbner basis framework turns to be quiet flexible
for taking advantage of structures instances of PoSSoq both in practice and in the complexity
analysis. We detail these points now.
Before that, we first give the definition of a Gröbner basis. To do so, we need to recall that
a monomial in Fq[x1, . . . , xn] is a power product of the variables, i.e. an element of the form
xα1

1 · · · x
αn
n . The leading monomial of p ∈ Fq[x1, . . . , xn] – denoted by LM(g,≺) – is the largest

monomial w.r.t. some admissible monomial ordering ≺ among the monomials of f .

7http://www.satcompetition.org/
8https://www.msoos.org/cryptominisat4/
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1.1. Preliminaries

Definition 1.1.1 (Gröbner bases). Let I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn] be a polynomial ideal. A
subset G ⊂ I is a Gröbner basis – w.r.t. an admissible monomial ordering ≺ – of I if:

∀p ∈ I , there exists g ∈ G such that LM(g,≺) divides LM(p,≺).

Gröbner bases as defined above are not unique. If G is a Gröbner basis of I ⊂ Fq[x1, . . . , xn],
then we can multiply each polynomial of g ∈ G by any non-zero constant to get another Gröb-
ner basis G′ of I . We can define a reduced Gröbner basis [93, Definition 5] so that each ideal
I ⊂ Fq[x1, . . . , xn] has a unique reduced Gröbner basis. These reduced Gröbner basis can be
computed efficiently from any Gröbner basis.
It is clear from Definition 1.1.1, that the notion of Gröbner bases depends on a admissible mono-
mial ordering. Gröbner bases have different computational and algorithmic properties with re-
spect to the monomial ordering considered. We consider here mainly two monomial orderings
: LEX and DRL. They are defined as follows. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Nn,
then:

• xα1
1 · · · x

αn
n ≺LEX xβ1

1 · · · x
βn
n if the first left-most nonzero entry of β− α is positive.

• xα1
1 · · · x

αn
n ≺DRL xβ1

1 · · · x
βn
n if ∑n

i=1 αi < ∑n
i=1 βi, or ∑n

i=1 αi = ∑n
i=1 βi and the right-most

nonzero entry of β− α is negative.

Typically, LEX-Gröbner bases (i.e. Gröbner bases w.r.t. the lexicographical ordering) allow to
eliminate variables whilst DRL is a more computational-friendly ordering as we will see.
The historical method for computing Gröbner bases – known as Buchberger’s algorithm – has
been introduced by Buchberger in his PhD thesis [68], [69]. Many improvements on Buch-
berger’s algorithm have been done leading – in particular – to more efficient algorithms such
as the F4 and F5 algorithms of Faugère [120], [121]. The F4 algorithm, for example, is the default
algorithm for computing Gröbner bases in the computer algebra software MAGMA [59]. The
F5 algorithm, which is available through the FGb [147] software 9, provides today the state-of-
the-art method for computing Gröbner bases. In this document, we report our experimental
results by using the F4 algorithm implemented in MAGMA or the F5 algorithm implemented in
FGb. We refer, for instance, to [25], [28], [29], [120], [121], [261], [265] for a detailed description
of theses algorithms.
Besides F4 and F5, there is large literature of algorithms computing Gröbner bases. We men-
tion for instance PolyBory [67] which is a general framework to compute Gröbner basis in
F2[x1, . . . , xn]/〈x2

i − xi〉1≤i≤n. It uses a specific data structure – dedicated to the Boolean ring –
for computing Gröbner basis on top of a tweaked Buchberger’s algorithm10 .
Another technique proposed in cryptography is the XL algorithm [88]. It is now clearly es-
tablished that XL is a special case of Gröbner basis algorithm [17]. More recently, a zoo of
algorithms such as G2V [173], GVW [174], . . ., flourished building on the core ideas of F4 and F5.
This literature is vast and we refer to [117] for a recent survey of these algorithms. In fact, [117]
introduced a new general algorithmic framework – called RB – that includes as a specialized
versions many algorithms such as F5, G2V, GVW, . . .
Despite this important algorithmic literature, if is fair to say that MAGMA and FGb remain the
references software over finite fields.

9http://www-polsys.lip6.fr/~jcf/FGb/index.html
10http://polybori.sourceforge.net
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Chapter 1. Polynomial System Solving Over Finite Fields

The fundamental conceptual breakthrough that leads from the historical Buchberger’s algo-
rithm to Faugère’s algorithms is the intensive use of linear algebra. The bridge has been es-
tablished by Lazard [197] who proved that computing a Gröbner basis for a system of homo-
geneous polynomials f1 . . . , fm is equivalent to perform Gaussian elimination on the Macaulay
matrices Macaulay

d,m for d, where min
(
deg( f1), . . . , deg( fm)

)
≤ d ≤ D for some integer D. The

Macaulay matrix [208]Macaulay
d,m for a set of homogeneous polynomials f1 . . . , fm is defined as

the coefficient matrix of (ti,j · fi) where 1 ≤ i ≤ m and ti,j runs through all monomials of degree
d− deg( fi).

Theorem 1.1.1 ([197]). Let p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m be homogeneous polynomials and ≺
be an admissible monomial ordering. There exists a positive integer D for which a row echelon computa-
tion on allMacaulay

d,m (p1, . . . , pm) matrices for d, 1 ≤ d ≤ D computes a Gröbner basis of 〈p1, . . . , pm〉
w.r.t. to ≺.

Let Monomialsq(n, d) be the set of all monomials in the variables x1, . . . , xn of total degree
equals to d in Fq[x1, . . . , xn]. We have #Monomialsq(n, d) = (n+d−1

d ) if q > 2 and we set
#Monomials2(n, d) = (n

d) for q = 2 (the number of square-free monomials). The number of
columns ofMacaulay

d,m (p1, . . . , pm) is Monomialsq(n, d).
In algebraic cryptanalysis, we are usually not interested by Gröbner bases but rather on vari-
eties:

Definition 1.1.2. Let Fq ⊂ L and I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn] be an ideal. We denote by

VL(I) = VL(p1, . . . , pm) =
{

z = (z1, . . . , zn) ∈ Ln | pi(z) = 0, ∀i, 1 ≤ i ≤ m
}

,

the L-variety associated to I , i.e. the common zeroes over Ln of p1, . . . , pm. When L = Fq, we simply
denote V(I) = VFq

(I).

Gröbner bases provide convenient tools for computing with varieties. For instance:

Property 1.1.1. Let I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn] be a polynomial ideal. If #V(I) = 1, then –
for any admissible monomial ordering – the (reduced) Gröbner basis G of I is as follows:

{x1 − a1, . . . , xn − an}, with (a1, . . . , an) ∈ (Fq)n.

In the case of unique solution, the variety can be read directly from a Gröbner basis. This par-
ticular property of Gröbner bases is independent on the monomial ordering chosen. This is not
always the case, and we need a LEX-Gröbner basis in general to compute nice representations
of varieties.

Theorem 1.1.2 (Elimination theorem). Let I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn] be a polynomial ideal
and G ⊂ I be a LEX-Gröbner basis of I . It holds that:

∀`, 0 ≤ ` < n, G` = G ∩Fq[x`+1, . . . , xn],

is a LEX-Gröbner basis of I ∩Fq[x`+1, . . . , xn].

In the cryptographic context, we usually want to find VFq , i.e. the solutions over the base field.
This simply requires to add the field equations:

VFq (p1, . . . , pm) = V(p1, . . . , pm, xq
1 − x1, . . . , xq

n − xn) = V(p1, . . . , pm) ∩Fn
q .
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It is clear that VFq has always a finite number solutions.
We can deduce from the elimination property (Theorem 1.1.2) that a LEX-Gröbner basis of a
zero-dimensional ideal (i.e. the variety has a finite number of solutions) is always as follows :

f1(xn) = 0,
f2(xn, xn−1) = 0,

. . .
fk2(xn, xn−1) = 0,

fk2+1(xn−1, xn−2, xn−3) = 0,
...

To compute the variety from a LEX-Gröbner basis, we then simply have to successively elim-
inate variables by computing zeroes of univariate polynomials and back-substituting the re-
sults.

1.1.1 Zero-Dimensional Solving

From a practical point of view, computing (directly) a LEX-Gröbner basis is usually slower that
computing a Gröbner basis w.r.t. another monomial ordering. On the other hand, it is known
that computing Gröbner bases w.r.t. to a degree reverse lexicographical (DRL-Gröbner bases) is
much faster in practice. The FLGM algorithm [153] permits – in the zero-dimensional case – to
efficiently solve this issue. This algorithm use the knowledge of a Gröbner basis computed for
a given order to construct a Gröbner for another order. As many of the algorithms presented
in this document, its complexity will involved the so-called linear algebra constant [177].

Definition 1.1.3. The linear algebra constant is the smallest constant ω, 2 < ω ≤ 3 such that two
matrices of size N × N over a field K can be multiplied in O(Nω) arithmetic operations over K. The
best current bound for the linear algebra constant is ω < 2.3728639 [172].

We recall below the complexity of FLGM.

Theorem 1.1.3. Let I ⊂ Fq[x1, . . . , xn] be a zero-dimensional ideal and G≺old be a G≺old-Gröbner basis
of I (w.r.t. to an admissible monomial ordering≺old). FGLM [153] permits to compute a≺old-Gröbner
basis G≺new of I knowing G≺old in O(n · Dω), with D being the number of zeroes of I counted with
their multiplicities.

The complexity of the version described in [153] can be improved using sparse linear algebra
techniques [152], [157]. In any case, the complexity of FGLM is polynomial in the number
of solutions of the considered ideal. This suggests the following strategy for computing the
solutions of a zero-dimensional system p1 = 0, . . . , pm = 0.

1. Compute a DRL-Gröbner basis GDRL of I = 〈p1, . . . , pm〉 ⊂ Fq[x1, . . . , xn].

2. Compute a LEX-Gröbner basis of I using FGLM on GDRL.

This approach is sometimes called zero-dimensional solving and is widely used in practice. For
instance, this is the default strategy used in MAGMA when calling the function Variety11.

11http://magma.maths.usyd.edu.au/magma/handbook/text/1218#13584
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1.1.2 Complexity of Gröbner Bases

We review below basic results about the complexity of computing Gröbner bases.

Definition 1.1.4. Let p1, . . . , pm ∈ Fq[x1, . . . , xn] be homogeneous polynomials. We shall call degree
of regularity of p1, . . . , pm, denoted by Dreg(p1, . . . , pm), the smallest integer D0 ≥ 0 such that the
polynomials of degree D0 in I = 〈p1, . . . , pm〉 generate – as a K vector space – the set of all monomials
of degree D0 in n variables, i.e.

Dreg(p1, . . . , pm) = min
{

D0 ≥ 0 | dimFq

({
p ∈ I | deg(p) = D0

})
= #Monomialsq(n, D0)

}
.

For a set of polynomials p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m, the degree of regularity is defined [25],
[29] from the homogeneous components of highest degree pH = (pH

1 , . . . , pH
m) ∈ K[x1, . . . , xn]m of the

polynomials of p. We then define Dreg(p1, . . . , pm) = Dreg(pH
1 , . . . , pH

m).

Once this notion fixed, we can rather easily establish an upper bound on the cost of computing
a Gröbner basis [25], [28], [29], [197], [208].

Theorem 1.1.4. Let ω, 2 ≤ ω ≤ 3 be the linear algebra constant, and p1, . . . , pm ∈ Fq[x1, . . . , xn]. We
assume that pH = (pH

1 , . . . , pH
m) is a zero dimensional system. Let then Dreg = Dreg(p1, . . . , pm) and

≺ be a total degree monomial ordering. We can compute a Gröbner basis of 〈p1, . . . , pm〉 with respect to
≺ in

O
(

m ·
(

n + Dreg

Dreg

)ω)
arithmetic operations over Fq. (1.1)

More precise statements about the number of arithmetic operations performed in F5 can be
found in [25], [28]. In any case, the complexity of computing a Gröbner basis is exponential
in the degree of regularity. Unfortunately, this degree of regularity is difficult to compute in
general; as difficult as computing the Gröbner basis. Fortunately, there is a particular class of
systems for which this degree can be computed efficiently : (regular and) semi-regular sequences.
The notion of regular sequences is classical [208], [209] but holds only for m ≤ n. Semi-regular
sequences, that we recall below, have been introduced in [25], [29] for over-defined systems.
By essence, the algebraic systems encountered in the cryptographic context are naturally over-
defined due to the field equations motivating then such a notion.

Definition 1.1.5. We assume that m > n and q > 2. Let p1, . . . , pm ∈ Fq[x1, . . . , xn] be homogeneous
polynomials of degrees d1, . . . , dm respectively. This sequence is semi-regular if:

1. 〈p1, . . . , pm〉 6= Fq[x1, . . . , xn],

2. for all i, 1 ≤ i ≤ m and g ∈ Fq[x1, . . . , xn]:

deg(g · pi) < Dreg(p1, . . . , pm) and g · pi ∈ 〈p1, . . . , pi−1〉 ⇒ g ∈ 〈p1, . . . , pi−1〉.

Now, let p1, . . . , pm ∈ Fq[x1, . . . , xn] be polynomials of degrees d1, . . . , dm respectively. We shall say
the sequence p1, . . . , pm is semi-regular if the sequence pH

1 , . . . , pH
m semi-regular.

Regular sequences are defined almost as Definition 1.1.5. The only difference is that m ≤ n
and the second condition is simply: g · pi ∈ 〈p1, . . . , pi−1〉 ⇒ g ∈ 〈p1, . . . , pi−1〉. Defini-
tion 1.1.5 of semi-regular sequences requires to be adapted for the Boolean polynomial ring
F2[x1, . . . , xn]/〈x2

i − xi〉1≤i≤n [25], [29] to take into account the field equations. Note that semi-
regular sequences can be also defined from a more algorithmic point of view. Semi-regular
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sequences can be defined as the sequences such that all the matrices generated during a Gröb-
ner basis computation with F5 are of maximal possible rank [121].
The degree of regularity can be computed explicitly for semi-regular sequences [25], [27]. It is
derived from a particular coefficient in a power series.

Definition 1.1.6. Let S(z) = ∑k≥0 ckzk ∈N[[z]] be a formal power series. We define the index Ind(S)
as the first k such that ck ≤ 0 (if such t not exist, then Ind(S) = ∞). We will denote by:

[S(z)]+ =
Ind(S)−1

∑
k=0

ckzk, the series truncated at Ind(S).

We have then:

Property 1.1.2. A sequence p1, . . . , pm ∈ Fq[x1, . . . , xn] of respective degrees d1, . . . , dm is semi-
regular if and only if its Hilbert series is given by:

HSq(t) =

[
∏m

i=1(1− zdi )

(1− z)n

]
+

, if m > n and q > 2, and HS2(t) =

[
(1 + z)n

∏m
i=1(1 + zdi )

]
+

, if q = 2.

The degree of regularity of a semi-regular sequence p1, . . . , pm ∈ Fq[x1, . . . , xn] is given by 1 + deg
(

HSq(t)
)
.

For regular sequences (m ≤ n), the degree of regularity is given by the so-called Macaulay bound
[197], [208]:

m

∑
i=1

(di − 1) + 1. (1.2)

For quadratic polynomials (d1, . . . , dm), the bound is n + 1.
We can compute explicitly the degree of regularity of semi-regular sequences by expanding the
power series (1.1.2) for specific values of m, n, d1, . . . , dm. For example, we provide below the
degree of regularity of a semi-regular system of n boolean equations in n variables.

n Dreg

4 ≤ n ≤ 8 3
9 ≤ n ≤ 15 4

16 ≤ n ≤ 24 5
25 ≤ n ≤ 31 6
32 ≤ n ≤ 40 7
41 ≤ n ≤ 48 8
49 ≤ n ≤ 57 9

4 9 16 25 32 41 49 57
3
4
5
6
7
8
9

n

D
re

g

Property 1.1.2 and Theorem 1.1.4 allow to have a very precise knowledge about the cost of
computing a Gröbner basis for semi-regular systems. We can also have asymptotic information
about the trend of the regularity. For instance, it holds that [25]–[27], [29].

Theorem 1.1.5. Let q > 2, α > 1 be integers and m = dα · ne. If p1, . . . , pm ∈ Fq[x1, . . . , xn] is a
semi-regular system of equations, then its degree of regularity behaves asymptotically as(

α− 1
2
−
√

α(α− 1)

)
n + O(n1/3). (1.3)

Also, if p1, . . . , pn ∈ F2[x1, . . . , xn] is semi-regular, then its degree of regularity behaves asymptotically
as

0.09 n + O(n1/3).
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Note that we have a more simple formula in the
case of a sequence of n + 1 semi-regular poly-
nomials ∈ Fq[x1, . . . , xn] (q > 2). It is proved in
[266] that the degree of regularity is:

∑n
i=1(di − 1) + 1

2
.

For quadratic polynomials, the bound is n+1
2 .

We have divided by two the degree of regu-
larity of 1.2 by having one more equation than
the number of variables. More generally, we
plotted below the constant of n in (1.3) for α ∈
{1.1, . . . , 5}. We can clearly observe that the de-
gree of regularity decreases as the ratio α in-
creases.

2 3 4 5

5 · 10−2

0.1

0.15

0.2

0.25

0.3

α
D

re
g
/

n

Fröberg’s conjecture. A fundamental question in algebraic geometry is whether semi-regular
sequences as defined in Definition 1.1.5 indeed exists. For regular sequences (m ≤ n), the
question is solved and well understood [168]. In the semi-regular case (m > n), the question re-
mains vastly open. A famous conjecture of algebraic geometry is then attached to the existence
of semi-regular sequences : the Fröberg conjecture [168]. This conjecture is classically stated
over a field K of characteristic zero. The Zariski topology on Kn is the standard topology in
algebraic geometry. In Zariski’s topology, closed sets are the algebraic sets. The conjecture states
that semi-regular sequences form a dense subset among the set of all sequences. This is equiv-
alent to prove that there exists a non-constant polynomial F that vanishes the coefficients of non
semi-regular sequences. For semi-regular sequences, it is not difficult to find such polynomial.
However, the delicate point is to prove that the polynomial is not zero on the coefficients of
a least one sequence of m polynomials. To prove Fröberg’s conjecture, it is then sufficient to
demonstrate that one particular family of m > n polynomials in K[x1, . . . , xn] is semi-regular
for any sufficiently big n and any m > n. In finite fields, Zariski’s topology is meaningless since
all sets are algebraic. However, the proof strategy is essentially similar. Given the non-constant
polynomial F, we can use Schwartz-Zippel-DeMillo-Lipton lemma [102], [252], [276] to upper
bound the probability that F vanishes; that is the probability that a random sequence is non
semi-regular.

From an experimental point of view, the conjecture seems indeed to hold. For instance, we re-
port below some experimental results where we fixed the number of equations m = dn log2(n)e.
We then randomly sampled 1000 quadratic systems in Fq[x1, . . . , xn] where q = 3, q is a next
prime bigger than n and q is a next prime bigger than n2. The choice for these parameters are
motivated by Chapter 2 where we consider in particular systems of equations with similar pa-
rameters. We then computed the Hilbert series of these systems and compared with the generic
Hilbert series (Proposition 1.1.2). We reported the proportion of systems whose Hilbert series
is exactly equal to the generic Hilbert series.
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Table 1.1: Experimental results about semi-regularity.

n Proportion (NextPrime(n)) Proportion (NextPrime(n2))
20 1 1
26 1 1
35 1 1

In [267], the authors performed similar experiments on F2[x1, . . . , xn]/〈x2
i − xi〉1≤i≤n. The situa-

tion is not as clean than for bigger q as the authors in [267] managed to find non semi-regular se-
quences by such random walk. Still, a majority of the sequences turned to be also semi-regular.
Fröberg’s conjecture has been proven in a restricted number of cases: over a sufficiently big
finite field, n = 2, 3, m = n + 1, m polynomials of degree 2 with n ≤ 11, and m polynomials
of degree 3 with n ≤ 8 [14], [168], [169]. More recently, [225] proves the conjecture for n ≥ 4,
equations of degree d ≥ 2 and when(

n + d− 1
d

)
− n ≤ m ≤

(
n + d− 1

d

)
.

For d = 2, the bound is for example (n−1
2 ) ≤ m ≤ (n+1

2 ).
In Chapter 2, we consider a particular family of systems arising from an algebraic modeling
of LWE, i.e. power of random affine forms. Note that the homogeneous parts of highest degree
of such systems are powers of random linear forms. To derive complexity results, we need to
assume that such systems behave as semi-regular sequences (Assumption 2). As a support to
this assumption, it is interesting to remark that power of generic linear forms have been already
investigated in the literature as potential candidates for semi-regularity. Fröberg and Hollman
[169] demonstrated that the square of n + 1 linear forms in n variables is sufficiently generic,
i.e. its Hilbert series is equal to the Hilbert series of a semi-regular sequence (Property 1.1.2).
This proves that semi-regular sequences of n + 1 equations in n variables exist.

Structured systems. A common theme that appears all over this document is the necessity to
exploit the structure of the polynomial systems arising in the various algebraic cryptanalysis.
A rich structure which is common between multivariate cryptography (Chapter 3) and code-
based cryptography (Chapter 4) is the multi-homogeneity defined [104], [200], [211] below:

Definition 1.1.7. Let p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m be homogeneous polynomials. We also
consider {X(1), . . . , X(k)} a partition of X = {x1, . . . , xn} such that :

X(j) = {xj1 , . . . , xjkj
}.

We shall say that p is multi-homogeneous if the polynomials pi are homogenous w.r.t. the X(j)’s.

Many progresses have been reported on the complexity of solving structured systems which
are sub families of multi-homogeneous systems. In particular :

Definition 1.1.8 ([160], [261]). Let n1 and n2 be positive integers. Let also X = [x1, . . . , xn1 ] and
Y = [y1, . . . , yn2 ]. We shall say that f ∈ Fq[X, Y] is bi-homogeneous of bi-degree (d1, d2) if:

∀α, µ ∈ Fq, f (αX, µY) = αd1 µd2 f (X, Y).

9
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f ∈ Fq[X, Y] is bi-linear if it is of bi-degree (1, 1). f is affine bi-linear if it is bi-linear up to a the
constant term.
f ∈ Fqm [X, Y] is quasi bi-linear if it is of bi-degree (2u, 2u′) for 0 6 u, u′ 6 m− 1. Finally, f is affine
quasi bi-linear if it is quasi bi-linear up to a the constant term.

In particular, we have the following complexity result about affine bi-linear systems [160], [261].

Proposition 1. Let n1, n2 ∈ N, X = [x1, . . . , xn1 ] and Y = [y1, . . . , yn2 ] be blocks of variables. Let
also p = (p1, . . . , pm) ∈ Fq[X, Y] be a set of affine bi-linear equations. If m ≤ n1 + n2, and assuming
a genericity condition, then it holds that:

Dreg(p1, . . . , pm) ≤ min(n1, n2) + 2.

This has to be compared with the degree of regularity Dreg of a regular sequence (1.2) which
is ≤ n1 + n2. In the affine bi-linear case, the degree of regularity Dreg only depends on the
size of the smallest block. If min(n1, n2) is constant, then we can compute a Gröbner basis in
polynomial-time (Theorem 1.1.4). The structure allows here to change the complexity class.
Further structures have been considered in the literature : weighted homogeneity [150], invariance
by the action of some groups [163], [265], fewnomials [162] and determinantal systems [149], [151].
The latter structure will be used and explained in Chapter 3.
In [161], [265], the authors introduced the concept of sparse Gröbner bases. This is an analo-
gous to classical Gröbner bases which allows one to take into account the monomial structure
(such as affine-bilinear, bi-homogeneous ) – if any – of the polynomials. This permits a general
treatment of structured systems as [161] proposed a complete suite of dedicated algorithms for
computing efficiently such sparse Gröbner bases, i.e. sparse-F5 and sparse-FGLM, as well as
the combinatorial tools to study the complexity of these algorithms. The concept allows us
to handle overdetermined systems of non-linear equations with a given monomial structure
that were not treated in [160], [261]. Note that [161], [265] deal with the unmixed case, i.e. each
equation of the system must have the same monomial structure (this excludes general multi-
homogeneous systems).

1.2 Hybrid Approach

We describe in this part a hybrid approach for solving PoSSoq. This section is, in particular,
based on [49], [51]. The hybrid approach is a technique that combines exhaustive search and
Gröbner bases (Section 1.1). The principle is to compute several Gröbner bases of smaller sys-
tems instead of one. We solve several systems obtained by fixing k variables. In what follows,
we shall refer to k as the trade-off. The complete set of solutions is recovered from the computa-
tion of qk varieties.
The principle is rather natural and a similar approach using the XL algorithm [88] – the so-
called FXL algorithm – has been already proposed. It has been further studied in [274]. Even if
XL can be considered as a special case of Gröbner basis algorithm [17], the analysis we provide
here [49], [51] is tighter than [274]. We also give concrete asymptotic estimates of the complexity
of hybrid approach.

The rationale of the hybrid approach is that the cost of computing a Gröbner basis decreases
when the ratio m/n between the number of equations m and number of variables n increases
(Theorem 1.1.5). Thus, the gain obtained by working on systems with less variables may over-
come the loss due to the exhaustive search on the fixed variables.
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The general hybrid approach depending on the trade-off parameter k ∈N is given below.

Algorithm 1 GenHybridSolving (zero-dimensional)
Input. p1, . . . , pm ∈ Fq[x1, . . . , xn] and k ∈N

Output. S = {(z1, . . . , zn) ∈ Fn
q | pi(z1, . . . , zn) = 0, ∀i, 1 6 i 6 m}.

S := ∅
for all v = (v1, . . . , vk) ∈ Fk

q do
Find the set of solutions Sv ⊂ Fn−k

q of
p1(x1, . . . , xn−k, v1, . . . , vk) = 0, . . . , pm(x1, . . . , xn−k, v1, . . . , vk) = 0
using the zero-dim solving strategy (Sec. 1.1.1)
S := S ∪ {(z1, . . . , zn−k, v1, . . . , vk) | (z1, . . . , zn−k) ∈ Sv}

end for
return S

Let CGB
(
n, m, Dreg

)
be the complexity of computing a DRL-Gröbner basis of a system of m

equations of Fq[x1, . . . , xn] in n variables (Theorem 1.1.4). The hybrid approach has complexity:

Proposition 2. Let p1, . . . , pm ∈ Fq[x1, . . . , xn] be algebraic equations of respective degrees d1 > · · · >
dm. Let k be a non-negative integer and Dmax

reg (k) (resp. Dmax(k)) be the maximum degree of regularity
(resp. maximum number of solutions in the algebraic closure of Fq counted with multiplicities) of all the
systems:{

p1(x1, . . . , xn−k, v1, . . . , vk), . . . , pm(x1, . . . , xn−k, v1, . . . , vk)
}

, for any (v1, . . . , vk) ∈ Fk
q.

We define:

CHyb(k) = qk
(

CGB

(
n− k, m, Dmax

reg (k)
)

︸ ︷︷ ︸
Gröbner basis

+ O
(
(n− k) Dmax(k)ω

)︸ ︷︷ ︸
change of ordering

)
. (1.4)

The complexity of the hybrid approach is dominated by:

min
06k6n

(
CHyb(k)

)
. (1.5)

This is the complexity of computing qk DRL-Gröbner bases of polynomial systems having m
equations, n − k variables, respective degrees d1 > · · · > dm, plus the cost of performing a
change of ordering with FGLM (Theorem 1.1.3). In order to study the asymptotic behavior of
the hybrid approach, we assume a regularity condition about the sub-systems arising during
Algorithm 1.

Assumption 1. Let p1, . . . , pm ∈ Fq[x1, . . . , xn] be random algebraic equations of respective degrees
d1 > · · · > dm. Let βmin, 0 < βmin < 1 be a value that will be specified later. Then, for any
k, 0 6 k 6 dβmin ne, and for each vector (v1, . . . , vk) ∈ Fk

q, the system:

{p1(x1, . . . , xn−k, v1, . . . , vk), . . . , pm(x1, . . . , xn−k, v1, . . . , vk)}

is semi-regular for n large enough.

We emphasize that Assumption 1 has been experimentally verified [30] for a large amount
of random quadratic binary systems. In [49], such assumption has been verified for large q
on algebraic systems coming coming from multivariate signature schemes such as UOV ([192],
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Section 3.1.2). However, such systems are naturally under-defined. Thus, the total number of
variables to be fixed (m− n variables to have a square system plus k variables due to the hybrid
approach) is sufficiently large to assume that the algebraic systems obtained after specialization
behave as a semi-regular system. Note also that we performed some experiments to check this
assumption for random systems of equations. We experimentally verified that Assumption 1
holds for random square systems with various values of n, 6 ≤ n ≤ 16, and with parameters
q > 2, βmin as in Table 1.2. The assumption has also been investigated in [30] and turns to hold
with high probability. However, whilst we never found a counter-example for Assumption 1
when q > 2 the situation is slightly different for the binary field in the sense that counter-
examples can be found from time to time; according to [30], [267].
Under Assumption 1, all the sub-systems solved during the hybrid approach have – for a fixed
k – the same degree of regularity. We denote this regularity by Dreg(k), i.e. Dmax

reg (k) = Dreg(k).
Furthermore, the number of solutions of an over-determined semi-regular system of equations
is always 0 or 1 (i.e. 0 ≤ Dmax(k) ≤ 1 as soon as k > 0). This allows to neglect the cost of FGLM
in the complexity (1.4).

1.2.1 Analysis of the Hybrid Approach

In what follows, we always assume that q > 2. Our approach can be also applied when q = 2,
but will be less efficient than the BooleanSolve algorithm from [30] in this special case.

Best Trade-Off for Quadratic Systems. To perform the asymptotic analysis, we need to as-
sume – a priori – what is the global trend of the trade-off k. At first glance, it seems (rather)
natural to believe that k is going to be small and should be then a constant. This is what was
initially assumed in [49]. Surprisingly enough, we proved in [52] that the best trade-off is ob-
tained asymptotically by fixing β0 n variables, where β0 is independent of n.

Asymptotic Equivalent of the Regularity. From now on, we set m = dα ne, with α ≥ 1 being
a constant. According to the previous paragraph, the best trade-off is obtained for a k of the
form β · n. Thus, the hybrid approach considers sub-systems having n′ = (1− β)n variables
and m = α

1−β (1− β) n = θ n′ equations. For such systems, Theorem 1.1.5 yields:

Dreg(n′, m) ∼
(

θ − 1
2
−
√

θ (θ − 1)

)
n′ + O(n′1/3).

Assuming a trade-off of the form β · n, we get that any sub-system occurring in the hybrid
approach has a degree of regularity asymptotically equivalent to γ n′ + O(n′1/3), with:

γ =

(
α− 1− β

2
−
√

α (α + β− 1)

)
. (1.6)

Implicit Form of the Best Trade-Off. The best trade-off at infinity k0 = dβ0 ne can be obtained
by solving an implicit equation. The idea is to derive an equivalent of the logarithmic derivative
of CHyb using the degree of regularity (1.6).

Proposition 3. Let p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m be a system of quadratic equations verifying
Assumption 1. Finally, let ω, 2 ≤ ω < 3 be the linear algebra constant and A∞(β) = log (q) +

ω log (1− β)− ω

2

(
1 +

√
α

α + β− 1

)
log
(

D1(α, β)
)
− ω

2

(
1−

√
α

α + β− 1

)
log
(

D2(α, β)
)
,
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with D1(α, β) = α + 1−β
2 −

√
α (α + β− 1) and D2(α, β) = α− 1−β

2 −
√

α (α + β− 1).

The best trade-off for solving p with the hybrid approach is asymptotically to fix k0 = dβ0 ne variables,
where β0, 0 < β0 6 1 is a root of A∞. The coefficient β0 is independent on the number of variables n.

A root β0 of A∞(β) can be computed numerically. In Table 1.2, we present the trade-off β0
obtained for various values of α and q. We computed the roots of A∞(β) with the MAPLE
software [23].

Table 1.2: Sample values for β0 depending on several values of α and q with ω = 2.3728639.
An entry is empty when there is no positive solution (i.e. best trade-off is k = 0).

q 22 23 24 25 26 28 215

β0 (α = 1) 0.51 0.34 0.23 0.16 0.12 0.06 0.018
β0 (α = 1.1) 0.46 0.28 0.16 0.08 0.03 – –
β0 (α = 1.25) 0.39 0.18 0.04 – – – –
β0 (α = 1.5) 0.27 0.02 – – – – –
β0 (α = 1.75) 0.15 – – – – – –

β0 (α = 2) 0.03 – – – – – –
β0 (α = 3) – – – – – – –

For square systems, i.e. m = n and α = 1, Proposition 3 can be refined as follows.

Proposition 4. Let p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m be a system of quadratic equations verifying
Assumption 1. Let ω, 2 ≤ ω < 3 be the linear algebra constant and B∞ be defined as

B∞(ν) = log (q) + ω log (2 ν + 2) + ω log
(

ν− 1
2 ν2

)
− ω

2
(1 + ν) log (3 ν + 1)− ω

2
(1 + ν) log

(
ν− 1
2 ν2

)
− ω

2
(1− ν) log (ν− 1)− ω

2
(1− ν) log

(
ν− 1
2 ν2

)
.

The best trade-off for solving p with the hybrid approach is asymptotically to fix k0 =
⌈

n
ν2

0

⌉
variables,

where ν0, 0 < ν0 6 1 is a root of B∞(ν). The coefficient β0 = 1
ν2

0
is independent of n.

We show in Table 1.3 the value of β0 = 1
ν2

0
with respect to several usual sizes of field q. We com-

pare these values with the exact ratio β0 when n = 100 and n = 200 (once the parameters are
fixed, we can compute exact value βexact

0 minimizing the complexity of the hybrid approach).
The table shows that our approximation matches well with the expected value.
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Table 1.3: Sample values for β0 for several field sizes with ω = 2.3728639. We need less vari-
ables to reach the best trade-off when the field is bigger.

q 22 23 24 25 26 28 215

β0 0.51 0.34 0.23 0.16 0.12 0.06 0.018

βexact
0 , n = 100 0.59 0.35 0.25 0.14 0.12 0.08 0.02

βexact
0 , n = 200 0.55 0.39 0.24 0.17 0.17 0.09 0.02

Note that the proportion of variables which needs to be fixed tends to 0 when the size of the
field increases. This is consistent with the intuition that the exhaustive search becomes less
interesting for too large fields.

Asymptotic Equivalent of the Best Trade-Off. From now on, we consider only the case m =
n. Table 1.3 suggests that when q grows, β0 = 1

ν2
0

decreases. This means that ν0 → ∞ when
q→ ∞. This remark combined with Proposition 4 leads to the following result.

Proposition 5. Let p = (p1, . . . , pn) ∈ Fq[x1, . . . , xn]n be a system of quadratic equations verifying
Assumption 1. Asymptotically, the best trade-off for solving p with the hybrid approach is to fix k0 =
dn β0e variables, with:

β0 =

(
3 ω log (3)

6 log (q) + 6 ω log (2)− 4 ω− 3 ω log (3)

)2

,

=
10.86 ω2

(4.16 log2 (q)− 3.14 ω)2 . (1.7)

Table 1.4: Sample values for β0 for several field sizes with ω = 2.3728639. We need less vari-
ables to reach the best trade-off when the field is bigger.

q 22 23 24 25 26 28 215

β0 0.51 0.34 0.23 0.16 0.12 0.06 0.018

.

1.2.2 Complexity of the Hybrid Approach – An Asymptotic Equivalent

We are now in position to derive the (asymptotic) complexity of the hybrid approach. We use
the value of β0 provided in Proposition 5 together with the degree of regularity of (1.6). This
leads to:

Theorem 1.2.1. The complexity of the hybrid approach – using the trade-off k0 = dβ0 ne of Proposi-
tion 5 – is asymptotically equivalent to

O
(

2n ω (1.38−0.63 ω log2(q)−1)
)

, when n→ ∞, q→ ∞ and log (q)� n. (1.8)

If ω = 2.3728639 for instance, the complexity of the hybrid approach is:

2
(

3.27−3.5 log2(q)−1
)

n.
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Table 1.5: Sample values for (1.8) for several field sizes with ω = 2.3728639.

q 22 23 24 25 26 28 215

O(21.5n) O(22.08n) O(22.38n) O(22.56n) O(22.67n) O(22.82n) O(23n)

Asymptotic Gain of the Hybrid Approach. We can quantify the gain of the hybrid approach
with respect to a direct Gröbner basis approach.

Theorem 1.2.2. Let p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m be quadratic equations verifying Assump-
tion 1. When n→ ∞, q→ ∞ and as long as n� log2(q), the gain of the hybrid approach compared to
a direct Gröbner basis approach is asymptotically 20.62 ω n.

Theorem 1.2.2 gives a trend of the asymptotic gain. It shows the overall efficiency of the hybrid
approach compared to the simple Gröbner basis approach. For ω as before, we get a speed-up
of 21.47 n for instance. Asymptotically, the hybrid approach is then always better than a direct
solving. Eventually, when q is too big (with respect to n), the cost of an exhaustive search, even
in one single variable, will be too expensive compared to a Gröbner basis computation.

1.3 Final Remarks

We have presented a rather simple approach that allows to take advantage of finite fields to
improve the solving of PoSSoq. This approach turns to be the most efficient for PoSSoq when q >
2. We already mentioned that BooleanSolve is more efficient when q = 2. In fact, BooleanSolve
[30] can be viewed as a hybrid approach allowing to use 2 for the linear algebra constant ω.
This is not detailed here, but we could adapt the principle of BooleanSolve for larger fields.
This would be essentially equivalent to set ω = 2 in Theorem 1.2.1. Thus, we could get:

Table 1.6: Sample values for (1.8) for several field sizes with ω = 2.

q 22 23 24 25 26 28 215

O(21.49n) O(21.91n) O(22.12n) O(22.25n) O(22.33n) O(22.44n) O(22.58n)
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CHAPTER 2

ALGEBRAIC ALGORITHMS FOR LWE

This chapter describes algebraic attacks against the Learning with Errors (LWE, [245], [246])
problem. It is based, in particular, on [3], [6]. We consider mainly here a variant of LWE with
binary errors : the so-called BinaryErrorLWE [218]. We first describe (Section 2.1) these
problems, and an algebraic algorithm due to Arora and Ge [16]. We then present a simple
extension using Gröbner bases, and derive new asymptotic results about the complexity of
solving BinaryErrorLWE with such extension (Section 2.2). To derive these results, we
need to assume a genericity hypothesis (Assumption 2) that we discuss in Section 2.3.

2.1 LWE and BinaryErrorLWE

We continue the document with the newest application of Gröbner bases in quantum-safe cryp-
tography. We consider algebraic attacks against LWE and one of its variants using binary errors
: BinaryErrorLWE [218].
Since its introduction, LWE has proven to be a rich and versatile source of many innovative
cryptographic constructions, such as an oblivious transfer [235], a leakage-resilient cryptosys-
tem [2], a traitor tracing scheme [201], a homomorphic encryption scheme [66], [178] and many
more . . . In addition, public-key schemes based on LWE, such as [58], [116] appeared to be a
serious candidate for quantum-safe standards.

Definition 2.1.1 (LWE [245], [246]). Let m > n ≥ 1 be integers, q be an odd positive integer, χ be a
probability distribution on Zq and s ∈ Zn

q be a secret vector. We denote by L(n)
s,χ the probability distri-

bution onMn×m(Zq)×Zm
q obtained by choosing G ∈ Mn×m(Zq) uniformly at random, sampling a

vector e ∈ Zm
q according to χm, and returning (G, s ·G + e) = (G, c) ∈ Mn×m(Zq)×Zm

q . (Search)

LWE is the problem of finding s ∈ Zn
q from (G, s×G + e) sampled according to L(n)

s,χ .

Typically, χα,q is a discrete Gaussian distribution over Z which returns an integer x with proba-
bility exp

(
−π x2/s2) / ∑y∈Z exp

(
−π y2/s2), where s = αq, considered modulo q. A typical

setting is αq = O(nε), with ε, 0 6 ε 6 1. It has been shown that as soon as ε > 1/2, worst-case
GapSVPÕ(n/α) reduces to average-case LWE [65], [234], [245], [246]. Thus, any algorithm solving
LWE, for ε > 1/2, can solve worst-case instances of GapSVPÕ(n/α). It is commonly admitted that
only exponential, classical or quantum, algorithms exist for solving GapSVPÕ(n/α).
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LWE with Binary Errors. We consider in this chapter a variant of LWE with errors values in
{0, 1}. This variant was introduced by Micianccio and Peikert in [218]. This generalizes an
earlier result of Döttling and Müller-Quade [111] who first introduced a version of LWE with
uniform errors whilst keeping a strong security reduction to lattice problems. These two works
highlight an interest in studying variants of LWE with small errors. For instance, the current
most efficient key-exhange scheme based on LWE from [58] considers errors with a very narrow
Gaussian noise. From a practical perspective, these variants are interesting because they allow
to forgo Gaussian sampling (with large parameters) which is often the most expensive step
when implementing lattice-based cryptography. In this regard [218] represents a significant
step forward as it allows to sample the error from a binary distribution while still regaining a
reduction to GapSVP, albeit with a severe limit on the number of samples m.

Theorem 2.1.1 (BinaryErrorLWE [218]). Let n, m = n
(
1 + o(1)

)
be integers, and q ≥ nO(1) be a

sufficiently large polynomially bounded (prime) modulus. Then, solving LWE with parameters n, m, q
and independent uniformly random binary errors is at least as hard as approximating lattice problems
in the worst-case on Θ

(
n/ log(n)

)
-dimensional lattices within a factor Õ(

√
n · q).

Remark that the security reduction in BinaryErrorLWE no longer depends of the noise, as in
LWE, but on the number of samples m. We denote by U (F2) the uniform distribution on {0, 1}m;
so that BinaryErrorLWE is LWE with χ = U (F2).

Arora’s and Ge’s algorithm. The problem of solving LWE has attracted a lot of attention in
the literature. This can be noticed, for instance, from the surveys [13], [219] and the references
therein. We can consider that there are at least two categories of algorithms : lattice-based and
combinatorial based [13], [219]. In [16], Arora and Ge introduced the first algebraic algorithm
for solving LWE. Their approach reduces LWE to finding the common root of a multivariate sys-
tem of high-degree and error-free polynomials. The proposed algorithm recovers LWE secret
in:

2Õ
(

n2ε
)

(2.1)

operations, hence being sub-exponential when ε < 1/2. This shows that Regev’s original
reduction in [245], [246] is indeed tight. In more detail, let (a, c) ∈ Zn

q ×Zq be an LWE sample
and write p = c− ∑n

i=1 ai xi where the xi are variables. If we assume that the error e is in the
interval {−T, . . . , T}, then the polynomial

P(x1, . . . , xn) = p
T

∏
i=1

(p + i)(p− i), (2.2)

of degree 2T + 1 evaluates to zero when xi = si. Thus, if T < bq/2c then F = 0 is a constraint
on the possible values for the secret vector s ∈ Zn

q , and collecting many such equations and
solving the resulting multivariate high-degree system of equations allows to recover the secret.
In [16] these systems are solved by the linearization method, i.e. first replacing monomials with
a new linearized variable and then by solving the resulting linear system of equations. This
method requires O(n2T+1) equations to succeed, which could be obtained by collecting more
samples. However, since χα,q is a discrete Gaussian distribution, requesting more samples also
increases the probability that the noise of at least one sample falls outside of the chosen interval
{−T, . . . , T} invalidating the constraint F = 0. Hence, as the number of samples grows so does
the required value of T so that the polynomial system remains error-free. This on the other hand
may require a further increase in the number of samples to linearize. This trade-off is analyzed
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in [16] to obtain the complexity (2.1). We note however that the discussion above implies that
the algorithm from [16] is not applicable if the number of available samples is smaller than
O(n2T+1). Indeed, the linearization approach described above is a special case of a Gröbner
basis computation. In contrast to this special case, though, general Gröbner basis algorithms
are also applicable if less than O(n(2T+1)) polynomials of degree 2T + 1 are available at the cost
of increased computational complexity. The rational is that that we can decrease the degree of
the equation by decreasing the number of samples. But, this means that the cost of solving the
resulting system will grow compared to that of linearization. The optimization target is then to
find a trade-off allowing to improve upon linearization.
In [3], [6], we show that applying Gröbner basis algorithms gives an exponential speed-up over
the algorithm of Arora and Ge [16]. This leads to an algorithm for solving LWE, where s =

√
n,

whose complexity is:
O(26.69 n). (2.3)

This corresponds to the cost of solving a semi-regular sequence (Definition 1.1.5) in Zq[x1, . . . , xn]

with m = eO(n) equations of degree O(n) and such that q ∈ poly(n) is prime. Note that the
degree of the equations is non-constant; this is quite rare in algebraic cryptanalysis. The com-
plexity (2.3) is obtained under a genericity assumption, i.e. by assuming that the algebraic system
derived from (2.2) behaves as a semi-regular sequence. We can save a logarithmic factor in the
exponent with respect to the linearization approach of Arora and Ge [16]. This places our ap-
proach in the same complexity class, namely 2O(n), than the best algorithms for solving [13],
[185] albeit with a larger leading constant in the exponent.
The complexity (2.3) can be improved as soon as we have an additional structure such as binary
errors as illustrated in this chapter.

Related works. The most relevant technique for BinaryErrorLWE is due to Fouque and Kirch-
ner [195] who presented a combinatorial algorithm solving BinaryErrorLWE in subexponential
time if at least n samples are available. The complexity of this algorithm is

2

(
log
(

21/2
)

+o(1)

)
n

log log n . (2.4)

In the next Section, we show how to improve Arora’s and Ge’s algorithm by using Gröbner
bases (Section 2.2) in the context of BinaryErrorLWE and compare our results with the com-
plexity (2.4) of [195]. Note that [70] recently proposed a combination of various techniques for
solving BinaryErrorLWE. They can improve upon [195] for some parameters. Still, they do not
improve the asymptotic complexity of [195]. In this part, we mainly focus on the asymptotic
hardness of BinaryErrorLWE.

2.2 Gröbner Bases Techniques for BinaryErrorLWE

The approach of Arora-Ge (Section 2.1) can be easily adapted for BinaryErrorLWE. Let P(X) =

X(X − 1) and (G, s×G + e) = (G, c) ∈ Mn×m(Zq)×Zm
q be sampled according to L(n)

s,U (F2)
.

Then:

ei = ci −
n

∑
j=1

sjGj,i, for i, 1 6 i 6 m.
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It follows that the secret s ∈ Zn
q is a solution of the following algebraic system:

p1 = P
(
c1 −

n

∑
j=1

xjGj,1
)

= 0, . . . , pm = P
(
cn −

n

∑
j=1

xjGj,n
)

= 0. (2.5)

This is an algebraic system of m quadratic equations in Zq[x1, . . . , xn]. As already pointed out
in [16], [218], this system can be solved using linearization if m = O(n2). Still, there is a
gap between m = n

(
1 + o(1)

)
, where the hardness of BinaryErrorLWE reduces to worst case

GapSVP( Theorem 2.1.1) and m = O(n2) where the problem can be solved in polynomial-time.
Understanding the hardness of the problem for samples within this interval should be of great
interest: applications in lattice-based cryptography typically require the provision of n

(
1 +

o(1)
)
< m < O(n2) samples, e.g. m = O(n) or m = Õ(n). It is hence a natural open question

how the security of BinaryErrorLWE degrades as more samples are made available. We address
this problem of evaluating the complexity of solving the algebraic system (2.5) with an arbitrary
number m < O(n2) of equations. Our analysis depends crucially on the following assumption
about the algebraic systems considered:

Assumption 2. Let q ≥ nO(1) be a sufficiently large polynomially bounded (prime) modulus and
(G, s · G + e) = (G, c) ∈ Mn×m(Zq) ×Zm

q be sampled according to L(n)
s,U (F2)

. Let also P(X) =

X(X− 1), we define:

p1 = P
(
c1 −

n

∑
j=1

xjGj,1
)

= 0, . . . , pm = P
(
cm −

n

∑
j=1

xjGj,m
)

= 0. (2.6)

It holds that the sequence p1, . . . , pm is semi-regular (Definition 1.1.5).

It is believed that random systems of equations are semi-regular. Hence, our semi-regularity
assumptions essentially state that our systems are neither easier nor harder to solve than ran-
dom systems of equations. It is interesting to remark that Fröberg and Hollman [169] as well as
Nicklasson [225] already investigated semi-regularity of powers of generic linear forms which
corresponds to the homogeneous part of the equations (2.6). Thus, the sequence (2.6) has al-
ready been considered as a plausible candidate for proving Fröberg’s conjecture. For instance,
[169] demonstrated that the assumption indeed Assumption 2 holds if m = n + 1.
If the systems considered in this work were easier than random systems this would imply that
the analysis that will be presented could be much improved and lead to progress towards a sub-
exponential classical algorithm for solving GapSVP. On the other hand, if these systems were
harder to solve than random systems, this would reveal new algebraic dependencies among
BinaryErrorLWE samples, which could likely also be used to improve (non-algebraic) solving
strategies. Hence, the assumption that there is no special structure in our problem instances
seems to be a reasonable one. Note also that in algebraic cryptanalysis, as illustrated in the
next Chapters 3 and 4, we usually expect that the systems considered behave differently than
random.
This assumption is motivated by the fact that the complexity of solving semi-regular systems
is well mastered. In particular, the asymptotical results on the degree of regularity such as The-
orem 1.1.5 and more generally from [25]–[27], [29] allow to classify the complexity of solving
polynomial systems with respect to the ration between number of equations and number of
variables. In Theorem 1.1.5, we have the asymptotic expansion for m = O(n). We state below
a more general version of this result:
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Proposition 6. Let m = F(n) n with F(n) ∈ {nε, log1/ε(n), log log n} where ε > 0 is such that
m
n → ∞ and m

n2 → 0. Then, the degree of regularity Dreg of a system of quadratic semi-regular equations
p1, . . . , pm ∈ Zq[x1, . . . , xn] behaves asymptotically as:

n2

8m
(1 + o(1)) .

A proof similar to this case of this result can be found in [26]. However, there is slight difference
between [26] (binary fields) and our case (generic prime fields).
Under Assumption 2, we can classify below the hardness of a Gröbner basis approach for
BinaryErrorLWE with various number of samples. The first one corresponds to the number
of equations required in the security proof [218, Theorem 1.2]. We then consider a slightly
larger number of equations than what is required in the security proof, i.e. m = 2n equations.
In addition we give the results for a quasi-linear number of equations.

Theorem 2.2.1. Let ω, 2 6 ω < 3, be the linear algebra constant, α > 0, and H2(x) = −x log2(x)−
(1− x) log2(1− x) with x, 0 6 x 6 1. Under Assumption 2, we have:

• If m = n
(

1 + 1
log(n)

)
, then there is an algorithm solving BinaryErrorLWE in O(m · 21.37 ωn).

• If m = 2 · n, then there is an algorithm solving BinaryErrorLWE in O(m · 20.43 ωn).

• More generally, if m = C ·n, with C > 1 a constant, there is an algorithm solving BinaryErrorLWE

in O
(

m · 2nω(1+β)H2

(
β

1+β

))
with β =

(
C− 1

2 −
√

C(C− 1)
)

.

• If m = n1+ε, for any 0 < ε < 1, then there is a subexponential algorithm solving BinaryErrorLWE
with a time complexity O

(
m · 2n(1−ε)ε ω log(n)

)
.

• If m = O (n log log n), then there is a subexponential algorithm solving BinaryErrorLWE in

O
(

m · 2
nω log log log n

8 log log n

)
.

• Finally, if m = n · log1/ε(n), for any ε > 0, then there is a subexponential algorithm solving

BinaryErrorLWE in O

m · 2
n ω log

(
log1/ε(n)

)
8 log1/ε(n)

 .

The proof is obtained by combining Theorem 1.1.4, Proposition 6, and Stirling’s approxima-
tion of the binomial log2 (n

k) ≈ n H2
( k

n

)
. It can be noticed that the complexity (2.4) of [195] is

already subexponential when m = O(n). Our algorithm requires m = Õ(n) to be subexponen-
tial. However, (2.4) does not see a gradual asymptotically improvement when the number of
samples available increases as in our case. However, the complexity (2.4) does not rely on any
assumption.

2.3 About the Genericity Hypothesis

Theorem 2.2.1 depends crucially on the assumption that all systems of equations occurring in
this chapter are semi-regular (Assumption 2). We experimentally confirmed that our assump-
tion holds for reasonably large parameters. To do so, we generated systems as in (2.6). We
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took q as the next prime larger than n and m = O
(
n log2(n)

)
or m = O(n). We then computed

a Gröbner basis of the equations using MAGMA [59] (V2.21-6). We reported in the next table
the maximal degree reached Dmax in our experiments, the theoretical degree of regularity Dreg
under Assumption 2 (Proposition 1.1.2), and the time TF4 for computing a Gröbner bases.

Table 2.1: Experimental results about the degree of regularity.

n m Dreg Dmax TF4

∈ {5, . . . , 25} dn log2(n)e 3 3
∈ {26, . . . , 53} dn log2(n)e 4 4 6 48.92 h.

60 d2 n log2(n)e 3 3 1988 s.
100 ·d4 n log2(n)e = 2658 3 3 30.3 h.
35 dn log2(n)e = 180 4 4 250.8 s.
40 dn log2(n)e = 213 4 4 2030.7 s.
45 dn log2(n)e = 248 4 4 3.6 h.
50 dn log2(n)e = 283 4 4 19.37 h.
53 dn log2(n)e = 283 4 4 48.92 h.
23 2 n = 46 5 5 1329.8 s.

Table 2.2 is the equivalent of Table 1.1 but for systems randomly generated as in (2.6). We also
fixed m = dn log2(n)e and then randomly sampled 1000 quadratic systems in Fq[x1, . . . , xn] as
in in (2.6) where q = 3, q is a next prime bigger than n and q is a next prime bigger than n2.
The choice for these parameters are motivated by Chapter 2 where we consider in particular
systems of equations with similar parameters. We then computed the Hilbert series of these
systems and compared with the generic Hilbert series (Proposition 1.1.2). We reported the
proportion of systems whose Hilbert series is exactly equal to the generic Hilbert series.

Table 2.2: Experimental results about semi-regularity.

n Proportion (NextPrime(n)) Proportion (NextPrime(n2))
20 1 1
26 1 1
35 1 1

In addition of these experimental results, we provide in [3] formal proofs of the assumption in
several restricted cases. Namely, we prove that the equations p1, . . . , pm ∈ Zq[x1, . . . , xn] as in
(2.6) are linearly independent with high probability (assuming m 6 n(n + 1)/2). We also prove
semigenericity, following the terminology of [169], of the sequence p1, . . . , pm ∈ Zq[x1, . . . , xn]

for m 6 3n/2. This is equivalent to prove that the Macaulay matrix Macaulay
3,m (p1, . . . , pm) is

of full rank. The proofs follow the same principle. We use Schwartz-Zippel-DeMillo-Lipton
lemma [102], [252], [276] to lower bound the success probability. The difficult, and technical,
point is to prove that the polynomial considered in Schwartz-Zippel-DeMillo-Lipton lemma is
non-zero.
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2.4 Final Remarks

We have introduced in this part a new application of Gröbner bases in LWE-based cryptography.
This follows naturally from a linearization approach proposed by Arora-Ge [16]. For LWE with
a Gaussian errors, Gröbner bases allows to improve upon [16]. The complexity (2.3) relies
on a semi-regularity assumption on the algebraic systems derived from (2.2). This leads to an
asymptotically faster algorithm than the basic Arora-Ge [16]. Its complexity is in the same class,
namely 2O(n), than the best algorithms for solving LWE [13], [185] albeit with a larger leading
constant in the exponent.
It is interesting to observe that the complexity (2.3) can be much improved for a structured noise
such as binary errors. Theorem 2.2.1 shows how the complexity changes from exponential, sub-
exponential and polynomial in the case of BinaryErrorLWE. We emphasize that our results are
obtained by exploiting – from a polynomial system solving point of view – the weakest possible
algebraic structure : semi-regularity.
Binary errors (or uniform errors) is not the only form of structured noise that has been proposed
in the litterature. LWE or BinaryErrorLWE could also be considered with binary secrets [65]. In
[179], the authors proposed to use LWE with secrets in {−1, 0, 1} and Gaussian errors with an
upper bound on the Hamming weight (in [179], the Hamming weight is 64). It is plausible that
these additional conditions could be used to decrease the constants in the complexity expo-
nents. We mention also that lattice-based public-key exchange Frodo [58] uses Gaussian errors
with small standard deviation, but only provides a limited number of samples (typically, n + C
equations with C a small constant). We are then in a situation close to BinaryErrorLWE but with
slightly higher-degree equations.
Ring-LWE is a compact [207] and structured variant of LWE. The idea is to consider instances of
LWE where the matrices are compacts (in particular, anti-cyclic). It is not known if this structure
can be exploited in lattice-based cryptanalysis, including algebraic cryptanalysis. As a side
remark, we remark that compact matrices have been also used in the design of code-based
cryptosystems in so-called compact variants of McEliece. We address such compact variants in
Section 4.2.2) and show that this additional structure can be used and allowed us to derive
efficient key-recovery attacks.
All in all, algebraic cryptanalysis is a young tool in the cryptanalysis of LWE that has the po-
tential to be improved. In particular, a challenge is to decrease the constant in the complexity
exponents of our algorithms. The approach could be typically relevant to study the asymptotic
complexity of LWE problems with small or structured errors and a limited number of samples.
Another merit of this application is to establish a connection with a classical assumption of
algebraic geometry about the existence of semi-regular sequences (Section 1.1.2). Proving or
disproving Assumption 2, for instance, is meaningful in any case. We are inclined to believe
that Assumption 2 indeed holds. But, disproving Assumption 2 could lead to improved attacks
against LWE.
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CHAPTER 3

CRYPTANALYSIS OF MULTIVARIATE PUBLIC-KEY
CRYPTOSYSTEMS

After a short introduction (Section 3.1) to multivariate public-key cryptography (MPKC), this
chapter summarizes some contributions in the (algebraic) cryptanalysis of MPKC. This part
is mainly based on : [46], [49], [138] for selecting minimal parameters for MPKC (Section
3.2), [156] for a cryptanalysis of MinRank (Section 3.3), and [50], [52] for a key-recovery
against HFE (Section 3.4).

3.1 Multivariate Public-Key Cryptography

3.1.1 General Principle

Multivariate cryptography is usually defined as the set of cryptographic schemes using the
computational hardness of PoSSoq, or more generally the hardness of computing a Gröbner
basis of a polynomial ideal. This is a classical candidate in quantum-safe cryptography [43],
[242].
Most basic cryptographic primitives can be constructed in multivariate cryptography : hash-
functions [56], stream-cipher [37], [38], Zero-Knowledge authentication scheme [182], [223],
[248], [250], asymmetric encryption, e.g. [9], [31], [164], [212], [231], and signature [106], [187],
[192], [231]. Few more advanced cryptographic primitives can also be constructed in multi-
variate cryptography. We mention for instance threshold ring signature [238], group signature
[272], and a fully-homomorphic scheme that we proposed in [9], [12].
The most active area in the design of multivariate schemes is public-key cryptography. This
is a sub-area of multivariate cryptography known as MPKC. Historically, the first multivariate
scheme – known as C∗ – has been proposed by Matsumoto and Imai [212]. C∗ permits to per-
form public-key encryption as well as signature. However, this scheme has been completely
broken by Patarin [230]. Still, the general principle inspired a whole generation of researchers
that proposed improved variants of the Matsumoto-Imai (MI) principle, e.g. [84], [106], [192],
[231], [232].
The generic description of a MI-like scheme is rather simple. Namely, we choose a particular
system of algebraic equations f = ( f1, . . . , fm) ∈ Fq[x1, . . . , xn]m. Thanks to a well chosen
structure, the corresponding system is easy to solve. That is, for all (c1, . . . , cm) ∈ Fn

q , we can
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compute in polynomial-time:

VFq ( f1 − c1 = 0, . . . , fn − cn). (3.1)

We recall in Section 3.1.2 some known techniques to construct a polynomial system f with such
property. The public-key is also a set of polynomials which is a hidden version f. Namely, we
randomly sample invertible matrices (S, T) ∈ GLn

(
Fq
)
×GLm

(
Fq
)

and construct the public-
key as:

p = (p1, . . . , pm) =
(

f1 ((x1, . . . , xn) S) , . . . , fm ((x1, . . . , xn) S)
)
T. (3.2)

In such schemes, the transformations S, T and (usually) f are kept secret. We will refer to f
as the secret-inner system. A notable exception was the C∗ scheme where f is public. When
f and p are known, the problem to recover the secret-key, i.e. (S, T) ∈ GLn

(
Fq
)
×GLm

(
Fq
)

is known as the Isomorphism of Polynomials (IP) problem [231]. Patarin also proposed a zero-
knowledge authentication scheme based on IP [231]. IP has been also used to design a traitor
tracing scheme [53], group signature scheme [272], . . . From a theoretical point of view, IP
is not NP-Hard unless the polynomial hierarchy collapses [136], [231]. We propose in [136]
efficient algorithms for solving IP. We also consider variants such as the IP problem with one
secret (IP1S) problem when the matrix T is the identity [45], [60], [80] or a generalization such
as the Functional Decomposition Problem (FDP) [139], [145], [159].
To encrypt a message m = (m1, . . . , mn) ∈ Fn

q in the MI framework, we evaluate its components
on the public-key, i.e.:

c = p(m) =
(
c1, . . . , cm) = (p1(m1, . . . , mn), . . . , pm(m1, . . . , mn)

)
∈ Fm

q . (3.3)

A direct message-recovery attack on such schemes reduces to compute:

VFq (p1 − c1 = 0, . . . , pn − cn). (3.4)

Remark 1. The general difficultly in the construction of MI schemes is to find a f = ( f1, . . . , fm) ∈
Fq[x1, . . . , xn]m such that computing the variety (3.1) is easy whilst computing the variety of its hidden
version p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m should be hard.

With the knowledge of the secret-key, we can decrypt by noticing that c · T−1 = f(m · S). So,
we need to find z ∈ Fn

q such that c · T−1 = f(z). This can be done efficiently thanks to the
structure of f. The message is then given by m = z · S−1. In the case of encryption, we usually
require that m ≥ n to have uniqueness of the decryption process.
The very same (secret-key,public-key) pair can be used to construct a digital signature. A sig-
nature s ∈ Fn

q is valid for a digest (or hash) d ∈ Fm
q of a message if p(s) = d. A signature s is

produced by applying the decryption process to d. Namely, we find z ∈ Fn
q such that:

d · T−1 = f(z). (3.5)

A valid signature is then given by s = z · S−1. Note that any z ∈ Fn
q solution of (3.5) leads to a

valid signature. Thus, the number of equations m can be smaller than the number of variables
n for multivariate signature schemes.

3.1.2 Trapdoors in the MI Family

The MI framework leads to the design of an important number of schemes, e.g. [84], [107], [192],
[231], [232] that only differ in the method of constructing the secret-inner transformation f. We
recall below two prominent schemes.
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Hidden Field Equations (HFE) and variants. The Hidden Field Equations (HFE) cryptosys-
tem [231] is probably one of the most popular. In HFE, the secret-inner system f = ( f1, . . . , fm) ∈
Fq[x1, . . . , xn]m is obtained from a particular univariate polynomial F ∈ Fqn [X] which is defined
below:

Definition 3.1.1. Let D > 0 be an integer, and q be prime. A polynomial F ∈ Fqn [X] has a HFE-shape
if it has the following structure:

F = ∑
06i6j<n
qi+qj6D

Ai,j Xqi+qj
+ ∑

06i<n
qi6D

Bi Xqi
+ C, with Ai,j, Bi, C ∈ Fqn , ∀i, j, 0 6 i, j < n. (3.6)

Remark 2. The univariate polynomial as in (3.6) is also called a Dembrowsky-Ostrom [101] polynomial.
In this part, we always assume that q is prime.

The special structure of a HFE polynomial is chosen such that its multivariate representation over
the base field Fq has only quadratic polynomials. Indeed, let (θ1, . . . , θn) ∈ (Fqn )n be a basis of
Fqn over Fq. We set ϕ : V = ∑n

i=1 viθi ∈ Fqn −→ ϕ(V) = (v1, . . . , vn) ∈ Fn
q . The classical result

below allows to make explicit this morphism between Fqn and Fn
q .

Proposition 7. Let (θ1, . . . , θn) ∈ (Fqn )n be a vector basis of Fqn over Fq. We set:

Mn =


θ1 θ

q
1 . . . θ

qn−1

1

θ2 θ
q
2

...
...

. . .
...

θn θ
q
n . . . θ

qn−1

n

 ∈ GLn
(
Fqn
)

.

For all V = ∑n
i=1 viθi ∈ Fqn , we have

(v1, . . . , vn) Mn = (V, Vq, . . . , Vqn−1
).

We can know define a set of multivariate polynomials f = ( f1, . . . , fn) ∈ (Fq[x1, . . . , xn])n de-
rived from a HFE polynomial F ∈ Fqn [X] as follows:

F(ϕ−1(x1, . . . , xn)) = ϕ−1( f1, . . . , fn)

F

(
n

∑
i=1

θixi

)
=

n

∑
i=1

θi fi .

The polynomials f1, . . . , fn ∈ Fq[x1, . . . , xn]n are the components of F over Fq.
As explained in Section 3.1.1, it is also possible to derive a signature scheme from HFE. The
decryption (resp. signature generation) step is essentially equivalent to find the roots of a
polynomial as in (3.6). Univariate root finding is then crucial for the efficiency of HFE. We recall
below the classical complexity result for finding the roots of a univariate polynomial with the
Cantor-Zassenhauss algorithm [177, Coro. 14.16]:

Theorem 3.1.1. Let F ∈ Fp[X] be a univariate polynomial of degree ≤ D. We can find all the roots of
F using an expected number of Õ

(
D log(p)

)
operations over Fp.
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Algorithm 2 Hidden Field Equations (HFE) Public-Key Encryption [231]
PARAMETERS. size of the field q, number of variables n, and degree of the univariate polyno-
mial D.
Plaintext space: Fn

2 . Ciphertext space: Fn
2 .

KEYGEN. We randomly select a polynomial F ∈ Fqn [X] of degree D with a HFE-shape as in (3.6)
and f = ( f1, . . . , fn) ∈ (Fq[x1, . . . , xn])n such that F (∑n

i=1 θixi) = ∑n
i=1 θi fi. We also randomly

select (S, T) ∈ GLn
(
Fq
)
×GLn

(
Fq
)
.

PRIVATE-KEY. F ∈ Fqn [X] and (S, T) ∈ GLn
(
Fq
)
×GLn

(
Fq
)
.

PUBLIC-KEY. It is given by:

p = (p1, . . . , pn) =
(

f1 ((x1, . . . , xn) S) , . . . , fn ((x1, . . . , xn) S)
)
T.

ENCRYPT.
1: Input m ∈ Fn

q
2: Output c = p(m) ∈ Fn

q .

DECRYPT.
1: Input c ∈ Fn

q

2: Compute C′ = ϕ−1(c′ S−1)
3: Compute the roots Z ∈ Fqn of:

F(Z)− C′ = 0. (3.7)

4: Output ϕ(Z) · S−1

In HFE, we have that p = qn. Assuming that q is a constant, the roots of F ∈ Fqn [X] can be
found in Õ

(
n D
)
. As a consequence, a HFE polynomial has to be chosen of moderate degree for

being efficiently solvable. To fix the ideas on the degree that can be considered in practice, we
provide below some timings of the roots finding function Roots of MAGMA applied on random
HFE-polynomial F ∈ F2n [X] of degree D. We have performed the experiments on a MacBook
Air, Intel dual-core i5 1.6 GHz with 4 GB of RAM. The timings are obtained by taking the
average time of the MAGMA function Roots on 100 calls. We also report the average number of
roots (#Roots).

Table 3.1: Experiments with the MAGMA function Roots.
D 129 257 513 1025 2049 4097 8193 16385 32769

n = 128 0.1 s. 0.21 s. 0.55 s. 1.55 s. 7.36 s. 13.82 s. 30.28 s. 61.47 s 132.09 s.
#Roots 0.92 1.18 0.9 1.2 1.12 0.96 0.94 0.97 0.91

For the range of considered parameters, a HFE-shape has usually very few roots.
Over the years, the security of HFE has been thoroughly investigated, e.g. [62], [86], [100],
[105], [114], [115], [146], [155], [183]. The first major result in the analysis of HFE appeared in
[146], [155]. The authors demonstrated an efficient direct Gröbner basis attack and reported a
practical break of the HFE Challenge12 1 : m = n = 80, q = 2 and D = 96. It appeared [146], [155]
that inverting the public-key of the original HFE is much easier than expected, i.e. in comparison
to a random system of the same size. For the basic HFE, with q = 2, the degree of regularity has
been experimentally shown to be smaller than log2(D). More precisely, the degree of regularity

12http://hfe.minrank.org/
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Dreg for computing a Gröbner basis of a HFE public-key will vary in function of the degree of
the secret univariate polynomial D [146], [155]. This is not the behavior expected for a semi-
regular system of equations (Section 1.1.2). The degree of regularity of a semi-regular sequence
should increase with the number of variables (Theorem 1.1.5). We report below the degree of
regularity Dreg observed in practice for HFE as a function of the degree D of the secret univariate
HFE polynomial. Note also that the bounds are valid for a sufficiently large n which is given
in the first column. The reason is that the degree of regularity observed is not bigger than the
degree of regularity of a semi-regular sequence (Property 1.1.2).

Minimal n HFE(D) Dreg

> 4 3 ≤ D ≤ 16 3
> 9 17 ≤ D ≤ 128 4
> 16 129 ≤ D ≤ 512 5
> 25 513 ≤ D ≤ 1280 6 21 22 23 24 25 26 27 28 29

3

4

5

6

D
D

re
g

The major observation is that the complexity of a direct Gröbner basis attack against HFE is not
exponential in the number of variables, but exponential in O

(
log2(D)

)
. This phenomenon has

been further studied and confirmed in a series of papers, e.g. [105], [114], [183]. In particu-
lar, the authors of [105] provided an upper bound on the degree of regularity for HFE systems
defined over arbitrary q. The bound is given by:

(q− 1)
(
dlogp (D− 1)e+ 1

)
2

+ 2. (3.8)

We remark that this upper bound is linear in q. One could think that this would suggest that
attacking HFE should be harder when q increases. We will see in Section 3.4 that this is not the
case. We present a key-recover attack against HFE of complexity O

(
n(logq(D)+1) ω

)
(Proposition

10), with ω, 2 6 ω < 3 being the linear algebra constant.

Variants of HFE. From the discussion above, it can already be noticed that the efficiency and
security of HFE is related to the degree D of the univariate secret-key. HFE can be modified
to increase the degree of regularity without compromising too much the efficiency. Classical
variants include the minus variant (HFE-, [231]) and the vinegar variant (HFEv, [232]). In the minus
variant, we simply remove some equations from the public-key. In HFEv, the inner-secret system
is now derived from a single multivariate F(X, v1, . . . , vt) ∈ Fqn [X, v1 . . . , vt] which has the
following form :

∑
06i6j<n
qi+qj6D

Ai,j Xqi+qj
+ ∑

06i<n
qi6D

γi(v1, . . . , vt) Xqi
+ β(v1, . . . , vt) + C ∈ Fqn [X, v1, . . . , vt], (3.9)

where Ai,j, C ∈ Fqn , ∀i, j, 0 6 i 6 j < n, each γi(v1, . . . , vt) ∈ Fqn [v1, . . . , vt] is a linear polyno-
mial and β(v1, . . . , vt) ∈ Fqn [v1, . . . , vt] is a quadratic polynomial. The variables v1, . . . , vt are
called the vinegar variables. The particularity of the polynomial F(X, v1, . . . , vt) as in (3.9) is that
for any specialization of the vinegar variables the polynomial becomes an HFE polynomial.
The minus and vinegar variants seem to indeed strengthen the security of HFE. For instance,
the HFE Challenge 1 has been solved in two days [146], [155]. However, the HFE challenge 2,
which is a HFE- system, with q = 36, D = 4352, n = 36 and 4 equations removed still unbroken
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today 13. In the signature context, these variants are as efficient than a plain HFE. In the context
of encryption, there is a performance penalties induced by the fact that we will have to re-run
the decryption process several times (qt times for HFEv, and qr times for HFE- where r equations
are removed).
We can combine the minus and vinegar variants. This leads to the so-called HFEv- variant.
Typically, QUARTZ [233] is a multivariate signature scheme submitted to the evaluation process
organized by the NESSIE EU project [224]. The goal of NESSIE was to recommend a set crypto-
graphic algorithms. QUARTZ is a HFEv- signature scheme where D = 129, q = 2, n = 103, t = 4
and 3 equations removed. This yields a public-key of 71 KBytes and for a security level initially
estimated at 282. The main feature of QUARTZ is to provide very short signatures, i.e. 128 bits for
the parameters proposed above.

Unbalanced Oil and Vinegar (UOV) scheme. This is multivariate signature scheme proposed
in 1999 by Goubin, Kipnis and Patarin [192]. It is one of the rare multivariate scheme that
resisted to all attacks reported so far. The idea of UOV is to partition the variables {x1, . . . , xn}
in two sets: the vinegar variables V = {x1, . . . , xn−m}, and the oil variables O = {xn−m+1, . . . , xn}.
The secret-inner polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn] has the following special shape:

fk = ∑
(xi ,xj)∈V×V

α
(k)
i,j xixj + ∑

(xi ,xj)∈V×O
β

(k)
i,j xixj +

n

∑
i=1

γ
(k)
i xi + δ(k), (3.10)

with α
(k)
i,j , β

(k)
i,j , γ

(k)
i , δ(k) ∈ Fq[x1, . . . , xn].

The principle is that once the vinegar variables have been fixed, the secret-inner system (3.10)
becomes a linear system with m equations in m variables, and will be easy to invert with a
high probability. The public-key p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m can be constructed from
f = ( f1, . . . , fm) as in (3.2). The only difference is that the matrix T ∈ GLm

(
Fq
)

is always chosen
to be the identity. Thus:

p = (p1, . . . , pm) =
(

f1 ((x1, . . . , xn) S) , . . . , fm ((x1, . . . , xn) S)
)
, with S ∈ GLn

(
Fq
)
.

According to [193], it is mandatory to take m > n. The case m = n corresponds to the balanced
case, also known as the Oil and Vinegar scheme, which can be broken by [193]. Currently, it is
recommended to take n = m/α, such that 1.5 6 α < 3 [64], [97], [109], [269]. We discuss in
Section 3.2 how to set minimal requirement on the value of m. In [72], the authors demonstrated
that the secret-key/public-key generation of UOV can be modified to achieve a rather surprising
property. It is possible to first generate the public-key p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m and
find a linear change of variables S ∈ GLn

(
Fq
)

so that the polynomials p(xS−1) has the UOV
structure as in (3.10). The polynomials of p can be almost chosen randomly. More precisely,
the homogeneous components of highest degree can be sampled randomly, but the coefficients
of the linear components require to be adapted. Finally, we mention that the authors of [249]
proposed a modification of the UOV which allows to prove in the random oracle the so-called
model existential unforgeability against adaptive chosen-message attack (EUF-CMA). A similar
result holds for HFE.

13It was initially claimed in [83] that HFE challenge 2 could be solved in 263. This claim was withdrawn in [275]
where the complexity of the attack from [83] was corrected to 293.
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3.2 Selecting Parameters for MPKC with the Hybrid Approach

We have presented in Section 1.2 a hybrid approach that permits to improve asymptotically the
complexity of solving PoSSoq. Beyond this complexity result, the hybrid approach naturally
permits to derive minimal parameters for multivariate schemes, and in particular MPKC. The
security of the MPKC described in Section 3.1.1 naturally relies on the hardness of computing a
Gröbner basis of the public-key

(
p1, . . . , pm

)
∈ Fq[x1, . . . , xn]m. Given a ciphertext (resp. the

digest of a message) (c1, . . . , cm) ∈ Fm
q , a message-recovery (or signature forgery) reduces to

solve:
p1 = 0, . . . , pm − cm = 0, xq

1 − x1 = . . . = xq
n − xn = 0. (3.11)

In the context of a multivariate signature, the problem of forging a signature requires to solve
an under-defined system of equations, i.e. we have to solve (3.11) for m < n. In this case, we
expect that the variety associated to (3.11) has O(qn−m) solutions. Consequently, the cost of
the second step in the zero-dimensional solving strategy (Section 1.1.1), the change of ordering,
could be prohibitive due to the exponential number of solutions. Recall that the FGLM algorithm
has a complexity which is polynomial in the number of solutions (Theorem 1.1.3). In order to
forge a signature, we only need one solution of (3.11). A rather natural strategy in this context
is to fix randomly n−m variables in the system (3.11). However, by fixing random variables,
it is likely that the system will lose its internal structure.
To illustrate the approach, we consider here the UOV signature scheme (Section 3.1.2) and the
parameters initially recommended in [192]: q = F24 , m = 16, n = 32 (or 48). Note that more
multivariate schemes have been considered in [46]. Experimentally, we noticed that the new
systems behave as semi-regular systems, i.e. they verify Assumption 1. We fall then right in the
scope of the hybrid approach. The roadmap of the attack for signature schemes is as follows:

1. Fix n− m variables in message-recovery system (3.11) to obtain a new algebraic system
with m variables and m equations. This new system will always have at least one valid
solution.

2. Solve the new system with the hybrid approach (Section 1.2).

Under Assumption 1, we computed in Figure 3.1 the complexity of the hybrid approach CHyb(k)
(Proposition 2) for k, 0 ≤ k ≤ 16. It seems that the best theoretic tradeoff would be to fix 4 vari-
ables.
In practice, we obtain the best experimental trade-off by fixing only 2 variables. We show
these results in Table 3.2 for different trade-offs. TF4 is the time to compute one Gröbner basis
with F4 (the version available in MAGMA) and T = qk · TF4 . We also include the maximum
memory used during the Gröbner basis computation under the column “Mem′′. In all cases,
the complexities are below the usual cryptographic security bound, i.e. 280. We were able to
forge signatures on a Xeon quadri-processors 2.92 Ghz with 131 GB of RAM. It is worth to

m m− k qk TF4 Mem T
16 15 24 3007 s. 564.5 MB 13.36 h.
16 14 28 43.9 s. 47.5 MB 3.12 h.
16 13 212 3.65 s. 12.6 MB 4.15 h.
16 12 212 0.51 s. 8.4 MB 9.28 h.

remark that the efficiency of our attack does not rely on the number of the vinegar variables,
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Figure 3.1: Theoretical complexity of attacking UOV depending on k.

but only on the number of equations. Even if there are many more variables than equations,
one can always fix variables and still be able to forge one signature. Thus, the results are valid
for n = 32 as well as for n = 48.

Minimal parameters. The use of our approach is straightforward for any multivariate scheme.
We can then explicitly give the parameters for which a random quadratic system can not be
solved with our approach (i.e. complexity > 280) in Table 3.2. The column m is the minimum
number of equations and variables that should be chosen. The column k is the best trade-off for
the hybrid approach and the column CHyb is the corresponding complexity. To have a sketch
of what could be the size of the public key and the signatures, we compute them for a system
with 3/2 times more variables than equations (n = 3m/2). We emphasize that the complexity
given in Table 3.2 are upper bounds which are reached for random dense systems. Note that
the complexities have been computed with ω = 2 to be conservative. It has to be added that the
values given in Table 3.2 are the minimal parameters that a multivariate cryptosystems such as
UOV should have to withstand our attack. The given parameters do not prevent from other kind
of attacks.

Finally, the best trade-off between security/size of the public key/size of the signature is ob-
tained by choosing a large amount of variables and a small field. We note that the key is smaller
when q = 24.
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q m k CHyb signature length public key size
232 20 0 282 960 bits 39 KB
216 23 1 281 560 bits 29 KB
28 26 1 283 312 bits 21 KB
24 30 7 283 180 bits 16 KB
22 41 23 282 124 bits 20 KB

Table 3.2: Minimal recommended parameters.

3.3 The MinRank Problem : Algorithmic and Hardness Results

The MinRank problem is a classical linear algebra problem which can be seen as an extension
of an eigenvalue problem. It was originally introduced in [73] where the authors proved its
NP-hardness. Later, it was reformulated by Courtois [82] in the cryptographic context who
describes a zero-knowledge scheme – that we will call ZKMR – based on MinRank.
Since then, MinRank appeared to be crucial for the security of most multivariate schemes con-
structed in the MI-framework (Section 3.1.1), including HFE (Section 3.1.2) but also few others
e.g. [54], [108], [154], [181], [194]. The public-key in MPKC is usually given by quadratic polyno-
mials which can be represented by a set of matrices. The idea to attack multivariate schemes
with MinRank is to exploit a rank defect in the public matrices induced by the very structure of
the inner system (Section 3.1.1). We elaborate further on such attack in the case of HFE in the
next Section 3.4. All in all, MinRank is a fundamental problem in MPKC.
MinRank
Input. A set of k + 1 matrices M0, M1, . . . , Mk ∈ MN×n(Fq) and an integer r > 0.
Question. Find – if any – a k-tuple (λ1, . . . , λk) ∈ Fk

q such that:

Rank

(
k

∑
i=1

λi Mi −M0

)
6 r.

From now on, we only consider the case where N = n, i.e. “square” instance of MinRank.
This is not a restriction since square MinRank (N = n) is equivalent (by poly-time reduction) to
MinRank [156]. We review below the main techniques for solving MinRank.

3.3.1 The Kernel Attack

First, note that exhaustive search to find a tuple (λ1, . . . , λk) ∈ Fk
q solution of MinRank needs

O(qknω) operations on Fq. Courtois and Goubin proposed in [181] a clever way for performing
exhaustive search. Given k + 1 matrices M0, M1, . . . , Mk ∈ MN×n(Fq), the idea is to choose
randomly m vectors x(1), . . . , x(m) ∈ Fn

q . Then, we solve a linear system of mn equations for the
unknowns (y1, . . . , yk):

x(i)(M0 −
k

∑
j=1

yjMj
)

= 0n, ∀i, 1 ≤ i ≤ m.

Note that if m = d k
ne, this system essentially has only one solution λ = (λ1, . . . , λk) ∈ Fk

q.

Now set Eλ = M0 − ∑k
j=1 λjMj; we want Eλ to be of rank ≤ r. If this were the case, then
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dim
(
Ker(Eλ

)
≥ n− r and so, for x ∈ Fn

q chosen at random:

Pr[x ∈ Ker(Eλ] ≥ q−r and Pr[{x(1), . . . , x(m)} ⊆ Ker(Eλ)] ≥ q−mr.

Thus, in order to find a λ = (λ1, . . . , λk) ∈ Fk
q such that Eλ has the desired rank, we have to run

the above experiment qmr times on average. Taking the value of m as above, the complexity of
this attack is thus

O(qd
k
n erkω).

3.3.2 Kipnis-Shamir Modeling and Gröbner Bases

The MinRank problem can be also modeled as a system of quadratic equations. It is a transpo-
sition of an attack on HFE due to Kipnis and Shamir [194]. In its principle, this is an algebraic
version of the kernel attack described below. With the previous notations, the basic idea is to

take as unknown the basis vectors of a left kernel of
(

∑k
i=1 λi Mi −M0

)
. The dimension of

the kernel space will depend on the target rank r. This yields a system of quadratic equations
whose unknowns are the coefficient of the kernel vectors and the λ1, . . . , λk ∈ Fq. We can de-
crease the number of variables by assuming that the kernel is in systematic form (this holds
with high probability over a finite field). Finally, MinRank is equivalent to solve the algebraic
system of n (n− r) equations in r (n− r) + k variables given by the entries of the matrix:1 x1,1 . . . x1,r

. . .
...

...
1 xn−r,1 . . . xn−r,r

 ·( k

∑
i=1

yi Mi −M0

)
. (3.12)

Initially, relinearization [194] has been used to solve (3.12). In [156], we proposed instead to use
Gröbner bases. This allows a considerable speed-up against the kernel attack described below
(experimental resutls are presented below). In addition, we noticed in [156] that the system
has a multi-homogeneous structure (Definition 1.1.7). We used this fact and previous results
on multi-homogeneous Bézout bound [104], [200], [211] to derive in [156] a new upper bound
on the complexity of solving MinRank with the Kipnis-Shamir (KS) modeling.

Experimental Results

We report in Table 3.2 experimental results obtained by using Gröbner bases together with the
KS modeling. We consider in particular the parameters used in ZKMR [82]. These parameters
are quoted below together with the number of equations and variables obtained using the KS
modeling

(
algebraic system (3.12)

)
:

• A : F65521, n = 6, k = 10, r = 3 (18 equations and 19 variables)

• B : F65521, n = 7, k = 10, r = 4 (21 equations, and 22 variables)

• C : F65521, n = 11, k = 10, r = 8 (33 equations, and 34 variables)

These parameters were selected so that the best attack previously known – the Kernel Attack
(Section 3.3.1) here – requires at least 2106 operations [181].
We remark that the algebraic systems defined by the challenges are under-defined. For break-
ing the zero-knowledge scheme, we only need one solution. Thus, we can fix 1 variable for the
challenges A, B and C. This is then equivalent to solve MinRank on the following parameters :
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• A : F65521, n = 6, k = 9, r = 3 (18 equations, and 18 variables)

• B : F65521, n = 7, k = 9, r = 4 (21 equations, and 21 variables)

• C : F65521, n = 11, k = 9, r = 8 (33 equations, and 33 variables)

We consider instances with a pre-assigned solution. To do so, we have randomly sampled k
matrices M1, . . . , Mk ∈ Mn,n(Fq) and k coefficients (λ1, . . . , λk) ∈ Fk

q such that Sλ = ∑k
i=1 λi 6=

0. Finally, we randomly selected a matrix M ∈ Mn,n(Fq) of rank r and set M0 = ∑k
i=1 λi(Mi −

M). Thus, we have Rank
(

∑k
i=1 λiMi −M0

)
= Rank(SλM) = r.

The experimental results have been obtained with MAGMA (2.21-6) on a Xeon quadri-processors
2.92 Ghz, with 131 GB of Ram. We can break the two challenges A and B. There is a huge gap be-
tween these challenges and challenge C. However, we can estimate the complexity of our attack
for the last challenge by considering intermediate instances of the problem, i.e. MinRank(n, k, r),
with Fq = F65521, n = r + 3, k = (n− r)2 = 9 and r ∈ {3, 4, 5, 6, 7, 8}. Also, since all the λi are in
Fq, we can perform a hybrid approach, i.e. an exhaustive search on some λi. Namely, we sup-
pose that we have nb f > 0 coefficients of a solution (λ1, . . . , λk) of MinRank. This is equivalent
to solve a MinRank(n, k− nb f , r) problem. We have then to solve qs over-determined systems.
When s > 0 the number of solutions of the corresponding algebraic system is always 1 and
any Gröbner basis for any monomial ordering gives the solution (Property 1.1.1); consequently
there is no need to apply the FGLM algorithm (Section 1.1.1).
In Table 3.2, TDRL is the CPU time for computing a LEX-Gröbner basis, TFGLM is the CPU time
for changing the basis to a LEX-Gröbner basis using the FGLM algorithm, Dmax is the maximum
degree reached during the computation of a Gröbner basis and Dreg is the theoretical degree of
regularity of a semi-regular system (Property 1.1.2) with n (n− r) equations and r (n− r) + k−
nb f variables.

K = F65521, MinRank(n, k, r)
Challenge A Challenge B Challenge C

(6, 9, 3) (7, 9, 4) (8, 9, 5) (9, 9, 6) (10, 9, 7) (11, 9, 8)
nb f = 0 TDRL 31.8 s. 1.15 h. 52.53 h.

TFGLM 3.5 s. 605.7 s. 12.71 h.
Dmax 6 6 7
Dreg 19 22 25

nb f = 1 TDRL 2.1 s. 139.4 s. 2.32 h. 54.09 h.
Dmax 4 5 6 6
Dreg 10 11 13 14

nb f = 2 TDRL 0.6 s. 6.3 s. 327 s. 1.54 h. 22.09 h.
Dmax 4 4 5 5 6
Dreg 8 10 11 12 14

nb f = 3 TDRL 0.09 s. 2.3 s. 14 s. 476.6 s. 1.14 h. 14.61 h.
Dmax 4 4 4 5 5 5
Dreg 7 8 10 11 12 13

Figure 3.2: Experimental results with Gröbner bases on the KS modeling.

Interpretation of the results. Challenges A (6, 9, 3) and B (7, 9, 4) are completely broken. We
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emphasize that such sets of parameters were the most practical parameters proposed in [82].
In [156], we also evaluated that the complexity for attacking Challenge C should be ≈ 265.
The major observation here is that systems coming from the KS modeling are much easier to
solve than semi-generic instances of the same size. This can be observed by comparing the
maximal degree Dmax reached in practice with the theoretical degree of regularity Dreg of a
semi-regular system. We see clearly the effect of the multi-homogeous structure (Definition
1.1.7) of the algebraic system (3.12). The degree of regularity seems to be bounded from above
by ≈ r + 2. We provide in [156] a first explanation due to the multi-homogeneous structure of
the KS modeling.

3.3.3 Minors Modeling

Following [156], Faugère, Safey El Din and Spaenlehauer [149], [151] presented and analysed an
alternative modeling for MinRank. Indeed, this problem can be formulated as finding a vector
(λ1, . . . , λk) ∈ Fk

q vanishing on all the minors of size r + 1 of the matrix
(

∑k
i=1 λi Mi −M0

)
. We

have then to solve

Minorsr+1

(
M0 −

k

∑
j=1

yjMj

)
= 0, (3.13)

where Minorsr+1 denotes the set of all minors of degree r + 1. System (3.13) is a multivariate
polynomial system of ( n

r+1)
2 equations in k variables. The system has more equations and less

variables than the KS modeling but the degree of the equations is r. An advantage of this
approach is that precise complexity bounds can be derived for this modeling [149], [151]. In
particular, Corollary 3 of [151] gives a bound on the degree of regularity of such determinantal
systems.

Proposition 8 (Faugère, Safey El Din, Spaenlehauer [149], [151]). Let (n, k, r) be the parameters of
a (square) MinRank instance such that k ≤ (n− r)2. Let A(z) = {ai,j(z)}1≤j≤r

1≤i≤r be the (r× r)-matrix
defined by

ai,j(z) =
n−max(i,j)

∑
`=0

(
n− i
`

)(
n− j
`

)
z`.

The degree of regularity of the system (3.13) for a generic MinRank instance is bounded from above by
1 + deg (HS(z)) where

HS(z) =

[
(1− z)(n−r)2−k det A(z)

t(r
2)

]
+

.

As explained in [151], the proof is valid under the assumption that a variant of the Fröberg
conjecture [168] is true. More recently [149], the same result was proved when k ≥ (n − r)2

without using any variant of Fröberg’s conjecture. However, in the over-determined case –
that is to say when k < (n− r)2 – the conjecture is still needed.

Experimental Results

We report below experimental results by computing Gröbner bases on the minors modeling.
We considered instances of MinRank as in Section 3.3.2. The programming language, and work-
station is as in Section 3.3.2 (MAGMA (2.21-6) and Xeon quadri-processors 2.92 Ghz, with 131
GB of Ram).
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The following notations are used in Table 3.3 : TDRL is the CPU time for computing a DRL-
Gröbner basis, TFGLM is the CPU time (in seconds) for changing the basis to a DRL-Gröbner ba-
sis using the FGLM, Dmax is the maximum degree reached during the computation of a Gröbner
basis, and Dreg is the theoretical degree of regularity according to Proposition 8.

K = F65521, MinRank(n, k, r)
Challenge A Challenge B Challenge C

(6, 9, 3) (7, 9, 4) (8, 9, 5) (9, 9, 6) (10, 9, 7) (11, 9, 8)
TDRL 1.5 s. 32.6 s. 567.6 s. 2.33 h. 28.88 h. 65521×10.13 h.

TFGLM 2.87 s. 145 s. 2.15 h. 68.94 h.
Dmax 10 13 16 19 22
Dreg 10 13 16 19 22 25

Figure 3.3: Experimental results with Gröbner bases on the minors modeling.

Interpretation of the results. The minors approach allows to speed-up the attack against
MinRank. Typically Challenge B can now be broken in half a minute, whilst it took ≈ 1 hour
with the KS modeling (Table 3.2). For the last challenge, we estimate the solving-time by
using a hybrid approach. We simply fix nb f = 1 variable, and have then to solve q times
MinRank(11, 8, 8). The latter MinRank can be solved in 10.13 h. Using the KS modeling, we were
only able to solve MinRank(11, 6, 8) (that is, fixing 3 variables in Challenge C) in 14.61 h.
More generally, [149], [151] proved that for instances of MinRank arising in ZKMR [181], i.e. such
that k = (n − r)2, then computing a Gröbner basis with the minors modeling will be always
faster than with the KS modeling. We can also notice that the theoretical degree of regular-
ity from Proposition 8 is always equal to the maximum degree reached during the Gröbner
computation.

3.4 A Key-Recovery Attack against HFE

The MinRank problem as described in Section 3.3 first appeared in the cryptographic context
due to a key-recovery attack of Kipnis and Shamir against HFE [194]. The principle of this
attack, known as Kipnis-Shamir (KS) attack, is to exploit the very structure of a HFE polynomial
(Definition 3.1.1). To simplify the description, we suppose here that q is an odd prime. The case
of even characteristic is slightly more technical, but fully addressed in [51].
KS attack proceeds in two steps. First, we solve an instance of MinRank that will give a part
of the secret key, i.e. the outer matrix T ∈ GLn

(
Fq
)

(Section 3.1.2). Once T has been found,
we can recover the inner transformation S ∈ GLn

(
Fq
)

by essentially solving a linear system
of equations [51], [194]. Consequently, solving the MinRank is the most costly part of the at-
tack. We then focus on this step here. We first explain how the MinRank problem occurs in the
cryptanalysis of HFE.
To do so, we revisit the classical KS attack of [194] on HFE. A first difference is that [194] re-
quires to compute – by interpolation – the univariate representation of the public-key; whilst
the technique presented here operates directly on the public-key polynomials. Our attack al-
lows a considerable speedup over the original KS attack. It makes it practical for a wide range
of parameters whereas the original attack from [194] was considered theoretical. It is not de-
tailed here, but this version of the attack can be generalized and used against variants of HFE
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such as Multi-HFE [55], [77]. Finally we build on the degree of regularity of a determinantal
system (Proposition 8) to derive (Section 3.4.2) a complexity bound for our key-recovery in the
case of HFE.

3.4.1 MinRank in HFE

Following [194], we can restrict w.l.o.g our attention to a “homogeneous” secret univariate HFE-
polynomial, i.e. a polynomial of the form:

F = ∑
06i6j<n
qi+qj6D

Ai,j Xqi+qj ∈ Fqn [X]. (3.14)

This is not a restriction since what follows can easily be adapted to the affine case as mentioned
in [194]. A polynomial F as in (3.14) can be written as “non-standard quadratic forms” [194]. That
is, letting F = (Ai,j)

06j<n
06i<n ∈ Mn×n

(
Fqn
)
, we can write:

F =
n−1

∑
i=0

n−1

∑
j=0

Ai,jXqi+qj
= XFXT, where X = (X, Xq, . . . , Xqn−1

).

The fundamental remark is that the rank of F is bounded from above. Indeed, the degree of
the secret polynomial is smaller than D and the entries Ai,j in F are non-zero if and only if
i, j 6 logq (D). This yields:

Rank
(
F
)
6 logq (D).

Let also F∗k ∈ Mn×n
(
Fqn
)

be the matrix whose (i, j)-th entry is f qk

i−k,j−k (indexes are modulo

n). The matrix F∗k is in fact the “matrix representation” of the qk-th power of the univariate
polynomial F. That is:

Fqk
=

n−1

∑
i=0

n−1

∑
j=0

Aqk

i−k,j−kXqi+qj
= XF∗kXT.

Thanks to Proposition 7, we deduce a useful property on the matrices F∗ks.

Lemma 1. Let Mn ∈ GLn
(
Fqn
)

be the matrix defined in Proposition 7. We consider also the sym-
metric matrices (G1, . . . , Gn) ∈

(
Mn×n

(
Fq
))n associated to quadratic polynomials (p1, . . . , pn) ∈(

Fq[x1, . . . , xn]
)n of a HFE public-key, i.e. pi = xGixT for all i, 1 6 i 6 n. It holds that:

(G1, . . . , Gn) =
(
S Mn F∗0 MT

n ST, . . . , S MnF∗n−1 MT
n ST)M−1

n T.

As T and Mn are invertible, we can rewrite Lemma 1 with:

(G1, . . . , Gn) T−1Mn = (SMnF∗0MT
n ST, . . . , SMnF∗n−1MT

n ST). (3.15)

In other words, we have a direct relation between the polynomials of the public key written as
quadratic forms and the secret polynomial F or more precisely the matrices F∗i, for all i, 0 6
i < n. Notice that equation (3.15) involves left products of a matrix with Mn. This product has
an interesting property.
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Proposition 9. Let Mn ∈ GLn
(
Fqn
)

be the matrix defined in Proposition 7. Let also A = (ai,j)
06j<n
06i<n ∈

Mn×n
(
Fq
)
, and B = (bi,j)

06j<n
06i<n = A Mn ∈ Mn×n

(
Fqn
)
. We have:

bi,j = bq
i,j−1, for all i, j, 0 6 i, j < n.

That is, each column is obtained from the previous one using a Fröbenius application. As a consequence,
the whole matrix B can be defined with any of its columns.

From now on, we write T−1 Mn = U = (ui,j)
06j<n
06i<n ∈ GLn

(
Fqn
)

and S Mn = W = (wi,j)
06j<n
06i<n ∈

GLn
(
Fqn
)
. We can then rewrite (3.15) as follows:

(G1, . . . , Gn) U = (WF∗0WT, . . . , WF∗n−1WT).

According to Proposition 9, ui,j+1 = uq
i,j and wi,j+1 = wq

i,j, for all i, j, 0 6 i, j < n. Thus,
we only need to know one column of U (resp. W) to recover the whole matrix. Let then
(u0,0, . . . , un−1,0) ∈ (Fqn )n be the components of the first column of U. We have:

n−1

∑
k=0

uk,0Gk+1 = WF∗0WT = WFWT. (3.16)

As the rank of F is logq(D), so is the rank of WFWT. On the other hand, the solution of such
MinRank lies in (Fqn )n. This leads to the following theorem.

Theorem 3.4.1. For HFE, recovering U = T−1 Mn ∈ Mn×n
(
Fqn
)

reduces to solve a MinRank on the
public matrices (G1, . . . , Gn) ∈ Mn×n

(
Fq
)n with target rank r = dlogq(D)e. The solutions (i.e. the

linear combinations) of this MinRank problem are in (Fqn )n.

The equation (3.16) is similar to the so-called “fundamental equation” in the basic KS attack [194].
The fundamental difference is that we have not used the univariate representation of the public-
key as initially presented in [194]. This is arguably a simpler and more natural way to formalize
the MinRank in HFE. We also explain in [52] that this permits to speed-up the solving MinRank
involved. The speed-up is due to the fact that MinRank of [194] is defined over the extension
field, whilst our is defined over the base field. The expected gain is a factor M(n) ∼ n2 (the
cost of the multiplication of two univariate polynomials of degree n) over the classical Kipnis-
Shamir attack.

3.4.2 Complexity Analysis of the MinRank Attack

We bound here complexity of solving the MinRank instances arising in HFE (Theorem 3.4.1).
In [194], it is conjectured that the basic KS attack against HFE is sub-exponential is n. The com-
plexity turned to be incorrect [103]. Under a regularity assumption, we show in [52] that solv-
ing the MinRank instances of Theorem 3.4.1 is exponential in r = dlogq (D)e, where D is the
degree of the HFE polynomial. This result is obtained thanks to the minor modeling described
in Section 3.3 and Proposition 8.

Proposition 10. Let (q, n, D) ∈ N3 be the parameters of a HFE and r = dlogq (D)e. If the variant of
the Fröberg conjecture as defined in [151] is true, then the complexity of solving the MinRank arising in
HFE – when r < 11 – with the minor modeling is

O
(

n(r+1) ω
)

, with ω, 2 6 ω < 3 being the linear algebra constant.
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This makes the binary complexity logarithmic in q. We can observe that the upper bound (3.8)
on the degree of regularity for a direct message recovery-attack from [105] is exponential in q;
our bound for key-recovery is logarithmic in q.

3.5 Final Remarks

Until the mid 2000’s, multivariate cryptography was developing very rapidly, producing many
interesting and versatile design ideas such as C∗ [212], HFE [231], SFLASH [84], UOV [192], TTS
[273], Rainbow [106], . . . This was then naturally followed by an intense period of cryptanal-
ysis, e.g. [49], [51], [113], [146], [155], [181], [212], [268]. This process permitted to filter out
the weakest primitives and to develop powerful cryptanalytic techniques for MPKC which also
impacted others quantum-safe cryptosystems as illustrated by this document. We have a now
a better understanding of the security of these schemes. In particular, the results presented in
this chapter provide a set reference tools allowing to evaluate the security of MPKC.
Now, after an intense period of cryptanalysis it appears that few schemes resisted to the taste
of time : UOV (1999) and variants of HFE (1995). As a consequence, an open problem in this
area is to design good proposals for quantum-safe standards. In particular, we observe that the
complexity of the best attacks against HFE are all exponential in O(logq(D)). We have essen-
tially only one parameter which allows to control the security and efficiency of this scheme :
the degree D of the HFE polynomial.
We are now in a better position to derive secure parameters for schemes such as HFE- or HFEv.
The challenge is different to design an encryption scheme or a signature scheme. Remark that
historically multivariate cryptography has always been more successful in the design of sig-
nature schemes. The most interesting feature of multivariate signatures is that they can lead
to extremely short signatures (3.2); the shortest among quantum-safe cryptosystems. In the
encryption case, it is more challenging to find a good efficiency/security trade-off between the
degree D, and the use of the modifiers (minus or vinegar). The point is that modifiers slow
down the decryption process so that it is mandatory to consider rather large D to achieve a
good security level and keeping efficiency. In the case of signature, the use of modifiers do not
induce a loss of efficiency and allows one to consider smaller D.
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CHAPTER 4

ALGEBRAIC TECHNIQUES IN CODE-BASED CRYPTOGRAPHY

This chapter details (some) algebraic attacks against McEliece’s cryptosystem. It is based,
in particular, on [122], [131], [133], [135]. We start by a short introduction to McEliece’s
cryptosystem (Section 4.1). We then describe how to derive a set of (structured) algebraic
equations modeling key-recovery in McEliece (Section 4.2). We explain how this algebraic
modeling can be used to attack compact variants of McEliece. Finally, we present in Section
4.3 an algebraic algorithm for distinguishing a McEliece public-key from a random matrix.
This problem is known as the Goppa Code Distinguishing (GD) problem. Our algorithm
allows to solve GD in polynomial-time for certain ranges of parameters.

4.1 McEliece Public-Key Cryptosystems

After almost forty years now, the McEliece public-key encryption scheme [214] still belongs to
the very few public-key cryptosystems which remain unbroken. This is remarkable regarding
the intense academic activity in cryptanalysis. As a consequence, McEliece’s cryptosystem is a
serious candidate for quantum-safe standards.
The security of McEliece is motivated by the intractability (i.e. NP-Hardness) of decoding linear
codes [40].

Bounded Distance Decoding (BDD)
Input. G ∈ Mk×n(Fq), c ∈ Fn

q and an integer t > 0.
Goal. Find – if any – m ∈ Fk

q such that:

HammingWeight(c−mG) 6 t,

with HammingWeight() being the number of non-zero coordinates.
Decoding a random linear code, that is solving BDD for a random G ∈ Mk×n(Fq), is a long-
standing problem whose most effective algorithms, e.g. [41], [75], [198], [199], [213], [241], [263],
have all an exponential time complexity in the classical [270] as well as in the quantum setting
[42]. Although the complexity of the best decoding attack remains exponential, progress on
the exact exponent have been continuously reported. The latest result from [213] brings down
the complexity to (at most) 20.097 n for decoding random binary linear codes of length n and
dimension k when R = k/n ≈ 0.447.
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The most efficient algorithms for decoding ran-
dom linear codes are based on a framework
called the (Information Set Decoding (ISD) first
introduced by Prange in [241]. In [270], the au-
thors prove that if the number of errors t = o(n)
is sub-linear, the asymptotic complexity of all
ISD variants is :

2c t (1+o(1)), (4.1)

where c = − log2(1− k/n) only depends on the
ratio k/n.
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k/n

c

Value of c in the exponent of (4.1).

In some sense, the principle of McEliece’s cryptosystem [214] is similar to MPKC (Section 3.1).
We start from a structured code with an efficient decoding algorithm, typically binary Goppa
codes (Definition 4.1.2), and we publish a hidden version of this structured code. We describe
McEliece’s encryption algorithm in Algorithm 3. Before that, we introduce minimal materials
to describe McEliece. For more details regarding this part, we refer for instance to [210, Ch. 12]
or [229].

Preliminaries. Let q = ps with p prime and an integer s 6 1. It is convenient to describe
Goppa codes through a parity-check matrix defined over an extension field Fqm of Fq over which
the code is defined:

Vt(x, y) =


1 · · · 1
x0 · · · xn−1
...

...
xt−1

0 · · · xt−1
n−1




y0 · · · · · · 0
0 y1 · · · 0
...

. . .
...

0 · · · · · · yn−1



=


y0 · · · yn−1

y0x0 · · · yn−1xn−1
...

...
y0xt−1

0 · · · yn−1xt−1
n−1

 ∈ Mt×n(Fqm ),

(4.2)

with
(
x = (x0, . . . , xn−1), y = (y0, . . . , yn−1)

)
∈ Fn

qm ×Fn
qm .

The kernel of Vt on the base field Fq defines a linear codes which includes binary Goppa codes.

Definition 4.1.1 (Alternant code). Let x = (x0, . . . , xn−1) ∈ (Fqm )n where all xi’s are distinct and

y = (y0, . . . , yn−1) ∈
(

F×qm

)n
. The alternant code of order t over Fq, associated to x and y, is defined

as follows:

At(x, y) =
{

c ∈ Fn
q | Vt(x, y)cT = 0t

}
, with Vt(x, y) defined as in (4.2).

The dimension k of At(x, y) satisfies k > n− tm. We shall call x the support of the code, y the multiplier
and t the order (or degree) of the alternant code.

42



4.1. McEliece Public-Key Cryptosystems

A key feature about alternant codes of degree t is the fact that there exists a polynomial-time al-
gorithm decoding all errors of weight at most t

2 once a parity-check matrix of the form Vt(x, y)
is given [210, Ch.12]. For subclasses of alternant codes, algorithms correcting more errors can
be found. In particular:

Definition 4.1.2 (Goppa codes). The Goppa code G (x, Γ) over Fq associated to a polynomial Γ(z) ∈
Fqm [z] of degree t and n-tuple x = (x0, . . . , xn−1) ∈ (Fqm )n of distinct elements of Fqm satisfying
Γ(xi) 6= 0 for all i, 0 6 i 6 n− 1, is the alternant code At(x, y) of order t with yi = Γ(xi)

−1 for all
i, 0 6 i 6 n− 1.

Goppa codes, viewed as alternant codes, naturally inherit a decoding algorithm that corrects
up to t

2 errors. For binary Goppa codes, we can improve this bound to correct twice as many
errors.

Theorem 4.1.1. Let Γ(z) ∈ F2m [z] be a polynomial of degree t without multiple roots and a n-tuple
x = (x0, . . . , xn−1) of distinct elements of Fqm satisfying Γ(xi) 6= 0 for all i, 0 6 i 6 n− 1. The binary
Goppa code G (x, Γ) is equal to the alternant code A2t(x, y2), with yi = Γ(xi)

−1 for all i, 0 6 i 6 n− 1.

As a consequence, there exists a polynomial-time algorithm decoding all errors of Hamming
weight at most t in G (x, Γ) as soon as x and Γ(z) are known. We refer to this decoding algorithm
as a t-decoder. Remark that t ∈ O(n/ log(n)) = o(n). The number of errors is then sub-linear
in the length for such codes and the complexity (4.1) is indeed valid in this context. For the
support x, it is also classical to take all elements of Fqm . This is the full support setting where the
length is n = qm.

McEliece public-key encryption. We can now explain how the classical McEliece [214] public-
key encryption scheme, based on binary Goppa codes, is defined.

Algorithm 3 McEliece Cryptosystem based on binary Goppa codes (1978)
PARAMETERS. Code length n, dimension k, and decoding capacity t.
Plaintext space: Fk

2. Ciphertext space: Fn
2 .

KEYGEN. We randomly select a polynomial Γ(z) ∈ F2m [z] of degree t without multiple
roots and a n-tuple x = (x0, . . . , xn−1) of distinct elements of F2m satisfying Γ(xi) 6= 0 for all
i, 0 6 i 6 n− 1. The pair (Γ, x) defines a binary Goppa code G (x, Γ) whose parity-check matrix
is V2t

(
x, Γ−2(x)

)
.

PRIVATE-KEY. The pair (Γ, x) ∈ F2m [z]×Fn
2m which defines a t-decoder Tt for G.

PUBLIC-KEY. The correction capacity t, and a full-rank matrix G ∈ Mk×n(F2) with k, n−mt 6
k < n, such that

Vt
(
x, Γ−1(x)

)
GT = (0)t×k . (4.3)

ENCRYPT.
1: Input m ∈ Fk

2
2: Generate random e ∈ Fn

2 with
Hamming weight t

3: Output c = mG + e

DECRYPT.
1: Input c ∈ Fn

2
2: Compute m̄ = Tt(c)
3: If decoding succeeds, output m̄, else output ⊥
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Remark 3. Our description of the McEliece encryption scheme slightly differs from the traditional
description; as can be found in [229]. for instance. Usually, the public-key is given by G′ = S G P
where S ∈ GLk (F2) , G ∈ Mk×n(F2) is the generator matrix of G (x, Γ) defined as in (4.3), and
P ∈ GLn (F2) is a permutation matrix. It can be proven that G′ ∈ Mk×n is the generator matrix of the
Goppa code G (xσ, Γ), where σ is the permutation associated to P and xσ = (xσ(0), . . . , xσ(n−1)) ∈ Fn

2m .
Thus, the effect of (S, P) is to permute the support of G (x, Γ). Since the support x is already chosen at
random, it not clear that (S, P) will bring any additional security.

Security of McEliece cryptosystems. It is clear that message-recovery reduces to decode the
public linear code given by G ∈ Mk×n(F2) , i.e. to solve BDD on G. We can consider that
direct decoding attacks against McEliece, i.e. by applying ISD, with binary codes is a topic
which has been well investigated in the litterature. Beside asymptotic results for ISD as given
in (4.1), concrete security level for McEliece can also be computed against ISD [41], [229]. The
situation is rather different for the key-recovery problem. The reference attack remains the
Support Splitting Attack (SSA) proposed by Sendrier and Loidreau in [203]. SSA is essentially
an exhaustive search to recover the description as a binary Goppa code of the public matrix
G ∈ Mk×n(F2). This description provides an efficient way to decode the public code and
then a key equivalent to the secret-key. The most costly part of SSA – in the case of binary
Goppa codes – is to perform an exhaustive search to recover a Goppa polynomial (Definition
4.1.2) Γ ∈ F2m [z] of degree t. Detailed analysis provided in [203] shows that the complexity
of SSA is bounded from above by n3

mt 2m(t−3). Note that this complexity is achieved if the codes
considered are of full support, i.e. n = 2m.

McEliece signature. Besides public-key encryption, one can also sign using the principle of
McEliece thanks to Courtois, Finiasz, and Sendrier (CFS signature scheme, [87]). The public-key
G ∈ Mk×n(F2) in CFS is constructed as in McEliece’s encryption. A valid signature s ∈ Fk

2 for
digest d ∈ Fn

2 is such that the Hamming weight of d− sG is at most t. With a binary Goppa
codes of length n = 2m and order t, the probability that a given digest admits a valid signature
is of order 1

t! . The idea then is modify the digest by appending a counter incremented until the
decoding algorithm can find such a signature. The efficiency of this scheme heavily depends on
the number of such trials. Thus, one has to choose a very small t. To maintain security against
generic message-recovery attacks, this implies to consider codes with high rates R = k/n [87],
[167]. This can be understood from the asymptotic complexity (4.1) which is exponential in c t
where c increases with the code rate. For instance, [167] recommended to take n = 221 and
t = 10 (this yields R = 0.99) for a 80-bit security CFS scheme whereas [167] suggested to take
n = 211 and t = 32 (so that R = 0.82) to achieve the same security level for encryption. Thus
one major difference between the McEliece cryptosystem and the CFS scheme lies in the choice
of the codes parameters.

4.2 Algebraic Key-Revovery Systems for McEliece Cryptosystems

We present here a new method to assess the security of McEliece. It turns out that the very
definition of alternant codes allows to derive an algebraic modeling of the key-recovery. The
modeling can be refined for (binary) Goppa codes. We then will explain how this approach can
be used to attack efficiently so called compact variants of McEliece proposed in [33], [39], [220].
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4.2.1 Algebraic Modelings of Key-Recovery

Alternant modeling. Let q = ps > 1 be a prime power. We first assume that public-key is a
q-ary alternant code At(x, y) defined by the public generator matrix G = (gi,j) ∈ Mk×n(Fq)
(Definition 4.1.1). In this case, the secret-key is (x, y) ∈ Fn

qm × Fn
qm . Let X = (X0, . . . , Xn−1)

and Y = (Y0, . . . , Yn−1) be two sets of variables corresponding to the unknown support x and
multiplier y respectively. To model algebraically the key-recovery, we use that Vt(X, Y) is a
parity-check matrix (Section 4.1) of the public-code. That is Vt(X, Y)GT = (0)t×k holds and
yields:

AX,Y =
t−1⋃
`=0

{
n−1

∑
j=0

gi,jX`
j Yj | 0 ≤ i ≤ k− 1

}
. (4.4)

By construction, it is clear that (x, y) ∈ Fn
qm × (F×qm )n is a solution of this system. The non-

linear system AX,Y has 2n variables and kt equations of degrees 1, . . . , t. We can also remark
that the system is defined over Fq whilst the solutions lie in Fqm . The system (4.4) is also over-
determined for typical cryptographic parameters. This feature will be maximized for codes
with high rates used in CFS as we will see in Section 4.3. We also observe that AX,Y is very
structured. Indeed, the only monomials occurring are of the form YjX`

j with `, 0 ≤ ` ≤ t− 1,
i.e. all equations are bi-homogeneous (Definition 1.1.8) of bi-degree (1, `).

Remark 4. By definition, the support and multiplier (x, y) ∈ Fn
qm × (F×qm )n of an alternant code

must verify additional algebraic relations (Definition 4.1.1) that has not been included so far. As a
consequence, the system AX,Y will have parasite solutions corresponding to Xi = Xj or to Yj = 0). A
classical way to remove such spurious relations is to introduce new variables uij and vi and add equations
of the form uij · (Xi −Xj) + 1 = and vi ·Yi + 1 = 0. In practice, we have however used a small number
of such equations (namely 4 or 5). The reason is that we do not want to add too many new variables. To
simplify the description, we will ignore these equations from now on.

By assumption, the public-code defined by G ∈ Mk×n(Fq) is of dimension k. Up to Gaussian
elimination (and possibly reordering the positions), we can assume that G is in systematic form(

Ik P
)

where Ik is the k × k identity matrix and P = (pi,j) ∈ Mk×(n−k)(Fq). We can then
rewrite system (4.4) as follows:

AX,Y =
t−1⋃
`=0

{
X`

i Yi +
n−1

∑
j=k

pi,jX`
j Yj | 0 ≤ i ≤ k− 1

}
. (4.5)

By focusing on equations with ` = 0, we construct a new polynomial system AX,Y′ – where
Y′ = (Yk, . . . , Yn−1) – in which the variables (Y0, . . . , Yk−1) have been eliminated:

AX,Y′ =
t−1⋃
`=1

{
n−1

∑
j=k

pi,j

(
X`

j − X`
i

)
Yj | 0 ≤ i ≤ k− 1

}
.

The non-linear system AX,Y′ has 2 n− k variables and k(t− 1) equations of degrees 2, . . . , t.
In AX,Y′ , we have been able to eliminate variables in the block Y by performing a simple ma-
nipulation of the equations from AX,Y. We can combine the equations of AX,Y in a different way
to eliminate variables in the two blocks X and Y. To illustrate the principle, we consider the
equations of bi-degree (0, 1), (1, 1) and (1, 2) in AX,Y, i.e.

2⋃
`=0

{
X`

i Yi +
n−1

∑
j=k

pi,jX`
j Yj | 0 ≤ i ≤ k− 1

}
.
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Then, thanks to the trivial identity Yi(X2
i Yi) = (XiYi)

2 for all i, 0 6 i 6 k− 1, we get:(
n−1

∑
j=k

pi,jYj

)(
n−1

∑
j′=k

pi,j′X2
j′Yj′

)
=

(
n−1

∑
j=k

pi,jXjYj

)(
n−1

∑
j′=k

pi,j′Xj′Yj′

)
=

(
n−1

∑
j=k

pi,jXjYj

)2

.

This gives a system of k equations in X′ = (Xk, . . . , Xn−1) and Y′ = (Yk, . . . , Yn−1):n−1

∑
j=k

n−1

∑
j′>j

pi,j pi,j′
(

X2
j′ + X2

j

)
YjYj′ −

(
n−1

∑
j=k

pi,jXjYj

)2

| 0 ≤ i ≤ k− 1

 . (4.6)

In fact, we can combine the equations from AX,Y in many different ways. That is, for all
a, b, c, d ∈ {0, 1, . . . , t− 1} such that a + b = c + d, we have YiXa

i YiXb
i = YiXc

i YiXd
i . To define

this new system, we set:

Jt =
{

(a, b, c, d) ∈N4 | 0 6 a, b, c, d 6 t− 1 and a + c = b + d
}

.

We can thus set a new system:

elimAX′,Y′ =
⋃

(a,b,c,d)∈Jt

{
n−1

∑
j=k

n−1

∑
j′>j

pi,j pi,j′
(

Xa
j Xb

j′ + Xb
j Xa

j′ − Xc
j Xd

j′ − Xd
j Xc

j′

)
YjYj′ | 0 ≤ i ≤ k− 1

}
.

(4.7)
The system elimAX′,Y′ has now 2(n− k) = 2n(1− k/n) = 2n(1− R) variables. We emphasize
that not all (a, b, c, d) ∈ Jt would lead to new equations. For instance a = c and b = d leads to a
tautology. In Section 4.3, we use elimAX′,Y′ in the context of the distinguisher. In fact, a core idea
of the distinguisher is to count the number of quadruplets (a, b, c, d) ∈ Jt leading to non-trivial
and linearly independently equations.

Goppa codes. The system AX,Y′ only describes the fact that the public key is the generator ma-
trix of an alternant code. When the public-key is a Goppa code G (x, Γ) over Fq, the secret-key(
x, y = 1

Γ(x)

)
∈ Fn

qm × Fn
qm vanishes AX,Y′ but also additional constraints; there is an algebraic

relation between the support x and the multiplier y. Indeed, Definition 4.1.2 implies that there
exists Γ(z) = ∑t

`=0 γ`z` ∈ Fqm [z] of degree t such that YjΓ(Xj) = ∑t
`=0 γ`YjX`

j = 1. A con-
venient way to include the algebraic equations derived from these constraints is to use the
so-called extended codes [210, Ch. 1, p. 27]. Let Z be a new variable for 1

γt
. We can then obtain

a new polynomial system GX,Y′ dedicated to q-ary Goppa codes:

GX,Y′ = AX,Y′ ∪
{

n−1

∑
j=k

pi,j

(
Xt

j − Xt
i

)
Yj = Z

(
1 +

n−k−1

∑
j=0

pi,j

)
| 0 ≤ i ≤ k− 1

}
.

GX,Y′ has 1 + 2 n− k variables and (k + 1)t equations of degrees 2, . . . , t + 1.

Binary Goppa codes. The case q = 2 is even more specific. Binary Goppa codes can be
viewed as alternant codes At(x, y) with yj = Γ(xj)

−1 for all j, 0 ≤ j ≤ n− 1 but also described
as a binary alternant code A2t(x, y2) (Theorem 4.1.1). This brings equations to the system GX,Y′

which are defined by

2t−1⋃
`=0

{
X`

i Y2
i +

n−1

∑
j=k

pi,jX`
j Y2

j | 0 ≤ i ≤ k− 1

}
.

46



4.2. Algebraic Key-Revovery Systems for McEliece Cryptosystems

The equations obtained with ` = 2`′, such that `′, 0 ≤ `′ ≤ t− 1 are the squares of equations
of AX,Y′ (as in this case p2

i,j = pi,j). So, they bring no information. However, the equations in
bi-degree (2, 2`′ + 1) are new. This enables to define a specific algebraic system dedicated to
McEliece’s cryptosystem:

McEX,Y′ = GX,Y′ ∪
t−1⋃
`=0

{
n−1

∑
j=k

pi,jY2
j

(
X2`+1

j − X2`+1
i

)
= 0 | 0 ≤ i ≤ k− 1

}
.

McEX,Y′ has 1 + 2n− k variables and k(2t− 1) equations of degrees 2, . . . , 2t + 1. We can use
[131] a technique similar to elimAX′,Y′ for eliminating the variables (X0, . . . , Xk−1) from GX,Y′

and McEX,Y′ leading to the systems elimGX′,Y′ and elimMcEX′,Y′ respectively.

Remark 5. The PQCRYPTO project recommended [21] the following parameters for McEliece : n = 6960,
k = 5413 and t = 119. This is a conservative choice of the parameters which gives at least 128 bits
of security against all known quantum and classical attacks. For such parameters, the first algebraic
modeling AX,Y of an alternant code has 13920 variables and 644147 equations of degree 1, . . . , 119. The
ratio between the number of equations and variables is ≈ 47.27. For a binary Goppa code, McEX,Y′ has
8508 variables and 1282881 equations of degree 2, . . . , 239. The ratio between the number of equations
and number of variables is now of 150.78. Note that the system elimAX′,Y′ would have 3094 variables.

4.2.2 Cryptanalysis of Compact Variants of McEliece

An intrinsic practical limitation of McEliece cryptosystems is the size of the public-key. For
the parameters recommended by PQCRYPTO for McEliece public-key encryption (Remark 5),
the public-key is ≈ 1 GB. To overcome this limitation, a very popular research trend was to
decrease the public-key size by focusing on subclasses of alternant/Goppa codes which admit
a very compact parity-check or generator matrix, for instance [33], [39], [170], [220], [237]. This
reduction is obtained by taking classes of alternant/Goppa codes which have a quasi-cyclic
(QC), quasi-dyadic (QD) or more generally quasi-monoidic (QM) generator matrices. The hope
is that the additional structure does not deteriorate the security of the system. In particular, it is
clear how to use structured generator matrices for improving ISD techniques. This is very much
in the spirit of using ideal lattices instead of standard lattices in lattice-based cryptography
[207], [262].
In [133], we show that structure can be used to drastically improved an algebraic key-recovery.
It turns that the very structure of QD or QC codes [39], [220] allows to obtain linear relations on
supports and multipliers. These linear dependencies allow to reduce the number of unknowns
without changing the degree of AX,Y′ . This already allowed us [133] to efficiently break several
challenges proposed in [39], [220]. More precisely, we have been able to break all parameters
proposed in [39] for QC codes. We provide in [135] a first rough complexity estimates of the
attack in [133] by considering a sub-system of AX,Y′ composed by equations of bi-degree (1, 2u)
with u, 0 6 u 6 log2(t− 1). This new system is then quasi-bilinear (Definition 1.1.8), and we
bounded the degree of regularity as in Proposition 1.
However, not all parameters for QD codes were broken in [133]. Later, [33] proposes a general-
ization of QD codes called quasi-monoidic (QM) codes that took into account our algebraic at-
tack from [133]. In [131], we further pushed the cryptanalysis of compact variants of McEliece.
We show that the very same reason which allows to construct a compact public-key makes the
key-recovery problem intrinsically much easier. The gain on the public-key size induces an im-
portant security drop, which is as large as the compression factor p on the public-key. The high
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level idea is as follows. Let G ∈ Mk×n(Fq) be the public key of a compact McEliece. Assume
that p is the compression factor of the compact public-key (compared to a plain McEliece). It
is possible to construct from the public-key G another smaller matrix of size k/p× n/p which
is – from an attacker point of view – as good as the initial public-key, i.e. any key-recovery
attack can be deployed equivalently on this smaller generator matrix. This implies that a key-
recovery on QD and QM schemes is not harder than a key-recovery on a reduced McEliece
scheme where all parameters have been scaled down by a factor of p, which is the compression
factor allowed by the QD or QM structure. For instance, we can reduce the key-recovery of
a QD Goppa code of length 8192 and dimension 4096 (parameters suggested in [220]) to the
key-recovery on a QD Goppa code of length 64 and dimension 32. In other words, the very rea-
son which allowed to design compact variants of McEliece can be used to attack such schemes
much more efficiently.
To mount the key-recovery attack in practice, we then used the algebraic modelings described
before. We mainly used the system elimAX′,Y′ , elimGX′,Y′ and elimMcEX′,Y′ . For signature schemes
based on QD/QM codes, our attack is particularly efficient. In this case, the codes have nec-
essarily a very high rate R. The number of unknowns is O(n − k) = O

(
n(1 − R)

)
will be

then very small. Consequently, all the parameters suggested for QD-CFS [32] can be broken
in a few seconds. For QM-CFS [33], a parameter requires less than 2 hours, but all the others
can be broken in a few seconds. In view of our new attack, it seems extremely hard to find
parameters of cryptographic interest for friendly-CFS QD/QM codes. In the encryption case,
the algebraic systems are harder to solve in practice. Still, we report several successful results
against challenges proposed for QD/QM encryption schemes. To measure the progress real-
ized in comparison to [133], we report in Table 4.1 from [133], [135]. The results of [133], [135]
were obtained with the FGB software [147]. It is interesting to see that in the non-binary case,
our attack can be easily reproduced using on-the-shelf computer algebra system MAGMA [59].

q = 2 m t [131], MAGMA [131], F5/FGB previous attack from [133] Sec. level
2 16 32 18 s. N.A. 128
2 12 128 ≤ 283.5 op. N.A. 128
2 14 128 ≤ 296.1 op. N.A. 226
2 15 512 ≤ 2146 op. N.A. 256
2 16 256 ≤ 2168 op. N.A. 218
2 16 256 ≤ 2157 op. N.A. 256
24 4 64 0.010 s. 0.50 s 128
24 4 128 0.010 s. 7.1 s 128
22 8 64 0.040 s. 1,776.3 s 128

Table 4.1: Comparison of the cryptanalysis complexity in this work and [133]. The notation
N.A. means that the parameters have not been addressed in [133].

4.3 An Algebraic Distinguisher for Alternant and Goppa Codes

A well-known problem related to the security of McEliece is the Goppa Code Distinguishing (GD)
problem [87], [257] : given a linear code C over Fq, we have to decide if C is a Goppa code or
random linear code. In [87], [257], the authors formalized a classical belief about the hardness
of GD problem; the so-called “Goppa Code Indistinguishably Assumption”. This assumption states
that there does not exist a polynomial-time computable quantity which behaves differently
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depending on whether C is a Goppa or a random code. This assumption is attractive because
it enables to rely on the hardness of decoding a random linear code to prove the security of
McEliece [98], [99]. This reasoning is partially motivated by the fact that all known decoding
algorithms do not exploit the information, even partially, that a McEliece’s public-key describes
a “hidden” Goppa code. Also, as we already mentioned, very few structural attacks have been
proposed against McEliece’s cryptosystems based on binary Goppa codes. Hence, the hardness
of the GD problem became a classical belief, and as a consequence, a de facto assumption in code-
based cryptography. Among others, the assumption has been used prove the semantic security
in the standard model (IND-CPA in [227], the IND-CCA2 in [112]), and the security in the
random oracle model against existential forgery of CFS [87], [98].
We presented in [122] an efficient algorithm solving the GD problem for certain parameters.
We explain here the technique for q-ary alternant codes but the approach can be adapted to
Goppa and binary Goppa codes [122]. Let G = (gi,j) ∈ Mk×n(Fq) be the generator matrix
of a q-ary alternant code At(x, y). We can assume that G = (gij) ∈ Mk×n(Fq) is in reduced
row echelon form over its k first positions. That is, we can assume that G = (Ik | P) where
P = (pij) ∈ Mk×(n−k)(Fq) for i, 0 6 i 6 k− 1 and j, k 6 j 6 n− 1 is the submatrix of G formed
by its last n− k 6 mt columns.
We assume here that q = 2s with s > 1. The fundamental idea of the distinguisher is to study
the behavior of a Gröbner basis computation on elimAX′,Y′ where G ∈ Mk×n(Fq) is a random
matrix or a McEliece’s public-key. It appears that we can distinguish between these two cases
at the very first step of a Gröbner basis computation on this system. When q = 2s with s > 1,
we can rewrite elimAX′,Y′ as:

⋃
(a,b,c,d)∈Jt

{
n−2

∑
j=k

n−1

∑
j′>j

pi,j pi,j′
(

Xa
j Xb

j′ + Xb
j Xa

j′ + Xc
j Xd

j′ + Xd
j Xc

j′

)
YjYj′ | 0 ≤ i ≤ k− 1

}
. (4.8)

The idea then is to consider the equations of lowest degree in (4.8). Namely, we linearize (4.6)
leading a linear system LP of k equations involving (n−k

2 ) 6 (mt
2 ) variables Zjj′ = YjYj′X2

j′ +

Yj′YjX2
j which is as follows:

LP =



n−2

∑
j=k

n−1

∑
j′>j

p0,j p0,j′Zjj′ = 0

...
n−2

∑
j=k

n−1

∑
j′>j

pk−1,j pk−1,j′Zjj′ = 0

(4.9)

We can remark that the linear system (4.9) has coefficients in Fq but the solutions are in the
extension field Fqm . We denote by NLP = (mt

2 ) the maximum number of variables in the linear
system LP and by DLP the dimension of Ker(LP) as a Fq-vector space. By definition, we have
DLP = NLP − rank(LP). At this point, we have reduced key-recovery against McEliece to the
solving of the linear system LP. However, in order to recover the solutions of the alternant
system AX,Y (4.4) from the linearized system LP it is necessary that rank(LP) ≈ NLP = (mt

2 ).
For a random generator matrix G ∈ Mk×n(Fq), this is likely to happen when k > NLP . More
precisely, we proved in [122] that:

Theorem 4.3.1. Let n, k, m and t be integers such that k = n−mt. Let G = (Ik | P) ∈ Mk×n(Fq)
and Drandom be the dimension of Ker(LP) as Fq-vector space when the entries of the matrix P ∈
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Mk×(n−k)(Fq) are drawn independently from the uniform distribution over Fq. If k > (mt
2 ) then

for any function ω(x) tending to infinity as x goes to infinity, we have

Pr
(

Drandom > mt ω(mt)
)

= o(1), as mt goes to infinity.

Notice that if we choose ω(x) = log(x) for instance, then asymptotically the dimension Drandom
of the solution space is with very large probability smaller than mt log(mt). A stronger result
can be derived from [81] and [76]. First, [81] allows to connect the manipulations performed
on to elimAX′,Y′ to the square of the public code defined below.

Definition 4.3.1. Let u, v ∈ Fn
q . The component-wide product u ?v is defined as u ?v = (u0v0, . . . , un−1vn−1) ∈

Fn
q . Let C ⊆ Fn

q be a linear code of the length n and dimension k. The square of C , denoted by C 2, is
defined as:

C 2 = {u ? v | (u, v) ∈ C × C } ⊆ Fn
q .

We have dim(C 2) = min
(

n, (k+1
2 )
)

.

In [81], the authors established an explicit link between the system LP and the square of the
public parity check-matrix (and a dual version of this statement).

Proposition 4.3.1 ([81]). Let G = (Ik | P), where P = (pij) ∈ Mk×(n−k)(Fq), be the generator
matrix (in systematic form) of a linear code C ⊆ Fn

q of length n and dimension k. Let D ⊆ Fn
q be the

dual code of C . Then, we have:

dim
(
Ker(D2)

)
= dim

(
Ker(LP)

)
and dim

(
Ker(C 2)

)
= dim

(
Ker(LPT )

)
.

Now, [76] provides rather precise results about the dimension of square random codes. From
these results, we can deduce that when the entries of the matrix P ∈ Mk×(n−k)(Fq) are drawn
independently from the uniform distribution over Fq then rank(LP) is equal with very high

probability to min
(

k, NLP = (mt
2 )
)

. In contrast, it appeared that the value of DLP for an alter-
nant or Goppa code is much bigger than Drandom even when k > N. It also depends on whether
or not the code with generator matrix G is chosen as a (generic) alternant code or as a Goppa
code. Although such rank defect is an obstacle to break the McEliece cryptosystem, it can be
used to distinguish the public generator of a structured code from a random code. To do so, we
proved [122] that the dimension of Ker(LP) in the case of an alternant code is predictable:

Theorem 4.3.2 (Alternant Case). Let Dalternant be the dimension of Ker(LP) as Fq-vector space when
the generator matrix G = (Ik | P) – where P = (pij) ∈ Mk×(n−k)(Fq) – is an alternant code of order
t and length n. As long as NLP − Dalternant < k, Dalternant is not smaller than:

Talternant =
1
2

m(t− 1)

(
(2e + 1)t− 2

qe+1 − 1
q− 1

)
, with e =

⌊
logq(t− 1)

⌋
.

In the case of Goppa codes:

Theorem 4.3.3 (Goppa Case). Let DGoppa be the dimension of Ker(LP) as Fq-vector space when the
generator matrix G = (Ik | P) – where P = (pij) ∈ Mk×(n−k)(Fq) – is a Goppa code of order t and
length n. As long as NLP − DGoppa < k then DGoppa is not smaller than

TGoppa =
1
2

m(t− 1)(t− 2), when r < q− 1,

TGoppa =
1
2

mt
(

(2e + 1)t− 2(q− 1)qe−1 − 1
)

, when r > q− 1,

with e being the unique integer such that (q− 1)2qe−2 < t 6 (q− 1)2qe−1.
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Extensive experimental results from [122] seem to suggest that Dalternant (resp. DGoppa) is exactly
equal to Talternant (resp. TGoppa). We reproduce in Section 4.3.1 some experiments. In fact,
the rank defect can be explained rather easily by the very structure of elimAX′,Y′ and LP. By

construction of these systems, it is easy to see that Za,b,c,d = (Za,b,c,d
jj′ ) ∈ F

NLP
q with :

Za,b,c,d
jj′ =

(
Xa

j Xb
j′ + Xb

j Xa
j′ + Xc

j Xd
j′ + Xd

j Xc
j′

)
YjYj′ ,

is a solution of the linear system LP for all (a, b, c, d) ∈ Jt. We can exhibit further elements of
Ker(LP). To this end, we use the automorphisms x 7−→ xq` where ` is in {0, . . . , m− 1}. Indeed,
we can also consider the identity (YiXa

i )q`
′
(YiXb

i )q` = (YiXc
i )

q`
′
(YiXd

i )q` for all a, b, c, d, ` and `′

such that:
aq`

′
+ bq` = cq`

′
+ dq`.

Theorem 4.3.2 is obtained by determining the number of linearly independent solutions in-
duced by such identities.

4.3.1 Experimental Results

Let P = (pij) ∈ Mk×(n−k)(Fq). We present here some experimental results on the dimension of
Ker(LP) (more experiments can be found in [122]). First, we consider the case where the entries
of P are drawn independently from the uniform distribution over Fq. In this case, we denote by
Drandom the dimension of Ker(LP). When P is chosen as (the systematic part of) the generator
matrix of a random alternant code (resp. Goppa code) of degree t, we denote it by Dalternant
(resp. DGoppa). In our probabilistic model, a random alternant code is obtained by picking
uniformly and independently at random two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) from
Fn

qm such that the xi’s are all different and the yi’s are all nonzero (for Goppa codes, we sample
randomly a support x ∈ Fn

qm and a Goppa polynomial Γ(z) ∈ Fqm [z] of degree t). We reproduce
in Table 4.2 experimental results for q = 2, m = 14 and t ∈ {3, . . . , 27}. We can observe that
the formulas derived in Theorems 4.3.3 and 4.3.2 are perfectly matching the experiments. We
then also remark that Dalternant or DGoppa differ from Drandom but only for certain values of t.
We can distinguish a random code from an Alternant code for t < 16. For a Goppa code, we
can distinguish for t < 26. This suggests that we can solve efficiently the GD problem subject to
a condition on the parameters.

4.3.2 Analysis of the Distinguisher

The existence of a distinguisher for the specific case of alternant and Goppa codes is not valid
for all t and m. We study the validity in function of the order t. The critical order tcrit corre-
sponds to the smallest value of t for which Trandom becomes bigger than Talternant, i.e. tcrit =

min
{

t > 0 | Trandom ≥ Talternant

}
. The critical rate is then defined as Rcrit =

n− tcritm
n

=

1− tcritm
n

. When the length n of the code goes to infinity an asymptotic formula can be derived
for the smallest rate Rcrit (resp. smaller order tcrit) allowing to distinguish a random code from
an alternant code. Asymptotically, there is no difference between alternant and (binary) Goppa
codes so that the result below is also valid for (binary) Goppa codes.

Theorem 4.3.4. Let n = qm with q ∈ O(1). Then, when m tends to infinity it holds that: tcrit =√
2 qm log2 q
m log2 m

(
1 + o(1)

)
and Rcrit = 1−

√
2 m log2 q
qm log2 m

(
1 + o(1)

)
.
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Table 4.2: Experimental results with q = 2 and m = 14.
t 6 7 8 9 10 11 12 13 14 15 16

NLP 3486 4753 6216 7875 9730 11781 14028 16471 19110 21945 24976
k 16300 16286 16272 16258 16244 16230 16216 16202 16188 16174 16160

Drandom 0 0 0 0 0 0 0 269 2922 5771 8816
Dalternant 560 882 1274 1848 2520 3290 4158 5124 6188 7350 8816
Talternant 560 882 1274 1848 2520 3290 4158 5124 6188 7350 8610
DGoppa 1554 2254 3080 4158 5390 6776 8316 10010 11858 13860 16016
TGoppa 1554 2254 3080 4158 5390 6776 8316 10010 11858 13860 16016

t 17 18 19 20 21 22 23 24 25 26 27
NLP 28203 31626 35245 39060 43071 47278 51681 56280 61075 66066 71253

k 16146 16132 16118 16104 16090 16076 16062 16048 16034 16020 16006
Drandom 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247
Dalternant 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247
Talternant 10192 11900 13734 15694 17780 19992 22330 24794 27384 30100 32942
DGoppa 18564 21294 24206 27300 30576 34034 37674 41496 45500 50046 55247
TGoppa 18564 21294 24206 27300 30576 34034 37674 41496 45500 49686 54054

In Table 4.3, we have computed the value of
⌈ √

2qm log q
m log2 m

⌉
for several m (q is equal to 2). This

shows that our approximation is rather close to tmax computed in practice even for small values
of m.

Table 4.3: Values of tmax and tcrit for a binary Goppa code of length n = 2m.

m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

tmax 5 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400

dtcrite 5 6 8 11 14 19 25 34 46 62 84 114 156 214 293 402

It is clear from 4.3.4, that the distinguisher is relevant for codes that have a rate n−mt
n very close

to one. Although high-rate codes can be used for public-key encryption (m = 13 and t = 19
is a parameter that has been proposed which provides 90-bit security for McEliece public-key),
such codes are mainly encountered in CFS (Section 4.1). Typically, all the parameters proposed
in [87] for CFS can be distinguished. As a side remark, we mention that the hardness of GD
has also been investigated in the quantum setting. In [110], the authors show that a reduction
of GD to a hidden subgroup problem yields negligible information. As a consequence, it rules
out the direct analogue of a quantum attack using the so-called Quantum Fourier Sampling
(QFS) which breaks number theoretic problems [258]. More exactly, [110] shows that QFS has

a negligible advantage against GD when the rate is ≥ RQFS = 1− logq(n)3/2
√

5n
= 1− m3/2

√
5·qm/2 . At

first glance, our results could seem as somewhat contradictory with [110]. But, this illustrates
that applying a quantum algorithm in black-box remains in this context less powerful than
unveiling the structure of the GD problem.
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4.4 Final Remarks

In this part, we have presented a rather wide variety of algebraic techniques related to key-
recovery against McEliece cryptosystems. Before the introduction of algebraic cryptanalysis in
code-based cryptography [133], the only technique for key-recovery was essentially a partial
exhaustive search on the secret-key [203]. As illustrated by Remark 5, a direct solving of the
algebraic systems modeling key-recovery in McEliece for real parameters seems unlikely re-
garding the state-of-the art in Gröbner basis computation. However, the algebraic approach
turns to be very efficient as soon as the alternant or Goppa codes have an additional structure
such as compact variants as discussed in Section 4.2.2 or even a weaker structure such as codes
with high rates (Section 4.3). We have also exploited another structure in [141]. This result
has not been presented here, but we can improve the modelings when the Goppa code is con-
structed from a Goppa polynomial of the form Γ = f · gp [141]. In addition, [141] also presents
a refined strategy in the solving step.
Our results summarized in Section 4.2.2 give a clear contribution to the question about whether
the compactness of the public-keys affects the security of McEliece. We can precisely quantify
the security loss regarding key-recovery. It is not clear if there is a reasonable trade-off possible
between security and efficiency for such compact variants.
Regarding the distinguisher, the results presented in Section 4.3 shows that the GD assumption
must be avoided for codes with high rates. Typically, the security proof for CFS based on GD
from [98], [99] is completely meaningless. In general, we would advocate to no longer use
the GD assumption in provable security. Even in the case that the dimension of Ker(LP) is
indistinguishable from random code or a McEliece public-key, we can see that Ker(LP) has a
very specific and explicit form. Of course, it is a main open question to use such structure to
actually attack McEliece with binary Goppa codes.
A distinguishing technique has been used in a series of papers, e.g. [89]–[92] to attack vari-
ous variants of McEliece. The starting point of their attacks is to use unusual rank defect of
the square of the public matrix. According to Proposition 4.3.1, it is equivalent to distinguish
from the square code or from Ker(LP). So, all the attacks proposed in [89]–[92] could be for-
mulated with our algebraic distinguisher. Conversely, we could only use the square code as
a distinguisher in Section 4.3. These give two interesting directions to understand McEliece
which remains today immune against all known attacks; including the square/algebraic dis-
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tinguisher.
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