E. Wainer, High Titania Dielectrics, Transactions of The Electrochemical Society, vol.89, issue.1, p.331, 1946.
DOI : 10.1149/1.3071718

P. W. Forsbergh, Domain Structures and Phase Transitions in Barium Titanate, Physical Review, vol.76, issue.8, p.1187, 1949.
DOI : 10.1103/PhysRev.76.1187

W. J. Merz, Single Crystals, Physical Review, vol.95, issue.3, p.690, 1954.
DOI : 10.1103/PhysRev.95.690

R. C. Miller and A. Savage, as a Function of the Applied Electric Field, Physical Review, vol.112, issue.3, p.755, 1958.
DOI : 10.1103/PhysRev.112.755

D. Damjanovic and M. Demartin, Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics, Journal of Physics: Condensed Matter, vol.9, issue.23, p.4943, 1997.
DOI : 10.1088/0953-8984/9/23/018

A. Aird and E. K. Salje, Sheet superconductivity in twin walls: experimental evidence of, Journal of Physics: Condensed Matter, vol.10, issue.22, p.377, 1998.
DOI : 10.1088/0953-8984/10/22/003

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. Chu et al., Conduction at domain walls in oxide multiferroics, Nature Materials, vol.9, issue.3, p.229, 2009.
DOI : 10.1038/nmat2373

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike et al., Conducting Domain Walls in Lithium Niobate Single Crystals, Advanced Functional Materials, vol.83, issue.18, p.3936, 2012.
DOI : 10.1002/adfm.201201174

W. Wu, Y. Horibe, N. Lee, S. Cheong, and J. R. Guest, Conduction of Topologically Protected Charged Ferroelectric Domain Walls, Physical Review Letters, vol.108, issue.7, p.77203, 2012.
DOI : 10.1103/PhysRevLett.108.077203

S. Van-aert, S. Turner, R. Delville, D. Schryvers, G. Van-tendeloo et al., by Electron Microscopy, Advanced Materials, vol.82, issue.4, p.523, 2012.
DOI : 10.1002/adma.201103717

H. Yokota, H. Usami, R. Haumont, P. Hicher, J. Kaneshiro et al., obtained by second harmonic generation microscope, Physical Review B, vol.89, issue.14, p.144109, 2014.
DOI : 10.1103/PhysRevB.89.144109

E. K. Salje, S. Li, Z. Zhao, P. Gumbsch, and X. Ding, Polar twin boundaries and nonconventional ferroelectric switching, Applied Physics Letters, vol.106, issue.21, p.212907, 2015.
DOI : 10.1063/1.4922036

G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Domain wall nanoelectronics, Reviews of Modern Physics, vol.84, issue.1, p.119, 2012.
DOI : 10.1103/RevModPhys.84.119

URL : http://hdl.handle.net/10261/50958

E. Salje and H. Zhang, Domain boundary engineering, Phase Transitions, vol.22, issue.6, p.452, 2009.
DOI : 10.1088/0022-3719/20/26/011

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe et al., Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals, Materials Research Express, vol.1, issue.3, p.35012, 2014.
DOI : 10.1088/2053-1591/1/3/035012

A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films, 2010.
DOI : 10.1007/978-1-4419-1417-0

B. B. Van-aken, J. Rivera, H. Schmid, and M. Fiebig, Observation of ferrotoroidic domains, Nature, vol.67, issue.7163, p.702, 2007.
DOI : 10.1038/nature06139

D. R. Lovett, Tensor Properties of Crystals, Second Edition, 1999.

D. Damjanovic, In The Science of Hysteresis, pp.337-465, 2006.

S. V. Kalinin and D. A. , Local potential and polarization screening on ferroelectric surfaces, Physical Review B, vol.63, issue.12, pp.125411-129, 2001.
DOI : 10.1103/PhysRevB.63.125411

M. Maglione, A. Theerthan, V. Rodriguez, and A. Peña, Intrinsic ionic screening of the ferroelectric polarization of KTP revealed by second-harmonic generation microscopy, Optical Materials Express, vol.6, issue.1, p.137, 2016.
DOI : 10.1364/OME.6.000137

J. Guyonnet, Ferroelectric Domain Walls
DOI : 10.1007/978-3-319-05750-7

D. Lee, R. K. Behera, P. Wu, H. Xu, Y. L. Li et al., ferroelectric domain walls, Physical Review B, vol.80, issue.6, p.60102, 2009.
DOI : 10.1103/PhysRevB.80.060102

R. Kirchner, Structure and Energy of a N??el Wall, Journal of Applied Physics, vol.39, issue.2, p.855, 1968.
DOI : 10.1063/1.2163646

D. Shilo, G. Ravichandran, and K. Bhattacharya, Investigation of twin-wall structure at the nanometre scale using atomic force microscopy, Nature Materials, vol.234, issue.7, p.453, 2004.
DOI : 10.1051/jp3:1997180

T. Jungk, Á. Hoffmann, and E. Soergel, Impact of the tip radius on the lateral resolution in piezoresponse force microscopy, New Journal of Physics, vol.10, issue.1, p.13019, 2008.
DOI : 10.1088/1367-2630/10/1/013019

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng et al., Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation, Physical Review B, vol.89, issue.3, p.35314, 2014.
DOI : 10.1103/PhysRevB.89.035314

T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel et al., Real-time three-dimensional profiling of ferroelectric domain walls, Applied Physics Letters, vol.107, issue.15, p.152905, 2015.
DOI : 10.1063/1.4933171

Y. Sheng, A. Best, H. Butt, W. Krolikowski, A. Arie et al., Three-dimensional ferroelectric domain visualization by ??erenkov-type second harmonic generation, Optics Express, vol.18, issue.16, p.16539, 2010.
DOI : 10.1364/OE.18.016539.m006

URL : http://hdl.handle.net/11858/00-001M-0000-000F-7334-C

V. Gopalan and T. E. Mitchell, video observation of 180?? domain switching in LiTaO3 by electro-optic imaging microscopy, Journal of Applied Physics, vol.85, issue.4, p.2304, 1999.
DOI : 10.1063/1.369542

A. Y. Emelyanov, N. A. Pertsev, and E. K. Salje, Effect of finite domain-wall width on the domain structures of epitaxial ferroelectric and ferroelastic thin films, Journal of Applied Physics, vol.89, issue.2, p.1355, 2001.
DOI : 10.1063/1.1332086

G. Catalan, J. F. Scott, A. Schilling, and J. M. Gregg, Wall thickness dependence of the scaling law for ferroic stripe domains, Journal of Physics: Condensed Matter, vol.19, issue.2, p.22201, 2007.
DOI : 10.1088/0953-8984/19/2/022201

B. Wruck, E. K. Salje, M. Zhang, T. Abraham, and U. Bismayer, an X-ray diffraction study, Phase Transitions, vol.49, issue.1-3, p.135, 1994.
DOI : 10.1002/pssa.2210410223

G. V. Subba-rao, B. M. Wanklyn, and C. N. Rao, Electrical transport in rare earth ortho-chromites, -manganites and -ferrites, Journal of Physics and Chemistry of Solids, vol.32, issue.2, p.345, 1971.
DOI : 10.1016/0022-3697(71)90019-9

W. Cochran, Crystal Stability and the Theory of Ferroelectricity, Physical Review Letters, vol.3, issue.9, p.412, 1959.
DOI : 10.1103/PhysRevLett.3.412

M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. Shan et al., Ferroelectricity Induced by Oxygen Isotope Exchange in Strontium Titanate Perovskite, Physical Review Letters, vol.82, issue.17, p.3540, 1999.
DOI : 10.1103/PhysRevLett.82.3540

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche et al., Room-temperature ferroelectricity in strained SrTiO3, Nature, vol.44, issue.7001, p.758, 2004.
DOI : 10.1103/PhysRevLett.85.1998

M. T. Dove, Introduction to Lattice Dynamics, 1993.
DOI : 10.1017/cbo9780511619885

R. Durman, P. Favre, U. A. Jayasooriya, and S. F. Kettle, Longitudinal optical-transverse optical (L.O.-T.O.) splitting on internal modes in the Raman spectra of noncentric crystals, Journal of Crystallographic and Spectroscopic Research, vol.27, issue.1, p.431, 1987.
DOI : 10.1007/BF01180320

R. Handbook and . Spectroscopy, from the Research Loaboratory to the Process Line, 2001.

A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics, 2010.

H. Witjes, M. Pepers, W. J. Melssen, and L. M. Buydens, Modelling phase shifts, peak shifts and peak width variations in spectral data sets: its value in multivariate data analysis, Analytica Chimica Acta, vol.432, issue.1, p.113, 2001.
DOI : 10.1016/S0003-2670(00)01349-0

H. Witjes, M. Van-den-brink, W. Melssen, and L. M. , Automatic correction of peak shifts in Raman spectra before PLS regression, Chemometrics and Intelligent Laboratory Systems, vol.52, issue.1, p.105, 2000.
DOI : 10.1016/S0169-7439(00)00085-X

E. Bauer, Surface Microscopy with Low Energy Electrons, Ultramicroscopy, vol.110, p.852, 2010.
DOI : 10.1007/978-1-4939-0935-3

S. A. Nepijko, N. N. Sedov, and G. Schönhense, Peculiarities of imaging one- and two-dimensional structures using an electron microscope in the mirror operation mode, Journal of Microscopy, vol.203, issue.3, p.269, 2001.
DOI : 10.1046/j.1365-2818.2001.00895.x

S. A. Nepijko and N. N. Sedov, Aspects of Mirror Electron Microscopy, In Advances in Imaging and Electron Physics, vol.102, pp.273-323, 1997.
DOI : 10.1016/S1076-5670(08)70125-3

S. A. Nepijko, N. N. Sedov, O. Schmidt, G. Schönhense, X. Bao et al., Imaging of three-dimensional objects in emission electron microscopy, Journal of Microscopy, vol.202, issue.3, p.480, 2001.
DOI : 10.1046/j.1365-2818.2001.00846.x

A. Schönhals and F. Kremer, In Broadband Dielectric Spectroscopy, pp.1-33, 2003.

S. Havriliak and S. Negami, Polymer (Guildf), p.161, 1967.

E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications; Sons, 2005.

A. Migliori and J. Sarrao, Resonant Ultrasound Spectroscopy, 1997.
DOI : 10.2172/1250724

T. Jach, S. Kim, V. Gopalan, S. Durbin, and D. Bright, Long-range strains and the effects of applied field at 180?? ferroelectric domain walls in lithium niobate, Physical Review B, vol.69, issue.6, p.64113, 2004.
DOI : 10.1103/PhysRevB.69.064113

A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, S. G. Ovchinnikov, M. Y. Hu et al., Another mechanism for the insulator-metal transition observed in Mott insulators, Physical Review B, vol.77, issue.15, p.155112, 2008.
DOI : 10.1103/PhysRevB.77.155112

S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24??C, Journal of Physics and Chemistry of Solids, vol.27, issue.6-7, p.997, 1966.
DOI : 10.1016/0022-3697(66)90072-2

K. K. Wong, Properties of Lithium Niobate, 2002.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, Defect???Domain Wall Interactions in Trigonal Ferroelectrics, Annual Review of Materials Research, vol.37, issue.1, p.449, 2007.
DOI : 10.1146/annurev.matsci.37.052506.084247

E. Diéguez, J. L. Plaza, M. D. Aggarwal, and A. K. Batra, In Springer Handbook of Crystal Growth, pp.245-280, 2010.

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, Defects in LiNbO3???I. experimental aspects, Journal of Physics and Chemistry of Solids, vol.52, issue.1, pp.185-200, 1991.
DOI : 10.1016/0022-3697(91)90064-7

N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction, Journal of Physics and Chemistry of Solids, vol.55, issue.2, p.145, 1994.
DOI : 10.1016/0022-3697(94)90071-X

G. E. Peterson, Nb NMR Linewidths in Nonstoichiometric Lithium Niobate, The Journal of Chemical Physics, vol.56, issue.10, p.4848, 1972.
DOI : 10.1063/1.1676960

F. A. Kröger, The chemistry of imperfect crystals [122] rokhorov, Y uz'minov, Physics and Chemistry of Crystalline Lithium Niobate, 1974.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi et al., Comparative study of defect structures in lithium niobate with different compositions, Journal of Solid State Chemistry, vol.101, issue.2, pp.340-352, 1992.
DOI : 10.1016/0022-4596(92)90189-3

G. G. Deleo, J. L. Dobson, M. F. Masters, and L. H. Bonjack, Electronic structure of an oxygen vacancy in lithium niobate, Physical Review B, vol.37, issue.14, p.8394, 1988.
DOI : 10.1103/PhysRevB.37.8394

H. Xu, D. Lee, S. B. Sinnott, V. Dierolf, V. Gopalan et al., from density functional theory calculations, Journal of Physics: Condensed Matter, vol.22, issue.13, p.135002, 2010.
DOI : 10.1088/0953-8984/22/13/135002

A. V. Yatsenko, S. V. Yevdokimov, D. Y. Sugak, and I. M. Solskii, Crystal, Acta Physica Polonica A, vol.117, issue.1, p.166, 2010.
DOI : 10.12693/APhysPolA.117.166

F. Abdi, M. Aillerie, P. Bourson, and M. D. Fontana, Defect structure in Mg-doped LiNbO3: Revisited study, Journal of Applied Physics, vol.106, issue.3, p.33519, 2009.
DOI : 10.1063/1.3190534

URL : https://hal.archives-ouvertes.fr/hal-00448477

Q. R. Zhang and X. Q. Feng, Defect structures and the MgO-doping-level-threshold effect on the optical absorption of reduced MgO-doped lithium niobate, Physical Review B, vol.43, issue.14, p.12019, 1991.
DOI : 10.1103/PhysRevB.43.12019

B. C. Grabmaier, W. Wersing, and W. Koestler, Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure, Journal of Crystal Growth, vol.110, issue.3, p.339, 1991.
DOI : 10.1016/0022-0248(91)90269-B

Y. Chen, W. Yan, J. Guo, S. Chen, and G. Zhang, Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3, Applied Physics Letters, vol.87, issue.21, p.212904, 2005.
DOI : 10.1063/1.2135389

L. E. Halliburton, K. L. Sweeney, and C. Y. Chen, Electron spin resonance and optical studies of point defects in lithium niobate, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.1, issue.2-3, p.344, 1984.
DOI : 10.1016/0168-583X(84)90090-9

B. Faust, H. Muller, and O. F. Schirmer, Free small polarons in LiNbO3, Ferroelectrics, vol.153, issue.1, p.297, 1994.
DOI : 10.1080/00150199408016583

O. Bidault, M. Maglione, M. Actis, M. Kchikech, and B. Salce, Polaronic relaxation in perovskites, Physical Review B, vol.52, issue.6, p.4191, 1995.
DOI : 10.1103/PhysRevB.52.4191

X. L. Zhang, Z. X. Chen, L. E. Cross, and W. A. Schulze, Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K, Journal of Materials Science, vol.33, issue.4, p.968, 1983.
DOI : 10.1007/BF00551962

F. Xu, S. Trolier-mckinstry, W. Ren, B. Xu, Z. Xie et al., Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films, Journal of Applied Physics, vol.89, issue.2, p.1336, 2001.
DOI : 10.1063/1.1325005

U. Böttger and G. Arlt, Dielectric microwave dispersion in PZT ceramics, Ferroelectrics, vol.13, issue.1, p.95, 1992.
DOI : 10.1103/PhysRevB.40.11441

S. Lanfredi and A. C. Rodrigues, Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3, Journal of Applied Physics, vol.86, issue.4, p.2215, 1999.
DOI : 10.1063/1.371033

R. H. Chen, L. Chen, and C. Chia, single crystal, Journal of Physics: Condensed Matter, vol.19, issue.8, p.86225, 2007.
DOI : 10.1088/0953-8984/19/8/086225

URL : https://hal.archives-ouvertes.fr/hal-00779244

P. C. Barbosa, J. A. De-paiva, J. M. Filho, A. C. Hernandes, J. P. Andreeta et al., Dielectric Relaxation Process and Pyroelectric Currents in LiNbO3 : Fe Single Crystals, Physica Status Solidi (a), vol.36, issue.2, p.723, 1991.
DOI : 10.1002/pssa.2211250231

N. Meyer, G. F. Nataf, and T. Granzow, Field induced modification of defect complexes in magnesium-doped lithium niobate, Journal of Applied Physics, vol.116, issue.24, p.244102, 2014.
DOI : 10.1063/1.4905021

E. Hüger, J. Rahn, J. Stahn, T. Geue, P. Heitjans et al., Lithium diffusion in congruent LiNbO3 single crystals at low temperatures probed by neutron reflectometry, Physical Chemistry Chemical Physics, vol.21, issue.8, p.3670, 2014.
DOI : 10.1039/c3cp54939a

D. P. Birnie, Analysis of diffusion in lithium niobate, Journal of Materials Science, vol.100, issue.2, p.302, 1993.
DOI : 10.1007/BF00357800

T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, Direct Observation of Pinning and Bowing of a Single Ferroelectric Domain Wall, Physical Review Letters, vol.82, issue.20, p.4106, 1999.
DOI : 10.1103/PhysRevLett.82.4106

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski et al., Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion, Journal of Applied Physics, vol.101, issue.9, p.93108, 2007.
DOI : 10.1063/1.2723867

H. Taniguchi, Y. Fujii, M. Itoh, and J. , Confocal micro-Raman imaging on 180^|^deg;-domain structure in periodically poled stoichiometric LiNbO3, Journal of the Ceramic Society of Japan, vol.121, issue.1416, p.579, 2013.
DOI : 10.2109/jcersj2.121.579

M. D. Fontana, R. Hammoum, P. Bourson, S. Margueron, and V. Y. Shur, Raman Probe on PPLN Microstructures, Ferroelectrics, vol.373, issue.1, p.26, 2008.
DOI : 10.1080/00150190802408598

URL : https://hal.archives-ouvertes.fr/hal-00334302

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate, Applied Physics Letters, vol.102, issue.4, p.42905, 2013.
DOI : 10.1063/1.4789779

P. S. Zelenovskiy, V. Y. Shur, P. Bourson, M. D. Fontana, D. K. Kuznetsov et al., Raman Study of Neutral and Charged Domain Walls in Lithium Niobate, Ferroelectrics, vol.10, issue.1, p.34, 2010.
DOI : 10.1080/00150190802409059

URL : https://hal.archives-ouvertes.fr/hal-00555578

Y. Kong, J. Xu, B. Li, S. Chen, Z. Huang et al., The asymmetry between the domain walls of periodically poled lithium niobate crystals, Optical Materials, vol.27, issue.3, p.471, 2004.
DOI : 10.1016/j.optmat.2004.03.029

E. Soergel, Visualization of ferroelectric domains in bulk single crystals, Applied Physics B, vol.29, issue.6, p.729, 2005.
DOI : 10.1007/s00340-005-1989-9

P. Hermet, M. Veithen, and P. Ghosez, First-principles calculations of the nonlinear optical susceptibilities and Raman scattering spectra of lithium niobate, Journal of Physics: Condensed Matter, vol.19, issue.45, p.456202, 2007.
DOI : 10.1088/0953-8984/19/45/456202

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong et al., Characteristics of domain inversion in magnesium-oxide-doped lithium niobate, Physica B: Condensed Matter, vol.352, issue.1-4, p.294, 2004.
DOI : 10.1016/j.physb.2004.08.004

V. Dierolf and C. Sandmann, Combined excitation emission spectroscopy of defects for site-selective probing of ferroelectric domain inversion in lithium niobate, Journal of Luminescence, vol.125, issue.1-2, p.67, 2007.
DOI : 10.1016/j.jlumin.2006.08.054

E. A. Eliseev, A. N. Morozovska, Y. Gu, A. Y. Borisevich, L. Chen et al., Conductivity of twin-domain-wall/surface junctions in ferroelastics: Interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling, Physical Review B, vol.86, issue.8, p.85416, 2012.
DOI : 10.1103/PhysRevB.86.085416

E. A. Eliseev, A. N. Morozovska, S. V. Kalinin, Y. Li, J. Shen et al., Surface effect on domain wall width in ferroelectrics, Journal of Applied Physics, vol.106, issue.8, p.84102, 2009.
DOI : 10.1063/1.3236644

E. Soergel, Piezoresponse force microscopy (PFM), Journal of Physics D: Applied Physics, vol.44, issue.46, p.464003, 2011.
DOI : 10.1088/0022-3727/44/46/464003

Y. Furukawa, M. Sato, M. C. Bashaw, M. M. Fejer, N. Iyi et al., by Two-Wave Mixing Measurements, Japanese Journal of Applied Physics, vol.35, issue.Part 1, No. 5A, p.2740, 1996.
DOI : 10.1143/JJAP.35.2740

X. Liu, K. Kitamura, and K. Terabe, Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy, Applied Physics Letters, vol.89, issue.13, p.132905, 2006.
DOI : 10.1063/1.2358115

A. Pancotti, J. Wang, P. Chen, L. Tortech, C. Teodorescu et al., (001), Physical Review B, vol.87, issue.18, p.184116, 2013.
DOI : 10.1103/PhysRevB.87.184116

URL : https://hal.archives-ouvertes.fr/cea-01477579

J. L. Wang, F. Gaillard, A. Pancotti, B. Gautier, G. Niu et al., Thin Film after Dissociative Adsorption of Water, The Journal of Physical Chemistry C, vol.116, issue.41, p.21802, 2012.
DOI : 10.1021/jp305826e

URL : https://hal.archives-ouvertes.fr/hal-00777517

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations, Journal of Materials Chemistry, vol.12, issue.2, p.295, 2002.
DOI : 10.1039/b106279b

P. Barone, D. Di-sante, and S. Picozzi, twin walls, Physical Review B, vol.89, issue.14, p.144104, 2014.
DOI : 10.1103/PhysRevB.89.144104

S. A. Redfern, High-temperature structural phase transitions in perovskite, Journal of Physics: Condensed Matter, vol.8, issue.43, p.8267, 1996.
DOI : 10.1088/0953-8984/8/43/019

M. Yashima and R. Ali, Solid State Ionics, p.120, 2009.

I. Tables, . Crystallography, and T. Hahn, Ed.; International Tables for Crystallography, 2006.

M. A. Carpenter, A. I. Becerro, and F. Seifert, perovskites, American Mineralogist, vol.86, issue.3, p.348, 2001.
DOI : 10.2138/am-2001-2-319

URL : https://hal.archives-ouvertes.fr/hal-00532139

N. J. Perks, Z. Zhang, R. J. Harrison, and M. Carpenter, perovskites, Journal of Physics: Condensed Matter, vol.26, issue.50, p.505402, 2014.
DOI : 10.1088/0953-8984/26/50/505402

R. Placeres-jiménez, L. G. Gonçalves, J. P. Rino, B. Fraygola, W. J. Nascimento et al., : dynamical characterization, Journal of Physics: Condensed Matter, vol.24, issue.47, p.475401, 2012.
DOI : 10.1088/0953-8984/24/47/475401

M. A. Carpenter, A. Buckley, P. A. Taylor, and T. W. Darling, : III. Superattenuation of acoustic resonances, Journal of Physics: Condensed Matter, vol.22, issue.3, p.35405, 2010.
DOI : 10.1088/0953-8984/22/3/035405

J. F. Moulder and J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, 1995.

R. Ahluwalia, N. Ng, A. Schilling, R. G. Mcquaid, D. M. Evans et al., Manipulating Ferroelectric Domains in Nanostructures Under Electron Beams, Physical Review Letters, vol.111, issue.16, p.165702, 2013.
DOI : 10.1103/PhysRevLett.111.165702

J. Gonnissen and D. Batuk, Artem Abakumov, Sandra Van Aert and Dominique Schryvers, from the University of Antwerp (Belgium), performed the TEM experiments and analyzed the data discussed in chapter

. Dresden, provided the series of magnesium-doped lithium niobate samples investigated in chapter III, section 4. They performed the poling procedure leading to a random pattern of ferroelectric domains

P. Hicher and R. Haumont, from Université Paris-Sud in Orsay (France), grew the samples of calcium titanate investigated in chapter

N. Meyer, G. F. Nataf, and T. Granzow, Field induced modification of defect complexes in magnesium-doped lithium niobate, Journal of Applied Physics, vol.116, issue.24, p.244102, 2014.
DOI : 10.1063/1.4905021

G. F. Nataf, M. Guennou, A. Haußmann, N. Barrett, and J. Kreisel, Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO 3 . Phys. status solidi -Rapid Res, Lett, vol.10, pp.222-226
URL : https://hal.archives-ouvertes.fr/cea-01349607

G. F. Nataf, O. Aktas, T. Granzow, and E. K. Salje, Influence of defects and domain walls on dielectric and mechanical resonances in LiNbO 3, J. Phys. Condens. Matter, vol.28281, pp.15901-2016, 15901.

E. K. Salje, M. Alexe, K. Sergey, M. C. Weber, J. Schiemer et al., Direct observation of polar tweed in LaAlO3, Scientific Reports, vol.85, issue.1, pp.27193-2016, 27193.
DOI : 10.1103/PhysRevB.85.224430

V. E. Kreisel, B. Gusev, P. Dkhil, and . Ruello, Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics, Nat. Commun, vol.7, pp.12345-2016
URL : https://hal.archives-ouvertes.fr/hal-01385389

G. F. Nataf, P. Grysan, M. Guennou, J. Kreisel, D. Martinotti et al., Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate, Scientific Reports, vol.202, issue.1, pp.33098-2016
DOI : 10.1046/j.1365-2818.2001.00846.x

URL : https://hal.archives-ouvertes.fr/cea-01481473

J. Gonnissen, D. Batuk, G. F. Nataf, L. Jones, A. M. Abakumov et al., Direct observation of ferroelectric domain walls in LiNbO 3 : wall-meanders, kinks, and local electric charges, Adv. Funct. Mater, pp.1-6

N. Martinotti and . Barrett, Interaction of low energy electrons with ferroelastic, polar twin walls at the surface of CaTiO 3 (in preparation)

G. F. Nataf, M. Guennou, and J. Kreisel, Raman studies of domain walls in ferroelectics with Principal Component Analysis (in preparation)