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Didier Theilliol qui ont accepté d’être mes rapporteurs et qui ont pris aussi de leur temps
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leur soutien dans ma recherche d’emploi.
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Notation

The notations used in the manuscript are conventional and widely used in the control sys-

tem/engineering literature. A short description is provided in the following.

In the sequel, N and R represent respectively the set of natural numbers and the set of real

numbers. Let R+ denoting the set of the positive real numbers. We define also R[a,b) = {x ∈
R|a ≤ x < b}. Let N[n,n+m] , {n, n + 1, ..., n + m} ⊂ N for n,m ≥ 0 denoting the set of the

natural numbers from n to n+m in increasing order.

With respect to the vector operator, considering a column vector x = [x1 x2 . . . xn]> ∈ Rn

with xi ∈ R, the following norms are employed

• |x| = [|x1| |x2| . . . |xn|]> : element-wise absolute value;

• ||x|| =
√
x>x : Euclidean norm;

• ||x||2Q = x>Qx : Euclidean norm weighted by matrix Q.

Here, In ∈ Rn×n and 0n ∈ Rn×n denote respectively the unitary matrix and the zero matrix of

n× n dimension. The symbol 0m,n represents a zero matrix in Rm×n. The notation 1n ∈ Rn is

used for the column vector whose elements are 1.

Considering the matrices A ∈ Rm×n and B ∈ Rp×q. The notation A ⊗ B ∈ Rmp×nq is used to

denote their Kronecker product

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB



Moreover, we use σ(A) to denote the sum of all elements of the matrix A, i.e. σ(A) =
m∑
i=1

n∑
j=1

aij .

In addition, A � 0 (or A � 0) means that A is a strictly (semi-) positive definite matrix.

Similarly, A ≺ 0 (or A � 0) means that A is a strictly (semi-) negative definite matrix.
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xiv Notation

To denote a block matrix A formed by a given set of element matrices Aij ∈ Rmi×nj , i ∈
N[1,M ], j ∈ N[1,N ], i.e.

A =


A11 . . . A1N

...
. . .

...

AM1 . . . AMN


we use the notation A = [Aij ], ∀i ∈ N[1,M ], ∀j ∈ N[1,N ]. Matrix A ∈ Rm×n has the appropriate

dimension according to the dimensions of the element matrices, i.e. m =
M∑
i=1

mi and n =
N∑
i=1

ni.

Similarly, a block diagonal matrix A formed by a given set of N element matrices Ai ∈ Rmi×ni ,

with i ∈ N[1,N ] is denoted by

A = diag {A1, A2, . . . , AN} =


A1 0m1,n2 . . . 0m1,nN

0m2,n1 A2 . . . 0m2,nN

...
...

. . .
...

0mN ,n1 0mN ,n2 . . . AN



Considering a set P ∈ Rn, C(P) = Rn \ P denotes its complement set. The cardinality of P is

denoted by |P|. By int(P) it will be denoted the interior of the set P and by ∂P its frontier set.

C(G, ξ) denotes the polyhedral cone C(G, ξ) = {x ∈ Rn|Gx ≤ ξ, G ∈ Rp×n, ξ ∈ Rp}. If ξ = 0p,1,

then it is a proper cone denoted by C(G). In addition, the notation B(x, r) is used to denote a

ball centered at x ∈ Rn, with the radius r ∈ R+.

We introduce next a collection of Multi-Agent system basic notions used throughout the manuscript.

The set notation N = N[1,N ] , {1, 2, ..., N}, with N ∈ N, will denote the set of agents index

in the MAS. The set NE ∈ N[1,N ] denotes the subset containing the indices of the eliminated

agents due to the fault occurrence. Hence the complement set of the faulty agents’ indices is

NR = N[1,N ]\NE .

Considering an agent indexed by i ∈ N , the following vector notions are introduced:

• x̌i(k) denotes the one-step predicted state of the ith agent;

• x̄i denotes the target position of the ith agent in the case that the common reference of

the entire MAS reduces to the origin;

• x̆i(k) denotes the trajectory reference of the ith agent, once one configuration for the entire

system is determined.

Two following notions of finite-time receding horizons will be used for the Model Predictive

Control framework’s presentation:

• Prediction horizon denoted by Np - will be employed as a finite-time window in the future;



Notation xv

• Fault monitoring horizon denoted by Nm - a finite-time window in the recent past, used

to characterize the time to detect a fault.

The set Ni ⊂ N contains the indices of the agents neighbor of the ith agent. Its safety region

represented by means of bounded polyhedral set is denoted by Si.

Denote by V the Voronoi partition of a considered Euclidean working space into n cells Vi, with

i ∈ N[1,n] and V =
n⋃
i=1

Vi.





Résumé

Introduction aux systèmes dynamiques Multi-Agents

La notion de système Multi-Agent (MAS – ”Multi-Agent System”) était longtemps associée

à l’Intelligence Artificielle (IA – ”Artificial Intelligence”), qui représente des grands systèmes

informatiques composés par plusieurs agents autonomes. Depuis la naissance de ce domaine

en 1956, plusieurs définitions du système Multi-Agent ont été proposées. Du point de vue

informatique, un MAS est reconnu typiquement par le nombre de ses agents, l’environnement

(ou l’espace de travail dans lequel les agents interagissent) et finalement le niveau d’autonomie

des agents. Il faut noter que la définition de l’agent n’est pas unique, mais en principe un agent

doit porter les quatre propriétés caractéristiques suivantes :

• Autonomie : l’agent capable de prendre une décision le concernant ;

• Coopérativité : cette propriété implique la communication entre les agents ;

• Perceptivité : l’agent s’adapte aux changements et à l’infuence de l’environnement de

travail ;

• Proactivité : l’agent se focalise sur le but de la mission commune (la formation des agents).

A côté des points communs avec l’AI, un système Multi-Agent est largement considéré dans

l’Automatique, en raison de l’explosion du nombre des applications qui peuvent être décomposées

en plusieurs sous-systèmes. En principe, la définition de MAS-Automatique (MAS-IC) est sim-

ilaire à celle de MAS-AI, à l’exception que le comportement d’un agent du point de vue de

l’IC peut être caractérisé par une équation dynamique. Pour cette raison, dans les appli-

cations de IC, un système Multi-Agent est souvent appelé système dynamique Multi-Agent.

Plus spécifiquement, le concept de régulation d’un système dynamique Multi-Agent porte sur

la supervision des interactions (coopératives ou adversaires) et il implique donc de trouver la

meilleure stratégie de commande pour que tous les agents acquirent un but commun.

Depuis cinq décennies, un système Multi-Agent est utilisé comme un nouveau paradigme dans

l’Automatique. Plusieurs applications sont concernées, telles que smart- ou micro-grid, surveil-

lance de consommation énergétique des bâtiments, réseaux de distribution aquatique, réseaux de

transport, déploiement d’un groupe de capteurs mobiles, des mini-robots ou des drones. Toutes

ces applications ont les points caractéristiques ci-dessous :

xvii



xviii Résumé

• La nature de dynamique de l’agent (linéaire ou non-linéaire, variant ou invariant, etc.) ;

• Le type de graphe de communication (faible ou fort connecté, direct ou indirect, découplé

ou non-découplé, etc.) ;

• L’environnement de travail (dans l’air, sous-marin, présence des obstacles, etc.) ;

• Les contraintes liées aux limitations des actionneurs, à la consommation énergétique et à

l’anti-collision.

Choix du graphe de communication et méthodes pour la synthèse de la loi de

commande

Notons que le graphe d’intercommunication entre les agents est l’un des points caractéristiques

les plus importants d’un MAS. C’est l’élément principal pour décider la façon d’interaction des

agents et de calculer la commande.

Les trois approches suivantes souvent considérées pour résoudre les problèmes de type MAS :

• centralisée ;

• distribuée ;

• décentralisée.

Chacune d’entre eux a ses propres avantages et inconvénients au sujet de l’objectif de com-

mande, les limites des ressources de calcul et les contraintes issues de l’environnement de travail

(perturbations, incertitudes, non-homogénéité de l’environnement, etc.).

L’approche centralisée est généralement privilégiée dans la littérature à être employée pour

résoudre un problème de de type MAS. Suivant cette approche, tous les agents du MAS doivent

être connectés à un centre de supervision. Ce centre est responsable de surveiller et de calculer

les actions de commande puis les envoyer à tous les agents. En revanche, ceci implique que le

graphe de communication doit être complètement connecté. Le calcul de commande est donc

facilement perturbé par les défauts dans les informations échangées. D’autre part, le calcul

centralisé est coteux et ainsi n’est pas appropriée en cas de large dimension du MAS ou lorsque

les contraintes dans le cadre du MAS sont nombreuses.

L’approche distribuée et l’approche décentralisée sont donc mentionnées pour surmonter les

inconvénients ci-dessus. Dans l’approche distribuée, chaque agent n’est connecté qu’avec ses

plus proches voisins. Le graphe de communication devient donc partiellement connecté. Plus

précisément, le graphe est décomposé en plusieurs sous-groupes dont chacun se compose d’un

agent et ses proches voisins. On peut donc économiser l’énergie consommée pour la commu-

nication. Les tâches de calculs sont réduites aussi puisque elles ne sont plus centralisées, mais

réparties au niveau de chaque sous-groupe. Par conséquent, la robustesse de commande est

améliorée par rapport au cas centralisé.
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Comme l’approche distribuée, un graphe décentralisé est aussi partiellement connecté, mais plus

efficace en terme de minimisation des tâches de communication. La différence principale entre

ces deux approches est la façon de calculer l’action de commande. Dans l’approche distribuée,

les calculs sont partagés entre les agents dans un même sous-groupe, alors que dans le cas

décentralisé, les calculs sont réalisés uniquement par chaque agent en exploitant ses propres

informations et celles échangées avec ses voisins. L’un des avantages les plus remarquables

de l’approche décentralisée consiste à permettre de rajouter ou enlever facilement un agent

sans perturber significativement le système global. Ceci s’adapte forcément à la philosophie de

la commande tolérante aux défauts. Pour toutes ces raisons, nous avons privilégié d’utiliser

l’approche décentralisée pour développer les structures de commande dans cette thèse.

Après avoir décidé la structure de communication suivant ces trois approches ci-dessus, nous

allons choisir la méthode appropriée pour synthétiser les actions de commande. Nombreuses

méthodes ont été menées et développées dans la littérature, telles que la théorie des graphes,

la théorie des jeux, la théorie de la viabilité, la méthode de construction à base de fonctions de

potentiel, etc.

Parmi toutes les méthodes, nous privilégions l’utilisation des méthodes à base d’optimisation.

Ce choix couvre les techniques de commande optimale et commande prédictive qui seront

développées tout au long de ce manuscrit. Le plus grand avantage est que ces méthodes

permettent de formuler la détermination de l’action de commande sous forme d’un problème

d’optimisation. Ainsi, la détermination de la loi de commande peut être résolue en utilisant les

outils tels que les solveurs LP (”Linear Programming”), QP (”Quadratic Programming”) ou

MIP (”Mixed-Integer Programming”). Ainsi les différentes contraintes peuvent être prises en

compte dans les calculs. Un autre avantage est la possibilité d’utiliser des outils ensemblistes

pour résoudre un problème d’optimisation.

Pour toutes ces raisons, dans cette thèse, les méthodes ensemblistes avec les techniques d’optimisation

sont choisies comme principaux outils pour synthétiser les structures de commande tolérante

aux défauts.

Méthodes ensemblistes appliquées dans le contexte de la commande tolérante aux

défauts pour systèmes dynamiques Multi-Agent

Commande tolérante aux défauts (FTC – ”Fault Tolerant Control”) est une branche de recherche

largement exploitée dans la littérature. Récemment, les méthodes ensemblistes commencent à

être employées dans le développement de FTC. Cependant, très peu de résultats concernant

l’application des méthodes ensemblistes pour la commande tolérante aux défauts des systèmes

Multi-Agent ont été trouvés. Pour cette raison, l’objectif du présent manuscrit est de développer

les nouvelles structures de commande tolérante aux défauts pour les systèmes dynamiques Multi-

Agent. Cette commande est développée en suivant les principes d’optimisation et les méthodes

ensemblistes. Ainsi sa synthèse peut être formulée comme un problème d’optimisation sous

contraintes. Dans le but de préserver la sécurité de la mission et aussi la sureté de fonction-

nement, une région de sécurité (sous la forme d’un polyèdre convexe et invariant) est associée
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à chaque agent. La collision est alors évitée en assurant que ces régions ne se superposent

pas. Ceci est mis sous forme des contraintes non convexes rajoutées au calcul de la commande.

Résoudre un tel problème est équivalent à réguler un système global en évitant un obstacle

qui contient le point d’équilibre standard à l’intérieur. L’accès à ce point est donc infaisable.

Par conséquent, un nouveau point d’équilibre est choisi tel qu’il se situe sur l’une des frontières

définissant la forme de l’obstacle. L’anti-collision est donc garantie en assurant que le système

tend vers ce point en évitant la collision avec l’obstacle. D’une façon équivalente, une formation

est aussi un point d’équilibre pour le système Multi-Agent. Ce point généralisé peut en plus

se décomposer en plusieurs points d’équilibre dont chacun est associé à un agent. Ceci permet

donc de déterminer la commande d’une façon décentralisée pour chaque agent. Le problème à

vérifier est la faisabilité de cette commande locale. De plus, les zones de sécurité sont utilisées

pour construire les ensembles caractérisant les modes de fonctionnement de chaque agent et

donc nous permettent de détecter si un agent est défectueux.

Les méthodes ensemblistes appliquées dans le contexte de la théorie de commande portent sur la

théorie des ensembles et, en particulier, l’algèbre Brunn-Minkowski. Ces résultats sont ensuite

employés pour les systèmes dynamiques caractérisés par les équations différentielles.

Les premières tentatives d’application des méthodes ensemblistes dans le domaine de sureté de

fonctionnement portent sur la construction des ensembles caractérisant les modes de fonction-

nement du système surveillé. Les défauts considérés dans ces travaux se limitent au niveau des

défaillances dans les composants (tels que les actionneurs ou les capteurs). Dans le contexte de

supervision d’un système Multi-Agent, la collision, la dégradation des informations échangées,

le changement du nombre des agents et même les perturbations issues de l’environnement de

travail sont aussi considérés comme les défauts. Parmi ceux-ci, l’évitement des collisions jusqu’à

présent est toujours considéré comme l’un des défis typiques dans la régulation du système

Multi-Agent. En pratique, la collision peut être évitée à condition que les régions de sécurité

caractérisant chaque agent ne se heurtent pas. Ces zones peuvent être représentées en termes

des ensembles.

Plusieurs familles d’ensemble peuvent être menées, telles que les ensembles en forme d’étoile,

les zonotopes, les ellipsöıdes, etc. Chacune d’entre eux a ses propres avantages et inconvénients

qui sont bien exploités dans la littérature. Nous choisissons des polyèdres comme la famille

d’ensemble principale utilisée dans ce manuscrit, en raison de leur convexité géométrique et

flexibilité en termes de représentation.

L’application des outils ensemblistes demande de faire appel à des notions d’invariance qui

associent la dynamique du système avec un ensemble caractéristique statique dans l’espace

d’état (Blanchini and Miani (2007), Aubin (2009)). Les conditions algébriques d’invariance et

d’invariance contrôlée dans le cas des polyèdres sont bien détaillées dans Bitsoris (1988a).

Le choix des polyèdres non seulement donne des avantages au niveau du calcul grâce à la

versatilité de sa double représentation (demi-espace/sommets), mais ce choix autorise également

de formuler la détermination de l’action de commande sous la forme de la solution d’un problème
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d’optimisation. Nous présentons dans le manuscrit comment construire la zone de sécurité

autour d’un agent en termes de polyèdre invariant borné, en fonction des bornes connues des

perturbations à l’entrée.

Les hypothèses ci-dessous sont d’ailleurs utilisées dans le but de simplifier la présentation de

nos contributions sans faire perdre la généralité :

• Le système Multi-Agent ne se compose que des agents mobiles et l’équation dynamique

de chaque agent est supposée linéaire, invariante, commandable et observable ;

• L’intercommunication entre les agents est maintenue de faon permanente et il ne s’agit

pas de dégradation ou de perte d’information échangée ;

• La perturbation à l’entrée de chaque agent a une distribution uniforme dans un ensemble

borné prédéterminé ;

• Le déclenchement du défaut est brusque, sans transition et sa propagation n’est pas con-

sidérée.

Nous allons voir comment appliquer les méthodes ensemblistes pour déterminer des commandes

décentralisées sous contraintes d’anticollision dans la partie suivante.

Une solution constructive pour satisfaire les contraintes de type anti-collision par

approches ensemblistes

Du point de vue ensembliste, les contraintes d’évitement des collisions sont satisfaites si et

seulement si toutes les conditions ci-dessous sont garanties :

• Pas d’intersection entre les régions de sécurité des agents ;

• Pas d’intersection entre les régions de sécurité des agents et les obstacles ;

• Pas d’intersection entre les zones de fonctionnement des agents ;

• Pas d’intersection entre les zones de fonctionnement des agents et les obstacles.

Il faut noter que la régulation d’un système sous contraintes d’évitement des collisions est

équivalente à conduire sa sortie vers un point d’équilibre en dehors de son domaine d’attraction.

Le principe de l’invariance positive (élaboré auparavant par Bitsoris (1988a)) a été utilisé pour

calculer une commande linéaire dans le but de ne pas rentrer en collision avec des obstacles. La

synthèse de commande a été détaillée dans Bitsoris and Gravalou (1999) en suivant les principes

d’optimisation linéaire.

Dans ce contexte, notre objectif est d’utiliser les méthodes ensemblistes pour construire une

nouvelle structure de commande décentralisée dans le but d’éviter les collisions. Une structure

de type leader-suiveur est choisie dans la suite.
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Afin de simplifier la présentation des résultats, la méthodologie sera présentée dans l’espace

R2. La généralisation aux dimensions plus importantes est possible et sera étudiée dans les

travaux futures. Ce travail peut être considéré comme une extension naturelle des résultats

théoriques présentés dans Bitsoris and Olaru (2013), mais appliqués à un système Multi-Agent

et développés de manière décentralisée pour des raisons numériques.

Plus spécifiquement, l’espace de travail est partitionné en une collection de zones non super-

posées. Chacune d’entre eux est associée à un seul agent et nommée sa zone de fonctionnement.

Le leader joue le rôle de déterminer la zone de fonctionnement pour chacun de ses suiveurs. En-

suite, le suiveur doit à son tour déterminer un point d’équilibre et une loi de commande locale

en suivant la méthode de Bitsoris and Olaru (2013), afin de fonctionner seulement à l’intérieur

de la zone autorisée.

Si la commande est faisable, dans la plupart des cas, l’invariance n’est garantie que pour un

sous-ensemble à l’intérieur de la zone de fonctionnement. Cette zone est caractérisée en termes

de le plus grande ensemble des points accessibles associé à la commande trouvée. Pour les points

initialement à l’extérieur de cet ensemble, nous présentons deux stratégies de commande pour

conduire la sortie de l’agent vers le sous-ensemble invariant afin d’activer la commande locale.

1. Construction d’ellipsöıde paramétrée: L’idée est de garantir la condition d’invariance à

l’intérieur d’un ellipsöıde qui est enfermé dans la zone de fonctionnement et à la fois

contient la sortie courante du suiveur. Par la suite, en conduisant la sortie du suiveur vers

le centre de cet ellipsöıde, nous pouvons maintenir la sortie du suiveur dans la zone de

fonctionnement et donc préserver sa condition d’invariance.

2. Commande par techniques d’interpolation : Nous construisons un ensemble invariant

contrôlable (”controlled invariant set”) à l’intérieur de la zone de fonctionnement, qui en-

toure le plus grand ensemble des points accessibles associé à la commande locale. L’action

de commande du suiveur est interpolée à partir de cette commande locale et une action

de commande associée au nouvel ensemble invariant contrôlable. La commande interpolée

est calculée de telle sorte qu’il est aussi proche que possible de la commande locale pour

enfermer la sortie du suiveur strictement à l’intérieur de sa zone de fonctionnement.

Si la commande locale n’est pas faisable, on doit choisir un autre point d’équilibre qui appartient

cette fois strictement à l’intérieur de la zone de fonctionnement. Ainsi, on peut appliquer la

méthode de construction des ellipsöıdes (voir Chapitre 3 pour plus de détails) pour garantir

l’invariance de la zone de fonctionnement. La question qui se pose est comment on décompose

l’espace de travail pour obtenir des zones de fonctionnement. Ceci va être détaillé dans la

prochaine suivante.
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Commande décentralisée par des approches ensemblistes pour le déploiement dy-

namique du système Multi-Agent

Comme présenté ci-dessus, l’évitement des collisions est garanti en assurant que chaque agent

ne sort pas de sa zone de fonctionnement et que les zones de fonctionnements ne se superposent

pas. La construction de telles zones nécessite de partitionner l’espace de travail en temps réel,

en fonction des positions courantes des agents.

La méthode de Voronoi peut être utilisée pour obtenir une partition de l’espace. Chaque cellule

de Voronoi est donc associée à un agent et nommée sa zone de fonctionnement. Comme la parti-

tion est construite en fonction de la position courante des agents, elle varie dans le temps. Cette

problématique est nommée partition dynamique de Voronoi ou déploiement de base de Voronoi,

qui est connu dans de nombreuses applications de type déploiement telles que la surveillance,

le suivi environnemental/géologique, les opérations de sauvetage, etc.

L’objectif est de stabiliser le déploiement à base de Voronoi autour d’une configuration per-

mettant de maximiser la couverture de l’espace considéré. Celle-ci est considérée comme une

partition/configuration optimale du système Multi-Agent sur tout l’espace de travail. La plus

connue des applications telles que les réseaux de capteurs mobiles, les systèmes multi-robots ou

les multi-véhicules est la configuration centröıde de Voronoi (CCV), où la position de chaque

agent se confond avec le centre de masse de sa cellule de Voronoi. A noter qu’une configuration

centröıde de Voronoi peut être obtenue en conduisant chaque agent vers le centre de masse

de sa cellule de Voronoi correspondant. Cependant, le plus grand inconvénient consiste en la

complexité du calcul des intégrations pour obtenir la valeur précise du centre de masse.

Dans le chapitre 4, nous voulons remplacer le centre de masse par un autre centre d’équilibre

interne qui permet d’interpréter les notions et outils ensemblistes. Le but final est donc de

conduire le système Multi-Agent vers une configuration stable où la sortie de chaque agent se

confond avec son nouveau centre d’équilibre interne. Pour acquérir cet objectif, nous allons

proposer une commande décentralisée à base d’optimisation pour ramener la sortie de chaque

agent vers son centre correspondant. Par conséquent, l’évitement de collision est assuré de

manière décentralisée via son inclusion dans sa cellule de Voronoi.

Le premier choix mentionné est le centre de Chebyshev, qui est le centre de la plus grande boule

inclue à l’intérieur de la cellule de Voronoi. Sa détermination peut être mise sous forme d’un

problème d’optimisation dont les variables sont le centre et le rayon de Chebyshev. En revanche,

pour certains géométries spécifiques, l’unicité du centre de Chebyshev n’est pas garantie. Ainsi,

même si tous les agents sont confondus avec leur centre de Chebyhev, la configuration obtenue

n’est pas statique.

Pour éviter ce problème, nous proposons d’utiliser un autre centre construit par déflation

récursive après l’étape de déterminer le rayon de Chebyshev. Ce centre est nommé centre

généralisé et il est considéré comme nouveau point d’équilibre pour l’agent. Pour un polyèdre
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borné et convexe, ce centre est certainement unique d’après le principe de déflation. La config-

uration correspondant à ce choix de centre est unique aussi.

En principe, n’importe quelle commande qui peut rendre la cellule de l’agent contrôlée λ-

contractive (”controlled λ-contractive”) peut garantir la convergence du système Multi-Agent

vers une configuration statique et unique. La synthèse de commande est locale en fonction de

la géométrie caractéristique de la cellule de Voronoi associée et suivant les techniques de com-

mande prédictive, à condition que la cellule soit contrôlée λ-contractive vers la fin de l’horizon

de prédiction.

Nous avons étudié également un autre centre d’équilibre interne en se basant sur l’interpolation

des sommets de la cellule de Voronoi (voir Annexe A). Chaque sommet est supposé être un point

d’équilibre accessible par rapport à la dynamique de l’agent. Des lois de commande décentralisée

pour conduire l’agent vers ce type de centre, en utilisant les principes de commande optimale

et ensuite de commande prédictive sous contraintes, ont été proposées dans ce manuscrit.

D’ailleurs, toujours dans le contexte des applications de déploiement, dans l’article de Moarref

and Rodrigues (2014), les auteurs ont proposé une commande optimale décentralisée pour sta-

biliser le déploiement d’un système Multi-Agent autour d’une CCV. Le modèle dynamique des

agents est un système de premier ordre et la commande est développée en temps continu. Nous

avons revisité ces résultats (voir Annexe B) en développant une nouvelle commande optimale

décentralisée pour le modèle dynamique à temps discret. La stabilité de notre solution suit le

principe de l’équation dynamique Hamilton-Jacobi-Bellman (HJB).

La troisième contribution dans cette thèse qui consiste en détection et isolation des agents

défectueux est présenté dans la partie suivante.

Reconfiguration de la formation par des approches ensemblistes et des lois de com-

mande prédictive

La détection et l’isolement de défaut (FDI – ”Fault Detection and Isolation”) sont définis comme

une couche supplémentaire rajouté dans la supervision du système dans le but d’enlever les

anomalies et de maintenir le fonctionnement. Plusieurs études ont été menées dans la littérature

sur ce sujet et divers résultats ont été obtenus. La plupart des résultats obtenus sont fondés sur

le même principe de génération des signaux résiduels. Dans le contexte de FDI, un résidu est

caractérisé par l’écart de suivi entre la sortie mesurée et celle estimée issue du modèle de système.

Un bloc de FDI est toujours succédé par une stratégie de reconfiguration partielle/complète du

système, dans le but de couvrir les impacts des défauts détectés.

Bien que des nombreuses études de FDI pour un seul système sont menées dans la littérature,

jusqu’au présent très peu de résultats de la littérature concernent le développement de techniques

FDI pour les systèmes Multi-Agent. Nous rappelons que la définition de sécurité pour les

systèmes Multi-Agents est plus généralisée que celle d’un seul système (d’un seul agent). Plus

spécifiquement, le fonctionnement du MAS n’est pas affecté uniquement par les défauts au
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niveau des composants de l’agent, mais la collision peut aussi être considérée comme un type

de défaut important pour le système global.

Nous avons déjà montré comment utiliser les méthodes ensemblistes pour construire les régions

de sécurité pour les agents et ensuite éviter la collision pendant le fonctionnement. D’ailleurs,

elles peuvent être employées aussi pour construire les ensembles caractérisant les différents

modes de fonctionnement. Ainsi, un défaut est détectable si son ensemble caractéristique et

l’ensemble caractérisant le fonctionnement non défectueux ne se superposent pas (s’il y a une

séparation de ces deux ensembles).

Trois modes de fonctionnement sont mentionnées dans cette partie :

• Sain : il n’y a pas d’anomalie ou de défaut dans le comportement ;

• Suspecté : l’état de l’agent sort de son ensemble sain, mais est encore inclus dans la

formation courante ;

• Défectueux : l’état de l’agent sort de la formation courante.

Dans cette thèse, précisément dans Chapitre 5, l’objectif est d’employer les outils ensemblistes

pour concevoir une nouvelle structure de FDI centralisée pour un groupe d’agents homogènes.

Cette structure FDI doit être capable de détecter et d’isoler en temps réel les agents défectueux,

puis permettre de reconfigurer le système courant, y compris la formation et la commande.

Deux scénarios de défaut sont étudiés :

• Le bloc FDI est capable de détecter si un agent a des anomalies dans son comportement

par rapport aux autres agents dans la formation. Si les anomalies sont significatives,

l’agent est certifié en défaut et ensuite éliminé de la formation courante. Le bloc va faire

la mise à jour du nombre des agents restant dans la formation, puis reconfigurer et aussi

calculer la commande centralisée à l’instant suivant ;

• Une zone de sécurité est construite pour contenir la formation. Elle permet donc de

détecter s’il y a un agent de l’extérieur qui veut rentrer dans la formation. Après une

certaine durée, cet agent sera intégré dans le système global, puis à l’instant suivant la

formation et la commande centralisée seront mises à jour.

Nous supposons que la communication entre les agents est complètement connectée, autrement

dit chaque agent peut savoir les positions précises de tous les autres agents et il est capable de

leur envoyer ses propres informations. De plus, nous faisons l’hypothèse qu’il n’y a donc pas de

dégradation/retard de l’information échangée.

Le mécanisme de reconfiguration utilisé consiste à mettre à jour des informations (y compris les

dynamiques, les régions de sécurité) des agents sains dans le système surveillé, de sorte que les

agents ne se heurtent pas durant la reconfiguration.
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Conclusions

Le présent manuscrit propose des nouvelles structures de commande tolérante aux défauts,

en particulier liés à l’évitement de collision et à la surveillance des défauts. Les approches

développées se basent sur les méthodes ensemblistes et les techniques d’optimisation. Le but

est de préserver la sécurité de mission et la sureté de fonctionnement du système Multi-Agent,

malgré les différents défauts. La régulation d’un groupe d’agents autonomes n’est pas nouvelle,

mais l’évitement de collision reste encore un défi très connu jusqu’au présent. L’originalité de

cette thèse consiste à concevoir les ensembles caractérisant les différentes modes de fonction-

nement de chaque agent, dans le but de détecter si un agent n’est plus coopérative avec les

autres agents, et d’ailleurs en synthèse de la commande prédictive décentralisée sous contraintes

d’un point de vue ensembliste. Nous rappelons que bien que les méthodes ensemblistes ont été

déjà employées dans plusieurs applications de commande, très peu de résultats sur la commande

tolérante aux défauts pour les systèmes Multi-Agent se trouvent dans la littérature.

Sans perte de généralité, nous avons supposé que le comportement de chaque agent est représenté

par une équation dynamique linéaire et invariante dans le temps. L’entrée de chaque agent

subit une perturbation dont sa distribution est supposée uniforme dans un ensemble borné

déjà déterminé. Ainsi, une région de sécurité autour la position nominale de l’agent peut

être construit en suivant la méthode de Kofman et al. (2007). Elle prend donc la forme d’un

polyèdre convexe et borné. Pour toutes ces raisons, la position nominale avec la région de

sécurité deviennent les propriétés caractéristiques d’un agent tout au long du manuscrit.

En supposant connu le modèle exact caractérisant les modes de chaque agent, nous pouvons con-

struire les ensembles de seuil caractérisant le comportement sain/suspecté/défectueux de chaque

agent. Après cette étape, un signal résiduel est utilisé pour évaluer le comportement de l’agent.

L’ensemble de seuil pour la formation est l’enveloppe convexe des régions de sécurités de tous

les agents. Dans le manuscrit, nous nous concentrons sur les cas critiques où le déclenchement

de défaut est brusque et les phases de transition ne sont donc pas considérées. Deux scénarios

de défauts sont traités :

• Détection et élimination d’un agent défectueux de la formation courante ;

• Détection et intégration des nouveaux agents externes dans la formation.

Le mécanisme de reconfiguration consiste à mettre à jour le nombre des agents pris en compte

dans le calcul de la commande centralisée et d’une nouvelle formation.

tant considérée comme la meilleure solution pour surmonter l’inconvénient du côté numérique

de la structure centralisée, l’approche décentralisée est bien reconnue par sa capacité de plug-

and-play. Dans le contexte de régulation du système Multi-Agent, nous avons proposé de

localiser chaque agent dans une zone bornée, qui est construite en se basant sur les informations

échangées entre cet agent et ses voisins les plus proches. Une telle zone est nommée la zone

de fonctionnement de cet agent. L’objectif de commande est donc de garantir l’invariance
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contrôlée de cette zone via la commande locale associée à cet agent. Cependant, dans la plupart

des cas, une telle commande locale ne peut préserver l’invariance que dans un sous-ensemble à

l’intérieur de la zone de fonctionnement. Pour cette raison, nous avons proposé deux stratégies

de commande décentralisée afin de ramener l’agent vers le sous-ensemble invariant associé à sa

commande locale. L’une consiste en construire de faon itérative des ellipsöıdes contractifs à

l’intérieur de la zone de fonctionnement, et l’autre se base sur les techniques dinterpolation.

Une autre application plus complexe étudiée dans le manuscrit porte sur le déploiement d’un

groupe des agents sur une région bornée. A chaque instant, la région sur laquelle les agents sont

déployés est partitionnée d’après l’algorithme de Voronoi. Chaque agent est ensuite associé à

une cellule de Voronoi, qui est aussi nommé la zone de fonctionnement de cet agent. La com-

mande décentralisée est calculée en choisissant tout d’abord un centre d’équilibre à l’intérieur

de la cellule de Voronoi, ensuite une commande locale est déterminée pour conduire la sortie de

l’agent vers le centre choisi. Le centre de masse est le choix conventionnel dans la littérature.

L’algorithme de Lloyd dont la nature est équivalente au principe de commande décentralisée,

est largement utilisé pour stabiliser le déploiement autour d’une configuration où la sortie de

chaque agent est confondue avec son centre de masse. En raison de la complexité du calcul de

centre de masse, nous l’avons remplacé par le centre de Chebyshev. Une autre solution moins

conservatrice consiste à choisir un autre point d’équilibre nommé centre généralisé pour sur-

monter l’inconvénient d à la non-unicité de détermination du centre de Chebyshev dans certains

cas spécifiques. De plus, nous avons étudiés autre types de centres tels que le centre interpolé

à partir des sommets de chaque cellule de Voronoi et aussi le centre de masse. L’originalité

commune est que nous avons revisité la commande décentralisée correspondant à chaque choix

de centre d’équilibre, en se basant sur les principes d’optimisation et les méthodes ensemblistes.

Perspectives

Dans le cadre d’application des méthodes ensemblistes sur des systèmes Multi-Agent, cer-

taines côtés du calcul numérique restent à considérer dans les travaux futurs. Afin d’éviter

des problèmes numériques et sans perte de généralité, des hypothèses simplificatrices ont été

prises en compte dans ce manuscrit. A côté de ces problèmes, vu que le concept de la sureté

de fonctionnement pour un système Multi-Agent est plus large et plus généralisé que celui d’un

système seul (un agent), plusieurs points peuvent être considérés comme des perspectives à ex-

ploiter dans le futur. Nous n’allons présenter les perspectives les plus significatifs correspondant

respectivement à chaque contribution principale du manuscrit.

Nous insistons sur le fait que les problématiques menées ont été beaucoup simplifiés en con-

sidérant des hypothèses simplificatrices. Une dynamique nominale à été utilisée pour chaque

agent. La présence des incertitudes dans le modèle de chaque agent sera étudiée dans la suite.

Dans ce manuscrit, nous avons supposé des défauts qui intervient aux moments de temps dis-

tincts. La simultanéité des différents types de défauts doit être considérée dans des travaux

futures.
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D’autre part, des perturbations issues de l’espace de travail peuvent générer du retard, dégrader

ou même déformer gravement les informations échangées entre les agents. Dans ce cas, il

serait intéressant d’étudier la robustesse des solutions proposées dans le manuscrit à côté de la

performance de détection de défaut. L’idée est de diminuer/compenser/annuler les impacts de

défauts afin de robustifier les commandes proposées.

La couche de détection et identification des défauts (FDI) proposée peut être développée d’une

façon décentralisée dans les études à venir. En outre, la connexion entre la FDI et la commande

appliquée au système Multi-Agent doit être étudiée plus profondément. Il faudra chercher la

solution de commande pour éviter les risques de collision après l’étape de reconfiguration.

Une autre direction consiste à développer les résultats obtenus pour un système Multi-Agent

hétérogène. Ce cas d’application semble plus compliqué, mais à la fois intéressant à étudier en

raison de l’ajout des contraintes concernant la dynamique de chaque agent dans la synthèse de

la commande.

Notre synthèse de commande décentralisée tolérante aux défauts dépend strictement de la

géométrie de la zone de fonctionnement associée à l’agent. Cette zone est considérée comme

l’union des demi-espaces qui décident la faisabilité de détermination de la commande décentralisée.

Pour cette raison, il reste à trouver une partition de l’espace de travail telle qu’elle reste in-

variante par la commande par rapport à l’ensemble donnée des commandes décentralisées des

agents. Cette partition doit assurer que chaque agent avec sa région de sécurité est inclus

strictement à l’intérieur de sa zone de fonctionnement correspondante.

Dans le contexte du déploiement d’un système Multi-Agent sur une région bornée, l’objectif

de commande est de maximiser la qualité de couverture d’une façon décentralisée. Nous avons

choisi le diagramme de Voronoi comme outil principal pour partitionner l’espace de travail. En

revanche, la géométrie propre de chaque agent n’est pas encore prise en compte dans la partition.

Dans le futur proche, nous pouvons étudier comment obtenir une partition de l’espace de travail

plus généralisée en fonction des positions des agents, leurs régions de sécurité et aussi de leur

propres commandes prédéterminées.

En outre, les résultats obtenus sont fondés sur l’hypothèse que tout l’espace de travail du

système Multi-Agent est de type ”controlled invariant” par rapport à la dynamique des agents.

Une autre perspective consiste à étudier le cas où l’invariance contrôlée n’est plus préservée

pour tout l’espace, mais seulement pour une partition de l’espace considéré.

L’un des points les plus difficiles est la prédiction de la partition de Voronoi. Ce problème

reste à être étudié dans le temps qui suit, par manque d’une formulation explicite caractérisant

l’évolution dans le temps d’une telle partition. Cependant, trouver une telle formulation s’avère

compliqué.

Une autre direction porte sur la commande à base d’optimisation en tenant compte d’autres

types de contraintes telles que l’efficacité énergétique ou la durée effective de l’opération. Toutes

ces contraintes demandent des façons spécifiques pour obtenir la commande convenable.
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Nous rappelons que les contributions dans le cadre de ce manuscrit sont développées dans

un cadre théorique. Bien qu’ils sont bien formulés et présentés, pour les perspectives, nous

voudrions les appliquer sur les systèmes Multi-Agent réels tels que les formations de drones,

des mini-robots ou des véhicules. Le but principal est de valider l’efficacité et d’évaluer la

performance de nos solutions sur des systèmes Multi-Agents réels.





Chapter 1

Introduction

1.1 Interdisciplinary overview of Multi-Agent systems

1.1.1 From Artificial Intelligence to Control Engineering

According to the early works mentioning this syntagma, the notion of Multi-Agent system (MAS)

was mainly used by the computer science community. Widely considered as a sub-branch of

Artificial Intelligence (AI), this new concept aims to provide efficient tools to supervise complex

systems involving multiple agents1. Since 1956, there were numerous different ways to define

MAS and basically from the computer science point of view, a MAS is defined as a large-scale

system characterized by the number of agents2, the environment where the system operates and

the autonomy level of the agents. Moreover, the definition of an agent is not unique. According

to Russell et al. (1995) and Stone and Veloso (2000), there is no unified definition of “agent” in

AI scope. We cite here the agent’s definition of Wooldridge et al. (1995)

“a software (or hardware) entity that is situated in some environment and is able to au-

tonomously react to changes in that environment”.

According to this definition, an agent has to possess the four following basic properties:

• Autonomy: it limits the human interventions;

• Cooperativeness: it relates the inter-communication between the agents;

• Perceptiveness: it reacts to the impact of the environment3;

• Pro-activeness: exhibit goal-directed behavior.

1By following Crevier (1993) and McCorduck (2004), the birth of the Artificial Intelligence is officially recog-
nized after The Dartmouth Conference of 1956 when John McCarthy persuaded the attendees to accept “Artificial
Intelligence” as the name of the “Logic Theorist” introduced by Allen Newell and Herbert A. Simon.

2Wooldridge (2009) shortly describes MAS as a computer system composed of at least two intelligent agents.
3Thus refers to the working environment and meanwhile the impact from the other agents.

1
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Beside the natural cohesion with the AI development, the MAS concept is also employed widely

in control engineering (CE), due to the flourish of various control applications that can be

decomposed into multiple sub-systems each of which qualifying with respect to the previous

properties. The definition of MAS-CE is basically similar to MAS-AI, meaning that MAS is a

group of multiple intelligent (decision making) agents interacting within an environment subject

to constraints. From the CE point of view, the main difference is that each agent is characterized

by a dynamical equation beside the four properties above. Therefore a Multi-Agent system in

the control engineering framework is usually called dynamical Multi-Agent system.

For this reason, throughout this manuscript, we use the acronym MAS to denote uniquely a dy-

namical Multi-Agent system in a control engineering perspective and related finite-dimensional

case-studies.

The control concept of MAS-CE is translated in terms of supervising the agents interaction and

further making the best control strategy to achieve a common goal. In the last five decades,

MAS was employed as a new paradigm in CE applications, ranging from military operations

(environmental/meteorological monitoring, geological exploration etc.) to domestic utilities

(mini mobile robots, manufacturing line production etc.). Plenty of notable examples can

be listed such as smart or micro grid (Dimeas and Hatziargyriou (2005), Pipattanasomporn

et al. (2009)), building energy management (Wang et al. (2010), Zhao et al. (2013)), water

distribution networks (Van Overloop et al. (2010), Ocampo-Martinez et al. (2013)), traffic and

transportation networks management (Tomlin et al. (1998), Negenborn et al. (2008), de Oliveira

and Camponogara (2010)), mobile sensing networks (Cortes et al. (2002), Cortes et al. (2005)),

robots/vehicles deployment (Schwager et al. (2009), Moarref and Rodrigues (2014)), multi-

vehicles formation control and tracking (Stipanović et al. (2004), Prodan (2012)). Furthermore,

each application has its own characteristics e.g.

• the nature of agent’s dynamics (linear or nonlinear, time-variant or time-invariant, etc.);

• the type of communication graph (weakly or strongly connected, directed or undirected,

decoupled or interconnected, etc.);

• the working environment (air, underwater, presence of obstacles, hazardous environment,

etc.);

• the constraints (limitation of actuators, energy consumption, collision avoidance etc.);

leading to various opened research directions.

Moreover, it is worth to mention that one of the most important characteristics of MAS relates to

the topology of the inter-communication graph. This point is inherited from the AI development.

The reason is that it is the prior element to supervise the agents behavior and determine the

computation of the control decision. Some major topologies will be presented next.
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1.1.2 Networks topology and control structures

The supervision of a group of relatively independent agents can be classified into three main

approaches: centralized, distributed and decentralized approaches. Each of them has its own

advantages and also the drawbacks ranging from the objective of operation, the limitations of

resources authorized for the computation and the constraints/difficulties issued from the work-

ing environment (large disturbance, drift, propagation in a non-homogeneous environment...).

The centralized approach is usually considered as the easiest way to solve the problem of MAS

regulation, by means of considering all agents as an unique extended system. However, the

main inconvenience is that it burns a considerable computation effort and it is not appropriate

when the dimension of MAS increases along with the number of constraints. The most effective

conventional solution to overcome this drawback is to use the distributed approach or the de-

centralized approach. The main difference between these two last approaches is that distributed

framework simplifies the central computation by distributing it to each agent’s computation

block and thus handling at the central level only their inter-dependence by communication and

agreement on the results. This often translates into a block-decomposition of the central com-

putation into multiple sub-computation problems. In the decentralized approach, the graph of

communication is minimized and each agent uses its own local information feedback to com-

pute its control input (Siljak (2011)). Each type of topology decides the organization of control

computation.

Therefore, we present in the following these three topologies by means of

• Architecture of graph topology;

• Structure of feedback control computation.

1.1.2.1 Centralized graph

In graph theory, a centralized graph is defined as a topology in which each node connects to

a central supervising node (see the red node in Fig. 1.1). The graph is totally connected and

any connexion is undirected (see Mesbahi and Egerstedt (2010)), allowing the central node to

have the full knowledge of all system’s nodes. From the control point of view, this node rep-

resents a centralized controller which is responsible for the system supervision and the control

computation. Figure 1.2 illustrates a typical closed-loop controller of centralized MAS which is

usually recalled in the MAS control literature, e.g. Feng (1981), Milutinovic and Lima (2006),

Shamma (2007), Meskin and Khorasani (2011), etc. The information of all agents is sent to the

central controller C which decides the behavior of each agent in the system. From outside, a

centralized MAS can be equivalent to an extended global system offering centralized effective

supervision. Several notable centralized control techniques related to typical MAS problems

can be found in the literature. For instance, the authors of Kempker et al. (2011) propose a

formation flying algorithm for Autonomous Unmanned Vehicles (AUVs) by using a centralized
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optimal control combined with a set of observers to estimate the full velocity. The same au-

thors in Kempker et al. (2012) analyze the controllability and observability from a centralized

point of view for a group of coordinated linear interconnected agents. Olfati-Saber (2006) and

Olfati-Saber et al. (2007) give a centralized solution to obtain the consensus of flocking based

on a graph-theoretic approach. Nowadays, centralized Model Predictive Control (CMPC) is

employed widely in many large-scale applications due to its advantage to take into account

constraints into the computation of the optimal decision over a finite prediction horizon. More

precisely, Prodan (2012) developed CMPC algorithms for MAS subject to collision avoidance

constraints, allowing to safely drive all agents in a predetermined configuration. However, no-

tice that the central computation requires the full knowledge of all agents, implying that the

connexion is permanently maintained. All these reasons make the centralized approach very

sensitive to communication faults4. Notable works related to fault diagnosis in order to recover

the MAS faults are presented in Meskin and Khorasani (2011), Nguyen et al. (2014b), Nguyen

et al. (2014a).

Figure 1.1: Centralized topology.

21 3

C

Figure 1.2: Centralized control structure.

1.1.2.2 Distributed graph

A distributed graph is defined as a topology in which each node is connected uniquely with its

closest neighbors. Therefore, the graph becomes partially connected in comparison with the

particular centralized case as shown in Fig. 1.3 and thus the communication task is reduced.

A central controller is not necessary and consequently the computation is distributed over

all nodes in the network. Concretely, the control is calculated within a sub-group of agents

whose communication graph is a sub-graph of the MAS centralized topology. As a consequence,

the control computation load is reduced significantly with respect to the centralized approach.

An example of a distributed control architecture is shown in Fig. 1.4. Each agent has its

own controller which collects the agent’s state but also shares the computation with other

controllers. An impressive work on the state-of-art of cooperative control of distributed MAS is

given by Shamma (2007), Scattolini (2009) and Cao et al. (2013). Concerning the application

4Notice that any loss or degradation of information exchanged can impact seriously the communication.
Furthermore, any change in the topology leads to modify the common behavior of MAS, requiring thus to fully
reconfigure the entire system.
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of distributed control, the paper Dimarogonas et al. (2012) proposes distributed event-triggered

control for MAS. Johansen and Storaa (2002) introduces an energy-based control of a distributed

solar collector field, relying on a distributed parameter nonlinear plant model and including

feed-forward from the solar irradiation and inlet temperature. Recently distributed Model

Predictive Control (dMPC) receives considerable attention. Beside the constraints handling

as in the CMPC case, dMPC aims to achieve the constrained control objective using local

MPC controllers. Maestre and Negenborn (2014) give a detailed overview of numerous methods

concerning dMPC. A study on dMPC for consensus problem is presented by Keviczky and

Johansson (2008), where agents negotiate to compute an optimal consensus point using an

incremental sub-gradient method. Other recent notable works of Grancharova and Johansen

(2011), Grancharova and Johansen (2014) focus on explicit dMPC for nonlinear interconnected

systems compared with centralized non linear Model Predictive Control (NMPC). This work is

extended to discrete-time polytopic system in Grancharova and Olaru (2014).

Figure 1.3: Distributed topology.

21 3
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Figure 1.4: Distributed control structure.

1.1.2.3 Decentralized graph

Similar to a distributed structure, a decentralized graph is also partially connected, but more

efficient with respect to the communication. This is obtained via hierarchical role-determining

The significant difference to distinguish decentralized and distributed structures is the control

computation. In the distributed case, the computation is shared between the close agents, e.g.

two or three agents share together the task, whereas the computation of the decentralized con-

trol of each agent is based uniquely on its own state information, even if this agent exchanges

also the information with other neighbors. An overview of decentralized control development is

detailed in the survey paper Siljak (2011). Several notable decentralized applications concern

multi-robots motion planning or flocking problem. For example, in the works of Khatib et al.

(1996), the authors discuss and extend some methodologies to mobile manipulation systems and

propose a decentralized control structure for cooperative tasks. The paper Tanner et al. (2005)

introduces a graph-theoretic decentralized control to achieve the consensus of nonholomonic

agents. The most well-known decentralized organization is the leader-follower structure (or hi-

erarchical structure as seen in Fig. 1.5), where a MAS is decomposed into multiple hierarchical

sub-groups. Each group is characterized by a leader followed by a set of followers (or sub-group
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having a lower level of hierarchy). The local/individual control of each agent is computed by

itself based uniquely on its own state. Most of leader-follower applications can be found in

robotic motion control, path planing (Dimarogonas et al. (2009), Consolini et al. (2008), Basil-

ico et al. (2009)), platoon vehicles routing (Stanković et al. (2000), Farokhi and Johansson

(2015)). The leader-follower approach reduces the communication and the computation tasks

to minimum, and in addition it offers fault-tolerant advantages via the plug-and-play mecha-

nism. For instance, a faulty agent can be unplugged immediately without reconfiguration of

the remaining agents in MAS (Riverso et al. (2013), Nguyen et al. (2015b)). The robustness

to such phenomena is one of the advantages of a decentralized control structure. In the last

two decades, decentralized Model Predictive Control (DMPC) flourished significantly. Prodan

(2012) provided a DMPC framework by considering a cost function composed of two potential

components: repulsive (to avoid the collision) and attractive (to achieve a formation meanwhile

preserving the tracking effectiveness), according the previous works concerning potential func-

tion construction in Tanner et al. (2007), Barnes et al. (2009) and Wu et al. (2010). Polyhedral

or sum functions (Blanchini (1995), Camacho and Bordons (2013)) are considered to construct

these two components with respect to collision avoidance constraints and the tracking require-

ment. The authors of Keviczky et al. (2008) introduce DMPC for the coordination in formation

control. The authors use a conventional cost function subject to conflict-free constraints. Other

notable results in the DMPC framework for a class of nonlinear dynamics are given by Magni

and Scattolini (2006). The authors in this work emphasized that the stability proof for DMPC

framework could rely on the inclusion of a contractive constraint in the formulation.

Figure 1.5: Decentralized topology.
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Figure 1.6: Decentralized control struc-
ture.

We presented above three major network topologies to construct the graph of communication

for a Multi-Agent system. The choice of network topology describes how the agents interact and

more important, it decides the structure and also preselect the methods of control computation.

Next we will give a short description of the design techniques.

1.1.3 Conventional approaches for MAS control

Beside choosing one from three topologies mentioned for the MAS control, we focus now on the

theoretical tools used to synthesize the control action. We will summarize below the main ideas

of the mostly employed methods.
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Graph-theoretic methods: The agents interaction can be expressed in terms of communi-

cation topology, therefore the graph theory comes as a natural approach when dealing with

Multi-Agent systems. In this context, algebraic graph theory is the main theoretic tool used

to solve the control problem by taking into account the agent’s dynamics. An overview of

graph-theoretic methods used in MAS control is detailed in Mesbahi and Egerstedt (2010) and

various results are developed by Murray (2003), Lafferriere et al. (2004), Olfati-Saber and Mur-

ray (2004), Tanner et al. (2007), etc. Each agent is denoted by a node in the graph and an

interaction is represented by a link between two nodes.

Game theory: Being traditionally employed as a framework tool for describing the behavior

in societal systems, game theory recently becomes a powerful approach for controlling MAS.

Each agent is considered as a player (intelligent rational decision-makers) and has to follow the

game rules scenarios (role-playing game) which mimic human social phenomena, e.g. conflict or

cooperation (see Bauso et al. (2008), Maestre et al. (2011)). Numerous results can be found, e.g.

Karfopoulos and Hatziargyriou (2013)) applied game theory for controlled charging of a large

population of electric vehicles, or Semsar-Kazerooni and Khorasani (2009) used cooperative

game theory to achieve the MAS consensus.

Potential field approaches: Positive scalar potential function is constructed such that its

minimum is obtained when the agent reaches its goal. Outside the ideal configuration, this

function is defined such that it decreases towards the goal configuration, so that the agent can

reach the goal by following the negative gradient of the potential. Normally, in the context of

motion planning, a potential function is built on the distance between the agent’s position and

the desired goal. The construction can also take into account the specific shape of obstacles to

concept the repulsive field beyond the attractive field determined around the goal (see Khatib

(1986), Prodan (2012)). In Koditschek (1992) a historical review of the potential field approach

can be found. However, this method can lead to configurations which are characterized by

a local minima. Additionally, generating a navigation function is a computationally involved

design problem and thus not suitable for many control applications. Possibly due to these

particularities FTC design based on potential field approach remains an unexplored topic.

Viability theory: Being introduced by Aubin (1991), viability theory develops mathemat-

ical methods for investigating the adaptation to viability constraints of evolutions governed

by complex (continuous, discrete-time or even hybrid dynamics) systems under uncertainties

or state/input constraints, with plenty of applications in many domains e.g. biological evolu-

tion, financial market supervision, cognitive/perceptive studies etc. It opens new directions to

develop the control solution for various MAS applications relating social phenomena such as

automated highways or air traffic management (application on cars crash prevention in Gao

et al. (2004)), ecosystem approach to fisheries (Cury et al. (2005)), management of renewable

resources (Aubin and Saint-Pierre (2007)).

Optimization-based approaches: This class covers a wide range of control synthesis methods

from optimal control to receding horizon optimization. The advantage is that these approaches
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formulate the control objective as an optimization problem, providing efficient tools (using LP,

QP or MIP solvers) to find the optimal solution with respect to the considered criterion. Among

the successful optimization-based control methods, MPC is known to be the best choice for

constraints handling due to the receding finite horizon principle with respect to the conclusion

of Mayne et al. (2000). Moreover, it allows using the notion of controlled invariance together

with set computations to treat the constraints and guarantee the stability. The MPC design

principles are well understood and documented in classical textbooks Maciejowski (2002). The

papers Mayne et al. (2000), Rawlings and Mayne (2009) and Camacho and Bordons (2013) detail

the constrained MPC particularities. Over the last two decades, many successful results related

to MPC development are obtained, e.g. Bemporad et al. (2002) build the explicit solution

of constrained MPC by means of a Piecewise Affine description (the solution is obtained by

exploiting the KKT condition of the constrained MPC framework). In the same context, Riverso

et al. (2013) contribute to plug-and-play decentralized constrained MPC, Kothare et al. (1996)

developed robust constrained MPC using LMI approach. Camacho and Bordons (2013) give

an overview of Min-Max MPC in presence of additive disturbance on the system’s state. The

book Olaru et al. (2015) presents an overview of model-based optimization and control with a

collection of recent applications.

For all of the above arguments, optimization-based approaches with set-theoretic tools have

been chosen as key methods for the MAS control design in the present work and will be further

detailed throughout the present manuscript.

1.2 Safety of functioning: from FDI to FTC

Besides the performance quality, mission safety becomes an intensive research field for MAS

applications, composed of Fault detection and isolation (FDI) - Fault tolerant control (FTC)

study and development. FDI is considered as a supplementary layer to detect and isolate

the faults, succeeded by a reconfiguration strategy to fully/partially reconfigure the system

once the faults are located. We emphasize that the concept of MAS safety is more general

than the definition of safety for single system. Practically, the functioning of MAS is not

uniquely impacted by the damage occurrence on each agent (Meskin and Khorasani (2009a))

but the collision, the large environmental disturbance (strong drift, or disturbances violating the

expected bound, etc.) (Meskin et al. (2010), Meskin and Khorasani (2009b)) or the change in

the communication network (loss or degradation of information exchanged between the agents)

can also be considered as faults for MAS. Hence FTC in the context of MAS is understood

as a paradigm to design the control so that serious damages due to collision or environmental

disturbances are reduced to minimum.

In the following, we present firstly the FDI design for MAS, followed by an introduction of

FTC applied for formation control subject to collision avoidance constraints and ended by some

details of safe deployment regulation. All these approaches are based on set-theoretic methods.
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1.2.1 FDI design for MAS

Although FDI study for single dynamical system is widely known and developed in the literature

(see Zhou and Frank (1998), Theilliol et al. (2002), Blanke and Schröder (2006), Noura et al.

(2009) and Puig (2010)), just few results relate FDI concept for MAS. Recently designing

supplementary fault diagnosis layers becomes a highly required priority for MAS. Many studies

in the literature have been conducted on this topic and various results were obtained. Precisely

the authors of Meskin and Khorasani (2009a), Meskin and Khorasani (2010), Meskin et al.

(2010) have developed a set of FDI filters to detect the actuator faults in presence of large

environmental disturbances. Then the faulty functioning of MAS is recovered by applying

the Markov chain theory. Other works (Stanković et al. (2010), Antonelli et al. (2013) and

Kempker et al. (2011)) have used model-based Fault Detection to generate residual signals for

MAS. Recently, set theory5 is widely employed in many research fields of automation. The

reason is that set theory is proved to be a powerful tool to monitor and enhance effectively the

system safety. Some notable results are listed e.g. application of set-theoretic methods to detect

and recover the damage on actuators (Franze et al. (2012)) or the degradation in the sensing

channels (see Olaru et al. (2010)). Stoican and Olaru (2013) employed set-theoretic methods

to firstly detect and isolate the faulty sensor in a multi-sensors system. The reconfiguration

step consists in eliminating the faulty sensor and switching to other healthy mode such that

the closed-loop stability is not degraded. Recent results have been reported on the application

of set-theoretic methods for MAS safety guarantee. Some new results in Nguyen et al. (2015a)

and Rosich et al. (2014) relate to construct the dynamical threshold sets to detect the faulty

agents inside the MAS and the agents from outside which need to integrate the MAS system.

These works provide also algorithms to reconfigure the entire MAS after eliminating the faulty

agents or integrating the new/recovered agents.

1.2.2 Fault-tolerant formation control

A formation is equivalent to the coordination via consensus (Olfati-Saber et al. (2007)) and thus,

the ultimate control objective is to move all agents states toward a desired predefined formation.

For a network of dynamical agents, ”consensus” means to reach an agreement regarding a certain

quantity of interest that depends on the state of all agents. In the context of the cooperative

behavior objective, the requirement to control a group of mobile agents and to track a predefined

path while keeping a desired formation/configuration (Kempker et al. (2011), Egerstedt and Hu

(2001)) are integrated on problem formulation. The theoretical framework for posing and solving

consensus problems for networked dynamic systems was introduced by Murray (2003), Olfati-

Saber and Murray (2004) building on the earlier work of Fax and Murray (2004). In these works,

graph theory is widely employed to analyze the stability of MAS consensus or in other words,

the stabilization of MAS at a predefined network configuration. An overview of graph theoretic

methods used in MAS networks is formulated in Mesbahi and Egerstedt (2010). Furthermore,

5The full application of set-theoretic methods in control is detailed in Blanchini and Miani (2007).
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the formation can be static but also time-varying, depending on the control context. In presence

of arbitrary switching in the network topology, the results of Tanner et al. (2007) point out that

regardless of the graph switching, convergence to a common velocity vector and stabilization

of inter-agent distances are still guaranteed in a decentralized manner as long as the network

remains connected at all times. Decentralized formation control applied for MAS stabilization is

also developed by Lafferriere et al. (2005), as long as the graph topology has a rooted directed

spanning tree. These results are extended in presence of multiple obstacles (Tanner (2004),

Saber and Murray (2003)) and nonholomonic dynamics (Tanner et al. (2005)). As consequence,

according to the graph-theoretic point of view, the network topology (fully/partially) is taken

into account in the control computation. Recently, in the set-theoretic context, a formation

can be understood as an implicit set-based form where the inter-distance between the agents is

constant (Nersesov et al. (2010), Fontes et al. (2009), Kempker et al. (2011)) or a union of non-

overlapping polyhedral sets such that each set represents uniquely one agent (Prodan (2012),

Nguyen et al. (2015b), Bemporad and Rocchi (2011)). Some examples are presented in Figs.

1.7-1.10. Concretely, Figs. 1.7 and 1.8 illustrate respectively a centralized tight formation for

homogeneous and heterogeneous MAS6. Figure 1.10 shows that a MAS reaches a tight formation

from its given initial configuration (see Fig. 1.9) in a decentralized manner7. However, while

converging toward the expected formation, the agents can collide between them or with some

obstacles, leading to degrade seriously the mission safety. Therefore, formation control subject

to anti-collision constraints becomes highly interesting today.
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Figure 1.7: Homogeneous minimal con-
figuration achieved by centralized ap-

proach.
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Figure 1.8: Heterogeneous minimal con-
figuration achieved by centralized ap-

proach.

6Each polyhedron in the figures illustrating the formation represents an agent. The position of the agent
is placed at the center of polyhedron and the shape of the polyhedron characterizes the geometry/safety zone
around the agent. The construction of these polyhedrons with respect to the agents dynamics will be given in
Chapter 2. A homogeneous MAS has a common polyhedral shape for all the agents. In case of heterogeneous
MAS, each agent has its own polyhedral shape.

7Each agent is authorized to operate uniquely in a zone with respect to the position of its neighbors. In Fig.
1.9 and 1.10, these zones are represented by the large polyhedral region enclosing the agent’s polyhedral contour.
In the context of a leader-follower structure, these zones are built on the hyperplanes selected with respect to
the leader’s position, in order to separate the followers. The details of such a construction will be presented in
Chapter 3.
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Figure 1.9: Partition of hierarchical
leader-follower organization.
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Figure 1.10: Homogeneous minimal con-
figuration achieved by decentralized ap-

proach.

1.2.3 Deployment control problem

In a wide range of MAS applications, such as environmental/meteorological monitoring, surveil-

lance, search and rescue operations planning or vehicle routing problems, the common principle

is to let a group of cooperative mobile agents8 (e.g. vehicle, robots, Unmanned Aerial Vehicle

(UAV), Autonomous Underwater Vehicle (AUV) etc.) self-deploy within a target region (see

Murray (2007), Tanner et al. (2007), Adib Yaghmaie et al. (2015)). The main objective of such

cooperative task is to maximize the coverage quality subject to constraints. The most challeng-

ing problem aside the conventional formation control and tracking reference is that the final

static configuration is not known a priori. Many works employed dynamic Voronoi partition as

a conventional tool to drive the MAS close to a stationary configuration over a given bounded

region. The concept of the “Dirichlet-Voronoi Diagram” introduced by Dirichlet (1850) and gen-

eralized after by Voronöı (1908), has numerous practical and theoretical applications in many

research fields, including computer vision, computational geometry, computer-aided design, ve-

hicles/robots routing and mobile sensor networks (Boissonnat (1984), Cortes et al. (2002),

Schwager et al. (2009)). In principle, it describes a special partition of a topological space,

which is equipped with a metric distance function, by means of an union of non-overlapping

regions called Dirichlet domains or Voronoi cells. Each region is associated uniquely with an

element from a given set of points, known as the set of Voronoi generators. The construction of

the Voronoi diagram for different types of ”distance” functions can be found in Aurenhammer

(1991) and Okabe et al. (2009). According to the survey, the metric can differ from Euclidean

norm such as Manhattan distances or other metric distance weighted by power constraints or

minimum time to go (relating Zermelo navigation problem9 (Sugihara (1992))).

8In general, all of these results are developed mainly for first-order linear continuous-time mobile system, i.e.
ẋi = ui, where xi and ui denote respectively the position and the speed of the ith agent.

9Zermelo’s problem (see Zermelo (1931)) can be illustrated via a simple example: Considering a boat initially
resided in a river, find the control law to drive it towards a target by minimizing the traveling time subject to
the disturbances issued by the current drift.
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We emphasize that the partition evolves with the evolution of the agents and thus becomes time-

varying. Hence, many works in the literature focus on stabilizing the Voronoi based deployment

close to a configuration such that the coverage is maximal. The most well-known configuration

is the Centroidal Voronoi Configuration (CVC) which is obtained when the position of each

agent coincides with the centroid (or center of mass) of its associated Voronoi cell. The Lloyd’s

algorithm (see Lloyd (1982), like the closely related k-means clustering algorithm of MacQueen

et al. (1967)) is widely used to obtain the CVC by moving the agents toward their centers of

mass. This is equivalent to the decentralized control design principle. The principle of the

Lloyd’s algorithm is to repeat the following steps until a CVC is approximately obtained

• Step 1: Compute the Voronoi diagram of the generator points x1(k), . . . , xN (k);

• Step 2: Calculate the centroid of each Voronoi cell;

• Step 3: Move each generator toward its associated centroid.

In Kwok and Martinez (2010), the authors propose a generalized power-weighted Voronoi par-

tition and modify the Lloyd’s algorithm to solve the power constrained deployment problem.

The results in Song et al. (2014) reduce the step size in the Lloyd’s algorithm and optimize

the communication exchange. In the presence of large disturbance issued from the working

environment such as strong wind/current drift, Sugihara (1992) and further Bakolas and Tsio-

tras (2013) propose a novel constructive method of dynamic Voronoi partition, called Zermelo

Voronoi diagram. This allows an agent that resides within a domain of the partition at a given

time to reach the generator associated with this domain faster than any other agent outside this

domain at the same instant of time. The construction is based on the optimal control technique

with respect to minimizing the time to go of the Zermelo navigation problem. Notable recent

works in the field of mobile sensors networks are introduced by Cortes et al. (2002), Cortes et al.

(2005) and other references therein. The authors present a novel decentralized optimal control

which is distributed over the Delaunay graph of a dynamic Voronoi partition, to approach a cen-

troidal Voronoi configuration by assuming that the working region is bounded and additionally

the density distribution over this region is time-invariant. The conservation of mass law is used

in combination with the LaSalle invariance principle (see Khalil and Grizzle (1996)) to prove

the stability of the convergence into a CVC. Inspired by the last works, Moarref and Rodrigues

(2014) extend the optimal decentralized control to deal with energy-efficient constraints. Other

interesting works in the same direction is presented by Schwager et al. (2009) where different

control strategies are given for multi-robots self-deployment, including respectively geometric,

probabilistic, and potential field approaches. To the best of the author’s knowledge, the safety

of MAS withing the deployment procedure was not addressed in the literature.
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1.3 Thesis orientation

As presented in the literature overview of dynamical MAS in control engineering, the notions

and studies of FTC represent a well established branch in the control literature. Relatively few

results exploit set-theoretics tools to solve the MAS control problem, but do not prevent/cover

the faults occurrence to maintain the MAS functioning.

For this reason, the present manuscript fixes as objective to employ optimization based control

synthesis combined with tools inherited from set theory in FDI-FTC design for dynamical

MAS. In this way, it is possible to formulate FTC and FDI construction for MAS as constrained

optimization problems. A time-invariant safety set around each agent is built by using the

invariance notion linked to agent’s dynamics. This region is considered a priori as the agent’s

safety set to avoid collision and additionally it can be used as geometrical residual to detect

and isolate the faulty functioning to protect globally the formation. Moreover, set theory gives

us the advantage to translate formation determination in terms of a constrained optimization

problem. As a consequence, the optimal-formation solution is the fixed point in the appropriate

extended space built with respect to the given constraints, thus ensuring the uniqueness from

the geometrical point of view. In the presence of non-convex constraints (obstacle or collision

avoidance), the fixed point becomes restricted by adversary constraints making thus the original

equilibrium infeasible. The formation or extended fixed point of MAS can be decomposed

into local fixed point determination for each agent, creating the appropriate framework for

decentralized control design subject to convex constraints. Once the local structure of the

control is defined within the decentralized design, the remaining problem is to examine the

feasibility of the local control problem.

The following hypotheses are used in order to simplify the theoretical developments:

• the MAS is composed by mobile agents and the discrete-time agent’s dynamics is assumed

to be Linear Time Invariant (LTI), controllable and fully observable;

• the inter-communication is perfectly maintained and there is no loss or degradation of the

exchanged information;

• the (additive) uncertainties/disturbances considered in the dynamical systems model are

supposed to belong to a bounded set;

• the fault occurrence10 is abrupt and additionally its propagation is not considered.

The second part of the thesis is dedicated to the stabilization of the Voronoi based deployment

by using a decentralized control approach. The stability will be discussed in the sense of the

Lyapunov function analysis. For this problem, it is important to assume that all the Voronoi

10Faults can manifest at sensor, actuator level or even due to non-cooperative behavior denying the formation
requirement.
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cells, and also the region within the agents deployment problem, are bounded and for compu-

tational reasons are considered to have polyhedral description. In this perspective, we focus

in the current work on how to stabilize the self-deployment, while the anti-collision constraints

are not considered in this topic but separately as a standalone problem. The metric distance

function chosen is the Euclidean distance.

1.4 Thesis contribution

The contribution builds upon three main results set-based formation control (Prodan (2012)),

set-theoretic approach for FTC of multi-sensor scheme based on bounding/invariant sets as a

tool for FDI implementation (Stoican (2011)) and optimal control approach for decentralized

coverage problem (Cortes et al. (2002)). With respect to the above results, we advocate a set-

theoretic FTC philosophy based on the basic principle of decentralized control thus contributing

towards the establishment of a safe plug-and-play MAS control and monitoring.

The linear feedback synthesis involving collision avoidance is following the principles exposed in

Bitsoris and Olaru (2013) in terms of regulating the system state toward an equilibrium point

lying on the boundary of a prohibited region, and complemented Prodan (2012) with respect to

the centralized anti-collision MPC formation control. In this framework, our results in Nguyen

et al. (2015b) relate to the anti-collision decentralized control exploring the well-known leader-

follower structure. The main objective is to partition the working space into a collection of

functioning zones. Each of these zones is associated with only one agent which will be kept

operating in the interior of this zone, offering anti-collision guarantees. Further contribution

consists in analyzing the restrictions of the method developed in Bitsoris and Olaru (2013), i.e.

its feasibility limits and infeasible situations, and further propose two control strategies. The

first one is based on the iterative construction of a set of contracted ellipsoids inside of the

agent’s functioning zone (Boyd and Vandenberghe (2004)), and the second approach employs

the interpolation technique (Nguyen et al. (2013)).

Most of the works in MAS Voronoi based self-deployment focus on steering each agent to its

center of mass/centroid (considered as the target point) thus the entire MAS approaches a

Centroidal Voronoi Configuration according to the Lloyd’s algorithm. Therefore CVC is an

optimal configuration associated with the center of mass. Other target point can be selected

leading to an alternative optimal configuration. For this reason, in Nguyen et al. (2016c)

we first describe a basic approach based on the Chebyshev center as the target point. Its

advantage is that the Chebyshev center can be expressed in geometric terms with respect to its

associated Voronoi cell. However, when the Chebyshev center is not unique, the control strategy

cannot lead to a stable configuration. In order to keep driving the agents into a stable static

configuration, we propose a novel concept based on the computation of a so-called general center

which leads to a unique center by deflation in the degenerated cases. Moreover, other choice of

center is studied such as inner fixed point defined as convex combination of the vertices of the
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corresponding Voronoi cell (Nguyen and Maniu (2016)). This type of center is named vertex

interpolated center. It is worth to mention that the agent dynamics in all of the previous works

concerning centroidal Voronoi configuration is in continuous-time form. In the paper Nguyen

et al. (2016a), we revisit the decentralized control to drive a MAS towards a CVC in the context

of discrete-time dynamics.

In the recent paper Nguyen et al. (2015a) which follows the ideas presented in the previous

developments Nguyen et al. (2014a), Nguyen et al. (2014b), set-theoretic tools are employed

to design centralized FDI layer for homogeneous MAS. The a priori objective is to ensure

the formation safety by supervising the inner agents functioning and additionally, detecting if

some agents from exterior try to integrate the current formation. Moreover, we investigate the

use of residual for the fault monitoring with respect to set-based FDI mechanism introduced

in (Stoican and Olaru (2013)). In the context of MAS, residual is defined as the difference of

behavior between the agent and its monitoring model. The residual’s inclusion in healthy/faulty

precomputed invariant set monitors the status of the corresponding agent. The reconfiguration

step consists in eliminating the faulty agents and adjusting the formation control computation

according to the remaining healthy agents.

We provide here the complete list of submitted/accepted publications.

Book chapter:

• Minh Tri Nguyen, Cristina Stoica Maniu, Sorin Olaru, and Alexandra Grancharova.

Formation reconfiguration using Model Predictive Control techniques for Multi-Agent dy-

namical systems. In Developments in model-based optimization and control, pages 183-205.

Springer, 2015.

Accepted conference papers:

• Minh Tri Nguyen, Cristina Stoica Maniu, Sorin Olaru, and Alexandra Grancharova.

About formation reconfiguration for Multi-Agent dynamical systems. In Automatics and

Informatics’2014, Sofia, Bulgaria, pages 141-144, 2014.

• Minh Tri Nguyen, Cristina Stoica Maniu, Sorin Olaru, and Alexandra Grancharova.

Fault tolerant predictive control for Multi-Agent dynamical systems: formation reconfig-

uration using set-theoretic approach. In Control, Decision and Information Technologies

(IEEE CODIT), Metz, France, pages 417-422, 2014.

• Minh Tri Nguyen, Cristina Stoica Maniu and Sorin Olaru. Control invariant parti-

tion for heterogeneous Multi-Agent dynamical systems. In System Theory, Control and

Computing (IEEE ICSTCC), Cheile Gradistei, Romania, pages 354-359, 2015.

• Minh Tri Nguyen, Cristina Stoica Maniu, and Sorin Olaru. Decentralized constructive

collision avoidance for Multi-Agent dynamical systems. In European Control Conference

(ECC), Aalborg, Denmark, pages 1526-1531, 2016.
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• Minh Tri Nguyen and Cristina Stoica Maniu. Voronoi based decentralized coverage

problem: from optimal control to Model Predictive Control. In Mediterranean Conference

on Control and Automation (IEEE MED), Athens, Greece, 2016.

• Minh Tri Nguyen, Luis Rodrigues, Cristina Stoica Maniu, and Sorin Olaru. Discretized

optimal control approach for dynamic Multi-Agent decentralized coverage. In IEEE Multi-

Conference on Systems and Control, Buenos Aires, Argentina, 2016.

Submitted paper:

• Minh Tri Nguyen, Cristina Stoica Maniu and Sorin Olaru. Optimization-based con-

trol for Multi-Agent deployment based on dynamic Voronoi partition. In IFAC World

Congress, Toulouse, France, 2017.

1.5 Organization of the manuscript

The outline excluding Chapter 1 is organized as follows, with numerous illustrative examples

presented throughout the manuscript.

Chapter 2 provides the mathematical background used throughout the manuscript, starting

from the conventional description of the MAS dynamics and followed by a short introduction

of set theory applied in control engineering. The set-based prerequisites are shortly recalled

by means of basic set operations and invariance notions linked to discrete-time LTI equation

dynamics. Subsequently, a set-theoretic approach for collision avoidance guarantee is given,

starting from robust invariant agent’s safety region construction. The basic method founded

by Bitsoris and Olaru (2013) to compute the control action subject to collision avoidance re-

quirement is reminded briefly. For the Voronoi based deployment problem, a basic definition of

Voronoi tessellation for a bounded polyhedral space associated with the Euclidean norm is re-

called and the computation of some inner center point of bounded convex polytope is introduced

next, with some illustrative examples.

Chapter 3 presents the use of set-theoretic tools in decentralized formation control synthesis.

A leader-follower structure is considered, leading to the followers functioning zone assignment

decided by the leader. After, the local linear feedback control is computed such that the fol-

lower operates strictly inside its authorized zone, offering anti-collision guarantees. The main

ingredients of local control are detailed, such as the local fixed point suitable for the leader

position and the linear gain determination based on the method proposed by Bitsoris and Olaru

(2013). The feasibility limits and infeasible situations are discussed and further we provide two

control strategies exploring ellipsoidal construction and interpolation techniques to deal with

both these cases.

Chapter 4 focuses on revisiting the decentralized stabilization of the Voronoi based deployment

using an inner target driver in the context of discrete-time LTI dynamics. The main novelty is
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to consider the Chebyshev center as the inner target for each agent, leading to an optimization-

based decentralized control design. A different choice of center related to the principle of space

deflation is introduced in case where the Chebyshev center computation is impossible.

Chapter 5 aims to present the use of set-theoretics tools to design a centralized FDI layer for

dynamical MAS. Two case-study will be presented, followed by a numerical simulation. The

first one relates to faulty agents inside the formation. The second one focus on the case where

some external agents try to integrate the current formation. The set-based FDI allows detecting

and isolating these faulty agents to protect the current formation. After the faults certification,

the formation containing the remaining healthy agents will be reconfigured using for instance

centralized control techniques.

Chapter 6 completes the manuscript by means of concluding remarks and formulates several

interesting perspectives.

Appendix A presents a novel decentralized framework for the Multi-Agent dynamical cover-

age problem subject to anti-collision constraints. The main contributions are related to the

optimization-based decentralized control design by revisiting the optimal control approach and

Model Predictive Control with respect to the vertex interpolated center chosen as the agent’s

inner target. The control objective is to obtain an optimal coverage by moving each agent

towards its corresponding vertex interpolated center. This center is computed based on the

vertices of the Voronoi cell characterizing the functioning zone. The proof of stability for both

approaches is given with some illustrative examples.

Appendix B presents a novel decentralized framework to obtain a centroidal Voronoi con-

figuration. The main contribution consists in extending the optimal decentralized control in

Moarref and Rodrigues (2014) for discrete-time systems. The well-known Hamilton-Jacobi-

Bellman equation is employed together with the mass conservation law in order to prove the

stability proof and also the equivalence between the proposed discretized optimal control with

the continuous-time optimal solution of Moarref and Rodrigues (2014).

Due to the laborious calculation and in order to simplify the presentation of this manuscript,

we prefer to add the two Appendices, rather than formulating these results as chapters of the

PhD thesis.

The manuscript organigram which describes the connexion between the chapters above is de-

picted in Fig. 1.11.
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Chapter 2

Set-theoretic notions for

Multi-Agent system analysis and

design

Since the early developments, set-theoretic framework in control engineering relies on the math-

ematical set theory and particularly on the Brunn-Minkowski algebra (see Schneider (2013) for

more details) and exploit its results for dynamical systems described by ordinary differential

equations or difference equations. The present chapter builds on applying set-theoretic meth-

ods in the context of safety guarantee for Multi-Agent systems composed of independent mobile

agents evolving in a common environment. The class of agent dynamics considered of this thesis

is described in Section 2.1.

The concept of safety relates to the collision avoidance during the agents operation. It is worth

mentioning that collision avoidance is often one of the challenges in the context of the MAS

operation, since the nature of anti-collision constraints is non-convex. The principle is to ensure

that the safety regions which are considered around each agent do not intersect whenever they

are translated along the trajectory of the agents. The use of set will be advocated to construct

the agent safety region. Polyhedral sets (Motzkin et al. (1953)), star-shaped sets (Rubinov

and Yagubov (1986)), zonotopic sets (Fukuda (2004)) and ellipsoidal sets (Kurzhanski and

Varaiya (2000)) are among the most popular set families widely employed in many research and

application fields. The strengths and weaknesses of each set family were already mentioned and

commented in the literature.

Briefly, ellipsoidal sets are known due to their simple numerical representations which avoid the

vertices/half-spaces enumeration. However this family of sets is often considered as conservative

in shape representation and further not suitable for set operations. Star-shaped sets allow repre-

senting non-convex shape but the main complexity relates its non-convexity in the computation.

Zonotopic sets represent a particular class of polytopes built on convex combination of a set of

generator vectors with respect to a selected center. Similar to ellipsoidal sets, zonotopic sets

19
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exhibit symmetry but more effective in geometric representation with a similar computational

resources.

We choose polyhedral set family as the principal set concept in the present manuscript for their

convexity properties and flexibility with respect to the shape approximation. The complexity

of the polyhedral sets need however a particular attention as their dual representation in terms

of constraints or generators can be relatively high.

As an additional characteristic, the application of set theory in MAS control needs to remind

the invariance notions allowing us to link the dynamical systems to static geometrical sets in

the state-space (Blanchini and Miani (2007), Aubin (2009)). The results relating the algebraic

invariance conditions and controlled invariance notions are mature for the case of polyhedral

sets (Bitsoris (1988a)). As long as the dynamics of the agents are linear, ellipsoidal set will

be recommended as valid option and employed on several instances of the next developments.

The overview of our choices of sets family with the prerequisites of invariance notions will be

provided in Section 2.2.

The choice of polyhedral set family is supported not only by the versatility of its dual (half-

spaces/vertices) representation leading to computation advantages and straightforward imple-

mentation (construction of safety region, obstacle), but it is known to be a suitable formulation

for the optimization-based control framework (construction of feasible sets). In Section 2.3,

we will explain how to construct the agents safety regions in terms of invariant polyhedron

according to the boundedness of additive uncertainties.

Solving an optimization problem subject to non-convex constraints leads to using Mixed-Integer

Programming (MIP) (Jünger et al. (2009)). However, MIP is not always the best solution due

to its computational complexity which can increase exponentially with the number of binary

variables used in the problem formulation. Earl and D Andrea (2001) tried to reformulate the

original decision problem in a simplified tractable MIP form but the complexity still remains

significant. Recent results of Prodan et al. (2012) and further developed in Prodan et al. (2015)

use hyperplane arrangements to reduce the number of non-convex feasible regions, thus avoiding

the explosion of the number of binary variables.

In the present chapter the objective is to show that non-convexity can be avoided by solving the

same optimization based control problem with respect to each feasible convex subset forming

the non-convex region. This leads naturally to a decentralized approach. Note that it offers

a suboptimal solution with respect to the MIP solution but provides significant advantages by

exploiting the subsets convexity. Indeed, the decentralized solution consists in partitioning the

working space into an union of non-overlapping convex zones and the control will be computed

locally to keep the agent operating strictly within its corresponding zone. In most of deployment

applications such as mobile sensing networks (Cortes et al. (2002)) or multi-robots deployment

(Schwager et al. (2009)), the Voronoi tessellation is used to fulfill the partition objective, leading

to the so-called Voronoi-based deployment. The ultimate objective of Voronoi-based deployment

is to drive the agents towards an optimal coverage over a bounded working region. The concept
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of optimal coverage (see Cortes et al. (2002), Cortes et al. (2005)) for such applications received

several interpretations, but the common feature is the stable static configuration over the work-

ing region. Mathematical definitions and the notions linked to optimal Voronoi-based coverage

will be given in Section 2.3.

A conclusion will be provided at the end of the present section to recall briefly the main ideas.

2.1 Multi-Agent system description

Consider a Multi-Agent system Σ composed of N agents. Each agent has its own discrete-time

linear time-invariant (LTI) dynamics{
xi(k + 1) = Aixi(k) +Biui(k)

yi(k) = Cixi(k)
(2.1)

with the state vector xi ∈ Rni , the control input ui ∈ Rmi , the constrained output yi ∈ Rpi ,
∀i ∈ N = N[1,N ]. The output space is a subspace of the state-space, such that pi ≤ ni, ∀i ∈ N .

The matrices Ai, Bi and Ci have the appropriate dimensions.

Assumption 1. The matrices (Ai, Bi) are controllable and (Ci, Ai) are observable, with ∀i ∈ N .

Each individual agent i ∈ N has access to its full state measurement as well as the output of

the other agents. It is supposed that the output space is shared among the agents and that

p ≤ ni, ∀i ∈ N .

The dynamics of the entire system Σ can be further aggregated into a global model{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(2.2)

where x =
[
x>1 x>2 . . . x

>
N

]> ∈ R
∑
i∈N

ni

, u =
[
u>1 u>2 . . . u

>
N

]> ∈ R
∑
i∈N

mi

and y =
[
y>1 y>2 . . . y

>
N

]> ∈
R

∑
i∈N

pi
denote respectively the collective state, the control input vector and the constrained

output vector of Σ. The matrices A = diag {A1, A2, . . . , AN}, B = diag {B1, B2, . . . , BN} and

C = diag {C1, C2, . . . , CN} collect all the matrices corresponding to each agent by juxtaposition.

The non-decoupling representation (2.2) makes the agents look apparently independent. In fact,

the safety guarantee implies that at least each agent needs to know the position of its nearest

neighbors in order to avoid the collision. This requires its corresponding control computation

taking into account the position of other remaining agents, i.e.

ui = ui
(
x1, x2, . . . , xN

)
, with i ∈ N

making the entire MAS interconnected by means of closed-loop behavior despite the non-

decoupling open-loop representation (2.2).
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In this way, the control input u of the dynamics (2.2) can be considered as a function of its

agents states, i.e.

u = u(x)

Notice that the explicit form of this input u in terms of the state vector x depends on the

network topology or precisely on the way to explore the feedback states of the agents via the

control input ui. The three structures of agent’s control computation corresponding to three

main network topologies detailed in Section 1.1.2 are given in Table 2.1. We use the notation

N i to denote the indices set of the neighbors of the ith agent.

Table 2.1: Structures of agent’s feedback control.

Agent’s control input ui Control structure Illustrative figure

• ui = ui
(
x1, x2, . . . , xN

)
, with i ∈ N Centralized Fig. 1.2

• ui = ui
(
xj
)
, with i ∈ N and ∀j ∈ N i Distributed Fig. 1.4

• ui = ui
(
xi
)
, with i ∈ N Decentralized Fig. 1.6

In the following, we will provide the set-theoretic notions and methods linked to dynamical

system and further explain their applications in collision avoidance guarantee for Multi-Agent

system.

2.2 Set-theoretic prerequisites

First let us concentrate on the basic notions related to the polyhedral and ellipsoidal set rep-

resentations. Some fundamental set algebra will be also recalled in terms of mathematical

description in Section 2.2.1 and the basic application of set in control theory will be mentioned

further in Section 2.2.2.

2.2.1 Basic notions and set operations

We start by giving below two fundamental definitions related to the construction of polyhedra

based on vertices enumeration and unidirectional rays.

Definition 2.1. The convex hull of a given finite set of vertices V = {v1, v2, . . . , vp}, with

vi ∈ Rn is defined as

conv{V} =

{
x ∈ Rn

∣∣∣∣x =

p∑
i=1

λivi, λi ∈ R+,

p∑
i=1

λi = 1

}
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Definition 2.2. The cone of a given finite set of unidirectional rays T = {t1, t2, . . . , tq}, with

ti ∈ Rn is defined as

cone{T } =

{
x ∈ Rn

∣∣∣∣x =

q∑
i=1

γiti, γi ∈ R+

}

We provide next the basic definition of a polyhedron with its implicit mathematical represen-

tations.

Definition 2.3. A polyhedron P ∈ Rn is defined as the combination of linear inequalities1 (see

Schrijver (1998)), i.e.

P = {x ∈ Rn|Hx ≤ θ} (2.3)

with H ∈ Rm×n and θ ∈ Rm.

From a geometrical point of view, the polyhedron P in (2.3) can be considered equivalent

to the intersection of a finite number of closed half-spaces. Thus, such a form is named H-

representation. Moreover, if P is a bounded polyhedron, it can be defined as the convex hull of

its vertices according to Definition 2.1 (V-representation).

Two examples illustrating the convex hull and cone presentation are given in Figs. 2.1 and 2.3.

Example 2.1. Consider the polyhedron P in Fig. 2.1 built on the vertices. ItsH-representation

is

P =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


0.1374 −0.5494

0.5345 0.2673

0 0.7071

−0.5883 0.1961

x ≤


0.8242

0.8018

0.7071

0.7845




and its V-representation is

P = conv

{[
−1

1

]
,

[
1

1

]
,

[
2

−1

]
,

[
−2

−2

]}

or equivalently

P =

x ∈ R2

∣∣∣∣∣∣x = λ1

[
−1

1

]
+ λ2

[
1

1

]
+ λ3

[
2

−1

]
+ λ4

[
−2

−2

]
, λi ∈ R+,

∑
i∈{1,2,3,4}

λi = 1


Example 2.2. Consider the cone C in Fig. 2.3 which is built on its two unidirectional rays

t1 =

[
3

0.5

]
, t2 =

[
0.5

3

]
i.e.

C =

{
x ∈ R2

∣∣∣∣∣x = γ1

[
3

0.5

]
+ γ2

[
0.5

3

]
, γ1, γ2 ∈ R+

}
1In general, a polyhedron P is built by combining both linear inequalities and also equalities P =

{x ∈ Rn|Hinx ≤ θin, Heqx = θeq}.
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−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

Figure 2.1: Convex hull of a set of given vertices vi.

Its H-representation is

C =

{
x ∈ R2

∣∣∣∣∣
[

1 −6

−6 1

]
x ≤

[
0

0

]}

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 2.2: Cone.

Remark 2.1. A polyhedron can be represented as a linear combination of vertices and unidi-

rectional rays according to two Definitions 2.1 and 2.2. Such representation is called the dual

Minkowski representation2 (see Motzkin et al. (1953)) by regrouping the concept of convex hull

and cone in an unified representation, i.e.

P =

x ∈ Rn
∣∣∣∣x =

p∑
i=1

λivi +

q∑
j=1

γjtj , λi ∈ R+,
m∑
i=1

λi = 1, γj ∈ R+


Remark 2.2. The dual Minkowski representation of a polyhedral cone having theH-representation

C(H, θ) =
{
x ∈ Rn|Hx ≤ θ,H ∈ Rm×n, θ ∈ Rm

}
2In general, with respect to the paper Schrijver (1998), a polyhedron is equivalent to

a linear combination of vertices, unidirectional rays and also bidirectional rays. P ={
x ∈ Rn

∣∣∣∣x =
p∑

i=1

λivi +
q∑

j=1

γjtj +
r∑

k=1

µkrk, λi ∈ R+,
m∑
i=1

λi = 1, γj ∈ R+,∀µk ∈ R

}
, with vi, ti, ri ∈ Rn. How-

ever, the interpretation of bidirectional rays is not considered in this present manuscript.
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is

C(H, θ) =

{
x ∈ Rn

∣∣∣∣x = λ+

q∑
i=1

γiti, ti ∈ Rn, λ ∈ R+, γi ∈ R+

}
Moreover, a cone becomes proper cone if θ = 0m,1, which implies λ = 0.

Example 2.3. Consider the unbounded polyhedron P in Fig. 2.3. Its H-representation is

P =

{
x ∈ R2

∣∣∣∣∣
[

1 −6

−6 1

]
x ≤

[
15

−20

]}

and its dual Minkowski representation is

P =

{
x ∈ R2

∣∣∣∣∣x =

[
3

−2

]
+ γ1

[
3

0.5

]
+ γ2

[
0.5

3

]
, γ1, γ2 ∈ R+

}

2.5 3 3.5 4 4.5 5 5.5 6 6.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2.3: Unbounded polyhedron.

Beside polyhedral sets family, we employ also ellipsoidal set whose definition is given below.

Definition 2.4. An ellipsoid E(c, P, d) ∈ Rn with the center c ∈ Rn, the shape matrix P ∈ Rn×n

and the range d ∈ R is defined as E(c, P, d) =
{
x ∈ Rn|(x− c)>P (x− c) ≤ d

}
, with P = P> � 0

and d > 0.

Example 2.4. In Fig. 2.4, we present three ellipsoids centered at the origin with different

shape matrices P and ranges d.

- E(c1, P1, d1): c1 =

[
0

0

]
, P1 =

[
1 0

0 1

]
, d1 = 0.4

- E(c2, P2, d2): c2 =

[
0

0

]
, P2 =

[
5 0

0 1

]
, d2 = 2

- E(c3, P3, d3): c3 =

[
0

0

]
, P3 =

[
1 0

0 5

]
, d3 = 2
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5
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1.5
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E(c1, P1, d1)

E(c2, P2, d2)

E(c3, P3, d3)

Figure 2.4: Ellipsoids centered at the origin.

Definition 2.5. Given two sets A and B, their Minkowski sum is defined as

A⊕ B = {a+ b|a ∈ A, b ∈ B}

Definition 2.6. Given two sets A and B, their Pontryagin difference is defined as

A	 B = {a ∈ A|a+ b ∈ A, ∀b ∈ B}

Example 2.5. Consider two following polyhedron A and B

A =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


0.1374 −0.5494

0.5345 0.2673

0 0.7071

−0.5883 0.1961

x ≤


0.8242

0.8018

0.7071

0.7845




B =

x ∈ R2

∣∣∣∣∣∣∣
 0 −0.9806

0.8123 0.5415

−0.8123 0.5415

x ≤
0.1961

0.2166

0.2166




Their Minkowski sum set A⊕ B and Pontryagin difference set A	 B are given in Figs. 2.5

Definition 2.7. A λ-scaled set of a set A ∈ Rn is defined as

λA = {x ∈ Rn|x = λa, a ∈ A}

with λ ∈ R denoting the scale factor.
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⊕

	

=

=

A
B

A
B

A⊕ B

A	 B

Figure 2.5: Minkowski sum A ⊕ B and Pontryagin difference A 	 B representations of two
given sets A and B.

Remark 2.3. Consider a polyhedron A having its H-representation A = {x ∈ Rn|Hx ≤ θ},
the H-representation of its λ-scaled set λA is

λA = {x ∈ Rn|Hx ≤ λθ} (2.4)

Remark 2.4. Consider a set A. If the origin belongs to the strict interior of the set A then it

belongs also to the strict interior of its λ-scaled set λA. In this case, if λ ∈ R(0,1), then the set

λA is called λ-contraction.

Example 2.6. Consider the polyhedron A of Example 2.5. Its λ-scaled sets corresponding

respectively to λ = 0.5 and λ = 1.5 are shown in Fig. 2.6.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

λ = 1

λ = 0.5

λ = 1.5

Figure 2.6: λ-scaled set of A.

Remark 2.5. The multi-parametric toolbox MPT3 (see Herceg et al. (2013)) has been used

to compute the solutions and plot the results of the illustrative examples related to the set

operations.

We will present next the basic set approaches in control theory.
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2.2.2 Sets in control theory

In this section we introduce the fundamental concepts related to dynamics and sets, starting

from some basic definitions of invariance linked to the autonomous LTI dynamic equation. Note

that a domain, or a set of points in the state-space is invariant with respect to a given dynamics

if the future evolutions of its points are enclosed by this set.

Definition 2.8. (Blanchini and Miani (2007)) Consider an autonomous discrete-time LTI sys-

tem x(k+ 1) = Ax(k), where A is a Schur matrix3. A set S is called positive invariant (PI) for

this system, if x(k + 1) ∈ S for all x ∈ S, which is equivalent to AS ⊆ S.

Definition 2.9. (Blanchini and Miani (2007)) Consider an autonomous LTI system x(k+ 1) =

Ax(k) +w(k), where A is a Schur matrix. A set S is called robustly positive invariant (RPI) for

this system, if x(k+ 1) ∈ S for all x(k) ∈ S and w(k) ∈ W, which is equivalent to AS ⊕W ⊆ S.

The earlier work of Bitsoris (1988c) extends the concept of invariant set with respect to non-

autonomous discrete-time LTI dynamics. Precisely, the invariance is obtained via the existence

and interpretation of an exogenous input action making the considered set controlled invariant.

It is recalled in the definition below.

Definition 2.10. (Bitsoris (1988c)) Given the discrete-time LTI system dynamics x(k + 1) =

Ax(k) + Bu(k), with (A,B) controllable. A set S ∈ Rn is controlled invariant with respect to

this system, if for any x ∈ S there exists a control law u such that Ax(k) + Bu(k) ∈ S. If the

control has the linear feedback form u(k) = Kx(k), then S is linearly controlled invariant.

In the present thesis, for any polyhedron in H-representation, we will employ the algebraic

invariance conditions proposed in Bitsoris (1988c) as a main criterion to check the invariance of

a given polyhedral set. The following theorem summarizes these conditions.

Theorem 2.1. (Bitsoris (1988b)) A set S = {x ∈ Rn|Gx ≤ θ}, with G ∈ Rm⊗n and θ ∈ Rm,

is positively invariant with respect to the discrete-time LTI system dynamics x(k + 1) = Ax(k)

if and only if there exists a matrix H ∈ Rn×n with non-negative elements, such that GA = HG

and Hθ ≤ θ.

Beside the advantage of invariance certification, this theorem is useful for the control design due

to its formulation as an optimization problem.

Concerning the construction of invariant sets, there are several methods in the literature but

the complexity is their common drawback. A recent notable method is the work of Kofman

et al. (2007) related to the construction of a RPI set for discrete-time LTI autonomous systems

with bounded additive disturbances. This method reduces significantly the computation load

by exploiting the matrix structural properties of the system’s dynamics and allows us to off-line

predict the shape of the RPI set. We recall the main results in the following lemma.

3The notion in Bhatia (2013) is used here, where a Schur matrix is a square matrix with real entries and with
eigenvalues of absolute value less than one.
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Lemma 2.2. (Kofman et al. (2007)) Consider the system x(k + 1) = Ax(k) + w(k), with the

matrix A assumed to be a Schur matrix and a non-negative vector w(k) such that |w(k)| ≤ w̄,

∀w(k) ∈ W ⊂ Rn. Let A = V JV −1 be the Jordan decomposition of A, with V , J ∈ Rn×n. Then

the set

S = {x ∈ Rn : |V −1x| ≤ (I − |J |)−1|V −1w̄|} (2.5)

is robustly invariant with respect to the system dynamics.

Example 2.7. Let us consider the system x(k+1) = Ax(k)+w(k), withA =

[
0.1589 −0.0451

0.3112 0.5411

]
.

The disturbance is bounded, i.e. |w(k)| ≤

[
0.2

0.2

]
. Using Lemma 2.2, we obtain the RPI set S

S =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


−1.0374 −0.1370

1.0374 1.1370

1.0374 0.1370

−1.0374 −1.1370

x ≤


0.2936

0.8698

0.2936

0.8698




corresponding to the Jordan decomposition A = V JV −1, with J =

[
0.2 0

0 0.5

]
and V =[

−1.0961 −0.1321

1 1

]
.

Briefly, we presented above the basic notions of set and its application in control theory. The

next section will detail how to use Lemma 2.2 to construct the agent’s safety region and how

to apply set-theoretic notions to represent the collision avoidance constraints in the context of

Multi-Agent system.

2.3 Set-based collision avoidance guarantee

The collision avoidance can be understood as keeping a minimal distance between any pair of

agents. This leads to associate each agent with a safety region and hence the collision is avoided

by ensuring that these regions are non-overlapping. The construction of a safety region based on

Lemma 2.2 and with respect to the agent’s dynamics stabilized at the origin will be provided in

Section 2.3.1. Subsequently, we will explain in Section 2.3.2 how to formulate the anti-collision

constraints for Multi-Agent system using the notion of safety regions.

2.3.1 Robust tube-based safety region of an agent

We consider discretized linear time-invariant dynamical systems. Bounded additive disturbances

are considered, i.e.

x̃i(k + 1) = Aix̃i(k) +Biũi(k) + wi(k), i ∈ N (2.6)
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where wi(k) ∈ W is the disturbance vector, x̃i ∈ Rn and ũi ∈ Rm are the ith agent’s state and

input vector, respectively. In the present work it is assumed that the set W ⊂ Rn is bounded

and contains the origin in its interior. If the robust control input vector ũi in (2.6) accounts for

a nominal control action ui and a linear disturbance rejection term

ũi(k) = ui(k) +Ki (x̃i(k)− xi(k)) (2.7)

then, by denoting ei = x̃i − xi as the tracking error of the ith agent, the following expression is

obtained

ei(k + 1) = (Ai +BiKi)ei(k) + wi(k) (2.8)

Applying Lemma 2.2 for the tracking error equation, a robustly positive invariant set Si can be

constructed 4. This ensures that the tracking error ei(k) ∈ Si at each time instant if the initial

condition satisfies ei(0) ∈ Si. The set Si is considered as a basic geometrical domain describing

the safety region around the ith agent. Furthermore, although the real state x̃i is unknown due

to disturbances wi, its trajectory is always bounded by the parameterized tube

S(xi(k)) = {xi(k)} ⊕ Si (2.9)

Therefore, the nominal dynamics (2.1) together with its robust tube-based safety region are

used to characterize the behavior of an agent.

Example 2.8. Let us consider the ith agent of a MAS, which has the real dynamics (2.6) and

the nominal dynamics (2.1), with Ai =

[
−0.2 0.5

0.2 0.71

]
and Bi =

[
0.71

0.22

]
. The disturbance is

bounded, i.e. |w(k)| ≤

[
0.2

0.2

]
. The feedback gain Ki =

[
−0.5055 0.7677

]
of the control action

(2.7) is obtained by using pole placement technique, with 0.2 and 0.5 chosen as stable poles.

Lemma 2.2 can be employed to construct a RPI set with respect to the closed-loop dynamics

(2.8) of the tracking error ei = x̃i − xi between the real state and the nominal state. As

illustrated in Fig. 2.7, the real state x̃i (red line) is bounded at each time instant by a tube

S(xi) composed of its nominal state xi (blue line) and its safety region Si (polyhedron bounded

by black line).

2.3.2 Collision avoidance based on safety regions

The collision avoidance constraint between two agents can be described via the non-overlapping

of their safety regions, or in other words, their safety regions do not intersect, i.e.

S(xi) ∩ S(xj) = ∅,∀i 6= j

4This construction was introduced by Mayne et al. (2005) and applied for MAS in Prodan et al. (2011).
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S(xi) = {xi} ⊕ Si

Time instants

Nominal state xi
Real state x̃i

Figure 2.7: Robust tube-based safety region of an agent.

Using (2.9), this means that

({xi} ⊕ Si) ∩ ({xj} ⊕ Sj) = ∅

or equivalently

xj − xi /∈ (−Sj)⊕ Si,∀i 6= j

Example 2.9. Consider a MAS composed of N = 3 homogeneous agents having the same

dynamics with the agent in Example 2.8. Applying the tube-based construction to enclose each

agent nominal state xi within a safety tube S(xi), the anti-collision constraints while tracking

a reference signal xref (red dashed line in Fig. 2.8) are then guaranteed by means of avoiding

the intersection between the tubes S(xi).

2 3 4 5 6 7 8
2

3

4

5

6

7

8
xref
x̆1

x̆2

x̆3

Figure 2.8: Formation of 3 homogeneous agents.
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The constraint xj − xi /∈ (−Sj)⊕ Si,∀i 6= j can be translated into

xj − xi ∈ C((−Sj)⊕ Si)

with the complement set C((−Sj)⊕Si) being the union of the half-spaces5 sharing uniquely the

boundary with the prohibited set (−Sj)⊕ Si, i.e.

C((−Sj)⊕ Si) =
⋃

k∈N∂((−Sj)⊕Si)

Ck

We use N∂((−Sj)⊕Si) to denote the indices set of the boundaries of (−Sj)⊕ Si.

Example 2.10. Consider two agents with their corresponding safety regions as shown in Fig.

2.9. The V-representations of their safety region in R2 are respectively

S1 = conv

{[
−1

−1

]
,

[
1

−1

]
,

[
1

1

]
,

[
−1

1

]}

and

S2 = conv

{[
−1.4

−0.7

]
,

[
1.4

−0.7

]
,

[
0

1.4

]}
The collision avoidance constraint for these two agents are written as x2 − x1 /∈ (−S2) ⊕ S1

−1 0 1 2 3 4 5

1

2

3

x1 x2

S(x1)

S(x2)

Figure 2.9: Two agents with their corresponding safety region.

where the prohibited set (−S2)⊕ S1 (colored in red in Fig. 2.10) has its H-representation

(−S2)⊕ S1 =


x ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0 −0.3846

0.3491 −0.2327

0.3846 −0

0 0.5070

−0.3846 0

−0.3491 −0.2327


x ≤



0.9231

0.9077

0.9231

0.8619

0.9231

0.9077




5This way of decomposition is not unique, i.e. the complement set C((−Sj) ⊕ Si) can be described as the

union of cones.
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The anti-collision constraint x2−x1 /∈ (−S2)⊕S1 can be translated into x2−x1 ∈ C((−S2)⊕S1).

This non-convex complement set C((−S2) ⊕ S1) is covered by the blue colored half-spaces in

Fig. 2.10.

−4 −2 0 2 4
−4

−2

0

2

4

(−S2)⊕ S1

C1

(a)

−4 −2 0 2 4
−4

−2

0

2

4

(−S2)⊕ S1

C2

(b)

−4 −2 0 2 4
−4

−2

0

2

4

(−S2)⊕ S1

C3

(c)

−4 −2 0 2 4
−4

−2

0

2

4

(−S2)⊕ S1

C4

(d)

−4 −2 0 2 4
−4

−2

0

2

4

(−S2)⊕ S1

C5

(e)

−4 −2 0 2 4
−4

−2

0

2

4

(−S2)⊕ S1

C6

(f)

Figure 2.10: Prohibited anti-collision set (−S2)⊕S1 (red) and its complement set C(−S2⊕S1)
(blue).

Each half-spaces has its own H-representation derived from x2 − x1 /∈ (−S2)⊕ S1:

• Fig. 2.10 (a) C1 =
{
x ∈ R2

∣∣∣[0 −0.3846
]
x ≥ 0.9231

}
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• Fig. 2.10 (b) C2 =
{
x ∈ R2

∣∣∣[0.3491 −0.2327
]
x ≥ 0.9077

}
• Fig. 2.10 (c) C3 =

{
x ∈ R2

∣∣∣[0.3846 −0
]
x ≥ 0.9231

}
• Fig. 2.10 (d) C4 =

{
x ∈ R2

∣∣∣[0 0.5070
]
x ≥ 0.8619

}
• Fig. 2.10 (e) C5 =

{
x ∈ R2

∣∣∣[−0.3846 0
]
x ≥ 0.9231

}
• Fig. 2.10 (f) C6 =

{
x ∈ R2

∣∣∣[−0.3491 −0.2327
]
x ≥ 0.9077

}
Briefly, in the present section, we presented the main set-theoretic ingredients necessary to

design formation control subject to anti-collision constraints. In particular, we provided the

construction of the safety region around each agents state based on Lemma 2.2 combined with

a linear feedback control (2.7) taking into account the difference between the nominal state

and the real state of the agent. The anti-collision constraints are formulated by means of the

exclusion between the safety regions and thus emphasize their non-convex nature. We will

provide our proposed control design subject to these constraints in Chapter 3.

In the following, we will mention the prerequisites related to safe deployment of Multi-Agent sys-

tem, which is one of the main topics discussed in this thesis beside the formation control subject

to anti-collision constraints. The kind of deployment studied is Voronoi-based deployment.
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2.4 Voronoi-based deployment

This section provides the basic mathematical elements for the Voronoi-based deployment for-

mulation, starting from the definition of the classical Voronoi tessellation (see Voronöı (1908))

and the generalization proposed by Dirichlet (1850) in Section 2.4.1. We will emphasize also in

some cases, the superposition of agents outputs do not allow using classical Voronoi formulation

to construct the partition. These cases are known as singularities of Voronoi partition. An

algorithm is provided in Section 2.4.1 to cover these singularities. Moreover, the remaining sub-

sections will formulate the Voronoi-based optimal configuration (in Section 2.4.2) and further

present several types of optimal configuration associated to the inner points chosen as the tessel-

lation generators. We will introduce the basic definitions of the chosen inner points such as the

center of mass in Section 2.4.2.1 (see Cortes et al. (2002)) and the Chebyshev center in Section

2.4.2.2 (see Boyd and Vandenberghe (2004)) with their corresponding computation framework

and optimal configuration. Notice that the center of mass with its corresponding centroidal

Voronoi partition is a well-known problem recalled usually in the literature (see Cortes et al.

(2002), Cortes et al. (2005), Schwager et al. (2009), Moarref and Rodrigues (2014) and Nguyen

et al. (2016a)). Beside this, the Chebyshev center can also be employed to find the optimal

Voronoi-based coverage (see Nguyen et al. (2016c)). Its main advantage comes from a simplified

computation based on set-theoretic operations.

2.4.1 Conventional Voronoi partition

We introduce next the neighborhood corresponding to an agent output yi when this agent is

part of the tuple (y1, y2, . . . , yN ) ∈ WN . A partition of the working space V(y1, . . . , yN ) needs

to be computed, by decomposing W into a union of non-overlapping sets

W = V(y1, . . . , yN ) =
N⋃
i=1

Vi, with Vi ∩ Vj = ∅, ∀i, j ∈ N (2.10)

A natural mathematical definition of such a decomposition is provided by the Voronoi partition,

which characterizes the neighborhood Vi(yi) as

Vi = {y ∈ W|‖yi − y‖ ≤ ‖yj − y‖,∀j 6= i} (2.11)

From this definition, it follows that ‖yi−y‖2 ≤ ‖yj−y‖2 yielding (yi−y)>(yi−y) ≤ (yj−y)>(yj−
y). This leads to 2(yj − yi)>y ≤ ‖yj‖2 − ‖yi‖2 and thus allows to obtain the H-representation

of Vi, i.e.

Vi = {y ∈ W|2(yj − yi)>y ≤ ‖yj‖2 − ‖yi‖2,∀j 6= i} (2.12)

It is worth mentioning that each set Vi is a polytope as a consequence of the boundedness of

W and the structure of the constraints in (2.11).
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The cardinality remains constant in (2.10), as well as the structure of the constraints in (2.12),

and thus each point is associated to a set called neighborhood within the partition yi ↔ Vi.

Example 2.11. Let us consider a group of 4 agents deployed over a bounded region

W = conv

{[
−10

−10

]
,

[
15

−10

]
,

[
15

10

]
,

[
−10

10

]}
⊂ R2

The positions of the agents are respectively x1 =

[
−2

4

]
, x2 =

[
3

2

]
, x3 =

[
−7

−6

]
and x4 =

[
−3

−4

]
.

The Voronoi partition corresponding to these agents positions are shown in Fig. 2.11.

−10 −5 0 5 10 15

−10

−5

0

5

10 W

x1

x2

x3

x4

Figure 2.11: Voronoi partition for a group of 4 given points in R2.

Remark 2.6. The use of the Voronoi partition based on (2.12) for the Multi-Agent system Σ

builds on the definition of the Voronoi cell which handles the difference ‖yj − yi‖. Note that

the superposition of agents outputs in Σ leads to a singularity on the half-space definition in

(2.12) and calls for a generalization of the Voronoi partition.

The principle of the partition of the output space remains however valid, the only problem being

related to the singularity in (2.12). In the present framework, such singularities are handled

within the following algorithm.

Algorithm 1: Compute Voronoi partition corresponding to the current agents outputs

Input : Agents outputs y1, y2, . . . , yN

Output: Voronoi partition V = V
(
y1, y2, . . . , yN

)
1 - Find the distinct positions between the outputs y1, y2, . . . , yN and store the multiplicity of

each point (the number of agents sharing the same position);

2 - Build the Voronoi partition for the distinct positions;

3 - Replace each cell corresponding to points with multiplicity higher than 1, by a conic

sub-partitioning via a number of hyperplanes (equal to the number of agents) passing through

their common position.

Remark 2.7. Notice that the step 3 of Algorithm 1 is trivial in dimension p ≥ 2 where the

choice of the sub-partitioning in r cells can follow a partition of R2 in cones with angles of
2π

r
.
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Remark 2.8. The case p = 1 represents singularity with respect to the above space partition.

The reason is that the bounded working region in this case has the form of a segment. Therefore,

the sub-partitioning can be fulfilled by dividing the working region into a set of segments such

that the number of segments equals the multiplicity. It is worth to mention that the generator

point may not be included inside the generated segments.

In the sequel, we provide some examples to illustrate respectively the cases of singularities in

R, R2 and R3.

Example 2.12. In Fig. 2.12, the red segments represent the working regionW = {x ∈ R|−40 ≤
x ≤ 60}. The blue point yi = 52 is the agent position. If the singularity is higher than 1, which

means the superposition of more than one agent in this blue point. The partition is realized to

obtain a set of equal segments corresponding to the level of multiplicity. Note that the agents

may not be included inside the generated segments, which is coherent with Remark 2.8. We

show in Fig. 2.12 respectively the partition of W into 2, 3 and 4 equal segments corresponding

to the number of agents superposed.

40 45 50 55 60

y1

(a)

40 45 50 55 60

y1 = y2

(b)

40 45 50 55 60

y1 = y2 = y3

(c)

40 45 50 55 60

y1 = y2 = y3 = y4

(d)

Figure 2.12: Singularity cases and Voronoi partition in R.
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Cases Multiplicity Number of equal segments

Fig. 2.12 (a) 1 1

Fig. 2.12 (b) 2 2

Fig. 2.12 (c) 3 3

Fig. 2.12 (d) 4 4

Example 2.13. Four examples illustrating the singularity cases of Voronoi partition in R2 are

shown in Fig. 2.13. In case (a), obviously there is no superposition in case of one unique agent

thus the singularity is avoided. In the three remaining cases, the singularity is caused by the

superposition of the agents positions at yi =

[
0

0

]
and the partition is obtained by following

Remark 2.7.

−1 0 1

−1

0

1

y1

(a)

−1 0 1

−1

0

1

y1 = y2

(b)

−1 0 1

−1

0

1

y1 = y2 = y3

(c)

−1 0 1

−1

0

1

y1 = y2 = y3 = y4

(d)

Figure 2.13: Singularity cases and Voronoi partition in R2.

Cases Multiplicity Number of cells Angle

Fig. 2.13 (a) 1 1
2π

1

Fig. 2.13 (b) 2 2
2π

2

Fig. 2.13 (c) 3 3
2π

3

Fig. 2.13 (d) 4 4
2π

4

Example 2.14. Fig. 2.14 shows the Voronoi partition in R3 of a bounded region W i.e.

W = conv


0

0

0

 ,
100

0

0

 ,
100

80

0

 ,
 0

80

0

 ,
 0

0

40

 ,
100

0

40

 ,
100

80

40

 ,
 0

80

40


 ⊂ R3
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In Fig. 2.14 (a) we show the case when there is no singularity in R3 because the multiplicity

is one. In Fig. 2.14 (b), 4 agents are present at the position y =

50

40

25

. According to Remark

2.7, the sub-partitioning is done in the sub-dimensional R2 thus we get 4 non-overlapping cells

as similar to Example 2.13. These cells are further translated reversely into R3.

0 20 40 60 80 100 0

50

0

20

40

y1 = y2 = y3 = y4

(a)

0 20 40 60 80 100 0

50

0

20

40

y1 = y2 = y3 = y4

(b)

Figure 2.14: Singularity cases and Voronoi partition in R3.

Cases Multiplicity Number of cells in R2 Angle

Fig. 2.14 (a) 1 1
2π

1

Fig. 2.14 (b) 4 4
2π

4

In conclusion, we recalled in this section the basic formulation of Voronoi partition. Its limita-

tions in case of superposition of the agents outputs were provided with our algorithm to cover

these limitations. We will formulate next the application of Voronoi partition in the context of

Multi-Agent systems deployment.

2.4.2 Voronoi based optimal configuration

Let us consider the Multi-Agent system Σ in (2.2). Using its available output measurement

(which satisfies the assumption that yi(k) ∈ W) at the time instant k, the geometric formulation

(2.10) leads to a time-varying Voronoi partition (TVV)

V(y1(k), . . . , yN (k)) =

N⋃
i=1

Vi(k) (2.13)

Given this static notion, the goal from the control design point of view will be to stabilize a

time-varying Voronoi partition or more specifically, maximize the coverage over the deployed

region by driving the agents towards an optimal configuration not predetermined. The effective
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developments will be detailed in Chapter 4 but we provide here the definition of the Voronoi-

based optimal configuration for the Multi-Agent system (2.2)

Definition 2.11. A Voronoi-based configuration of dynamical agents is optimal if the output

yi(k) coincides with the selected inner target (equilibrium) point ȳi(k) inside its corresponding

Voronoi cell.

Remark 2.9. The formulation Voronoi-based can be extended to ”Generalized Voronoi par-

titions” which allow the target points to be outside the cell itself. However, this theoretical

extension has not been considered in the present work due to the lack of interest for such a

pathological distribution of the optimal configuration.

According to Definition 2.11, the type of optimal configuration is not unique but strictly depends

on the choice of the inner target point. In the next subsections, we will present the computation

of some selected inner target point studied in the thesis such as the center of mass in Section

2.4.2.1 and and the Chebyshev center in Section 2.4.2.2 and also provide their corresponding

Voronoi based optimal configurations. We give also Examples 2.16 and 2.18 to illustrate these

optimal configurations and further detail their computation in Chapter 4.

2.4.2.1 Centroidal Voronoi configuration based on the center of mass

The mass MV and the center of mass CMV (so called the centroid) of a given bounded convex

polyhedron V ⊂ W are respectively defined as detailed in Moarref and Rodrigues (2014)

MV =

∫
V
φ(q)dq (2.14)

CMV =

∫
V
qφ(q)dq∫

V
φ(q)dq

(2.15)

with the density function φ :W → R+ denoting the priority of coverage at a point q ∈ W.

It is worth to mention that the equations (2.14) and (2.15) require a lot of computational

resources because their complexity increases with the dimension of the state-space and the kind

of density function φ. Moreover, to the best of our knowledge, there is no explicit formulation

to compute the mass and the center of mass with a general density function6 φ. We show a

bounded polyhedron with its mass and center of mass in Example 2.15.

Example 2.15. Consider a bounded polyhedron shown in Fig. 2.15

V = conv

{[
−2

−2

]
,

[
4

−2

]
,

[
1

1

]
,

[
−1

1

]}
⊂ R2

6The explicit formulations to compute the mass and the center of mass of a closed polyhedron in R2 with a
uniform density function, i.e. φ(q) = 1, ∀q are introduced by Cortes et al. (2002).
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The density function is uniform, i.e. φ(q) = 1, ∀q.

Using the equations (2.14) and (2.15), the mass and the center of mass (yellow point) are

respectively MV = 13.5277 and CMV =

[
0.3338

−0.6664

]
.

−2 −1 0 1 2 3 4

−2

−1

0

1

V
CMV

Figure 2.15: Mass MV and center of mass CMV of polyhedron V with the uniform density
function.

According to two formulations (2.14)-(2.15) used to compute the mass and the center of mass

of a given polyhedron, we can apply these results for a Multi-Agent system deployment after

each time of partition. Therefore, the Voronoi-based optimal configuration corresponding to the

center of mass chosen as inner target point is defined in Definition 2.12. In Example 2.16, we

show the CVC over a region W where a MAS composed of N = 7 agents is deployed.

Definition 2.12. A Centroidal Voronoi Configuration of MAS (2.2) is defined as a configuration

where each agent observed output yi coincides with the center of mass of its corresponding

Voronoi cell, i.e. yi = CMVi
,∀i ∈ N .

Example 2.16. Consider a MAS composed of N = 7 agents. These agents are deployed within

a bounded region

W = conv

{[
0

0

]
,

[
6

0

]
,

[
6

6

]
,

[
0

6

]}
⊂ R2

A Centroidal Voronoi configuration for this MAS is shown in Fig. 2.16 where the position of

each agent (denoted by blue circle) coincides with its center of mass (denoted by red dot).

The positions of the agents are respectively y1 = CMV1
=

[
3.224

3.135

]
, y2 = CMV2

=

[
4.738

4.913

]
,

y3 = CMV3
=

[
5.013

2.254

]
, y4 = CMV4

=

[
3.553

0.644

]
, y5 = CMV5

=

[
1.303

1.11

]
, y6 = CMV6

=

[
0.921

3.354

]
and

y7 = CMV7
=

[
1.707

5.167

]
.
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y5

y6
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Figure 2.16: Centroidal Voronoi configuration over W of N = 7 agents.

2.4.2.2 Chebyshev static configuration based on the Chebyshev center

Consider a bounded convex polyhedron V =
{
x ∈ Rn|a>i x ≤ bi, i ∈ N[1,m]

}
. The Chebyshev

center x̄ of V is defined as the center of the largest ball B = {x ∈ Rn| ‖x− x̄‖ ≤ r} included

in V, with r denoting its radius. The values of (x̄, r) are obtained by solving this optimization

problem:

max r

s.t:

{
aTi x̄+ ‖ai‖r ≤ bi, ∀i ∈ N[1,m]

r ≥ 0

(2.16)

By exploiting the Karush-Kuhn-Tucker condition (see Boyd and Vandenberghe (2004)) of the

problem (2.16), we get the equations defining the center x̄ and the radius r, i.e.:

aTj∗x̄+ ‖aj∗‖r = bj∗, j
∗ ∈ {1, . . . ,m} (2.17)

with j∗ denoting the index of the activated constraints. Hence if
[
aj∗ ||aj∗||

]
is invertible, one

can have a unique relationship which links directly the Chebyshev center x̄ and radius r to the

facets describing V, i.e. [
x̄

r

]
=
[
aj∗ ‖aj∗‖

]−1
bj∗ (2.18)

Notice that compared with the equation (2.15) used to compute the center of mass, the compu-

tation of Chebyshev center in (2.16) is simpler. This comes from its explicit formulation (2.18)

where the Chebyshev center and radius are the solution of a combination of linear equations.

In Example 2.15, we show a bounded polyhedron with its Chebyshev center.
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Example 2.17. Let us consider the polyhedron V in Example 2.15. Its H-representation is

V =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


0 −0.4472

0.4082 0.4082

0 0.7071

−0.5883 0.1961

x ≤


0.8944

0.8165

0.7071

0.7845




Solving the problem (2.16) gives us the Chebyshev center x̄ =

[
0.0811

−0.5

]
(red dot in Fig. 2.17)

and the radius r = 1.5, corresponding to the set of activated constraints 0 −0.4472

0 0.7071

−0.5883 0.1961

x ≤
0.8944

0.7071

0.7845


and the following equations to compute x̄ and r with respect to the equation 2.18.

0 −0.4472

0.4082 0.4082

0 0.7071

−0.5883 0.1961

‖ 0 −0.4472 ‖
‖ 0.4082 0.4082 ‖
‖ 0 0.7071 ‖

‖ − 0.5883 0.1961 ‖


[
x̄

r

]
=


0.8944

0.8165

0.7071

0.7845



−2 −1 0 1 2 3 4

−2

−1

0

1

x̄ V

Figure 2.17: Chebyshev center of a polyhedron V.

According to the equation (2.18) used to compute the Chebyshev center and radius of a given

polyhedron, we apply this equation for a Multi-Agent system deployment after each time of

partition. Therefore, the Voronoi-based optimal configuration corresponding to the Chebyshev

center chosen as inner target point is defined in Definition 2.13. In Example 2.18, we show the

CC over a region W where a MAS composed of N = 7 agents is deployed.

Definition 2.13. A Chebyshev configuration (CC) of MAS (2.2) is defined as a configuration

where each agent observed output yi coincides with the Chebyshev center of its corresponding

Voronoi cell, i.e. yi = ȳi,∀i ∈ N .
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Example 2.18. Consider the MAS and the region W given in Example 2.16. A Chebyshev

configuration for this MAS is shown in Fig. 2.18 where the position of each agent (denoted by

blue circle) coincides with its center of mass (denoted by red dot).

0 1 2 3 4 5 6

0

1

2

3

4

5

6

y1

y2

y3

y4

y5

y6

y7

W

Figure 2.18: Chebyshev configuration over W of N = 7 agents.

The positions of the agents are respectively y1 = ȳ1 =

[
3.029

5

]
, y2 = ȳ2 =

[
4.991

4.519

]
, y3 = ȳ3 =[

4.992

2.502

]
, y4 = ȳ4 =

[
1.617

1.011

]
, y5 = ȳ5 =

[
1.011

2.94

]
, y6 = ȳ6 =

[
1.01

4.962

]
and y7 = ȳ7 =

[
3.637

1.009

]
.

Briefly, in this section, we firstly recalled the basic definition of Voronoi partition and further

extend this to Multi-Agent system deployments. The ultimate goal for such Multi-Agent system

application is to maximize the coverage over a deployed region while converging towards an

optimal configuration not predetermined. Two kinds of optimal configurations were described

and compared in terms of computational aspects, corresponding respectively to the center of

mass and the Chebyshev center.

2.5 Some concluding remarks

This present Chapter provided the set-theoretical prerequisites necessary for the manuscript.

We started by introducing in Section 2.1 the linear time-invariant dynamics characterizing the

agent’s behavior in a Multi-Agent system.

After, we recalled in Section 2.1 some of the fundamental notions in set theory related to

polyhedral and ellipsoidal sets families. Their adaptation in view of the application on dynamical

Multi-Agent systems analysis and design was detailed subsequently. The choice of polyhedral

set is supported by the versatility of its dual (half-spaces/vertices) representation leading to
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computation advantages and straightforward implementation (construction of safety region,

obstacle) and also by its formulation for the optimization-based control framework (construction

of feasible sets). Ellipsoidal set is employed further in Chapter 3 in order to imply the controlled

invariance without regarding the feasibility of the control solution. The invariance notion is used

to construct the robust tube-based safety region of an agent based on the knowledge of agent’s

dynamics and the boundedness of additive uncertainties. This allows defining a formation in

terms of geometrical interpretation, and further formulating collision avoidance constraints as

the non-overlapping of safety regions. These properties are the main ingredients to design

the formation control subject to anti-collision constraints in Chapter 3 and further the fault

detection and isolation layer in Chapter 5.

The remaining sections in this chapter focused on introducing the backgrounds of Voronoi

partition and Voronoi-based deployment. We provided also our constructive solution to cover

the singularities in the classical Voronoi partition. Furthermore, in the context of Voronoi-based

deployment, the ultimate goal is to maximize the coverage over the deployed region of a Multi-

Agent system by driving the agents towards an optimal configuration associated with a selective

target point inside each Voronoi cell. The conventional point is the center of mass, which leads to

an optimal configuration called Centroidal Voronoi configuration. The control solution to obtain

such configuration will be detailed in Appendix B. Beside this, we chose also the Chebyshev

center as the inner target and provide the formulation of the optimal configuration associated

with this center. Chapter 4 will detail how to obtain an optimal configuration. Other kind of

target point such as vertex interpolation center will be considered later in Appendix A in with

their corresponding Voronoi-based optimal configuration.





Chapter 3

A constructive solution for

decentralized collision avoidance

Collision, understood as non-respect of constraints, represents one of the most difficult challenges

for the control of dynamical systems in general and by consequence for mobile agents formation

based applications in particular. This problem attract considerable attention principally due

to the major impact relating to serious damages during the MAS functioning (e.g. robotics,

UAV or AUV maneuvering), and thus making collision avoidance the prior objective of MAS

supervision. In the context of mission safety guarantee, many works focus on development of

fault-tolerant formation control subject to collision avoidance constraints.

From the set-theoretic point of view, collision avoidance objective can be translated into non-

overlapping conditions for the safety regions characterizing each agent/obstacle. Concretely,

this objective can be described as an exclusion of the operating zones for any pairs of agents

(Nguyen et al. (2015b)), or exclusion of the functioning region from the obstacles (Raković and

Mayne (2005), Prodan (2012)). The paper Raković and Mayne (2005) presents a set-based

exclusion of the obstacles and then determination of admissible regions, by using polyhedral

algebra and linear programming framework.

A notable contribution in applying set-theoretic tools in anti-collision control is proposed by

Bitsoris and Olaru (2013). In this work, the authors point out that regulating a system sub-

ject to anti-collision constraints is equivalent to steer the state towards an equilibrium point

outside its convex polyhedral domain of attraction. The positively invariance principle which

had been developed before by Bitsoris (1988a) was employed to compute the linear feedback

control avoiding the collision with prohibited obstacles. The computation follows the linear

programming based control design presented in Bitsoris and Gravalou (1999).

These theoretical notions have been pointed out by Prodan (2012) as viable design tools for

MAS centralized formation control subject to anti-collision constraints. This work proposes to

compute beforehand a set of linear piecewise affine control solutions subject to anti-collision

47
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constraints, which allows keeping the entire MAS functioning strictly within a corresponding

safe polyhedral zones inside the non-convex region built on anti-collision constraints (see Sec-

tion 2.3.2). After finding the feasible solutions, a centralized MPC framework can be derived

according to the principle of inverse optimality (see Larin (2003)).

Borrelli et al. (2004) and Keviczky et al. (2008) developed decentralized collision-free formation

control using MPC for a group of vehicles. Collision avoidance is ensured by considering an

emergency maneuver which is implemented in case where the agents are going to disobey the

constraints. Bounds on the agents speeds and accelerations are computed off-line such that the

implementation of the emergency maneuver leads to collision-free trajectories. Other contribu-

tions of Nersesov et al. (2010) relate to applying set-theoretic methods to design decentralized

control for the multi-vehicle coordinated motion, but the main ingredients focus on studying

the stability proof in the sense of a vector Lyapunov function for a group of continuous-time

dynamics (see Lakshmikantham et al. (1991), Nersesov and Haddad (2006)).

Bemporad and Rocchi (2011) proposed an hierarchical control scheme using decentralized MPC

techniques to avoid the collision with the obstacle. The authors of this work approximate the

non-convex feasible space where the agent can navigate without collision with the obstacles by

a convex polyhedron. Bencatel et al. (2011) proposed sliding mode control based on keeping

a constant distance between the agents, thus offering also collision avoidance guarantee while

trading the tightness of the formation. Khatib (1986) constructed a family of potential and

navigation functions to guide a group of multi-robots avoiding the obstacle.

In this context, the aim of the present chapter is to propose a new decentralized approach to

guarantee the collision avoidance using the leader-follower structure. In order to simplify the

presentation of the results, the methodology will be described in R2, while the principles remain

general. This work can be considered as a natural extension of the theoretical results presented

in Bitsoris and Olaru (2013) but applied for MAS and developed in a decentralized manner

from the control computation point of view. We will analyze the restrictions of the method

developed in Bitsoris and Olaru (2013), i.e. its feasibility limits and infeasible situations. Our

main objective is to partition the working space into a collection of safety zones. Each of

these zones is associated with only one agent and our novel control strategy will keep the agent

operating in the interior of this zone, offering anti-collision guarantees. The results of this

chapter are built on the published contributions in Nguyen et al. (2015b) and Nguyen et al.

(2016b).

In the following, Section 3.1 recalls the main ingredients of the decentralized structure for

dynamical MAS. The main contribution is described in Section 3.2. Here, we analyze the

cases leading to feasibility limitations or infeasibility of the decentralized control action for

Multi-Agent system and further propose new guaranteed solutions based on set-theoretic tools.

Numerical simulation results are illustrated in Section 3.3, followed by some concluding remarks

in Section 3.4.
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3.1 Decentralized approach

The decentralized structure considered in this chapter is the leader-follower architecture Stanković

et al. (2000). In principle, an agent must be in relative formation and observe a number of con-

straints with respect to their leader.

Assumption 2. Each follower is connected uniquely to one leader which is the only one who

possesses the complete information on its followers.

Figure 3.1 below illustrates a simple example emphasizing the difference between the decentral-

ized (the 1st agent is the leader) and the centralized approaches.

1

2 3

1

2 3

Figure 3.1: Decentralized (left) and centralized (right) communication graph.

In this section, we will present firstly the leader-follower structure in Section 3.1.1 and further

the control strategy used to ensure the collision avoidance in Section 3.2. For brevity of the

notation and presentation, the group of agents will be considered to evolve in R2 and the ith

agent will be considered as the leader.

3.1.1 Leader-follower architecture

Consider a group of N agents with the ith agent being the leader. F i ⊆ N[1,N ] \ {i} is the set of

indices of its followers identified by the existence of a connection to the node i.

The local closed-loop of the jth follower is

x+
j = Ajxj +Bjuj (3.1)

with its local control

uj = ūij +K(xj , x̄
i
j) (3.2)

The pair (x̄ij , ū
i
j) ∈ Rn × Rm represents the tracking reference of the jth follower, according to

the current state and control action (xi, ui) ∈ Rn × Rm communicated by the leader. An offset

free pair (x̄j , ūj) ∈ Rn × Rm is added to (x̄ij , ū
i
j) to avoid the collision with the leader, i.e.

x̄ij = x̄j + xi

ūij = ūj + ui

The collision avoidance is guaranteed if each follower operates strictly in its functioning zone

relative to the position of the leader. This zone is defined by the leader and identified by a
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separating hyperplane for any pair of followers. Its construction is presented in the following

subsection.

3.1.2 Partitioning in functioning zones

The leader uses a set of hyperplanes to separate the functioning zone of its followers, more

precisely it partitions the working space into a union of polyhedral non-overlapping separation

sets. Each set is associated to a follower and defines its functioning zone. For the jth follower,

its separation set Cij is defined as a cone

Cij = {x ∈ Rn|Ci(x− xi) ≤ 0, j ∈ F i} (3.3)

where Ci(x − xi) = 0 denotes the set of hyperplanes used to isolate the jth follower from its

neighbors, and F i denotes the indices set of the followers.

Remark 3.1. Instead of determining the functioning zone relative to the position of the leader,

it can be translated without loss of generality to a positioning relative to the origin, i.e. (xi, ui) =

(0, 0).

Clearly, the hyperplanes pass through the leader current state, now reduced to the origin by a

change of coordinates.

Remark 3.2. The choice of the separating hyperplanes Cix = 0 is important because it decides

the existence of a feasible control action on the boundary of the separation set.

Assumption 3. In the remaining of this chapter it is assumed that the hyperplanes Cix = 0

are given and the sets Cij are non-overlapping.

In order to ensure the collision avoidance, the state xj has to satisfy the two following constraints:

xj /∈ int {(−Sj)⊕ Si} (3.4a)

{xj} ⊕ Sj ∈ Cij (3.4b)

with Si, Sj denoting respectively the safety regions of the leader and the jth follower. Cij denotes

the separation set of this follower. The constraint (3.4a) guarantees the collision avoidance

between the jth follower and the leader, with respect to Section 2.3.2. This constraint is derived

from xj − xi /∈ (−Sj) ⊕ Si, with xi being the origin (see Remark 3.1). The constraint (3.4b)

guarantees the collision avoidance with the other followers. The jth follower with its safety

region1 is the unique agent belonging to the separation set Cij . This implies the anti-collision

with its neighbors, i.e. S(xj) ∈ Cij . Using (2.9), we obtain {xj}⊕Sj ∈ Cij . These two constraints

1Note that, the effect of the possible disturbances is taken into account via the safety region Sj . In fact, a
hard constraint is imposed via (3.4b) for the center xj of the tube in steady functioning.
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determine the non-convex functioning zone Z ij ⊂ Cij in which xj has to evolve in order to ensure

collision-free maneuvering of the formation.

Z ij =
{
x ∈ Rn|{x} ⊕ Sj ∈ Cij , x /∈ int {(−Sj)⊕ Si}

}
(3.5)

The collision avoidance is guaranteed by means of stabilizing the follower’s dynamics around a

fixed point of its functioning zone. We will detail next how to determine this fixed point.

3.1.3 Local fixed point determination

Starting from the characterization of the functioning zone sent by the leader, each follower

has to find the best suitable equilibrium point relative to the origin (considered as the leader’s

state with respect to Assumption 3.1). This represents one of the conceptual contributions

of the present work with respect to the existing results which impose the local target via the

centralized decision or directly by communication with the leader.

In the present framework, the local fixed point is characterized by solving locally the optimiza-

tion problem:

x̄∗j = arg min
ūj
‖x̄j‖ (3.6a)

s.t. x̄j ∈ Zij (3.6b)

x̄j = Aj x̄j +Bj ūj (3.6c)

The constraint (3.6b) implies that the non-convex set Z ij called operating zone contains the

local fixed point x̄j , as illustrated in Fig. 3.2 (with i = 1 and F i = {2, 3}). Note that the set

Z ij does not contain the origin with respect to the condition (3.4a). The remaining constraint

(3.6c) enforces the fixed point characterization.

Remark 3.3. In order to avoid the non-convexity of Z ij , the constraint (3.6b) will be replaced

for the local feedback design by xj ∈ Hij , with Hij ⊂ Zij a convex region with the following

property:

Hij =
{
Cij 	 Sj

}
∩ {hzx ≤ kz} (3.7)

with {hzx = kz} the constraints activated when verifying the inclusion x̄∗j ∈ {(−Sj)⊕ Si}.

Example 3.1. Consider a MAS composed of 3 homogeneous agents. The 1st agent is the

leader and the two remaining agents are its followers. Moreover, the leader resides at the origin.

We will illustrate the construction of the functioning zones for the followers in Fig. 3.2. The

forbidden blue set represents the anti-collision constraints (−Sj)⊕Si between the leader and its

followers (see the constraint (3.4a)). The green line represent the hyperplane used to separate

the two followers, which in fact defines the separation sets C1
2 (on its left hand side) and C1

3 (on

its right hand side) (see the definition (3.3)). Therefore, using the formulation (3.5), we can

built the non-convex zones Z1
2 and Z1

3 bounded by the black dash-line. The fixed points (x̄∗2,
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Figure 3.2: Determination of H1
2 and H1

3 for the 2nd and 3rd agent.

x̄∗3) found by solving (3.6) are plotted as the circle-red points2. Using (3.7), we can choose the

functioning zones H1
2 and H1

3 based on the hyperplanes activated by the fixed points and the

hyperplane used to separate the follower. These functioning zones H1
2 and H1

3 are covered by

green in Fig. 3.2.

Once the feasibility of the static optimization problem is guaranteed, each follower has to design

its individual control policies to keep its own trajectories within its functioning zone Hij and to

asymptotically converge to the fixed point x̄j solution of the optimization problem (3.6). This

control law will be developed in the next subsection.

3.1.4 Individual feedback control

In the sequel, for brevity, we will neglect the follower indices in the notations. The nominal

local dynamics of a follower x+ = Ax+Bu, its functioning zone H and its fixed point x̄ relative

to the origin are considered known.

It will be considered that H ⊂ R2 is represented as the combination of linear inequalities H =

{x ∈ Rn|hx ≤ k} similar to the one illustrated in the Fig. 3.2 where not all hyperplanes forming

H are activated by x̄ (as part of them are inherited from the functioning zone constraints).

We denote by {h1x = k1} the set of hyperplanes activated by x̄ and {h2x = k2} the remaining

hyperplanes3.

The goal is to ensure that the follower’s state x will converge asymptotically to the fixed point

x̄ lying on the boundary h1x = k1, while the trajectory remains in the functioning zone H
2In the present case, they are placed on the same read line of fixed-points due to the homogeneity of the

agents’ dynamics but in the general case, they follow the structure imposed by the local dynamics.
3If the fixed point saturates both constraints, then all boundaries are activated by this point, and should be

taken into account in the local control design. It remains to consider the feasibility of the control computation,
according to the conclusion in Bitsoris and Olaru (2013)
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according to the constraints (3.4). This requires the design of a feedback linear control4:

u = K(h1, k1)x (3.8)

which makes the set H positive invariant and also stabilizes the closed-loop dynamics of the

follower. According to Bitsoris and Olaru (2013), such a control law (3.8) exists if and only if

there exist a non-negative matrix F and a symmetric positive definite matrix P = P> � 0 such

that the following feasibility problem is verified

h1 (A+BK) = Fh1 (3.9a)[
δP (A+BK)P

P>(A+BK)> P

]
� 0 (3.9b)

with the decision variables F , K and P . The constraint (3.9a) expresses the invariance condition

(see Definition 2.10 and Theorem 2.1), while (3.9b) formulates the Lyapunov stability constraint,

with 0 < δ < 1 the rate of convergence which is a parameter of this optimization problem.

By using a new variable Y = KP , the problem (3.9) becomes

h1 (AP +BY ) = Fh1P (3.10a)[
δP AP +BY

(AP +BY )> P

]
� 0 (3.10b)

which can be numerically solvable by choosing an appropriate value5 for F .

However, solving this problem for h1x ≤ k1 could face particular (infeasible) situations which

will be discussed in the next section.

3.2 Main contribution

This section considers the two possibilities of solving the fesibility problem (3.9):

1) Feasibility: In this case, we can compute a control u = K(h1, k1)x which ensures the controlled

invariance property of the domain described by the half-space active at x̄, i.e. h1x ≤ k1. What

remains to be considered is the satisfaction of the inactive constraints at x̄, i.e. h2x ≤ k2, or

equivalently, the controlled invariance of this domain with respect to the control u.

2) Infeasibility: The set H is not controlled invariant even if the closed-loop dynamics is stabi-

lized. In this case, the constraints (3.9) hold for a strict subset of H (i.e. the control law (3.8)

makes a strict subset of H positive invariant).

4If k1 6= 0, this control is affine, i.e. u = K(h1, k1)x+ l(h1, k1), with l(h1, k1) representing the affine term.
5According to Bitsoris and Olaru (2013), an eigenstructure assignment approach can be employed to solve the

problem 3.10. By this way, the matrix F will be composed of the eigenvalues corresponding to the eigenvectors
h1.
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Both of these two cases were not completely analyzed in the literature. The main contribution

of the present section is to employ set-theoretic tools in order to analyze and to propose novel

control strategies to deal with both the feasible and the infeasible cases. Two approaches are

provided for the feasible case in the subsection 3.2.1. A relaxed construction is proposed for the

infeasible case in the subsection 3.2.2.

3.2.1 Feasible fixed point x̄

If the optimization problem (3.9) is feasible, then there exists a control u = K(h1, k1)x ensuring

the invariance of the subspace h1x ≤ k1. Otherwise, this means that the entire set H is not

controlled invariant, then there exists an invariant subset Ω ⊆ H.

The set Ω can be characterized in terms of the Maximal Output Admissible Set (MOAS) (see

Gilbert and Tan (1991) for more details) associated with the local control uΩ = K(h1, k1)x.

Knowing that Ω ⊆ H and A+BK(h1, k1) is a Schur matrix, there exist a constructive method

to obtain iteratively the set Ω as proposed in Gilbert and Tan (1991). We denote Ω(t) the

MOAS obtained at each iteration t, with Ω(t) = {x ∈ Rn|hΩx ≤ kΩ} and Ω(t) ⊂ H. The

computation of Ω(t+ 1) is derived by recurrence, i.e.

Ω(t+ 1) =
{
x ∈ Rn|x ∈ Ω(t),

(
A+BK(h1, k1)

)
x ∈ Ω(t)

}
(3.11)

or equivalently

Ω(t+ 1) =
{
x ∈ Rn

∣∣hΩx ≤ kΩ, hΩ

(
A+BK(h1, k1)

)
x ≤ kΩ

}
(3.12)

We recall the following theorems presented and proved by Gilbert and Tan (1991) concerning

the determinedness of MOAS with respect to the discrete-time autonomous dynamics{
x(k + 1) = Ax(k)

y(k) = Cx(k)

and the constraint

y(k) ∈ H

Theorem 3.1. (Gilbert and Tan (1991)) The maximal output admissible set Ω is finitely de-

termined if and only if Ω(t+ 1) = Ω(t) = Ω with t ≥ t∗.

Theorem 3.2. The following statements summarize the conditions of maximal output admis-

sible set Ω existence.

(i) If (C,A) is observable6 and the constrained output’s set H is bounded, then the set Ω is

bounded;

(ii) If the matrix A is Lyapunov stable and 0 ∈ int(H), then 0 ∈ int(Ω).

6In the present chapter, we assume that C = In, i.e. y(k) = x(k).
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It is worth to mention that the finite determinedness7 allows a construction as the one illustrated

in Example 3.2

Example 3.2. This example shows a case of finitely determined MOAS in Fig. 3.3, starting

from Ω(0) = H (bounded by the dash line) and contracting successively to Ω(1), Ω(2) and

Ω(3) = Ω (darkest blue colored). The polyhedron H is chosen as a cone defined as

−700−600−500−400−300−200−100 0 100

0

200

400

600

Ω(0) = H

Ω(1)

Ω(2)

Ω(3)

h1x = k1

h2x = k2

Figure 3.3: Construction of Ω.

H =

{
x ∈ Rn|

[
0.6740 0.7387

0.5120 −0.0353

]
x ≤

[
−1.1302

0.5

]}

and the closed-loop dynamics is x(k + 1) =

[
−0.0003 −0.2196

0.2619 0.4870

]
x(k). The construction of the

set Ω(k) follows the formulation (3.11)-(3.12) with respect to the follower’s closed-loop dynamics.

Example 3.3. This example considers the case of undetermined MOAS illustrated in Fig.

3.4.The polyhedron H (bounded by dashed lines) is chosen as

H = conv

{[
−2

1

]
,

[
2

1

]
,

[
2

0

]
,

[
−2

0

]}

The closed-loop matrix dynamics is x(k+1) =

[
0.5 1

0 0.2

]
x(k). We employ the formulation 3.11-

3.12 con construct iteratively the set Ω(k) with respect to the follower’s closed-loop dynamics.

However, the set Ω(10) is unbounded thus not enclosed inside H. As consequence, Ω in this

example is not finitely determined.

In the sequel, we consider uniquely the cases when the determinedness is guaranteed.

7The maximal output admissible set Ω is not necessary finitely determined (meaning infinitely determined
or even undetermined). Some examples illustrating the singularity of the dynamical MOAS construction can be
found in the paper of Gilbert and Tan (1991). Moreover, a reachability analysis can be employed to derive the
condition to stop the invariant subset Ω construction in Theorem 3.1.
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Figure 3.4: Undetermined case of Ω.

Remark 3.4. According to the conclusion of Gilbert and Tan (1991), the finite determinedness

is not ensured in case of unbounded polyhedra, but we can still apply the constructive method

(3.12) by replacing the unbounded polyhedron with a bounded polyhedron with arbitrary large

bounds in order to cover the admissible configurations.

Remark 3.5. The control law uΩ = K(h1, k1)x makes the entire half-space h1x ≤ k1 controlled

invariant. But H is a subset of this half-space and it has h1x ≤ k1 as its boundary. It follows

that one of the boundary of Ω is h1x = k1.

Remark 3.6. If H is controlled invariant by uΩ, then Ω = H.

We note that the local control is restricted in the subset Ω, and it will be activated only when

the current state belongs to Ω. Whenever x /∈ Ω, the linear control law is not admissible. One

has to devise a procedure to drive the agent state x into the strict interior of Ω while ensuring

the invariance of H.

In the following, we propose two approaches to treat this problem. The first one is based on the

iterative construction of a set of contracted ellipsoids within H. The second approach employs

the interpolation technique for the case of unbounded functioning zones.

3.2.1.1 Approach 1 - Parameterized contractive ellipsoid

This approach uses the existence of an ellipsoid E(c, P, d) (see Definition 2.4) in the current

functioning zone to drive the agent’s state towards the Maximal output admissible set Ω. It

takes the form of an optimization problem (3.13) with a given shape matrix P of the ellipsoidal

set (which enjoys contractiveness property with respect to the closed-loop dynamics around the

fixed point), while the center c and the range d are considered as parameters. Recall the explicit

form of the functioning zone H =
{
x ∈ Rn|alx ≤ bl, ∀l ∈ N[1,p]

}
, with p denoting the number

of constraints. With these elements, the optimization problem to find the ellipsoid center c is
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formulated as

c∗(x) = arg min
c,d,uc

log(|c− x̄|) (3.13a)

s.t. c = Ac+Buc (3.13b)(√
alP−1a>l

)√
d+ alc ≤ bl (3.13c)

(x− c)>P (x− c) ≤ d (3.13d)

The constraint (3.13b) implies that the center c is a fixed point. The shape matrix P is pre-

imposed as the solution of (3.9) for h1x ≤ k1. The constraints (3.13c) and (3.13d) enforce

respectively that the ellipsoid is inside H and contains the current state vector x. We develop

further the properties of the solution of the problem (3.13) and the relationship with the above

constraints. The following theorem is given to confirm that the existence of such ellipsoid

depends on the feasibility of (3.13) and further ensure the controlled invariance inside this

ellipsoid.

Theorem 3.3. For a given x, if (3.13) is feasible, then there exists an ellipsoid E(c, P, d)

included inside of H and x+ ∈ E(c, P, d).

Proof. The optimization problem corresponds to an inclusion of an ellipsoid in a polyhedral set

(see for example Hindi (2004) for a discussion on the canonical form of the constraints in this

respect). We recall that feasibility of the optimization problem (3.9) for the half-space h1x ≤ k1

implies the existence of a normalized ellipsoid

E(x̄, P, 1) =
{
x ∈ Rn|(x− x̄)>P (x− x̄) ≤ 1

}
such that at the instant k, the state vector x belongs to this ellipsoid. We want to check if by

using u = K(h1, k1)x, the constraint x+ ∈ H holds for every x ∈ H. This can be translated to

finding an ellipsoid included in the strict interior of H which satisfies:

(i) the current state vector x is included in the ellipsoid, as illustrated by the constraints

(3.13d);

(ii) it preserves the shape matrix P and optimizes its scaling factor d;

(iii) its center c is situated on the fixed point hyperplane, see the constraint (3.13b);

(iv) its center c is as close as possible to the fixed point x̄.

Let us start from the fact that the ellipsoid in (3.13d) has the parameterized form

E(c, P, d) =
{
x ∈ Rn|(x− c)>P (x− c) ≤ d

}
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Consider y =
(
P
d

)1/2
(x− c). The ellipsoid definition becomes

E(c, P, d) =

{(
P

d

)−1/2

y + c ∈ Rn| ‖y‖2 ≤ 1

}

Considering E(c, P, d) ⊂ H, then for all l ∈ N[1,p] and ‖y‖2 ≤ 1. From alx ≤ bl, we derive

al

((
P

d

)−1/2

y + c

)
≤ bl

Using this result combined with ‖y‖2 ≤ 1, we obtain∥∥∥∥∥
(
P

d

)−1/2

a>l

∥∥∥∥∥+ alc ≤ bl

Using ∥∥∥∥∥
(
P

d

)−1/2

a>l

∥∥∥∥∥ =

√√√√((P
d

)−1/2

a>l

)>((
P

d

)−1/2

a>l

)
we get finally (√

alP−1a>l

)√
d+ alc ≤ bl

Whenever the ellipsoid E(c, P, d) exists, by the inclusion of E(c, P, d) in the strict interior of

the functioning zone H, one can guarantee the stability of the closed-loop, and the recursive

constraint satisfaction as long as x+ ∈ H.

For a given x, its convergence to the fixed point x̄ is guaranteed by minimizing the distance

between c and x̄. This optimization problem is repeated until the state trajectory reaches the

MOAS Ω as long as the linear feedback law is known to be feasible in Ω ⊂ H.

Example 3.4. This example illustrates the application of parameterized contractive ellipsoid

approach. The result is shown in Fig. 3.5.

The functioning zone H with respect to the leader state is defined in terms of two hyperplanes

h1x = k1 and h2x = k2, i.e.

H =
{
x ∈ R2 |Hx ≤ γ

}
with H =

[
h1

h2

]
=

[
0.6740 0.7387

0.5120 −0.0353

]
and γ =

[
k1

k2

]
=

[
−1.1302

0.5

]
.

The red line denotes the equilibrium line x̄ =

[
−0.2 0.5

0.2 0.71

]
x̄+

[
0.71

0.22

]
ū. The red point is the

follower’s equilibrium point x̄ =

[
−0.6962

−0.8948

]
of H1

2 and closest to the leader state, obtained by

solving (3.6).
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Concerning the local linear control determination, by solving the problem (3.9) for the boundary

h1x = k1, we obtain the gain K(h1, k1) =
[
0.2812 −1.0135

]
for the local linear feedback control

(3.20), associated with the matrix P =

[
2.7132 0.0031

0.0031 2.7132

]
employed as the shape matrix for the

ellipsoids. The green ellipsoid E(x̄, P, 1) denotes the ellipsoid associated with its center x̄ (red

dot) lying on the boundary h1x = k1. The black dots are the centers of the ellipsoids obtained

by solving iteratively (3.13) according to the feedback state x (blue dots). We can see that the

state vector x approaches the fixed point x̄ according to the convergence of the ellipsoid center

c(x) to this fixed point x̄.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−10

−5

0

5

ε(x̄, P, 1)

x̄

H

ε(c(x), P, d)
c

x

Figure 3.5: Feasibility test.

Remark 3.7. The square root terms makes the problem (3.13) nonlinear beside the form of

the cost function. In order to avoid the complexity related to the nonlinear constraint (3.13c),

we can replace
√
d by a new variable θ ∈ R, i.e.

(√
alP−1a>l

)
θ + alc ≤ bl. Then, we can

subsequently use a strictly positive parameter ε to decrease the gap between the variables d and

θ, i.e. 0 ≤ θ2 − d ≤ ε, and thus transform the optimization problem (3.13) into the following

convex optimization problem

c∗(x) = arg min
c,d,uc

log(|c− x̄|) (3.14a)

s.t. c = Ac+Buc (3.14b)(√
alP−1a>l

)
θ + alc ≤ bl (3.14c)

(x− c)>P (x− c) ≤ d (3.14d)

0 ≤ θ2 − d ≤ ε (3.14e)

Remark 3.8. Solving the problem (3.13) does not guarantee to cover the maximal controllable

subset of H. In fact, for initial points on the vertices of H the feasibility of the ellipsoidal

containment cannot be fulfilled as long as there are two different supporting hyperplanes active

for the same point on the boundary.
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In the light of Remark 3.8, we propose a second approach which deals with the infeasibility of

the problem (3.13) for the current state vectorx.

3.2.1.2 Approach 2 - Interpolation based control

In this subsection, the control action u will be obtained as a convex combination of

• the local control uΩ = K(h1, k1)x in the MOAS Ω;

• a vertex control law8 associated with a M-step robustly controlled set PM (understood as

an approximation of the maximal controllable set within H).

The principles of such an interpolation based control for constrained dynamical systems were

discussed in Nguyen et al. (2013) and applied in Nguyen et al. (2015b). The feasible region

for the interpolation scheme will be the maximal controllable set inside the functioning zone H,

while the set Ω defines the feasibility region of a local control law uΩ. This set can be obtained

using classical reachability arguments (see Blanchini and Miani (2007) for details).

The present work consideres that either the set PM or a convex (polyhedral) controlled invariant

subset Φ, such that Ω ⊆ Φ ⊆ PM is available together with a feasible control action on the

boundaries (the so-called vertex control of this set, as proposed by Gutman and Cwikel (1986)).

Therefore, the interpolated control action is described by a linear interpolation scheme:

u = βuΦ + (1− β)uΩ, 0 ≤ β ≤ 1 (3.15)

where uΦ and β have to be calculated in real time. The control component uΦ will be activated

i.e. β = 1 when x ∈ Φ \ Ω and the scalar β has to be minimized in order to get the control

input u as close as possible to the local control uΩ.

We present next how to effectively obtain the vertex control action uΦ and then the interpolation

coefficient β.

The determination of uΦ exploits the fact that its objective is to push x from the boundary of

Φ towards its interior. This can be done by solving the following LP problem:

uΦ = arg min
α,uΦ

α

s.t.

{
Ax+BuΦ ∈ αΦ

0 ≤ α ≤ 1

(3.16)

with α denoting the minimal contraction factor.

For the determination of the scalar β, we exploit the fact that the control u obtained as an

interpolation of uΩ and uΦ has to be as close as possible to uΩ. This can be translated in

8A vertex control for a given polyhedral state-space set is defined as a control action used to drive a current
state from the corresponding vertex toward the interior of the considered polyhedron.
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terms of the optimization problem. Consider u = βuΦ + (1 − β)uΩ, and x decomposed as

x = βxΦ + (1 − β)xΩ, where xΦ ∈ Φ and xΩ ∈ Ω. Let Φ = {x ∈ Rn|FΦx ≤ kΦ} and Ω =

{x ∈ Rn|FΩx ≤ kΩ}, then the optimization problem allowing us to find the interpolation factor

β is

min
β,xΩ,xΦ

β

s.t.


FΦxΦ ≤ kΦ

FΩxΩ ≤ kΩ

βxΦ + (1− β)xΩ = x

0 ≤ β ≤ 1

(3.17)

Although (3.17) is nonlinear, we can translate it into a LP problem by using the following change

of variable r = βxΦ. Hence the constraint βxΦ + (1 − β)xΩ = x of the problem 3.17 becomes

x−r = (1−β)xΩ. In addition, the constraint FΩxΩ ≤ kΩ is equivalent to FΩ(1−β)xΩ ≤ (1−β)kΩ

and by replacing (1− β)xΩ by x− r, we obtain FΩ(x− r) ≤ (1− β)kΩ. Moreover, FΦxΦ ≤ kΦ

is translated to FΦβxΦ ≤ βkΦ yielding FΦr ≤ βkΦ. Briefly, the problem (3.17) becomes:

min
β,r

β

s.t.


FΦr ≤ βkΦ

FΩ(x− r) ≤ (1− β)kΩ

0 ≤ β ≤ 1

(3.18)

Notice that the construction of the maximal controllable set is a relatively time consuming

procedure. It has to be carefully considered whenever input saturations are imposed. In the

case when such limitations are imposed over H, there exists a simple candidate construction for

the outer set Φ. Indeed, by considering Φ to be a scaled version of Ω with the restriction to

H. The scaling of the set Ω will be done with respect to the fixed point x̄. The construction

framework is detailed in the proposition below.

Proposition 3.4. An outer candidate set for the interpolation Φ is defined as

Φ = ({x̄} ⊕ µΩ0) ∩H

with µ found by solving the following linear programming (LP) problem:

min
µ
µ s.t.

{
x ∈ {x̄} ⊕ µΩ0

µ ≥ 0
(3.19)

with Ω0 = {−x̄} ⊕ Ω.

Remark 3.9. The set Φ, obtained via the optimal solution for the LP problem (3.19) ensures

Ω ⊆ Φ and Φ ⊆ H via Proposition 3.4.

Example 3.5. This example illustrates the construction of the set Φ for the functioning zone

H with the fixed point x̄ in Example 3.4. The set H is bounded by h1x = k1 and h2x = k2
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(dash line in Fig. 3.6). The fixed point (red) is on the boundary h1x = k1. The orange set is

the MOAS Ω obtained by using (3.11) with respect to the follower’s dynamics given in Example

3.4. The follower’s state vector is x =

[
−2

−15

]
.

As shown in Fig. 3.6, this state x is inside H but outside the set Ω. By solving the problem

(3.19) with respect to the follower’s state vector x, we obtain the scalar µ = 2.2257 to construct

the set Φ ⊂ H (covered by yellow) according to the formulation in Proposition 3.4.

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4

−20

−10

0
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20

Ω

Φ

H

x̄

h1x = k1

h2x = k2

{x̄} ⊕ µΩ0

x

Figure 3.6: Construction of the interpolation set Φ.

Summing up, solving respectively (3.19), (3.16), (3.18) in real time provides the interpolation

factor and implicitly the control u. We resume all of these procedures in the following algorithm

which permit obtaining the control action in real time.

Algorithm 2: Real time calculation of u

Input : The state vector x, the fixed point x̄, the functioning zone H,the Maximal output
admissible set Ω

Output: The interpolation based control u
1 - solve the problem (3.9) for H to get K(h1, k1) for the local control uΩ;
2 - solve the problem (3.19), get the scalar µ and construct Φ;
3 - solve the problem (3.16), get the scalar α and the control uΦ;
4 - solve the problem (3.17), get the scalar β;
5 - calculate the interpolated control (3.15);

3.2.2 Infeasible fixed point x̄

The structure of the dynamical system may be such that a local linear control uΩ = K(h1, k1)x

can not guarantee the invariance of the half-space h1x ≤ k1 and implicitly of the set H as long

as the fixed point is placed on the boundary (see Fig. 3.6 for the notations). Therefore, the

local set Ω can not be constructed and the interpolation based control presented in the previous

subsection can not be used.
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In this case, one can always find a subset in the strict interior of H such that the controlled

invariance is guaranteed. Now, the problem comes from the nonlinear nature of the constraints

(3.9). Indeed, the detailed study available in Bitsoris and Olaru (2013) mentioned that only a

subclass of design problem can be solved by eigenstructure assignment approaches. Here, we

propose a simple and efficient method to solve this problem: by moving the fixed point x̄ into

the strict interior of H along the equilibrium points line. Once this relaxation is performed,

any linear stabilizing feedback gain is admissible. Subsequently, the ellipsoidal construction

approach presented above can be used to drive the current state x according to the ellipsoid

whose center is parametrized to enable the feasibility. This construction ensures the recursive

feasibility and approaches the fixed point arbitrarily close to the boundary of H. Alternatively,

an interpolation strategy can be employed after the construction of the maximal controlled

invaraint subset of H, upon the same premises used in Section 3.2.

3.3 Illustrative example

Consider a MAS Σ composed of N = 3 homogeneous agents. They have the same safety region.

Their dynamics are described by

xi(k + 1) =

[
−0.2 0.5

0.2 0.71

]
xi(k) +

[
0.71

0.22

]
ui(k)

Let us choose the 1st agent as the leader. We will study the local feedback gain of the 2nd agent

(similar for the 3rd agent). Its conic functioning zone with respect to the leader state is defined

in terms of two hyperplanes h21x = k21 and h22x = k22 , i.e.

H1
2 =

{
x ∈ R2 |H2x ≤ γ2

}
with H2 =

[
h21

h22

]
=

[
0.6740 0.7387

0.5120 −0.0353

]
and γ2 =

[
k21

k22

]
=

[
−1.1302

0.5

]

In all scenarios below, we represent the functioning zone H1
2 by a conic set bounded by two

dashed black line. The red line denotes the equilibrium line x̄2 = A2x̄2 + B2ū2. The red point

is the follower’s equilibrium point x̄2 of H1
2 and closest to the leader state. By solving (3.6), we

obtain

x̄2 =

[
−0.6962

−0.8948

]
and ū2 = −0.5466

The time-domain evolution of the follower is denoted by the blue dot line.

Concerning the local linear control determination, by solving the optimization problem (3.9) for

the boundary h21x = k21 , we obtain the gain K2(h21 , k21) =
[
0.2812 −1.0135

]
for the local
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linear affine feedback control (3.20) (which is coherent with the expression (3.8)), i.e.

u2 = ū2 +K2(h21 , k21)
(
x2 − x̄2

)
(3.20)

We remind that this local control ensures uniquely the controlled invariance of the half-space

h21x ≤ k21 but not with the entire H1
2.

Let us consider in the first scenario the initial point x2(0) =

[
−2

−6

]
. Notice that this chosen

point is already included in H1
2, thus the parameterized contractive ellipsoid approach can be

applied. Concretely, the optimization problem (3.13) is successfully solved at each iteration,

providing all of the ellipsoids centers c (black dots) to which x2 converges. This result is shown

in Fig. 3.7. The agent’s state x2 goes towards the fixed point x̄2 with respect to the slippery of

the center c towards x̄2 over the equilibrium line, meanwhile the shape of contractive ellipsoid

(yellow filled) converges to the green ellipsoid centered at x̄2.

−6 −5 −4 −3 −2 −1 0 1

−6
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2
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h21x = k21

h22x = k22

x̄2
H1

2

x̄2 = A2x̄2 +B2ū2

x2(0) = [−2 − 6]>

Figure 3.7: Evolution of the 2nd agent from x2(0) = [−2 − 6]> using the ellipsoid approach.

In the second scenario, we consider in Fig. 3.8 another initial point x2(0) =

[
0

−14.1643

]
which

resides already on the boundary h22x = k22 . We reuse the notations of the first scenario. As

a consequence, the choice of x2(0) in the inactive boundary implies that the ellipsoid approach

can not be applied. In fact, there do not exist any non-empty ellipsoid which contains x2(0) and

which is included in the functioning zone H1
2. In this case, solving the optimization problem

(3.13) leads to infeasibility. Moreover, we see that the control (3.20) can not ensure the controlled

invariance of H1
2 even if x2 still converges to the fixed point. This is illustrated via the jump

out of H1
2 of the follower’s state in Fig. 3.8.

In this case, the interpolation-based approach is further applied. Starting from the construction

of the maximal output admissible set Ω1
2 (using the algorithm of Gilbert and Tan (1991)) and

the controlled invariant subset Φ1
2 ⊆ H1

2 enclosing Ω1
2 (solving the optimization problem (3.19)),
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h21x = k21

h22x = k22

Figure 3.8: Evolution of the 2nd agent from x2(0) = [0 − 14.1643]>.

the interpolated control action of the 2nd agent is

u2 = β2uΦ1
2

+ (1− β2)uΩ1
2
, 0 ≤ β ≤ 1

with the local control being

uΩ1
2

= ū2 +K2(h21 , k21)
(
x2 − x̄2

)
Solving in real time respectively (3.19) to construct the set Φ1

2, (3.16) to get the vertex control

uΦ1
2

and (3.18) to obtain the interpolation factor β2for the control u2. The behavior of the 2nd

agent’s state x2 within its functioning zone H1
2 is given in Fig. 3.9.
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x2(0) = [0 − 14.1643]>

H1
2

x̄2

Figure 3.9: Evolution of the 2nd agent from x2(0) = [0 − 14.1643]> using the interpolation
based approach.

At the beginning, because the initial point x2(0) is outside Ω1
2, the interpolated control u2 is

computed such that the follower’s state x2 is moved towards Ω1
2 meanwhile enclosing the state

x2 inside the set Φ1
2. When x2 ∈ Ω1

2, the local control uΩ1
2

is activated as the dominant action

to keep the state x2 strictly inside the MOAS Ω1
2.
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We show the evolution of the interpolation factor β2 in Fig. 3.10. The case x2 /∈ Ω1
2 implies

0 < β2 < 1. At the time instant k = 3, the value β2 = 0 corresponds to the fact that the state

vector x2 is inside the MOAS Ω1
2.
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Figure 3.10: Evolution of the interpolation factor β2.

The values of u2 with the vertex control uΦ1
2

and the local control uΩ1
2

are plotted in Fig. 3.11.

We see that before k = 3, u2 (blue line) is upper-bounded by the control uΦ1
2

(red dotted line)

and lower-bounded by the local control uΩ1
2

(green dotted line). After k = 3 when β2 = 0, the

evolution of the control u2 coincides with the local control uΩ1
2
.
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Figure 3.11: Interpolated control u2, vertex control uΦ1
2

and local control uΩ1
2
.

3.4 Conclusion

This chapter presents a decentralized approach to deal with the collision avoidance of Multi-

Agent Systems. The main tool employed is the optimization-based control design with the goal
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of enforcing the controlled invariance of the safety functioning zone. The main advantage is that

the local feasibility can be handled, which is considered novel compared to set-theoretic based

decentralized control in the literature. We consider the cases when there exists a local control

action to keep each agent in its strict functioning zone. The feasibility of this determination

however is limited in a subset of the functioning zone, assimilated to a controlled invariant

region via linear feedback. This region is characterized in terms of maximal output admissible

set assimilated with the control action on the activated boundaries of the functioning zone. For

the initial conditions which are not covered by this set, we propose two possible control strategies

to drive the agent state towards the region to activate the local linear control action. The first

one is the parameterized contractive ellipsoid approach and the second one is the interpolation

based control.

In the first approach, the idea is to guarantee the controlled invariance inside an ellipsoid

enclosed by the functioning zone and containing the follower’s state. Subsequently, by driving

the follower’s state towards this ellipsoid’s center, we can ensure keeping the follower’s state

inside the functioning zone.

In the second approach, we construct a controlled invariant set inside the functioning zone, which

encloses the maximal output admissible set. The control action of the follower is interpolated

from the local control of the maximal output admissible set and a control action associated with

the new controlled invariant set. This control is computed such that it is as close as possible to

the local control to imply the follower’s state staying within the functioning zone.

It should be mentioned that the present framework, the separation hyperplanes between the

functioning zones are imposed by the leader via real-time communication. The choice of these

hyperplanes is important because they impact the feasibility of the control action and two ideas

for further studies are related to the analysis of the maximal violation time in the case of

infeasibility. This can be further used in a constraint tightening procedure. It seems possible to

update of the separation hyperplanes by enforcing local feasibility. The level of communication

(and the information exchanged with the leader) might need to be revisited in this case.

In this chapter, we have presented our constructive solutions for decentralized collision avoidance

using set-theoretic methods. These solutions are oriented a priori for application concerning

formation control. We emphasized that the collision avoidance is guaranteed by enclosing each

agent strictly inside a so-called functioning zone such that these zones are non-overlapping. Next,

these zones construction will be detailed in Chapter 4, which leads to a dynamical partition of

the Multi-Agent system working space due to the evolution of the agents. Chapter 4 will present

also our set-based decentralized control to stabilize the dynamical partition problem.





Chapter 4

Set-based decentralized control for

dynamical Multi-Agent deployment

As presented in Chapter 3, the collision avoidance is guaranteed by enclosing each agent strictly

inside a so-called functioning zone such that these zones are non-overlapping. The well-known

Voronoi partition1 can be employed in order to build these agents functioning zones and further

allocates each Voronoi cell to one unique agent. It is worth to mention that Voronoi partition

is obtained with respect to the position of the agents, making the partition time-varying due to

the evolution of the agents. This problem is known as Voronoi-based deployment or dynamic

Voronoi partition, which can be found in many Multi-Agent system deployment-based appli-

cation such as surveillance, environmental/geological monitoring, rescue operations or vehicle

routing problems (see Murray (2007), Tanner et al. (2007), Adib Yaghmaie et al. (2015)). The

main objective of such cooperative application is to stabilize the Voronoi-based deployment close

to a configuration such that the coverage is maximal. The most well-known configuration for the

applications such as mobile sensing network (Cortes et al. (2002), Cortes et al. (2005)), multi-

robots (Schwager et al. (2009)) or Unmanned aerial vehicles deployment (Bakolas and Tsiotras

(2013), Moarref and Rodrigues (2014)) is the centroidal Voronoi configuration (CVC), where

the position of each agent coincides with the center of mass of its Voronoi cell. Note that a CVC

can be obtained by steering each agent individually towards the center of mass of its Voronoi

cell. This is totally equivalent to the decentralized control design principle and known as Lloyd’s

algorithm (see Lloyd (1982)). There are many works in the literature related to improving the

Lloyd’s algorithm, or more specifically, developing decentralized control to drive a Multi-Agent

system towards a centroidal Voronoi configuration. Notable recent works in the field of mobile

sensors networks are introduced by Cortes et al. (2002), Cortes et al. (2005) and other references

therein. The authors present a novel decentralized optimal control which is distributed over the

Delaunay graph of a dynamic Voronoi partition, to approach a centroidal Voronoi configura-

tion by assuming that the working region is bounded and additionally the density distribution

over this region is time-invariant. The conservation of mass law is used in combination with

1The original formulation of Voronoi partition is introduced by Voronöı (1908).

69
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the LaSalle’s invariance principle (see Khalil and Grizzle (1996)) to prove the stability of the

convergence into a CVC. Inspired by the last works, Moarref and Rodrigues (2014) extend the

optimal decentralized control to deal with energy-efficient constraints. Other interesting works

in the same direction is presented by Schwager et al. (2009) where different control strategies

are given for multi-robots self-deployment, including respectively geometric, probabilistic, and

potential field approaches. Kwok and Martinez (2010) propose a generalized power-weighted

Voronoi partition and modify the Lloyd’s algorithm to solve the power constrained deployment

problem.

Instead of using the center of mass2, the aim of this chapter is to consider other inner target

points (e.g. Chebysev center) appropriate to set-theoretic formulation. A different approach

based on the vertex interpolated center is presented in Appendix A. The ultimate goal now is

to drive the entire Multi-Agent system towards a stabilized configuration where each agent’s

state coincides with its inner target point. In order to fulfill this goal, we will propose the

optimization-based decentralized control to steer each agent towards this chosen target. In

addition, the collision avoidance is guaranteed in a decentralized manner by means of the agent

inclusion in the corresponding Voronoi cell.

We first formulate the problem in Section 4.1 with the necessary assumptions. Subsequently,

we describe a basic approach for the design of solution based on the Chebyshev center as the

target point in Section 4.2. Its advantage is that the Chebyshev center can be expressed in

geometric terms with respect to its associated Voronoi cell. However, whenever the Chebyshev

ball computation is not unique (see Section 4.3) the control strategy cannot lead to a stable

configuration. In order to keep driving the agents into a stable static configuration, we propose

a novel concept based on the computation of a so-called general center which leads to a unique

center by deflation in the degenerate cases. These results have been detailed in Nguyen et al.

(2016c). The overall design is resumed in Section 4.4 through an algorithm for the decentralized

control synthesis. Some numerical simulations will be given in Section 4.5 at the end of this

chapter to illustrate the performance of the proposed decentralized control.

4.1 Problem formulation

The existence of a stabilized configuration requires that each chosen target point has to be

an admissible equilibrium point with respect to the agent’s dynamics. Additionally, the whole

working region where the agents are deployed needs to be controlled invariant to guarantee the

feasibility of the decentralized control action. We consider in the following the assumptions

related to the working region and the class of agent’s dynamics. In the sequel, we use Y(k) =

(y1(k), . . . , yN (k)) to denote the tuple containing the aggregated indexed-ordered outputs of the

agents. Each of these vectors yi(k), i ∈ N[1,N ] are sharing the same Rp space or equivalently all

agent’s outputs share the same dimension, i.e. pi = p,∀i ∈ N[1,N ], and thus Y(k) ∈ RNp.
2Notice that a novel result based on the center of mass is proposed in Appendix B.
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Assumption 4. All agents are deployed in a compact convex set W ⊂ Rp which is denoted

as the working region and corresponds to the output space shared by the individual agents.

It is assumed that for any point ȳi ∈ W there exists a pair (x̄i, ūi) ∈ Rni × Rmi such that

(x̄i, ūi, ȳi) ∈ Rni×Rmi×Rpi characterize an equilibrium of (2.1). In an equivalent formulation,

the system of equations {
x̄i = Aix̄i +Biūi

ȳi = Cix̄i
(4.1)

is feasible for any ȳi ∈ W.

Remark 4.1. Assumption 4 can be satisfied whenever the mapping ȳi = Ci(I − Ai)
−1Biūi

is well-posed and surjective which implies mi ≥ pi and matrix Ai without eigenvalues at 1.

Another particular model description satisfying Assumption 4 is the one corresponding to the

integrator-like dynamics (eigenvalues at 1), e.g. for Ai = Ini for which (4.1) is trivially satisfied.

The basic objective for a deployment problem is to design a control policy at the level of each

dynamical agent allowing the coverage of the set W by the distribution of agents. The link

between the classical stability notions and the coverage will be made via set-theoretic methods.

The controllability at the level of each agent allows to exploit controlled contractive sets notions.

As a particularity of multi-agent dynamics, these contractive sets will be defined in the output

space by adapting the classical definitions in Blanchini and Miani (2007).

Definition 4.1. A convex set V ⊂ Rp is controlled λ-contractive with respect to the dynamics of

the ith individual agent (2.1) if for any ȳi ∈ int(V) and any admissible xi satisfying Cixi = yi ∈ V,

it exists ui ensuring

Ci(Aixi +Biui) ∈ {ȳi ⊕ λ(V⊕ {−ȳi})} .

The contractiveness is related to a scalar 0 ≤ λ < 1. If λ = 1 then the set is controlled-invariant.

The term ȳi ⊕ λ(V ⊕ {−ȳi}) in Definition 4.1 denote the λ-scaled set of the given set V with

respect to its inner center ȳi. This set is constructed by firstly computing V ⊕ {−ȳi} to move

the set V towards the origin such that it contains the origin inside its interior. According to

Remark 2.4, the λ-scaled set λ(V ⊕ {−ȳi}) will contain also the origin thus we need to re-add

the center ȳi to move this new λ-scaled set back to its real position.

If the set V in the output space is λ-contractive according to the previous definition, it follows

that starting from any point on the boundary of V, there exist a trajectory in int(V) which can

be selected via control. The next definition introduces a generalization which will be shown to

be useful in the framework of the multi-agent systems.

Definition 4.2. A convex set V ⊂ Rp is N -step controlled λ-contractive with respect to the

dynamics of an individual agent (2.1) if for any ȳi ∈ int(V) and any admissible state xi(0)

satisfying Cixi(0) = yi ∈ V, it there exists an input sequence {ui(0), . . . , ui(N − 1)} ensuring

yi(N) ∈ {ȳi ⊕ λ(V⊕ {−ȳi})} .
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Theorem 4.1. Let the system (2.1) satisfying Assumptions 1-4 and a bounded set of admissible

states X . Then, for any 0 < λ < 1 there exists a finite integer N(λ) such that any convex set

V ⊂ Rp to be N−step controlled λ-contractive.

Proof. The N−step contractivity introduced in Definition 4.2 can be translated from the output-

space towards the state-space by including the hypothesis of the theorem. Indeed, yi ∈ V
restricts the admissible states to:

Vx = {x ∈ X : Cix ∈ V}

The set Vx contains a fixed-point x̄i for each yi ∈ V within its interior, according to the

Assumption 4. The controllability assumption together with the boundedness of Vx leads to the

existence of a minimal number of steps N for which any point on the boundary can be driven

towards the strict interior of Vx. The proof is complete by observing that the number of steps

N depends on the pre-imposed contractivity factor.

Remark 4.2. In the following, we use N(λ) = 1 to simplify the description of our methodolo-

gies.

Assumption 5. The agents evolve in a common convex and bounded working space W which

is a proper subset of the output space Rp. This set will be considered to be a polytope represented

as the intersection of a set of half-spaces

W = {y ∈ Rp|Hy ≤ θ} (4.2)

The global objective is to control each agent independently so that the global position of the

Multi-agent system in W converges towards a static configuration Ye = {ye1, ye2, . . . , yeN}. This

configuration relates the agents’ output yei at the equilibrium with an associated neighborhood

described by a nondegenerate set Vei ⊂ W. This collection of sets has to cover the working

space

W ⊆
N⋃
i=1

Vei

Conversely, the output of each agent’s dynamics yei represents a relative center for its neighbor-

hood Vei .

The envisaged state feedback control law ui(k) will be

• local (decentralized);

• efficient.

The local characteristic of the control action

ui(k) = Ki(xi(k),Y(k)) (4.3)
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is understood as a feedback law with respect to the ith agent’s state and the distribution of the

neighbors at the time instant k. This implies that the design cannot rely on the knowledge of

the global states of Σ in (2.1) nor on the communication between the agents with respect to

their respective control decisions. The efficiency of the control policy will be evaluated in terms

of a performance cost function. In the following we provide rigorous notions for neighborhood

and center in order to cast the problem into a mathematical form.

We introduce next the neighborhood corresponding to an agent output yi when this agent is

part of the tuple (y1, y2, . . . , yN ) ∈ WN . A partition of the working space V(y1, . . . , yN ) will to

be computed, by decomposing W into a union of non-overlapping sets:

W = V(y1, . . . , yN ) = V(Y(k)) =
N⋃
i=1

Vi(Y(k)), (4.4)

Vi(Y(k)) ∩ Vj(Y(k)) = ∅, ∀i, j ∈ N

The mathematical definition of such a decomposition is provided by the Voronoi partition (see

Aurenhammer (1991)), which characterizes the neighborhood Vi(y1, . . . , yN ) = Vi(Y(k)) as

Vi(Y(k)) = {y ∈ W|‖yi − y‖ ≤ ‖yj − y‖, ∀j 6= i} (4.5)

From this definition, it follows ‖yi−y‖ ≤ ‖yj−y‖ and subsequently 2(yj−yi)>y ≤ ‖yj‖2−‖yi‖2

and thus

Vi =

{
y ∈ W|(yj − yi)>y ≤

‖yj‖2 − ‖yi‖2

2
,∀j 6= i

}
(4.6)

It is worth to be mentioned that each set Vi is a polytope as a consequence of the boundedness

of W and the structure of the constraints in (4.5). Using the available output measurement of

the Multi-Agent system Σ (which satisfies the assumption that yi(k) ∈ W) at the time instant

k, the geometric formulation (4.4) leads to a time-varying partition V(Y(k)) =
N⋃
i=1

Vi(Y(k)).

The cardinality remains constant in (4.4), as well as the structure of constraints in (4.6), and

thus each point is uniquely associated to a set (called neighborhood) within the partition

yi(k)←→ Vi(Y(k)) (4.7)

Remark 4.3. Only the neighbor agents contribute to the definition of Vi(Y(k)) and the infor-

mation needed for its contraction is local. This is obvious from equation (4.6) where part of

the inequalities defininig the set Vi are redundant. Denoting by N i
Y(k) the subset of vectors

in Y(k) involved in active (non-redundant) constraints for a given i in the expression (4.6), the

association (4.7) becomes:

yi(k)←→ Vi(Y(k)) = Vi(N i
Y(k)) (4.8)
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This remark has an implication on the structure of the control law (4.3) whenever this is designed

based on the information coming from the Voronoi cell (defininig the neighborhood)

ui(k) = Ki(xi(k),Y(k))

or an equivalent formulation with an appropriate control function

ui(k) = Ki(xi(k),Vi(Y(k)))

ui(k) = Ki(xi(k),Vi(N i
Y(k)))

ui(k) = Ki(xi(k),N i
Y(k))

enforcing his local characteristics.

With the elements above, the control objective can be formulated readily: drive the global

Multi-Agent system towards a static configuration by ensuring the convergence of each agent

position towards the central point within its Voronoi cell.

The present work builds on the well-established notion of the Chebyshev center (see Boyd and

Vandenberghe (2004)). There are structural and computation arguments for such a choice. This

becomes apparent in the description of the Chebyshev center ȳi(k) and the constraints defining

Vi(N i
Y(k)), which are available via a convex optimization problem3:

(ȳi(k), r̄i(k)) = arg max
ȳi(k),r̄i(k)

r̄i(k)

s.t.: 2(yj(k)− yi(k))>ȳi(k) + 2||yj(k)− yi(k)||r̄i(k)

≤ ||yj(k)||2 − ||yi(k)||2, ∀yj(k) ∈ N i
Y(k)

(4.9)

This optimization involves constraints related to the neighboring agents N i
Y(k) and thus comply

with the need of a local (decentralized) decision making for the control synthesis (as described

in the next sections).

The explicit form of ȳi(k) and r̄i(k) can be obtained by exploiting the Karush-Kuhn-Tucker

conditions of the parametric optimization problem (with N i
Y(k) as parameter vector):

ȳi(k) = f(Y(k)) (4.10)

r̄i(k) = g(Y(k)) (4.11)

The functions f(.), g(.) are continuous with respect to a set of points N i
Y(k). Note however that

the set of neighbours is time-varying in itself and can lead to a variation of the cardinalty of

N i
Y(k). Thus in order to represent the time-varying nature of the Voronoi partition, a generic

dependence on Y(k) has to be used in (4.10)-(4.11). Note also that the functions f(.), g(.) may

be discontinuous with respect to Y(k) by the same argument. Globally, the dynamics we are

3See subsection 2.4.2.2 for more details of determining the Chebyshev center and radius of a bounded polyhe-
dron via the half-spaces defining this polyhedron.
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interested in is resumed by the equation:
xi(k + 1) = Aixi(k) +BiKi(xi(k),N i

Y(k))

yi(k) = Cixi(k)

ȳi(k) = f(Y(k))

(4.12)

The objective is to design of a decentralized local feedback-control law ui(k) = Ki(xi(k),N i
Y(k))

for each agent such that

lim
k→∞

yi(k)− ȳi(k + 1) = 0,

which implicitly corresponds to the convergence towards a static configuration which address

the deployment problem.

The explicit form of this local control law will be analyzed in the next section, along with

the stability proof related to the convergence of the Multi-Agent system towards a stabilized

configuration.

4.2 Basic solution analysis

In the following, we propose a basic control solution for the Multi-Agent system deployment,

based on the computation of the Chebyshev center and radius. The explicit form of this control

solution will be given in subsection 4.2.1 with the notations denoting the distance from the

agent’s output to a frontier of its Voronoi cell. The convergence proof associated with this

chosen decentralized control will be discussed in subsection 4.2.2.

4.2.1 Chebyshev radius tracking

For each agent’s output yi with i ∈ N[1,N ], we define a set Ri ⊂ R+ which collects the distance

from the agent’s output yi to the hyperplanes forming its Voronoi cell

Ri = {r ∈ R+|r = min ||y − yi||, y ∈ Vi ∩ Vj , ∀j ∈ Ni} (4.13)

with Vi and Vj denoting respectively the Voronoi cell of the ith agent and its neighbor. The set

Ni contains the neighbors indices of the ith agent. Obviously, Ri is also time-varying whenever

yi(k) or Vi(k) is time-varying.

In the general case, the distance from the agent state yi to a hyperplane is half of the distance

between the positions of this agent and of the agent in its neighbor sharing this hyperplane.

Hence we can define the finite set of distance Ri as

Ri = {r ∈ R+|r =
1

2
min ||yj − yi||, ∀j ∈ Ni} (4.14)
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Let us define

rmi (k) = minRi(k) (4.15a)

rMi (k) = maxRi(k) (4.15b)

which characterize respectively the distance from the agent state xi to the closest and the

farthest hyperplanes. The following expressions depending explicitly on time are derived

rmi (k) ≤ r̄i(k) ≤ rMi (k) (4.16)

with r̄i the radius of the Chebyshev ball. We will illustrate the distance notations above in

Example 4.1.

Example 4.1. Four agents are deployed within a bounded working space

W = conv

{[
−10

−10

]
,

[
15

−10

]
,

[
15

10

]
,

[
−10

10

]}
⊂ R2

as shown in Fig. 4.1. The blue points are the agents outputs yi and the red points are their

Chebyshev centers ȳi. The outputs of the agents are respectively y1 =

[
−2

4

]
, y2 =

[
3

2

]
,

y3 =

[
−7

−6

]
and y4 =

[
−3

−4

]
. The Voronoi partition corresponding to these agents outputs are

shown in Fig. 4.1. The Chebyshev centers of the agents are respectively

ȳ1 =

[
−3.925

5.108

]
, ȳ2 =

[
7.737

1.535

]
, ȳ3 =

[
−7.135

−7.135

]
, ȳ4 =

[
−0.156

−6.207

]

Let consider the 2nd agent. The dash lines denote the distances r2 from this agent output y2 to

the facets of its Voronoi cell V2. The Chebyshev radius r̄2, the minimal distance to a frontier

rm2 and the maximal distance to a frontier rM2 are also indicated.

−10 −5 0 5 10 15

−10

−5

0

5

10

ȳ2
y2

r̄2rM2

V2

W

rm2

Figure 4.1: Deployment over a region W with the distance notation.
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Furthermore, after the partition step, each agent is driven individually towards its Chebyshev

center. This goal can be achieved by using the decentralized control

ui(k) = ūi(k) +Ki(x̄i(k), xi(k)) (4.17)

and, in particular, we privilege the linear form

ui = ūi(k) +Ki(xi − x̄i) (4.18)

The definitions of a Static Configuration of MAS is further introduced in order to describe the

limit behavior.

Definition 4.3. A Static Configuration (SC) of the MAS Σ is achieved whenever ui(k) = ui(k0)

and xi(k) = xi(k0), ∀k ≥ k0.

Additionally, Chebyshev Configuration (CC) is already defined in Definition 2.13.

Remark 4.4. Not any SC is CC as it can be observed by choosing the null input ui = ūi for

a configuration where yi 6= ȳi. Conversely, a CC is not necessary a SC for the homogeneous

agents with ui 6= ūi, with ∀i ∈ N .

Proposition 4.2. The Multi-Agent system Σ in closed-loop with a set of decentralized control

laws ui = ūi(k) +Ki(xi − x̄i) achieves a SC if and only if this is a CC.

Proof. First we observe that for xi(k) = x̄i(k) the control action is ui(k) = ūi(k) and thus it

characterizes an equilibrium. Conversely, if xi(k) 6= x̄i(k) based on the controllability assump-

tion, the control action ui(k) 6= ūi and xi(k + 1) 6= xi(k), thus invalidating the assumption of

static configuration.

We analyze next the time-varying configuration and the convergence toward a so-called Cheby-

shev Static Configuration (CSC) which mixes the Static Configuration and Chebyshev Config-

uration notions.

Remark 4.5. Note that a CSC is not unique and depends on the initial agent state and

implicitly on the control policies applied on the agents (feedback gain).

The convergence of MAS deserves a particular attention as long as the ultimate Static Config-

uration is not known a priori, and it will be analyzed in the next subsection.

4.2.2 Convergence proof

As mentioned above, a Chebyshev Static Configuration can be obtained by using the decentral-

ized control (4.17) ensuring the convergence of each agent towards its Chebyshev center. In this

subsection, we will complete this result with the stability proof.
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Consider the following semi-positive function

V (Y(k)) =
∑
i∈N

(r̄i(k)− rmi (k)) (4.19)

From the first part of the inequality in (4.16), it follows that each term of the sum in (4.19) is

positive and globally V (X (k)) ≥ 0. Another structural property inherited from the definition

of the Chebyshev radius is resumed by Proposition 4.3.

Proposition 4.3. A stationary Chebyshev configuration of Σ over the working space W is

achieved if the function V (Y(k)) = 0.

Proof. The configuration at equilibrium is obtained when the output of each agent coincides

with its equilibrium Chebyshev center, i.e. yi(k) = ȳi(k) and ui(k) = ūi(k). This leads to

r̄i(k) = rmi (k), or equivalently the value function (4.19) becomes V (Y(k)) = 0.

Briefly, the convergence of the Multi-Agent system Σ towards a stationary configuration is

analyzed on the basis of the value function (4.19). The approach is based on the monotonic

decrease (or at least non-increase) of V (X (k)) along the trajectories of Σ. Consider

V (Y(k + 1))− V (Y(k)) =
∑
i∈N

[(r̄i(k + 1)− rmi (k + 1))− (r̄i(k)− rmi (k))]

=
∑
i∈N

(r̄i(k + 1)− r̄i(k)) +
∑
i∈N

(rmi (k)− rmi (k + 1))
(4.20)

Remark 4.6. Denoting by θi(k) = rmi (k)−rmi (k+1), we remark that θi(k) = (r̄i(k)−rmi (k+1))−
(r̄i(k)−rmi (k)). By using any control action ensuring the convergence of the ith agent’s minimal

distance to a frontier rmi towards its Chebyshev radius r̄i, we can derive that rmi (k+ 1) ≥ rmi (k)

yielding (r̄i(k)− rmi (k + 1)) ≤ (r̄i(k)− rmi (k)). Thus, θi(k) ≤ 0 is verified.

The monotonicity of V (Y(t)) is not straightforward by analyzing equation (4.20) but it is pos-

sible to study the non increasing property over a longer horizon Np. Extending the differences

over Np time steps forward yields

V (Y(k + 1))− V (Y(k)) =
∑
i∈N

(r̄i(k + 1)− r̄i(k)) +
∑
i∈N

θi(k)

V (Y(k + 2))− V (Y(k + 1)) =
∑
i∈N

(r̄i(k + 2)− r̄i(k + 1)) +
∑
i∈N

θi(k + 1)

...

V (Y(k +Np))− V (Y(k +Np − 1)) =
∑
i∈N

(r̄i(k +Np)− r̄i(k +Np − 1)) +
∑
i∈N

θi(k +Np − 1)

(4.21)

Summing up these equations, we obtain

V (Y(k +Np))− V (Y(k)) =
∑
i∈N

(r̄i(k +Np)− r̄i(k)) +

Np−1∑
l=0

∑
i∈N

θi(k + l) (4.22)
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Lemma 4.4. The sum
∑
i∈N

(r̄i(k+Np)−r̄i(k)) is upper bounded by N ·γ(W), with γ(W) denoting

the radius of the largest ball enclosed in the working region W.

Proof. One has 0 ≤ r̄i ≤ γ(W). The upper bound γ(W) is obvious from the boundedness

assumptions on W. The lower bound is derived by considering the worst case where all the

agents positions are superposed which leads to rmi = 0. Summing up the N agents Chebyshev

radius yields 0 ≤
∑
i∈N

r̄i ≤ N ·γ(W) and finally
∑
i∈N

(r̄i(k+Np)− r̄i(k)) ≤
∑
i∈N

r̄i ≤ N ·γ(W).

Proposition 4.5. The following equality holds lim
s→∞

θi(k + s) = 0, ∀i ∈ N .

Proof. Lemma 4.4 ensures the boundedness of the first term in (4.22). Consider the remaining

term

Np−1∑
l=0

∑
i∈N

θi(k + l) in 4.4 which depends uniquely on the distance between the agents. The

limit lim
s→∞

V (Y(k+s))−V (Y(k)) is bounded if and only if the limit of the sum lim
s→∞

s∑
l=0

(∑
i∈N

θi(k + l)

)

exists and is bounded. Moreover, the existence of this bounded limit lim
s→∞

s∑
l=0

(∑
i∈N

θi(k + l)

)
implies the convergence of each terms towards zero, i.e. lim

l→∞

∑
i∈N

θi(k+ l) = 0 or more precisely

lim
l→∞

∑
i∈N

θi(l) = 0, according to the theory of series (see Brabenec (2004)), otherwise the con-

vergence is not guaranteed. Furthermore, due to the expression θi(k) = rmi (k) − rmi (k + 1) in

Remark 4.6, the sum
∑
i∈N

rmi becomes stationary.

Corollary 4.6. If the Chebyshev center associated to each Voronoi cell is unique, the Multi-

Agent system converges to a Chebyshev Static Configuration.

Proof. Proposition 4.5 proves the convergence of rmi towards r̄i which is obtained when the

output of each agent coincides with its equilibrium Chebyshev center, i.e. yi(k) = ȳi(k) and

ui(k) = ūi(k) if the Chebyshev center is uniquely associated to the Chebyshev radius r̄i. Thus

in the limit case, rmi = r̄i corresponds to a Chebyshev Static Configuration.

Next, Example 4.2 intends to illustrate the analysis above on a simple 2D numerical case study

involving only 2 agents for the simplicity of the graphical illustration.

Example 4.2. Consider two mobile agents deployed in a bounded region W ⊂ R2 as shown in

Fig. 4.2. Their output’s evolution yi(k) is marked by the blue points. The red points denote

their Chebyshev centers x̄i(3) at instant k = 3. According to equation (4.14), we have r1(k) =

r2(k) = 1
2 ||y1(k)− y2(k)||. The initial positions satisfy rm1 (0) = rm2 (0) = 1

2 ||y1(0)− y2(0)||. Each

agent has its own local control action which steers the agent position towards its Chebyshev

center. As illustrated in Fig. 4.2, at k = 3, the distance 1
2 ||y1 − y2|| approaches 1

2 ||ȳ1 − ȳ2||
due to the decrease of the distance between the position of the agent and its Chebyshev center.
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Asymptotically, rmi becomes constant. Furthermore, the value function (4.19) applied for these

two agents has V (Y(k))− V (Y(0)) bounded for k ≥ 3.

−20 −10 0 10 20

−20

−10

0

10

20

2rm1 (0)

2rm1 (3)

ȳ1(3)

ȳ2(3)

y1(0)

y2(0)
V1(k)

V2(k)

W

Figure 4.2: Convergence of two agents to their Chebyshev center.

In conclusion, this section proves that local control laws can be designed to decrease the distance

between the minimal distance rmi and the Chebyshev radius and globally to drive the Multi-

Agent system Σ toward a static configuration whenever the Chebyshev center is unique. The

convergence proof enforces the decrease of the difference between these distances and can be

generalized for the non-unique Chebyshev center case as detailed in the following section.

4.3 Solution analysis and generalization

We will show in subsection 4.3.1 some counter examples related to the non-uniqueness of the

Chebyshev center computation, due to the geometry of the considered polyhedron. Other center

chosen to overcome the Chebyshev computation problem will be presented in subsection 4.3.2.

4.3.1 Non-uniqueness of the Chebyshev center computation

For a given polyhedron, the feasibility of the optimization problem (4.9) is guaranteed by the

non-emptiness and the boundedness properties of this polyhedron. The solution may not be

unique.

Example 4.3. Consider the blue polyhedron V

V = conv

{[
0

0

]
,

[
100

0

]
,

[
100

80

]
,

[
0

80

]}
⊂ R2

as shown in Fig. 4.3. Obviously, every circle having the center on the yellow segment bounded

by two points

[
40

40

]
and

[
60

40

]
is the largest circle enclosed inside the polyhedron V. Thus, every

point lying on the yellow segment is a feasible Chebyshev center of the polyhedron V. The

Chebyshev center is then non unique in case of such geometry of V.
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0 50 100

0

20

40

60

80 V

ȳ

Figure 4.3: Non unique Chebyshev center.

Starting from such a configuration, it is possible to construct the following counterexample

where the convergence towards a unique Chebyshev Static Configuration of a given MAS is not

accomplished due to the non-uniqueness of the Chebyshev computation.

Example 4.4. Consider three agents deployed within a bounded region W

W = conv

{[
−110

−20

]
,

[
110

−20

]
,

[
110

20

]
,

[
−110

20

]}
⊂ R2

as in Fig. 4.4. The real positions and the Chebyshev centers are represented respectively by

the red and blue points.

−80 −60 −40 −20 0 20 40 60 80
−20

0

20
y1 y2 y3

ȳ1 ȳ2 ȳ3
(a)

−80 −60 −40 −20 0 20 40 60 80
−20

0

20
y1 y2 y3

ȳ1 ȳ2 ȳ3
(b)

−80 −60 −40 −20 0 20 40 60 80
−20

0

20
y1 y2 y3

ȳ1 ȳ2 ȳ3
(c)

Figure 4.4: Oscillation-like behavior of 3 agents.

In Fig. 4.4 (a), each agent is positioned at its Chebyshev center and thus the global system is

in a CSC, i.e.

y1 = ȳ1 =

[
−40

0

]
, y2 = ȳ2 =

[
0

0

]
, y3 = ȳ3 =

[
40

0

]
However, due to the non-uniqueness of the Chebyshev centers of the 1st and 3rd agents, a

corrective control action will be initiated whenever the second configuration (Fig. 4.4 (b)) is

issued by the Chebyshev center computation in (4.9). In Fig. 4.4 (b), the Chebyshev centers

are

ȳ1 =

[
−60

0

]
, ȳ2 =

[
0

0

]
, ȳ3 =

[
60

0

]
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and the agents positions are

y1 =

[
−40

0

]
, y2 =

[
0

0

]
, y3 =

[
40

0

]

Subsequently, the agents start moving in the opposite direction and then further evolve to the

configuration 3 (Fig. 4.4 (c)) where the non-uniqueness of the Chebyshev center is exhibited

for all the Voronoi cells in the partition. In Fig. 4.4 (c), the Chebyshev centers are

ȳ1 =

[
−50

0

]
, ȳ2 =

[
0

0

]
, ȳ3 =

[
50

0

]

and the agents positions are

y1 =

[
−60

0

]
, y2 =

[
0

0

]
, y3 =

[
60

0

]

Hence the CSC is no longer maintained and all agents enter into an oscillation-like behavior

according to the choice of the respective time-varying centers.

This phenomenon is caused by the non-uniqueness of the Chebyshev Configuration. This prob-

lem will be encountered for any choice of inner target points unless the non-uniqueness is en-

forced. The next subsection presents how to avoid this problem and to keep driving the agents

into a stationary configuration.

4.3.2 General solution

The generalization of the basic result presented in the previous section is based on a deflation

process. The control law will exploit the contractive control with respect to the Pontryagin

difference (see Definition 2.6) between the cell Vi and the ball of radium rmi . Thus the Chebyshev

center is replaced by a so-called general center inside the Voronoi cell, which is defined below.

Definition 4.4. Given a bounded convex polyhedron V ⊂ Rn, the general center ȳ of V is

defined such as

ȳ ⊕ B̄1
r1 ⊕ . . .⊕ B̄prp ⊂ V (4.23)

where the ball B̄iri , i ∈ N[1,p] centered at the origin is defined as:

• B̄prp ⊂ Rp is the Chebyshev ball of the original set V defined as the ball centered in the

origin, with the radius equal with the Chebyshev radius computed according to (4.9);

• B̄qrq ⊂ Rp, for any q < p, denotes the q-dimensional Chebyshev ball in the relative interior

of the set V	 B̄prp 	 . . .	 B̄q+1
rq+1 .
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Remark 4.7. The set V 	 B̄prp 	 . . . 	 B̄q+1
rq+1 with q = 1, . . . , p − 1 describes the deflation of

V ⊂ Rp into a q-dimensional subspace. For q = 1, the set V is degenerated into a point yc called

the general center of the cell V.

Example 4.5. Let us consider the green polyhedron V ⊂ R3 in Fig. 4.5. Its general center is

determined iteratively according to Remark 4.7. Respectively, the set V is deflated into:

• a bounded surface (2-dimensional, blue) via the Pontryagin difference V	 B̄3
r3 ;

• a line segment (1-dimensional, yellow) by means of V	 B̄3
r3 	 B̄2

r2 ;

• a unique point ȳ (red) by means of V	 B̄3
r3 	 B̄2

r2 	 B̄1
r1 , which is the general center of V.

0 20 40 60 80 100 0

50

0

20

40

ȳ = V	 B̄3
r3 	 B̄2

r2 	 B̄1
r1

V	 B̄3
r3 	 B̄2

r2V	 B̄3
r3

V

Figure 4.5: Degeneracy of polyhedron V into the general center ȳ.

The control objective now is to drive the global Multi-Agent system into a General Static

Configuration (GSC), by steering at each time instant the agent output towards its associated

general center. The computation of a general center is well-posed and unique, based on the

local information (Voronoi cell).

The following notation is used to present the dimensional-level of deflation while finding the

general center for an ith agent. We use Vqi (k) ⊂ Rp to denote the deflation of Vi(k) ⊂ Rp in the

q-dimensional subspace. The set Vqi (k) is computed based on the recurrence

Vq−1
i (k) = Vqi (k)	 B̄qrq ,i(k) (4.24)

with the initial condition

Vpi (k) = Vi(k) (4.25)

The equations (4.24)-(4.25) imply the uniqueness of the general center with respect to Definition

4.4. It remains to find the appropriate decentralized control to steer each agent towards its

general center meanwhile guarantee the λ-contractive of its Voronoi cell with respect to the

agent’s dynamics and the inner general center. We propose the following definition to describe

the set of decentralized control satisfying these objectives.
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Proposition 4.7. The convergence towards a General Static Configuration of the Multi-Agent

system Σ can be achieved in a decentralized manner by using ui(k) ∈ U(yi(k),Vi(k)), where

U(yi,Vi) = {ui ∈ Rmi |∃λ ∈ R[0,1) s.t. Ci(Aixi +Biui) ∈ ȳi(Vi)⊕ λ(Vi ⊕ {−ȳi(Vi)})} (4.26)

Sketch of proof. The statement is a generalization of Proposition 4.5, enhanced by the intrinsic

uniqueness properties of the general center as introduced in Definition 4.4. The uniqueness

follows by the fact that B̄prp are uniquely defined and by the fact that for p = 1 the associated

Chebyshev center is unique. This proves the existence of a General Static Configuration.

The set U characterizes the collection of control actions which ensures the one-step λ-contractiveness

(see Definition 4.1) of the cell Vi with respect to the agent’s dynamics (2.1). The closed-loop

dynamics consequently ensures the convergence of the agent’s output yi towards the general

center ȳi representing an equilibrium point of the agent (according to Assumption 4), implying

the non increasing property of the value function (4.19). This is guaranteed by means of the

convergence of the term θi(k) = rmi (k) − rmi (k + 1) (see Remark 4.6) towards zero, leading to

the convergence of the minimal distance to a frontier rmi towards a stationary value in virtue of

Proposition 4.5. Therefore, the stability proof is completed.

In this section, we give some counterexample showing the non-uniqueness of the Chebyshev

center computation and further provide a so-called general center based on deflation principle.

The main advantage of this chosen center is that its uniqueness is ensured by deflation con-

struction. At the end of this section, we present the basic requirements to determine the set

of decentralized control to steer each agent’s output towards its center. The specific design of

decentralized control will be detailed in the next section.

4.4 General decentralized control

In the previous section, Proposition 4.7 offers the theoretical framework for the selection of

a stabilizing decentralized control for MAS. In order to address the efficiency of the control

policies, an optimization-based synthesis can be formulated. At each sampling instant the next

convex optimization problem can be solved for the ith agent

ui(k) = arg min
ui(k)
‖yi(k + 1)− ȳi(k)‖2Q + ‖ui(k)− ūi(k)‖2R (4.27a)

s.t.: x̄i(k) = Aix̄i(k) +Biūi(k) (4.27b)

ȳi(k) = Cix̄i(k) (4.27c)

xi(k + 1) = Aixi(k) +Biui(k) (4.27d)

yi(k + 1) = Cixi(k + 1) (4.27e)

ui(k) ∈ U(yi(k),Vi(k)) (4.27f)
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with i ∈ N[1,N ]. The weighting matrices Q ∈ Rpi×pi , R ∈ Rmi×mi in the cost function (4.27a) are

chosen such as Q = Q> � 0 and R = R> � 0, which can be adjusted to offer the balance between

the tracking of the center ȳi(k) and the control effort. The constraints (4.27b) and (4.27c) are

used to compute (x̄i(k), ūi(k)) from ȳi(k). The constraints (4.27d)-(4.27e) are employed to

predict the one-step forward value of the agent’s output yi(k + 1), state xi(k + 1) with respect

to the dynamics (2.1) and the current state xi(k) and output yi(k). The last constraint (4.27f)

means that ui(k) ensures the λ-contractiveness of Vi(k).

If the solution of (4.27) cannot ensure the one-step-forward inclusion of the agent’s output

yi(k + 1) = Ci(Aixi(k) + Biui(k)) inside of Vi(k) (e.g. non minimum phase dynamics), the

following constrained Model Predictive Control (MPC) can be considered

ui(k) = arg min
ui

Np−1∑
l=0

‖yi(k + l + 1)− ȳi(k)‖2Q +

Np−1∑
l=0

‖ui(k + l)− ūi(k)‖2R (4.28a)

s.t.: x̄i(k) = Aix̄i(k) +Biūi(k) (4.28b)

ȳi(k) = Cix̄i(k) (4.28c)

xi(k + l + 1) = Aixi(k + l) +Biui(k + l) (4.28d)

yi(k + l + 1) = Cixi(k + l + 1) (4.28e)

yi(k + l + 1) ∈ W, l ∈ N[0,Np−1] (4.28f)

yi(k +Np) ∈ ȳi(k)⊕ λ(Vi ⊕ {−ȳi(k)}), with λ ∈ R[0,1) (4.28g)

Similar to the control problem (4.27), the weighting matrices Q ∈ Rpi×pi , R ∈ Rmi×mi in the

cost function (4.28a) are chosen such as Q = Q> � 0 and R = R> � 0. The constraints (4.28b)

and (4.28c) are used to compute (x̄i(k), ūi(k)) from ȳi(k).

The constraints (4.28d)-(4.28e) are employed to predict the future values of the agent’s output

yi(k + l + 1), state xi(k + l + 1) and input ui(k + l) with respect to the dynamics (2.1) and

the current state xi(k) and output yi(k). We use (4.28f) to ensure that the agent’s output do

not leave out of W. The condition (4.28g) is considered as a terminal set constraint for the

problem (4.28), which implies that the agent’s final position yi(k + Np) has to be included in

an invariant subset inside its Voronoi cell Vi(k). This implies that the cell Vi(k) has to be a

N -step controlled λ-contractive with respect to the agent’s dynamics (2.1) for the center ȳi(k)

(see Definition 4.2). For this reason, it is preferable to choose a sufficiently large prediction

horizon Np to ensure that the constraint (4.28g) is validated for all agents, i.e.

Np = max{Npi},∀i ∈ N (4.29)

in which Npi is the shortest prediction horizon such that yi(k+Npi) ∈ ȳi(k)⊕λ(Vi⊕{−ȳi(k)}).
It can be considered also as the minimum time between two successive times of partition step.

To conclude, this section proposes a novel decentralized control solution for the deployment task

of a Multi-Agent system using dynamic Voronoi partition. The originality resides in the fact
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that the Chebyshev center is replaced by a general center notion which enhances the uniqueness

of the tracking point for each agent. We describe also a class of viable control actions at each

time instant which ensure the asymptotic convergence towards a central point of each Voronoi

cell and ultimately to a static configuration for the Multi-Agent system. As a remarkable

feature, the local control at the level of each agent is decentralized and uses only the information

of the current state and the associated Voronoi cell4. This cell is known to depend on the

agent’s position and the position of the agents in his neighbor as defined by the non-redundant

constraints in (4.5)-(4.6).

In the next section, we will present two numerical scenarios to illustrate the deployment perfor-

mance of a Multi-Agent system over a bounded region W by using the basic solution (Section

4.2) and the general solution (Section 4.3.2).

4.5 Numerical illustrations

Let us consider a Multi-Agent system composed of N = 4 mobile agents. Each agent has its

own continuous-time dynamics

ẋi =


− 1
τ 0 1

τ 0

0 − 1
τ 0 1

τ

0 0 − 1
τ 0

0 0 0 − 1
τ

xi +


0 0

0 0
1
τ 0

0 1
τ

ui
yi =

[
1 0 0 0

0 1 0 0

]
xi

(4.30)

where xi ∈ R4, ui ∈ R2 and yi ∈ R2 refer respectively to the agent state, input and output.

Furthermore, the input ui denotes the accelerator, and xi is composed of the agent’s position

and velocity. The choice of the matrix Ci help us to capture the agent’s position yi ∈ R2 from

the state vector xi. As seen in the structure of the matrices Ai and Bi, the pure integrator from

the velocity to the position and similar from the acceleration to the velocity is replaced by a

first-order filter with τ = 0.1s denoting the time constant. The dynamics (4.30) is discretized

according to the zero-order-hold method, with the sampling time chosen as Ts = 0.01s, i.e.{
xi(k + 1) = Aixi(k) +Biui(k)

yi(k) = Cixi(k)
(4.31)

4A Voronoi partition can be obtained in a decentralized manner by considering that each agent construction
relies only on its local state and the information of its closest neighbors, to construct its own Voronoi cell.
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with Ai =


0.9048 0 0.0905 0

0 0.9048 0 0.0905

0 0 0.9048 0

0 0 0 0.9048

, Bi =


0.0047 0

0 0.0047

0.0952 0

0 0.0952

, Ci =

[
1 0 0 0

0 1 0 0

]
.

The region W is defined as a box in R2. The Voronoi tessellation is employed at each time

instant to decomposeW into an union of Voronoi cells, i.e. W =
4⋃
i=1

Vi(k). Each cell corresponds

to one agent’s authorized functioning zone, used to design the decentralized control input ui(k).

In all the considered scenarios, the main objective is to drive the agents toward a static con-

figuration depending only on the choice of the inner target point: Chebyshev center or general

center. In Figs. 4.6 and 4.9, we use the green and blue points to denote respectively the agents

initial positions yi(0) and their evolution in time. The centers ȳi (Chebyshev/general center)

have their trajectories described by the red points. The tracking error ‖yi(k)− ȳi(k)‖ are illus-

trated in Figs. 4.7 and 4.10. Figs. 4.8 and 4.11 show the evolution in time of the value function

(4.19) corresponding to each scenario.

We show the value of yi(0) directly in the figures and also the static Voronoi configuration.

The decentralized MPC framework (4.28) is employed with the value of the weighting matrices

Q ∈ R2×2, R ∈ R2×2 and the horizon of prediction Np given for each simulation.

A. Chebyshev Static Configuration convergence

In the first scenario, the working region is

W = conv

{[
−20

−20

]
,

[
20

−20

]
,

[
20

20

]
,

[
−20

20

]}
⊂ R2

as presented in Fig. 4.6. The agents use the decentralized MPC framework (4.28) to push the

output yi(k) towards the corresponding Chebyshev center ȳi(k). The value of the center ȳi(k)

associated to the Voronoi cell Vi(k) is obtained by solving the optimization problem (4.9). The

weighting matrices are Q = I2, R = 50I2 and the prediction horizon is Np = 5. The deployment

result is shown in Fig. 4.6. The center tracking errors ‖yi(k)− ȳi(k)‖ and the evolution of the

value function V (Y(k)) are plotted respectively in Figs. 4.7-4.8. As result, the tracking errors

go asymptotically to zero and thus the MAS approaches a stable CSC.

B. General Static Configuration convergence

In the second scenario, the working region is

W = conv

{[
−8

−1

]
,

[
8

−1

]
,

[
8

1

]
,

[
−8

1

]}
⊂ R2

as illustrated in Fig. 4.9(a). The weighting matrices are Q = 20I2, R = I2 and the prediction

horizon is Np = 5 for the decentralized MPC framework (4.28). Furthermore, the initial con-

figuration of the four agents is chosen such that the shape of each Voronoi cell in Fig. 4.9(a) is
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Figure 4.6: CSC deployment.
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Figure 4.7: Agents center tracking error
‖yi(k)− ȳi(k)‖.

0 20 40 60 80 100
0

5

10

15

20

25

Time instants

Figure 4.8: Evolution of Value function
V (Y(k)).

similar to the polyhedron’s shape given in Examples 4.3 and 4.4. According to the results pro-

vided in these two examples, such configuration of Voronoi partition leads to the non-uniqueness

of the problem (4.9) (see Fig. 4.9(a)) for all agents cells.

In order to overcome this computational problem, we replace the Chebyshev center by the

general center. With respect to Definition 4.4, the uniqueness of the general center computation

is guaranteed by the deflation principle and Pontryagin difference (see Definition 2.6). The

deployment resulting from the generalized tracking strategy is shown in Fig. 4.9(b). The

general centers ȳi are determined at each time instant k by following the equation (4.24)-(4.25).

The red points denote the motion of each general center ȳi. As mentioned above, the tuple

of general centers at each time instant is unique. Concerning the deployment efficiency, each

agent converges efficiently to its associated general center. This is illustrated by the curves of

the agents’ center tracking error ‖yi(k) − ȳi(k)‖ in Fig. 4.10 and the evolution of V (Y(k)) in

Fig. 4.11, which confirm the convergence of the entire Multi-Agent system into a stable GSC.



Chapter 4 Set-based decentralized control for dynamical Multi-Agent deployment 89

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−1

0

1
W

(−7.1, 0.3) (−4.2,−0.8)

(2.5, 0.8)

(7,−0.2)

V1 V2 V3 V4

(a)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−1

0

1

y2
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Figure 4.9: (a) Non unique CSC. (b) GSC deployment.
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Figure 4.10: Agents center tracking error
‖yi(k)− ȳi(k)‖.
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Figure 4.11: Evolution of the value func-
tion V (Y(k)).

4.6 Conclusion

This chapter provides a novel set-based decentralized control for Multi-Agent self-deployment.

The ultimate goal is to maximize the coverage by stabilizing the deployment of a Multi-Agent

system around a static configuration over a bounded region. This goal is obtained in a de-

centralized manner by ensuring the convergence of each agent toward a target point inside its

associated Voronoi cell-functioning zone. The computation of the set of agents functioning zones

follows the concept of the Voronoi tessellation of the working region. The center of mass is usu-

ally chosen as the conventional inner target point and subsequently any decentralized control

can be applied to steer the agent into its center of mass. This is the main principles of Lloyd’s

algorithm to compute an optimal coverage in which each agent coincides with its center of mass.

However, the complexity of the center of mass computation is the main drawback of Lloyd’s

algorithm.
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To overcome the computational drawback of center of mass, in this chapter, we replace the

center of mass by the Chebyshev center. It allows using set-theoretic notions to formulate

the center computation and the decentralized control design. Some counterexamples are given

throughout the chapter to prove the non-uniqueness of the Chebyshev center computation and

the associated dynamical Voronoi partition.

In order to overcome this problem, we advocate a novel solution based on the choice of a so-called

constructed by recursive deflation after Chebyshev radius computation. This central point is

subsequently used as the agent’s target. For a given bounded convex set, its general center is

unique by following the principle of deflation, leading to a stable static configuration. More than

that, it is shown that any control input making the agent’s cell controlled λ-contractive ensures

the convergence to a static configuration. The control synthesis is decentralized according to

the local Voronoi cell shape and developed based on the principles of Model Predictive Control

framework subject to the λ-contractiveness of the Voronoi cell at the end of the prediction

horizon. Beside these choices of the center, we will introduce a new so-called vertex interpolated

center with its associated decentralized control design in Appendix A. Moreover, our novel

decentralized control to drive a Multi-Agent system towards a centroidal Voronoi configuration

will be detailed in Appendix B.

The present chapter along with Chapter 3 proposes a decentralized formation controls subject to

anti-collision constraints for Multi-Agent dynamical system. The principle consists in enclosing

each agent strictly inside its functioning zone such as these zones are non-overlapping. The

functioning zone is firstly introduced in Chapter 3 and its method of construction is detailed in

this present chapter. In Chapter 5, beside the fault tolerant control, we will detail the design of

a set-based fault detection and isolation layer to supervise the number of agents in a formation.



Chapter 5

Formation reconfiguration using

MPC techniques

5.1 Introduction

Fault Detection and Isolation (FDI) is basically defined as a supplementary layer to detect

and isolate the faults during the functioning of a dynamical system. According to Blanke and

Schröder (2006) and Isermann (2005), a fault in a dynamical system can be usually understood

as a failure/damage in the system’s components which change the dynamics and further deviates

it from its nominal functioning mode. Many studies in the literature have been conducted on

this topic and various results were obtained. Most of these works have the same principle

related to Model-based generation of residuals. In the context of FDI, a residual is defined as an

indicator signal of fault occurrence. It is basically built on the difference between the system’s

measured information and an estimated signal which is obtained by means of the foreknowledge

of the system’s model. For the design of residual, various results can be found, such as parity

space (Patton et al. (1989), Gertler (1991)), state estimation by using observer(Edwards et al.

(2000), Theilliol et al. (2002), Chen and Patton (2012)) or Kalman filter (Willsky (1976), Blanke

and Schröder (2006)). Other approach related to FDI design is built on data-based method,

such as statistical techniques (Mehra and Peschon (1971), Willsky (1976)) or neural networks

(Venkatasubramanian et al. (1990), Altug et al. (1999)).

Basically, a FDI layer is followed by a reconfiguration strategy to fully/partially reconfigure

the system once the faults are located. The main principle of this reconfiguration step consists

in compensating the faults impact (Xiao-Zheng and Guang-Hong (2009), Seron and De Doná

(2009)), or adapting the control action to the change in the system’s dynamics by tuning the

controller’s parameter/structure (Eva Wu et al. (2000), Yu et al. (2005)). In some specific cases

of actuators or sensors faults, hardware redundancy can be employed, in order to disconnect the

failed part and connect to another component achieving the same task (Theilliol et al. (2002),

Franze et al. (2012), Stoican and Olaru (2013) and Rotondo et al. (2014)).

91
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Although FDI study for single dynamical system is widely known and developed in the literature

as presented above, just few results relate FDI concept for MAS. We remind that the concept

of MAS safety is more general than the definition of safety for single system. More specific, the

functioning of MAS is not uniquely impacted by the damage on the agent’s components but the

collision can also be considered as faults for MAS.

Set theory is proved to be a powerful tool for monitoring by means of set-theoretic methods

characterizing the system’s functioning. Therefore, set-theoretic tools have been used to design

FDI schemes based on the separation between different functioning modes. The faults treated

in this framework are principally sensor faults (Stoican et al. (2013), Olaru et al. (2010)) and

actuator faults (Seron and De Doná (2009), Franze et al. (2012)) for linear dynamical systems.

The reported results on the application of set-theoretic and optimization tools for MAS con-

trol, did not integrate the Fault detection and reconfiguration capabilities to the best of our

knowledge. Recently an effort has been made to link these two areas of developments in order

to develop a comprehensive set-theoretic framework to design fault tolerant control strategies

for MAS along the ideas presented in Fagiolini et al. (2007) and Rosich et al. (2014).

The main objective of this chapter is to employ set-theoretic methods to design a layer of fault

detection and isolation for a homogeneous Multi-Agent system involving the set-description of

their characteristics. This objective consists in supervising the interaction of the agents in the

global MAS and detecting if agents from exterior try to integrate the current group of agents.

As a field of application of these methodological developments one can consider the platooning

problem (see Sheikholeslam and Desoer (1992), Stanković et al. (2000), Sabau et al. (2015),

Ploeg et al. (2015), Farokhi and Johansson (2015) and Liang et al. (2016)). Due to the need to

preserve the safety of all agents from the collision with the faulty agents inside the formation

and with the intruders with respect to the current formation, we will privilege a centralized

approach for the design of the FDI layer.

From a structural point of view, the control and monitoring priority is to preserve the formation

and thus the design can be considered to be placed at a supervisory level. The main contribution,

which is part of Nguyen et al. (2015a), is twofold:

• First, the proposed centralized FDI scheme for Multi-Agent systems is able to detect if

an agent is faulty and if this fault falls in a serious category, to eliminate the faulty agent

from the team (and automatically reconfigure the formation).

• Second, it will establish a threshold on the safety distances with respect to agents outside

the formation in order to detect intruders. The FDI step is subsequently completed by a

reconfiguration step to calculate a new optimal configuration for the global system. After

finding the optimal formation, a classical control action is designed to steer and keep the

MAS into this new formation, with respect to the collision avoidance constraints between

the agents.
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The design of such centralized FDI scheme relies on the quality of the communication tasks

between the agents. It is assumed that the communication graph of the global Multi-Agent

system is fully connected, i.e. any agent can send its information (e.g. position, speed...) to all

agents in the global system and also receive the information from all these agents (see Mesbahi

and Egerstedt (2010)). Moreover we assume that there is no degradation in the information

exchanged between the agents due to the large disturbance of the environment or due to the

delay of communication.

In the following, we will present the necessary prerequisites in Section 5.2, related to employing

the notion of robust tube-based safety region (see subsection 2.3.1) of an agent and the collision

avoidance constraints description in subsection 2.3.2. After, Section 5.3 formulates the tracking

problem for a Multi-Agent system completed by few challenges due to the change of the number

of agents in the formation. Section 5.4 and Section 5.5 describe respectively two scenarios of

functioning in presence of faults and present a corresponding FDI framework with the associated

reconfiguration step. Section 5.6 proposes a numerical simulation to illustrate the performance

of the new FDI algorithm for a MAS composed of 3 agents subject to two faulty scenarios.

Finally, the present chapter is ended by some concluding remarks and perspectives given in

Section 5.7.

5.2 Background in Multi-Agent formation control

In order to elaborate the contribution, in the next subsections, we recall two main elements:

• The centralized optimization-based framework to obtain an optimal formation;

• The control action for the tracking mission for a formation in the fault-free functioning.

5.2.1 Minimal formation

A minimal formation of the MAS system Σ is defined as an ideal configuration where all the

considered agents are as close as possible to a common reference, which is the reference of the

formation center. This formation is defined as the optimal solution x̄∗ of the following problem:

x̄∗ = arg min
ū∗

N∑
i=1

‖x̄i‖ (5.1a)

s.t.: x̄i − x̄j /∈ (−Si)⊕ Sj ,∀i, j ∈ N[1,N ], i 6= j (5.1b)

x̄i = Aix̄i +Biūi (5.1c)

Here, x̄∗ denotes the collective vector containing the equilibrium optimal states of all agents in

the MAS, i.e. x̄∗ =
[
x̄>1 x̄>2 . . . x̄

>
N

]> ∈ RNn. The state vector x̄i indicates the displacement
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between the state of the ith agent and the common reference (which represents the origin after

an appropriate change of coordinates). The expression (5.1b) denotes the collision avoidance

constraints, while (5.1c) emphasizes that x̄i is determined as a static equilibrium point. The

problem (5.1) is a non convex problem and due to the anti-collision constraint (5.1b), it can be

casted in Mixed Integer Programming (MIP) class1. A Mixed Integer Programming problem

is defined as an optimization problem where some of the decision variables are constrained to

be integer values at the optimal solution. In the context of non-convex collision avoidance con-

straints, we add some supplementary binary variables to translate the non-convex optimization

problem into a tractable convex problem. However, the main drawback relates its computational

complexity which increases exponentially with the number of binary variables.

Remark 5.1. Solving the problem (5.1) requires the full information of all agents in the global

system hence its calculation is centralized and thus it is computed in a centralized way.

The minimal formation can be computed offline or online, according to the number of agents in

the Multi-Agent system, with the geometry of their safety region. We will detail next how to

preserve this formation during the tracking mission.

5.2.2 Centralized tracking reference

Once the optimal formation is determined via solving the problem (5.1), it will be preserved

along the common reference2 xref . The main purpose of the formation control remains the

design of a closed-loop control scheme so that the MAS’s states track the common reference

which can be interpreted as a feedforward signal:

xref (k + 1) = Arefxref (k) +Brefuref (k) (5.2)

with Aref = Ai for an homogeneous MAS. In this context, each agent has to determine for itself

a target trajectory to follow, which can be defined as a sum of the common reference and the

optimal position of this agent with respect to the origin. More specifically, the target trajectory

of uniquely the ith agent is denoted by:

x̆i(k) = xref (k) + x̄∗i
ŭi(k) = uref (k) + ū∗i

(5.3)

This trajectory is associated to the dynamical equation:

x̆i(k + 1) = Aix̆i(k) +Biŭi(k) (5.4)

with (x̄∗i , ū
∗
i ) being the solution of solving the problem (5.1), related to the optimal equilibrium

position of the ith agent in the minimal formation. Note that the pairs (x̄∗i , ū
∗
i ) obtained by

1BNB is the main solver used to solve all MIP problems considered in the thesis. This solver is a quick
implementation of a standard branch & bound algorithm for Mixed Integer Programming, already packaged in
YALMIP Löfberg (2004).

2The common reference is the reference of the formation center.
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solving (5.1) are always static. In others words, they are used to represent the offset between

the time-varying common reference (xref (k), uref (k)) compatible with the agents’ dynamics and

the reference of each agent (x̆i(k), ŭi(k)).

Hence from the equations (5.3), we can derive x̆i(k+ 1) = xref (k+ 1) + x̄∗i . Using the equation

(5.2) and the expression x̄∗i = Aix̄
∗
i + Biū

∗
i with respect to the fact that (x̄∗i , ū

∗
i ) satisfies the

constraint (5.1c), we obtain

x̆i(k + 1) = Aix̆i(k) +Biŭi(k) (5.5)

Remark 5.2. If (x̄∗i , ū
∗
i ) is considered as the equilibrium position of the ith agent with respect

to the origin, then (x̆i, ŭi) is its equilibrium position with respect to the value of the common

reference xref , according to the equations (5.3).

Example 5.1. Consider a MAS composed of N = 3 homogeneous agents having the same

dynamics with the agent in Example 2.8. The common reference xref is denoted by a red dashed

line in Fig. 5.1. Applying the tube-based construction (see subsection 2.3.1) to construct the

agents safety regions. The detail of construction was given in Example 2.8. Solving the problem

(5.1), we obtain the tight formation for these 3 agents. By using the equations (5.3), we can

determine the target trajectory x̆i for each agent end further enclose each x̆i within its safety

tube S(x̆i). As shown in Fig. 5.1, the tight formation is preserved along the common reference

xref .

2 3 4 5 6 7 8
2

3

4

5

6

7

8
xref
x̆1

x̆2

x̆3

Figure 5.1: Formation of 3 homogeneous agents.

After determining the agents target trajectories, the following centralized Model Predictive Con-

trol action is designed to steer each agents state xi towards its corresponding target trajectory

x̆i:
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u∗(k) = arg min
u∗(k),...,u∗(k+Np−1)

Np−1∑
l=0

(
‖x(k + l)− x̆(k + l)‖2Q + ‖u(k + l)− ŭ(k + l)‖2R

)
+ ‖x(k +Np)− x̆(k +Np)‖2P

(5.6a)

s.t. x(k + l + 1) = Ax(k + l) + Bu(k + l) (5.6b)

x̆(k + l + 1) = Ax̆(k + l) + Bŭ(k + l) (5.6c)

xi(k + l + 1)− xj(k + l + 1) /∈ (−Si)⊕ Sj (5.6d)

with l ∈ N[0,Np−1], ∀i, j ∈ N , i 6= j

with x =
[
x>1 x>2 . . . x

>
N

]> ∈ RNn, u =
[
u>1 u>2 . . . u

>
N

]> ∈ RNm denoting the collective state

and input vector of all agents in the MAS. The notations x̆ =
[
x̆>1 x̆>2 . . . x̆

>
N

]> ∈ RNn, ŭ =[
ŭ>1 ŭ>2 . . . ŭ

>
N

]> ∈ RNm represent the collective state and input vector of the agents target

trajectories. The matrices A = diag {A1, A2, . . . , AN} and B = diag {B1, B2, . . . , BN} collect

all the matrices corresponding to each agent by juxtaposition. The weighting matrices Q ∈
RNn×Nn, R ∈ RNm×Nm and P ∈ RNn×Nn are all symmetric and positive definite.

The constraints (5.6b)-(5.6c) are employed to predict the future values of the agent’s state

xi(k+ l+ 1), input ui(k+ l) and also the future values of the target trajectories, with respect to

the agents dynamics from the current state x(k). The last expression (5.6d) is the anti-collision

constraint added to the control problem (5.6). Alternative formulations enforcing the stability

can be employed by adding terminal constraints to (5.6d). However, in the present work, we

consider that these issues are taken into account by adjusting the length of the prediction

horizon in order to guarantee the stability via a pseudo-infinite cost function (see Chmielewski

and Manousiouthakis (1996)) and additionally the feasible domain (if saturations are to be

taken into account which is not the case here). Starting from the basic MPC formulation in

(5.6) the focus is on the monitoring and fault detection of the MAS formation (supposed to run

on a properly design tracking control mechanism). Note also that the problem (5.6) does not

include static input-state limitations. The feasibility of the anti-collision constraint (5.6d) can

be handled via reachability analysis or viability theory whenever these constraints are considered

as ”hard” (see Aubin (2009)) or by the methods proposed earlier in Section 3. Such centralized

control structure requires that any agent has to send its information (e.g. position, speed...)

to all agents in the global system and also receive the information from all these agents. The

computational time for each prediction depends on the dimension of the Multi-Agent system.

Briefly, in this section, we provided the background in Multi-Agent formation control subject

to anti-collision constraints using centralized Model Predictive Control approach. Next, Section

5.3 formulates the tracking problem for a Multi-Agent system completed by few challenges due

to the change of the number of agents within the formation.
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5.3 Problem statement

Given a dynamical Multi-Agent system, the mission safety is defined as the achievement of a

common tracking goal while ensuring that the interaction between the agents do not damage the

structural organization of the MAS. More precisely, all agents have to track a given reference

within a predefined formation and integrate the collision avoidance constraints while fulfilling

the mission objective. The framework (5.1) describes a minimal configuration for the system

but this predefined configuration does not adapt to the real time evolution of MAS. In case of

changing the number of agents in MAS, typically when an agent leaves definitely its team3, due

to a serious fault or due to the operator decision, or when some agents from exterior try to join

the current MAS, clearly a fixed configuration is not suitable. Moreover, having agents that

leave the formation may have a disastrous impact if a subgroup of agent follows such a faulty

element.

Our interest is to reinforce the safety of a Multi-Agent system during a tracking mission by

means of a centralized framework for fault monitoring. This requirement becomes challenging

whenever the supervision level has to integrate the environmental disturbance and cumbersome

the computation load due to the dimension of the aggregated MAS. The most important feature

is that this supervision/monitoring framework has to be suitable to (compatible with) the estab-

lished control objectives. More precisely, the implementation of a fault tolerant supplementary

layer can introduce some loss of performance during the operation of the global system.

The theoretic basis is offered by the use of set-theoretic tools. Based on the knowledge of the

agents dynamics and their safety region construction, we will present in the next sections the

fault detection and isolation layer for the global system. The decision making will be based on an

adaptive threshold with respect to the disturbance and furthermore based on the predicted state

of the global system Σ (modeled as linear dynamics subject to bounded additive disturbances).

The FDI layer for the fault monitoring will enable a reconfiguration step which aims to recover

the control structure with respect to the remaining healthy agents in the system. This FDI

layer is installed on each agent, based on the communication between this agent and all the

remaining agents in the global system. The fault scenarios for the MAS are classified in two

notable cases, respectively represented in Examples 5.2 and 5.3.

In the first case, an agent belonging to the Σ can suffer damages on its components which

decrease the performance of functioning. This is translated by a switch in the dynamical be-

havior relative to the common healthy behavior of the other (homogeneous) agents in Σ (and

subsequently with an impact in the common prediction model). For this case, the FDI layer

has to characterize the behavior of each agent independently allowing to monitor and detect if

a change in the nominal prediction model took place and if the anomalies are characterized as

serious enough to subsequently isolate this agent.

3It can become even adversary with respect to the team but such behavior is not considered here. In the
following, all the intruders are considered as cooperative and their inclusion is automatically granted to the
formation, subject to reconfiguration.
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Example 5.2. Consider an homogeneous MAS of 4 agents which has to track a reference (red

dashed line). An agent is denoted by its safety region centered at this agent’s nominal state

(blue dot). If an agent is healthy, its safety region is colored by yellow, otherwise it is colored

by green.

The faulty scenario is shown in Fig. 5.2 via four steps. Their details are given in Table 5.2.

The occurrence of fault in step (a) impacts the agent’s dynamics and leads to a non-cooperative

behavior compared to the remaining healthy agents (step(b)) (represented by a change in color

in Fig. 5.2). Note that in step (c), the impact of the fault is expressed in terms of the application

of the centralized control action on the faulty dynamics, leading to seriously degrade the tracking

performance of the remaining agents. After being detected, the faulty agent is eliminated and

subsequently the formation is reconfigured for the remaining agents (step(d)).

(a) (b) (c) (d)

Figure 5.2: Outgoing fault detection and reconfiguration mechanism.

Table 5.1: Outgoing fault scenaria and FDI mechanism corresponding.

Step (a) Occurrence of fault impacting the agent’s dynamics

Step (b) Detection of faulty agent

Step (c) Degradation of the tracking performance

Step (d) Reconfiguration of the formation by eliminating the faulty agent

In the second case, during the mission, some agents positioned outside of the formation can make

maneuvers in order to integrate to the current formation (it is generally the case in a platooning

maneuver when a track/car engages into the platoon). This scenario is critical because it can

lead to safety loss. A FDI layer which is based on set-theoretic methods is further used as a

threshold to detect these intruders. In order to guarantee the safety of the formation, this type

of fault (or abnormal functioning of the formation) can be decomposed into two phases. First,

once detected, the status healthy of the incoming agent has to be validated. This validation

step needs a validation-time to ensure the integration objective of the intruders. Second, after

being validated as healthy, a suitable reconfiguration step will be effectuated. It authorizes the
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inclusion of a novel index (of the intruder) to the global system Σ and the reconfiguration of

the formation at the next iteration. The new formation has to be a set of optimal positions

to which the current agents and the new ones will converge while fulfilling the anti-collision

constraints. Four main steps of this FDI mechanism designed for the incoming fault case are

given in Example 5.3.

Example 5.3. Consider an homogeneous MAS of 4 agents which has to track a reference (red

dashed line). An agent is denoted by its safety region centered at this agent’s nominal state

(blue dot). If an agent is taken into account in the current MAS formation, its safety region is

colored by yellow, otherwise it is colored by green.

The faulty scenario is shown in Fig. 5.3 via four steps. We detail the role of each step in Table

5.3. In step (a), the intruder is detected and immediately considered as an adversary intruder.

As long as its integration is still not accepted, the formation has to avoid the collision with it

thus the tracking performance can be impacted (step(b)). If the integration of the intruder is

accepted, the current formation is reconfigured by taking into account this new agent in the

centralized computation (step(c)) and further continue the tracking operation (step(d)).

(a) (b) (c) (d)

Figure 5.3: Incoming fault detection and reconfiguration mechanism.

Table 5.2: Incoming fault scenaria and FDI mechanism corresponding.

Step (a) Detection of intruder outside the current formation

Step (b) Protection of the formation from the collision with the intruder

Step (c) Reconfiguration of the formation in case of accepted integration

Step (d) Continuity of the tracking operation

These two scenarii will be described in the next two sections.
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5.4 Outgoing-agent case-study

5.4.1 Fault Detection and Isolation for outgoing agents

In this section, the FDI layer is designed in order to detect and eliminate the faulty agents from

the current formation. After the elimination step, the formation will be reconfigured based

on the healthy (remaining) subset of agents. A certain time window will be imposed from the

detection stage to validate the faulty status of an outgoing agent and engage the reconfiguration

status. Two levels of faults are considered:

• Quarantined Faulty Agent: The agent suffers anomalies in its dynamic behavior relative to

the healthy behavior of its neighbors. These anomalies make the agent’s behavior different

from its nominal (predicted) dynamics, but this still cannot prove that this agent is faulty,

because the anomalies may be issued from environmental disturbance or local decisions

made at the control level, see the problem (5.6). For this reason, we need to set a certain

time window of length Nm to validate the fault. If it is maintained more than Nm time

steps, this agent will be certified as faulty.

• Certified Faulty Agent: This case is similar to the previous case from the detection of the

mis-functioning but the impact of the decision is different in the reconfiguration of the

formation. The certification is done whenever the system in quarantine presents a state

which is “largely” different from the remaining agents, practically outside of the current

formation envelope. In this case, the faulty status is reported to the central unit which

computes a novel optimal formation by eliminating the faulty agent.

In the sequel, these two cases are considered.

5.4.1.1 Quarantined Faulty Agent Detection

In order to determine the functioning mode (Healthy or Faulty) of an agent, a set of N residuals

will be used, one for each agent. Each residual is defined as:

ri(k) = x̃i(k)− x̌i(k), with i ∈ N (5.7)

with x̃i(k) and x̌i(k) denoting the real state (see equation (2.6)) and the one-step predictable

state of the ith agent, respectively. The value of x̌i(k) is obtained by using the nominal dynamics

(2.1) and the last available state xi(k − 1) i.e.:

x̌i(k) = Aix̌i(k − 1) +Biu
∗
i (k − 1), with i ∈ N (5.8)

where u∗i (k − 1) is the control action of the ith element of the optimal solution of (5.6) at time

instant k − 1.
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If there is no fault, after a transition when the tracking error converges towards the tight

configuration, then ri(k) ∈ Si. Hence, the safety region Si is also the set RHi which characterizes

the Healthy functioning of the ith agent:

RHi = Si, with i ∈ N (5.9)

We consider a set denoted RFi to characterize the Faulty functioning and RH→Fi to charac-

terize the Healthy-to-Faulty transition functioning. These sets can be used to characterize the

detectability condition based on set separation{
RHi ∩RH→Fi = ∅
RHi ∩RFi = ∅

, with i ∈ N (5.10)

If one of these separations does not hold, then the FDI mechanism will not be able to ensure the

one-step detection but it can engage a monitoring procedure (see Stoican and Olaru (2013)).

In the present framework, we consider the case of critical faults, like leaving the formation due

to serious faults. The fault isolation/identification is not considered here, mainly due to the

fact that a precise signature has not been pre-imposed. This means that once the fault occurs,

it will be detected if the residual ri(k) jumps out of RHi and transits to RFi . The condition of

Fault detection and isolation (5.10) is thus simplified4 to

RHi ∩RFi = ∅, with i ∈ N (5.11)

The candidate set which satisfies the condition (5.11) is simply defined as the complement set5

of RHi , i.e.

RFi = C(RHi ) (5.12)

This criterion is based on the invariance properties of the safety regions which is preserved under

nominal functioning in presence of modeled additive disturbances. It has to be mentioned that

the presence of such a fault will trigger a collision avoidance mechanism to its neighbors as long

as their local safety regions are not respected. All these mechanisms are in place at the local

level and the global system is functioning in a degraded mode.

The detection of the quarantined faulty agent has the form of a set inclusion

ri(k) /∈ RHi (5.13)

Therefore, the condition to associate the quarantined faulty status to a healthy agent is that its

residual ri is inside RHi at the previous instant k − 1 and subsequently it falls outside RHi at

4Note that a priori, the instantaneous fault detection is completed via the separation between RH
i and RH→F

i ,
i.e. RH

i ∩ RH→F
i = ∅ but this separation could not be maintained over a large transition window. This case

however is not critical in the present MAS framework because there always exists a permanent tracking error
imposed by the centralized control subject to anti-collision constraints.

5The candidate set is normally chosen as RH→F
i = C(RH

i ) with respect to the instantaneous fault detection
RH

i ∩RH→F
i = ∅.
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the current instant k, i.e. {
ri(k − 1) ∈ RHi
ri(k) /∈ RHi

(5.14)

If ri is back to RHi whenever it is previously outside RHi , the agent is certified healthy, i.e.{
ri(k − 1) /∈ RHi
ri(k) ∈ RHi

(5.15)

5.4.1.2 Faulty agent certification

The previous FDI scheme is used to detect and quarantine an agent which exhibits a fault.

With respect to the conditions above, we can confirm that a healthy agent is certainly faulty

by checking the general conditions (5.16), in which the set inclusion (5.13) is examined during

a time window of length Nm. At the instant k −Nm − 1, its residual ri is inside RHi , but after

it stays outside RHi during Nm steps until the current moment k, thus it is certainly faulty{
ri(k −Nm − 1) ∈ RHi
ri(l) /∈ RHi , with ∀l ∈ N[k−Nm,k]

(5.16)

Moreover, we propose here another set construction to detect whenever the fault of an individual

agent becomes critical. The threshold set for this case is parameterized by a set

Š(xref (k)) = conv
(⋃
S(x̌i(k))

)
, ∀i ∈ NR (5.17)

Here xref is the common reference of the global system Σ (see subsection 5.2.2) and x̌i(k) is

the one-step predicted state of the ith agent. We recall that NR denotes the indices set of the

remaining agents in Σ. More precisely, the set (5.17) describes an envelope of formation evolving

under healthy behavior which take the form of a convex set prameterized by the evolving-center

of the formation xref .

This threshold set Š(xref (k)) is defined as the convex hull of the one-step predicted position of all

agents around the reference. This description is similar to obtaining a tube-based construction

centered by the common reference xref (k), i.e.

Š(xref (k)) = {xref (k)} ⊕ Š (5.18)

This set Š(xref (k)) can be called the elimination tube set for the formation Σ. The residual

and the detection of the critical form take simply the form of a set inclusion

xi(k) /∈ Š(xref (k)) (5.19)

Example 5.4 illustrates these faulty situations of the outgoing-agent case-study.



Chapter 5 Formation reconfiguration using MPC techniques 103

Example 5.4. We illustrate in Fig. 5.4 two faulty cases of the outgoing-agent case-study for

a group of 5 agents. These 5 agents are at the initial stage in a minimal formation centered

by the common reference xref (red dot) as shown in Fig. 5.4. Their predicted states x̌i are

presented by the blue dots and their real states x̃i are denoted by the black dots. The common

safety region of the agents is

S = conv

{[
0.125

0.714

]
,

[
−0.125

0.714

]
,

[
−0.12

1.286

]
,

[
0.125

1.286

]}
⊂ R2

centered at the predicted state x̌i. The agents one-step predictable collective state is

x̌ =

[−1

1

]>
,

[
1.5

0

]>
,

[
1

−1

]>
,

[
0

−1.5

]>
,

[
−1

−1

]>>

The agents real collective state is

x̃ =

[−0.9

1.2

]>
,

[
1.5

0.2

]>
,

[
1

−0.8

]>
,

[
0

−1

]>
,

[
−2

1

]>>

We construct the elimination tube set Š(xref (k)) using the equation (5.17) and denote it by the

black lined set. The agent A has its residual rA = x̃A − x̌A =

[
0

0.5

]
(see the equation (5.7)),

thus rA /∈ RHA , with RHA = S according to the equation (5.9). As a consequence, this agent A

is quarantined. Another agent is certified faulty (the B point) because x̃B =

[
−2

1

]
/∈ Š(xref )

as shown in Fig. 5.4.

−2 −1 0 1 2

−2

−1

0

1

2

Š(xref )

B

A

xref

x̃B /∈ Š(xref )

rA /∈ RHA

Figure 5.4: Faulty cases in the interior of the formation.

In the sequel, we will detail our reconfiguration solutions for the outgoing-agents case-study.



104 Chapter 5 Formation reconfiguration using MPC techniques

5.4.2 Reconfiguration - Outgoing-agents case-study

This section proposes a reconfiguration mechanism which is activated when an agent is certified

faulty. It builds on the definition of the two faulty cases and the detection mechanisms described

in the subsection 5.4.1. This reconfiguration step is performed (and is enabled) after the FDI

certification step.

Firstly, the nature of the fault has to be determined. At each iteration k, we check if the

residual signal ri(k) belongs to RHi or not. If ri(k) /∈ RHi , the respective agent will be labeled

as quarantined faulty agent. After Nm iterations corresponding to the fault monitoring horizon

(Nm is used to characterize the time to detect a fault), if ri(k + Nm) /∈ RHi , the ith agent is

certified faulty and subsequently will be eliminated from the team. This decision is made in

order to avoid the functioning of the formation in a degraded mode (with tracking errors and

anti-collision mechanism activated).

Otherwise, whenever x̃i(k) /∈ Š(xref (k)) and the ith agent is immediately certified faulty, it will

be eliminated without passing by the quarantine stage.

After characterizing the fault nature, the reconfiguration layer will be activated. Thus the

formation is further reconfigured at the next iteration for the remaining healthy agents. To

illustrate these ideas, in the following example, we will apply this reconfiguration mechanism

for the Multi-Agent system considered in Example 5.4.

Example 5.5. Consider the homogeneous Multi-Agent system of 5 agents in Example 5.4 with

the same notations. We already know that the agent B is certified faulty because its real state

x̃B is outside the set Š(xref ) (see Fig. 5.4). Hence immediately the reconfiguration takes place

for a Multi-Agent system of 4 agents (see Fig. 5.5), by eliminating this faulty agent from

the current formation. As a consequence, after the reconfiguration step, the agents one-step

predictable collective state becomes

x̌ =

[−1

1

]>
,

[
1.5

0

]>
,

[
1

−1

]>
,

[
0

−1.5

]>>

The agents real collective state is

x̃ =

[−0.9

1.2

]>
,

[
1.5

0.2

]>
,

[
1

−0.8

]>
,

[
0

−1

]>>

The new elimination tube set Š(xref (k)) and the new formation (of four agents) are illustrated

in Fig. 5.5.

Moreover, according to the conclusion in Example 5.4, the agent A is quarantined because its

residual rA is not included inside the set RHA . If the quarantined status is maintained for Nm
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Figure 5.5: Reconfigured formation after elimination of B.

steps then the agent A will be also eliminated and the formation is reconfigured for the three

remaining agents

After the reconfiguration step, the agents one-step predictable collective state becomes

x̌ =

[−1

1

]>
,

[
1.5

0

]>
,

[
1

−1

]>>

The agents real collective state is

x̃ =

[−0.9

1.2

]>
,

[
1.5

0.2

]>
,

[
1

−0.8

]>>
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Figure 5.6: Reconfigured formation after elimination of A.
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The new elimination tube set Š(xref (k)) and the new formation (of three agents) is depicted in

Fig. 5.6.

The algorithm summarizing our reconfiguration mechanism of outgoing-agents case-study will

be presented in the next subsection.

5.4.3 Algorithm for the outgoing-agents scenario

All the above ideas are incorporated in Algorithm 3 for the task assignment of the NR healthy

subset of agents. This algorithm is executed at each sampling time. A set of timers will be

activated in order to count the time steps when ri(k) /∈ RHi . Each timer is associated with one

agent in Σ.

The functioning mode of each agent is represented by:

statusi =

{
1 if Healthy

0 if Faulty

The status (activated/deactivated) of each timer is described by the corresponding element in

the vector timer = [timer1 timer2 . . . timerN ]>, with

timeri =

{
1, if activated

0, if deactivated

At each sampling time, the current state of all agents in Σ will be collected and also their

residual sets RHi . A loop of calculation is activated for all agents (line 2-33). For each agent,

if its real state x̃i(k) is not included inside the elimination tube set Š(xref (k)) then it will be

eliminated immediately, else the verification necessary for the quarantine status is activated

(line 3-6). In this case, its residual signal ri(k) = x̃i(k) − x̌i(k) is calculated (line 7) and

the corresponding timer will be activated (line 8-31). During the activation of its timer, if its

residual signal ri(k) is inside the Healthy functioning mode set RHi then the agent is healthy

and its timer is deactivated (line 26-30). Else after Nm sampling time, if its residual signal ri(k)

is outside the Healthy functioning mode set RHi this agent will be certified faulty and it will

be eliminated (line 10-12). The reconfiguration step is activated at the end of the loop and it

considers the remaining healthy agents (line 34).

We presented in this section our FDI framework followed by a appropriate reconfiguration step

for the case of outgoing-agents. In the next subsection, we will consider the fault case where

some new agents try to integrate the current formation.
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Algorithm 3: Task assignment reconfiguration in the case of the elimination of a faulty agent

Input : Current state x(k), residual set RHi
Output: Minimal reconfigured formation at sample time k

1 - construct Š(xref ) for NR;
2 for i ∈ NR do

3 if x̃i(k) /∈ Š(xref (k)) then
4 statusi := 0;
5 NR := NR \ {i};
6 else
7 - calculate residual ri(k) = x̃i(k)− x̌i(k);
8 if timeri = 1 then
9 if ri(k) /∈ RHi then

10 if t = Nm then
11 statusi := 0;
12 NE := NE ∪ {i};
13 else
14 t := t+ 1;
15 end

16 else
17 timeri := 0;
18 statusi := 1;
19 t := 0;

20 end

21 else
22 if ri(k) /∈ RHi then
23 timeri := 1;
24 statusi := 1;
25 t := 1;

26 else
27 timeri := 0;
28 statusi := 1;
29 t := 0;

30 end

31 end

32 end

33 end
34 - solve (5.1) for NR;

5.5 Incoming-agent case-study

Section 5.4 presented our FDI framework to detect and isolate the faulty agent in the interior

of the formation. Here we present another FDI framework to detect the agents from exterior

which aims to integrate the formation, and further to provide the appropriate reconfiguration

mechanism.
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5.5.1 Detection - Incoming-agent

Apart from the faulty agent detection and isolation, we propose here a FDI scheme to preserve

the MAS safety when some new agents coming from the exterior of the current formation join

the system. The main purpose is to detect whether/when an agent tries to join the formation

while guaranteeing the safety of the global system during the integration process.

For this purpose of detection of intrusion, based on the elimination tube set S̆ as defined in

(5.17), we introduce a new set T , called intruder detection tube which encircles the one-step

forward predicted formation, e.g.:

T (xref (k)) = {xref (k)} ⊕ αŠ (5.20)

This set T is constructed to bound the elimination tube set Š(xref (k)) by scaling-out it with

respect to the common reference xref . In the equation (5.20), the scalar α > 1 is a scaling factor

which accounts for the visibility region in the neighborhood of the formation. Its value can be

adjusted in order to enlarge or reduce the scope of detection. Similar to the description of

Š(xref (k)), the set T (xref (k)) represents a tube set centered in the common reference xref (k).

The residual is defined as the distance with respect to the set and the detection mechanism is

simply implemented by the set inclusion

x̃i(k) ∈ T (xref (k)) (5.21)

This set is used to detect if some agents from exterior try to join the current formation of Σ. If

this integration effort is accepted by the supervision decision level, the following reconfiguration

step has to be activated.

5.5.2 Reconfiguration - Incoming-agent case-study

Let us consider an ith agent as not taken into account by Σ, i.e. i /∈ NR. When this agent

approaches the formation of Σ, if the condition (5.21) is validated, a timer will be activated.

After Nm iterations (for brevity we take the same monitoring horizon in the case of incoming

or outgoing agents, although a different length can be adopted if necessary), if the validation of

(5.21) does not change, then the integration is accepted. The conditions to accept the integration

of an incoming agent are formulated as{
x̃i(k −Nm − 1) /∈ T (xref (k −Nm − 1))

x̃i(l) ∈ T (xref (l)), with ∀l ∈ N[k−Nm,k]

(5.22)

with x̃i denoting the agent’s real state. For the reconfiguration mechanism, the index of this

agent will be taken into account in the global task-allocation and the minimal formation, i.e.

NR = {i} ∪ NR and a new configuration will be generated for the new subset NR. A natural



Chapter 5 Formation reconfiguration using MPC techniques 109

question can rise about the need of a monitoring window for the incoming agents. The reason

for its inclusion resides in the undesired effects of coupling the outgoing and the incoming agents

monitoring. Indeed, in the case of an outgoing agent, its fault can be considered concomitantly

as a potential incoming behavior and the status of the respective agent will be indiscernible.

Here, in order to improve the safety of the integration process, the new formation obtained from

solving (5.1) has to be an optimal formation but admissible from the current position of all the

agents in NR.

We illustrate in Example 5.6 the detection of incoming agents presented above for a group of 3

agents.

Example 5.6. Consider a homogeneous Multi-Agent system of 3 agents which are in a minimal

formation centered by the common reference xref (red dot) as illustrated in Fig. 5.7. Their

predicted states x̌i are presented by the blue dots and their real states x̃i are denoted by the

black dots. The common safety region of the agents is

S = conv

{[
0.125

0.286

]
,

[
−0.125

0.286

]
,

[
−0.125

−0.286

]
,

[
0.125

−0.286

]}
⊂ R2

centered at the predicted state x̌i. The agents one-step predictable collective state is

x̌ =

[ 1

−0.4

]>
,

[
−1

−0.4

]>
,

[
0

1

]>>

The agents real collective state is

x̃ =

[ −1

−0.2

]>
,

[
1

−0.6

]>
,

[
−0.1

1.2

]>>

We construct the elimination tube set Š(xref (k)) using the equation (5.17) and denote it by the

black lined set.

The intruder detection tube T (xref (k)) (bounded by dash line) is obtained by scaling-out the

set Š(xref (k)) with the chosen scale factor α = 1.5. One agent whose its real state is x̃C =

[
1

0.5

]
is trying to join the current group.

When its integration is accepted by means of the validation of the conditions (5.22), the for-

mation is reconfigured for the four actual agents, thus a new formation is shown in Fig. 5.8.
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Figure 5.7: Detection of an agent outside of the current formation.
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Figure 5.8: Reconfigured formation after integration accepted.

As a consequence, after the reconfiguration step, the agents one-step predictable collective state

becomes

x̌ =

[ 1

−0.4

]>
,

[
−1

−0.4

]>
,

[
0

1

]>
,

[
0.9

0.4

]>>

The agents real collective state is

x̃ =

[ −1

−0.2

]>
,

[
1

−0.6

]>
,

[
−0.1

1.2

]>
,

[
1

0.5

]>>

The new elimination tube set Š(xref (k)), the intruder detection tube T (xref (k)) and the new

intruder detection tube T (xref (k)) are illustrated in Fig. 5.8.
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The algorithm summarizing our reconfiguration mechanism of incoming-agents case-study will

be presented in the next subsection.

5.5.3 Algorithm for the incoming-agent scenario

The main ideas of the monitoring and reconfiguration are resumed in Algorithm 4. We reuse

the notation concerning the timer in section 5.4.3. It is important to note that such a timer is

activated for an unique agent from outside and there is no confusion between the incoming and

outgoing agents. Moreover, we need to consider the following evaluation of the status of the

agent which approaches the formation:

statusi =

{
1 if accepted

0 if denied

This means that the integration of an exterior agent is accepted if and only if its status binary

variable is 1, otherwise it is rejected.

At each sampling time, the current real state of the intruder-agent x̃i(k) will be collected and

also the elimination tube set Š(xref ), the intruder detection tube T (xref ) and the indices

set of the remaining healthy agents NR of the current formation. If x̃i(k) ∈ T (xref (k)) and

there is no timer activated for its integration, then the activation will take place (line 15-18).

During the activation of its timer, if x̃i(k) /∈ T (xref (k)) then the timer is deactivated and the

integration request is denied (line 19-23). Else after Nm sampling times, if x̃i(k) ∈ T (xref (k))

the integration request is accepted (line 2-5). The reconfiguration step is activated at the end

of the Algorithm for the healthy agents in the new subset NR (line 25).

Our FDI framework with its reconfiguration step for the case of incoming agents are provided

in this section. We will show some numerical simulations in the next section to illustrate the

performance of our FDI-based propositions.

5.6 Illustrative example

In this section, a numerical example is presented in order to illustrate the results obtained by

applying Algorithms 3 and 4 on a Multi-Agent system Σ composed of N = 3 homogeneous

agents. The common dynamics is

xi(k + 1) =

[
−0.2 0.5

0.2 0.71

]
xi(k) +

[
0.71 0

0 0.22

]
ui(k) + wi, i ∈ {1, 2, 3}

The disturbance is bounded, i.e. |wi| ≤

[
0.2

0.2

]
. We employ the control action (2.7) to stabilize

the agent’s dynamics, with the feedback gain is obtained by using the pole placement technique
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Algorithm 4: Task assignment reconfiguration in case of integration of agent from exterior

Input : x̃i(k),Š(xref ), T (xref ), NR
Output: Minimal reconfigured formation at sample time k

1 if timeri = 1 then
2 if x̃i(k) ∈ T (xref (k)) then
3 if t = Nm then
4 statusi := 1;
5 NR := NR ∪ {i};
6 else
7 t := t+ 1;
8 end

9 else
10 timeri := 0;
11 statusi := 0;
12 t := 0;

13 end

14 else
15 if x̃i(k) ∈ T (xref (k)) then
16 timeri := 1;
17 statusi := 0;
18 t := 1;

19 else
20 timeri := 0;
21 statusi := 0;
22 t := 0;

23 end

24 end
25 - solve (5.1) for NR;

(0.2 and 0.5 as the chosen pole). The safety region is thus obtained by using Lemma 2.2 (see

the details in subsection 2.3.1). The H-representation of the safety region is thus

S = conv

{[
0.125

0.286

]
,

[
−0.125

0.286

]
,

[
−0.125

−0.286

]
,

[
0.125

−0.286

]}
⊂ R2

For the MPC controller used in (5.6), the weighting matrices are P = 10INn, Q = 100INn and

R = INm. The prediction horizon is Np = 3 and the monitoring horizon chosen to validate the

elimination of a faulty agent from the formation and also the integration of an exterior agent in

the current formation is Nm = 3.

The feedforward common reference is generated by a MPC reference controller, including an

integral tracking error as cost function. The weighting matrices chosen are Qr = 10In, Rr =
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0.01Im. This leads to the following MPC framework

u∗ref (k) = arg min
u∗ref (k),...,u∗ref (k+Np−1)

k+Np∑
l=k

‖xref (l)− r(k)‖2Qr
+

k+Np−1∑
o=k+1

‖uref (o)− uref (o− 1)‖2Rr

(5.23a)

s.t. xref (l + 1) = Arefxref (l) +Brefuref (l), l ∈ N[k,k+Np] (5.23b)

We recall here that Σ is homogeneous. Thus the model dynamics implemented in this MPC

layer is the common dynamics of all agents, hence Aref = Ai with i ∈ {1, 2, 3}.

As illustrated in Fig. 5.9, the global Multi-Agent system Σ pursuits a periodic trajectory

illustrated by the black line. At the beginning (the A point), Σ is composed of 3 agents, with

NR = {1, 2, 3}. The task assignment gives the initial admissible optimal formation for Σ with

respect to the origin

x̄ =

[−0.25

0

]>
,

[
0

0

]>
,

[
0.25

1

]>>

This formation is preserved with the common reference xref and the trajectories evolve in a

tube centered at the xref (k) with its associated elimination tube set S̆(xref (k)) and its intruder

detection tube T (xref (k)). The intruder detection tube T ∗(xref (k)) for these three agents is

covered by yellow in Fig. 5.9. The red lines present the set of reference trajectory x̆i of the

agents.

At k = 13 (the B point), the 3rd agent is subject to an actuator fault, and then it stops. The

remaining agents continue to track their reference trajectory with respect to the last configura-

tion. When x̃3 does not belong to the elimination tube set S̆(xref ) (the C point), the 3rd agent

is certified faulty and then the formation is reconfigured for the two remaining agents. The

optimal position of these agents in the new formation determined with respect to the origin are

x̄ =

[−0.125

0

]>
,

[
0.125

0

]>>

The new MAS is denoted by Σ∗, with NR = {1, 2}. The elimination tube set S̆∗(xref (k)) and

the intruder detection tube T ∗(xref (k)) are recalculated for Σ∗. The new intruder detection

tube T ∗(xref (k)) for two agents is covered by green in Fig. 5.9.

At k = 25 (the D point), the 4th agent from outside exhibits an incoming trajectory with

respect to Σ∗. When its real state x̃4(k) is inside the tube T ∗(xref (k)) for more than Nm time

steps (the E point), the integration of the 4th agent is accepted. Thus NR = {1, 2, 4} and the

formation will be reconfigured for 3 healthy agents. The optimal position of the agents in the
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Figure 5.9: Illustrative example.

new formation determined with respect to the origin are

x̄ =

[−0.25

0

]>
,

[
0

0

]>
,

[
0.25

1

]>>

The elimination tube set S̆(xref (k)) and the intruder detection tube T (xref (k)) are recalculated

again. Thus, we find the intruder detection tube T (xref (k)) (covered by yellow) for three agents.

5.7 Conclusion

This chapter uses set-theoretic methods as a basic tool to design a supervision layer in order to

maintain the functioning of a global Multi-Agent system under two particular faulty situations:

elimination of a faulty agent from the formation and addition of an external agent to the

current formation. The main objective is to supervise the functioning of the agents such that

the damages issued from the collision during the operation can be predicted and avoided. We

recall that the concept of Multi-Agent system Fault detection and isolation is more general than
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the classical concepts for simple system found in the literature. Specifically, our proposed set-

theoretic FDI aims to protect the safety of formation. Fortunately, theoretical results concerning

set-based FDI depicted in the literature can still be used selectively in this work, but some

simplifying assumptions are supposed to be admissible. In order to serve the fault detection

purpose, set-theoretics tools are employed to construct off-line the safety region of the agents

and further to combine them on-line in order to build a threshold set for fault detection and

isolation. The main contribution follows the philosophy of set separation, with respect to the

foreknowledge of faulty and healthy functioning mode of each agent. Moreover, the off-line

construction of agent’s safety region in polyhedral format allows using simple algebraic set

operations to construct the centralized safety threshold set for the formation.

In conclusion, we presented three main topics of the thesis related to using set-theoretic method

in design of fault detection tools and decentralized optimization-based control for Multi-Agent

dynamical system. More precisely, we detailed our decentralized formation control subject to

anti-collision constraints in Chapter 3. Chapter 4 provides our decentralized Voronoi-based

deployment, solving the problem of non-overlapping functioning zones construction of Chapter

3. Finally, beside the fault-tolerant controls mentioned in the two last chapter, we presents a

set-based fault detection and isolation framework in Chapter 5. Next, we will present some

concluding remarks and the perspectives for the overall results obtained in three chapters 3, 4

and 5.





Chapter 6

Concluding remarks and future

directions

6.1 Conclusion

The present manuscript intended to develop set-theoretic based fault tolerant control design

related to fault monitoring and collision free management of dynamical Multi-Agent systems.

The ultimate goal is to protect the mission safety from risks of collision despite the possible

faults. As already known in the control literature, regulating a group of cooperative mobile

agents is obviously not new but the free collision guarantee still remains a challenging problem

of MAS. Applying set theory in collision avoidance control is in the presence of faults one

contribution to Multi-Agent system Fault-tolerant control design. The novelty was built upon

the controlled invariance principle and the set separation thus ensuring the exact detection,

isolation of the faulty agents and further the fault-tolerant control performance. It is worth

to mention that set-theoretic methods were present in various applications but still remain an

open direction for MAS FTC. Few results related to set-based MAS FTC and also FDI can be

found in the literature.

With respect to the previous results in the literature, agents having linear time-invariant dy-

namics with bounded additive disturbances are supposed to observe a uniform distribution in

a bounded set. Therefore, the pioneering polyhedron construction method of Kofman et al.

(2007) is used as basic tool to build the safety region around the nominal position of each agent,

due to its low complexity in terms of mathematical formulation and to the advantages of set in-

terpretations. By this way, the nominal position along with a bounded polyhedral safety region

becomes the key characteristics of an agent throughout the manuscript.

The results related to the FDI layer to guarantee the formation safety were presented in Chapter

5. By assuming the foreknowledge of agent’s dynamics under the impact of bounded additive

disturbances, we believe that the threshold sets characterizing the healthy/faulty behavior of

117
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each agent can be constructed by following low complexity set construction method. To be

more specific, the threshold set is also the safety region centered at or parameterized by the

predicted agent’s position. After, a model-based residual signal is employed to determine in

which mode the agent behaves (healthy, faulty or quarantined). The threshold set of the entire

system is built on the convex hull of all agents predicted threshold set, offering a centralized

supervision layer to protect the formation from the damages issued from collision. We focus

on the critical cases where the faults are abrupt and thus the Healthy-to-Faulty and Faulty-to-

Healthy transitions are omitted. Two typical faulty cases considered relate to detecting faulty

agents inside and outside the formation: elimination of a faulty agent from the formation and

addition of an external agent to the current formation. The recovery step after determining

the faults consists in reconfigure the centralized formation control by taking into account the

healthy agents after eliminating the faulty agents.

Being acknowledged as a better solution to overcome the computational inconvenience of cen-

tralized approach, the biggest advantage of decentralized control related to FTC concepts is the

plug-and-play ability. In Chapter 3, we propose a novel decentralized framework by allocating

each agent uniquely in one functioning zone. Each zone is built on the information exchanged

between the resided agent with its closest neighbors and provides the local data for the control

computation. The goal consists in enforcing the controlled invariance of the safety functioning

zone. Another relevant advantage is its ability to handle the local feasibility, which is considered

novel compared to set-theoretic based decentralized control in the literature. We consider the

cases when there exists a local control action to keep each agent in its strict functioning zone.

The feasibility of this determination however is limited in a subset of the functioning zone, as-

similated to a controlled invariant set via linear feedback. For the points which are not covered

by this set, we propose a control strategy to drive the agent state towards the region where the

local linear control action is feasible.

Other more complicated and even hazardous application of dynamical MAS management is

the deployment. Overall, such cooperative task can be stabilized by using the classical Lloyd’s

algorithm, which can be considered as the basic principle of decentralized control. Voronoi

partitioning is run at each sampling time according to the agents current position and the

local control is computed to ensure the convergence of each agent toward a target point inside

its associated Voronoi cell-functioning zone. It remains to select the target center. We first

choose the Chebyshev center as the basic solution. A less conservative solution based on a

so-called general center is further advocated to overcome the inconvenience related to the non-

uniqueness of the Chebyshev center computation. The concept of these centers and also the

design of decentralized MPC are detailed in Chapter 4. Furthermore, another contribution in

revisiting the Voronoi partition based decentralized coverage consists in considering a different

type of target point, such as vertices interpolated center (in Appendix A) and center of mass (in

Appendix B.) In both of these two cases, we provide a decentralized optimization-based control

framework and we further give a deep analysis concerning the stability, followed by numerical

simulations to illustrate the coverage performance.
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6.2 Future directions

In the context of set-theoretic methods for control application in Multi-Agent system, some well-

known hard problems related to the computational aspect have to be considered in future work.

Considering simplifying assumptions without loss of generality, allows us to avoid discussing

the computational aspect. Beside computational problem, the results presented above still offer

many points to be considered as future directions. The formation safety guarantee management

remains a very large topic covering fault tolerant concepts. For this reason, we list below some

typical characteristic perspectives related to each of our main results presented above.

We emphasize that the problem mentioned in the main contribution was already simplified

by considering a series of assumptions. In particular, all of the above results are presented

based on the nominal dynamics of the global Multi-Agent system. For instance, the impact

of multiplicative disturbances is not considered, which are various in the context of Multi-

Agent system. There can be the disturbances issued from the working environment which

cause delays in the communication channel or more seriously degradation of the information

exchanged between the agents. These can lead to the deterioration in the communication graph

of the Multi-Agent system. In this context, the robustness of the proposed framework seems

interesting to study and specifically the relationship with the fault detection decision making.

An interesting issue is to robustify the functioning of the global system by compensating the

impact of these disturbances.

We believe that the proposed set-based centralized FDI, including the fault detection-isolation

layer and the reconfiguration mechanism, can be developed in a decentralized manner. Moreover,

the link between the FDI layer and the control action applied to the global system needs to

be further clarified and thus the theoretic aspects have to be developed in order to offer a

clear picture on the severity of collision constraints after reconfiguration. Another research

direction which considers fault tolerant control for a heterogeneous system in a wider sense will

be welcomed. This case is interesting and challenging because it is related to the constraints on

the dynamics of each agent.

Concerning the decentralized FTC design, our solution depends strictly on the geometry of

the agent’s functioning zone. With respect to the polyhedral description, the choice of these

hyperplanes forming the functioning zone should be careful made due to the impact on the

control feasibility. This leads to an interesting research direction related to determining a

partition of the working space such that it is controlled invariant with the set of local feedback

controls predefined between each follower and the leader. The expected partition should ensure

that each agent with its corresponding safety region is included strictly inside its associated

functioning zone. Furthermore, it would be interesting to compare the proposed solutions with

other existing approaches (such as MIP approach), in terms of computational time, rate of

convergence, etc.
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In the proposed solutions related to the self-deployment operation, the main idea consists of

providing the decentralized control policies to enhance the coverage of a group of cooperative

homogeneous mobile agents over a bounded region. Similar to the decentralized formation

framework above, we have the same problem concerning the partition. We choose the Voronoi

tessellation according to the previous results in the literature. However, the geometry of agent’s

safety region is totally omitted due to the fact that the additive disturbance in the agent’s

dynamics is not taken into account in the classical Voronoi tessellation construction. Future work

can focus on developing a generalized Voronoi partition based on the current agents positions and

the shape of their corresponding safety region, meanwhile suitable to the set of the predetermined

local control laws.

Moreover, the results proposed in this thesis are based on the assumption that the entire working

region is controlled invariant with respect to the agent LTI dynamics. Future work may focus

on the case where the controlled invariance cannot be guaranteed for the entire working region.

In this case, one solution related to combining the decentralized controls of Chapter 3 with the

Voronoi-based deployment of Chapter 4 can be considered.

One of the most challenging perspective consists in taking into account the prediction of the

Voronoi partition, which is clearly a hard problem to solve because of the complexity to find an

explicit equation characterizing the partition’s evolution.

Another interesting topics to be addressed relate the ingredients of the optimization-based

control with respect to the constraints other than collision avoidance, such as energy-efficiency

or limitation of traveling time. These points need to be discussed in future work because they

relate the computational aspect of optimization-based framework.

It is worth to note that the theoretical aspects of our contributions are well developed in the

thesis. In future work, we should focus on applying these theoretic results in some real systems

such as a group of multi-vehicles (platoon systems composed of Unmanned Aerial Vehicles,

Autonomous Underwater Vehicles or trucks), multi-robots, etc. The goal is to validate the

efficiency and further evaluate the performance of our proposed solutions.



Appendix A

Voronoi based decentralized

coverage problem using the vertex

interpolation

In the context of the Multi-Agent system deployment, as a complement of the results presented

in Chapter 4, the aim of this appendix is to revisit the coverage control problem by using

a so-called vertex interpolated center as the inner target point. The control design follows the

well-known principle of Voronoi-based decentralized control used in the literature (see the works

in Cortes et al. (2002), Schwager et al. (2009), Bakolas and Tsiotras (2010) and our results in

Chapter 4). More precisely, the safety constraints are satisfied by means of keeping each agent

strictly inside a region called functioning zone. These zones are the results of a real time

partition step based on the current state information (e.g. position) of the agents. The Voronoi

algorithm is employed in this step to decompose the working space into a union of Voronoi cells.

After, each agent is associated with one cell which will provide the vertices used to design the

control action in order to make each agent converging to a fixed point inside its Voronoi cell.

This control design step (based on both the agent’s position and the vertices of its Voronoi cell

containing the agent) by using the classical framework of optimal control and Model Predictive

Control (MPC) is the main novelty of this appendix.

The results proposed in this appendix have been published in Nguyen and Maniu (2016). Due to

laborious mathematical formulations related to the control laws computation and their stability

proofs, we prefer to formulate the proposed results as an appendix, in order to simplify the

reading of the manuscript.

We will present the details of the decentralized optimal control using the vertex interpolation

in the next section.
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A.1 Voronoi-based optimal control design

In this section, we propose a revisited decentralized control based on the optimal control design

approach, using the local information (i.e. the agent position and the vertices of the Voronoi

cell associated to the agent) received after the partition step. This control design is regarded

as solving an optimization problem over an infinite horizon. Firstly, the explicit computation

of the optimal solution is presented, then the stability proof is detailed by means of a resulting

positive decreasing value function.

Remark A.1. In the sequel, the agent’s index is neglected to simplify the notation.

Let us consider an agent represented by its discrete-time dynamics equation

x(k + 1) = Ax(k) +Bu(k) (A.1)

The matrix B is assumed to be full row rank, according to Assumption 4 in Chapter 4.

The Voronoi partition is illustrated in Fig. A.1, with the red points representing the considered

agents. The Voronoi cell associated with agent x is denoted by V (see the green cell delimited

by a dash-line in Fig. A.1). The notations V and NV (with NV = {1, . . . , 5} in Fig. A.1)

represent respectively the set of its vertices vi and the indices set of these vertices. According

to Assumption 4, each vertex is considered as an equilibrium point (vi, wi) of (A.1) such as

(I −A)vi = Bwi.
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−15
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0
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x

(v1, w1)

(v2, w2)

(v3, w3)

(v4, w4)

(v5, w5)

V

Figure A.1: Voronoi cell of agent x and its target fixed point x̄.

The formulation of decentralized optimal control using vertex interpolation will be provided in

the next subsection.
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A.1.1 Optimal control solution

The optimal control of (A.1) is the solution of the following optimization control problem

min
u

∞∑
k=0

L(x(k), u(k))

s.t.: x(k + 1) = Ax(k) +Bu(k)

(A.2)

with

L(x(k), u(k)) =
∑

i,j∈NV

(
(x(k)− vi)>Qij(x(k)− vj) + (u(k)− wi)>Rij(u(k)− wj)

)
(A.3)

indicating the running cost.

Moreover, by denoting1 v̆ =


v1

...

v|V|

 and w̆ =


w1

...

w|V|

, with |V| being the cardinality of the set

V, we can define the augmented state z̆ and input t̆ as

z̆ =


x− v1

...

x− v|V|

 = M̆x− v̆ ∈ R|V|n (A.4a)

t̆ =


u− w1

...

u− w|V|

 = N̆u− w̆ ∈ R|V|m (A.4b)

with M̆ = 1|V| ⊗ In and N̆ = 1|V| ⊗ Im. The notation 1|V| ∈ R|V| is used for the column vector

whose elements are 1.

Then the extended dynamics can be derived

z̆(k + 1) = Ăz̆(k) + B̆t̆(k) (A.5)

with Ă = I|V| ⊗A and B̆ = I|V| ⊗B.

Let us consider the additional notations Q̆ = [Qij ], R̆ = [Rij ] with ∀i, j ∈ NV such that Q̆ and

R̆ are symmetric positive definite matrices, i.e. Q̆> = Q̆ � 0 and R̆> = R̆ � 0.

With these notations, the running cost (A.3) can be rewritten as

L(z̆(k), t̆(k)) = z̆(k)>Q̆z̆(k) + t̆(k)>R̆t̆(k) (A.6)

1The˘symbol is used to refer to all the vertices concomitantly.
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Theorem A.1. The solution of the optimal control problem (A.2) for the dynamics (A.5) is

θu(k) = Ğw̆ + K̆z̆(k) (A.7)

by considering the notations

Φ = R̆+ B̆>P̆ B̆ (A.8a)

θ = N̆>ΦN̆ (A.8b)

Ğ = N̆>Φ (A.8c)

K̆ = −N̆>B̆>P̆ Ă (A.8d)

and

V (z̆(k)) = z̆>(k)P̆ z̆(k) (A.9)

which is considered as the cost-to-go of the control problem (A.2), with P̆ = [Pij ], ∀i, j ∈ NV
and P̆> = P̆ � 0.

Proof. According to Bellman principle of optimality (see Bellman (1954), Kirk (2012), Sanchez

and Ornelas-Tellez (2013)), the optimal control solution of (A.2) has to ensure

V (x(k)) = min
u(k)
{L(x(k), u(k)) + V (x(k + 1))} (A.10)

which leads to the following Hamiltonian

H(x(k), u(k)) = L(x(k), u(k)) + V (x(k + 1))− V (x(k)) (A.11)

Using (A.6) and (A.9), it is inferred that H(z̆(k), t̆(k)) = L(z̆(k), t̆(k)) + V (z̆(k+ 1))− V (z̆(k))

yielding H(z̆(k), t̆(k)) = z̆(k)>Q̆z̆(k) + t̆(k)>R̆t̆(k) + z̆(k + 1)>P̆ z̆(k + 1)− z̆(k)>P̆ z̆(k).

Based on the notations (A.4) and the dynamics (A.5), this can be detailed as H(z̆(k), t̆(k)) =

z̆(k)>Q̆z̆(k) + (N̆u(k)− w̆)>R̆(N̆u(k)− w̆) + (Ăz̆(k) + B̆t̆(k))>P̆ (Ăz̆(k) + B̆t̆(k))− z̆(k)>P̆ z̆(k).

Solving
∂H

∂u
= 0 leads to 2N̆>R̆N̆u(k)−2N̆>R̆w̆+2N̆>B̆>P̆ B̆N̆u(k)+2N̆>B̆>P̆ (Ăz̆(k)−B̆w̆) =

0 or equivalently [N̆>(R̆ + B̆>P̆ B̆)N̆ ]u(k) = N̆>(R̆ + B̆>P̆ B̆)w̆ − N̆>B̆>P̆ Ăz̆(k). Considering

the notation (A.8), it leads to θu(k) = Ğw̆ + K̆z̆(k), with θ invertible.

Remark A.2. The optimal solution (A.7) is unique by means of the convexity of the cost

function in the optimization problem (A.2).

We have shown above the explicit optimal control using vertex interpolation. In the next

subsection, we will discuss the stability of this control solution by means of the Bellman principle

of optimality.
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A.1.2 Stability analysis

Here we analyze the stability of the closed-loop agent’s dynamics with respect to the optimal

solution (A.7).

According to the Bellman principle of optimality, the optimal solution (A.7) has to ensure

H(z̆(k), t̆(k)) = 0. It implies L(z̆(k), t̆(k)) + V (z̆(k + 1)) = V (z̆(k)). In order to guarantee the

Lyapunov stability, a sufficient condition is V (z̆(k + 1))− V (z̆(k)) = −L(z̆(k), t̆(k)) ≤ 0.

Starting from L(z̆(k), t̆(k)) + V (z̆(k + 1)) = z̆(k)>Q̆z̆(k) + t̆(k)>R̆t̆(k) + z̆(k + 1)>P̆ z̆(k + 1),

using (A.4b), it can be derived that

L(z̆(k), t̆(k)) + V (z̆(k+ 1)) = z̆(k)>Q̆z̆(k) + (N̆u(k)− w̆)>R̆(N̆u(k)− w̆) + (Ăz̆(k) + B̆N̆u(k)−
B̆w̆)>P̆ (Ăz̆(k) + B̆N̆u(k)− B̆w̆).

Using the notations (A.8a) and (A.8b), this becomes

L(z̆(k), t̆(k))+V (z̆(k+1)) = z̆(k)>(Q̆+ Ă>P̆ Ă)z̆(k)+ w̆>Φw̆+u(k)>θu(k)−2(w̆>R̆− (Ăz̆(k)−
B̆w̆)>P̆ B̆)N̆u(k)− 2w̆>B̆>P̆ Ăz̆(k).

Using (A.8c) and (A.8d), the previous scalar sum is equal to L(z̆(k), t̆(k)) + V (z̆(k + 1)) =

z̆(k)>(Q̆+ Ă>P̆ Ă)z̆(k) + w̆>Φw̆ + u(k)>θu(k)− 2u(k)>(Ğw̆ + K̆z̆(k))− 2w̆>B̆>P̆ Ăz̆(k).

For θ inversible, replace u(k) from (A.7) to obtain L(z̆(k), t̆(k)) + V (z̆(k + 1)) = z̆>(k)(Q̆ +

Ă>P̆ Ă)z̆(k) + w̆>Φw̆ − (Ğw̆ + K̆z̆(k))>θ−>θθ−1(Ğw̆ + K̆z̆(k))− 2w̆>B̆>P̆ Ăz̆(k).

Regrouping the terms in z̆(k) and w̆, we obtain

L(z̆(k), t̆(k)) + V (z̆(k + 1)) = z̆>(k)(Q̆ + Ă>P̆ Ă − K̆>θ−>K̆)z̆(k) + w̆>(Φ − Ğ>θ−>Ğ)w̆ −
2w̆>(B̆>P̆ Ă+ Ğ>θ−>K̆)z̆(k).

However L(z̆(k), t̆(k)) +V (z̆(k+ 1)) = V (z̆(k)) requires that the two terms w̆>(Φ− Ğ>θ−>Ğ)w̆

and w̆>(B̆>P̆ Ă + Ğ>θ−>K̆) have to vanish. For a non zero vector w̆, it is difficult to im-

pose w̆>(Φ − Ğ>θ−>Ğ)w̆ = 0. A lightened condition w̆>(Φ − Ğ>θ−>Ğ)w̆ ≤ 0 together with

w̆>(B̆>P̆ Ă+ Ğ>θ−>K̆) = 0 are further considered, leading to

L(z̆(k), t̆(k)) + V (z̆(k + 1)) ≤ V (z̆(k))

The conditions to obtain this expression will be provided in the following theorem.

Theorem A.2. If there exists a vector w̃ ∈ Rm such that the following expressions hold

Ğw̆ = ĞN̆w̃ (A.12a)

w̆>B̆>P̆ Ă = −w̃>K̆ (A.12b)[
Φ Ğ>

Ğ θ

]
� 0 (A.12c)



126 Appendix A Voronoi based decentralized coverage problem using the vertex interpolation

then the following expressions are verified

w̆>(Φ− Ğ>θ−>Ğ)w̆ ≤ 0 (A.13a)

w̆>(B̆>P̆ Ă+ Ğ>θ−>K̆) = 0 (A.13b)

Proof. Applying the Schur complement in (A.12c) leads to Φ− Ğ>θ−>Ğ � 0. Multiplying left

and right by the non zero vectors w̆> and w̆ leads to w̆>(Φ− Ğ>θ−>Ğ)w̆ ≤ 0.

Using (A.12a), the expression w̆>(B̆>P̆ Ă + Ğ>θ−>K̆) = w̆>B̆>P̆ Ă + w̆>Ğ>θ−>K̆ becomes

w̆>B̆>P̆ Ă+ w̃>N̆>Ğ>θ−>K̆. From (A.8b) and (A.8c), it results in ĞN̆ = θ. This allows us to

obtain the following result w̆>(B̆>P̆ Ă+ Ğ>θ−>K̆) = w̆>B̆>P̆ Ă+ w̃>θ>θ−>K̆. Using (A.12b),

this leads to w̆>(B̆>P̆ Ă+ Ğ>θ−>K̆) = 0.

Remark A.3. Validating the conditions (A.12) leads to a classical Riccati equation

Q̆+ Ă>P̆ Ă− K̆>θ−>K̆ = P̆ (A.14)

Following Theorem A.2, if the solution of the equations (A.12) is feasible then there exists a

vector w̃ to guarantee L(z̆(k), t̆(k)) + V (z̆(k + 1)) ≤ V (z̆(k)). However, a feasible vector w̃

depends on the choice of the weighting matrices P̆ , Q̆ and R̆, which will be illustrated via the

following proposition.

Proposition A.3. Consider the matrices R ∈ Rm×m, P ∈ Rn×n such as R = R> � 0,

P = P> � 0, and a weighting structure matrix ∆ ∈ R|V|×|V|. Hence the weighting matrices R̆

and P̆ can be chosen such that R̆ = ∆⊗ R and P̆ = ∆⊗ P . The matrix Q̆ can be obtained by

solving the Riccati equation (A.14).

Proof. Consider a weighting structure matrix ∆ = [∆1 . . .∆|V|], with ∆i denoting the ith column

of ∆. The equation (A.12a) is rewritten as N̆>Φw̆ = N̆>ΦN̆w̃. Due to (A.8a), we get Φ =

R̆+ B̆>P̆ B̆ = ∆⊗ (R+B>PB). Hence (A.12a) becomes N̆>(∆⊗ (R+B>PB))w̆ = N̆>(∆⊗
(R+B>PB))N̆w̃. From the definition of N̆ , it is infered that N> = [Im . . . Im] ∈ Rm×(m|V|).

Rewriting ∆ = [δij ],∀i, j ∈ {1, . . . , |V|} and denoting R̃ = R+B>PB leads to

N̆>(∆⊗ (R+B>PB)) =
[
Im . . . Im

]
δ11R̃ . . . δ1|V|R̃

...
. . .

...

δ|V|1R̃ . . . δ|V||V|R̃

.

Then, we get
[ |V|∑
j=1

δj,1R̃ . . .
|V|∑
j=1

δj,|V|R̃
]
w̆ =

[ |V|∑
j=1

δj,1R̃ . . .
|V|∑
j=1

δj,|V|R̃
] [
Im . . . Im

]>
w̃.
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It is possible to write

|V|∑
i=1

σ(∆i)R̃wi = σ(∆)R̃w̃, with the scalars σ(∆i) =
|V|∑
j=1

δj,i. Then σ(∆) is

the sum of all the elements of ∆. After symplifying R̃, we obtain

|V|∑
i=1

σ(∆i)wi = σ(∆)w̃, which

is further equivalent to w̃ =

|V|∑
i=1

(σ(∆))−1σ(∆i)wi. Similar results will be obtained for (A.12b).

In (A.12c), because all matrices Φ, Ğ and θ depend on ∆, we can obtain a value for ∆ by solving

the feasibility problem (A.12c) with the decision variable ∆. Therefore, we can conclude that

all conditions (A.12) are fulfilled proving a choice for w̃.

From now, using Theorem A.2 with Proposition A.3 ensures the closed-loop stability of (A.5)

with respect to the optimal control solution (A.7). We can see in the sequel that it implies also

the closed-loop stability of (A.1) by proving the equivalence between the Lyapunov stability

conditions of these two dynamics.

Replacing (A.4b) in (A.5) and then using (A.7) yields

z̆(k + 1) = (Ă+ B̆N̆θ−1K̆)z̆(k) + B̆N̆θ−1Ğw̆ − B̆w̆ (A.15)

with the stability proof being

(Ă+ B̆N̆θ−1K̆)>P̆ (Ă+ B̆N̆θ−1K̆) � P̆ (A.16)

Furthermore, substituting (A.7) in the dynamics equation (A.1) and using (A.4a) to replace z̆

by x, we get

x(k + 1) = (A+Bθ−1K̆M̆)x(k) +Bθ−1(Ğw̆ − K̆v̆) (A.17)

which leads to the Lyapunov stability condition of (A.1)

(A+Bθ−1K̆M̆)>P (A+Bθ−1K̆M̆) � P (A.18)

Now consider the two dynamics equation (A.1) and (A.5) with the stability conditions (A.18)

and (A.16), respectively. The following theorem shows the equivalence of the stability of these

two dynamics.

Theorem A.4. The expression (A.18) is verified if and only if (A.16) is verified.

Proof. Consider (A.16). Left and right multiplying (A.16) respectively with the matrices M̆>

and M̆ , we obtain M̆>(Ă + B̆N̆θ−1K̆)>P̆ (Ă + B̆N̆θ−1K̆)M̆ � M̆>P̆ M̆ . From the defini-

tions of Ă and M̆ it is inferred2 that ĂM̆ = M̆A and B̆N̆ = M̆B. Thus we get M̆>(Ă +

2Using the definitions of Ă and M̆ , notice that ĂM̆ = M̆A is equivalent to

A . . .

A


In...
In

 =

In...
In

A. In

a similar way, the following expression is verified B̆N̆ = M̆B.
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B̆N̆θ−1K̆)>P̆ (Ă + B̆N̆θ−1K̆)M̆ = (A + Bθ−1K̆M̆)>M̆>P̆ M̆(A + Bθ−1K̆M̆), which leads to

(A+ Bθ−1K̆M̆)>M̆>P̆ M̆(A+ Bθ−1K̆M̆) � M̆>P̆ M̆ . By choosing a matrix P = M̆>P̆ M̆ , we

get the condition (A.18).

Considering (A.18) in order to prove (A.16) can be done in a similar way.

The previuos theorem illustrated the equivalence between the stability of systems (A.1) and

(A.5). The next step is to find the equilibrium point the agent’s state x(k) converges to. The

following theorem is used to determine this equilibrium point.

Proposition A.5. If the dynamics equation (A.1) is stabilized with respect to the control law

(A.7), the state x(k) and the control input u(k) of (A.1) converge asymptotically towards an

equilibrium point (x̄, ū) determined as:

(I −A−Bθ−1K̆M̆)x̄ = Bθ−1(Ğw̆ − K̆v̆) (A.19a)

(I −A)x̄ = Bū (A.19b)

In fact, finding the equilibrium points for the systems (A.17) and (A.1) leads to the expressions

(A.19).

We prove above that the stability of (A.1) is equivalent to the stability of (A.5). Additionally it

is certain that the agent’s state and input converge to the equilibrium point (x̄, ū) determined

via (A.19). However until now the role of the vector w̃ introduced in Theorem A.2 is still not

clarified. We need to know if there exist some relations between the equilibrium point (x̄, ū)

and the vector w̃.

Remark A.4. By using (A.12a), the right-hand side of the expression (A.19a) becomesBθ−1ĞN̆w̃−
Bθ−1K̆v̆. Using (A.8b) and (A.8c) leads to θ = ĞN̆ . Thus we get (I − A − Bθ−1K̆M̆)x̄ =

Bw̃−Bθ−1K̆v̆. Substituting (A.19b) in the left-hand side of (A.19a) leads to Bū−Bθ−1K̆M̆x̄ =

Bw̃ −Bθ−1K̆v̆. After term by term identification on the two sides of this result, we find

K̆M̆x̄ = K̆v̆ (A.20a)

ū = w̃ (A.20b)

The following proposition illustrates the location of the fixed point (x̄, ū) of the agent relative

to its Voronoi cell V.

Proposition A.6. The fixed point (x̄,ū) determined by solving (A.19) belongs to the interior

of V, depending on the choice of ∆.

Proof. Replacing the notation (A.8d) into (A.20a) yields N̆>B̆>P̆ ĂM̆ x̄ = N̆>B̆>P̆ Ăv̆. Us-

ing Proposition A.3, one has B̆>P̆ Ă = ∆ ⊗ (B>PA), thus the following expression holds

N̆>(∆ ⊗ (B>PA))M̆x̄ = N̆>(∆ ⊗ (B>PA))v̆. Similar to the proof of Proposition A.3, we
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get σ(∆)x̄ =

|V|∑
i=1

σ(∆i)vi then x̄ =

|V|∑
i=1

(σ(∆))−1σ(∆i)vi. Due to

|V|∑
i=1

σ(∆i) = σ(∆), we obtain

|V|∑
i=1

(σ(∆))−1σ(∆i) = 1 and finally we get x̄ ∈ int(V).

To conclude, the stability of (A.1) subject to the optimal solution (A.7) is proved in this section.

This control ensures the convergence of the agent’s state x towards the fixed point x̄ inside of its

Voronoi cell V, according to Proposition A.6. In the next section, these results will be extended

within the Model Predictive Control context.

A.2 Voronoi-based MPC control design

The features presented in the previous section can be extended over a finite horizon Np. Solving

an unconstrained Model Predictive Control problem is similar to solving an optimal control

problem over a finite horizon. We will show in this section the explicit solution of this control

problem (see subsection A.2.1) and further prove that the convergence can be built similarly as

the optimal control approach (see subsection A.2.2).

For brevity, we use k = 0 to denote the current instant time.

A.2.1 Explicit control solution

The Voronoi-based MPC framework for the agent having the dynamics (A.1) is

u(0) = arg min
u(k)

Np−1∑
k=0

L(x(k), u(k)) + V (x(Np))

s.t: x(k + 1) = Ax(k) +Bu(k)

(A.21)

The cost function in the MPC framework (A.21) is

J =

Np−1∑
k=0

L(x(k), u(k)) + V (x(Np))

with the running cost L(x(k), u(k)) defined in (A.3) and the terminal cost

V (x(Np)) =
∑

i,j∈NV

(x(Np)− vi)>Qij(x(Np)− vj)

with respect to the expression (A.9). Notice that the vertices of the Voronoi cell of the considered

agent are included in both the running cost L(x(k), u(k)) and the terminal cost function V (x(k)).
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Here V (x(Np)) denotes the final state penalty expected to be reached at the end of the prediction

horizon.

By reusing the notations P̆ , Q̆, R̆, Ă, B̆, M̆ , N̆ , v̆, w̆ and the extended dynamics equation (A.5)

of the previous section, we can derive the following result by a recurrent construction over the

prediction horizon Np

z = Az̆(0) + B(NU−w) (A.22)

with z =


z̆(1)

...

z̆(Np)

, U =


u(0)

...

u(Np − 1)

, w =


w̆
...

w̆

, A =


Ă
...

ĂNp

, B =


B̆
...

. . .

ĂNp−1B̆ . . . B̆

,

N =


N̆

. . .

N̆

.

Notice that the bold characters collect the information related to the prediction horizon Np.

These notations are proposed in order to preserve the coherence of the presentation with the

optimal control section (e.g. the system dynamics (A.5) with the notations (A.4b)).

Using these notations, the cost function is rewritten as

J = z̆(0)>Q̆z̆(0) + (Az̆(0) + BNU−Bw)>P(Az̆(0) + BNU−Bw)

+U>N>RNU− 2U>N>Rw + w>Rw
(A.23)

with P =


Q̆

. . .

Q̆

P̆

, R =


R̆

. . .

R̆

.

In order to simplify the presentation, consider the notation

Φ = R + B>PB (A.24a)

Θ = N>ΦN (A.24b)

G = N>Φ (A.24c)

K = −N>B>PA (A.24d)

The notations above help us to formulate the explicit solution of the control problem (A.21) in

the following theorem.

Theorem A.7. Consider the optimization control problem (A.21). The optimal control solution

over the prediction horizon Np of this problem is

ΘU = Gw + Kz̆(0) (A.25)
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Proof. Solving ∂J
∂U = 0 in a similar way to the optimal control case (see the proof of Theorem

1), we get [N>(R + B>PB)N]U = N>(R + B>PB)w − N>B>PAz̆(0), and thus ΘU =

Gw + Kz̆(0), with Θ invertible.

We have shown above the explicit MPC control using vertex interpolation. Similar to the

coptimal control case, in the next subsection, we will discuss the stability of this control solution

by means of Bellman principle of optimality.

A.2.2 Stability analysis

Replacing the variable U in the cost function (A.23) by U = Θ−1 (Gw + Kz̆(0)) derived from

(A.25), we get

J = z̆(0)>(Q̆+ A>PA−K>Θ−>K)z̆(0)

+w>(Φ−G>Θ−>G)w − 2w>(B>PA + G>Θ−>K)z̆(0)
(A.26)

In a similar way as the optimal control approach, the control (A.25) guarantees J ≤ J∗, with

J∗ = z̆(0)>P̆ z̆(0) if and only if w>(Φ −G>Θ−>G)w ≤ 0 and w>(B>PA + G>Θ−>K) = 0.

This result is further formulated via the Theorem A.8.

Theorem A.8. If there exists a vector w ∈ RmNp which respects the conditions

Gw = GNw̃ (A.27a)

w>B>PA = −w̃>K (A.27b)[
Φ G>

G Θ

]
� 0 (A.27c)

then the following expressions are verified

w>(Φ−G>Θ−>G)w ≤ 0

w>(B>PA + G>Θ−>K) = 0

Proof. The proof is identical to the optimal control case (see Theorem A.2), by considering the

expression (A.27c) to get w>(Φ−G>Θ−>G)w ≤ 0, then using (A.27a) and (A.27b) to obtain

w>B>PA = −w>G>Θ−>K.

Applying Theorem A.8 helps us to keep J ≤ J∗ and therefore the stability is guaranteed

at the end of the prediction horizon, i.e.

Np−1∑
k=0

L(x(k), u(k)) + V (x(Np)) ≤ V (x(0)) leads to

V (x(Np))−V (x(0)) ≤ −
Np−1∑
k=0

L(x(k), u(k)). In the following, we will use the weighting matrices
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P̆ , Q̆, R̆ from the previous section in order to guarantee V (x(k+1))−V (x(k)) ≤ −L(x(k), u(k)).

Rewriting this over the prediction horizon Np, we derive that

V (x(1))− V (x(0)) ≤ −L(x(0), u(0))

V (x(2))− V (x(1)) ≤ −L(x(1), u(1))
...

V (x(Np))− V (x(Np − 1)) ≤ −L(x(Np − 1), u(Np − 1))

By taking the sum of these inequalities above, we get

V (x(Np))− V (x(0)) ≤ −
Np−1∑
k=0

L(x(k), u(k))

In other words, the stability of the MPC problem (A.21) is covered by the stability of the

optimal control problem (A.2). Therefore the results obtained in subsection A.2.2 allows us to

validate the MPC stability in the unconstrained case.

Remark A.5. An advantage of MPC is its constraint handling ability. Hence, we can modify

(A.21) by considering, for instance, the constraints u(k) ∈ U on the control action, i.e.

u(0) = arg min
u(k)

∑Np−1
k=0 L(x(k), u(k)) + V (x(Np))

s.t.: x(k + 1) = Ax(k) +Bu(k)

u(k) ∈ U

(A.28)

with the set U assumed to be bounded.

To conclude, in this section we have revisited the MPC framework by using the vertices informa-

tion to drive the agents towards the interior of their respective Voronoi cell. The explicit control

solution in the unconstrained case with its associated stability proof were given. We consid-

ered also the case where constraints on the control input are added into the MPC framework.

However, the constrained MPC case analysis is still under development.

We will give in the next section some numerical simulations to prove the performance of the

proposed decentralized control laws.

A.3 Simulation results

The previous results in Section A.1 and A.2 are demonstrated by means of numerical simulations

provided in this section. Let us consider the Multi-Agent System Σ composed of Na = 15

homogeneous agents. These agents have the first-time order dynamics equation

xi(k + 1) = xi(k) + Tsui(k), i ∈ N (A.29)
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with xi, ui ∈ R2 the position and the speed of the ith agent and Ts = 0.1 the sampling period.

In particular, the equation characterizing the fixed point of (A.29) is (I− I)xi = Tsui, hence all

positions in R2 can be a fixed point of (A.29) if the speed at this point is zero. Regarding the

deployment task, the Multi Agent System Σ has to realize the surveillance task over a region

X = conv

{[
−20

−20

]
,

[
20

−20

]
,

[
20

20

]
,

[
−20

20

]}
⊂ R2

At each time instant, the region X is partitioned upon the Voronoi algorithm based on the

current measured positions xi(k) of the agents, i.e. X = V =
N⋃
i=1

Vi(k). We can consider that

each agent construction relies only on the local information as its position and the location of

its closest neighbors, to construct its own Voronoi cell Vi(k). This local information is employed

also to design the decentralized control action at each time instant. We will study respectively

the performance of the control design (A.2) and (A.21) via the movement of the agents over X
and also the tracking distance ||xi − x̄i||. We use the red colored circles to denote the initial

positions xi(0) of the agents (see Figs. A.2 and A.4). In Fig. A.2, the green colored stars

represent the evolution of each equilibrium fixed point x̄i(k) and the blue colored circle-lines

represent the evolution xi(k) of the agents.

The next step consists in finding the matrices P , Q, R. We can choose for instance R =[
0.2 0.1

0.1 0.1

]
. The matrix P =

[
9.84 1.24

1.24 8.74

]
is found such that (I +TsK)>P (I +TsK) � P , with

the feedback gain K obtained by pole placement techniques (with 0.8 and 0.5 as stable poles).

The matrix Q =

[
2.74 −0.26

−0.26 4.06

]
is computed by substituting P and R in a Riccati equation

Q = P̆ −A>PA+K>(R+B>PB)−>K

From P , Q, R, the matrices Q̆, R̆ and P̆ are obtained and are further used in the optimal control

problem (A.2). Here we choose ∆ = I|V|. This choice of ∆ means that we want to drive xi(k)

towards the centroid of the Vi(k).

In the first scenario, the decentralized optimal control (A.2) is used. The results are illustrated

in Fig. A.2. All the agents from their initial positions deploy X and quickly obtain the optimal

coverage. This is shown in Fig. A.3 where the tracking errors ||xi − x̄i|| drop to zero after a

certain time.

We get similar results in the second scenario, using the unconstrained MPC control (A.21). In

this case, we use the same matrices P , Q, R and ∆ of the first scenario. The prediction horizon

is Np = 3. As shown in Figs. A.4 and A.5, the optimal coverage is obtained as soon as the

tracking errors converge to zero.
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Figure A.2: Coverage by using optimal
control approach.
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Figure A.3: Coverage criteria by using
optimal control approach.
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Figure A.4: Coverage by using uncon-
strained MPC approach.
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Figure A.5: Coverage criteria by using
unconstrained MPC approach.

In the last scenario, the constraint u(k) ∈ U is added in the control computation (see (A.28)),

with the set U defined as

U =

u ∈ R2

∣∣∣∣∣∣∣∣∣∣


−1 0

0 −1

1 0

0 1

x ≤


5

5

5

5




This constraint represents the limited speed authorized by the actuators. The agents still

converge to a coverage configuration (see Fig. A.6) (we recall here that these configurations are

not unique, according to Du et al. (1999)) but longer than the second scenario (see Fig. A.6).

This is logical due to the limitation of the speed.

In all scenarios, sometimes there are some ”jumps” representing the discontinuities due to the

variation of the vertices defining the Voronoi cell. This problem is trivial because the number
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Figure A.6: Coverage by using con-
strained MPC approach.
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Figure A.7: Coverage criteria by using
constrained MPC approach.

of neighbors taken into account in the construction of the Voronoi cell can change and also can

cause the discontinuities in the evolution of the centroid.

A.4 Conclusion

The well-known Voronoi-based decentralized coverage problem is already revisited in Chapter 4

by choosing the Chebyshev center and further a so-called generalized center as the inner target

point for each agent. The main idea consists of providing the decentralized control policies to

enhance the coverage of a group of cooperative homogeneous mobile agents over a bounded

region. The classical Voronoi algorithm is employed to partition the whole region in real time.

This partition step is based on the positions of the agents and subsequently gives the necessary

information to design the decentralized control action for each agent. In the present appendix,

we consider a so-called vertex interpolated center and develop the decentralized control appro-

priate to drive the Multi-Agent system towards an optimal configuration associated with the

new center. The control design is based on respectively the optimal control approach and fur-

ther the MPC approach. We also provide the stability proofs corresponding to each approach.

Both proposed approaches use the current state of the agent and the vertices of its Voronoi cell

to compute the decentralized control.

Most of the works related to Voronoi-based decentralized coverage problem choose the center

of mass of the Voronoi cell as the inner target point. The optimal coverage over the deployed

region associated with this choice is thus obtained when each agent’s output coincides with its

center of mass. Such configuration known as centroidal Voronoi configuration can be achieved

by driving each agent individually towards its center of mass, according to the principle of the

Lloyd’s algorithm. Notice that, in the open literature, most of the results are developed for

continuous-time system. In Appendix B, we will revisit the decentralized control to drive a



136 Appendix A Voronoi based decentralized coverage problem using the vertex interpolation

Multi-Agent system towards a centroidal Voronoi configuration in the context of discrete-time

dynamics.



Appendix B

Voronoi based decentralized coverage

problem using the center of mass

The Multi-Agent system coverage is a well-known control problem in the literature (see Cortes

et al. (2002), Schwager et al. (2009) and Moarref and Rodrigues (2014)). We have revisited this

problem by choosing the inner point towards which each agent is driven, such as Chebyshev

center, generalized center (these two kinds of center are introduced in Chapter 4) and a so-called

vertex interpolated center (see Appendix A). It is worth to mention that the conventional inner

target chosen for Voronoi-based deployment is the center of mass. Therefore, the decentralized

control is design such that each agent goes to its corresponding center of mass, and thus the

Multi-Agent system reaches a centroidal Voronoi configuration over a deployed region. However,

most of the results obtained are developed for continuous-time systems.

In this context, the aim of the present appendix is to extend the optimal formulation-based

decentralized control in Moarref and Rodrigues (2014) for discrete-time systems, which can be

used in several applications, typically in the context of mobile sensor network Cortes et al.

(2002), multi-robots coverage Schwager et al. (2009).

The main novelty is to use the prediction of the dynamic Voronoi partition in order to maximize

the coverage quality by driving the Multi-Agent system to a centroidal Voronoi configuration.

Similar to Appendix A, due to laborious mathematical formulations, the proposed results are

formualted as an appendix. This work has been published in Nguyen et al. (2016a).

We will start by formulating the problem in Section B.1.

B.1 Problem formulation

In this section, we will introduce respectively the class of agent’s dynamics in subsection B.1.1.

This is followed by the details of the constraints on the agent’s environment in subsection B.1.2

137



138 Appendix B Voronoi based decentralized coverage problem using the center of mass

and the overall of decentralized Voronoi coverage problem of Moarref and Rodrigues (2014) in

subsection B.1.3.

B.1.1 System description

Consider the Multi-Agent system (denoted by Σ) composed of N mobile agents. The indices

set is N = {1, . . . , N}. Each agent has its own dynamics

ẋi = ui,with i ∈ N (B.1)

which has the discrete-time zero-order-hold form

xi(k + 1) = xi(k) + Tsui(k),with i ∈ N (B.2)

where xi ∈ Rn is the state-space vector, ui ∈ Rn is the input vector1 and Ts is the sampling

time. We use x = [x>1 . . . x
>
N ]> ∈ RNn and u = [u>1 . . . u

>
N ]> ∈ RNn to denote respectively the

collective state and input of the system Σ.

B.1.2 Constraints on the agents’ environment

Assume that the common working space X ⊂ Rn is convex and bounded, represented by a

polytope. A partition V(x1, . . . , xN ) of X is

X =
N⋃
i=1

Vi, Vi ∩ Vj = ∅, ∀i, j ∈ N (B.3)

A natural mathematical definition of such a decomposition is provided by the Voronoi partition,

which characterizes the neighborhood Vi(xi) as

Vi = {x ∈ X | ‖xi − x‖ ≤ ‖xj − x‖, ∀j 6= i} (B.4)

It is worth to be mentioned that each set Vi is a polytope as a consequence of the boundedness

of X and the structure of the constraints in (B.4). Using the available state measurement of

the Multi-Agent system Σ at the time instant k, the geometric formulation (2.10) leads to a

time-varying partition.

1The dimension choice of ui follows the chosen dynamics (B.1). The results can be extended for ui ∈ Rm,
with m 6= n.
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B.1.3 Coverage control

The ultimate goal of the deployment is to maximize the coverage. The density function2 φ :

X → R+ denotes the priority of coverage at a point q ∈ X . A candidate Lyapunov function

V (x) (see Cortes et al. (2002), Cortes et al. (2005)) is defined as

V (x) =
N∑
i=1

pi

∫
Vi

‖xi − q‖2 φ(q)dq (B.5)

with the positive scalar pi denoting a weighting coefficient for V (x). The optimal (maximized)

coverage is achieved if V (x) reaches its minimum.

Its local minimum points are obtained by solving ∂V
∂xi

= 0 with the partial derivative of V (x)

with respect to xi being

∂V
∂xi

= 2pi

∫
Vi

(xi − q)>φ(q)dq

= 2pi

(∫
Vi

φ(q)dq

)(
xi −

∫
Vi
qφ(q)dq∫

Vi
φ(q)dq

)>
= 2piMVi(xi − CMVi

)>

(B.6)

where the mass MVi and the center of mass CMVi
of the Voronoi cell Vi are respectively defined

as in Moarref and Rodrigues (2014)

MVi =

∫
Vi

φ(q)dq (B.7)

CMVi
=

∫
Vi
qφ(q)dq∫

Vi
φ(q)dq

(B.8)

Solving ∂V
∂xi

= 0, ∀i ∈ N leads to an optimal configuration where xi = CMVi
. Such optimal

configuration is called Centroidal Voronoi Configuration (CVC). Using the LaSalle’s invariance

principle (see Khalil and Grizzle (1996)), it can be proved that the agent’s local control ui =

ki(xi − CMVi
), with ki < 0 can lead to the convergence of the entire MAS to a CVC.

The results obtained for the continuous-time MAS will be recalled in the next section.

B.2 Continuous-time decentralized optimal control

This section recalls the main results given in Moarref and Rodrigues (2014), applied for a

MAS whose agents dynamics are characterized by the continuous-time equations (B.1). The

2The function φ is continuously differentiable over X .
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decentralized control is obtained locally by solving the following optimization control problem

inf
ui,i∈N

∫ ∞
0

L(x, u)dτ s.t.: ẋi = ui (B.9)

where L(x, u) =
N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi − q)φ(q)dq

∥∥∥∥2

+ ri ‖ui‖2
)

denotes the running cost. The scalars

si > 0, ri > 0 represent the weighting coefficients. The Hamilton-Jacobi-Bellman (HJB) equa-

tion of (B.9) with the dynamics (B.1) is

inf
ui,i∈N

H
(
L(x, u), ∂V∂x

)
= 0 (B.10)

with the Hamiltonian

H = L(x, u) + ∂V
∂x ẋ =

N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi − q)φ(q)dq

∥∥∥∥2

+ ri ‖ui‖2 +
∂V

∂xi
ẋi

)

associated with a value function V = V (x)

V (x) =

N∑
i=1

√
siri

∫
Vi

‖xi − q‖2 φ(q)dq (B.11)

with siri = sjrj = p2, ∀i, j ∈ N and p denoting a constant positive scalar. By solving
∂H

∂ui
= 0,

we obtain the continuous-time decentralized optimal control (CDOC)

ui = −
√
si
ri

∫
Vi

(xi − q)φ(q)dq, i ∈ N (B.12)

Furthermore, the solution (B.12) satisfies the LaSalle’s invariance principle and thus ensures

the Lyapunov convergence of the MAS into a CVC by means of V̇ = −L ≤ 0.

In the following, we propose a decentralized optimal control technique for Multi-Agent system

Voronoi-based deployment.

B.3 Discrete-time decentralized optimal control

This section proposes an optimal control for the discrete-time system’s dynamics (B.2), based

on the approach developed in Moarref and Rodrigues (2014). For brevity, in the sequel we use

V+
i = Vi(xi(k + 1)) to denote the Voronoi cell of xi(k + 1), i.e. the i-th agent at time k + 1.

The mass and center of mass of the Voronoi cell V+
i are respectively MV+

i
and CMV+

i

.
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Transposing the previous work Moarref and Rodrigues (2014) to the discrete-time dynamics

(B.2) yields the following optimization problem

min
ui,i∈N

∞∑
k=0

L(x(k), u(k))

s.t: xi(k + 1) = xi(k) + Tsui(k)

(B.13)

with L(x(k), u(k)) =
N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi(k)− q)φ(q)dq

∥∥∥∥2

+ri ‖ui(k)‖2
)

indicating the running cost.

Theorem B.1. A discrete-time decentralized stabilizing suboptimal control of the problem (B.13)

is

ui(k) = − pi
ri + piTsMV+

i

∫
V+
i

(xi(k)− q)φ(q)dq (B.14)

by considering the cost-to-go function

V (x(k)) =

N∑
i=1

pi

∫
Vi

‖xi(k)− q‖2 φ(q)dq (B.15)

with pi =
√
siri and pi = pj = p > 0, ∀i, j ∈ N .

Proof. The discrete-time Hamiltonian (see Bellman (1954)) of (B.13) is

H(k) = L(x(k), u(k)) +
∆V (k)

Ts
(B.16)

with ∆V (k) = V (x(k + 1)) − V (x(k)). By using (B.15), we can express ∆V (k) as ∆V (k) =
N∑
i=1

p

∫
V+
i

‖xi(k + 1)− q‖2 φ(q)dq −
N∑
i=1

p

∫
Vi

‖xi(k)− q‖2 φ(q)dq. Using the expressions (B.6)-

(B.8), this can be rewritten in terms of the mass and the center of mass such as ∆V (k) =
N∑
i=1

p

(
||xi(k + 1)||2MV+

i
+

∫
V+
i

||q||2φ(q)dq − 2x>i (k + 1)MV+
i
CMV+

i

)
−

N∑
i=1

p

(
||xi(k)||2MVi −

2x>i (k)MViCMVi
+

∫
Vi

||q||2φ(q)dq

)
. By following the definition (2.10)-(B.4), we have

N∑
i=1

∫
Vi

||q||2φ(q)dq =

∫
N⋃
i=1

Vi

||q||2φ(q)dq =

∫
X
||q||2φ(q)dq

and this leads to
N∑
i=1

∫
V+
i

||q||2φ(q)dq −
N∑
i=1

∫
Vi

||q||2φ(q)dq = 0



142 Appendix B Voronoi based decentralized coverage problem using the center of mass

This allows us to rewrite ∆V (k) as follows

∆V (k) =

N∑
i=1

p

(
||xi(k + 1)||2 − 2x>i (k + 1)CMV+

i

)
MV+

i
−

N∑
i=1

pMVi

(
||xi(k)||2 − 2x>i (k)CMVi

)
(B.17)

Differentiating H(k) with respect to ui(k), we obtain

∂H(k)

∂ui(k)
= 2riu

>
i (k) +

1

Ts

∂∆V (k)

∂ui(k)
(B.18)

where the partial derivative of ∆V (k) with respect to ui(k) can be obtained by differentiating

(B.17) by ui(k) (using the dynamics (B.2)), i.e.

∂∆V (k)
∂ui(k) = 2pTsMV+

i

(
xi(k + 1)− CMV+

i

)>
+ Tsθi (B.19)

where

θi =
p

Ts

(
||xi(k + 1)||2

∂MV+
i

∂ui(k)
− 2x>i (k + 1)

∂(MV+
i
CMV+

i

)

∂ui(k)

)
+

1

Ts

∑
j∈Ni

p
(
||xj(k + 1)||2

∂MV+
j

∂ui(k)
−

2x>j (k + 1)
∂(MV+

j
CMV+

j
)

∂ui(k)

)
collects all partial derivatives of the mass and center of mass with respect to ui(k).

Replacing (B.19) in (B.18), we get ∂H(k)
∂ui(k) = 2riu

>
i (k) + 2px>i (k + 1)MV+

i
− 2pMV+

i
C>MV+

i

+ θi.

Using the discrete-time dynamics (B.2) and regrouping the terms related to the control ui(k),

the following expression is obtained

∂H(k)

∂ui(k)
= 2(ri + pTsMV+

i
)u>i (k) + 2pMV+

i
(xi(k)− CMV+

i

)> + θi (B.20)

A suboptimal solution ui(k) can be obtained by solving (ri + pTsMV+
i

)u>i (k) + pMV+
i

(xi(k) −
CMV+

i

)> = 0, i.e.

ui(k) = −
pMV+

i

ri + pTsMV+
i

(xi(k)− CMV+
i

) (B.21)

which is also the control solution (B.14) and the proof of the main claim is completed.

With respect to the local stability of the ith agent in case of static Voronoi partition, by replacing

(B.14) in (B.2), the closed-loop dynamics becomes

xi(k + 1) =
ri

ri + piTsMV+
i

xi(k) +
piTsMV+

i

ri + piTsMV+
i

CMV+
i

.

Obviously, the following expression holds

ri
ri + piTsMV+

i

≤ 1
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because ri, pi, Ts,MV+
i
> 0.

Remark B.1. In Theorem B.1, the general case pi = pj = p was considered. Notice that we

can choose p = 1 in order to keep the consistency with the results proposed in Moarref and

Rodrigues (2014).

Remark B.2. The computation of the control (B.14) requires the predicted mass MV+
i

and the

predicted center of mass CMV+
i

of the Voronoi cell V+
i . This is considered as the main difference

by comparison with the continuous-time case.

Lemma B.2. The suboptimal solution (B.21) can be considered as a discrete-time approxima-

tion of the continuous-time decentralized optimal control of the problem (B.13) because the terms

θi satisfy
N∑
i=1

∫
θidui(k) = 0 (B.22)

Proof. Using the control solution (B.21) translates the expression (B.20) into
∂H(k)

∂ui(k)
= θi.

According to the definition of total derivative of multi-variable function, we can integrate
∂H(k)

∂ui(k)
with respect to all ui(k) and thus we obtain

H(k) =

N∑
i=1

∫
θidui(k) (B.23)

Consider the mass conservation law (see Cortes et al. (2005)), i.e.

∂

∂xi

∫
Vi

‖xi − q‖2 φ(q)dq =

∫
Vi

∂

∂xi
‖xi − q‖2 φ(q)dq +

∫
∂Vi

‖xi − γ‖2 φ(γ)n>(γ)
∂γ

∂xi
dγ

(B.24)

where ∂Vi is the boundary of the set Vi, i.e. ∂Vi =
⋃
∀j∈Ni

(Vi ∩ Vj). Here, n(γ) is the unit

outward normal to ∂Vi which is parameterized by the scalar γ. Similar to (B.24), for the

function (B.15), we obtain

∂V (x)

∂xi
= p

∂

∂xi

∫
Vi

‖xi − q‖2 φ(q)dq

and derive

∂V (x)

∂xi
= 2p

∫
Vi

(xi − q)>φ(q)dq + p

∫
∂Vi

‖xi − γ‖2 φ(γ)n>(γ)
∂γ

∂xi
dγ

Based on (B.6), the discrete-time form at the time instant k + 1 is further obtained

∂V (x(k + 1))

∂xi(k + 1)
= 2pMV+

i

(
xi(k + 1)− CMV+

i

)>
+ p

∫
∂V+

i

‖xi(k + 1)− γ‖2 φ(γ)n>(γ)
∂γ

∂xi
dγ

(B.25)
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Using the dynamics (B.2), we have additionally

∂∆V

∂ui(k)
=
∂V (x(k + 1))

∂xi(k + 1)

∂xi(k + 1)

∂ui(k)
=
∂V (x(k + 1))

∂xi(k + 1)
Ts (B.26)

By substituting (B.25) in (B.26), we obtain

∂∆V

∂ui(k)
= 2pMV+

i
Ts

(
xi(k + 1)− CMV+

i

)>
+ Tsp

∫
∂V+

i

‖xi(k + 1)− γ‖2 φ(γ)n>(γ)
∂γ

∂xi
dγ

(B.27)

Subsequently, from (B.19) and (B.27), we get another equation characterizing θi

θi = p

∫
∂V+

i

‖xi(k + 1)− γ‖2 φ(γ)n>(γ)
∂γ

∂xi
dγ (B.28)

Furthermore, the authors of Moarref and Rodrigues (2014) proved that∫
∂Vi

‖xi − γ‖2 φ(γ)n>(γ)
∂γ

∂xi
dγ =

∑
j∈Ni

∫
Vi∩Vj

‖xi − γij‖2 φ(γij)n
>(γij)

∂γij
∂xi

dγij (B.29)

which represents the mass variation through the boundary of Vi as a collection of mass flow

through each facet Vi ∩ Vj defining ∂Vi. Therefore, we obtain

θi = p
∑
j∈Ni

∫
V+
i ∩V

+
j

‖xi(k + 1)− γij‖2φ(γij)n
>(γij)

∂γij
∂xi

dγij (B.30)

Additionally, we have

N∑
i=1

∫
θidui(k) =

N∑
i=1

∫
θi
Ts
dxi(k + 1) with

N∑
i=1

∫
θi
Ts
dxi(k + 1) =

N∑
i=1

pi
Ts

∫ ( ∑
j∈Ni

∫
V+
i ∩V

+
j

‖xi(k + 1)− γij‖2φ(γij)n
>(γij)

∂γij
∂xi

dγij

)
dxi(k + 1)

Since

‖xi − γij‖ = ‖xj − γji‖ ,
∂γij
∂xi

=
∂γji
∂xj

, n(γij) = −n(γji)

it is possible to write3

∫
Vi∩Vj

‖xi − γij‖2 φ(γij)n
>(γij)

∂γij
∂xi

dγij = −
∫
Vj∩Vi

‖xj − γji‖2 φ(γji)n
>(γji)

∂γji
∂xj

dγji

(B.31)

3From the point of view of mass conservation, we consider the case when X = Vi ∪Vj . If one part of the mass
belonging to the Vi cell passes through the facet Vi ∩Vj into the Vj cell, then Vi loses it but the cell Vj gets it.
In general, the mass over X is conserved.
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and thus the following integral vanishes

N∑
i=1

p

∫ ( ∑
j∈Ni

∫
Vi∩Vj

‖xi − γij‖2φ(γij)n
>(γij)

∂γij
∂xi

dγij

)
dxi

This result leads to

N∑
i=1

∫
θidui(k) = 0 and thus, the equation (B.23) becomes H(k) = 0, proving

that the control (B.21) can be considered as a discrete-time approximation of the optimal control

solution of the problem (B.13).

We have found a discrete-time approximation of CDOC for the optimization problem (B.13).

In the next section, we will show the consistence between this solution and the continuous-time

optimal control proposed in Moarref and Rodrigues (2014).

B.4 Equivalence between discrete-time approximation of CDOC

and CDOC-Stability proof

The previous section presents the proposed discrete-time approximation of CDOC (B.14). It

will be proved to converge to the CDOC of Moarref and Rodrigues (2014).

Theorem B.3. If the sampling time Ts goes to zero, then the next three statements are true:

i. The discretized equation (B.2) approaches the continuous-time dynamics (B.1);

ii. The discrete-time approximation of CDOC (B.14) approaches CDOC (B.12);

iii. The HJB equation min
u
H = 0 is ensured.

Proof. i. The first statement is obvious.

ii. Consider the discrete-time control solution (B.14). If Ts → 0, this solution (B.14) approaches

the limit value ui(t) = − p
ri

∫
Vi

(xi(t) − q)φ(q)dq = −
√
si
ri

∫
Vi

(xi(t) − q)φ(q)dq which is exactly

the CDOC solution, for p2 = siri (see (B.6) and (B.11)).

iii. According to the definition of the total derivative of a multivariable function, it is inferred

that

∆V (k) =
N∑
i=1

∫
∂∆V (k)

∂ui(k)
dui(k) (B.32)

Replacing ∆V (k) in the Hamiltonian (B.16) leads to H(k) =
N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi(k)− q)φ(q)dq

∥∥∥∥2

+

ri ‖ui(k)‖2
)

+
1

Ts

N∑
i=1

∫
∂∆V (k)

∂ui(k)
dui(k). Substitute

∂∆V (k)

∂ui(k)
with (B.19) and use (B.22) to
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obtain

H(k) =
N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi(k)− q)φ(q)dq

∥∥∥∥2

+ ri ‖ui(k)‖2
)

+
N∑
i=1

2p

∫ (
MV+

i
xi(k + 1)−MV+

i
CMV+

i

)>
dui(k)

(B.33)

and thus

H(k) =

N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi(k)− q)φ(q)dq

∥∥∥∥2

+ ri ‖ui(k)‖2
)

+
N∑
i=1

2pMV+
i

(∫
x>i (k + 1)dui(k)− C>MV+

i

∫
dui(k)

) (B.34)

Using the dynamics (B.2), this can be rewritten as

H(k) =
N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi(k)− q)φ(q)dq

∥∥∥∥2

+ ri ‖ui(k)‖2
)

+
N∑
i=1

2pMV+
i

(
Ts
||ui(k)||2

2
+ (xi(k)− CMV+

i

)>ui(k)

) (B.35)

Regrouping the terms in ||ui(k)||2, the expression (B.35) becomes

H(k) =
N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi(k)− q)φ(q)dq

∥∥∥∥2

+(ri+pTsMV+
i

) ‖ui(k)‖2+2pMV+
i

(xi(k)−CMV+
i

)>ui(k)

)

Replacing ui(k) by the solution (B.14), this is equivalent to

H(k) =

N∑
i=1

(
si

∥∥∥∥∫
Vi

(xi(k)− q)φ(q)dq

∥∥∥∥2

− p2

ri + pTsMV+
i

∥∥∥∥∥
∫
V+
i

(xi(k)− q)φ(q)dq

∥∥∥∥∥
2)

When Ts → 0, using CMV+
i

→ CMVi
and MV+

i
→MVi , the control law (B.14) becomes

ui(t) = − p
ri

∫
Vi

(xi(t)− q)φ(q)dq (B.36)

which is further used to find a simplified form of min
u
H

min
u
H =

N∑
i=1

(
si −

p2

ri

)∥∥∥∥∫
Vi

(xi(k)− q)φ(q)dq

∥∥∥∥2

(B.37)

Using p2 = siri, we conclude that if Ts → 0 then min
u
H → 0. The proof is thus completed.

Briefly, we have proved that the discrete-time approximation of CDOC (B.14) approaches CDOC

(B.12) when Ts → 0, and further leads to the stability in the sense of the HJB equation. In the
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next section, we will provide some numerical simulations to illustrate the performance of our

decentralized control solution.

B.5 Numerical example

We consider a Multi-Agent system Σ composed of N = 7 homogeneous agents having the

common dynamics (B.2), with the sampling time Ts = 0.01s, xi ∈ R2 and ui ∈ R2 denoting

respectively the agents position and speed.

The agents are deployed within a bounded region

X = conv

{[
0

0

]
,

[
0

6

]
,

[
6

6

]
,

[
6

0

]}
⊂ R2

as illustrated in Fig. B.1. The density function over X is uniform, i.e. φ(q) = 1, ∀q ∈ X .

In Figs. B.1 and B.3, the blue lines represent the motion of the agents in the considered discrete-

time case. The agents initial positions xi(0) are marked by the red points (see the zoom shown

in Figs. B.1 and B.3). The last configuration of the entire MAS is shown in each figure, with

the green dots denoting the last positions of the agents. The evolution of the coverage criterion

MVi‖xi − CMVi
‖ for each agent is shown in Figs. B.2 and B.4.
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xi(k)

3.8 4 4.2
3.8

4

4.2

Figure B.1: Coverage of X with si = 10 and ri = 1.

Two scenarios are considered. In the first scenario, we apply the decentralized control (B.14)

with the weighting coefficients si = 10 and ri = 1. The deployment result is shown in Fig.

B.1 with the evolution of the agents and also the Voronoi partition obtained after 100 sampling

periods. The coverage criterion curves in Fig. B.2 drop asymptotically to zero, proving that

the entire MAS Σ is close to a CVC.

In the second scenario, the weighting coefficients are si = 100 and ri = 1. The MAS converges

into a CVC different from the previous scenario (notice that a CVC is not not unique Du et al.
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Figure B.2: Coverage criterion of N agents with si = 10 and ri = 1.
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Figure B.3: Coverage of X with si = 100 and ri = 1.

(1999)) with a faster convergence rate. The drop to zero of the coverage criterion proves that Σ

approaches the CVC (see Fig B.2), although there are some discontinuities due to the abrupt

change of the shape of the dynamic Voronoi cells.
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Figure B.4: Coverage criterion of N agents with si = 100 and ri = 1.

B.6 Conclusion

This appendix provides a novel discrete-time decentralized control for the Multi-Agent Voronoi-

based coverage/deployment problem, by following the optimal control framework. Similar to

the continuous-time case, the discrete-time solution is also spatially distributed over Delaunay

graphs. One of the contributions consists of taking into account the prediction of the Voronoi

partition. However, finding an explicit equation to predict this partition appears to be compli-

cated and it is part of our current research work. Some simulations exhibit oscillations/discon-

tinuities in the evolution of the centroids which need to be analyzed in the future with respect

to the sampling time and the topology of the partition. Another interesting topic to be ad-

dressed in future work relates to the choice of the weighting coefficients for the energy-efficiency

problem. Extending the control solutions for the case of finite horizon is part of current work.

The propositions given in this appendix along with the results provided in Appendix A and

Chapter 4 can considered as our contributions to the Voronoi-based coverage problem. The

main achievement consists in improving the classical Lloyd’s algorithm by choosing different

kinds of inner target points and further developing the appropriate control laws.
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Vicenç Puig. Fault diagnosis and fault tolerant control using set-membership approaches: Ap-

plication to real case studies. International Journal of Applied Mathematics and Computer

Science, 20(4):619–635, 2010.
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Titre : Commande prédictive sous contraintes de sécurité pour des systèmes dynamiques Multi-Agents

Mots clefs : Systèmes dynamiques Multi-Agents, commande décentralisée, méthodes ensemblistes,
partition de Voronoi, évitement de collision.

Résumé : Cette thèse porte sur des tech-
niques de commande à base d’optimisation dans
le cadre des systèmes dynamiques Multi-Agents
sous contraintes, plus particulièrement liées à l’évi-
tement des collisions. Dans un contexte ensem-
bliste, l’évitement des collisions au sein de la for-
mation se traduit par des conditions de non inter-
section des régions de sécurité caractéristiques à
chaque agent/obstacle. Grace à sa capacité à gé-
rer les contraintes, la commande prédictive a été
choisie parmi les méthodes de synthèse fondées
sur des techniques d’optimisation. Tout d’abord,
une structure de type leader-suiveur est considérée
comme une architecture décentralisée élémentaire.
La zone de fonctionnement de chaque suiveur est
décidée par le leader et puis une loi de commande
locale est calculée afin de garantir que les suiveurs
restent à l’intérieur de la zone autorisée, permet-

tant d’éviter les collisions. Ensuite, un déploiement
des agents fondé sur l’approche de commande pré-
dictive décentralisée, utilisant des partitions dyna-
miques de Voronoi, est proposé, permettant de ra-
mener chaque agent vers l’intérieur de sa cellule
Voronoi. Une des contributions a été de considérer
le centre de Chebyshev comme cible à l’intérieur de
chaque cellule. D’autres solutions proposent l’utili-
sation du centre de masse ou du centre obtenu par
l’interpolation des sommets. Finalement, des mé-
thodes ensemblistes sont utilisées pour construire
un niveau supplémentaire de détection de défauts
dans le cadre du système Multi-Agents. Cela per-
met l’exclusion des agents défectueux ainsi que l’in-
tégration des agents extérieurs certifiés sans défauts
dans la formation en utilisant des techniques de
commande prédictive centralisée.

Title : Safe predictive control for Multi-Agent dynamical systems

Keywords : Multi-Agents dynamical systems, decentralized control, set-theoretic methods, Voronoi
partition, collision avoidance.

Abstract : This thesis presents optimization-
based control techniques for dynamical Multi-
Agent systems (MAS) subject to collision avoi-
dance constraints. From the set-theoretic point of
view, collision avoidance objective can be transla-
ted into non-overlapping conditions for the safety
regions characterizing each agent/obstacle while
maintaining the convergence towards a specified
formation. Among the successful optimization-
based control methods, Model Predictive Control
(MPC) is used for constraints handling. First, a
leader-follower structure is considered as a basic de-
centralized architecture. The followers functioning
zone assignment is decided by the leader and then
the local linear feedback control is computed such
that the follower operates strictly inside its authori-
zed zone, offering anti-collision guarantees. Second,

a dynamic Voronoi partition based deployment of
the agents using an inner target driver is develo-
ped. The main novelty is to consider the Cheby-
shev center as the inner target for each agent, lea-
ding to an optimization-based decentralized predic-
tive control design. In the same topic, other inner
targets are considered such as the center of mass
or vertex interpolated center. Third, set-theoretic
tools are used to design a centralized FDI layer for
dynamical MAS, leading to the exclusion of a faulty
agent from the MAS formation and the integration
of an external healthy/recovered agent in the cur-
rent formation. The set-based FDI allows detecting
and isolating these faulty agents to protect the cur-
rent formation using centralized predictive control
techniques.
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