J. Crank, The mathematics of diffusion, 1975.

J. Dhont, An introduction to dynamics of colloids, 1996.

R. Sean, A. H. Mcguffee, and . Elcock, Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm, PLoS Comput Biol, vol.6, issue.3, pp.1000694-1000697

A. Caspi, R. Granek, and M. Elbaum, Diffusion and directed motion in cellular transport, Physical Review E, vol.66, issue.1, p.11916, 2002.
DOI : 10.1103/PhysRevE.66.011916

P. Bressloff and J. Newby, Stochastic models of intracellular transport, Reviews of Modern Physics, vol.85, issue.1, p.135, 2013.
DOI : 10.1103/RevModPhys.85.135

J. Balbo, P. Mereghetti, D. Herten, and R. C. Wade, The Shape of Protein Crowders is a Major Determinant of Protein Diffusion, Biophysical Journal, vol.104, issue.7, pp.1576-1584, 2013.
DOI : 10.1016/j.bpj.2013.02.041

M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Anomalous Subdiffusion Is a Measure for Cytoplasmic Crowding in Living Cells, Biophysical Journal, vol.87, issue.5, pp.3518-3524, 2004.
DOI : 10.1529/biophysj.104.044263

A. Daniel-ben and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems, 2000.

J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports, vol.195, issue.4-5, pp.127-293, 1990.
DOI : 10.1016/0370-1573(90)90099-N

A. James, A. S. Dix, and . Verkman, Crowding effects on diffusion in solutions and cells, Annual Review of Biophysics, vol.37, issue.1, pp.247-263, 2008.

I. L. Novak, P. Kraikivski, and B. M. Slepchenko, Diffusion in Cytoplasm: Effects of Excluded Volume Due to Internal Membranes and Cytoskeletal Structures, Biophysical Journal, vol.97, issue.3, pp.758-767, 2009.
DOI : 10.1016/j.bpj.2009.05.036

C. Michael, I. A. Konopka, S. Shkel, M. T. Cayley, J. C. Record et al., Crowding and confinement effects on protein diffusion in vivo, Journal of Bacteriology, vol.188, issue.17, pp.6115-6123, 2006.

C. Nicholson and J. Phillips, Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum., The Journal of Physiology, vol.321, issue.1, pp.225-257, 1981.
DOI : 10.1113/jphysiol.1981.sp013981

M. Smoluchowski, Drei vortrage ubër diffusion brownsche molekular bewegung und koagulation von kolloidteichen, Physik Z, vol.17, pp.557-571, 1916.

H. Zhou, Protein folding and binding in confined spaces and in crowded solutions, Journal of Molecular Recognition, vol.17, issue.5, pp.368-375, 2004.
DOI : 10.1002/jmr.711

S. Margaret, D. Cheung, D. Klimov, and . Thirumalai, Molecular crowding enhances native state stability and refolding rates of globular proteins, Proc Natl Acad Sci U S A, vol.102, issue.13, pp.4753-4758, 2005.

J. Dzubiella and J. A. Mccammon, Substrate concentration dependence of the diffusion-controlled steady-state rate constant, The Journal of Chemical Physics, vol.122, issue.18, p.184902, 2005.
DOI : 10.1063/1.1887165

F. Piazza, P. De-los-rios, D. Fanelli, L. , and U. Skoglund, Anticooperativity in diffusion-controlled reactions with pairs of anisotropic domains: a model for the antigen???antibody encounter, European Biophysics Journal, vol.192, issue.4, pp.899-911, 2005.
DOI : 10.1007/s00249-005-0460-5

D. Fanelli and A. J. Mckane, Diffusion in a crowded environment, Physical Review E, vol.82, issue.2, p.21113, 2010.
DOI : 10.1103/PhysRevE.82.021113

J. D. Schmit, E. Kamber, and J. Kondev, Lattice Model of Diffusion-Limited Bimolecular Chemical Reactions in Confined Environments, Physical Review Letters, vol.102, issue.21, p.218302, 2009.
DOI : 10.1103/PhysRevLett.102.218302

M. Tachiya and S. D. Traytak, Concentration dependence of fluorescence quenching by ionic reactants, Journal of Physics: Condensed Matter, vol.19, issue.6, p.65111, 2007.

M. Agrawal, S. Santra, R. Anand, and R. Swaminathan, Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction. PRA- MANA, Journal of Physics, vol.71, issue.2, pp.359-368, 2008.

N. Ricci, F. Barbanera, and F. Erra, A Quantitative Approach to Movement, Displacement, and Mobility of Protozoa, Journal of Eukaryotic Microbiology, vol.16, issue.6, pp.606-611, 1998.
DOI : 10.1111/j.1550-7408.1998.tb04556.x

D. Kremp, M. Schlanges, M. Bonitz, and T. Bornath, Reaction and diffusion in dense nonideal plasmas, Physics of Fluids B: Plasma Physics, vol.5, issue.1, pp.216-229, 1993.
DOI : 10.1063/1.860855

P. Saffman and M. Delbrück, Brownian motion in biological membranes Molecular diffusion in porous media by pgse esr, Proceedings of the National Academy of Sciences Phys. Chem. Chem. Phys, vol.7227, issue.12, pp.3111-31135998, 1975.

P. P. Mitra, P. N. Sen, L. M. Schwartz, and P. L. Doussal, Diffusion propagator as a probe of the structure of porous media, Physical Review Letters, vol.68, issue.24, pp.3555-3558, 1992.
DOI : 10.1103/PhysRevLett.68.3555

S. Whitaker, Diffusion and dispersion in porous media, AIChE Journal, vol.13, issue.3, pp.420-427, 1967.
DOI : 10.1002/aic.690130308

D. Robert, T. Phair, and . Misteli, High mobility of proteins in the mammalian cell nucleus, Nature, vol.404, issue.6778, pp.604-609, 2000.

S. Condamin, O. Benichou, V. Tejedor, R. Voituriez, and J. Klafter, Firstpassage times in complex scale-invariant media, Nature, vol.11, issue.7166, pp.45077-80, 2007.
DOI : 10.1038/nature06201

URL : http://arxiv.org/abs/0711.0682

H. Zhou, Protein folding and binding in confined spaces and in crowded solutions, Journal of Molecular Recognition, vol.17, issue.5, pp.368-375, 2004.
DOI : 10.1002/jmr.711

A. P. Minton, Implications of macromolecular crowding for protein assembly, Current Opinion in Structural Biology, vol.10, issue.1, pp.34-39, 2000.
DOI : 10.1016/S0959-440X(99)00045-7

T. Ando and J. Skolnick, Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proceedings of the National Academy of Sciences, pp.18457-18462
DOI : 10.1073/pnas.1011354107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2973006

P. Sekhar-burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner, Diffusion in Confined Geometries, ChemPhysChem, vol.74, issue.1, pp.45-54, 2009.
DOI : 10.1002/cphc.200800526

G. Foffi, . Pastore, P. Piazza, and . Temussi, Macromolecular crowding: chemistry and physics meet biology, Physical Biology, vol.10, issue.4, pp.10-14040301, 2012.
DOI : 10.1088/1478-3975/10/4/040301

G. Rivas, F. Ferrone, and J. Herzfeld, Life in a crowded world, EMBO reports, vol.5, issue.1, pp.23-27, 2004.
DOI : 10.1038/sj.embor.7400056

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1298967

P. Allen and . Minton, Influence of macromolecular crowding upon the stability and state of association of proteins: Predictions and observations, Journal of Pharmaceutical Sciences, vol.94, issue.8, pp.1668-1675, 2005.

S. Schnell and T. Turner, Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws, Progress in Biophysics and Molecular Biology, vol.85, issue.2-3, pp.235-260, 2004.
DOI : 10.1016/j.pbiomolbio.2004.01.012

H. Zhou, A. Rivas, and . Minton, Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annual review of biophysics, pp.375-397, 2008.
DOI : 10.1146/annurev.biophys.37.032807.125817

J. Szyma´nskiszyma´nski, A. Patkowski, A. Wilk, P. Garstecki, and R. Holyst, Diffusion and Viscosity in a Crowded Environment:?? from Nano- to Macroscale, The Journal of Physical Chemistry B, vol.110, issue.51, pp.25593-25597, 2006.
DOI : 10.1021/jp0666784

R. Piazza, S. Buzzaccaro, and E. Secchi, The unbearable heaviness of colloids: facts, surprises, and puzzles in sedimentation, Journal of Physics: Condensed Matter, vol.24, issue.28, p.284109, 2012.
DOI : 10.1088/0953-8984/24/28/284109

E. Dauty and A. Verkman, Molecular crowding reduces to a similar extent the diffusion of small solutes and macromolecules: measurement by fluorescence correlation spectroscopy, Journal of Molecular Recognition, vol.17, issue.5, pp.441-447, 2004.
DOI : 10.1002/jmr.709

I. Golding and E. Cox, Physical Nature of Bacterial Cytoplasm, Physical Review Letters, vol.96, issue.9, p.98102, 2006.
DOI : 10.1103/PhysRevLett.96.098102

I. Pastor, E. Vilaseca, and S. Madurga, Diffusion of ??-Chymotrypsin in Solution-Crowded Media. A Fluorescence Recovery after Photobleaching Study, The Journal of Physical Chemistry B, vol.114, issue.11, pp.4028-4034, 2010.
DOI : 10.1021/jp910811j

S. Daniel, C. Banks, and . Fradin, Anomalous Diffusion of Proteins Due to Molecular Crowding, Biophysical journal, vol.89, issue.5, pp.2960-2971, 2005.

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, vol.339, issue.1, pp.1-77, 2000.
DOI : 10.1016/S0370-1573(00)00070-3

G. Zaslavsky and G. M. , Chaos, fractional kinetics, and anomalous transport, Physics Reports, vol.371, issue.6, pp.461-580, 2002.
DOI : 10.1016/S0370-1573(02)00331-9

S. Denis, M. Grebenkov, E. Vahabi, L. Bertseva, S. Forró et al., Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium, Physical Review E, vol.88, issue.4, p.40701, 2013.

M. Javanainen, H. Hammaren, L. Monticelli, J. Jeon, S. Markus et al., Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes, Faraday Discuss., vol.108, issue.0, pp.161397-417, 2012.
DOI : 10.1039/C2FD20085F

R. Gerald, K. Kneller, M. Baczynski, and . Pasenkiewicz-gierula, Communication: Consistent picture of lateral subdiffusion in lipid bilayers: Molecular dynamics simulation and exact results, The Journal of Chemical Physics, vol.135, issue.14, p.141105, 2011.

T. Feder, I. Brust-mascher, J. Slattery, W. Baird, J. Upadhyaya et al., Constrained diffusion or immobile fraction on cell surfaces: a new interpretation Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A: Statistical Mechanics and its Applications, pp.2767-27733, 1996.

D. Stauffer, C. Schulze, W. Dieter, and . Heermann, Superdiffusion in a Model for Diffusion in a Molecularly Crowded Environment, Journal of Biological Physics, vol.19, issue.4, pp.305-312, 2008.
DOI : 10.1007/s10867-008-9075-2

D. Soumpasis, Theoretical analysis of fluorescence photobleaching recovery experiments, Biophysical Journal, vol.41, issue.1, pp.95-97, 1983.
DOI : 10.1016/S0006-3495(83)84410-5

D. Axelrod, D. Koppel, . Schlessinger, W. Elson, and . Webb, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophysical Journal, vol.16, issue.9, pp.1055-1069, 1976.
DOI : 10.1016/S0006-3495(76)85755-4

E. Vilaseca, A. Isvoran, S. Madurga, and I. Pastor, New insights into diffusion in 3D crowded media by Monte Carlo simulations: effect of size, mobility and spatial distribution of obstacles. Physical chemistry chemical physics, Josep Lluís Garcés, and Francesc Mas, pp.7396-7407, 2011.

Z. Zador, M. Magzoub, S. Jin, T. Geoffrey, . Manley et al., Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain, The FASEB Journal, vol.22, issue.3, pp.870-879, 2008.
DOI : 10.1096/fj.07-9468com

M. H. Jacobs, Diffusion Processes, 1967.

S. Martens, Transport of Brownian particles in confined geometries - Steps beyond the Fick-Jacobs approach, 2013.

P. Kalinay, When is the next extending of Fick-Jacobs equation necessary?, The Journal of Chemical Physics, vol.139, issue.5, p.54116, 2013.
DOI : 10.1063/1.4817198

T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, 1999.
DOI : 10.1007/978-3-662-03990-8

L. Boltzmann, VorlesungenüberVorlesungen¨Vorlesungenüber Gastheorie (Lectures on Gas Theory), volume I and II, p.1896, 1966.

M. Peter and . Richards, Theory of one-dimensional hopping conductivity and diffusion, Physical Review B, vol.16, issue.08, pp.1393-1409

F. Spitzer, Interaction of Markov processes, Advances in Mathematics, vol.5, issue.2, pp.246-290, 1970.
DOI : 10.1016/0001-8708(70)90034-4

B. Derrida, M. Evans, V. Hakim, and . Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, Journal of Physics A: Mathematical and General, vol.26, issue.7, p.1493, 1993.
DOI : 10.1088/0305-4470/26/7/011

G. Schütz and E. Domany, Phase transitions in an exactly soluble one-dimensional exclusion process, Journal of Statistical Physics, vol.68, issue.1-2, pp.277-296, 1993.
DOI : 10.1007/BF01048050

B. Derrida, An exactly soluble non-equilibrium system: The asymmetric simple exclusion process, Physics Reports, vol.301, issue.1-3, pp.65-83, 1998.
DOI : 10.1016/S0370-1573(98)00006-4

N. Golubeva and A. Imparato, Efficiency at Maximum Power of Interacting Molecular Machines, Physical Review Letters, vol.109, issue.19, 2012.
DOI : 10.1103/PhysRevLett.109.190602

A. Parmeggiani, T. Franosch, and E. Frey, Totally asymmetric simple exclusion process with Langmuir kinetics, Physical Review E, vol.70, issue.4, p.46101, 2004.
DOI : 10.1103/PhysRevE.70.046101

URL : https://hal.archives-ouvertes.fr/hal-00128193

A. Zilman and G. Bel, Crowding effects in non-equilibrium transport through nano-channels, Journal of Physics: Condensed Matter, vol.22, issue.45, p.454130, 2010.
DOI : 10.1088/0953-8984/22/45/454130

URL : http://arxiv.org/abs/1007.2473

L. Reese, A. Melbinger, and E. Frey, Crowding of Molecular Motors Determines Microtubule Depolymerization, Biophysical Journal, vol.101, issue.9, pp.2190-2200
DOI : 10.1016/j.bpj.2011.09.009

URL : http://doi.org/10.1016/j.bpj.2011.09.009

D. Fanelli, . Aj-mckane, . Pompili, . Tiribilli, T. Vassalli et al., Diffusion of two molecular species in a crowded environment: theory and experiments, Physical Biology, vol.10, issue.4, p.45008, 2013.
DOI : 10.1088/1478-3975/10/4/045008

K. Seki, M. Wojcik, and M. Tachiya, Diffusion-mediated geminate reactions under excluded volume interactions. Physical review. E, Statistical, nonlinear, and soft matter physics, p.11131, 2012.
DOI : 10.1103/physreve.85.011131

URL : http://arxiv.org/abs/1106.0780

M. J. Simpson, K. A. Landman, and B. D. Hughes, Pathlines in exclusion processes, Physical Review E, vol.79, issue.3, p.31920, 2009.
DOI : 10.1103/PhysRevE.79.031920

K. A. Landman and A. E. Fernando, Myopic random walkers and exclusion processes: Single and multispecies. Physica A: Statistical Mechanics and its Applications, pp.21-223742, 2011.
DOI : 10.1016/j.physa.2011.06.034

S. Goldstein, ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION, The Quarterly Journal of Mechanics and Applied Mathematics, vol.4, issue.2, pp.129-156, 1951.
DOI : 10.1093/qjmam/4.2.129

H. George and . Weiss, Some applications of persistent random walks and the telegrapher's equation. Physica A: Statistical Mechanics and its Applications, pp.311-314, 2002.

D. L. Huber, Particle kinetics on one-dimensional lattices with inequivalent sites, Physical Review B, vol.15, issue.2, pp.533-538, 1977.
DOI : 10.1103/PhysRevB.15.533

M. J. Simpson, K. A. Landman, and B. D. Hughes, Pathlines in exclusion processes, Physical Review E, vol.79, issue.3, pp.31920-31923, 2009.
DOI : 10.1103/PhysRevE.79.031920

S. Torquato, Random Heterogenous Materials, Interdisciplinary Applied Mathematics, 2002.

G. Lakatos, J. O. Brien, and T. Chou, Hydrodynamic mean-field solutions of 1D exclusion processes with spatially varying hopping rates, Journal of Physics A: Mathematical and General, vol.39, issue.10, pp.2253-2264, 2006.
DOI : 10.1088/0305-4470/39/10/002

J. Kevin, . Painter, A. Jonathan, and . Sherratt, Modelling the movement of interacting cell populations, Journal of theoretical biology, vol.225, issue.3, pp.327-339, 2003.

J. Szavits-nossan, Disordered exclusion process revisited: some exact results in the low-current regime, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.31, p.315001, 2013.
DOI : 10.1088/1751-8113/46/31/315001

M. Galanti, D. Fanelli, A. Maritan, and F. Piazza, Diffusion of tagged particles in a crowded medium, EPL (Europhysics Letters), vol.107, issue.2, p.20006, 2014.
DOI : 10.1209/0295-5075/107/20006

URL : https://hal.archives-ouvertes.fr/hal-01178998

A. E. Fernando, K. A. Landman, and M. J. Simpson, Nonlinear diffusion and exclusion processes with contact interactions, Physical Review E, vol.81, issue.1, p.11903, 2010.
DOI : 10.1103/PhysRevE.81.011903

C. J. Penington, B. D. Hughes, and K. A. Landman, Building macroscale models from microscale probabilistic models: A general probabilistic approach for nonlinear diffusion and multispecies phenomena, Physical Review E, vol.84, issue.4, p.41120, 2011.
DOI : 10.1103/PhysRevE.84.041120

C. J. Penington, K. Korvasová, B. D. Hughes, and K. A. Landman, Collective motion of dimers, Physical Review E, vol.86, issue.5, p.51909, 2012.
DOI : 10.1103/PhysRevE.86.051909

C. J. Penington, B. D. Hughes, and K. A. Landman, Interacting motile agents: Taking a mean-field approach beyond monomers and nearest-neighbor steps, Physical Review E, vol.89, issue.3, p.32714, 2014.
DOI : 10.1103/PhysRevE.89.032714

M. J. Simpson, R. E. Baker, and S. W. Mccue, Models of collective cell spreading with variable cell aspect ratio: A motivation for degenerate diffusion models, Physical Review E, vol.83, issue.2, p.21901, 2011.
DOI : 10.1103/PhysRevE.83.021901

E. Ruth, . Baker, J. Matthew, and . Simpson, Models of collective cell motion for cell populations with different aspect ratio: diffusion, proliferation and travelling waves. Physica A: Statistical Mechanics and its Applications, pp.3913729-3750, 2012.

G. Schnherr and G. Schtz, Exclusion process for particles of arbitrary extension: hydrodynamic limit and algebraic properties, Journal of Physics A: Mathematical and General, vol.37, issue.34, p.8215, 2004.
DOI : 10.1088/0305-4470/37/34/002

J. L. Lebowitz and J. K. Percus, Kinetic Equations and Density Expansions: Exactly Solvable One-Dimensional System, Physical Review, vol.155, issue.1, pp.122-138, 1967.
DOI : 10.1103/PhysRev.155.122

A. Anderson, F. C. Ferreira, and . Alcaraz, Anomalous tag diffusion in the asymmetric exclusion model with particles of arbitrary sizes, Phys. Rev. E, vol.65, p.52102, 2002.

J. Catherine, K. Penington, . Korvasová, D. Barry, K. A. Hughes et al., Collective motion of dimers, Physical Review E, vol.86, issue.5, p.51909, 2012.

M. Bruna and S. Chapman, Excluded-volume effects in the diffusion of hard spheres, Physical Review E, vol.85, issue.1, p.11103, 2012.
DOI : 10.1103/PhysRevE.85.011103

S. Torquato, J. Lu, and . Rubinstein, Nearest-neighbor distribution functions in many-body systems, Physical Review A, vol.41, issue.4, p.2059, 1990.
DOI : 10.1103/PhysRevA.41.2059

N. Carnahan and K. Starling, Equation of State for Nonattracting Rigid Spheres, The Journal of Chemical Physics, vol.51, issue.2, pp.635-636, 1969.
DOI : 10.1063/1.1672048

N. Dorsaz, C. De-michele, F. Piazza, P. De-los-rios, and G. Foffi, Diffusion-Limited Reactions in Crowded Environments, Physical Review Letters, vol.105, issue.12, pp.120601-120610
DOI : 10.1103/PhysRevLett.105.120601

F. Piazza, . Dorsaz, . De-michele, G. De-los-rios, and . Foffi, Diffusionlimited reactions in crowded environments: a local density approximation, Journal of Physics: Condensed Matter, issue.37, p.25375104, 2013.

I. Sanchez-osorio, F. Ramos, P. Mayorga, and E. Dantan, FOUNDATIONS FOR MODELING THE DYNAMICS OF GENE REGULATORY NETWORKS: A MULTILEVEL-PERSPECTIVE REVIEW, Journal of Bioinformatics and Computational Biology, vol.12, issue.01, p.1330003, 2014.
DOI : 10.1142/S0219720013300037

C. Frank, . Collins, E. George, and . Kimball, Diffusion-controlled reaction rates, Journal of colloid science, vol.4, issue.4, pp.425-437, 1949.

A. Szabo, Theory of diffusion-influenced fluorescence quenching. The journal of physical chemistry, pp.6929-6939, 1989.
DOI : 10.1021/j100356a011

E. Gordelyi, S. L. Crouch, and S. G. Mogilevskaya, Transient heat conduction in a medium with multiple spherical cavities, International Journal for Numerical Methods in Engineering, vol.13, issue.4, pp.751-775, 2009.
DOI : 10.1002/nme.2430

P. Mccord, M. , and H. Feshbach, Methods of theoretical physics, McGraw-Hill Science/Engineering/Math, vol.2, 1953.

M. Caola, Solid harmonics and their addition theorems, Journal of Physics A: Mathematical and General, vol.11, issue.2, p.23, 1978.
DOI : 10.1088/0305-4470/11/2/001

J. M. Deutch, B. U. Felderhof, and M. J. Saxton, Competitive effects in diffusion???controlled reactions, The Journal of Chemical Physics, vol.64, issue.11, p.4559, 1976.
DOI : 10.1063/1.432088

R. Samson and J. M. Deutch, Exact solution for the diffusion controlled rate into a pair of reacting sinks, The Journal of Chemical Physics, vol.67, issue.2, pp.847-847, 1977.
DOI : 10.1063/1.434853

S. Traytak, The diffusive interaction in diffusion-limited reactions: the steady-state case, Chemical Physics Letters, vol.197, issue.3, pp.247-254, 1992.
DOI : 10.1016/0009-2614(92)85763-Z

S. B. Chen and H. K. Tsao, Diffusion into a nanoparticle with first-order surface reaction confined within a sphere, The Journal of Chemical Physics, vol.116, issue.12, p.5137, 2002.
DOI : 10.1063/1.1453963

P. Walde and S. Ichikawa, Enzymes inside lipid vesicles: preparation, reactivity and applications, Biomolecular Engineering, vol.18, issue.4, pp.143-177, 2001.
DOI : 10.1016/S1389-0344(01)00088-0

J. Kim, W. Jay, P. Grate, and . Wang, Nanobiocatalysis and its potential applications, Trends in Biotechnology, vol.26, issue.11, pp.639-646, 2008.
DOI : 10.1016/j.tibtech.2008.07.009

C. Eun, M. Peter, J. Kekenes-huskey, and . Andrew-mccammon, Influence of neighboring reactive particles on diffusion-limited reactions, The Journal of Chemical Physics, vol.139, issue.4, 2013.
DOI : 10.1063/1.4816522

P. Herves, M. Pérez-lorenzo, M. Luis, J. Liz-marzán, Y. Dzubiella et al., Catalysis by metallic nanoparticles in aqueous solution: model reactions, Chemical Society Reviews, vol.82, issue.17, pp.415577-5587, 2012.
DOI : 10.1039/c2cs35029g

S. Angioletti-uberti, Y. Lu, M. Ballauff, and J. Dzubiella, Theory of Solvation-Controlled Reactions in Stimuli-Responsive Nanoreactors, The Journal of Physical Chemistry C, vol.119, issue.27, pp.15723-15730, 2015.
DOI : 10.1021/acs.jpcc.5b03830

A. Olga and . Ladyzhenskaya, Linear and quasilinear elliptic equations, 1968.

Y. Mei, Y. Lu, F. Polzer, M. Ballauff, and M. Drechsler, Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core???Shell Microgels, Chemistry of Materials, vol.19, issue.5, pp.1062-1069, 2007.
DOI : 10.1021/cm062554s

S. Carregal-romero, J. Niklaas, J. Buurma, . Pérez-juste, M. Luis et al., Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density, Chemistry of Materials, vol.22, issue.10, pp.3051-3059, 2010.
DOI : 10.1021/cm903261b

S. Wu, J. Dzubiella, J. Kaiser, M. Drechsler, X. Guo et al., Thermosensitive Au-PNIPA Yolk-Shell Nanoparticles with Tunable Selectivity for Catalysis, Angewandte Chemie International Edition, vol.82, issue.9, pp.2229-2233, 2012.
DOI : 10.1002/anie.201106515

R. I. Cukier, Diffusion of Brownian spheres in semidilute polymer solutions, Macromolecules, vol.17, issue.2, pp.252-255, 1984.
DOI : 10.1021/ma00132a023

A. Dennis, R. Torchia, and . Ishima, Molecular structure and dynamics of proteins in solution: Insights derived from high-resolution nmr approaches, Pure and applied chemistry, issue.10, pp.751371-1381, 2003.

P. Anfinrud, T. Lim, and . Jackson, Structure, dynamics, and function of proteins: New insights from time-resolved ir spectroscopy, Progress in Biophysics and Molecular Biology, issue.65, p.4, 1996.

S. Howorka, Rationally engineering natural protein assemblies in nanobiotechnology, Current Opinion in Biotechnology, vol.22, issue.4, pp.485-491, 2011.
DOI : 10.1016/j.copbio.2011.05.003

K. H. Justin and . Liu, The history of monoclonal antibody development ? progress, remaining challenges and future innovations, Annals of Medicine and Surgery, vol.3, issue.4, pp.113-116, 2014.

L. Harris, S. Larson, K. Hasel, . Day, A. Greenwood et al., The three-dimensional structure of an intact monoclonal antibody for canine lymphoma, Nature, vol.360, issue.6402, pp.369-372, 1992.
DOI : 10.1038/360369a0

L. J. Harris, S. B. Larson, E. Skaletsky, and A. Mcpherson, Comparison of the conformations of two intact monoclonal antibodies with hinges*, Immunological Reviews, vol.147, issue.1, pp.35-43, 1998.
DOI : 10.1016/0161-5890(92)90200-H

E. Ollmann-saphire, R. L. Stanfield, M. Max-crispin, W. Paul, . Parren et al., Contrasting IgG Structures Reveal Extreme Asymmetry and Flexibility, Journal of Molecular Biology, vol.319, issue.1, pp.9-18, 2002.
DOI : 10.1016/S0022-2836(02)00244-9

K. D. Elgert, Immunology: Understanding the Immune System, 1998.

M. Van-lookeren-campagne, C. Wiesmann, and E. J. Brown, Macrophage complement receptors and pathogen clearance, Cellular Microbiology, vol.125, issue.9, pp.2095-2102, 2007.
DOI : 10.1111/j.1462-5822.2007.00981.x

M. Lynda, R. Stuart, B. Alan, and . Ezekowitz, Phagocytosis: elegant complexity, Immunity, vol.22, issue.5, pp.539-50, 2005.

F. Kienberger, H. Mueller, V. Pastushenko, and P. Hinterdorfer, Following single antibody binding to purple membranes in real time, EMBO reports, vol.74, issue.6, pp.579-583, 2004.
DOI : 10.1021/ja029469f

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299069

L. Bongini, D. Fanelli, F. Piazza, P. De-los-rios, S. Sandin et al., Freezing immunoglobulins to see them move, Proceedings of the National Academy of Sciences, vol.101, issue.17, pp.6466-6471, 2004.
DOI : 10.1073/pnas.0400119101

R. Dennis, A. Burton, . Williamson, W. Paul, and . Parren, Antibody and virus: binding and neutralization, Virology, vol.270, issue.1, pp.1-3, 2000.

I. Mian, A. Bradwell, and A. Olson, Structure, function and properties of antibody binding sites, Journal of Molecular Biology, vol.217, issue.1, pp.133-151, 1991.
DOI : 10.1016/0022-2836(91)90617-F

P. Wang and X. Yang, Neutralization Efficiency Is Greatly Enhanced by Bivalent Binding of an Antibody to Epitopes in the V4 Region and the Membrane-Proximal External Region within One Trimer of Human Immunodeficiency Virus Type 1 Glycoproteins, ] NS Greenspan. Affinity, complementarity, cooperativity, and specificity in antibody recognition. Current topics in microbiology and immunology, pp.7114-712365, 2001.
DOI : 10.1128/JVI.00545-10

M. Mammen, S. Choi, and G. M. Whitesides, Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors, Angewandte Chemie International Edition, vol.37, issue.20, pp.2754-2794, 1998.
DOI : 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3

A. Sam, . Hardy, J. Nigel, and . Dimmock, Valency of antibody binding to enveloped virus particles as determined by surface plasmon resonance, Journal of virology, vol.77, issue.2, pp.1649-1652, 2003.

J. Preiner, N. Kodera, J. Tang, A. Ebner, M. Brameshuber et al., IgGs are made for walking on bacterial and viral surfaces, Nature Communications, vol.25, pp.1-8, 2014.
DOI : 10.1038/ncomms5394

URL : http://doi.org/10.1038/ncomms5394

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

A. Arkhipov, P. L. Freddolino, and K. Schulten, Stability and Dynamics of Virus Capsids Described by Coarse-Grained Modeling, Structure, vol.14, issue.12, pp.1767-1777, 2006.
DOI : 10.1016/j.str.2006.10.003

A. Arkhipov, Y. Yin, and K. Schulten, Four-Scale Description of Membrane Sculpting by BAR Domains, Biophysical Journal, vol.95, issue.6, pp.2806-2821, 2008.
DOI : 10.1529/biophysj.108.132563

. Ip-omelyan, R. Mryglod, and . Folk, Optimized Forest???Ruth- and Suzuki-like algorithms for integration of motion in many-body systems, Computer Physics Communications, vol.146, issue.2, pp.188-202, 2002.
DOI : 10.1016/S0010-4655(02)00451-4

L. Bongini, D. Fanelli, F. Piazza, P. De-los-rios, M. Sanner et al., A dynamical study of antibody???antigen encounter reactions, Physical Biology, vol.4, issue.3, pp.172-180, 2007.
DOI : 10.1088/1478-3975/4/3/004

L. Guddat, J. Herron, and A. Edmundson, Three-dimensional structure of a human immunoglobulin with a hinge deletion., Proceedings of the National Academy of Sciences, pp.4271-4275, 1993.
DOI : 10.1073/pnas.90.9.4271

A. Todorovska, R. C. Roovers, O. Dolezal, A. A. Kortt, H. R. Hoogenboom et al., Design and application of diabodies, triabodies and tetrabodies for cancer targeting, Journal of Immunological Methods, vol.248, issue.1-2, pp.47-66, 2001.
DOI : 10.1016/S0022-1759(00)00342-2

A. Desmyter, S. Spinelli, A. Roussel, and C. Cambillau, Camelid nanobodies: killing two birds with one stone, Current Opinion in Structural Biology, vol.32, pp.1-8, 2015.
DOI : 10.1016/j.sbi.2015.01.001

URL : https://hal.archives-ouvertes.fr/hal-01439032

C. Hamers-casterman, T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers et al., Naturally occurring antibodies devoid of light chains, Nature, vol.363, issue.6428, pp.363446-448, 1993.
DOI : 10.1038/363446a0

J. Andrew-mccammon, Gated diffusion-controlled reactions, BMC biophysics, vol.4, issue.14, 2011.

M. Necati and O. , Heat conduction, 1993.

C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Mathematics of Computation, vol.45, issue.172, pp.463-469, 1985.
DOI : 10.1090/S0025-5718-1985-0804935-7

E. Hairer, C. Lubich, and M. Schlichte, Fast numerical solution of weakly singular Volterra integral equations, Journal of Computational and Applied Mathematics, vol.23, issue.1, pp.87-98, 1988.
DOI : 10.1016/0377-0427(88)90332-9

C. Baker and M. Derakhshan, FFT techniques in the numerical solution of convolution equations, Journal of Computational and Applied Mathematics, vol.20, pp.5-24, 1987.
DOI : 10.1016/0377-0427(87)90122-1

J. Andrew-mccammon, H. Scott, and . Northrup, Gated binding of ligands to proteins, 1981.

R. Wade, . Luty, J. Demchuk, M. Madura, . Davis et al., Simulation of enzyme???substrate encounter with gated active sites, Nature Structural Biology, vol.255, issue.1, pp.65-69, 1994.
DOI : 10.1063/1.463777

A. Szabo, D. Shoup, H. Scott, A. Northrup, and . Mccammon, Stochastically gated diffusion???influenced reactions, The Journal of Chemical Physics, vol.77, issue.9, pp.4484-4493, 1982.
DOI : 10.1063/1.444397

S. Northrup, J. Zarrin, and . Mccammon, Rate theory for gated diffusion-influenced ligand binding to proteins, The Journal of Physical Chemistry, vol.86, issue.13, pp.2314-2321, 1982.
DOI : 10.1021/j100210a014

S. D. Traytak, Diffusion-controlled reaction rate to an active site, Chemical Physics, vol.192, issue.1, pp.1-7, 1995.
DOI : 10.1016/0301-0104(94)00353-C

S. Traytak, On the time-dependent diffusive interaction between stationary sinks, Chemical Physics Letters, vol.453, issue.4-6, pp.212-216, 2008.
DOI : 10.1016/j.cplett.2008.01.066