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Introduction

The Standard Model (SM) of particle physics is built on top of basic requirements such as Lorentz
covariance and renormalizability, and offers a common framework for the description of all known
microscopic interactions in terms of local, gauged symmetries. This theory was the fruit of the
work of many generations of talented physicists, and is certainly one of the most impressive
achievements of sciences. For example, one has tracked a long road to achieve the formulation of
the theory of electroweak interactions, unifying Electromagnetism and Weak processes. Indeed,
first the weak interactions were introduced as a new fundamental interaction in the 30’s by
Fermi [1], formulated at that time as a contact interaction. Later, exactly 60 years ago, parity
violation in weak decays was suggested [2], triggering doubts about charge-conjugation and time
reversion symmetries [3]. The observation of parity violation [4-6] in the following year confirmed
such a hypothesis and was of utmost importance for the understanding of the weak interactions
(see [7,8] for historical details). Following the discovery of parity violation, they were conceived
asaV — A =+"— "5 (i.e. a coupling to left-handed fields) interaction [9,10], suggesting that
the exchange of vector bosons was the underlying reason for the weak force.

The short-distance character of the weak interactions, related to the exchange of heavy gauge
bosons, was elegantly interpreted as the low-energy limit of a more fundamental and symmetric
theory, the Electroweak interaction of Glashow-Salam-Weinberg. The Electroweak symmetry is
spontaneously broken by the vacuum expectation value of a scalar field ¢, which also introduces
the Higgs boson of the SM. At the same time that this mechanism, named Brout-Englert-Higgs
(BEH) [11], explains the short-distance nature of weak interactions by giving masses to the w*
and Z° bosons, the particles responsible for the weak forces, it also offers an origin for the masses
of the quarks and charged leptons, through their interaction with the same scalar field ¢.

Together with the strong interactions, this overall picture has been verified in an accurate
way by measurements coming from different sectors, two important examples being EW Precision
Observables (EWPO) [12-14] and Flavour Observables [15-17], which test very different aspects
of the theory, including Z boson couplings and the CP violation encoded in the CKM matrix.
More recently, the historical discovery of the Higgs boson [18,19] has been made, the only
remaining block of the SM not directly observed until then.

It is interesting to note that the SM gives hints towards the possibility of having something
more fundamental beyond itself. Indeed, the hierarchical structure of the CKM matrix, together
with the strong hierarchy of the masses of the quarks and leptons, claim for a deeper understand-
ing and questioning. Moreover, the values of the gauge couplings gs, g1, gy are roughly similar:
following a successful tradition of unifying interactions (gravity effects on the ground and celes-
tial movement, electric and magnetic forces, electromagnetic and weak interactions, etc.), one
may be tempted to do the same for the known quantum fundamental interactions.

On top of that, though very successful in explaining a wide variety of particle physics phe-
nomena, the SM leaves unexplained some properties of nature. Here we will focus on the different
behaviours of left- and right-handed chiralities of the known fermions, or in other words the vi-



olation of parity symmetry. A possible and somewhat natural avenue to explain this feature is
to embed the SM into a more symmetric model, which treats the chiralities on equal footing.
Looking for new symmetries (e.g. supersymmetry, gauge unification, etc.) or to reasons why
we do not see them (e.g. explaining lepton flavour violation in neutrino oscillations, or why the
Yukawa matrices in the SM break the symmetries between different generations in the way they
do, etc.) can improve crucially our understanding of fundamental phenomena, and indeed it has
proven to be the case over the past, the SM itself being an example.

The class of models restoring parity, the Left-Right (LR) Models, has been first conceived in
the seventies [20-23], and since then it is at the origin of fruitful investigations. This is certainly
due to the flexibility it has concerning its specific realization, a property exploited for addressing
a wide variety of phenomenological problems, including the smallness of neutrino masses [24] and
strong CP violation [25,26]. At the same time, the LR Model may result from Grand Unified
gauge groups [27], as part of their spontaneous breaking pattern. From these perspectives then,
investigating the violation of parity symmetry may be a window for dealing with other questions
in particle physics.

The first point concerning their formulation is that the LR Models introduce a new weak
interaction which couples preferentially to right-handed fields, analogously to the situation found
in the SM for left-handed currents. This is encoded in the gauge group

SU(?))C X SU(Q)L X SU(Q)R X U(l)B_L,

where B — L states for baryonic minus leptonic number. At an energy scale beyond the EW
symmetry breaking, LR symmetry is spontaneously broken giving origin to the SM framework
and to parity violating phenomena. Following the spontaneous breaking of the LR gauge group,
the spectrum of gauge bosons includes heavy W' and 2”° bosons, which are associated to a
rich phenomenology: for instance, the w'= couples to right-handed fields with a strength in
the quark sector given by a CKM-like mixing matrix, thus introducing the mixing of different
generations and new sources of CP violation beyond the one of the CKM matrix. Moreover,
the Z'° and the W' mix respectively with the Z° and the W* bosons thus changing the way
in which the known weak gauge bosons couple to fermions, a situation that can be tested by
EWPO. Note also that, more recently, the potential for observing the LR particles W’ * and 2'°
in high-energy colliders has triggered new activities in the domain, e.g. [28].

The specific way in which the spontaneous breaking of the LR gauge group happens depends
on the scalar content of the model. It is usual to consider triplet representations since they give
rise to a see-saw mechanism for the light neutrinos. We would like here to revisit a simpler
realization of the LR Models containing doublets instead of triplets, which is less constrained
from the point of view of the spontaneous breaking pattern of the LR symmetry. Indeed, the way

the masses of the known gauge bosons W, Z are related, satisfying My ~ My - g./+\/ 9% + 92,
constrains the vacuum expectation value of one of the triplet representations, left unconstrained
in the case of doublet representations. This explains our choice for the title (“Phenomenology
of Left-Right Models in the quark sector”): we focus here on the more fundamental aspects of
LR Models, namely the pattern of its Spontaneous Symmetry Breaking and the properties of its
minimal scalar sector, while the question of the smallness of the neutrino masses may require
further additional elements to be integrated on top of the doublet scenario under investigation
here.

We consider the study of this doublet scenario based on the phenomenology of the new gauge
bosons and the new scalar sector. The latter includes new neutral scalars that have Flavour
Changing Neutral Couplings (FCNC) at tree level, which are strongly suppressed in the SM,
where they first arrive at the one-loop order. FCNCs typically provide extremely powerful



constraints on New Physics models, and therefore deserve close attention. They provide new
contributions to meson-mixing observables, which have been intensively studied in the context
of LR Models [28-37], and point towards lower bounds for the W’ mass of a few TeV and the
much constraining lower bound of ©(10) TeV or even higher for the masses of the extended scalar
sector.

When computing the LR contributions to meson-mixing processes, trustful predictions require
the knowledge of QCD effects. If in one hand long-distance QCD effects have been addressed by
several groups [38—42] and one expects their accuracy to increase in the near future, on the other
one would like to improve the accuracy in the calculation of the short-distance QCD effects. In
order to achieve such a task, we have therefore considered their calculation at the NLO, and
compared the methods used previously in the literature [30,43—-49].

By studying the constraints LR Models are submitted to, we aim at having a clearer picture
of their structure, namely energy scales and couplings. To this effect, we perform a combined
analysis of EWPO, direct searches for the new gauge bosons and meson-mixing observables.
Their combination is provided by CKMfitter, a powerful statistical analysis framework which
has proven for instance very useful in the extraction of the Wolfenstein parameters in the context
of the SM [16, 50].

Shifting to a different issue, the QCD effects mentioned above as well as other theoretical
parameters are subjected to systematic uncertainties, in many cases the main source of uncer-
tainty concerning their true values. The combination of different classes of observables should
in principle take into account the particularity of theoretical uncertainties, which are different
in nature compared to random statistical errors. In fact, their very interpretation is subject to
some ambiguity, since they do not fit straightforwardly in the usual statistical framework. We
will then discuss possible models of theoretical errors, an issue particularly important for flavour
physics in which this class of uncertainties are usually large.

In Chapter 1 we are going to introduce the basic elements of the SM, and test its basic
features based on two classes of observables, EWPO and flavour observables in the quark sector.
While the first test aspects of the SM such as the EW Symmetry Breaking, the second includes
phenomena of CP violation, which in the SM come from a unique complex phase from the CKM
matrix. Then in Chapter 2 we are going to introduce the LR Model, discussing various aspects
of its gauge, scalar, quark a leptonic sectors. In Chapter 3 we consider EWPO in the context of
the LR Model as a first test of its viability, and for further constraining the LR Model structure
we also consider bounds on the mass of the W’ coming from its direct search. Then we move to
a second class of observables, consisting of meson-mixing observables. In order to constrain and
test the LR Model with accuracy we consider addressing one fundamental element necessary for
phenomenological analyses which are the short-distance QCD corrections. The basic elements
necessary for the computation are given in Chapter 4, while the computation in the LR Model is
left for Chapter 5. We combine the set of the previous observables, namely EWPO, bounds from
direct searches for the LR spectrum and meson-mixing observables in an exploratory study in
Chapter 6. Then in Chapter 7 we compare different models of theoretical uncertainties for dealing
with flavour observables. This last chapter corresponds to a prospective study of the CKMfitter
Collaboration, for the further improvement of the extraction of the parameters characterizing the
CKM matrix from global fits. Finally, some points are complemented in a series of Appendices.



Chapter 1

The Standard Model

At the present state of accuracy, the SM (Standard Model) theory of particle physics succeeds
in the description of a wide variety of observations, such as the weak interactions, which lead to
generation mixing in the quark sector. These interactions are formulated as chiral phenomena
where for instance the W boson, whose exchange is responsible for the generation mixing, couples
exclusively to left-handed fermions. The coupling strengths of the W boson to quarks are the
elements of a unitary matrix called Cabibbo-Kobayashi-Maskawa (CKM) matrix [51,52], intro-
duced in the diagonalization of the quark mass matrices issued from Yukawa-type interactions.
These same couplings introduce the only (sizeable) source of CP violation in the SM.

The goal of the present chapter is to render explicit the success of the SM in the description
of flavour processes in the quark sector. We are going to compare the SM predictions with the
most solid and accurate flavour observables, which will lead us to the extraction of the strengths
of the W couplings.

Since quarks are confined into hadronic states and weak interactions are formulated in terms
of quark states, one cannot “decouple” weak interactions from QCD effects (particularly those
non-perturbative in «). Therefore, in order to test the weak sector of the SM, a good knowledge
of the strong dynamics of the theory, ubiquitous in quark processes, is mandatory. Moreover, to
match the experimental precision, accurate predictions must be made, requiring one to compute
perturbative QCD effects in a; (apart from other corrections such as QED radiative effects).
We will thus pay some attention to parameters originating from QCD, both from its short-
(perturbative) and long-range (non-perturbative) dynamics.

It should be kept in mind that the extraction of SM parameters is meaningful only if the
formulation of the SM as a whole, described briefly in the next section, is adapted to correctly
model nature. After reviewing the SM and considering EWPO, we are going to briefly discuss
the inputs and the statistical framework we are going to employ in order to draw a picture of
the SM prediction of CP—violating processes.

1.1 Introduction to the SM

In what follows, we are going to gradually introduce the necessary elements to build the SM. We
do not intend to be comprehensive or self-contained, and therefore we are going to jump many
steps in its formulation (they can be found in detail in e.g. [53-55]).



1.1.1 Gauge symmetries

We start with the gauge symmetries of the SM

SU(3)e x SU(2) x U(L)y (1.1)

where the conserved charge of the first symmetry is color, the second is weak isospin and the
third is hypercharge, and each group has a characteristic coupling strength: g, g and gy denote
respectively the gauge couplings of the three groups SU(3)., SU(2), and U(1)y.

The generators of the symmetry groups SU(3). and SU(2); (Y is an operator proportional
to the identity) are Hermitian operators obeying to the commutation rules

(T3, T3] = ifdTs and [T}, T =ifi*T}; (1.2)

respectively. Above, f2% and f#°¢ are the structure constants of the groups SU(3). and SU(2)r,
(in the latter case we have fi%¢ = ¢7¢, ¢ being the antisymmetric symbol — more generally, f*¢
is antisymmetric and proportional to tr{[T, Ts] T¢}).

To each of these symmetries it is associated a distinct vector field X, = A,,W,, or B, (all

massless at this stage) satisfying the gauge transformations
1
X, —» X, =UX,U" - EU@U*1 , U =-exp{ix(z)}, (1.3)

where g = g5, g1 or gy, x(z) is called gauge function, and X* = X*T,, x = x*T,. Under the
gauge transformation, GE”, F*” and F}”, defined as

Gl = OMA™ — 9VAM 4 g fICA A 1.4)
FlY = W™ — "W 4 g fRW W (1.5)
F¥ = 0"B”-9"B", 1

transform as F* — UF* U ™!, Therefore, the following Yang-Mills Lagrangian

1 1 1 .
Loange = =G4 Go = 3 FL Far = 3 FY Fr (1.7)

Z a

where a runs over the total number of generators, is invariant under the gauge transformations.
Apart from the terms in Lgquge, in full generality when building the SM we should consider

a term like

1
Semas Gl Ga?. (1.8)

where €, is the anti-symmetric tensor. This is a P— and 7 —violating term, where P states for
parity transformation, (¢, ?) — (t, —?), and T for time reversion, (¢, ?) — (—t, 7) Despite
being an important issue in the SM (and its extensions), we are not going to discuss it in detail
(see Ref. [54] for an introduction into this problem).

1.1.2 Matter fields

The kinetic term for a spinor field f is given by?

IThe irreducible representations of the Lorentz group are Weyl spinors, which are complex two-component
objects of definite chiralities (right- or left-handed). A Dirac spinor f is built out of two Weyl spinors ug, 1.,



L) = fintouf, f=f°, (1.10)
where we assume for the time being a massless field f, and v* are 4 x 4 matrices satisfying the
Dirac algebra

{7,747} = 29" 1444 . (1.11)

The matter content of the Standard Model is made of three copies or generations of the
following fields (all three equivalents at this stage):

left-handed quarks: Qr = (ZL> =(3,2,1/3) ,
L

right-handed quarks: wg =(3,1,4/3), dr=(3,1,-2/3),

L
right-handed leptons: ¢r = (1,1,-2),

VL,
left-handed leptons: Ly = < ) =(1,2,-1) ,

where the quantum numbers refer to the gauge group in Eq. (1.1), and Y = 2(Q — T¥") is chosen
for left and right-handed chiralities such that up-type quarks u have electric charge Q = +2/3
and down-type quarks d have electric charge @ = —1/3, while we have neutral leptons v with no
electric charge and charged leptons ¢ with electric charge @ = —1. Now it should be clear the
subscript “L” in the SU(2) 1, gauge group: the right- and left-handed fields are charged differently
under this symmetry, the former being singlets and the latter being doublets.

When considering interactions with the gauge sector we substitute @ — D, where the covari-
ant derivative D includes the gauge transformations of the fermionic fields:

D = 9F — i(gs A" TS + gt W™ TE + gy B*Y/2), (1.12)

where T and TF are the generators of the symmetry groups SU(3). and SU(2);. The free
(free)

Lagrangian L;;, ;. is then replaced by

£matte7‘ = .]EZ’Y#D[LJC . (113)

The full Lagrangian is now Lgquge + Lmatter and it leads to parity and charge-conjugation vio-
lation (i.e. the discrete symmetry relating a particle and its anti-particle), a consequence of the
gauging of V' — A.

Note that the mass term —mff = —m(f_RfL +h.c.) is not allowed by symmetry reasons, since
it cannot be derived from the matter content (right-handed singlets and left-handed doublets)
of the SM. At low energies, where the local symmetries SU(2)r, x U(1)y are (spontaneously)
broken, a mass term is compatible with the remaining symmetry, which is the electromagnetism.
We will come back to the question of the masses of the fermions later on.

u
f= ( R), where up 1, have definite parity transformations
ur

'P:UR’L%UL’R. (1.9)
A Weyl spinor is then a Dirac spinor that is an eigenstate of v5: v5f = & f < v5f¢ = Ff¢, where f€ is defined
so that f¢ = C’ATfTT — A and C are matrices satisfying Avy, = 'yZLA and v,C = —C"yg (for the usual Dirac

representations, A = 'yo). By definition, a Majorana spinor is a Dirac spinor such that f¢ = f, up to an arbitrary
phase.

10



1.1.3 EW symmetry breaking

A further piece of the Lagrangian, necessary to implement symmetry breaking in the SM, includes
a complex scalar field ¢ in the following way

LY = (9,0)(0"0)" — V(9), (1.14)

scalar

where the first term is the kinetic energy density of ¢, and the second its self-interaction

V(9) = ~266+ 5(610). (1.15)

The scalar field ¢ has the following quantum numbers

o=(1,2,1), (1.16)

¢ = <‘ZZ> , (1.17)

where the superscripts +,0 refer to the values of the operator TgL + Y/2, which remains an
unbroken symmetry at low energies, identified with the electromagnetism.

If 1% from Eq. (1.15) is positive, the field ¢ acquires a vacuum expectation value (VEV) given
by

i.e. a colourless weak isodoublet

(¢) = <(u2/(;)1/2> : (1.18)

which does not introduce a source of CP violation in the SM: though one could choose to have a
complex VEV| its phase can be eliminated by a non-physical field redefinition ¢ — e¢'*¢, i.e. by
a global phase shifting. From the expansion of ¢ around its VEV

90+
o=+ | H +ix") | > (1.19)
V2
one has
V= i + W2 (HO? + ..., (1.20)
2)

where the ellipsis contains cubic and quartic interactions. The first term is related to the vacuum
energy density, while the second states that there is a massive scalar field of mass \/§u, which
is the SM Higgs particle. The full spectrum contains still massless particles, as attested by the
remaining degrees of freedom x° and ¢*, which are the (would-be) Goldstone bosons [56].

Interactions between the scalar ¢ and the gauge sector are implemented through the substi-
tution & — D, which follows by charging ¢ under Eq. (1.1), and requiring £§Zf§2 — Loscalar tO
be invariant under the gauge transformations of ¢:

Escalar = (D,u(b)(DH(b)T - V(¢) . (121)

Eq. (1.21) implies one of the major achievements of particle physics: through the interplay
of the two sectors, the gauge bosons acquire masses at low energies, thus explaining why the
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weak interactions have a short range (in other words, the corresponding forces are described by
a Yukawa potential). Let us now see how it happens, a mechanism called Brout-Englert-Higgs
(BEH) [11]. By expanding (D"¢)(D,$)" around the vacuum expectation value of ¢, we have the
mass terms

1 M
MW= W* 4+ 2MZZ, My = %, Mz ==, (1.22)
6

where v = v2(1%/\)Y/? and the fields W*, Z are
WE — wt F w2 A [ co so B (1.23)
B V2 , z] —S¢ Co w? )’ .

—1/2
)

and
e= (9.2 +9y°) sp=sinf =e/gr, cp=cosh =¢e/gy. (1.24)

The mass terms above are not compatible with the electroweak gauge symmetries stated in the
previous section: while there still remains a massless field A, the electromagnetic vector field,
the remaining symmetries are said to be spontaneously broken, due to the VEV of ¢. Note
that out of A we have two physical degrees of freedom, corresponding to the possible transverse
polarizations, while the massive fields W* and Z have extra degrees of freedom corresponding
to the Goldstone bosons discussed after Eq. (1.20), which are ©* and x°, respectively.

It is an amazing fact that the same phenomenon we are discussing, leading to the sponta-
neous breaking of local (gauge) symmetries, also implies a mechanism for mass generation in the
fermionic sector through (primes are used previous to going to the eigenmass basis)

Ly ukawa = —(QLY ¢dy + QLY duly + Ly Y'PLoty) + hec., fr = fPr,

d=imet, = <0 Z) : (1.25)
1 0

where Y, Y, Y!P* are 3 x 3 matrices over generation indices, called Yukawa matrices. Plugging
the vacuum expectation value of the Higgs field, we obtain the following mass term

Ly ukawa D —(dy Mady + u, Myulg 4+ 07 Mel') + h.c. (1.26)
v v o~ v
where My = —Y, M, = —Y and M, = —Y'P*. The Yukawa matrices (not necessaril
LG V2 G ( ’

Hermitian) are diagonalized by the bi-unitary transformations Uz,’}i%

up =Upur, up=Ulur, (1.27)
dy =Ulkdp, dp =Uldp, (1.28)

under which we have, by definition,
UMM UE = diag(mu, me,my),  USMuU§ = diag(ma, me, ms) , (1.29)

where m,,, mq, ms, M, My, M are real and positive. Following this discussion, Ly ykawa leads
to symmetry breaking among the generations: previous to considering the Yukawa interactions,
the Lagrangian was invariant under the interchange of generations, but now generations are
differentiated by their masses, m; ~ 170 GeV, mp ~ 4 GeV, m, ~ 1 GeV, etc.

12



1.1.4 Full model
The full SM theory is described by

ESM - Egauge + Escalar + Ematter + EYukawa ) (130)

where the individual terms are defined in Egs. (1.7), (1.21), (1.13), (1.25), (1.12), and (1.15). The
full Lagrangian leads to the phenomenon of generation mizing, as we now see. For a fermionic
multiplet f, the gauge interactions are derived from f’y“iDM f, from which one has for the weak
charged current

g —_— _—
%(W;u;wd; + W ytl), (1.31)

which can be put into the mass basis for quarks

9L

ﬁ(W:ﬁy”VdL + W, dpy Viug). (1.32)

Above, the matrix

vV =UMUg (1.33)

is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Its non-diagonal structure, as we
measure it, leads to generation mixing, as seen from Eq. (1.32). Note that the analogous unitary
matrix Ujs Ug is not observable in the SM.?2

The phenomenon of generation mixing is exclusive of the weak charged coupling, i.e. in the
SM the couplings of the Z, the photon and the gluon are diagonal over family indices. Another
important property concerning the matrix V is that it has a complex phase which leads to the
only sizable source of C'P violation in the SM.

1.2 EWPO for testing the SM

A crucial way of testing the picture described in the previous section, i.e. the couplings of the
gauge bosons to fermions and the way in which the local gauged symmetries of the SM are
broken at low energies, has been provided by precise measurements made at LEP (e~ e™ collider,
including ALEPH, DELPHI, OPAL, and L3) and the Tevatron (pp collider) in the 80’s, among
others. These experiments were able to collect a large amount of data and build many different
observables involving the production and decay of Z bosons, and — to a lesser extent — W+
bosons. In the case of the Z boson, these observables were specially designed to test the Lorentz
structure of its couplings to fermions, i.e. g‘f/ and gf; defined as follows

_IL_ g (gf — ¢! _ 9L gl p o gs
5eosg 2 119V —9as)f = 5 ou 2" S fru(gy —ga)fu+ (Lo R), (1.34)
ol = T{() —2Q(N)sin0,  gh=TH(), (1.35)

for a flavour f (a lepton or a quark). The different values of these couplings are given in Table 1.1.

Taking into account the set of the most precise measurements and predictions, one can per-
form a global fit and test the overall agreement of the SM picture with data. At the same time,
if this agreement is good enough, it is possible to extract the values of the underlying quantities

2A comment about notation: when shifting to the Left-Right Model, V is going to be replaced by v
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left-handed | T5(f) | Q(f) gt gy | 9lb/dh
VeL,VuL,Vrr | +1/2 0 +1/2 +1/2 1
er, iLs TL -1/2 | -1 —1/24 2sin?0 ~ —0.04 | —1/2 | ~0.08
ur,crn,tr +1/2 | +2/3 | +1/2—4/3sin?6 ~0.19 | +1/2 | ~0.38
dr,sp,br —1/2 | =1/3 | =1/2+2/3sin* ~ —0.35 | —1/2 | ~0.70

right-handed | T4 (f) | Q(f) gt gh | al/dh
€Ry LRy TR 0 -1 +2sin? 0 ~ 0.46 0 -
UR,CR, IR 0 +2/3 —4/3sin” 6 ~ —0.31 0 -
dr, Sk, br 0 -1/3 +2/3sin?6 ~ 0.15 0 -

Table 1.1: EW quantum numbers of the different SM fermions.

of the theory, as it was the case for the mass of the Higgs boson [57]. Note that this is an indirect
extraction, much different in the case of the Higgs mass from modern direct measurements. In
what follows, we perform a global fit of the EW Precision Observables (EWPO).

1.2.1 Inputs

The couplings g‘f, and g£ are the basic ingredients to define many EWPO. Among these observ-
ables we have left-right asymmetries of the couplings

9094
Af:2m7 f=eubc, (1.36)

forward-backward asymmetries in the Z boson production

3
Arp(f) = JAAs, f=epTbe, (1.37)

total cross section of the Z boson into hadrons

127 Feél—‘ fF
Ohad = Z 2 T2 £ (1.38)
fef{uds,eby 4 T2

ratios of partial widths for quarks

Rq:i7 g=b,c, (1.39)
Thad
etc., defined at the pole of the Z boson from e*e™ collision. The full set of EWPO, including
Atomic Parity Violation measurements obtained at low-energies, is defined explicitly in Ap-
pendix A.

The set of observables we use in our fit is given in Table 1.2. Correlations were taken into
account and can be found in the quoted references. The inputs are dominated by statistical
uncertainties, an important difference with respect to flavour observables that will be introduced
later.

Thanks to the huge effort from the theoretical side to match the experimental accuracy of
these observables, see [12] and references therein, which required going beyond the tree level
order, one was able to probe the structure of the SM in detail. The higher order effects are
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sensitive to the underlying parameters of the model, such as the masses of the top-quark, Z°
boson and Higgs boson, and apart from that these corrections are also sensitive to the coupling
constants o and «, at the energy scale M for Z° observables.

Beyond the loop-corrections alluded in the last paragraph, Initial State Radiation (ISR) and
Final State Radiation (FSR) need also to be taken into account. They correspond to high-
order corrections in QED where one (or more) photon(s) are emitted by the initial electron
or/and positron states, in the case of ISR, or by the final states, in the case of FSR. Taking
into account this class of corrections is of capital importance: they reduce the value of op4q by
about 36 %, and the value of A%} by as much as 80 %. In what follows, they have already been
subtracted from the experimental values [12], quoted in Table 1.2. To distinguish the initial and
the ISR/FSR-subtracted values, the latter are referred to as “pseudo-observables,” and indicated
with a superscript 0 (but we do not systematically use this notation). Note an important point:
their extraction is made in a model-independent way, since these are pure QED effects, and
therefore do not depend on the EW sector which is under test here.

We give a few more comments about one of the inputs. The value for the strong cou-
pling, as(Mz) = 0.1185 £ 0.0005,,4¢ [58], takes into account the four following classes of in-
puts: 7—decay, Lattice, DIS, and eTe™. More recent information on o, from hadronic collider
studies [59] are not included, because this extraction has a more important uncertainty when
compared with the other four classes. Note that the 7—decay provides a value for the strong
coupling at m., and needs to be evolved from low-energy scales up to Mz. This can be done
up to the N*LO [60], and requires the inclusion of thresholds for the charm- and bottom-quarks.
The strong constant extracted from 7—decays is the only input used by Gfitter in the SM fit,
presumably because the full set of them has a negligible impact on the prediction for the Higgs
mass, see Ref. [61].

1.2.2 Parameterization

The corrections beyond tree level of any observable X can be written in terms of the parameters

§= {m:tngéevO‘s(MZ)yMZ;MHyAQ(MZ)}- (1.40)
One can thus write
X:X0+01'LH+CQ'At+Cg'AaS (141)
teg A2+ o5 Do, Ar+ e Dg + o7 Ay,
My
Ly =log v 1.42
H =08 1957 GeV ’ (142)
mpole 2
A== -1 1.4
' (173.2 Gev> ’ (1.43)
M
° 0.1184
Aa(M
A, = Boz) (1.45)
0.059
My
ANy=—060/- 1 1.46
77 91.1876 GeV (1.46)

The parameterization in Eq. (1.41) describes very accurately the ensemble of the observables we
consider, and higher-order terms in Lz, A¢, Ay, An, Az compared to those already shown can
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be safely neglected. We must now determine the coefficients of the parameterization, and we have
used Zfitter 6.42 [14,62] for determining them. Zfitter consists in a set of codes integrating
higher-order corrections to a variety of observables, mainly those defined at the pole of the Z

boson. For a given set of values of {mfgllf, as(Mz), Mz, My, Aa(Myz)}, Zfitter provides the

777777

Appendix B.

Reference [63] includes further corrections for the observables I'z, ohed, Rp,c (two-loop EW
diagrams, not included in the version 6.42 of Zfitter) and gives their parameterization in the
same way seen in Eq. (1.41). We have then considered its results for the coefficients of the
parameterization of I'z, opqeq, Rp,c.

A last point concerning the parameters of Eq. (1.41): it will be more useful to parameterize
« in a different way. First we write

__a(0)
als) = 1—Aa(s)’
for « calculated at the energy s (when not stated otherwise, « is calculated at M), and then

we use the following decomposition into quark (except the top), charged leptonic and top con-
tributions

a(0) = 1/137.035999074 , (1.47)

Aa(s) = Aagi)d(s) + Aceepr (8) + Aarop(s) , (1.48)
where [64,65]

Advepr(Myz) = 0031497686,  Acye,(Mz) = —0.000072, (1.49)

with negligible uncertainties. In the following, we use the parameter Aoagi)d(M z) instead of

Aa(Mz). Note that we do not use an input for Aagd due to the wild spread of central values
and uncertainties found in the literature (see the “EW model and constraints on NP” review
in [58]).

1.2.3 Global fit

We now comment on the results of the global fit. The observables were combined using CKMfitter,
a statistical tool which will be described in the next section. The value for the x2,, of the global
fit is 22.24, and with 22 degrees of freedom we have the p-value ~ 45 %, good enough for a mean-
ingful extraction of the fundamental parameters. The extracted best fit points and intervals are
seen in Table 1.2.

The overall conclusion we can draw is that EWPO are well described in the context of the
SM. There are some tensions, however, indicated by the pulls defined for an observable o as

puu Y. X72rnn - X%nin,o! ’ (150)

where “0!” means that the second x? is built without the experimental information on o. This
is a different definition from the one used used in EWPO: in the context of EWPO, a different
definition is usually found in the literature [12]. As can be seen from Figure 1.1, the main tensions
are found for op4q, Arp(b, 7), AESLD, which are left unexplained at this stage in the SM context.
We now move to a much different class of observables, consisting of flavour physics observables.
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Observable input SM fit (1 o) pull
Aol : 0.02736 750008 | -
My [GeV] 125.7+ 0.4 125.7+ 0.4 0.97
myoe [GeV] 173.34 +0.36 + 0.67 174041930 0.95
Mz [GeV] 91.1876 + 0.0021 91.1876 4+ 0.0021 | 0.44

o 0.1185 £ 0 + 0.0005 0.119001 00004 | 0.23

Iz [GeV] 2.4952 + 0.0023 2.4949310-0005% | 0.56
Ohaa [b] 41.541 4 0.037 41.4857T00007 | 1.42
Ry 0.21629 + 0.00066 0.21576270 500055 | 0.56
R, 0.1721 4 0.0030 0.1722560:500012 | 0.14
R. 20.804 + 0.050 20.744515:002% | 0.77
R, 20.785 + 0.033 20.7445700058 | 1.08
R, 20.764 + 0.045 20.7915150058 | 0.87
App(b) 0.0992 + 0.0016 0.10363 + 0.00079 | 2.89
Arg(c) 0.0707 + 0.0035 0.07409 + 0.00061 | 0.62
Arp(e) 0.0145 + 0.0025 0.0163970:00055 | 0.39
App(p) 0.0169 + 0.0013 0.01639 + 0.00024 | 0.29
App(T) 0.0188 + 0.0017 0.01639 4 0.00024 | 1.41
Ay 0.923 4 0.020 0.93464 4 0.00011 | 0.41

A, 0.670 + 0.027 0.66823 + 0.00050 | 0.15
ASED 0.1516 + 0.0021 0.1478 +0.0011 | 2.15
A (Py) 0.1498 + 0.0049 0.1478 £ 0.0011 | 0.42
ASEP 0.142 £ 0.015 0.1478 £ 0.0011 | 0.40
ASLD 0.136 £ 0.015 0.1478 £ 0.0011 | 0.82
A, (Py) 0.1439 4 0.0043 0.1478 + 0.0011 | 0.95
My [GeV] 80.385 + 0.0154 0.004 |  80.369475-057% | 0.89
Tw [GeV] 2.085 + 0.042 2.0915170:00005 | 0.15
Qw(Cs) ~73.20 +0.35 ~72.959+0.036 | 0.69
Qw (T) ~116.4+ 3.6 —116.45710:0%9 | 0.01
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Table 1.2: Inputs and results for the SM global fit.
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Figure 1.1: The pulls defined in Eq. (1.50) indicate the tensions between the measured and the
(indirectly) predicted values given by the SM.

1.3 CKM matrix phenomenology and fit

The strengths of the W couplings to quarks are left free in the SM and must be extracted from
the observation of nature. One may determine these couplings from a well-measured set of ob-
servables, performing a global combination of them. The exercise of combining a large set of
observables in the extraction of the CKM matrix has been executed by many different collabo-
rations [15-17], and they have all pointed towards a consistent description of flavour processes
made by the SM. This is usually indicated by Unitarity Triangle (UT) fits, showing that at the
current level of accuracy the observables agree about the true values of the fundamental quanti-
ties parameterizing the CKM matrix, in particular the one related to CP—violating phenomena.
Previous to performing a global fit, we now introduce the most relevant facts about the CKM
matrix.

1.3.1 The CKM matrix
The elements of the CKM matrix

Vud Vus Vub
V=1V Ves Va (1.51)
Vie Vis Vi

describe the coupling strengths of the W boson to a pair of up- and down-type quarks. Being a
unitary matrix, the product of two different columns of V satisfies
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VeaVer

Figure 1.2: Example of Unitarity Triangle. In this specific case, the sides of the (un-normalized)
triangle have lengths of order \3.

Vaa Vi + Vea Vi + Via Vi =0, (1.52)

where {a = d, B = s} corresponds to products of elements of V found in the KK meson-mixing
system, while {a = d, 3 = b} ({a = s, 8 = b}) is found in the ByB4 (BsB, respectively) system.
Graphically, Eq. (1.52) can be represented by a triangle whose sides correspond to the following
three vectors in the complex plane: VyaV,g5, VCQVC*B, and Vth}}, see Figure 1.2.

These same elements can be parameterized in terms of mixing angles 612, 613, 023, also called
Cabibbo angles, between different generations (Chau-Keung parameterization [74])

1 0 0 C13 0 513671.6 C12 S12 0
vV = 0 Co3 523 0 1 0 —S12 Ci12 0
0 —S823 (23 —Slgei(S 0 C13 0 0 1
C12€13 S12€13 s13e7 %

= —S812€23 — 012823813€i6 C12€23 — 812823813€i6 523C13 )
512523 — 012023813€i6 —C12523 — 812023813€i6 C23C13

(1.53)

where s;; = sin§;; and ¢;; = cos6;; for ¢, j = 1,2,3, with ¢ < j. The complex phase ¢ is, as stated
previously, the only sizeable source of CP violation in the SM. The Chau-Keung parameterization
(and the Wolfenstein parameterization that will be introduced afterwards) is based on a phase
convention for the CKM matrix, i.e. the value of § depends on an arbitrary choice. However, it
is shown that [75]

J = Im(Vuchb Jb‘/ci) = 012812053813023823 siné, (154)

called the Jarlskog invariant, is independent on the phase convention. Since mixing angles are
small, as we will see, J and therefore CP—violating processes are naturally suppressed: J ~ 1075,
much smaller than its maximum allowed value, viz. 1/(6v/3) ~ 0.1.

It is experimentally observed that the structure of the CKM matrix is hierarchical, i.e. mixings
between different generations are suppressed. It is then useful to exploit the hierarchy of the
CKM elements and introduce the Wolfenstein parameterization [76], where to all orders in the
small parameter A ~ 0.2 we have:

19



Vs |

= =\ 1.55

S12 (|Vud|2+|vus|2)1/2 ) ( )
|Vcb| 2

So3 = = AN*, 1.56

23 (qud|2+|Vus|2)1/2 ( )

s13¢70 =V = AN3(p—in) . (1.57)

Therefore, a non-vanishing value for n is equivalent to having a complex phase in the CKM
matrix.

Note that, though the elements V.4, Vis (and V.;) are complex, their phases are suppressed
by extra powers of A if compared to Vi, Viq (which is in fact a convention dependent statement).

This can be more immediately seen from a systematic expansion in powers of A (up to order
o(\%)

A2
Ved = 1——= ——, 1.58
d 5 s (1.58)
Vis = A, (1.59)
)\5
Vi = —A+ SAN1=2p+in)), (1.61)
A2
s = 11— — (14447 1.62
% 5 g (1+44%), (1.62)
Vi, = AN, (1.63)
)\5
Via = AN(L—p—in)+ - Alp+1n), (1.64)
)\4
Vis = —A)\2+?A(1—2(p+i77)), (1.65)
)\4
Vip = 1—?142. (1.66)

It turns out that the three contributions relevant for the ByBg system in Eq. (1.52) have
roughly the same size, order A\®, ¢f. Figure 1.2. Its internal angles, which are invariant under
phase redefinitions of the quark fields, can be easily checked to be given by

e ) < Vl:dvz) ( Vudv*b)
a=arg | — , fB=arg|— € =arg | — lll 8 1.67
(vt Vv ) T, on
Once all the sizes have roughly the same length, we see that

1+

ViaVi, L ViaViy,
VeaVy, — VedVy,

is a useful relation in graphical representations, as a triangle whose sides are:

=0 (1.68)

L, Ru=[VuaVip/VeaVip|~ 1 and - Ry = [ViaViy/VeaVip|~ 1, (1.69)

and the internal angles are a, 8 and v, see Figure 1.3. For this same triangle, (p,7) defined as
follows
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Figure 1.3: Ezample of Unitarity Triangle. In this specific case, the sides of the triangle have
lengths of order 1. The coordinates (p,7) determine the position of the apex of the triangle in
the pvs.n plane, indicated by the black blob, and therefore its shape, i.e. the angles «, 3,7.

= s ViaVa
— _—ud’ub 1.70
p+if Vv (1.70)

gives the coordinate of the apex of the triangle equivalent to Eq. (1.68) in the pvs. 7 plane, of
which the side opposite to the apex is the basis and has length 1. Note that p,n differ from p,n
by O(M\?) corrections, which can be seen from the relation

V1 — A2X(p + in)

VI=AZ(1— A2X4(p + 7)) (L.71)

p+in=

valid to all orders in A.

Since our goal is to show the success of the SM to describe the structure of the weak inter-
actions in the quark sector through a UT fit, we are going to perform a global fit to determine
precisely the shape of the triangle defined from Eq. (1.68). Let us now see which classes of
observables are going to be considered to perform this task.

1.3.2 Observables

We collect in Table 1.3 the full set of inputs we use in the global fit: from the experimental side,
we have gained much precision in the determination of the Unitarity Triangle in the last years,
thanks to which it was possible to confirm the mechanism of Kobayashi and Maskawa [52] for the
origin of CP violation in K decays, as we will see. This was in particular due to the B—factories
Belle and BaBar (based on the decays of Y(45) into bb states) [85], where B related observables
are collected.

The individual inputs in Table 1.3 have very different impacts when constraining the Unitarity
Triangle, so that the different categories of inputs deserve a dedicated discussion. The following
scheme contains the basic information one needs in the global fit:
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d S b

v o u n—pt+ev K—-on+lv B-orn+/{lv (1.72)

¢c Don+lv D> K+v B— D+l '
¢ BB BBt b4 W

d s b

/\2
u 1——= A AN (p —in)
= 2 )\2 +O()\4)a

(¢ —-A 1*? AAQ
t AN (1 —p—in) —AN 1

where, as indicated in the first line, |V,,4| is mainly determined from nuclear transitions, while
[Visls |Vedls |Ves|, [Vubls [Ven| come from leptonic and semileptonic decays, and |Viq|, |Vis| come
from B meson-mixing observables (mass differences). The knowledge of the (semi-)leptonic
decay rates and mixing observables are limited by the theoretical uncertainties coming from
hadronic parameters discussed in the next section. We further add that the element |Vi| can
be in principle probed by high-energy processes where a top is produced in association with a
W, but the resulting accuracy is not yet competitive with the global fit prediction coming from
low-energy physics, see e.g. Ref. [86].

In the Wolfenstein parameterization, the parameters A and A are basically fixed by the s — u
and b — ¢ semileptonic decays, as seen from the part of Eq. (1.72). The constraints on p, 7 come
from different sources, among which we have semileptonic decays b — w and b — c¢:

b—=u,c= [Vip|>~ AN3R, and the ratio Vb / V|~ AR, ,
with  Ru= 3?1 72, (1.73)

and B meson-mixing observables

By, By,= Vil ANR,  andtheratio  [Via/Vis|~ ARy,
with Ry =+/(1—p)2+ 72, (1.74)

where ratios are considered in order to have a better control over uncertainties. Note that we
have given the expressions of the last two classes of observables as functions of R,, +: since both
are individually compatible with 7 = 0 (cf. Figure 1.5), they are referred to as CP—conserving
observables.

The K meson-mixing also provides information on p,#, of the form

lex| = nlar —p) =az, (1.75)

where a2 > 0 do not need to be given at the moment. We see then that the KK system
provides a constraint of a different sort compared to the B systems, since 7 = 0 is not allowed,
i.e. its observation alone is a clear sign of CP violation.

Such as i, CP asymmetries also indicate clear signs of CP violation, by measuring the
difference in rates of a process and its CP—conjugated one. The ratio [87]
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CKM Process Observables Theoretical inputs
[Vl 0t -0t g |Vard|nuel = 0.97425 + 0 & 0.00022 [77] Nuclear matrix elements
[Vs| K — mlv [VuslsLFE=7(0) = 0.2163 & 0.0005 (78] | fE77(0) = 0.9645 +0.0015 + 0.0045
K — eve B(K — eve) = (1.581 £ 0.008) - 10~° 78] fx = 155.2 £ 0.2 £ 0.6 MoV
K = v, B(K — ) = 0.6355 £ 0.0011 (78]
T — Kvy B(r — Kv,) = (0.6955 + 0.0096) - 102 [78]
Vus | K — pv/m — uv BUK = wvy) = 1.3365 £ 0.0032 [78] fr/fx = 1.1952 £ 0.0007 £ 0.0029
[Vaal B(m — pwy)
T — Kv/T — 1w Blr = Kvr) = (6.431 £ 0.094) - 102 [78]
B(r — 7vr)
|Vcd| vN |Vcd|not lattice = 0.230 + 0.011 [78]
D — v B(D — wv) = (3.74£0.17) - 1074 [79] fo./fo = 1.175 £ 0.001 £ 0.004
D — iy [Veal £P77(0) = 0.148 £ 0.004 0] | fPom0) = 0.666 £ 0.020 £ 0.048
[Ves| W —cs [Ves|not 1attice = 0.9470:32 £0.13 (78]
Dy — T B(Ds — ) = (5.55 £ 0.24) - 102 [79] fp. = 248.2 £ 0.3 £ 1.9 MoV
Ds — pv B(Ds — pvy) = (5.57 £0.24) - 1073 [79]
D — Kt [Ves | FP 75 (0) = 0.712 £+ 0.007 [80,81] | fP~%(0) 0.747 £ 0.011 % 0.034
[ Vsl semileptonic B [VuslsL = (4.01 +0.08 +0.22) - 1073 [79] form factors, shape functions
B — v B(B — v) = (1.08 £0.21) - 1074 (79,82] | fs./fz = 1.205 £ 0.003 =+ 0.006
[ Ve semileptonic B |VeplsL (41.00 4 0.33 £ 0.74) - 1073 [79] form factors, OPE matrix elements
[Vip/ V| semileptonic Ay s((j\\” :i“ f’f)"2>15 = (1.00 £ 0.09) - 102 [83] @y = p’f f’f)"2>15 = 1.471 + 0.096 + 0.290
P cHPp)g2>7 CAp = Aep™ V)27
« B — 7w, pm, pp branching ratios, C' P asymmetries [79] isospin symmetry
B B — (co)K sin(28)cq = 0.691 + 0.017 [79] subleading penguins neglected
5 B — DKM inputs for the 3 methods [79] GGSZ, GLW, ADS methods
bs Bs — J/Y(KK, ) (6)b—ces — —0.015 + 0.035 [79]
A Amyg Amyg = 0.510 £ 0.003 ps 1 (79 | Bp./Bs, = 1.023 £ 0.013 £ 0.014
Am, Ams = 17.757 £ 0.021 ps—* [79] Bp, = 1.320 £ 0.016 =+ 0.030
Bs — pp B(Bs — pp) = (2.8757y.107° [84] fB. = 224.0 4 1.0 £ 2.0 MeV
V5 Vis and ex le k| (2.228 4 0.011) - 103 [78] Bg = 0.7615 + 0.0027 + 0.0137
V5 Ves Ke = 0.940 =+ 0.013 % 0.023

Table 1.3: Constraints used for the global fit, and the main inputs involved (more information can be found in ref. [16]). When two
errors are quoted, the first one is statistical, and the second one systematic. In the cases of o and v angles, many different channels or
methods are used to extract their values, and the full resulting p-value profiles are used as the inputs for the global fit [16].



NX—f)-TX—f) T-T
(X > f)+I(X > f) TI+T’

(1.76)

where T’ denotes the rate of the CPP—conjugated process of rate T, defines schematically this class
of observables. Taking the ratio has a clear advantage, because it permits to have a good control
over hadronic uncertainties: since QCD effects are CP—conserving, they drop in Eq. (1.76). As
seen in Table 1.3, such asymmetries directly measure the angles «, 3,7 through decays of By
mesons: for instance, By — J/9 K gives a clean measure of sin(23) — see e.g. Refs. [54,88] for
the related calculations.

Apart from the role played by CP—conserving and violating quantities, there is also a clear
distinction between tree level (e.g. B — X + v decays, X = m, D) and loop-level (e.g. B;)Bg
mixing, ¢ = d, s) dominated observables. While tree level dominated processes give a cleaner and
safer extraction of SM parameters, the question is less straightforward for loop-level processes.
Indeed, if New Physics effects are large enough to be observed, it is generally expected that
relatively to tree level amplitudes they are much suppressed, but compared to loop-induced SM
amplitudes they can have a similar size.

Apart from the observables discussed in this section, other observables are not included
because they do not have a sufficient accuracy yet, such as B(Bg — ppu), or because the theoretical
uncertainties deserve still some improvement or at least more discussion, e.g. Al'y and € /e k.
Therefore, it would be premature to use them in a precision fit.

1.3.3 Theoretical inputs

From the elements of the SM we calculate the amplitudes for low-energy processes. The most
efficient way to build a Lagrangian specially designed for low-energy observables is to build an
effective description which keeps only the most relevant set of physical operators, neglecting oth-
ers which are too much suppressed by the high-energy scales [89]. Then, for low enough energies,
i.e. for long enough wavelengths, QCD effects become non-perturbative. Since the characteristic
wavelength of weak interactions (~ 1/Myy) is much smaller, everything happens in two steps:
first we build an effective Lagrangian of weak interactions including short-range QCD correc-
tions, and then this picture is completed at long distances by taking into account the hadronic
environment, where the low-energy effective quantities can be extracted from experiment.

Nowadays, non-perturbative effects are most of the time computed numerically from first
principles by a technique called Lattice QCD. It consists in the computation of correlation func-
tions defined on a lattice of discrete points (in the Euclidean space). Physical quantities are then
determined from the extrapolation of the results in the cases where the lattice inter-space goes
to zero and its total size goes to infinite, apart from other possible limits related to the physical
masses of the particles simulated. This effective description has been enormously developed in
the last decades, thanks to the increasing computing capacities, and has acquired a great degree
of sophistication [90].

Let us see a few examples where hadronic quantities must be known in order to predict an
observable. In the leptonic decay m — fv, we need the value of the m decay constant, called f
and defined as

~pufr = (01(dyursu)|7(p)) | (1.77)

up to an arbitrary phase, correcting the coupling of the W boson to a pair of d and/or w in
the hadronic environment. Similarly, when calculating the decay rate of the semi-leptonic decay
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K — 7+ lv, one faces the hadronic amplitude of K — m, whose non-perturbative effects are
contained in the form factor fX=7, defined from

ETA) AP )+ FETT) P~ 1) = (w05 Pru) K (p)) (1.78)
where ¢, = (p — p), gives a term proportional to the mass my (~ 0 for ¢ = e, ) when the
contraction with the leptonic current is taken. Both f, and ff%’r must be determined from

elsewhere in order to predict the SM values of the related processes.

Another class of non-perturbative parameters concerns |AF|= 2 mixing processes, which
require long-distance parameters called bag parameters Bp, P = K, By, Bs. These are defined
as the ratio of the |AF|= 2 hadronic amplitude over its Vacuum Insertion Approximation (VIA)
estimate (e.g. see the Appendix C of [54]). For definiteness, consider the K°K system

_(K|(s7" Ppd) (57, Prd)| K)
(K|(s7Prd)|0) (0|(57, Prd)|K) |

where the vacuum is indicated by the state |0). Note that (0|(5v,Prd)|K) is proportional to the
decay constant fx: we thus have

=i fi B = (KI5 Pod) (57, L) ) (1.80)
where my is the average of the eigenmasses of the KK system. Note that Bx depends on the
scale fipqq where (K|(sy"Prd) (57, Prd)|K) is determined: by factorizing out this dependence,
one defines a scale independent quantity usually indicated by a hat, Bg.

The full set of theoretical inputs needed in our analysis is contained in the third column of
Table 1.3. A different class of inputs is necessary when computing meson-mixing observables,
which corresponds to short-distance QCD corrections that can be computed by a perturbative
expansion in a; (more on this subject will come in Chapters 4 and 5). We have employed the
following values, which collect these perturbative effects [91-94]

Nee = 18T £ 0 £ 0.76, 7y = 0.5765 + 0 4 0.0065 , 7, = 0.497 4 0 & 0.047,
np = 0.5510 + 0 + 0.0022, (1.81)

where the first uncertainty is statistical and the second theoretical. The values correspond
respectively to short-distance QCD corrections to K K mixing (first line) and BB mixing (second
line). For 7., subjected to the largest uncertainty, an important fraction of the uncertainty comes
from the poor convergence behaviour of the series: indeed, the shift NLO — NNLO enhances
the central value by ~ 30 %.

For completeness, the remaining parameters used in the fit include

as(Mz) =0.1185+ 0 £ 0.0006 , (1.82)

for the strong coupling [58] (including information from the Z pole, coming from an electroweak
precision fit [13]), and [66]

(M) = 165.95 4+ 0.35 + 0.64 GeV,  me(me) = 1.286 & 0.013 =+ 0.040 GeV (1.83)

for the masses of the top- and charm-quarks running inside the loops of the meson-mixing
amplitudes. Above, the input for the top-quark mass is determined from mfszl,e by using the

following relation, valid around the value mfszl,e =173.34 GeV:
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Afit: X0, 021, Act Rfit: X=0 (red), Y=5 (blue), o=1, A=1
1.0

0.8r

0.4r

0.2r

Figure 1.4: (Left) x* for a random variable of variance o® = 1 whose measure is Xpes =0 = X.
The theoretical uncertainty is modelled in the Rfit scheme with range [—-A, A] = [—1,1]: this is
seen as a plateau at x* = 0 for [—1,1], while outside the plateau we have x> = (Xomes — p1)° /02,
where p = Xipeo 1S the parameter we want to extract. (Right) Combination of two X2 profiles,
similar to the one described in the left figure, one for which Xpmes = 0 = X (red) and one
for which Xpes = 5 =Y (blue); in the naive Rfit procedure, the combined profile results in
the dashed, purple curbe, with no theoretical uncertainty, while in this case the educated Rfit
method would consider a resulting theoretical uncertainty equals to the smallest of the theoretical
uncertainties (dashed orange).

e (me) = 0.9626 x miey — 0.90 GeV (1.84)

which comes from a one-loop calculation described in Ref. [95].

1.3.4 CKMfitter

We combine the observables in a pure frequentist approach based in a x? analysis. In the context
of flavour physics, theoretical uncertainties, mainly introduced by the theoretical inputs from
Section 1.3.3, deserve a special attention. Contrarily to EWPO, they are very much significant
in the comparison between measurement and theoretical prediction. When considering this class
of uncertainties, one quotes a range [—-A, A], and we will admit that it contains the true value ¢
of the theoretical uncertainty: if § was known, instead of quoting X + os4: = A, we would quote
(X 4+ 0) & 0stat (further discussion follows in Chapter 7).

We adopt a Rfit scheme for dealing with theoretical uncertainties. In practice, this means
that one can vary freely the true value of the theoretical uncertainty inside the quoted uncertainty
§ € [-A, A] without any penalty from the y?. This implies a plateau for the preferred value
of the parameter we would like to extract, see Figure 1.4 (Left), a shape that will be further
discussed in Chapter 7. Subsequently, Confidence Level intervals are determined from varying
the x? around the best fit point, and the goodness of the fit is calculated by supposing that Xfm-n
is distributed as a y2—distribution.

Different extractions of the same quantity are combined previous to the fit (more on that
in Chapter 7), and when different inputs point towards a tension, such as in V|, z = u,c,
for inclusive and exclusive extractions, we adopt a special procedure. To illustrate this point,
Table 1.4 contains the inclusive and exclusive inputs for |Vy,;| and V.| previous to their average,
which are substantially in tension given the size of their uncertainties. A procedure we call
naive Rfit average leads to no theoretical uncertainty if the data are barely compatible, i.e. the
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resulting average is not affected by the unknown true value of the theoretical uncertainties §.
This is illustrated in Figure 1.4 (Right), where it is shown that one has a vanishing theoretical
uncertainty: the resulting dotted-purple curve has not a shape presenting a flat bottom, a feature
symptomatic of theoretical uncertainties in the Rfit scheme. Since it creates a very aggressive
situation where two inputs in disagreement end up implying a very precise average, without any
theoretical uncertainty related, we adopt a conservative procedure in which the final theoretical
uncertainty is equal to the smallest of the individual theoretical uncertainties. This procedure
is called educated Rfit, and it is represented by the dotted-orange curve in Figure 1.4 (Right).
Both methods are compared in Table 1.4.

|Vip| x 103 central value stat. uncertainty theo. uncertainty
exclusive 3.28 + 0.15 + 0.26
inclusive 4.36 + 0.18 + 0.44
naive Rfit 3.70 + 0.12 4+ 0.00
educated Rfit 3.70 + 0.11 + 0.26
[Veb] %103 central value stat. uncertainty theo. uncertainty
exclusive 38.99 + 0.49 + 1.17
inclusive 42.42 + 0.44 +0.74
naive Rfit 41.00 + 0.33 + 0.00
educated Rfit 41.00 4+ 0.33 + 0.74

Table 1.4: Inclusive and exclusive inputs for |V | and |Vep|, and their averages under two different
procedures: naive Rfit and educated Rfit.

For form factors, bag parameters and decay constants, previous to the global fit we aver-
age over the extractions made by different groups (the individual references are found in [16]).
Moreover, if for a quantity we have many sources of systematic uncertainty Ay, ..., A,, they are
treated at the same footing and summed linearly, A; + ...+ A,,. The resulting averages are seen
in the last column of Table 1.3.3

The procedure depicted in the last paragraphs is adopted by the CKMfitter Collaboration
[16]. Apart from its main statistical lines we have briefly described, found in more details in [16],
at a more computational level CKMfitter is a modularized set of files of code where each class of
observables is defined in terms of the underlying relevant parameters: these are the Wolfenstein
parameters, for factors, bag parameters, etc. To make the computational work more efficient, the
derivatives of the observables are calculated symbolically in order to optimize the extremization
procedure, necessary in the determination of the best fit point.

Having discussed the observables, the theoretical inputs and the statistical treatment, we now
shift to the results of our analysis, obtained through the CKMfitter framework.
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Figure 1.5: Plot in the pvs.n plane showing the constraints of the individual inputs (not shown
are, for example, constraints from V,s and Vs, which are relevant only for A, X\, cf. Egs. (1.59)
and (1.62)). The set of observables point towards an apex at ~ (0.15,0.35), with 68 % CL (95 %
CL) represented in hashed red (yellow with red contour). (Note that there is a discrete ambiguity
for B coming from the sin2( constraint, indicated by the gray region for which cos28 < 0.
However, this ambiguity is excluded at 95 % CL.)

1.3.5 Results

The results of the global fit for p, 7 are summarized in Figure 1.5, where we represent the Unitarity
Triangle for the ByB, system — corresponding to the orthogonal relation between the first and
the third columns of the CKM matrix (divided by V.4V), as discussed in Section 1.3.1. Of
course, other Unitarity Triangles could also be represented, cf. Ref. [16]. In the same figure,
we indicate the individual 68 % CL (Confidence Levels): in order to determine these confidence
intervals in the pvs. 7 plane, theoretical inputs are obviously employed, apart from the necessary
experimental information.

The outcome of the fit points towards a unique region in the (p, 77) plane. For the goodness of
the fit we find a p-value equals to 66 %, or 0.4 o in units of sigma: the good agreement implies
that the extraction of the fundamental parameters of the SM is meaningful and we have

A = 08227100058 A = 0.2254370-00022 (1.85)
p = 015175058 77 = 0.3547550%

Individually, each observable provides a test of the validity of the SM, as indicated by the
pulls defined in Eq. (1.50), which are normally distributed with mean zero and a dispersion of
one.* The values of the pulls seen in Figure 1.6 tell us that each single observable has a suitable
SM prediction compared to the experimental value. Since the observables have correlated fits,
which is for instance the case for sin 28 and B(B — 7v) [16], the distribution of the pulls is not
normal. Note that the presence of a plateau in the Rfit model for theoretical uncertainties may
lead to a vanishing pull for some quantities even in cases where the predicted and the observed
values are not identical.

3Note that, although different numbers of dynamical flavours on the Lattice are simulated, Ny = 2,2 + 1,2 +
1 + 1, we suppose that they extract the same underlying quantity, and therefore they can all be used in the
average, without preference for a particular Ny.

4The inputs B(K~ — p~9,)/B(n~ — p~9,) and B(r~ — K~ 0;)/B(r~ — 7~ ,) are not shown because
they are correlated with B(K~ — p~ v,) and B(r~ — K~ 7).

28



Bs—uu 0.91

@ 0.65 :
v 0.91 Ests |
a 0.84
sin 23 1.66
& 0.05
Amg 1.21
Amy 1.29
B(B- 1v) 1.22
Vopleomiop ~ 0.89
Veleomioy ~ 0.88
B(D-pv 1.83

B(D,-hv)  1.08
B(D,-1v) 164
B(D - KIv) 0.01
B(D- mv) (.04
Ivcslnot lattice 0'00
Veahotianice ~ 0.43

B(ty,) 2.22

B(K ) 0.03

B(K.,)) 1.44

B(K,) 0.00 :

Mo 00
0 05 115 2 25 3 35

Pull (o)

Figure 1.6: Pulls for the individual observables in Table 1.3 in units of o. Since correlations
are present, the number of observables which have a pull larger than n X o is not a meaningful
information.
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In Figure 1.7 we show the outcome of the fit when only tree level or loop-induced processes are
considered. Both fits lead to values of p, 7 in agreement with the global extraction of p, 7 shown
in Figure 1.5. We also consider a plot, Figure 1.8, containing only CP—conserving quantities, i.e.
observables which individually do not exclude a vanishing CP—violating phase, or equivalently
77 = 0. Its outcome, and the one from a global fit considering only CP—violating observables,

also agrees with the global fit combining all classes of observables at once.

1.4 Conclusions and what comes next

The SM succeeds in explaining a wide variety of classes of observables: in the context of the
underlying gauge structure of the model, the EWPO are of particular interest, and have shown
a great predictivity for the Higgs mass and top-quark mass before they were discovered or
determined with accuracy [57]. As we have seen, there are some unexplained tensions that we

have found in Section (1.2), such as App(b, 1), ASEP

and 044, which have the largest pulls.

We have also seen over this chapter the success of the SM in describing the set of flavour
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observables shown in Table 1.3. In particular, this success implies that the mechanism of CP
violation in the SM gives an accurate picture of nature, and we were able to extract very accurate
values for the Wolfenstein parameters describing the CKM matrix.

However, this is not the full story: extensions of the SM are typically evoked at high energy
scales to explain poorly understood features of the SM, or some tensions when comparing pre-
dictions and measurements. The great success of the SM to describe many observables helps us
to test the very existence of these extensions and to probe their structure.

Starting from the next chapter, we are going to analyse a particular extension of the Standard
Model which introduces weak charged right-handed currents, to be contrasted with the pure weak
charged left-handed currents of the SM. We now discuss this extension of the SM, called Left-
Right Model.
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Chapter 2

Left-Right Models

Parity violation is an experimental fact used in the formulation of the SM, where left- and right-
handed fields have different gauge structures. Therefore, the SM incorporates this feature rather
than explains its origin. One possibility for a better understanding of why one observes parity
violation is to assume it at high enough energies, and then assume it is spontaneously broken
when one goes down in energy, leading to parity violating phenomena.

To accomplish such a mechanism we introduce a second SU(2) local symmetry under which
left-handed fields transform as singlets and right-handed fields transform as doublets [20-23]:

SU@3). x SU(2), x SU2)r x U(1)y , (2.1)

where Y is a hypercharge in principle different from the one of the SM. This therefore adds up
a new term in the Yang-Mills Lagrangian compared to the SM case

1 . 1 . 1., |
Lgauge = *ZGZL Gapv — ZLZL Lapw — ZRZL Ry — ZFg Ffawv

replacing the notation of the field tensor F' of the SM by L and adding up the Lagrangian density
that corresponds to the new local symmetry SU(2)g. This is the basic starting point of the class
of models called Left-Right (LR) Model, and another feature we can point out is the existence of
new gauge bosons:

(2.2)

W' and Z’, (2.3)

which acquire masses as a result of the symmetry breaking pattern, when the extended gauge
group of the LR Models breaks down into the local symmetries of the SM:

SU@3). x SU2) x SU2)r x U(l)y — SU3)e x SUQ2)L x Uy , (2.4)

thus breaking the parity symmetric structure spontaneously. We are going to discuss at length
in Section 2.2 this pattern and the scalar field content necessary to realize it.*

Apart from the issue of parity, the SM raises some other intriguing questions that we could
attempt to solve by restoring parity

(a) in the way the SM is introduced, the hypercharges are in principle completely arbitrary;
they are then fixed in order to accommodate the electric charges,

LOf course, at each step of the symmetry breaking, the Lagrangian built out of renormalization and symmetry
arguments is supplemented by higher-dimensional operators which are induced by the previous (itself effective or
UV complete) Lagrangian, after that some of its degrees of freedom are integrated out.
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(b) the strong CP—violating phase, if it exists at all, is “unexpectedly” small,

(c) in the SM, neutrinos are massless, and there is no mechanism for the description of the
observed neutrino oscillations.

Possible answers or ways to deal with these problems in the LR Models are: (a) the hypercharges
in the LR Model are naturally interpreted; first the electric charge @ is given by

Q:T§+T§+§, (2.5)
and then Y results being equal to B — L, where B is the baryonic number and L is the leptonic
number. (b) The strong CP problem can be naturally investigated in the LR Model framework,
since the CPP—violating term _EGWGW is also parity-violating [25,26,96]. (c¢) In LR Models,
right-handed neutrinos must be introduced, thus leading to mechanisms for mass generation.

At a practical level, many different ways of implementing a Left-Right Model have been
investigated in the literature: a possible avenue is to consider extra fermions [97], which may
serve as candidates for Dark Matter [98]; otherwise, in the effort to solve the naturalness problem
(the hierarchy between the EW scale and whatever comes beyond), LR, supersymmetric models
have been considered [99,100]; different scalar sectors, with two bi-doublets, with triplets and/or
doublets, etc. have been discussed in order to realize a series of features, see e.g. [101-103]. All
of these realizations of LR Models have their own motivations. Here, we would like to address a
particular realization of Left-Right Models, called doublet scenario, that will be described in the
next sections.

2.1 Matter content

Before explaining the spontaneous symmetry breaking in LR Models, let us introduce its matter
content, which is a generic feature found in many of its realizations. As we have already stated,
right-handed fermions are put into doublets, and right-handed neutrinos are introduced:

u

left-handed quarks: QL = b= (3,2,1,1/3),
dr,
UR

right-handed quarks: Qg = =(3,1,2,1/3),
dr
VL

left-handed leptons: Ly = =(1,2,1,-1),
lr
VR

right-handed leptons: Ly = =(1,1,2,-1),
lr

showing an elegant and self-speaking symmetry between left- and right-handed fields.
The part of the full Lagrangian describing the interactions with the fields f shown above is

Ematter = f_;i'}/#D,ufv (26)

where the covariant derivative D includes the new gauge symmetries introduced by the LR
Models
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B-L
DH =9t —i (gsA““TaS + g WHTE + gpW'TE + g1 B* 5 ) : (2.7)

where g5, g1, gr and gp_1, are the gauge couplings.

2.2 Spontaneous symmetry breaking in the LR Model

The LR Models must reproduce the observations we have made so far, where weak right-handed
currents are suppressed compared to weak left-handed ones, and where parity P and charge-
conjugation C are both violated over the energy scales we have had access so far. This set of
characteristics are achieved in the same way as in the SM, where W, Z—mediated interactions
are weak due to the large masses of these gauge bosons (and a relatively small gauge coupling
strength), generated through the BEH mechanism.

In the LR Model case, a way to implement the spontaneous symmetry breaking (SSB) pattern
of Eq. (2.1) is to have a doublet under SU(2)r whose vacuum expectation value leads to the
SSB

SU(Q)R X U(l)B_L — U(l)y . (28)
Therefore, we introduce the SU(2)r doublet

N
XR = <X§> , (2.9)
XR

which breaks SU(2)r x U(1)p_r, when x% develops the VEV kr/v/2 as follows

Xk = (XF +ix% +rr)/V2, (2.10)

where x?{ and x% are two distinct real fields of null VEV. The VEV kg is expectedly larger
than the one responsible for the SSB of the EW group

SU(Q)L X U(l)y — U(l)EM, (211)

as argued in the first paragraph.

To further discuss the Brout-Englert-Higgs mechanism in LR Models, we first shift to the
mass generation mechanism for fermions. Of course, the primary interest is to implement the
BEH mechanism, but out of this discussion we will have picked up the scalar field that has the
good quantum numbers for both phenomena, BEH and the mass generation of fermions. In
the SM, masses come from the coupling of a scalar doublet to fermionic singlets and fermionic
doublets, which introduces squared ny—dimensional matrices called Yukawa matrices, where ng4
is the number of generations (3 in the SM and in the LR Model). In LR Models, a Yukawa
term invariant under SU(3), x SU(2)r x SU(2)r x U(1)p—_r requires a scalar bi-doublet, ® =
(1,2,2,0), which transforms like?

- ULoU},. (2.12)

2Note that, due to the extra SU(2)gr symmetry, the bi-doublet cannot be mapped onto two doublets, and
therefore we cannot trivially think about the LR Model as a two-Higgs doublet model (THDM) extension of the
SM. For further discussion on the parallel between LR Model and THDM, see Ref. [104] in the context of flavour
physics.
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The scalar bi-doublet has the expression
0 +
o= (91 9"% : (2.13)
Y1 P2

and from the same degrees of freedom of ® one defines

ot _ +
&=t 7y = < 90;7 s;ﬁ*l ) , (2.14)
Y2 1

which transforms in the same way as ®, namely ® — U L&)U};. The fields @?72 acquire the vacuum
expectation values

o) = () +ipl +K1)/V2, (2.15)
0y = () +ied + K2) e /V2,

and k2 trigger EWSB and generate the masses of the fermions. Since the bi-doublet is also
charged under SU(2)p, it corrects slightly the picture of the first symmetry breaking, given at
leading order by kg, and corrected by ~1 2.

So far, we have introduced a doublet under SU(2) g and a bi-doublet under SU(2), x SU(2)r,
and we have seen why they are required: in order to break the LR Model gauge group down to
the SM one, to implement the SSB in the SM and to generate masses for fermions. However,
our final goal is to build a model which is invariant under parity, i.e. to introduce the required
degrees of freedom to define a P symmetric model. Therefore, we introduce a doublet under

SU(Q)Lv XL = (15 27 15 1)7 Le.
+
XL = <X§> _ (2.16)
XL

In full generality, it acquires a non-vanishing VEV?

Xz = (XY +ixy + k) e V2, (2.17)
which corrects both the first (SU(2)g x U(1)g—1, = U(1)y, since x, is charged under U(1)p_r)
and the second symmetry breakings. Concerning the latter, it is a combination of k12, more

precisely the combination
\/ KT+ K3+ k2 ~ 246 GeV (2.18)

that characterizes the energy scale of the EWSB. It will be useful in the following to characterize
the SSB in terms of the parameters that follow

e= L 1+7r2+w?, TEE, w= "L, (2.19)

KR K1 K1
Together with the angles € and ¢ introduced below, they reflect the way in which the gauge
symmetries are spontaneously broken: in particular, due to the expected hierarchy of SSB scales,
€ is a small parameter, and we are generally going to keep only first order corrections in e.
Summarizing the previous discussion, we have the following symmetry breaking pattern

3Here, the phases of Lp(l) and X(})?, have been rotated away, and (apg, X%) are the only complex VEVs.
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- 1 1 1
first breaking:  tan¢ =t4 = 9B-L S ==+
9R 9y 9r  9B_L
1 1 1 1
second breaking: tanf =ty = gr S=5+5+
gL € 9. 9r 9L
e e e
gL == gr = gB—L =
S6 CoSo CoC

Table 2.1: Couplings and relevant angles of the symmetry breaking pattern.

SU(:‘})C X SU(2)L X SU(Q)R X U(l)y

Stage 1: I
SU(?))C X SU(Q)L X U(l)y
Stage 2: 1

At both stages, we have SU(2) x U(1) — U(1): for the first stage, there is a “weak” angle ¢,
analogous to 6 from Chapter 1, which describes the direction in which the first breaking occurs,
see Table 2.1.

In the BEH mechanism, when generating the masses for the gauge bosons W, Z, W', Z', an
equivalent number of scalars become their longitudinal degrees of freedom. It is clear from
Egs. (2.10), (2.15), (2.17) that there are eight remaining neutral degrees of freedom, the SM-like
Higgs plus three CP—even and two CP—odd scalars, while in the charged sector we have two
remaining charged degrees of freedom. The scenario we describe here corresponds, however, to
the minimal possible scalar content: we have already stated the necessity of x, for a structure
which is symmetric under parity, while a bi-doublet, necessary for the generation of masses in
the fermionic sector, cannot fully break the SU(2)r, x SU(2)g x U(1)5—1, gauge group down to
U(1)En, but only produce a partial breaking SU(2)r x SU(2)r — SU(2)r+r, i.e. simultaneous
and identical transformations under both SU(2) symmetries.

2.3 Gauge boson spectrum

Each step of the symmetry breaking is represented in the neutral sector in the following way

s9 co O 1 0 0 w; A
co —sg 0 0 s c wil=1|Xx1], (2.20)
0 0 1 0 cp —54 B X,

Stage 2 Stage 1

where ¢y = cos @, etc. On the other hand, we have for the charged gauge bosons

_WLFEWE e _WRF Wi
v2 o f V2
The fields X7, Xo and Wg, Wg can mix depending on the specific Spontaneous Symmetry Break-

ing occurring in LR Models, and therefore the physical states Z, Z’' and W, W' are linear combi-
nations of X1, Xo and Wy, Wg, respectively.

(2.21)
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N2 N2, INYE) 5IT2

1 1 2 1—2¢2 2 K
1L +90)s" J(9R+ 9B_r)rR 242 [Ff R R —. _ZZngRgB—L P

4 4 Co %
M2, M2, AMZ,, SM3,
1 1 1 So
93 L9k 29h (5% + 3) 220, g (3 + )

Table 2.2: Mass terms at the tree level. Above, k* = k] + K3 + K7, and sag = 2r/(1 4+ 17)

The physical states can be determined by diagonalizing the mass matrix of the gauge bosons,
which results from the couplings to the scalars. First then, we have the covariant derivative D
as in Eq. (2.7), from which one has the following gauge invariant part of the full Lagrangian

Escalar = (D,LLXR)(DHXR)T + (D,LLXL)(DHXL)T + (D“@)(D“@)T - V5 (222)

where the potential V' = V(xg, xr,®) is going to be discussed later. (Note that, since ®
transforms as ® — U L@U;, the part of the covariant derivative on W5 gets an opposite sign
compared to that of W}.)

Now, expliciting the VEVs of the scalars fields, we have the following mass term

M} S M W,
‘Cmass = (WZ_ W;{) ~Vg ~ 5 w ~ 5 L
SN2, MZ, + AME, ) \wi

0 0 0 A
(4 x1 x) |0 SN2 x|, (2.23)

+

N~

where the mass terms at the tree level are given in Table 2.2.

The off-diagonal terms lead to mixing between X; and Xs, or between VVLi and WE: for
instance, the ~ 80 GeV charged gauge boson W7 results from the mixing of the fields associated
to the TiL and Tf’ weak isospin generators, which is suppressed by the ratio of vacuum expectation
values, i.e. €. If we now diagonalize the gauge boson matrix, the eigenmasses are given by:

2 ~r2 5]\2% 2 ~2 ~r2 Mr%w 2
MZ = MZ_M—Q, MZ’:MZ’+AMZ’: P) (1+O(€ ))7 (224)
Z )
2 2 M\Zév 2 2 ~r2 9122’%2 2
My, = My — T My = My, + AMy,, = T(l + O(e%)),
W/

(2.25)

keeping only the first corrections on M%yw, 5M%1W, AM%/,W’ over M%/,W"

To conclude this section, we would like to discuss the chosen scalar representations in connec-
tion with the gauge boson spectrum. If a triplet representation Ay, = (1,3,1,2) was considered
instead of x,, the VEV &} 't would be very much suppressed. This is due to the different ways
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in which this VEV contributes to the masses of the W=, Z gauge bosons: since the so-called
p—parameter

M,

W 2.26
M?2 cos? 0 ( )

p =
is very close to 1, (A%) would be small, a dozen GeV at most (for p = 0.99 for instance, we find
ntL”plet ~ 17 GeV, see Appendix C). On the other hand, since in the doublet LR Model case the
spontaneous symmetry breaking mechanism is triggered by doublets and a bi-doublet, p does
not provide a very important constraint at tree level, see Appendix C.

2.4 Masses in the fermionic sector

When the scalar doublet of the SM develops a VEV, it gives masses to the fermions (apart from
the neutrinos), which are equal to the VEV times the diagonal elements of the diagonalized
Yukawa matrices. The unitary matrices that diagonalize the mass matrices lead to the CKM
matrix, discussed in the last chapter, responsible for mixing among different generations in the
context of the SM.

In LR Models, when the bi-doublet develops VEVs, it generates masses to the fermions
(including neutrinos) and the diagonalization of the mass matrix leads to non-diagonal mixing
matrices responsible for the flavour phenomenology in LR Models. In this context, we have two
possible structures

L) = —Q (@Y + BY)Qp + hec, (2.27)

where Y, Y are the two Yukawa matrices. Given the vacuum expectation values seen in Eqs. (2.15),
we have the mass matrices

(cY +5Y), My = Y"1 2(sY 4 ¢Y), (2.28)

where ¢ = 1/(v/1+4r2) and s =r/(v/ 1+ r2). We now diagonalize the mass matrices M, 4 as in
the previous chapter, resulting in

UMM, UY = M, = diag(ma, me,mq), USMUL = My = diag(ma, ms, ms) , (2.29)

and the same unitary transformations U}%’d, Uz’d introduce the mixing matrices V2 which are
defined as the unitary matrices

ViR = UL g (2.30)

We now discuss an important point concerning M\u,d- Note that when s = O(1) c & r = O(1),
a linear combination of Y,Y gives a large mass in one case (the top-quark mass in the LHS of
Eq. (2.28)), and not in the other (down-type quark masses in the RHS of Eq. (2.28)). It is usual
then to ask for r < 1 (see e.g. Ref. [28], where large spontaneous CP—violating phases are
considered) and Y alone would account for the very large mass of the top. However, in order
to remain as general as possible, we will investigate arbitrary values for r, but we will keep in
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mind that, even if not impossible, having m; in one case and m; in the other would state a
somewhat unexpected relation among the VEVs k1 2, related to EWSB, and the components of
the Yukawas Y, Y.

Shifting to the leptonic sector, we first note that in the SM neutrinos are massless. A “triv-
ial” extension of the SM, however, could be to consider three copies of right-handed neutrinos
vr = (1,1,0), thus leading to a Dirac mass term for vy g just like for the other fermions. Due
to their quantum numbers, vi are sterile, i.e. they do not interact with the other particles,
and their existence would at our present stage of knowledge remain based on the observation of
neutrino masses and generation mixing (the PMNS matrix).

In the LR Models, right-handed neutrinos must be introduced to establish a LR symmetry
in the leptonic sector and their existence could be tested by means of right-handed currents. In
the doublet scenario under investigation here we have

cllentons) _ _Tr(@ylert 4 Y Lh + hee. (2.31)

Yukawa

similarly to Eq. (2.27). Once plugging the VEV of the bi-doublet, we have the following non-
diagonalized leptonic mass matrices

2 2 2 2
M, = \/ Iii/;- Ry (CYlept + Sylept)7 M, = \/ :‘i\l/—%— Ry (SYlept + cylept) , (232)

the diagonalization of them leading to the mixing-matrices Vlf}f’, analogously to the quark sector.
Note that when sending the masses of the neutrinos to zero one does not always gain in symmetry
as in the SM for charged fermions [105], because vy, and vg in the LR model can be related by
the exchange of physical W or W’ gauge bosons when r # 0 [106]. This results in finite radiative
contributions to the masses of the neutrinos proportional to the masses of the charged leptons.
Whether or not this situation results in fine-tuned masses for the neutrinos at low energies in

the doublet case when r is arbitrary must still be checked.

2.5 Discrete symmetries and the scalar potential

In LR Models, we may define the following parity transformation (where global phases are
absorbed into the fields)

QL < Qr
P:¢ & — @l (2.33)

XL <> XR

(we omit Z — 7 or ? — —?) We also define the charge conjugation transformation®

Qr + (Qr)°
c:{ o7 . (2.34)

T
XL,R < X};L

4See Refs. [103,107] for other transformations in the context of LR Models, and see Ref. [108] for a more
general discussion.
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We have not yet mentioned the case C so far: after all, parity and charge-conjugation viola-
tions are closely related in the SM, and LR Models alternatively offer the possibility of restoring
C at high energies. Therefore, one could as well rewrite the statements we have made so far
about the restoration of P by considering C instead of P. Moreover, restoring C is motivated by
possible extensions of the LR Model [28].

We now move to a discussion of the scalar potential. Its most general form, symmetric under
the parity transformation defined above is

V= =3 tr(®1®) — 3 (DD + dDT) — 3 (x| x1 + xhxr)
+ 11 (L xR+ xhOIXL) + 15 (XL xR + XD XL) + M ltr(@TR) i
+ X2 ([tr(@T@))? + [tr(2DT)]?) + A3 tr (T @) tr(2DT) + Ay tr(@T D) tr (T + D7)

+ [0 x)? + Ochxr)?] + ps(xhxe) (chxr) +ar(xhxr + xhxr) tr(®T®)
. ~ ~ i ~ ~
+ e D tr(@T) + xfoxm (@7 @)] + 72 [x] xr tr(1®) + xfyxm tr(DDF)]}

+as(xh @@ x L + xR PxR) + as(x] BB xL + XL P BYR),
(2.35)

where 05 is a CP—violating phase, and '“%,2,3’ MIL?’ A1,2,3,4, p1,3 and 234 are all real. Even
if there are (O(20) new parameters in the potential, not all of them are relevant, and only a
few show up in the expressions of couplings and masses of the heavy sector, as seen in their
expressions given in Appendix E.

For simplicity reasons, we focus specifically in the case where no complex phase is present in
the potential, namely sindy = 0. As argued in Appendix D, the phases of the VEVs are related
to 2, and we are going as well to set all of them to zero, i.e. sina =sinfy = 0.

The basic features of the scalar potential symmetric under C can be found in Appendix F in
a slightly different context, where it is argued that the C case introduces extra complex phases.
However, since we are interested in the simplified case where the complex phases in the potential
are set to zero, both cases P and C lead to the same discussion. Moreover, neither one or the
other implies the vanishing of a possible coupling between the fields ®, xr r: all the possible
combinations are already present in Eq. (2.35), and what changes is the relation between the
coefficients of the different structures and the number of possible complex phases. Then, we
expect for all our purposes to have essentially the same discussion when P or C invariant scalar
potentials are considered, and perhaps even when neither of them is assumed.

By minimizing the potential, one determines the VEVs in terms of the parameters of V. At
the minimum, the stability conditions which must be satisfied are

ov

- = 2.
I 0, (2.36)

{k1,2,0,rR,,0L}

where z € {0, 09" X%, XV, 0 0% X%, XY} (out of them, two equations are redundant, i.e.
there are six independent equations relating the set of the six parameters {k1 2,1 r, @, 01} char-
acterizing the minimum). The mass matrix in the scalar sector is determined at the minimum

by

. 0V
Oz dy

: (2.37)

{Kk1,2,0,r,,0L}

which is an 8 x 8 matrix in the neutral sector (z as above, and with y assuming values over the
same set), or a 4 X 4 matrix in the charged sector (z,y € {gafc, <,02i, xli%, Xf})
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In agreement with the discussion at the end of Section 2.2, the resulting scalar spectrum
calculated from Eq. (2.37) consists of:

e one light SM-like scalar h°, of mass ~ &, and

e three heavy CP—even scalars H ?,273,
o two heavy CP—odd scalars A?g,
e two heavy charged scalars H fQ,

where the heavy particles have masses ~ kg. As seen in Appendix E, some of the physical
scalars are degenerate at leading order in e: thus {Hio, A?; Hj[}7 i = 1,2, have the same masses.
Of course, two other CP—odd scalars and two other charged scalars correspond to the would-be
Goldstone bosons and are absorbed as the longitudinal degrees of freedom of the massive gauge
bosons.

2.6 Couplings to fermions

Here, we focus on the basic characteristics of the gauge boson and physical scalar couplings to
the fermionic sector. More information and technical details can be found in Appendix E.

2.6.1 Couplings of the gauge bosons to the fermions

As in the SM, the couplings of the fermions to the gauge bosons can be determined from their
charges. Then, these couplings are corrected when going to the mass basis of the gauge bosons
due to the mixing of the known and new gauge bosons. This mixing is suppressed by the hierarchy
of the SSB energy scales, and comes at order O(¢?). For the sake of readability, we provide in this
chapter the couplings at leading order in ¢, while the full expressions are given in Appendix E.
It is straightforward that at this order the couplings to the charged vector bosons are given by

W ary VEdy + TR Wy wryt v Rdy (2.38)

9L
V2 V2
9R

9L (1— — -
+EWL#VL’)/“Vl£‘pth + EWRHVRV“VlfptﬁR + h.c.,
which has a symmetric structure for right- and left-handed fields.

In the SM, the CKM matrix is the mixing matrix corresponding to V1 = U;TUg, while VF

g(ng +1)

n
is not relevant. Concerning the structure of VX, since it is unitary there are possible

complex phases, where ng is the number of generations. However, some of them are non-physical:
one can redefine the relative phases of the quark fields, thus eliminating 2n, — 1 phases. With
ng = 3, we have one physical complex phase, which alone introduces CP violation in the quark
sector of the SM. When there is a second mixing matrix, the one corresponding to right-handed
quark currents, one has a total of ny(ngy + 1) possible complex phases distributed over the two
mixing matrices, but as before one can eliminate 2n, — 1 phases by redefining the quark fields
(in what follows, one eliminates as much as possible the phases of v ). Hence, there is a total
of ng — ng + 1 complex phases in VLE  When ng = 3, the total number of complex phases
introduced by VE % is seven, i.e. six extra phases compared to the SM, constituting new sources
of CP violation in the quark sector.
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Figure 2.1: Main couplings of the W, W' Z and Z' particles (which are further corrected by their
mizing).

The same exercise for deriving Eq. (2.38) can also be made for the couplings to the neutral
gauge bosons Z ~ X7 and Z’ ~ X,. From Eq. (2.20) we have

" (gLTgLSG + grT3's4co + gp—1 5 C¢Ce) A,
B—-L
+ (gLTz))Lce — gRT3Rs¢59 —gB_1L c¢59> X (2.39)
B—-L
<9RT§C¢ —9B-L— S¢) Xop | [

where f = Qg or Ly, gr. The reader should note that the Z’ boson introduced here, which is
an admixture of X5 (the main component) and X1, does not introduce flavour changing neutral
currents, as it may happen in other models which have Z’ bosons. The reason for this is the
same found in the SM for explaining the absence of FCNC of the Z: up-like quarks or down-like
quarks of the same chirality and different generations have exactly the same quantum numbers
(except for flavour), assuring flavour diagonal couplings (see [109-112]).

The weak interaction part of the expression (2.39) can be compactly written as

Z1 )+ (25K (2.40)

which is corrected at order O(e?) by the mixing between X; and X5, and where

= T~ QU ) (2.41)
= i—:%fw(g{; — g,
KD = gt (T Tende - 2 E D) (242)
= ng—Z% (d{/ﬁuf + dﬁ?vmssf) :
and
g =TH) - 2Q(N)s3, gl =T, (2.43)
&, = TE(f) /2 + 3 (T (f) - 2Q(f)) (2.44)
&y = TE(f)/3 — 2 TH(S), (2.45)
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left-handed | T3(f) | T (f) | Q(f) dy, d}

VeLyVuLsVrL, | +1/2 0 0 t5(+1/2) —t3(+1/2)
€L, L, TL —~1/2 0 -1 t33/2 —t3(—1/2)
ur,cp,tr +1/2 0 +2/3 —t35/6 —t3(+1/2)
dr,sL,br -1/2 0 -1/3 t5/6 —t3(-1/2)
right-handed | T (f) | T(f) | Q) di, d)

VeR, VpRy Vr R 0 +1/2 0 +1/(2¢3) +1/(2¢3)
€R, R> TR 0 —1/2 | -1 —1/(2¢}) +2t5 | —1/(2c3)
UR, CR, R 0 +1/2 | 42/3 | +1/(2¢3) —4t3/3 | +1/(2c3)
dr,sp,br 0 —-1/2 | =1/3 | —1/(2¢}) +2t3/3 | —1/(2c))

Table 2.3: Quantum numbers of the different fermions in the LR Model.

given in Table 2.3. The first line of Eq. (2.39) can be simplified as

A,ngM ) JgM = eQ(f)?’y'uf, (2.46)
where we have employed
Q) =) + () + BP0

Just like the last expression is only a consistency check (the electric charge must be equal to the
unbroken U(1) charge), the couplings to gluons have the obvious expression

9sJAGLTLf . (2.47)

2.6.2 Couplings of the scalars to the fermions

Similarly to the vectorial couplings, the couplings of the fermions to the would-be Goldstones
can also be evaluated. For the sake of readability, their expressions are given in Appendix E.

Here, we focus on the physical scalars. Developing the Yukawa terms around the VEV of the
scalar fields, beyond the quark mass terms one gets the couplings

ﬁﬁ [Mu(gp(l)r —ro9") + VEMGVEN (O — ) ug + hec., (2.48)
where a similar expression holds for the down-type sector. Above, the first term inside brackets
is a diagonal coupling to the up-type generations, while the second introduces Flavour Changing
Neutral Currents (FCNC). To further interpret this result, one needs to express the set of un-
physical fields {97, 9", x9", X?{} in terms of the physical CP—even scalar fields, h°, H 107273. In
Appendix E, we show the expressions for h°, H 10,273 in terms of {9, 09", X9, X%} up to leading
order in €. Here we pay special attention to the light SM-like Higgs field:

1

R = =
V14r? 4 w?

(@) + 18" +wx?) + Oe)xr . (2.49)

43



It then follows from Eq. (2.48) that k" does not couple non-diagonally, since h° is orthogonal to
the combination ¢ — 79" and the h°—coupling vanishes. Clearly, this is a feature at leading
order in €, but it is also valid when considering O(e) corrections, thanks to the structure of the
next-to-leading order term, proportional to x% as seen from Eq. (2.49).

On the other hand, the diagonal couplings of the Higgs are given by

M, _ M,
— | ———=,t—d1dr + ————Tzug | K° + O(?) + h.c. (2.50)
Ki + K3+ KT ki + K3 + KT

Note that in the SM we have

My— M,
— (—ddeR + —ﬁuR> H° 4 h.c. (2.51)
v v

Both expression are identical up to O(e?) corrections since /7 + k% + K2 is equivalent to v found

in the SM (up to O(e?) corrections), and H® from the SM is identified with h", by construction.
The comparison between Eq. (2.50) and (2.51) implies that the measurement of the intensity of
the couplings of the Higgs to the fermions does not set alone bounds on kr,, as it could be naively
thought once the bi-doublet alone couples to the fermions.

Of course, other combinations of the fields {(p?r,gogT,XOLT,x?{} will have couplings which
introduce FCNC in the model. This is the main reason why one generally has very strong
bounds on the scalar sector of the model, pushing the neutral scalar masses beyond many TeV
(see Chapter 6).

2.7 Structure of the mixing matrix V%

The new mixing matrix V1 describes the couplings of the new charged gauge boson W’ * to
quarks and introduces new free parameters in generic versions of the model.” However, by
considering the explicit realization of a discrete symmetry, parity P or charge-conjugation C, one
may constrain V2. Let us see the structure the Yukawa matrices must have under these discrete
symmetries. Under P, we have [54]

QroYQr 5 Gy’ Prd!Y Pry’Q = Qro'Y QL (2.52)
and to fit the Hermitian conjugate
QLY Qr) = Qre'YTQyL, (2.53)
we require Y = Y1 (and Y = ?T). On the other hand, under charge-conjugation
—_ C —_— c —_
QLY Qr = (Qr)*®"Y(QL)* = QLeY QR (2.54)
Hence, Y =Y 7T (and Y = ?T) for charge-conjugation invariance.

The particular structures for V' in each of these two cases are: (a) under a parity-symmetric
model

5The mass spectrum ]\Zu’d and the mixing matrices VIR are all related to the underlying Y,Y. Knowing
{mu,d,s,c,p,+} and the Cabibbo angles of VL namely {sinf12,sin613,sin 623}, one has the possibility to constrain
the structure of V. This is studied in [29], where constraints sensitive to CP violation are also employed.
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vE = S,VhS, (2.55)
Sy = diag(sg,), s ==+, 1=1,2,3,
which is valid in the case where there is no complex phase from the bi-doublet vacuum expectation
values, as we assume here for simplicity reasons (for a more general discussion, see [28] and [113]).
(b) under charge-conjugation

vE = K, (VI)Ky, (2.56)
K, = diag(ky,), kg =e%u, i=1,2,3,

where one of the phases 0, is fixed by the others. In this case, there are extra 2ny, —1 =5
complex phases in total.

We call the expression stated by Eq. (2.55) a manifest relation between the two mixing
matrices, while the relation stated in Eq. (2.56) can be called pseudo-manifest, which are two
common patterns investigated in LR Model studies.

Egs. (2.55) and (2.56) may be seen as further constraints to the model in order to have more
predictive versions of LR Models, and follow from P or C that we have till now advocated for.
However, we would like to test the more general case where V', V' are not related by a manifest
or a pseudo-manifest relation. The reader may be worried by the fact that, therefore, we would
have no exact discrete symmetry at all. Nonetheless, the exact equality of couplings, Eqs. (2.55)
and (2.56) (and moreover the gauge couplings gr, = gr), should be the concern of more elaborate
Grand Unified Theories, while LR Models introduce the required degrees of freedom for a P
or C symmetric theory. In this picture, differences between left and right couplings would be
explained by the running from the scale of unification of the couplings down to the scale ~ kg,
inducing g1, # gr and VE = V£ (up to signs or complex phases) in the LR Model.%

2.8 Triplet model

While the model with doublets we have described has been the first one to be considered in the
end of the ‘70s when LR Models were conceived, the model with two triplets and one bi-doublet
has been extensively considered in the literature, starting from Ref. [24]. Tt has the interesting
feature of implementing a mechanism where the known neutrinos have very light masses due to
very heavy counterparts (i.e. a see-saw mechanism).

For further discussion, let us investigate over the remaining of this section the triplet scenario,
in particular the interactions with leptons, where we find the most important differences. To
this effect, we have the two triplets A = (1,1,3,2) and A = (1,3,1,2), which introduce the
following degrees of freedom

_(SR/IV2 kT _ (V2 T
N G PO A o T

(A discussion concerning the scalar potential in this case, together with the Higgs spectrum is
found in Appendix F.)

SFor this reason, we have avoided so far the use of the term “Left-Right Symmetric Model.”
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In the triplet case, beyond the Yukawa terms

gllertons) o _TrH(@yert 4 &V L 4 hee., (2.58)
we also have
eptons 1 TT N e 7T Ne e
cllertons) o —5(@L)eimA LY, 4+ (D)eimaARY P L) + hec. (2.59)

thus leading to Majorana masses. The full mass matrix is then

T R
hpky hykr (vr

1 h% h
cheten) — = (o) 7z) < ML DT ) ( ”L)C ) +he., (2.60)

where hp = (Yt 4 sY1P) /\/2 bk, = YT 1\/2) b = VP /2 and ky = (/K2 + K2

Note that the mass matrix of Eq. (2.60) has a 6 x 6 structure: when writing the physical
interactions with light neutrinos, one would find a non-unitary 3 x 3 matrix, implying a more
involved analysis of neutrino processes compared to the doublet case.

For simplicity, let us consider the case of only one generation [54]. When going to the mass
basis, one finds (we choose conveniently the global phases of the fields so that kY, > 0 and
assume hi kg > hpry > hi k)

h} K4 L R
Lo~ R TE ~h , 2.61
m hﬁ o MEL mn MRR ( )
and
v _ +icos® —isin® vy, , (2.62)
N sin © cos © (vr)©
1/ hp ke’
where cos © ~ 1— 3 (h—g —+> . Then, the left-handed field vy, is basically light, while the right-
M RR

handed counterpart vg is much heavier. To compare the two contributions to m, in Eq. (2.61),
one has the following relation between the VEVs k1, g, valid in the triplet case

2

K K1K K
(2p1 — pg)—L ~ {51 12 2 cos(f — ) + Bo— cos b, (2.63)
Ky K3 K3
K3 K K K
+B3—22 cos(fr — 204)} UL =,
/<&+ KR K4 KRR

at leading order in € = k1/KkR, which is one of the stability conditions from the scalar potential
(see Appendix F). Therefore, Eq. (2.63) leads to

my, = (hD — vhirhi) &3/ (hirkr) (2.64)
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where v, defined implicitly from Eq. (2.63), is of any sign. This relation is called a see-saw
mechanism: k4 being fixed by the EWSB, the bigger kr (setting the scale for my) is, the
smaller m,, becomes. Note that the see-saw mechanism, and therefore the smallness of neutrinos
masses, is closely related to the spontaneous breaking of parity in a very elegant way, through
K < KR-

Let us have a closer look to the spectrum. Given

kr S10TeV  and k4 ~ 246 GeV, (2.65)

if all the involved parameters of the potential and Yukawas were of order O(1), one would have
m, 2 6 GeV, implying far too big neutrino masses. Therefore,

h%, ~yhk,  of order 107° (2.66)

are usually required, while hY; ~ O(1) controls the mass of the heavy neutrino. To accomplish
Eq. (2.66), one may imagine having

h%;  of order O(1), (2.67)

just like hl[vj}, and -« much suppressed. At the same time,

hp ~107%, (2.68)

which is not surprising given the sizes of the Dirac Yukawa couplings in the other sectors, e.g.
Me/k+. As noted in [24,100], asking for small 1 2 3 in the definition of v is not a problem, since
quantum corrections to these same coefficients would not spoil their smallness.” It has also been
argued over the literature that it is possible to evoke approximate symmetries to suppress the
coefficient of m, oc k% /kp (e.g. Refs. [114-116]).

Note that Eq. (2.64) is the usual motivation for considering the triplet scenario. However,
in view of the requirement of further suppressions for explaining the smallness of v masses,
Eq. (2.66), we see that the original interest for introducing triplets in the model (i.e. predicting
small neutrino masses), is less compelling than usually advocated. On the other hand, though
in the doublet scenario no prediction is made concerning the smallness of the neutrino masses,
it is a simpler scenario in the sense that no Yukawas YLZTg are present, thus implying that the
mixing among leptonic generations is described by 3 x 3 unitary matrices, and the number of
physical scalar fields is lower (there are no doubly charged fields 5%%)

2.9 Conclusions
Over this chapter, we have introduced LR Models, and we have seen their main features:

e They consist in the gauge group SU(3).xSU(2) x SU(2)gxU(1) g1, offering a framework
where one is in principle able to implement parity P or charge-conjugation C symmetry,

e In order to spontaneously break the new local symmetries, SU(2)r x U(1)p_r — U(1)y,
to implement the EW spontaneous breaking, SU(2)r, x U(l)y — U(1)gm, and to gen-
erate masses for the fermions, we include two scalar doublets g = (1,1,2,1) and x1 =
(1,2,1,1), and a bi-doublet ® = (1,2, 2,0), this being the minimal possible set of fields,

"Note that the suppression of ~ implies the suppression of k;, through Eq. (2.63).
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e The vacuum expectation value (x%) = kr/Vv/2 breaking the LR Model gauge group down
to the SM one is expected to be much larger than x ~ 246 GeV, a way to explain why LR
Model effects have not been observed so far,

o After the first symmetry breaking, new gauge bosons are present: a new charged gauge
boson W’ and a new neutral gauge boson Z’ 0, whose masses are proportional to g,

o« W'E couples to quarks through a mixing matrix V¥ analogous to the CKM matrix: its
structure can be constrained by considering P or C to be exactly restored at the energy
scale ~ kg, but the full restoration of P or C may be achieved a priori only at higher
energy scales,

e The matrix V¥, which has in principle an arbitrary structure, introduces new sources of
CP violation,

e Beyond the SM-like Higgs field k", other physical scalars are present. These are: three
CP—even H ?7213, two CP—odd A?ﬁg, and two charged H fQ, which have masses proportional
to kr. The scalars H- ?72 and A?Q have Flavour Changing Neutral Couplings, a feature not
present in the SM. This then implies contributions to meson-mixing observables that are
relevant for phenomenology.

Starting from the next chapter, we aim at constraining the doublet scenario of the LR Model.
First we will consider EWPO, in order to constrain the specific way in which local symmetries
are spontaneously broken in the LR Model, and then we will shift to meson-mixing observables.
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Chapter 3

Testing the SSB pattern of LR
Models through EWPO and

direct searches

The first class of observables of interest to constrain LR Models includes EWPO [117,118]. In the
Standard Model, they constitute constraints of utmost importance for testing the consistency of
one of its most salient features, namely the spontaneous breaking of the Electroweak symmetry
SU(2)r, x U(1l)y, as seen in Chapter 1. Being very sensitive to the precise way in which the
Brout-Englert-Higgs mechanism operates in the SM, one expects to gain valuable information
concerning the way in which the LR Model gauge group is spontaneously broken.

A meaningful computation of these observables in the SM framework requires radiative cor-
rections, as discussed in Section 1.2.1. On top of that, we add tree level contributions introduced
by the LR Model with respect to the pure SM (i.e. the SM with no extra fields or parameters),
and from this point the LR Model can be constrained - we postpone the discussion of radiative
corrections in the LR Model framework to [119]. We reconsider the global fit of the full set of
observables already studied in the context of the SM in Section 1.2, see also [120] [121] [122] [123].
Moreover, we also consider the impact of direct searches for W’ bosons.

It should be stressed that throughout this chapter we are not interested in flavour-sensitive
observables (this being the concern of Chapter 6): the main goal here is to probe one simple and
in some sense new realization of Left-Right Models (the doublet LR Model) from the point of
view its Spontaneous Symmetry Breaking features.

3.1 Corrections from the Left-Right Model to the EWPO

We will correct the SM predictions by including the contributions from the LR Model at tree
level. Then, from these corrections, we will be able to constrain this particular extension of the
SM. We consider the calculation of a low-energy effective theory at tree level by integrating out
the (heavy) gauge bosons Z’', W'.

In our case, contributions from the extended Higgs sector at tree level are not important, since
they are expectedly heavy (due to Flavour Changing Neutral Current related processes that we
will discuss later) and we work with energies around My or lower. Moreover the physical scalars
couple with strengths proportional to the masses of the quarks and leptons, which are the light
degrees of freedom for the tree level processes under discussion.
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3.1.1 Effective Lagrangians

Here we will closely follow [124]. Having sy, # 0, however, is the essential difference between our
analysis and the one found in reference [124], where k1, is set to zero as a simplification.

The Lagrangian including gauge boson interactions with fermions and gauge boson mass
terms is

1 1 _
L o= MZZ"Z,+ My WHWy + o M3 2" 7', + M, W' W
M} M
+ Z, (Jo“ - —‘}422 Ko“) +7' (Ko“ + iw ZJO") + A JG (3.1)
z' z'
SME oM
+ [W; <J+“ - ~—2WK+“) +W (K*“ + WJ**‘) +(+ ¢ )] ;
M, M,

where the currents J°, K°, J= K*, Jgu are read from Section 2.6.1. Note that, in the expres-
sions above weak charged currents are in the flavour basis: going to the mass basis introduces
the mixing matrices V® and Vze ’t , which are of no relevance here, since the masses of the kine-
matically allowed fermions are too small compared to My to be significant for the determination
of I'yy, at the precision we need to calculate LR Model corrections.

At energy scales /s much below the masses Mz -, one can integrate out the W’ and the

Z' leading to

s M2, ’ 1
Lot SMEZVZ, + MEW W, (3.2)
S M?2 oM,
+ Z (Jo“ ZKO") + [WI (J*“ WK*“) +(+ & —)}
MZ{ MW/
+ Ay — —=5 K"K - K™K,
z' w’

where one recognizes the SM Lagrangian corrected by terms suppressed by (Myz/)~2 or (My) 2
At energies /s much smaller than Mz one can integrate out the W and the Z, and we are
left with

cifMEw — JOT0 + 5M§ JOJ0 — 2OM7 Jonc0 4 gt g0
eff - QM% M%/ Z MQ H H
1 SM S M3,
_ ~_2[J+HJ; 5 < IVJ-HAJ— (J-l-uK +J- MK+)
Mg, M2, \ M}, M3,
+ K*“KM> + A JG - (3.3)

It is from the two last expressions that we have calculated the LR Model corrections used in the
fit.

As a parenthesis, compared to the triplet case, where SU(2)g x U(1)p_y, is triggered by a
triplet Ar under SU(2)p instead of a doublet y g as in our case, the only difference we have is
(taking (A%) = (x%), which may not be the result of phenomenological studies)
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(M%’)doublet — 4(M%’)triplet ) (Mg[/’)doublet - 2(M3V’)triplet 5 (34)

while the other mass parameters (M2, etc.) remain the same when ry, = 0.

3.1.2 Parameters used in the fit

Neglecting electroweak corrections, functions of o, my,, and My, as well as terms from J, I K™+
and K :K ~# that do not interfere with the SM J : J7# in the limit where the mass of the muon
is neglected, one gets the following expression for the Fermi constant

Gr g% 5Mév 1 2p4 2
where one employs
w2 \ 7!
R2<1+1+—r2> <1, R?>>0, (3.6)
and
2r

The Fermi constant is measured from the u lifetime. Note that its value is extremely well
measured, and it is given by

Gr = (1.1663787 & 0.0000006) - 107°GeV2  (PDG). (3.8)

Due to the accuracy compared to other experimental inputs, we are going to neglect the uncer-
tainty in the last expression.
To further continue, we recall the expression for the mass of the Z boson

N 2
- SME M. 1—R?
M2 = M2 - ~22=a(222)”m2 11— (1-—=] |, (3.9)
Mz, S5Ch €
where
2 2 2
o= 89 gL) ; (gL)
c;=1-— = ~] == 3.10
¢ 1— s (QR 3 \9r (3.10)

has already been defined and is a parameter indicating the value of the ratio gr/gg.

In EW precision tests, it is standard to use Mz and G as parameters of the fit, since they
are very precisely measured. We will do the same here, trading sg, x by Gr, Mz, thus leading to
the following relations between the SM and the LR Model

5 = (k¥)sm (1+€RYs35) (3.11)

2
22 2 2 294 2 2 4 1-R?
spcp = (spcplsm |1+ Ris55 —ecy [ 1— 2 ,
@

where
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1 a(Mz)m
2 _ 22 _
(K%)sm = —\/§GF , (sgc)sm = 7\/§GFM§ .

Note that there are no tree level corrections to the fine structure constant, as can be seen
from the previous Lagrangians. Therefore

(3.12)

a=(a)spy =—. (3.13)

3.1.3 Expressions for LR Model corrections

We now use the definitions given in Appendix A to calculate the tree level expression of an
observable in the SM, X§,5°, and the tree level expression in the LR Model, X}’5%;, from the
effective Lagrangian in Eq. (3.2) or (3.3).

Following the discussion in Chapter 1.2, we will thus use the following set of parameters

S = {mlo, ag(Mz), Mz, My, Aay) (M), €,co,r, 0} (3.14)
cf. Eq. (1.40).
1 tree
We have then the following expressions for — - /,éf”e]‘f (numerical values are truncated for
¢ SM

compactness), where one employs the numerical approximation (s3)sas ~ 0.234, sufficient for
the precision required here:

e Asymmetries

1

= - 0Ay /Ay = —0.113 = 0.649 ¢, + 0.762 ¢ (3.15)
+(—0.119+ 0.994 ¢5) R?* + R*0.232 (1 — s35) ,

1

=z 5 A/ A =312 -8.97¢; +5.86 ¢, (3.16)

+(—4.90 + 7.65 ¢3) R + R*1.79 (1 — s34) ,

1

= 0 Acpr/Acyur =50.7 = 118, 5 +66.9c (3.17)
+(=71.1487.3¢3) R* + R*20.4 (1 — s35) ,

1

ek §App(b)/Arp(b) = 50.6 + 67.6 5 — 71.2 R? (3.18)

+c (—118. 4+ 88.2 R%) + R 20.6 (1 — s34)
1
=z §Arpp(c)/Arp(c) = 53.8+ T2.7¢} — 76.0 R? (3.19)
+¢5 (—127. 4 94.9 R?) + R*22.2 (1 — s34)
1
=z §App(e,pu,7)/Arp(e, 1, 7) = 101. + 134. ¢} — 142. R? (3.20)
+¢5 (—235. 4+ 174. R*) + R*40.8 (1 — s34)

e 7 total width

1
=z 6Tz/Tz =0.783+0.141 ¢ — 2.13 R? (3.21)
+¢5 (—0.924 + 1.49 R*) + R*1.35 (1 — s34)
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e Rations of Z widths

1

= ORy/ Ry = —0.422 - 0.194 ¢ + 5 (0.616 — 0.253 R?) (3.22)
+0.481 R* — R*0.0591 (1 — s35),,

1

= " ORc/Re=0.814+0.374 ¢} +c3 (—1.19 4 0.488 R?) (3.23)
—0.928 R* + R*0.114 (1 — s34)

1

5 ORepr/Repr = —0218+0.993 cj, — 0.0850 R? (3.24)

+¢5 (—0.775 + 1.30 R*) + R* 0.303 (1 — s34) ,
e Cross-section of the Z into hadrons
1
= 00had/Ohaa = 1.09 — 0.140 cj + 5 (—0.948 — 0.183 R?)
—1.05 R* — R*0.0428 (1 — s34) , (3.25)

where a kinematic correction to the Z — bb process [125] was included in the calculation
of ohaq in the denominator of doped/ohad:

4m? 1/2 b 2m3 b 4m?
- — 1+ —= — — ~ (0.99. 3.26
( M% ) 9gv + M% + 94 M% ( )

e W mass and total width

1
=z SMy /My =0.719 — 1.44¢3 + 0.719 ¢ (3.27)

—144R*+ 144 ¢} R* + 0.719 R*(1 — s34) ,

1

=z STw/Tw =2.16 — 4.32¢5 + 2.16 ¢, (3.28)
—4.32 R*+4.32¢] R* + 216 R*(1 — s35) ,

e Atomic Parity Violation

el? - 6Qw (p)/Qw (p) = 52.1 4 20.6 ¢ — 73.7 R? (3.29)
+c588.0 (1 — R*) + R*21.6 (1 — s35) ,
eig 6Quw (n)/Quw(n) = —1+ R*(1 - 53,). (3.30)

Together with the expressions in Appendix A, this set of expressions therefore gives the SM
and LR Model tree level contributions X&75 and X}755, = O(€?). The Standard Model Xsys can
be considered up to the highest order known

Xsm = XENT + XGqfre. (3.31)

Finally, the expressions corrected by the LR Model are given by
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tree

X
X = Xsu (1 + %) + O(eY), (3.32)
SM
O(e?)

where corrections coming at order O(e*) are not taken into account, and X’ g?jmtwe}{ e XEE

has negligible impact.

3.2 Direct searches for LR Model particles

There has been an intensive program to search for a W’ coupling exclusively to right-handed
currents. One of the analysed decay channels is

W't S th (3.33)

(or W'~ — bt), where the final hadronic pair is on-shell. The pair tb then decays into £ vbb
[126-128], where £ = e, u, or qgbb [129,130]. Exclusion limits at 95 % are set on the mass of the
W' for the special case gr = gr,, generally excluding masses below ~ 2 TeV (or excluding large
values of gr, when gr # g1, for a given value of Myy/). In many of these analyses, it is assumed
that the right-handed neutrino is heavier than the W', and therefore the W’ decays exclusively
hadronically. The analyses may also consider a VI matrix proportional to the identity 15y3 as
a simplification.
Another channel, interesting when right-handed neutrinos are allowed to be heavy, is

W' — 4N — 0l W'™ = l1l9qq, (3.34)

where N is a right-handed neutrino. This channel, known as Keung-Senjanovié¢ [131], leads to a
same-sign pair of leptons in the final state, or in other words lepton number violation (however,
the actual analyses may consider both, same- and different-sign, final states). Following a series
of simplifications to guarantee the predictivity of the analysis, one is able to set lower bounds on
the mass of the W’ of ~ 3 TeV [132] (more generally, an exclusion region in the plan My, My is
quoted). Since the mass of the right-handed neutrino could be light as well, the decay W} — (v,
where v is a light neutrino, has also been considered, leading to similar bounds on the mass of
the W}, of ~ 2 TeV [133], and the more recent stronger lower bound of ~ 4.74 TeV [134]. This
however corresponds to searches of a W} which is interpreted as a heavier version of the W,
coupling exclusively to left-handed currents (and excluding couplings to the SM bosons W, Z, h).

Lower bounds are also found from diboson resonance searches, such as
WW/WZ — {vjj [135]. In this respect, an excess observed in the invariant mass range
1.8 — 2.0 TeV [136] has triggered a relatively large number of theoretical studies, specially when
other excesses are considered simultaneously (such as an excess of eejj in the invariant mass
range ~ 2.1 TeV), see e.g. [137] (for a W’ interpretation), [138] (for a W', Z’" interpretation)
and also [139,140]. However, more recent experimental data from the Run-II of LHC have not
confirmed such excess, see e.g. [141].

We could still comment on other channels, such as W’ — tb — fvjj [142], or W' — ttj [143].
Our point here, however, is that as a matter of fact LR Models have many parameters (gg, 7
etc.) or realizations (with heavy or light Dirac and/or Majorana right-handed neutrinos, etc.)
and analyses usually consider particular cases. That being said, we consider that it is sufficient
for the analysis presented here to assume a strict lower bound of 2 TeV for the mass of the Myy.

Apart from searching for the W', Z’ resonances are also intensively looked for in the channels
20, 7T, bb, tt, etc. As for the W', many of these analyses consider the Sequential Standard Model
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Figure 3.1: (Left) Correlation among AS. 5 and AESLD in the LR Model showing a strong tension
between the two measurements (the SM fit has essentially the same p-value curve and is not
shown). (Right) Correlation among opeq and Qw (Cs) in both SM and LR Model.

(SSM) picture [144], where new gauge bosons Z' and W} are assumed to have couplings equal
to the ones in the SM. In the SSM, lower bounds of order 2 — 3 TeV are set on the mass of the
Z' ! while some less constraining limits also exist for LR Models, Mz > 1050 GeV [145] or even
higher Mz 2> 2 — 2.5 TeV [146]. In view of that, and due to the weaker impact on the analysis
of a lower limit for Mz, (we remind the reader that in our version of the LR Model, the relation
Mz = My [cg holds), we do not include any a priori lower bound on the mass of the Z'.

There has also been interest for the search of LR Model scalar particles, such as the doubly
charged scalar when triplets under SU(2)r instead of doublets are considered. In view of the very
strong bounds coming from indirect processes (that we will consider later on), direct searches
are not competitive yet (see Ref. [147] for future collider searches).

3.3 Results of the global fits

The set of observables we use in our fit is given in Table 3.1, and they were combined using
CKMfitter, as in Chapter 1. In our analysis, the parameter c4 is allowed to vary over the
range [0.1,0.99], resulting from the perturbativity requirements g% /47 < 1 and g%_, /41 < 1
(symmetrically, ¢, could be considered over the range [—0.99, —0.1], but the observables are not
sensitive to the sign of ¢4). The ratio 7 = ka/k1 (where both VEVs are positive) can be taken
over the range [0, 1], otherwise we could redefine r as 1/r altogether with w/r — w, see Egs. (3.6)-
(3.7). On the other hand, the range for w can be larger, and we consider w € [0,3]. Having
too large values for w would imply small k1 2, which set the scale of the masses of the fermions:
w < 3 is therefore required in order to avoid too large Yukawa couplings of the top-quark.

The value for x2 ;. is 21.47, and for 19 d.o.f. we have the resulting p-value of ~ 31 %, allowing
for a meaningful extraction of the physical parameters. One can consider the Standard Model
as a limit case of the LR Model for which ¢ — 0", thus loosing all the dependences on the other
LR Model parameters, i.e. cg,7,w. It then follows that the quantity X2,,|sm—XainlLrRM 18

!Experimental bounds are communicated in terms of production ratio times branching ratio, o x B. It does
not look obvious, at least at this point, that a simple rescaling of B (equal to the ratio of the couplings in the
SSM and the LR Model frameworks) would be enough to reinterpret bounds derived in the SSM, in part because
the widths of the Z’ in both two cases are different.
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Figure 3.2: Correlation among € and ¢y in two situations: (Left) no constraint from My and
(Right) including this direct bound. Note the different scales in € used in the two figures.

distributed as a x? with 1 degree of freedom. Therefore, the SM hypothesis in the context of the
LR Model has a pull of

pull = \/X?nm|SM—X72nm|LRM =0.880, (3.35)

interpreted as a 0.88 ¢ deviation, which at this stage is not large enough for substituting the SM
hypothesis for the LR Model one.

The results for the best fit point and 68 % CL intervals are given in Table 3.1. As seen from
the predicted values of the different observables, the global fit of the LR Model is rather similar
to the SM one discussed in Section 1.2. One sees that the agreement with the experimental values
is improved for some observables (e.g. opaq, Mw ) at the expense of others (e.g. Re ., Qw(Cs)).
Note as well from the pulls shown in Table 3.1 that, similarly to the SM case, under the LR
Model hypothesis the experimental inputs for Apg(b, ), AGSLD and opqq show sizable tensions
with the underlying model, which are still left unexplained. Of course, different observables (and
their pulls) are correlated: for example, Figure 3.1 (Left) shows the correlation of Arp(b) and
ASLD | whereas Figure 3.1 (Right) shows the correlation of Qu (C's) and opeq in both SM and
LR Model fits, indicating the possibility of decreasing the tension in op44 at the cost of Qu (C's).

Moreover, one sees in Table 3.1 that the observables are not powerful enough to constrain c,
r and w independently at 1o (a situation indicated by “flat” in that table). One also notes that
the true value of w is poorly constrained, w preferring the highest value possible we allow it to
have. This preference is also illustrated in Table 3.2 (note that in this table we have fixed My~
to 1.5 TeV, whereas in the rest of this chapter we have considered the lower bound of 2 TeV),
indicated by the smaller values of x?2,;, one has for larger w. Moreover, when w = 0, gp_7,
reaches its perturbativity limit, g%_; = 4.

Though cg,r, w are not all constrained at 1 o, we can still have access to their correlations.
Figure 3.2 shows the correlation between ¢, and € in two different cases: (Left) without the
information about direct searches for W', and (Right) when bounds on the mass of W’ from
direct searches are included. In the last case, as expected from

- M 1 44.1TeV\? 1
M2, ~ a(Mz)m ~( © ) (3.36)

V2Gp(cd)sm s5€% 103

(M3, and MI%V, differ by O(€") corrections, and we ignore the latter for the expression of M3,

2.2
S¢€
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Observable input LRM fit (1 o) pull
Aol : 0.02812°500%5% | -
My [GeV]  [18] [19] 125.7+0.4 125.704+0.40 | 0.81
myoe [GeV] [66] 173.34 4 0.36 + 0.67 174031938 0.64
My [GeV] [12] 91.1876 + 0.0021 91.1875+ 0.0021 | 0.49

s 58] 0.1185 £ 0 + 0.0005 0.1190079:00%7 | 0.81

o 0.1,0.99] 0.49/flat -

€ >0 0.02510 052 -

r [0,1] 0.0075/flat -

w [0, 3] large, read text -
Tz [GeV] [12] 2.4952 + 0.0023 2.49485700008 | 0.47
Ohad [1b] [12] 41.541 + 0.037 41506710095 | 1.78
Ry [12] 0.21629 4 0.00066 | 0.21573773:909057 | .60
R, [12] 0.1721 4 0.0030 0.17229270506030 1 0.13
R, [12] 20.804 + 0.050 20.73561 00050 | 1.01
R, [12] 20.785 + 0.033 20.7356 10 00 | 1.35
R, [12] 20.764 + 0.045 20.782670-0035 | 0.65
App(b) [12] 0.0992 + 0.0016 0.10356T0 0000 | 2.87
Arg(c) [12] 0.0707 + 0.0035 0.07401 + 0.00062 | 0.60
Arg(e) [12] 0.0145 + 0.0025 0.01637 + 0.00025 | 0.29
Arp(p) [12] 0.0169 + 0.0013 0.01637 + 0.00025 | 0.30
App(T) [12] 0.0188 + 0.0017 0.01637 + 0.00025 | 1.42
Ay [12] 0.923 + 0.020 0.9343570 90015 | 0.40
A, [12] 0.670 £ 0.027 0.6677510 0005 | 0.16
ASLD [12] 0.1516 + 0.0021 0.1478 + 0.0011 | 2.20
A (Py) [12] 0.1498 + 0.0049 0.1478 +0.0011 | 0.43
ASED [12] 0.142 4 0.015 0.1478 + 0.0011 | 0.40
ASEP [12] 0.136 4 0.015 0.1478 + 0.0011 | 0.82
A, (Py) [12] 0.1439 + 0.0043 0.1478 + 0.0011 | 0.94
My [GeV]  [67] [68] | 80.385+0.015+0.004 | 80.3718F75:957% | 0.72
Tw [GeV] [69] 2.085 + 0.042 2.0917010:00055 | 0.16
Qw(Cs)  [70] [71] —73.20 £0.35 ~72.91515:43% 1 0.89
Qw(Tl)  [72] [73] —116.4+ 3.6 —-116.3970%5 | 0.00

M3, [TeV?] > 4 TeV? > 4 TeV? -

Table 3.1: Results for the LR Model global fit. We use the same inputs as for the SM fit, except
that we include bounds on the mass of W' coming from direct searches. The term “flat” referring
to the confidence intervals of cy and r means that no bounds at lo are set (cy, = 0.49 and
r = 0.0075 refer to the best fit point). The definition of a pull is given in Eq. (1.50).

o7



Figure 3.3: Illustrative plot showing the impact of different constraints on the €,cy plane: the
dashed blue line is representative of the EWPO constraints; the solid lines correspond to My =
1 TeV (red) and My = 3 TeV (green), while the red and green dot-dashed lines correspond to
My =1 TeV and Mz = 3 TeV, respectively; finally, the dot-dashed black lines come from the
(theoretical) requirements g% /4w < 1 = |cy|< 0.99 and g%_; /47 < 1 = |cy|> 0.1. The blue
region corresponds to the area satisfying simultaneously the representative EWPQO constraints,
My >3 TeV and 0.1 < |cg|< 0.99.

w | € gl Xhmlsn—Xamlir Mz [TeV] gr g1 gB-L
0 | 0.88 0.11 0.01 13.1 0.36 0.65  3.57
1] 1.04 0.40 0.99 3.77 0.39 0.65 0.90
21143 0.63 2.07 2.4 0.46 0.65 0.56

Table 3.2: Best fit point results for two parameters of the EWPO fits, the Z' mass, the couplings
as well as the X2, for My = 1.5 TeV and w fived as given by the first column. € is in units
1073, The fit prefers w > 0, though x>, does not change by large amounts (a less important
decrease of the X?nin is seen for larger values of My ).

there is no allowed point in the phase space for high values of € and fixed cg4, thus “killing
the tail” of the graph in the left. This is better illustrated in Figure 3.3, where the bounds
from direct searches for the W’ boson (setting bounds on My o 1/(s4€)) and EWPO in
the €, ¢y plane, together with representative limits on the mass of the Z’ (which has the form
Mz = My /ey o< 1/(cgsge)) boson and the requirements g%, /47, g5_ 1 /47 < 1 are shown.

3.4 Conclusions

We have considered over this chapter EWPO, which were parameterized in the SM in terms
of the mass of the top-quark, the SM-like Higgs mass, the Z boson mass and the couplings asy
and «a. Their expressions are then corrected by the LR Model, giving contributions suppressed

by €, which is the ratio of EW and LR symmetry breaking scales (1/x% + k3 + r2 and kg,

respectively). We have as well considered bounds on the mass of the W’ boson coming from
direct searches, which are however not optimized for the most general case under consideration
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here.
We would like to summarize some results of the outcome of our analysis:

e The SM and the LR Model both lead to similar qualities of the global fit and similar
predictions for the EWPO,

e EWPO plus direct searches mainly set the bound e < 0.04, while we do not have strong
constraints on the parameters w = K, /k1,7 = K2/k1 and gg introduced in the LR Model
framework,

e There is, however, an intriguing suggestion for kg > K12 ~ ki, i.e. large w. The fact
that w, constrained to be essentially zero in the triplet LR Model, is pushed towards non-
vanishing values is an interesting feature of the doublet scenario, but it remains to be seen
if the other sectors of the theory agree with this tendency.

In what follows, we will discuss a further set of inputs, consisting in meson-mixing observables,
in order to further test the LR Models.
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Chapter 4

Overview of meson-mixing
observables

We now shift to a different class of observables, made of meson-mixing observables. As in the case
of EWPO, our goal here is to probe the possible structure of LR Models. The difference compared
to EWPO is that new parameters show up in the prediction of meson-mixing observables, thus
offering the opportunity to constrain them. The new parameters are the elements of the mixing-
matrix VT, which describe the couplings of the W’ boson to quarks, and the masses of the
extended scalar sector.

In Section 4.1, we discuss the contributions to meson-mixing in LR Models, which are di-
agrams including W', H5? exchanges, beyond the WW box already found in the SM. Then,
reliable predictions of LR Model rates require the computation of short-distance QCD correc-
tions. Indeed, as we have seen in Chapter 1 in the SM these are important corrections, shifting
the individual contributions found in the SM framework by factors of 2, cf. Eqgs. (1.81). Over the
Sections 4.2, 4.3, 4.4 we are going to introduce the basic elements necessary in order to discuss
these short-distance QCD corrections in two different approaches, Effective Field Theory (EFT)
and Method of Regions (MR), trying to be as general as possible in our description. Then, in
Section 4.5 we briefly compare both approaches in order to validate the MR, which is meant to be
an approximation to the more complete calculation done in the EFT approach. This calculation
is going to be considered in detail in the next chapter, dedicated to more technical elements.

4.1 Contributions to meson-mixing

Formally, from the Lagrangian £ of the theory one builds all the possible contributions to the
meson-mixing amplitude from the generating Green’s function, (T exp {z / dz E(z)] )|aF|=2- Of

these, we aim at keeping the set of diagrams compatible with gauge invariance at first order in

B =M/ MZ, = O(e?). (4.1)

Apart from the WW box already found in the SM, one important class of contributions includes
the exchange of a single W’ in a box together with a W, which turns out not to be gauge invariant
by itself. The set of diagrams necessary for the gauge invariance of the WW’ box includes loop
corrections of the Higgs self-energy and Higgs |AF|= 1 coupling [148,149]. The other classes
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of diagrams we consider consist of charged Higgs and tree level neutral Higgs exchanges, cf.
Figure 4.1.

4.1.1 SM

In the SM, the only contribution we have is shown in Figure 4.1 (a), where two W bosons are
exchanged and the internal flavours can be u, ¢, t. Of course, the full set of diagrams also includes
the exchange of the corresponding Goldstone boson G instead of W, i.e. WG and GG boxes. We
note that the set of boxes is gauge invariant by itself, and that it is finite (no renormalization is
needed at this stage). The final expression is found for instance in [92], and is given by

HSM _ GQFM‘%V VLL ALL)\LL 4.9
- 47T2 1 Z U 14 ( . )
U,V=u,c,t
X [(1 + ZCU.’L'V/4)IQ(.’L'U, .Tv) —2zxpzxvii ($U, wv)] + h.c.,

where the operator S

VLL
‘{LL = dy"Pys - CHHPLS. (4.3)
The combinations of CKM matrix elements are given by
A Ax
AP = Ve Vig, (4.4)

(¢1,2 are the external flavours) and I o(zy, zy) are the Inami-Lim functions [150]

xy logay 1
I UV
l(an:EV) (17:CU)2(1'U*1'V) +( & )+ (1*1'U)(1*SCV) )
2] 1
L(zy,zv) R (U V) + (4.5)

(1—.TU)2($U—$V) (1—$U)(1—.Tv) ’
We further apply the unitarity of the CKM matrix, i.e. Z MEE =0, to rewrite Eq. (4.2)
U=u,c,t
under a different form

G2 M3
HSM = ZWQW NEENLL GEL (g (4.6)

FAFEABLGLL () 4 9NPEALE SLL (g m} VIL L e,

where we have defined the following loop functions

SLL(:EC) = z.+ (9(:05) , (4.7)
3
1 9 1 3 1 3 Ty
SEL(z) = a4 2 _2 _2 1
() xt(4+41:ct 2(1zt)2) Q(Izt) 08Tt
SEE (g ) = —welogae + 2 F(xy) + Oz logz.) ,
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Figure 4.1: Figure (a): contribution already found in the SM. Figures (b)-(f): set of diagrams
giving the main new contributions to kaon mizing in Left-Right Models. The set (b), (c), (d)
and a contribution from (e), tree level neutral Higgs exchanges, forms a gauge invariant set of
diagrams. Another important class of new contributions includes charged Higgs exchanges in a
boz, diagram (f). Instead of the neutral CP—even Higgs HZ-O, 1= 1,2, we could consider as well
the CP—odd ones, A?, i = 1,2. Diagrams where the W and W’ are replaced by their respective
Goldstone bosons have also to be taken into account.
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with

x%—Sxt—l—éll +3 Tt
- —logxy + ———.
41—z BT 4 (2, 1)
We refer to the above three contributions as charm-charm, top-top and charm-top, respec-
tively, which are proportional to /\5L /\‘L,L, U,V = ¢,t. Note that, thanks to the unitarity of the

CKM matrix, O(logz.) in the charm-charm contribution vanishes, while due to the different
masses in the charm-top case this factor is present.

F(z) = (4.8)

4.1.2 LR Models

We start by discussing the contributions from box diagrams. Due to the W, W’ mixing, which
modifies the structure of the W coupling at order €2 by the introduction of right-handed couplings,
we need in principle to reconsider the SM-like WW box, which is also present in the LR Model.
Moreover, since right-handed couplings are also present, we distinguish the following cases: zero,
one, two, three and four right-handed couplings. Each time there is a right-handed coupling, the
whole contribution gets suppressed by €2, and the combination of a left-handed coupling with a
right-handed one implies a chiral flip of the intermediate up-type quark. Now, diagrams with an
odd number of chirality flips give no contribution when the momenta of the external quarks are
set to zero, since the integral on the loop momentum is odd. Therefore, we consider only the
left-handed coupling of the W, since the next contribution involving two right-handed couplings
is suppressed by €*, thus implying that WW boxes in LR Models have the same expressions
found in the SM, Egs. (4.6)-(4.7).

Apart from the WW box, we also have WW’ boxes. The heavy character of the W' implies
that we need to consider only its right-handed coupling. The WW' box diagrams are usually
calculated in the 't Hooft-Feynman gauge ({w,w = 1), see e.g. [48], and we have

GE M,
472

Ao 26K%(Q5") Y AN Vavay (4.9)

U,V=u,c,t
x (44 zpryvB)L(zy,xv,B) — (14 B)2(2v, zv, B)],

where the operator QéR is

éR:dPRS-CZPLS. (410)
Note that this operator has a very different structure when compared to the SM operator, YLL .
In Eq. (4.9), gauge couplings are contained in h = gr/gr,, and

Ty 10g:L'U
(1 — wU)(.TU - $V)
$2U log zy

L(zy,zv,B) = 0= 20) @0 —2v) + (U« V)—logs+0O(p)

Li(zu,zv, )

+ (U < V)+0(5), (4.11)

(corrections in 3 are found for example in [48]). In the 't Hooft-Feynman gauge, the contributions
to AP seen in the second line of Eq. (4.9) come from the four following diagrams:

o WW' = I(xy,zv, B) term,
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o GW' = L(xzy, v, 3) term,
o WG = BI(xy,xv, ) term, of higher order in 3, and

o GG' = zyxy Bl (zy,xy,B) term, also of higher order in 3,

where G (G’) is the Goldstone boson associated to the light (heavy) gauge boson W (W').

The different handednesses of the main couplings of the W, W’ imply chiral flips leading to
the overall mass term, seen in the first line of Eq. (4.9). Expanding A® in 8 = M2, /M2, and
x. = m?/M3, one has

G2 M2
ACe — CRE g2 Q) NS (0, ) (.12

+ ANTESCO a2y, B) + NN+ NN ST (a, B)} ,

where the loop functions are

SC (e, w1, 8) = \Eews E - 11 log(x¢) + mg(m] +0(B,2¥/?), (4.13)
y_—
2 _
SO iz, 0) = o (D2 o) + S 4 lox(s) ) + O(3).
(4.14)
SCN) gz, B) = x(4log(x.) + 4+ log(B)) + OB, 22). (4.15)

Note that due to the overall mass factors, xy, diagrams involving an up-quark are very much
suppressed and can be ignored.

It has been shown in [151] that the WW’ box diagram in LR Models forms a gauge invariant
set only if neutral Higgs exchanges induce no FCNC at tree level. However, we have seen
that this is not the case in the class of LR Models we are considering, cf. Section 2.6.2. The
question of gauge invariance has been addressed in several papers [119,148,149,151,152], and
the required diagrams for gauge invariance are shown in Figure 4.1 (c, d, e). Note that, in
order to be consistent with the order of these four point Green’s functions, we should consider
the renormalization of the Higgs mass and couplings: for this reason, we consider the on-shell
subtractions as described in [148].

Below, we give the expressions of the vertex and self-energy diagrams in the 't Hooft-Feynman
gauge. They depend on the Higgs mass through w; = My, /M7 = O(1):

2
G2 M3
Alselt) — 72B2Fi2wih2%< Ss(w) Y MM VarEY, (4.16)
i=1 U,V=c,t
— w2 1—
Ss(w) = -2+ (1- o) 1og‘ ww’ +O(B), (4.17)



and

2 2 172
M
Alvertex) — _ 393 g Fiwih? Cr 2W< ) Sy (wi) E AN oy (4.18)

i=1 U,V=c,t

Sy(w) = -1+ (1 —w)log|—— Lwl O(BY?). (4.19)

The above expressions include a CP—even and a CP—odd Higgs. Note that the mixed propagator
of a CP—even and a CP—odd Higgs gives no contribution, due to their real and pure imaginary
couplings, respectively.

The functions F; = kF;G; correct the limiting case w — 07, explicitly calculated in e.g. [37],
and are calculated from the corrections to the couplings of the scalar sector to the gauge bosons
(proportional to F;) and quarks (proportional to G;) when w # 0. Their expressions are given
by

1 2 2 vz )
Fio= 2(1—12)(1 + B(z)w?)(1 — 02) ((_k + (k° = 2(1 + v(x)))X)(1 +67)

+2(1 + v(z) + (r* = B(z)w?(1 — r?) + l/(z))52)) (4.20)

while F5 =1 — F; is calculated from F; by changing 6 — 1/, where 6 = My, /My, is the ratio
of the mass of the scalars Hs, As over the one of the scalars Hi, A;. The other functions seen in
the expression of F; are

_ 462 (1472 (1 + px)w?)
X_\/l_(1+52)2 k2 ’

B(x) = 1+ 22 /(1 +rx)?, v(z) =w?/(1+rx), (4.21)
B =1+r2+w?.

In the above expressions, we have indicated the dependence on the parameter x defined as
x = i} /uh, which is the ratio of the two trilinear coupling constants seen in the scalar potential of
Eq. (2.35). Its origin here amounts to the diagonalization of the mass matrix in the scalar sector,
introducing eigenvectors whose coefficients in the original basis depend on z, thus introducing x
in the couplings of the physical scalar particles.

The remaining contribution necessary for gauge invariance comes from a tree level diagram,
cf. Figure 4.1 (e). It originates from the mixing between H{ and HY, or between AJ and A9,
through WW' loops leading to a gauge dependence of the scalar couplings, just like the diagram
in Figure 4.1 (d) is not gauge invariant by itself. We give in the following expression both the
gauge independent (first line) and the gauge dependent (second line) contributions from the tree
level diagram in the 't Hooft-Feynman gauge:

2

A(Ho) _ ( 4Gpﬂ’u, k2 Z G2

7“2

+h2 WﬁfT\/wlwgSs(m) (4.22)

> AﬁRAﬁL\/wav<Q§R> ,

U,V=c,t

G‘2 M3 )
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where u = (1 +7%)?/(1 —r?)2. In this expression, other operator structures such as 5Prd - 5Prd
or §Prd - 5Prd come at a higher order in § and are neglected. The function F" is defined as
2

Fr= Z}? — 1, where F; is found in Eq. (4.20). The second line of Eq. (4.22) combines in the

i=1
sum

A(box) +A(vertex) +A(self) +A(tree)|}_T’ (423)

to form a gauge invariant expression. A discussion concerning gauge invariance in the general
case where w # 0 is found in reference [119].

The function G? seen in the gauge independent part is calculated from G? = (1 + r*)G?/u
where G; corrects the couplings of the scalars to the quarks when w # 0. Its expression is given
by

k2(1—6%(1— (141/6%) X)) — 2w?(1 — B(z)(1 +1%))
2(1=6%)(1+72)(1 + B(z)w?) ’

while G? is determined from the relation G2 = 1 — G2.

Apart from the contributions given in Eqgs. (4.6), (4.12), (4.16), (4.18), (4.22), the last set of
diagrams, shown in Figure 4.1 (f) consists of boxes WHZjE and GHii, i = 1,2, where HzjE is a
heavy, electrically charged Higgs which couples as G, cf. Appendix E.1. As discussed in [152], it
alone does not form a gauge invariant set, but the other diagrams necessary for gauge invariance
(vertex and self-energy diagrams) contribute at a higher order in 8 in the 't Hooft-Feynman
gauge. In this case, we have

G =

(4.24)

H*b Gy My, k° LR : A2 LRyRL
HS ox)  _ 2 1329 ZGleZﬂu(l—ﬂ) Z AT AV VruTy
=1 U,V=u,c,t
X [—IQ(.TU,.Tv,wiﬁ) +:I:vall(acU,xv,wiﬁ)] + h.c., (425)

or, expanding in S and =z,

2 172 2 2
(H*box) __ GrMy, k LR 20, LRyRL
H = T T E% ZGZQwZﬂu > AN
=1 U V=c,t
Vavaey Sig(xu, zy, fwi) + h.c., (4.26)
with
Staloeanws) = (7 loa(en) + log(wd) ) + 5+ 08, (4.27)
L
2
Statonanw) = (722 loglen) ~ a1+ log(w) ) + O2), (4.28)
L
SfR(ZEC,SCC,Wﬂ> = log(wﬂ)+ﬂ~0(ﬂ,:pc). (429)

When calculating the expressions above, we have considered only the mz term seen in the third
and sixth lines (involving the coupling u} dj, H f,' ,) of Table E.6 in Appendix E. The m, terms seen
in the different lines of this same table do not contribute in the system of kaons. On the other
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hand, m!, terms from the second and fourth lines (involving the coupling ﬂ}%dJLHf 5) provide
contributions similar to the WG and GG box diagrams found in the SM, i.e. contributions
proportional to AFEAEZQY E for (U, V) € {(t,1), (c,t), (t,c)}. Since these contributions do not
carry the same enhancements of the LR operators (i.e. the values of the short-distance QCD
corrections for tt and ct, and the chiral enhancement m3./(ms +mg)? seen in Eq. (6.11) below),
we will not further consider them in our analysis.

A last comment is in order. In all cases including physical scalars, when taking the limit
where w goes to zero the contributions from the particles HQO, Ag, HQi go to zero and this scalar
sector decouples from the meson-mixing phenomenology. In such a case, the expressions given
above reduce to those found for example in [37].

4.1.3 Including short-distance QCD corrections in the LR Model

The expressions we have given above correspond to the main contributions up to higher order
corrections in S of the full LR Model. On top of that, we must consider QCD corrections,
which may shift considerably the individual contributions. These contributions are factorized
at a low-energy scale uj into short-distance and long-distance corrections, and the former are
calculated by perturbative methods while non-perturbative methods are able to take into account
hadronic effects in (K|QZ®|K)(up). Short-distance QCD corrections from the high energy scales
pw down to the low energy scale pj are collected into the n parameters seen in the following
compact expressions: first, we have

) G2 M2 _
(HOW) = CEUW 2080 ) Y AR (IR (430)
U,V=c,t
vV :CU:L'VSLR(:EUa Ty, Ba W) + h.C.,
with
S @y, zv, B,w) = S @y, v, B)/(AVEuEy) + Flwi,ws)/4, (4.31)
and

Flwy,wy) = waz (FiSs(ws) + 16 Sy (wi)) + F'/wiwzSs(y/wiwz) , (4.32)

=1

where in Eq. (4.30) we include the gauge dependent part of Eq. (4.22), necessary for canceling
the gauge dependence coming from Eqs. (4.12), (4.16), (4.18). Then, for the other contributions

+ hox G2 _(H* box
() = g SR ) D iy (AR
U,V=c,t
w/zUxVSgR(xU, xy, fw) + h.c., (4.33)
4G _
(H) = —TF uB(@Q5 ) () > A () NEFNEEaumy + hee. (4.34)
U,V=c,t

Above, the masses my are understood to be calculated at my, i.e. my(my), U = u, ¢, t.
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In the rest of this chapter, we are going to discuss strategies for computing the 7 in the LR
Model. Two approaches are going to be considered, the Effective Field Theory [45-47] and the
Method of Regions [43,44, 48,49]. After comparing them in the SM, where the differences will
be clearer, these methods are going to be employed in Chapter 5 for the LR Models.

4.2 EFT for meson-mixing in LR Models

Here we discuss the steps for building the effective theory valid at low energies describing meson-
mixing in LR Models, which will be important for the computation of short-distance corrections.
We are going to point out some particular features of LR Models, while a comprehensive discus-
sion of the SM case may be found in [92]. For definiteness, we orient our discussion to the kaon
system, but a similar discussion also applies in the system of B mesons.

4.2.1 Operator Product Expansion

The way to formalize an EFT includes an Operator Product Expansion (OPE) [89,155]. Per-
forming an OPE amounts to factorizing short range physics in coupling constants, called Wilson
coefficients, and long distance physics corresponding to the dynamical degrees of freedom in-
cluding any dependence on the external states (supposedly light). This is particularly important
when discussing QCD corrections: one collects short-distance, perturbative effects in the Wilson
coefficients, while the QCD behaviour at long distances such as hadronization is factorized out
and treated at a different step, through appropriate non-perturbative methods.

In order to build an EFT, the first step is precisely to perform an OPE, keeping only those
operators which have the lowest power on the high energy scale M, i.e. we keep only the
leading power of 1/M? (further corrections in the case of meson-mixing are discussed for example
in [153]). The usefulness of this procedure is to simplify the description of the problem by using
a limited set of operators. Indeed, in this way suppressed operators are not present from the
very beginning.

In few words, building an EFT amounts to defining a new (possibly non-renormalizable) field
theory below a certain energy scale p called the matching scale: such a field theory collects
the effects of the heavy particles through coupling constants, the Wilson coefficients mentioned
above. Each time one builds an effective theory the most general set of operators up to a certain
order is taken, and their coefficients or coupling constants are defined by comparison with the
full theory.

4.2.2 Integrating out heavy particles

In LR Models, one disposes of the following spectrum of particles

HOE A W' W, t,b, ¢ s, u,d, (4.35)

where in our case a € {1,2}, but one can imagine a larger scalar content in other realizations of
LR Models. Note that there is a large spread of masses among these particles: W’ for instance
is not expected to have a mass below a few TeV, cf. Chapter 3, while some of the fermions have
masses around a few GeV, or even below. Since some of them are so heavy compared to the
other particles, one can consider “integrating out” W', H or W [154,156].

In the cases of W, W', the procedure of integrating out a massive gauge boson implies that the
longitudinal degree of freedom, i.e. the non-physical (would-be) Goldstone boson, is also absent
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in the effective theory. This is consistent with going to a unitary gauge and then integrating out
a particle of mass M whose propagator is

—1 kky
%2 — M2 (9;“/ - Aﬂp > . (4.36)

Whenever the energy scale k2 is much inferior than the mass M of the propagating vector particle,
one can perform the expansion

i k2
ot O3 ) 430
k2
meaning that the propagating particle has no more dynamics. In this expansion, the O (W)

terms correspond to infinitely many higher dimensional operators in the Fourier transformed
space.

4.2.3 Set of operators

Comparatively to W and ¢, the new scalar fields and the W’ boson are much heavier. However,
we choose to integrate out all of them at the same energy scale, referred to as uw. We will
discuss more on this point at the end of Section 4.3. We note here that we keep only the lowest
order corrections in 3, where 3 = M3,/ M3, and we do not suppose that w; = M‘%V,/M?{ is
negligible. Below pps, the most general effective Lagrangian describing meson-mixing in LR
Models is given by

4G - -
Ly = ~ A VG 2GRV Y0 (4.38)
k l

where V" indicates the number of powers on the mixing matrices, V%, Q, Q represent
local |AF|= 1 and |AF|= 2 operators, respectively, while Cy and C; are their corresponding
Wilson coefficients. The superscript in parenthesis, “(5)” in Eq. (4.38), indicates the number of
dynamical flavours. The sum over k£ above includes in addition to Q%R another LR operator
which will be relevant in our discussion afterwards, which is

QI = dy"Prs - dv,Prs. (4.39)

We now discuss the Q; operators. Due to chiral flips and Higgs couplings, the expressions in
the full theory are proportional to my x my, U,V = u, ¢, t, and we do not need to worry about
the up-quark, whose mass is very small and thus set to zero. Therefore, in Eq. (4.38) above there
is no |AF|= 1 operator with an up-quark, and we are left with charm internal flavours only in
the EFT. This is different from the SM effective Lagrangian, ﬁgﬁ«/{ (5), for which the up-quark is
present as uc, cu boxes.

Before further discussion, note that the W and W' couple to fermions proportionally to the
gauge couplings g;, and ggr, respectively, while this is not the case for the scalar sector. We
therefore deal with (1) the SM contributions, (2) the W W' box, vertex and self-energy, (3)
the W HT box, and (4) the tree level neutral Higgs exchange separately, which corresponds to
distinguishing different powers on g1, gr and respecting gauge invariance. Following the same
reasoning, we also distinguish the parts of the effective Lagrangian containing different powers
on )\fR, i.e. we distinguish the three sectors cc, ct,tt. Let us inspect the operators we need in
each sector, after integrating out the top-quark, the gauge bosons W and W', and the scalars.
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Below the scale py, we dispose of the light mass m. (the masses my, My,w+ g are absorbed into
the Wilson coefficients):

tt We can have only local dimension 6, |AF|= 2 operators Qng

cc Here, |AF|= 1 local operators are present, and the dimension 8 operators m? Qfg are
needed in order to renormalize the contraction of two | AF|= 1 operators, where m? appears
explicitly since it is related to the light spectrum. Indeed, the log(z.) contribution found
in Eq. (4.15) already indicates the need to include local operators in the EFT.

ct We have local dimension 7, |AF|= 2 operators of the form m, Qfg (m. coming from the
matching of the LR Model onto the effective description).

Note that there is also the possibility of having |AF|= 1 penguin operators coming from the
contraction of top propagators, and giving a contribution proportional to )\,{“L , or )\fm. They con-
tribute to the mixing of mesons when contracted with a current-current operator, Jv“PLq(ﬁMPLs
or Jv“PRq(ﬁHPRs, q = u,c, leading to terms proportional to )\tLL)\fR, or )\fL)\f”R. This does
not correspond to any of the above mentioned contributions, {tt, cc, ct}, and has not been taken
into account in the phenomenological analysis that will follow in Chapter 6: by analogy with the
SM where penguin operators imply a small effect of the order of 1 % [47], we do not expect a
large contribution in LR Models from penguin operators.

Also note that, we have widely ignored operators proportional to the light masses mgq s so
far in the discussion of the effective theory. Accordingly, in the full theory we have neglected
corrections which go like mﬁjs /M3, or in other words we have set the external momenta to zero,
which consistently corresponds to neglecting higher dimensional operators. (In fact, masses mg s
may appear, but for a different reason, as off-shell IR regulators.)

To continue, when going down in energy, one goes from Egi«) to ng) by integrating out the
bottom, thus changing the way the strong coupling a, evolves (and possibly having a different
set of penguin operators [47]). A further step in the EFT program is to consider the threshold
e where the charm-quark is integrated out from the theory, through the definition of Eg?f’f), fully
described by a set of |AF|= 2 local operators Qfg

A comment concerning B systems is in order here: in the SM, due to the structure of the
CKM matrix and the masses of the up-type quarks, the ¢t contribution (proportional to mf) is
largely dominant. In LR Models, however, ¢t contributions (proportional to m.m;) can also be
important, given the arbitrary structure of the mixing matrix V.1 For completeness, we also
discuss the cc case, though this contribution is very suppressed even in non-manifest scenarios
for VE. In the ¢t and cc cases, one could formally follow a Heavy Quark Expansion, in which
the bottom-quark degree of freedom is decomposed into two pieces, one light and another one
heavy, based on a 1/m; expansion. Next, we would consider integrating out the heavy degree
of freedom, and neglecting the suppressed corrections which go as 1/mp, corresponding to new
operators that are usually neglected. In this way, the discussion concerning the operator basis in
the B case follows in exactly the same way the discussion made above for the system of kaons.

1Follovving this comment, note that one should as well compute contributions from H itQ proportional to mymz,
cf. the mg couplings in Table E.6 in Appendix E, when general structures of V¥ are considered. However, in the

phenomenological analysis of Chapter 6 we consider the special case where VT = VI for which both mem: and
mpm¢ contributions can be neglected.
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4.3 Renormalization Group Equations

In the previous section, we have built effective theories by defining effective operators and cou-
plings at the energy scales uw or pu.. These effective couplings, or Wilson coefficients, are not
directly observable. Indeed, they generally depend on the energy scale of the renormalization,
i.e. the scale at which we choose to subtract possible divergences, which is an arbitrary scale.
However, the Lagrangian of the theory, as physical observables, is independent of this choice
(there is in fact a residual dependence of the Lagrangian on this scale, which will be discussed
at the appropriate moment). This simple remark implies a very beautiful formalism through
the introduction of the Renormalization Group Equations (RGE), which tell us how to evolve
the couplings of the theory, or other blocks such as matrix elements, from one energy scale to
another.

At this moment, we discuss what the running means in practice. To pick an example, the
strong coupling as = 47 a is not an observable and depends on the energy scale u at which we
probe its effects. Its running is given by the following RGE

da NLO 2 3
= =2 -2 . 4.40
dlog 1 Boa pra (4.40)

Given a reference scale i, the solution to Eq. (4.40) at a scale pg is

__os(p) [ _ Bras(m) 10gv(u2;u1)]
() = v(p2; p1) ! Bo Am w(uz2;m) (4.41)
where
’U( . 1 _ aS(:u’l) M_%
paipn) =1 = Fo—, — log 2 ) (4.42)

and, for the sake of clarity, we have ignored the thresholds at which a heavy quark flavour is
integrated out.

Consider now any coupling constant C' (in the absence of mixing between operators). Its
running provides multiplicative contributions of the generic form

d
Cm) = Ca) (ZEZ;;) : (4.43)

for a certain power d, which can be expanded as follows

as(u) ' _ a oy [y Buas(u) log ()]
(as(ﬂz)) = leim) [1 G ir v(uz;m)} (4.49)

= 1-7%a(u)log (ﬂ) O L2 ) 0g (ﬂ) -
12 Bo H2

where in the last line we have traded d by () /(2B0). Therefore, by evolving a mass from
t2 to p, one collects factors of the form a(uq)log (p1/uz2), called Leading Order (LO), and
a® (1) log (111/p2), called Next-to-Leading Order (NLO), etc.?

2To be consistent, at the NLO we should employ

C(m):C(uz)(lnL%f)J) (%)d(l—%‘]), (4.45)
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The last Taylor expansion has a meaning only if the terms contained in the ellipsis are much
smaller than one. To further discuss this point, let us consider the example of the running of
masses and give some numerical values. First

11N —2f 34 10 N? -1
) — ¢ = 2 =N?2___Nf-2C Cr = 4.46
TYm Fy BO 3 ) Bl 3 3 f Ffa F N ) ( )
where f is the number of dynamical flavours, and N the number of colors. Then
B1/Bo ~ 6,5,3,1 for f=3,4,5,6. (4.47)
For p1 — m. and ps — M one has
as(me) ~0.3  and log(Mw /m¢) ~ 4. (4.48)

It is then clear that the Taylor expansion (for f = 3,4,5) made above cannot be justified, because
7O a(1)log (1 /p2)|~ 0.8 is too large and does not allow for an expansion. This illustrates that
the solution to the RGE resums large logarithms to all orders in perturbation theory. Therefore,
RGE prove to be a very efficient, and even mandatory, way to improve perturbative calculations
in og.

In this context, we discuss the issue of a unique energy scale for integrating out W, W', H 0.+
and t. Alternatively, W', H could be integrated out at O(Myw, M), and we would be left with
a theory containing dynamical W bosons and top-quarks. At the end of the day, we would have a
resummation of as (M) log S to all orders in perturbation theory when running the EFT defined
at O(Mw+, My) down to O(Myw,m;). This then justifies the procedure of considering a single
scale uy for integrating out {W, W', H 0.+ t}: these resummed factors are small in the interesting
phenomenological range of LR Models, namely My» < 10 TeV, for which o, (M) log 8/7 < 0.3,
and therefore do not require such a precise calculation. Conversely, the need for precision in the
resummation of log S for large log 8 with an EFT between EW and LR scales gets damped by
an overall 8 suppression factor. (Similar comments would also apply to the logarithm log(Sw),
provided the difference of masses of the W’ and the extended Higgs sector is not too large.)
Note that, on the other hand, we cannot do the same for contributions which go like log z.., cf.
Eq. (4.7). This can be seen by the comparison between both resummations:

as(me)[log(z)|/m ‘ as(Mw)|log(B)|/m
~0.8 | ~02,03

showing that the resummation of as(m.) log(x.) is mandatory, while higher orders in as(Mw ) log(3)
can be neglected in a first approximation (but will contribute to the error budget).

We consider now the counting of QCD corrections in the situation of having log(z.) in the
Wilson coefficient, a discussion that will be relevant in what will follow. As seen from Eq. (4.15),
the loop-function corresponding to the cc contribution contains a large logarithm log(z.). In this
case, when running from g down to u. at LO we will have the overall factor log(u./uw) [47].
Therefore, when a large logarithm is present in the loop-functions we have the following counting:
factors of the form

log (pu1/p2) % la(p1)log (u1/p2)]" , n >0, (4.49)

where J corrects the running at the NLO. Note that the NLO running of as was used even when the running of
C was considered up to the LO: we may say in this case that the calculation is done at the LO with as improved
to the NLO.
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are called LO, while

[a(p1)log (1 /p2)]" , n >0, (4.50)

are called NLO, and so on. Another interesting aspect of Eq. (4.15), combined with the re-
maining pieces necessary for gauge invariance, is the need to go beyond the LO for com-
puting short-distance corrections: as can be seen from Table 4.1, the non-logarithmic term

| 108(8) + Pl w0)

may be large, thus indicating a sizeable correction coming from the NLO.

4
LO log(x.) ~ —8.2
1
1
NLO og4(ﬁ) ~ [-1.3,-24], for My € [1,10] TeV
F
W ~  [-09,5, forw €[0.1,1],w=0

Table 4.1: Contributions from the charm-charm case: compared to the other factors from
Eq. (4.31), the factor log(x.) comes at LO, while the remaining terms come at the NLO. When
w = 0 as in the simplified case shown here, the function F(wi,ws) reduces to a function on wq
only.

4.4 Method of Regions

Chronologically, before the EFT approach was used to calculate short-distance QCD corrections
for KK meson-mixing in [45], a way to estimate them was discussed in Refs. [43] and [44], by
employing a method we call Method of Regions (MR). The idea behind this method is to resum
potentially large logarithms of the form «; -log by using RGE, thus providing an estimate for the
short-distance QCD corrections. With the development of the EFT formalism, see [92], the MR
may be seen nowadays as an approximation to the complete calculation, made by a systematic
use of EFT, which employs RGE in effective descriptions of the full LR Model.

We now explain how the MR operates. Consider dressing the set of Electroweak one-loop
diagrams in Figure 4.1 with the exchange of a gluon in all possible ways. One of the resulting
two-loop diagrams is given in Figure 4.2. Based on this particular example, the prescription
given by the MR to estimate short-distance QCD corrections is the following:

e Fix the momentum k running in the EW loop. Then, consider the “two sides” of the
diagram separately, i.e. consider the contraction of two |AF|= 1 diagrams, one of them
containing the exchange of a gluon.

e Determine the range of the momentum ¢ of the gluon implying terms of the generic form
s -log. In the present example, we have that the integration of ¢* over the range [k?, M32/]
results in a term proportional to a - log(k?/M3,).

e Over the last range, integrate out the W being exchanged, and identify the anomalous di-
mensions 7y of the four-quark operators. Schematically, the running given by RGE of an op-
erator of anomalous dimension v from M2, to k2 results in a factor (s (M3,)/ s (k2))7/250.
It is precisely this factor that we aim at extracting from all the possible gluon exchanges.
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IAF|=1

Figure 4.2: Example of short-distance corrections to meson-mixing processes in the Method of
Regions. (Left) The momentum k running in the original loop is fized, and one distinguishes
the relevant range of momenta of the gluon q giving oy - log(k*/M3,) factors. (Right) Over this
range, we integrate out the W boson and identify the relevant anomalous dimension necessary to
resum the potentially large o - log(k2/M§V) contribution.

e It follows from the last step that the method can be applied if the relevant anomalous
dimensions are already known: in the example we have shown, only |AF|= 1 are required,
but for other diagrams anomalous dimensions describing how |AF|= 2 operators evolve
are also necessary.

e Finally, perform the integration over k2. The dominant range of k? is determined from the
loop functions. One distinguishes two possible cases:

(a) the loop function is dominated by a single mass scale, m, for which k? is replaced by
m?;
(b) the loop function is dominated by the range [mi,ms] coming from the logarithm
2
my 2

i al/?Po(k?).

log(my/ms2), in which case one performs the average / 2

’m2

The last step requires more precision. Generalizing Ref. [43] in case (b) at NLO, we define
the following averaging function

_ym3 [as(mi)\ 7
RNLO(y, U, Jymi,ma) = log™' —2 ( (D ) (4.51)

mi
2
"2 dk? (0<S(k))V [ as(k) }
X / e E U+ Jl,
e R \au() i
where U, J are related to the matching and renormalization of the |AF|= 1,2 operators and do
not depend on k, yielding for v # 0,1

1 47
RNEO (o ] _ 4.52
o (1, U Jima, ma) = g ) Boars () Y

[HEED
g B { ) )
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The function defined above includes contributions from the NLO proportional to the factor J,
and from the running of the strong coupling constant at the NLO (term proportional to ().
The case (a), where a single mass scale m; dominates the integral, is a limit of case (b) and is
given by

as(mi)
47
When moving to the NLO, a feature not present in the original works, we employ the known
anomalous dimensions at the NLO (the factors in J), and in a full NLO computation matching
corrections at the NLO are also required. We would like now to point out a feature concerning
the extension of the MR to the NLO. In the cases of top-top and charm-charm contributions,
Eq. (4.7), LO and NLO short-distance corrections resum the following terms

RNLO(y, U, J;my,ma) = U + J. (4.53)

(as - log)™, as - (as - log)™, n>0, (4.54)

respectively. In the charm-top case, however, there is a large logarithm in the loop function,
Eq. (4.7), resulting in the counting

log - (a5 - log)™, (as - log)™, n>0. (4.55)
In this specific case, we extend the MR at NLO in the following way:

e at LO, only the factor logz. contributes, whose important range of momenta is k* €
[m?2, M%), while

e at NLO there is a contribution coming from the anomalous dimension matrices at NLO,

namely the factors J in R{(Y;O, and

e there is a second contribution at NLO proportional to the non-logarithmic factor F(x:)
seen in Eq. (4.8), whose important range of gluon momenta is given by k* — m? (and
therefore it is multiplied by the averaging function R; instead of Riog).

4.5 Calculation of the short-distance QCD corrections in
the SM

We would like to check the validity of the MR in the SM where short-distance QCD corrections
were computed in the EFT approach [45-47,93,94]. Therefore, when moving to the LR Model
in the next chapter, we will know when this method gives good estimates of the EFT, and when
EFT is suitable instead in a more precise calculation.

In the SM, the short-distance corrections are summarized in the n parameters in the following
expression

G2 M}
HM = % ALENEL Y ST (1) (4.56)

—|—)\tLL)\tLL77ttSLL(xt) + 2)\tLL)\CL,antSLL(xC, xt) [ b(un) VEL 1 h.c.
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In this case, since one faces a unique operator QYLL one usually factorizes out from the short-
distance QCD corrections the dependence on the hadronization scale, defining a scale-independent

quantity n related to i by

n(pn) = nb(un) (4.57)
where
(3),,2 a3
b(pn) = <1+ 7a834;uh)J$>> (i) v (4.58)

We now discuss the two ways to calculate 7.

4.5.1 Method of Regions

We first discuss the relevant set of diagrams. In the SM, the set of box diagrams including
the W and its Goldstone forms a gauge invariant set. In the 't Hooft-Feynman gauge, one may
distinguish the boxes WW, WG and GG, which are proportional to Iz(xy, zv), zvayv i (zu, zv)
and zyzy I2(zy, zv) respectively, cf. Eq. (4.5) (I1,2 are the Inami-Lim functions). Then, these
diagrams are dressed with gluons and identify the resulting two-loop diagrams contributing for
the short-distance QCD corrections.

In the charm-charm case, contributions given by the exchange of Goldstones come at higher
order in z., and the loop function can be calculated simply by considering a WW box. Therefore,
the method of regions gives

Nee = Z

rd==+

(4) (1.2 2
viww) = as (k%) k
Clow(k;Q) <ar,é ) -+ T (K,r,@ 10g (m—g + BT,@ (459)

matching (4)

C}:igh (kQ) C’l'l;igh (kQ)‘|

2

@
L 0m) s (o) Lo o)
ar 7 ) oD (m2) dm )

running (7)

X

Cont?) = (o)™ (1——4§”4’J$>

running (6)

4@
Lo ) (T (e ) 160
X A — @2 e I S
m s (pif) T

running (5)
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(a2 o)\ o (12)
roo(12y  — s (4) s (K3 _ s T(H5) 4
Chigh(k ) - <1+ A Jr ) <Oz§4)(k2)> (1 A7 ‘]7‘ )

running (3)

(5)(,,2
» <1+Oés (MW)BT>7 r =+, (4.61)

matching (1)

with k% — m? and

1 04374
a:/,thW) _ +r+ 4+3 T 7 a:/,lgWW) —1, (4.62)
rd=+
kip = a/MIB(N-1), ko =k =a/"3(N+1),
ke = a3 (N +3), (4.63)
NZ_¢ —N24+2N +13
= (1-N 243 T ¢ 4.64
b = (=N (Tpte s TR, (1.64)
—N24+2N -2 3N% 4+13
_ = B_.=(1-N 2 4.65
B = o= (- W) (T e B, (4.65)
N2 — 4N +2 3N2 4+ 10N +13
= 1-N)|[— =2 = T T 7). 4.
5 1) (S ) (4.66)

Let us describe the many factors in the expression of 7., enumerated from one to seven above: (1)
is a NLO matching onto |AF|= 1 operators at the scale py, including the factor B, calculated
from [92]; (2) and (3) describe the running of |AF|= 1 operators from the scale xj;, down to the
scale M§7 and from the scale u§ down to the scale k2, respectively; (4) describes the contraction of
two |AF|= 1 operators resulting in a |AF|= 2 operator, aZéWW) arriving at the LO and S, k¢
at the NLO, the latter calculated in [46]; (5) and (6) describe the running of the SM |AF|= 2
operator from the scale k% down to the scale x?, and from the scale p3 down to the scale y3,
respectively; in (6), the dependence on ,u% has been further factorized out into b(up,) defined in
Eq. (4.58); finally, (7) gives the running of the overall mass factor from k? (coming from the
computation of the WW box diagram), to mg (note that since k? is replaced by the relevant
scale m?, this factor reduces to 1). Factors which are proportional to the many .J come at the
NLO, and are found in Appendix I.

In the top-top case, contributions where Goldstones are exchanged in the 't Hooft-Feynman
gauge are not suppressed by z. as in the charm-charm case and must be considered. Note that
logx; ~ 1.5 and therefore we do not apply in such a case the Rjo, averaging. Considering the
three different contributions, WW, WG, GG, the short-distance QCD correction for the top-top
contribution to meson-mixing in the SM is given by
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N = (UZ(WW) +772§(GG)$%/4)12($75)$15)1) UZ(WG)thll(xtawul) (4 67)
i (1 + 22/4) Iy (wy, 24, 1) — 22211 (24, 3¢, 1) ’ '

where we have

UZ(WW) = Z |:CloW(k2) V(WW)Cﬂigh(kQ)Chlgh(k ):| ) k2 - m?a (468)
rd=+
a® a® (2
Cow(?) = (a@(ui)) v <1 o) (4.69)

@, 20\ W (4) T
J@ as ' (p3) L as (p3) 4
14 & WD) o 1- =
Qs (M4) Q l

WO\ [ o
: (” “’) () (=)

(5)
0 (k )2 )% (5)(,2
T 2y _ 5) as” (K ) Qs (Hiy) (5)
Chlgh(k ) 1+ ) g5)(k2) 1 A7 JT
(5) )
1 7WBT =+ 4.
X ( + i ), r , (4.70)
read as 7., and
G
DAL [cloww?)( WO C i )chlghw?)] (4.71)

(5) (5) (5) (1.2
1— &J( 5)
(5) 4 m
( ) (5) ’
5 2 5 2
x 14 22 ) J<5 “W g o W) s k2 — m2
m2 477' m ) t
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( ) s

WO = (<048 ) —a+n). Co=(0 1), a9 Co=1, @72
r=+
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G = [clow(k2) <8figh(k2) FACER 5}high(k2))} (4.73)

4

4’
5 m 5
471' m ag5) (m%) 471' m ’ to

N 1 T
aV(GG) _y (1 1) , Oy -aVed . gy =1. (4.74)

X
/N
—
+
Q
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(2
3
N
N~—
<
G

where

wa V(GG) V(WW)

The factors in 772; ) and e are analogous to those found in 7, or 7e.. Note that
we include B, corrections known from [92] for the matching of a |AF|= 1 process with a W
dynamic onto an EFT where the W is integrated out (and the top is left dynamic), matching
onto a operator of the form +* P, ® v, Pr. Similar corrections onto Pr, ® Pr operator structures
were not considered, which should be anyways small since they are suppressed by a(pw ).

The discussion of the 7. short-distance QCD correction is different due to the logz. in its
loop function. The following equation follows the procedure described at the end of Section 4.4
(ignoring thresholds, resulting in an approximation better than 1 %)

_ 1 a.(m dy a aS(IU’W) dedr
Net = (xt) s( c) Z T@( ) (475)

—logzx. + F ot as(me)

X (_ lOg.’L'C nggLO - d@ - dr + dV + 2dmaur€ajré;mc;MW

+F($t)) ;

where

arg=[14+r+L+ Nrl]/4 (4.76)

L

L
o Q2. ), €r, e = £, where

and the sum Z runs over the possible contractions O,,., = T{Q
.l
the Q% operators are defined as
- _ i+ si
QF = dy*Prq’ - g1 Prs (72) :

These are multiplicatively renormalizable operators (neglecting penguin operators), where 1

(4.77)

denotes a color singlet structure and 1 a color anti-singlet. The other factors seen in Eq. (4.75)
include the NLO corrections from matching and running, and are defined by

as(me) ; Jo+ Jyp — By — B,),
4

i = Jot e —Jy —2Jm, (4.78)

Upg = 142

g (/L )
47TW (

where the factors d, J, B are given in Appendix I.
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full theory EFT: 5, 4, 3-quark theory

u,t
DS integrate out
wE EWwW — AF|=2
ur,t t, W @ Hw YLL

Figure 4.3: Top-top contribution and its EFT description. The full theory matches onto a single
local structure at pyw where the top and the W boson are integrated out.

EFT: 5, 4-quark theory EFT: 3 quark theory
1ntegrate out
|AF|=2
the c @ p,
VLL
1
|AF| =1

Figure 4.4: Possible diagrams and operators found in the EFT description of the charm-charm
and charm-top cases. Internal flavours include uu, uc, cu, cc (charm-charm case), or uu,uc, cu
(charm-top case). Note that there is one first EFT between uw and p., described by two inser-
tions of |AF| =1 operators and possibly local |AF| = 2 ones, and another one below . described
by a single local operator.

4.5.2 EFT

The detailed discussion of the EFT approach can be found in [46,47,92]. Here, we comment on
its basic features. We start by discussing the simpler case, the top-top contribution represented
in Figure 4.3. In this case, the top-quark and the W boson are integrated out at a single scale
O(My,m¢), and the matching of the full theory onto an EFT requires one single local operator
QVEE. The anomalous dimension of this operator is calculated from its dressing with gluons.
Then, one is able to evolve the EFT from the scale of the matching down to the scale u;, where
non-perturbative methods are applied to take into account hadronization effects, by calculating
the matrix element (QY “%)(up).

Moving to the charm-top and charm-charm cases, we discuss both at the same time since
in both two cases the EFT built at py where the top-quark and the W boson are integrated
out includes |[AF|= 1 operators, cf. Figure 4.4. Compared to the previous top-top case the
computation is a bit more involved because it requires to consider a different EFT below ., the
scale where the charm-quark is integrated out.

There is an important simplification in the cc case compared to the ct one: thanks to the
GIM mechanism, there is no divergence introduced in the computation coming from the double
insertion of |[AF|= 1 operators, and therefore we do not need a |AF|= 2 operator in the EFT
between py and p.. On the other hand, due to the spread of masses of the top and the charm,
the GIM mechanism does not operate in the same way in the ct case (a difference already seen
from the log(x.) factor in its loop function), and local |AF|= 2 operators are also present.
Moreover, penguin operators are also present in the charm-top case [47].
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SM Tltt Tlct

Leading Order (as - log(ze))"™ log . - (as - log(ze))™
Next-to-LO as - (as - log(x.))" (as - log(ze))"™

EFT (Lo, NLO) | 0.612 —0.038 = 0.574 0.368 + 0.099 = 0.467

MR (Lo, NnLO) | 0.591 — 0.010 = 0.581 0.345 — 0.011 = 0.334

Table 4.2: Numerical results: the first value corresponds to the LO, while the second one is the
correction from the NLO.

4.5.3 Comparison

A numerical comparison between the two methods, EFT and MR, is shown in Table 4.2. EFT
expressions are taken from Ref. [47], and the numerical results are obtained using the same
inputs found in there, namely m;(m;) = 167 GeV, m.(m.) = p. = 1.3 GeV, My = 80 GeV,
A® = 0.310 GeV. The matchings onto the effective theories are performed at puy = 4.8 GeV,
whereas the high scale uy is chosen differently depending on the box considered: upy = 130
GeV when a t quark is involved in order to take into account the fact that in the EFT approach
the top quark and the W boson are integrated out at the same time (hence pw is an average
of the two masses), whereas puw = My when only ¢ and u quarks are involved and only the W
boson has to be integrated out in the diagram.

In Table 4.2, we do not show a numerical comparison for the charm-charm contribution be-
tween the two methods since they end up giving identical expressions once matching corrections,
originally calculated in the EFT framework [46], are considered in the MR calculation.

For the case of the top-top contribution, the small difference in the numerical values can be
traced back to a different treatment of the top in the MR. Indeed, the top is not integrated
out together with the W boson. Instead the method integrates out the W boson first and
resums short-distance corrections between pys ~ O(Myw ) and p; ~ O(m;) with the RGE for the
anomalous dimension matrix of |[AF|= 1 operators [157]. Then, in the final step further (and
more important) short-distance QCD corrections are resummed from p; ~ O(my) down to pp,
with the RGE for the anomalous dimension matrix of |AF|= 2 operators.

Note from Table 4.2 that at the LO (the first numerical values given in this same table)
there are differences smaller than 6 % for both cases, charm-top and top-top. However, when
moving to the NLO, a larger discrepancy of 30 % is seen in the former case. This can be partly
traced back to the presence of a large logarithm in the loop function in the charm-top case,
which requires to take into account the anomalous dimension matrix describing the mixing of
the local |AF|= 2 operators with the double insertion of |AF|= 1 operators, a feature missed
in our implementation of the MR.

4.6 Conclusion

We have given the expressions of the many diagrams contributing to meson-mixing in LR Models.
For a precise calculation of meson-mixing observables, we must take into account short-distance
QCD corrections, thus the need for calculating the 7 parameters. They can be calculated by
two different approaches, Effective Field Theory and the less formal Method of Regions. Both
consider Renormalization Groups Equations, which are unavoidable for resuming perturbative
QCD corrections of the form o' - log™, where m,n depend on the order considered (LO, NLO,
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etc.). They have different philosophies though: the EFT approach builds a sequence of successive
effective theories, and is the reference method for considering the computation of the 7 factors;
the MR inspects the possible diagrams and out of them determines the relevant factors ' -log”,
from known anomalous dimension matrices and matching corrections.
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Chapter 5

Short-distance QCD corrections
in Left-Right Models

Over this chapter we are going to employ the two methods discussed in the previous chapter
to calculate short-distance QCD corrections to meson-mixing. Over the literature, it is mostly
common to find in the context of LR Models calculations based on the Method of Regions.
Calculations made in the EFT approach can also be found [30], but they miss the effect of
diagrams at low energies where the charm is still dynamical.

On the other hand, calculations in the SM are known up to the NLO in the top-top case and
up to the NNLO in the charm-charm and charm-top cases within the EFT approach, showing a
slow convergence in the charm-charm case. Higher-orders may shift considerably the numerical
results and are important to control the size of the uncertainties one has from the residual
dependence on the matching scales. They are also important to cancel the scheme dependence
one has in the results of hadronic matrix elements calculated at low-energies by non-perturbative
methods. In order to derive solid bounds on the LR Model (independent of the doublet or triplet
specific realizations) structure when considering meson-mixing constraints, we therefore consider
the calculation of short-distance QCD corrections at NLO.

5.1 The MR in the LR Model

The short-distance QCD corrections effects have been addressed at LO in Ref. [48,49] and are
collected into the 1 parameters defined in the following expressions:

GEMiy
2

A(box)
47

2B12(QF%) 3 NN avay (5.1)

U,V=c,t

X

4 oo I (o, v, B) — i) Bo(zu, av, B)]

G2 M} _
L) Ss(w) Y iy MM VEEy, (5.2)

2
A(self) — _26 § :]_—i2wih2
i=1 UV=c,t
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G M2, _
Alvertex) _ 3252& W TESQE Sy (w) Y my MM VTR, (5.3)
U,V=c,t

We also consider the short-distance corrections for the two other classes of contributions
described in Section 4.1: the box containing a charged Higgs

(H* box) GEME, K <~ Ao LR LR\RL
A = oz ZGﬂwﬂu( ) Z AT AV VEuTy (5.4)

1+ 72
i UV=ct

X [ﬁéﬁc{?xevfl(an zv,Bu) — ﬁéf%)b(xz], rv, Bu),

and the tree level exchange of a neutral Higgs

2

0 4G Bu k2
(H”) _ r 2
I G = I

G2
+h* F WﬁfT\/w1w2Ss(\/w1w2)) (5.5)
> ﬁé@VALRARLm@éR»

U,V=c,t

We have verified by an explicit inspection of the relevant range of internal momenta of the
one-loop diagrams that the self-energy, the vertex, and the tree level Higgs exchange receive all
the same short-distance corrections, indicated by ﬁé?}v.

Table 5.1 summarizes some features of MR when applied to LR Model box diagrams: we
indicate with a cross in the columns labeled as z.,x;, 3 the relevant energy scales, then in
columns ~ and Range we show the dominant terms from the Inami-Lim functions (and therefore
the counting to be performed) and the corresponding range over which « (k2) is considered. The
final integration over the momentum of the EW diagram k? is performed accordingly to Ripg o1
R,. The cases cc and ct proportional to z;x;I1(z;, z;, 8) lead to suppressed contributions given
the precision of the method, and are therefore not shown in Table 5.1. Masses coming from
the coupling with Goldstone or Higgs fields are taken at O(uw,w-, prr), while masses from the
propagator are calculated at k.

Note that there is a large logarithm, log ., in the charm-charm case. This large logarithm
comes from the WW' box in the 't Hooft-Feynman gauge and we now discuss the corresponding
short-distance correction in detail (neglecting thresholds, which correspond to a small correction).
Compared to the SM case, we have in the LR Model more operators, Qf?, which mix in the

running. Therefore, we must calculate the two factors ﬁt(lm,;y), a=1,2, U and V denoting the
quarks in the loop with my < my. In order to express the short-distance QCD correction, we
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ij xe wx B ~ Range R

cc X logze  [me, pw]  Riog

Ii(zi, x5, 8) ct X 0(1) my Ry
tt X 0(1) my R,
ce x logB [pw,prH] Riog

Lz, x5, 8)  ct x logB [pw,prH] Riog
tt x logB [puw,prH] Riog

vzl (xi, x;,B) tt X 0(1) my Ry

Table 5.1: Characteristics relevant for the MR for each individual contribution. x; =
m2/ My, B = M3,/ ME, . Contributions proportional to Iy(z;,zj, B) or zixili(xi,x;,3) come
respectively from WW' and GH box diagrams, while a contribution proportional to Is(z;,z;,[3)
comes from a WG or a WH box. GG’ come at a higher order in 8 and are thus not considered.

start by defining

5((1‘74&"3‘/) [R] = Z (M) —di—d+di+dm (as(mU) ) -

it \ asln as(pin)
Qs 4l o Qs o\ 4
() (G0 [0 se) ]
><RNL0<—dl —dy +d; + 2dn, (5.6)

Wl (1 - %‘;W)[Jl — B - %;”*)[JT ~ B

+as(mU)+as(mv)Jm> ( T{i )] ,
am Ty .
rl
R N T
[W—l (—K+J1+JT—2Jm)< . )] ,mv,uw>,
T .

with d;, determined from the anomalous dimension matrices of the |AF|= 1 current-current
operators, d; from the corresponding |[AF|= 2 local operator, d,, from the evolution of the
masses, Jirim, K , Jm the respective terms from the anomalous dimension matrix at NLO, W
being a diagonalisation matrix needed for solving the RGE, and finally the values of the Wilson
coefficients coming from the matching between the bilocal operators T{Q%, Qf*} and the local
|AF|= 2 operators are proportional to

it = T1/4, 3t =1/4, T =—(r+1+Nrl)/2. (5.7)

In Eq. (5.6) the index 4 indicates the individual contributions from the operators QL at my,
while at the ending of the running they are indexed by a: as we have already commented on, the
two operators mix through running, and their mixing is described by the 2 x 2 matrices W and
K. Their expressions, together with the others needed in Eq. (5.6), are found in Appendix I.
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Similarly to the SM case for 7, for which the counting in Eq. (4.75) was considered, we finally
have the expression

(W'W) 1 (W'W) as(me) T
= _ )1 . sve 5.8
na,cc 1+ IOgSCC (ga cc Og(.’L‘ ) + Tl:;:1 , (as(uh) ) ( )
d d, r
% <04s(MW)> l (%(lm)) W, W1 T1i ) '
as(pn) as(pn) )],
For ﬁggw) and ﬁ((lm’W) , there are no large logarithms in the contribution from I in Eq. (4.11),
the integral is dominated by k? = O(m}) and we have
_(W'w w'w _(W'wW wW'wW
((“t ) — 5( )[RNLO RNLO), L(ltt ) _ 5( )[RNLO RNLO), (5.9)

where RVEQ should be replaced by RYLC defined in Eq. (4.53) to express the fact that a single
scale dominates the loop momentum.

The next step is to compute GW’ contributions. Note from Table 5.1 that they come with
the logarithm log 3. Its size for phenomenological interesting values of 3 is not largely dominant
as for log z.. We have therefore considered resumming (in the way just described above) or not
this logarithm. As argued in Section 4.3, we do not expect large corrections coming from the
resumming of log 5, and we have indeed found a rather small modulation of the MR results

for the combined short-distance QCD corrections 759, 7 U™ box) iy Egs. (4.30), (4.33) when
resumming or not it. The analytical expressions are given in Appendix J, while the numerical
values are given in Tables 5.2 and 5.3. Note that we only give the value of 7> v, the reason
being that the numerical values of 7; v are very much suppressed and therefore irrelevant for
phenomenology. We further note that, for simplicity reasons, the numerical values for ﬁéfIUV‘[;) in
Table 5.3 were calculated for the limiting case where w = 0 and therefore in the loop functions
found in those tables F'(wy,ws2) should be replaced by a function depending only on wy, which
we have set to 0.1 and 0.8. In any case, the variation of ﬁé{{UVy with wy 2 is small compared to
the uncertainties we will attribute to the final values and will be therefore neglected.

A similar discussion applies for WH, GH and the tree level diagram. The final numerical
results will be discussed later in Section 5.3, together with the results for the EFT calculation in

the charm-charm case.

5.2 EFT calculation of the cc contribution in LR Models

In the SM case we have seen that a good comparison between the EFT approach and the MR
one happens when there is no large logarithm in the loop function, and when that was not the
case and a large logz. was present we have found a difference of 30 % in the ct case. This
is related to a more involved evolution of the relevant operators, because the double insertion
of effective |[AF|= 1 operators has divergences that are renormalized by local counterterms,
a feature missed in our implementation of the MR: in this case, we have not employed any
information concerning the anomalous dimension matrix y,¢,4, 7, = £ and a = 1,2, governing
the mixing between double and single insertions of |AF|=1 and |AF| = 2 operators. Note that
the presence of log . in the full theory announces the need to consider local operators in the

renormalization of the effective theory: indeed, since log¢? + cnt = / i?, once the propagator
q
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2,4t loop functions
4log(xt) 4
ww' 4.65 + 0.99 = 5.64 —
+ (.I't — 1)2 Tt — 1
T; — 274 Ty
GW' 4.66 + 0.98 = 5.64 A | — 1
+ (7, — 1)2 og(we) + P + log(B)
(tree), (vert), (self) 4.66 + 1.00 = 5.66 F(wy,ws)
xt + (x: — 2) log(ay) — 1
WH 4.66 + 0.98 = 5.64 u-wy | 2 ( 2 + log(Bwr)
Tt —
— I 1
GH 4.66 + 1.00 = 5.66 Uy - g2 T 108(T)
(xe —1)°
7_72,ct
41
W’ 2.42 + 0.27 = 2.69 —ﬂx;)
Ty —
GW’ 2.42 + 0.27 = 2.69 a -log(a1) + log(5)
(tree), (vert), (self) 2.42 + 0.28 = 2.70 F(wy,ws)

WH 2.42 + 0.27 = 2.69 U W (mc + :Clt log(z¢) + 1og(5w1))
Tt —
GH - higher order
ﬁ2,cc
ww’ 1.46 + 0.16 - 0.28 = 1.34 4log(z.) + 4
GW’ 1.26 + 0.01 = 1.27 log(3)
(tree), (vert), (self) 1.26 + 0.02 = 1.28 F(wy,ws)
WH 1.26 + 0.02 = 1.28 u - wi log(Bw)
GH - higher order

Table 5.2: MR wvalues for the LR Model when log 8 is not resummed are indicated in the second
column: the first value indicates the LO, and the second one the NLO correction. For the WW'
contribution to the charm-charm case, the second correction comes from the NLO related to the
log x.., while the third is the LO correction related to the remaining O(1) term. The different loop
functions, indicated in the last column, are calculated in the 't Hooft-Feynman gauge. When not
indicated, the dependence on w1 is negligible.
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N2,tt loop functions
41og(z+) 4
ww’' 4.68 + 0.96 = 5.64 —
i (.I't — 1)2 Tt — 1
—2x T
4 4. 32-5.26 = 6.92 A T
GW 86 4+ 7.32-5.26 = 6.9 o 1) og(xt) + p— + log(8)

(tree), (vert), (self)

4.66 + 0.98 = 5.64

F(wr,ws)

WH,w1 =0.1

4.86 + 4.11 - 2.65 = 6.33

- (xtl”t + (ze — 2)log(x¢)

T o)

(¢ — 1)
WH,w, =08 | 4.84 + 6.70 - 4.76 = 6.79 -
2 +1 1
GH 4.66 + 0.99 = 5.65 I e  CO R
(¢ — 1)
77]2,(:15
11
W’ 2.43 + 0.26 = 2.69 —&“’f)
X —
Gw’ 2.52 + 1.91 - 1.51 = 2.92 Sl - log(ar) + log(5)

(tree), (vert), (self) 2.42 4+ 0.27 = 2.69 F(wy,ws)

WH,w; =01 | 2.53+ 1.17- 0.86 = 2.83 u-w (“; + ﬁt log(x¢) + 1og(ﬂw1)>
-
WH,w, =08 | 252+ 1.77 - 1.40 = 2.89 -
GH - higher order
772,00
ww’ 1.55 + 0.16 - 0.31 = 1.40 4log(xe) + 4
GW’ 1.31-0.02 = 1.29 log(3)

(tree), (vert), (self) 1.26 + 0.02 = 1.28 F(wy,ws)
WH,w =0.1 1.31-0.02 =1.29 u - wi log(Bw)
WH,w, =038 1.31-0.03 = 1.28 -

GH - higher order

Table 5.3: Same as Table 5.2, with the difference of resumming log 8. The first numerical values
are the LO contributions while the second and possibly third are the NLO corrections.
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Matching at Hw = O(Mw, MW/, MH)
Wilson coefficients at ppy: |AF|=1 Ref. [158,159]
|AF|=2 calculated here

Running from puw to puc

Anomalous dimension matrix  |AF|= 1,2 individually Ref. [160]

or tensor: |AF|= 1,2 mixing calculated here

Matching at . = O(m,)

Wilson coefficients at fi.: |AF|=2 calculated here

Running from pu. to up
Anomalous dimension matrix: |AF|=2 Ref. [160,161)

Table 5.4: Full NLO calculation of 7%%. Note that the mixing of |AF| = 1,2 operators is
calculated here, while their individual running (|JAF| = 1 or |AF| = 2 separately) is found
in [160].

i
of the W is replaced by 2 one expects a worse control of divergences in the UV range.

A logarithm is also seer‘;v in the WW’ box calculated in the 't Hooft-Feynman gauge in the
charm-charm contribution seen in Eq. (4.15). We would like in this case to compute the short-
distance correction in the EFT approach and compare it with the MR result. To this effect, we
have already discussed the new energy scales My, My, which are expected to be found beyond
My, my, and we have thus argued that we can integrate out the W, W', H,t at the same scale.
Then, in order to evolve the Wilson coefficients determined at py down to pp, we need the
anomalous dimension matrices describing how the operators |AF| = 1,2 evolve without mixing,
already known from the literature, and how the operators of the class |[AF|= 2 mix with double
insertions of |AF|= 1 operators, which we will determine. Table 5.4 summarizes the steps that
will lead to the calculation of 7%

5.2.1 Basic elements

The set of operators in the charm-charm case includes local |AF|= 1 and |AF|= 2 operators.
The effective Lagrangian is

89



4Gr | 11, L —1,L,bare
ey ey 2l
i=+ ==

4G — are
_ \/;hzﬂ)\im Z CiR Z Zilef’b
i=+ j==

L8 (ce) =

2 2
—2GLRPBALENEEN "N N cFCFzgh + ) S crzyt| e
b=1 |k,l=+ a=1

+unphysical operators, (5.10)

where Z, Z are the renormalization matrices which absorb the divergences of the |AF|= 1,2
amplitudes of the bare Lagrangian [154] [47]

Qe
7' = 142z 5.11
+ +..., (5.11)

"1
7L  _ 2 -1 5.12
;eT , (5.12)

and similarly for Z.

Above, |AF|= 1 operators seen in the first two lines involve the charm flavour only, and we
have the same coefficient for both at the matching scale uy, i.e. C’iL = C’Z-R = (;. Running
effects being generated by strong interactions, C¥ and Cff evolve in the same way below .

In the third line of Eq. (5.10), the first term renormalizes the contraction of two |AF|=
1 operators, while the second one is necessary in the matching to the full theory. For the
renormalization, two local operators have been introduced:

2

~ mg
" = 55VL®9R, and (5.13)

g2

2

ANLR me

whose normalization is chosen so that the mixing with two |AF|= 1 operators is treated on
the same footing as QCD radiative corrections and a common RGE framework can be applied
to discuss the mixing of all the operators. The notation vL ® yR, and L ® R avoids precising
the quark flavours, which are in a singlet structure under color, and the obvious contraction of
Lorentz indices.

The renormalization group equations describing the evolution of the Wilson coefficients are
(the details of their derivation are given in Appendix G):

d B ., d
; |:6jk M@ - '7jk:| Cj = 0, Vik = ;ij /L@Zik. (515)
d 2 d -
> [&wud— 7] Co= D CkCrimes Fae =D Zot ti5-lne, (5.16)
a=1 H k,l=+ b=1 H

and
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Yv

YuPr &Y' P, —

Figure 5.1: The simplification of the Dirac algebra leads to Eq. (5.18), among other Lorentz
structures.

2

- d - |-
Vil,e = — Z Z (Vi 01 + Vi Orr ) Zk,ll,7b + ﬂ@Zkl,lb Zpe » (5.17)
b=1 |k =+

describing the mixing of |AF| = 1,2 operators and calculated below. We now move to the fourth
line of Eq. (5.10), containing evanescent operators.

5.2.2 Evanescent operators

Apart the physical operators we have commented on above, we also need to include a set of
non-physical operators when considering dimensional regularization, a common feature of higher
order calculations. These are operators that vanish in D = 4 dimensions, but are present in
D # 4 in order to close the Dirac algebra. As an example of such an operator, we consider the
Dirac structure

Y YuPr @'Y P, (5.18)
that happens once dressing the operators QlLR (or ~1LR) with gluons, see Figure 5.1. In four
dimensions, such a Dirac structure would simplify to 4Pr ® Py, but when D = 4 — 2¢ we define

the following evanescent operator (EO)

E[Q¥"] = dv,7,Prs - dy"y"Prs — (4 + ae)dPgs - dPrs, (5.19)

where the constant a is arbitrary. When defining E[QTT], the factor proportional to e may be
chosen independently, in which case it is denoted with a tilde, i.e. @. The choice we make for
the value of the constants ¢ and @ makes part of the renormalization scheme and as so their
values must be mentioned when providing the final results. For the example given above, we
will choose a = @ = 4, which is the most common choice (related to Fierz identities, [154]). This
particular choice, and the ones for the other relevant evanescent operators, intend to match the
same choice made when calculating Lattice matrix elements by non-perturbative methods. We
do not give here the full set of EO we use: they can be found in Appendix H.

As shown in [162] [163], Wilson coefficients of evanescent operators are not relevant in the
matching because their matrix elements vanish in four dimensions under an appropriate choice of
their finite renormalization. Moreover, [164] have shown that, under certain appropriate choices
of EO and finite renormalization, EO do not mix into physical ones, and [165] have generalized
this statement showing that any choice can be made. However, these operators should not
be ignored, since the bare definitions of the EO are relevant for the evolution of the physical
operators into themselves in the calculation of the two-loop anomalous dimension matrix.
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-|— + Evanescent ops.

IAF|=1

Figure 5.2: Illustration of the set of operators required in the matching with the full theory.
Local |AF| =1 operators give origin to the diagram Dg represented in the left, which needs to be
renormalized by physical and unphysical operators.

5.2.3 EFT between uy and g,

Set of operators

We illustrate the need for local operators by calculating the diagram in the left of Figure 5.2,
referred to as Dy. In the LR Model Dy diverges, thus introducing local counterterms of order
ag in the strong coupling. On the other hand, in the case of the SM for cc, there is no need
for local counterterms, thanks to the GIM mechanism: the Dy set of diagrams is finite after the
combination of internal flavours cc — uc — cu + uu is taken.

The |AF| =1 operators are

Q?ZJ'Y/\PX‘]/'(TY/\PXS(JFTa X:LvRv (520)
cf. Eq. (4.77). The calculation of the Dy diagram gives a kinematic structure proportional to

2

77’716 1 M2 o
(p2 — m2)2 2DR®L—=y"v*R®@vu, W, L), D=4-2€, (5.21)

1 /a4 =
and a color factor given by 1 (1 — QTmnl), with

Tmn = —(Mm+n+ Nmn)/2, m,n==. (5.22)

After integrating over the internal momentum p* and a little bit of algebra the final result for
the diagram Dg reads

. mg 1
DO = 2167'(2;( §R+Q{1R7‘mn

1 1
—ABy M — BT+ 5Eﬁ”")

2

C
1672

—1

{2 + log <7Z—22>} (QE% + Q1 rn) (5.23)

where the set of evanescent operators E ¥ is

ELR = qoPgs® - d°Pps® + QFR)2, (5.24)
E5LR _ Ja,y,ul,yAQPRsa . Jﬁ'Yul'YuzPLSﬁ —(4+ agwRe) gR, (5.25)
EFR = doymiyt2 PrsP . dPry, v, Prs® + (4 + aéfe)QlLR/Q, (5.26)
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where we take a2'v = 4. We do not keep evanescent operators coming as € x EL % 56 in Eq. (5.23)
since they play no role in the physical effective Lagrangian defined at D = 4 dimensions. However,
evanescent operators that come as e~ ! x Ef?G are necessary in the determination of the NLO
anomalous dimension matrices.

Following Eq. (5.23), we need to introduce in the effective Lagrangian counterterms propor-
tional to the operators

By Qifrm, — ANBF 7y, — —/\ESLR - /\Eﬁ Tonn » (5.27)
where A is included in order to keep track of the evanescent operators, which will be needed when

discussing the calculation of the anomalous dimensions. On the other hand, the finite terms in
Eq. (5.23), necessary in the matching with the full theory, gives

(Onn) () = [2+1og<u—§>}i7;’m met) orLryo) )

2
=~ 47
2 2 [
= Z Tmn,a <Q£R>(O) (1), (5.28)
a=1
where i
mn Tmn mn
= T ) Ty = Z ) (5.29)
and we have defined
m?2 S
Tija(he) = [2 + log (H_QC)} T, a=1,2. (5.30)

Wilson coefficients at uy

To leading order in £ and in ., the complete calculation performed in the full theory gives
(quark masses are understood to be evaluated at py)

G2
4dr

[4log(m?/uy) + (4log(uiy / Miy) + 4+ fowr my)] + hec.,

, M2
HWWY) —EWANERNEE2802 2. Q5" (5.31)

from Eqs. (4.31), where

fowr )y = log(B) + F(w1,wa), (5.32)

that is going to show up repeatedly in the calculation.
In the EFT, one has Eq. (5.10)

HY 8G%ﬂh2A£RA§L< S Conlpw)Con (1w ){Oan) © (i)

+ Z Co (nw){(QE™)© (MW)) ; (5.33)
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+ ...

Figure 5.3: Set of diagrams from the full theory at the order as. They match onto NNLO
corrections to the Wilson coefficients, and therefore we do not need to consider them.

at order o, including an overall normalization 8G%Bh?ALEARE factor for convenience. Therefore

i) = T (4 hog(udy /) 4+ Fiwr ) + 002 ().
Cilpw) = Ofa2(uw). (5.34)

The initial conditions for the |AF|= 1 Wilson coefficients are given by [158]

CT(MW):1+M log ([ EWV ) 1O 4 By 1 4By ), ==+, (5.35)
47 MW

where B o are given in Appendix I, which have the same values at py since QCD is invariant
under parity.

The Wilson coefficients we have above are the ones necessary for a full NLO computation. It
is clear at this point that the diagram in Figure 5.3 matches at the next order in perturbation
theory, i.e. at the NNLO.

Anomalous dimension matrix at LO

The set of anomalous dimension matrices for |AF| = 1,2 without mixing is given in Appendix I.
Here, we derive the anomalous dimension tensor describing their mixing. The anomalous dimen-
sion tensor is calculated from the divergences calculated in Eq. (5.27). Writing the divergent
part given in Eq. (5.23) in the QL% basis, one has

> (~43) 7 e Qb)) = 2 > (~47) @O ). 630)

We now have the following definition, cf. Appendix G
Vothsa =2 {Zfl’(l)}mn s (5.37)
where Zf LM has been introduced in the renormalized effective Lagrangian of Eq. (5.10), con-

taining the necessary counterterms. Therefore,

©  =—[2x (=4-7")] =8 7" (5.38)

’Ymn,a
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Figure 5.4: Diagrams D;, corresponding to the contributions at order as from the double insertion
of |AF| =1 operators.

Anomalous dimension matrix at NLO

When going to the NLO, we need to dress the diagrams and operators in Figure 5.2 (including
evanescent operators) with one gluon in order to compute the anomalous dimension tensor at
this order. The full set of diagrams we have is given in Figures 5.4 and 5.5. Their divergent and
finite contributions can be computed with the help of MATHEMATICA and TARCER [166]," a
package of FEYNCALC [167] [168] for the reduction of two-loop integrals, and using the integrals
from [169] or [170]. We use the MS scheme for extracting the divergences, where possible terms
log 47 and g are absorbed into the definition of the integral in D dimensions. External momenta
are set to zero. At the same time, the IR divergences are controlled by external quark-masses
mgq s, that are kept all long the calculations. We spare the reader from long intermediate results
of the different classes of diagrams, which can be found in Ref. [171].

Compared to the LO, new evanescent operators are present in the NLO. In our computation,
they appear when many Dirac matrices of one quark line are contracted with the second line:
for example, the insertion of 4,7, Pr - v/ Ps, seen in the definition of F[Q1*] in Eq. (5.19) in
the diagram seen in Figure 5.1 results in a structure with four Lorentz indices. Following this
same example, consider

Epf = do iyt Prs® - dPyy Yy Yus Yua Prs® — (4 + abffe)® +be) Q37 , (5.39)

where we indicate the further arbitrarity in the choice of the O(e) term by the inclusion of the
parameter b. Similarly to Section 5.2.2, when considering the operators Q- with a different

1See [172] for calculations in the 't Hooft-Veltman scheme.
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normalization we replace b with b. The value of b for the same a%f = &%5 =4isb=b=96: we

consider these values because then Fierz transformations can be applied in D # 4 dimensions.
To determine the anomalous dimension tensor one computes 7(1) defined in

ré,a
20—17(1)
2
B _ -1
7 1(1):| |:Z 11(1):| 0
‘| b |: L ba + 1 mn,b 2 b

/(gm, Ny lzo;y(l)]m) {Zl—l,(l)}m/n/ )

o B B [250] )

Wa=4 (2] 48

mn,a

—1 (1)

,i .
A
.

(e

see Appendix G. In this expression, the finite renormalization constants Zo, Zo, which go with
an overall factor —1/2, absorb the contributions from evanescent operators which come as E/e¢
(a precision is in order: the term proportional to 8y does not contribute when indices k,n

5—1,(1)
0 5 , (5.40)

corresponding to physical operators are taken in [Z(;l’(l)]kn 1 or [2071,(1)]]%27 see Ref. [154]).
These same operators, namely E/e, also contribute to Z 1™ iy the computation of two-loop
diagrams, which by its turn is not suppressed by a factor 1 / 2. All in all, evanescent contributions
come suppressed by a factor 1/2.

One finally gets

Yk = —4rmi(1/2), (5.41)
with
—h"IN) = 32% l(é —96) (N? —2) By + (8(b— 48) — 6(b— 96)N?) 7,y
+6N(b—80) | — (b—280) (N? —2) b
64N
- - 1 -
N2 — 4h — 152N? +48) L 4 — (376 — 42
+ (3b b—152N” +48) —— BN 32(376 3b), (5.42)
"2 A (s > b :
—P) = gy (30— 16 (N +4)) + (48— 5 ) NB+ (b+96) N7y
+—( 3b+ 72N?% +304) + (b — 280)@ (! +13) 2t
16N 32 \8 2

(5.43)

Bri = L+ r, where the contributions from the evanescent operators are indicated with a factor A.
Therefore
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Figure 5.5: Diagrams L;, which correspond to the dressing of local |AF|= 2 operators with
gluons.

1 251 1 1 169 1 355
VSFJ)FJ ~ T ’7-(1-171 = 7(_3“1 ~ 9 7(_1,1 -6
1 41 1 1 73 1 223

/75*3’,2 =3 752,1 = 7(74)“1 =3 7(71,1 =5 (5.44)

The above expression satisfies a series of checks: (1) we have performed our computations
in an arbitrary QCD gauge &, and no dependence on ¢ is present in the final result (but it is
present in intermediate steps, see [171]); (2) similarly, we have regularized the IR divergences by
considering masses mq, s for the external states, which are not seen in the final expressions (but
also present in the intermediate expressions, see [171]); (3) as shown in Ref. [165], the b shown

above have no effect in the calculation of 75;;, which is seen easily from Egs. (5.42) and (5.43)
when A =1/2.

5.2.4 EFT below pu.

At the energy scale p. we match the EFT defined above p. onto an EFT for which the charm
is integrated out. The Wilson coefficients of this new EFT are determined by comparing the
Green’s functions in the two EFT, which is summarized in the following equation

m T Qs o matchin
(Oz (/L )Ca(uc) + Z Tij,a + Ecap CiCj (,uc)> atcuing Fa(ﬂc); (5_45)
NEAAGD ¥ ) e
LO+NLO NLO NNLO

where the Wilson coefficients C], a = 1,2 and C;, i = %, in the LHS are the Wilson coefficients
of the EFT defined between the two energy scales py and p., while the Wilson coefficients
F,, a=1,2, correspond to the EFT defined below p.: this matching is illustrated in Figure 4.4
seen in the previous chapter in the context of the SM. Note that the factor 7/a () seen above
comes from the normalization of the operators Qfg (which is the reason why the same factor does
not multiply F,(u.)). Also concerning this same normalisation factor, the LO term indicated
in Eq. (5.45) gives a factor proportional to log(u./uw), as it should, since the running of the
Wilson coefficient C" results in a factor proportional to as(pc)log(pe/pw). We will see in a
while the values of the Wilson coefficients at p., which are found from their evolution starting
from pw, where they are given by Egs. (5.34) and (5.35).
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It was possible to check that the gauge-dependent terms as well as the terms involving small
quark masses my and my are canceled at the matching scale u. for any choice of the coefficients
at order O(e) in the definition of the evanescent operators. This provides additional powerful
checks of the calculation and shows that our results are indeed independent of the choice of the
QCD gauge and the infrared regularisation.

In addition, our results also provide an estimate of the size of NNLO corrections. Indeed, at
NNLO several new contributions appear, one of them coming from the O(«y) corrections to the
operators shown in Eq. (5.45) and proportional to CSP.

Its final expression is

2\ [11(N2=2)8, (N24+12)7,
8O = 1og<m—§>l ( o, Vo . )”+5]
2
+log? <—20> << )BrlgNTrl?))
N2 — ) 95N 73 65
( QN) Trl — I, (546)

2 6
8CP = log? (e ) (—2 38, —6r,
2 0g (MQ Nt Bri — 6T

m?2 10
+log (F) (N 118 — 267’rl)
11N 381 517
2

N 1 5 (5.47)
which were calculated for aé,f‘ = dQLf” = 4,b= b= 96 and the other choices seen in Eq. (H.20) in
Appendix H.

In the 3-quark effective theory, the relevant anomalous dimension matrix 41 g describing the
evolution of the system {yL ® YR, L® R} in the three-quark EFT are already known at the NLO
and are given by [160], and found in Appendix I

5.2.5 Short-distance corrections in EFT

Combining Eq. (5.45) with the renormalisation equation for C,C;, a = 1,2 and ¢ = £, down
to the low scale p below m., we obtain the final result for (% i)’ at NLO in the EFT approach

a,cc
corresponding to the gauge-invariant combination of box, vertex and self-energy diagrams:

1
p(LR) — 5.48
Tasce” = TR (e () o) (5.48)

Z <(1 + 4( )K[3])exp [d[g] log s(Mc)] (1- Oés(ﬂc)K[g])> ‘Fj(ﬂc),

P &) 4

with S“%(x,., B,w) given by

1
Mo, Buw) = 1+ log(ee) + 3 fowm (5.49)

and
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FG(MC) ﬁcg(ﬂc) + Tlgi (TTl,a(,ufc) + %ZC)CSP (Hc)) CT(MC)CI (,LLC)7
Trta(pte) = (24 log(m /u2)) Tt a=1,2, (5.50)

where the values of C7 (u¢), Cr(ptc) and Ci(pc) are given by

C,C

r _ s (pe) 4]\ . jl4] s ()
7 | (re) = <1+ “ar J exp |d™ - log i) (5.51)
&
. as(f) 551 s
<1 T O
(i) ) e
-exp {J[u’)] log %} . (1 _ %jﬁ]) Ao | uw),
S Cg

following the running formalized in Egs. (5.15) and (5.16). In order to get an estimate of the
uncertainty due to neglected higher-order contributions, we have added in Eq. (5.50) the contri-
bution C7P which first appears at the next order. The C7 5(uw ) are defined in Eq. (5.34) while
Cy (pw) is defined in Eq. (5.35).

Finally the matrices d = d’[f], J=JTand d = d[g], K = KBl encode respectively the 6 x 6
anomalous dimension matrix 4 and the 2 x 2 one 41 g defined in Appendix G, with the additional

definition ONT ST
) O ) B (5.52)
2530 20 Bo

Simplified expressions for F,(u.) where effects from the five-flavour theory have been neglected
and which are extremely good approximations to the complete results read

d= J+d,J) = -

3 7

Fio= qpa- (2477 —394% - 2647 4 634)) (5.53)
1 me*(pie) - +- ++
1612 4 2 1
1/ 1761281 " 587029 ., 6 0889A++ 47898 7A1 + 737A2
4 390000 220000 1110000 260000 296

(12, [upw) 10181 (9. [ nw) . 39993
= LA B At 21 alils -/
4 <A ( 1318 <MW> 16250> * (2 °8 <MW> * 10000>

7031 63 (pw) 974889
A [ —6log (L) - 20 4 (220 -
* ( Og(MW 2500 ) T\ 26 °# \ 21, ) T 1430000/ ) )
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_ 3 - +- ++
P2 = Josia T (259047 — 481AT~ — 1824 4 TT7A; — 27044,)

2
+1 (1og (L(f)) + 2) (A= +24%~ 4 A*H)
Lhe

4
1/ 101273A"~ n 3969529 A1~ n 6590729 A1 52191094, n 21963 A,
4 9750 330000 555000 130000 3700

T _ Uw 13331
Al ———A 1 I 10181 AT 1 —_—
+ ( 1605 <5000 og<MW>+ 08>+ <3 og<MW>+ 5000>

7
— |1 lo 1)A+t
16250 < 5000 g(MW) -+ 703 >

M, 2600 1318747
+As | 2log V) + F(wi,ws2) + log Ew )
My 37

My 22200
o (131 (%)_iigggi))) (5.54)
with
N C ORI C
() =) o

(L) |

1,cc

is negligible and the one of n(LR) éif) at the scale p =1 GeV is

cc

The value of 7

1
*<LR>‘ - 1.562 + (0.604 — 0.037F —0.473 5.56
Nec EFT 1 70.0294F(W1,W2)[ + ( (wlaw2)) ] ) ( )

where F(wi,ws) is defined in Eq. (4.32) and we have taken My = 1 TeV (for
My = O(1 — 10) TeV, the dependence on this parameter is very weak). The first and sec-
ond numerical values in the brackets are the LO and NLO contributions stemming from the
first term in Eq. (5.45) or (5.50), whereas the last term comes from the r,;, term in the same
equation (the term CgP in Eq. (5.45) or (5.50) being of a higher order).

The dependence on the matching scales uy and p. is illustrated on Fig. 5.6. This shows
the strong dependence of the LO result on the matching scales and the much milder dependence
at NLO. This behaviour is similar to what is observed in the SM [46,47,92] and it constitutes
another significant check of our computation. In the case of the dependence on ., the relevant
quantity is N7, with the normalisation factor given by

N = 5" (ze(pe), B, w) /S (we(me), B,w) (5.57)

considering that ST (z.(m.), 8,w) is the quantity multiplied by ﬁgf R). We also show the depen-

dence on the choice of the hadronic scale iy, in Fig. 5.7 for typical values between 1 < pp /GeV < 2
in the effective theory.

100



24 —
2 e 16F
—NoO | T ' o
Ig ,//’ %lzé B \\\\\
18 - O .
/%’z—f - \\\\‘
16/ M4 — o
’ S~o
II 1 1 1 1 1 1 1 1 1 \\:\‘1~
200 400 600 800 1000 1. 12 14 1.6

Hw[GeV] Fe [GeV]

Figure 5.6: Dependence of 7. on the high (left panel) and on the low (right panel) scale in the
EFT approach for My, = 1 TeV and respectively for pu. = me and pw = Mw. The other
parameters are given in the text. The relevant quantity when p. # me s Nije. with N defined in
Eq. (5.57). We also consider the limiting case wy = 0.1 and w = 0.

5.3 Discussion of the results

We are now in a position to give our final results for the short-distance QCD corrections to
K K mixing at NLO in LR Models. Adding up our results from the previous sections yields the
effective Hamiltonian:

G2 M?2
H = HM 4 ZIWeen?Qi 37 Mgy Vavay st @y, av, 6.w)
U,V=c,t
4G
G gt T A v
U,V=c,t
| GEM; x
47T2WQ§R ST R PO GH (5 v, fw) + hec, (5.58)
U,V=c,t

where HM is given in Eq. (4.56) and S® in Eq. (4.31). In all cases, the value of 7y ;v is
negligible, so that we will only consider 72 yv = Nuv.

In the MR approach we add the individual contributions of Egs. (5.1), (5.2), (5.3) (given
in Tables 5.2 and 5.3) for the three diagrams 4.1(b), (c), (d) with the relevant weights and we
normalize the result to ST# (xy,xv, B,w) in order to get the result in the appropriate form (the
same applies to the charged Higgs in the box which corresponds to the third line in Eq. (5.58)).

5.3.1 Short-range contributions for the cc box

Since we computed n(c %) in both approaches, we can compare the EFT result with the MR

calculation. We get from Eq. (5.56) and the MR value at the scale pp = 1 GeV for wy = 0.1
(w1 = 0.8) in the limiting case w = 0

cc

LR ey = LALH06T-043=165  (341-017-1.03=221),

(5.59)
(L) ‘MR = 1.1640.13+0.03=1.32  (246+0.27 —1.32 = 1.41).
(5.60)
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Figure 5.7: Dependence of ﬁCLCR on the hadronic scale puy, in the EFT approach. We also consider
the limiting case w1 = 0.1 and w = 0.

As in the SM case, we see that the central values from the MR are only in broad agreement
(around 30%) with the EFT approach in the presence of large logarithms, and in this sense
we could quote a 30% uncertainty in Eq. (5.60). Including this uncertainty in our result and
averaging with the values obtained with resummation of log 3, we have

ER] = 1.35+04140.08  (1.48+0.44+0.10), (5.61)
MR

where the first uncertainty comes from the comparison of MR and EFT, and the second un-
certainty is obtained by considering the values obtained with and without the resummation of
log 3.

The EFT NLO central value will be taken as our final result. At the scale pup, = 1 GeV and
for w; = 0.1 (w1 = 0.8) in the limiting case w = 0, we have:

7R = 1654050  (2.2140.66), (5.62)

where the conservative 30% error bar includes our estimate of higher-order terms, namely: the
contribution from C2” (which turns out to be very small), contributions from the expansion of
Eq. (5.48) up to NNLO, an estimate of the NNLO term assuming a geometrical growth from LO
to NLO, the arbitrariness in the choice of uy when integrating out the W and W’ bosons to
match onto the four-flavour theory (we vary puy between the two high scales My, and My ), the
dependence on the choice of the matching scales for the matching onto the three-flavour theory.
Each of these uncertainties are of the order of a few percent. Furthermore we have not resummed
the contributions log 5. This last uncertainty is clearly difficult to determine without an explicit
calculation, however this logarithm log ( is multiplied by a suppressing factor a(puw ), suggesting
that the uncertainty should be smaller than our conservative estimate of 30%.

5.3.2 Short-range contributions for the ¢t and ¢t boxes

The short-distance contributions from the ct and ¢t boxes in the MR are:

B = 27440824005  (2.67+0.80+0.03), (5.63)

R = 58841.764+023  (5.55+1.67+0.11), (5.64)

where the central value and the second uncertainty are obtained by considering the values ob-
tained with or without a resummation of log3. The first uncertainty is a conservative 30%
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estimate of the uncertainty of the MR coming from our previous experience in the SM, in rela-
tion with the fact that the top quark is not treated on the same footing as other heavy degrees
of freedom in this approach. As indicated earlier, resumming or not log 8 yields a small uncer-
tainty of a few percent in both cases (as expected, since the potentially large logarithm log S is
multiplied by a suppressing factor as(uw)).

5.3.3 Short-range contribution from neutral and charged Higgs ex-
change

The values of the QCD short-distance corrections for the box containing a charged heavy Higgs
(see Fig. 4.1) are

_(H*box)

i = 2764+083+£0.07 (2,79 +0.84+0.10), (5.65)
+

TP~ 585+ 1764020  (5.90 + 1.77 £ 0.25), (5.66)

FUHTPex) 199 40.39 4+ 0.01, (5.67)

where the first uncertainty corresponds to a conservative 30% uncertainty related to the MR
method,? and the second uncertainty corresponds to an average of the results with and without
a resummation of log 3. For the tree-level neutral Higgs exchange we have

= 270+ 0.09, (5.68)
= 5.66+0.30, (5.69)
7D = 1.2840.04, (5.70)

where the quoted uncertainty assesses conservatively the neglected NLO corrections coming from
the matching at pgy and the NNLO corrections based on a geometrical progression of the per-
turbative series.

5.3.4 Set of numerical values for different energy scales

Our results need to be combined with hadronic matrix elements calculated at the low energy
scale up. In the literature, values for up, = 2 GeV and 3 GeV are found, and in Chapter 6 we
are going to combine our calculations at 3 GeV with bag parameters calculated at this same
scale. The numerical results of the short-distance QCD corrections at these scales are given in
Table 5.5.

5.4 B meson systems

Similarly to the kaon system, we can also calculate short-distance QCD corrections for the B
meson systems. As noted in Section 4.2.3, in the case where the right-handed mixing matrix
has an arbitrary structure, we must calculate the contributions related to the tt, ¢t and cc in
the LR Model. In the EFT calculation, we have considered integrating out the heavy degree of
freedom of the bottom at p, = O(m;) and neglecting operators which are suppressed by 1/my.
Therefore, the only difference we have compared to the kaon system calculation is the value of
the low energy scale py, which for the B meson systems is fixed at pu, = 4.3 GeV. As expected,
similar dependences on the matching scales uy and p. are observed, while the dependence with

2 . _(H ibox) . . -
Note that we provide only one 7j¢c since the dependence on wi 2 is negligible.
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@ 2 GeV tt ct cc
“om | 342—1.05 F(w,ws)  1.53—0.312 F(w:,ws)  0.968 — 0.0227 F(w1,ws)
Tij 1—0.329F (w1, w2) 1 —0.207F (w1, wa) 1—0.0294 F(wy,w2)
+1.12 +0.51 +0.21 (EFT)
Do) 3.29 £ 1.09 1.54 +0.51 0.72 +0.24
Y . . . . . .
7l 3.19+0.36 1.51 + 0.36 0.714+0.19
@ 3 GeV tt ct cc
—om | 280—0.862 Fwr,ws)  1.26 — 0.256 F(w:,wz)  0.803 — 0.0191 F(wy,ws)
hij 1—0.329F (w1, w2) 1 —0.207F (w1, wa) 1—0.0294 F(wy,ws)
+0.92 +0.44 +0.18 (EFT)
g1 b 2.71 + 0.89 1.27 +0.42 0.59 + 0.19
7l 2.61+0.31 1.244+0.23 0.58 + 0.16

Table 5.5: Short-distance QCD corrections for the different classes of diagrams we consider:
diagrams containing the exchange of a pair WW' (indicated by the superscript LR), a pair W H
in a box diagram, and a neutral Higgs in a tree level diagram. In the last two lines we have
ignored the very small dependence compared to the uncertainties of the results on w;. The function
F(wi,w2) in the first line is defined in Eq. (4.32).

up, is shown in Figure 5.8. The numerical results for the EFT and the MR calculations are given
in Table 5.6.

5.5 Conclusions

Over this section we have considered two methods for computing short-distance QCD corrections
at NLO for meson-mixing observables in LR Models. These are the Method of Regions, designed
to include the most important corrections by inspecting all possible diagrams dressed with gluons,
and the EFT approach, which builds effective descriptions of the full theory valid at low energies.

In the previous chapter, we have compared the two methods in the Standard Model where
EFT results are available from the literature, and have obtained similar results using the MR

—=LR
Mec

0.71+
0.70
0.69
0.68

0.67

.
4.2 4.4 4.6 4.8 5.0

Hn(GeV)

Figure 5.8: Dependence of .. with the hadronic scale for the system of B mesons.
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tt ct cc
“Lm | 244—0.75 Flwi, @) 1.10—0.221 F(wr,wz)  0.703 — 0.0169 F (w1, ws)
lij 1 —0.329F (w1, wa) 1 —0.207F (w1, wa) 1—0.0294 F(wy,ws)
+0.80 +0.35 +0.21 (EFT)
FUHFbos) 2.36 + 0.80 1.12 4 0.36 0.52 + 0.18
J
7 2.28 +0.31 1.07 +0.21 0.50 £ 0.16

Table 5.6: Short-distance QCD corrections at NLO for the LR contributions to B meson-mizing.
Flavour thresholds are taken into account. The 1 are calculated at the hadronisation scale up =
4.3 GeV with the other parameters as for the kaon system. In the last two lines we have ignored
the very small dependence compared to the uncertainties of the results on w;. The function

F(wi,w2) in the first line is defined in Eq. (4.32).

except when large logarithms are present in the loop functions, i.e. logz.. In the SM, this is the
case for the charm-top contribution, requiring one to consider local |AF|= 2 operators in the
effective theory defined at the energy scale where the W boson and the top are integrated out
in order to renormalize the divergences of the double insertion of |AF|= 1 operators.

In the LR Model, we apply the same MR approach to compute short-distance QCD corrections
for the diagrams shown in Figure 4.1, namely the set of contributions box, vertex and self-energy
diagrams where a W’ is exchanged, the box with a charged Higgs in place of the W’ and a tree
level diagram where a neutral Higgs is exchanged. In the first set, containing a W', the loop
function of the charm-charm contribution has a large logarithm log x., and since there may be
doubt concerning the MR result in this case, we have applied the EFT approach. This required
the computation of the anomalous dimension matrix at NLO describing the mixing of (double
insertions of) |AF|= 1 operators and |AF|= 2 operators. The other anomalous dimension
matrices and matchings at NLO are known from the literature. We have as well computed
a contribution coming at the NNLO in order to make a test of the good convergence of the
perturbative series.

The whole interest of these calculations is to derive more trustful bounds coming from meson-
mixing on the structure of LR Models, as for instance the scale of the masses of the W’ and the
exchanged scalar sector. We now consider the phenomenology of LR Models based on meson-
mixing observables and the observables discussed in Chapter 3.
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Chapter 6

Global fits

We aim at having a clear picture of the doublet scenario of the LR Model based on experimental
data. As we have discussed in previous chapters, this class of extensions of the SM introduces new
energy scales k1.2 1 r from the spontaneous breakdown of its gauge symmetries, parameterized

in terms of r = ka/k1,w = KL /K1,€ = \/ KT + K3 + k% /KR, kr. Together with the right-handed
gauge coupling constant, rewritten in terms of ¢y, this set of parameters describes LR Model
corrections at tree level to EWPO beyond the SM and the spectrum of masses of the new gauge
bosons.

EWPO and direct bounds on the mass of the W’ were already considered in Chapter 3.
Here, we would like to integrate the information coming from meson-mixing in a global fit.
When considering meson-mixing observables, other parameters become relevant, which are the
right-handed mixing matrix V7, together with the masses of the neutral scalar sector, My, and
My, = §Mpy,. There is also an extra parameter coming from the Higgs potential, z = u}/ub,
appearing in the couplings of the scalars to fermions. The full set of parameters we have to
constrain is then

{r,w,e,c, VE My, , 6,2} . (6.1)

This is the set of parameters we consider, and we will be particularly interested in extracting
lower bounds on the spectrum of LR particles. As a simplification, we consider here a particular
structure of V¥, namely V? = V¥ while more general structures will be considered in [119].

6.1 Meson-mixing observables

Observables from meson-mixing have been extensively studied in the context of LR Models
[28-37,173] (see also [174,175] for generic NP considerations), setting lower bounds of a few TeV
on the mass of the W’, and pushing the scalar masses beyond O(10) TeV. These constraints were
obtained in the case w = 0, and we would like to revisit these constraints in the more general
case where w can be sizable, a possibility not allowed in the triplet case considered by these
analyses.

We are going to focus on the better known observables in the context of the SM, namely |ex]|,
cf. for instance [176] for its status, and the mass differences Amg, s. Other observables have also
been employed in the literature, such as the mass difference in the kaon system Ampg, and the
direct CP violation quantity € x/ex. Due to the uncertainties coming from the long-distance
effects in the prediction of these observables, we prefer at the moment to consider only the above
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mentioned observables which have a more solid status, though recent developments in €' /ex
have been reported in [177]. Similarly, we consider premature to employ D mixing observables,
since theoretical uncertainties from the SM prediction limit a New Physics analysis.

The experimental values are given by Ref. [78]

lex| = (2.2284+0.011)-1073, (6.2)
Amg = (17.75740.021) ps~*, :
Amg = (0.510+0.003) ps—*, (6.4)

and we now introduce their theoretical expressions. The expression for the indirect CP violation
ex is [54] [178] [179]

GEME, s o
— _ TFW  ide EI K VLL K b CSM
ek = g | (RIQY ) )b 0) O}
Hm{(K1Qy | K) (1) Cy " (un)} | - (6.5)
2 M2
where CM is read from Eq. (4.56) by dropping —%= QWQYLL in that equation, and we focus

47
first in this contribution. It includes the short-distance QCD factors 7, 7.+ and 7., which

are scale independent: the scale dependence has been factorized out in b(up), which combines
with (QY*%)(un) to give a scale invariant quantity. The value of C*™ is dominated by the
top-top contribution (~ 2- 10_7), but the charm-top and charm-charm ones have important sizes
(~6-107% and ~ (=3) - 1075, respectively).

Above, k. corresponds to long-distance effects, whose value has been calculated in the SM
[180-182], thus giving

ke = 0.940 £ 0.013 £ 0.023 . (6.6)

Other long-distance effects are hidden in Amy, which is precisely measured from experiment to
be

Amp = 3.48392 x 10715 GeV . (6.7)

Finally, since we are going to use the information coming from the modulus of ¢k, the value of
@ is not relevant for our purposes.
Concerning the LR Model corrections seen in Eq. (6.5), They consist in

CQLR = AWW/CQLR—I—AHibOXCQLR-‘rAHCQLR, (68)
whose terms were introduced in Section (4.1.3):

Gh My

HX) = ZFW
472

QT AXCyT, (6.9)

1See, however, Ref. [183] for bounds on LR Models from DD mixing.
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where X labels WW’' H*box and H. We are going to discuss in a while (K|Q}*|K) and
(K1Qy"|K).
Shifting to the B meson systems, the mass differences are given by

G My

LR _
AM™ = 12

(Bq|QY " 1By) (1n )by ) O (6.10)

H{(BylQ T By) (1) C3 ¥ (n) |

The expressions of C*™ and the many contributions to CX¥ can also be read from Eq. (4.56)
and Section 4.1.3, by replacing the mixing-matrix elements and short-distance QCD corrections
from the system of kaons to the system of mesons B. We further note that in the systems of B
mesons, the individual terms in the SM are largely dominated by the top-top contribution (at
least a factor 10° larger than the charm-top and charm-charm contributions).

Short-distance QCD corrections necessary in the calculation of the LR Model corrections to
ex and Amg s observables were calculated in Chapter 5 and can be read from Tables 5.5 and
5.6.

6.1.1 Bag parameters

Apart from short-distance QCD corrections, other theoretical inputs include quantities param-
eterizing long-distance QCD corrections, or hadronic effects, which we now describe. While in
the SM we find only the local operator YLL at low energy scales, LR Model requires a different
operator QéR having a different chiral structure. This is the only new structure we need to
consider, since we have already argued that Qf R gives suppressed contributions.

Their matrix elements are related to the bag parameters B{\,{l (n) as follows

. 2 .
(MQg M) (pn) = gmMFJ@P;(Mh)v (6.11)
3 mar 2 1
PVLL — BM PLR _ = - B]\/I
1 (1n) 1 (kn) 5 (k) 1 l(imql erqz) + 6 1 (1)

where the factor 1/6 is subleading and thus often neglected, and BM () and B2 () combine
respectively with b(uy) and the various fyyv, U,V = ¢, t, to give a scale invariant quantity. At
this point, note that there is a chiral enhancement of LR contributions to ef: indeed, m% /(ms+
mg)? ~ 25, while the same enhancement is not shared with LR contributions to the B—meson
observables.

The values of Bp, = B, Bp,/Bp, = B;/B} and Bx = BX are given in Table 6.1. As
can be seen from Table 6.1 the lattice results for Bi for the three different collaborations show
sizable deviations. The SWME [40] and the preliminary RBC-UKQCD [39] ones which use the
intermediate RI-SMOM schemes are consistent with each other, but significantly different from
those using the intermediate RI-MOM scheme [38,184,185]. The source of discrepancy seems to
be the different intermediate renormalization scheme used to match from the matrix elements
to those in the continuum MS scheme, see [40], and more discussions can be found in [186].
Without further understanding of the source of uncertainty, it is premature then to consider
their average.
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Ny pin [GeV]
2+1+1 [38] 3 0.78(4)(3)
2-+1 [39] 3 0.92(2)
BE 241 [40] 3 0.981(3)(62)
2+1 [184] 3 0.69(7)
2+1 [185] 3 0.76(3)
2 [185] 2 0.78(3)
241 [41] 4.18 1.040(75)(45)
B{ 2 [42] 4.29 0.95(4)(3)
quenched [187] 4.6 1.15(3)(3)
2+1 [41] 4.18 1.022(57)(34)
Bj 2 [42] 4.29 0.93(4)(1)
quenched [187] 4.6 1.16(2)(*3)

Table 6.1: Values of the bag parameters By in the MS scheme for various numbers of dynamical
quarks. Various intermediate renormalization scheme are used to match from the matriz ele-
ments obtained on the lattice to the continuum ones. When two uncertainties are given, the first
corresponds to a statistical uncertainty and the second to a theoretical one. Note that among the
references given here only [38], [40] and [185] meet the required quality criteria of the last update
of the Flag working group [186] for K meson-mizing. In boldface, we indicate the values we use
n our analysis.

For definiteness, the results we show in the global fit take into account only the values
indicated in boldface numbers, except when otherwise stated. For Bf the value calculated
with 2 + 1 + 1 dynamical flavours on the lattice, Ref. [38] (but we will also comment on the
larger value given in Ref. [40]). The computation done by this reference considered the matrix
element of local, dimension 6 operators. Therefore, dimension eight operators where the charm
quark is exchanged in a loop, as in Figure 5.2, are not considered. In this way, we can employ
directly the short-distance QCD corrections ﬁng)| err that we have computed in an effective
theory described by local dimension 6 operators. The combination of the different values will be
considered in a more complete analysis [119].

6.2 Perturbativity of the potential parameters

We will consider in the global fit of LR Model parameters the impact of perturbativity bounds
on the Higgs potential parameters, which we now detail. The Higgs mass spectrum depends on
three parameters from the scalar potential

aze=az—ag, p=p3/2—p1, T=p\/p;, (6.12)

as seen from Appendix E. Conversely, we can express asq and p as functions of the masses

_ Mz (1+6%)(1-X)

2 24w B@) o (6.13)
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(one can verify that 0 < X < 1), and

o34 4v(x) (z2 (TQX - 1) +7r2— X) +2 (7’2 - 1) (X+1)(rz+1) (6.14)
0 r+1)(X-=1(rz+1) ’ '
where X,v(z),8(z) are found in Egs. (4.21). Note that from the stability conditions of the
vacuum, Appendix D, p and p) are related by the following expression:

V2pw
1+rz’

One does not expect the parameters from the potential to be too large, otherwise one could
approach non-perturbative regimes. Perturbativity bounds then require asq, p, //1,2 /KR to be
inferior than O(4n). Therefore, we assume in a first exploratory analysis

i = (6.15)

34, :LL/LQ/’{R € [7105 10] ) (616)
pe0,10]. (6.17)

These requirements translate into bounds for My,, r and w through Eqgs. (6.13), (6.14), (6.15).

Note that, Refs. [104,188] have derived unitarity bounds relating the masses of the heavy
scalars and the new gauge bosons, based on vector boson scattering amplitudes. These bounds
were derived in the triplet case, under particular assumptions such as g, = gr. Therefore, they
do not directly apply in our case, and the translation into our case remains to be worked out [119].

6.3 Global fit

6.3.1 Inputs and ranges of definition
For completeness, we list the set of EWPO we use in the global fit:

M mbee, Mz, ag(Mz), (6.18)

'z, Ohaa,
Rbc.epr
b,c,e,p,T
AFB ’
SLD
Ab,c ) Ae,u,T ) Ae,‘r (PT) )

MW; FW?
Qw(Cs), Qw(Tl),

whose inputs are found in Table 3.1. As indicated in the same table and discussed in Chapter 3,
we also take into account the following direct bound on the mass of the W' boson

Together with meson-mixing observables ex, Amg s, this is the full set of observables we consider.

Concerning the ranges of definition of the parameters of the fit, as we have observed in
Section 2.2 we choose as a simplification the VEVs ko, k1, to be positive, by setting their complex
phases «a, 0y, to O0mod 2xw. Therefore, we have allowed r to vary over the range [0, 1] like in
Chapter 3. On the other hand, w is allowed to be larger than one. Having values of w larger
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than one implies that the EWSB scale \/x7 + k3 + k2, up to € corrections, is dominated by
k1. Now, once the mass of the top is given by K1A1 + KoA2, where A 2 come from the Yukawa
coupling matrices, suppressing x1 2 may push A; o to non-perturbative values. We have therefore
considered varying w over the rather conservative range [0, 3]. Therefore

ref0,1, welo,3]. (6.20)

We also include the perturbativity bounds on ¢, derived from g%, g%, 1, < 4m, thus implying

les|€ 0.1,0.99] . (6.21)

Shifting to the scalar sector, particles are labeled in such a way that § > 1, and My, , which is
the mass of the scalars HY, A}, H (degenerate up to O(e?) corrections), will be always smaller
than Mp,, the masses of HY, A9, H (also degenerate up to O(e?) corrections). Note that the
inclusion of the sector HQO, Ag, HQi in the analysis of meson-mixing observables, which decouples
in the limiting case w = 0, is a novelty of the analysis shown in here.

6.3.2 Right-handed mixing matrix

We have argued in Section 2.7 that one may expect the structure of V' to be very different from
the structure of the left-handed mixing matrix V. However, we study here the most simple and
constrained case where VE® = V. A more general analysis will be the object of future work,
where (semi-)leptonic decays will be integrated in the global fit in order to better constrain
different structures of V' [119].

The matrix V¥ is equal to the CKM matrix of the SM up to O(e®) corrections. Therefore,
V'L has the same hierarchical structure of the CKM matrix, and can be similarly parameterized
by Wolfestein parameters A, \, p,n. Lacking of a more complete analysis, we are going to set the
Wolfenstein parameters to the ones found for the CKM matrix extracted in the SM framework.
Their values are given in Eq. (1.85), and in the following we allow A, \, p, 77 to vary over the 1 x &
intervals we have derived before for the CKM matrix, namely

A =0.819+0.010, X = 0.22549 + 0.00037 , (6.22)
p = 0.154 4 0.009, i1 = 0.3535 + 0.0075 ,

which were symmetrized compared to Eq. (1.85). (We have considered varying the sizes of the
intervals shown above without much effect on the results from the global fit.)

6.3.3 Results

We combine the observables using CKMfitter, employing the Rfit scheme for treating theoretical
uncertainties. The best fit point gives a x?2,;, of 22.24 and a p-value of ~ 27 %, for 19 degrees
of freedom (though some of the parameters are not constrained by the fit, and the real number
of degrees of freedom can be actually lower).

At the best fit point we have

cy =0.78, €=0.0007, =033, w=24,
My, =13 -10°TeV, §=12, x=0.19, (6.23)
asg =4.6, p=25, pj=-15, phb=-7.7.
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|€K|'103 Amy (ps_l) Amg (ps_l)
SM: WW box | 2.305 0.5102 17.764
ww’ -0.021 —4-107° —0.001
W H box -0.002 —1076 —1074
H tree -0.054 -0.0002 -0.005
All 2.228 0.510 17.757

Table 6.2: Numerical impact of the different LR Model contributions to |ex| and Amg s at the
best fit point. Above, WW' refers to the full set of contributions which form a gauge invariant
set.

Table 6.2 shows the individual impacts coming from the different contributions discussed in
Chapter 4 at the best fit point. In all the cases, contributions to the SM are destructive. Note
that W H contributions are far too small at the best fit point, while the tree level diagram H
dominates, but WW’ also gives sizable contributions.

We now discuss their confidence level intervals and correlations.

One-dimensional constraints

The outcome of the global fit does not show any preference at 1 o for the values of the parameters
T, W, Cy, T, O34, P, MIL?' On the other hand, we derive the following bounds for My, , €, 6 at 68 %
CL (95 % CL)

My, > 281TeV  (26.6TeV), (6.24)
e < 0.0131 (0.0135) , (6.25)
§ < 337 (34.8). (6.26)

The upper bound on § is due to perturbativity requirements of Section 6.2, which limit the scale
of My, = §My, compared to My, , Myy.

Considering Ref. [40] instead of Ref. [38] for the value of Bf* shifts the results for My, ,,1/€
upwards as expected due to the higher magnitude of B‘}( obtained in [40]

My, > 315TeV  (30.1TeV), (6.27)
e < 00116 (0.0120) (6.28)
5§ < 299 (30.2). (6.29)

The individual bounds for € and My, are indicated in Figure 6.1. Note that the constraint
from |ex| plays a particularly important role when added to the fit. Since only the imaginary
part of the LR contribution enters in the expression of |ex|, it will be certainly important to
reconsider the global fit if V' is allowed to be different from V. In particular, in the case where
VE = (VE)* there is no contribution from the LR Model to |ek|, as discussed in [28]. Also
note that the constraint on My, is significantly stronger than the constraint found in literature
in Ref. [30], which is due to a non-manifest structure of the V* mixing-matrix in the latter
reference.

Based on the constraints from EWPO and meson-mixing, it is also possible to set stronger
bounds on the mass of the W’ compared to Eq. (6.19):
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Figure 6.1: (Left) Impact on the LR Model parameter e of EWPO, the bound on the mass of the
W' resulting from direct searches, and the meson-mizing observables Amg s and ex. The full set
of the constraints is indicated by the label “All.” (Right) Impact of Amg s and ex on the lower
bound of the Higgs mass My, .
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Figure 6.2: Indirect bounds on the masses of the W', Z' coming from EWPO and meson-mizing
observables (masses are squared).

My > 3.6 TeV (3.2 TeV), and My >75TeV (7.2 TeV) (6.30)

at 68 % CL (95 % CL), cf. Figure 6.2, while for the value of BX given in Ref. [40] we have

Mw: >4.0TeV (3.7 TeV), and My >85TeV (8.2 TeV). (6.31)

Correlations among the parameters

In Figure 6.3 we show the effect of the different classes of constraints on the plan (e, My, ). It is
therefore clear that the scenario VT = VL excludes a large region of the parameter space. Note
that there is some impact on the same plan (e, My, ) from perturbativity bounds: in Figure 6.4
(Left), we consider a global fit without the effects of the bounds on ass, p and p} 5/kg. Indeed,
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Figure 6.3: Correlation among € = \/ K3 + k3 + k2 /kr and the Higgs mass My, .

asq and ph/kR are both proportional to M%Il x €2, thus cutting off simultaneous large values of
Mp, and e.

The effect of the size of the uncertainties coming from the short-distance QCD corrections
calculated in Chapter 5 is seen in Figure 6.4 (Right), showing a reduction of the allowed region for
smaller uncertainties when they are all divided by a factor of four. This therefore illustrates the
need for precise short-distance QCD correction calculations, thus further justifying the attention
we have dedicated to them in Chapters 4 and 5.

Though no bounds are set on r,w and cg, we can still have access to their correlations.
In Figure 6.5 we show the correlation of € with r,w. We see that larger values of € require
smaller values of r. Then, in Figure 6.6 we show the correlation of My, with w. We see that
smaller values of My, require w small. Concerning correlations with cg, we do not observe any
correlation in the plan (¢, ¢g4) or (Mp,,cy), see Figure 6.7.

6.4 Conclusion

We have considered constraints on the parameters of the LR Models, including the masses
of the extended Higgs sector, based on EWPO, direct searches for the W’ and meson-mixing
observables. We have studied here the simplest and most constrained possible structure of the
mixing matrix in the right-handed sector, namely V¥ = V| called manifest scenario. We have
therefore derived the bounds seen in Eq. (6.24)-(6.31) in this specific case, showing that the
indirect bounds on the new gauge bosons and new scalars are stronger than the bounds from
collider physics.

We have not been able to constrain the other parameters of the LR, Model. Therefore, the
precise way in which the LR gauge symmetries are broken still offers different pictures, claiming
for the inclusion of more observables. On the other hand, we were able to extract their correlations
with other quantities, thus concluding in particular that large values for r (w) do not favor large
(small) values for € (Mp,).
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Figure 6.5: (Left) Correlation among € and r. (Right) Correlation among € and w.
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Figure 6.6: Correlation among My, and w.
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Figure 6.7: (Left) Correlation among cy and €. (Right) Correlation among cy and Mg, . In both
two plots, the p-value surface has been calculated by considering 1 degree of freedom, since there
is essentially mo correlation among the quantities, as the figures show.

116



Chapter 7

Modeling theoretical
uncertainties

When dealing with experimental results, one is usually interested in extracting some information
about the underlying theory in charge of explaining them. From both experimental and theoreti-
cal sides, systematic or theoretical uncertainties may be present, which difficults a straightforward
comparison between experiment and theory. From a flavour perspective, the problem of dealing
with theoretical uncertainties is of central importance, since in the flavour global fit discussed in
Chapter 1 many observables suffer from large theoretical uncertainties.

Our goal here is to compare the properties of the Rfit approach, which we have employed in
Chapters 1, 3 and 6, and has shown good properties in the context of flavour physics [16, 50],
with other possible models of theoretical uncertainty. The Rfit scheme was developed to deal
with the vary large uncertainties one had when Lattice QCD results had not achieved the degree
of accuracy they have nowadays. At the present stage of development in particle physics, we
would like to know if other procedures offer interesting alternatives.

The problem of extracting the fundamental parameters of a model (given certain hypotheses)
is going to be discussed in detail in Section 7.2. After we make clear the way we understand on
general grounds the inference of the values of the fundamental parameters of a model, we move
to a more original discussion and include in Section 7.3 theoretical uncertainties. This class
of uncertainties does not fit straightforwardly in the framework and we will face the problem
concerning its interpretation. We will therefore propose different possibilities for modeling the-
oretical uncertainties: a common method called random approach, the Rfit scheme used by the
CKMfitter Collaboration, a method called external approach (close to what experimentalists do
when dealing with systematic uncertainties), and different nuisance approaches (fixed and adap-
tive ranges). Then, in Sections 7.4 and 7.5 we are going to discuss the problem of combining
many measurements under the perspective of these different approaches.

7.1 Statement of the problem

Given a model, such as the SM theory or a NP model, which is formulated in terms of a set of
fundamental parameters u, suppose we are able to calculate an observable x as a function of p,
z(p). By “fundamental parameters,” we refer here to parameters which are free in the framework
of the model, and must have their values extracted from the observation of nature.

From the experimental side, we project then an apparatus able to probe the true value z; of
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the observable, i.e. its value in nature. Since repeating the same experiment twice may not imply
the same outcome, an experiment designed to measure x; may be thought of as a “generator” of
values of a random variable X

X ~g(X;a¢), (%~ 7 means “distributed as”) (7.1)

where the probability of measuring X in the subspace S C U, U containing all possible values, is
/ dX g(X;21) = PIX € Slat] (7.2)
s

where ¢g(X; ;) is normalized so that [ dX ¢(X;x;) = P[X € U|z] = 1. Interpreted in terms

u
of an underlying model, x; is a function of its true fundamental parameters p, i.e. z; = x(ut),
and therefore we replace systematically g(X;x:) — g(X; ).
Now, if the outcome of the experimental analysis gives X, the following result is quoted

XO + g, (73)

where o is the precision or the accuracy of the measurement. However, this is not the full story:
the next step is to extract the values of the fundamental parameters p;. To this effect, based on
Xy £ o we aim at extracting constraints on the value of u;.

7.2 Frequentist toolbox

We introduce in this section a set of concepts which will help us in the extraction of physical
parameters and in the comparison of different physical models. We intend to provide the minimal
elements necessary for the understanding of what follows: more complete discussions on the
subject are found in [189-193]. For the time being, we will not be concerned about theoretical
uncertainties: the way to include them in our statistical framework will be discussed later in
Section 7.3.

The first object we introduce is called test statistic, which is a positive definite function of the
experimental value Xy, T'(Xo; 1). It is expected basically to, given the outcome X + o, indicate
whether it is in “good” or “bad” agreement with the hypothesis H,

Hy e = (7.4)

of u; being given by p: the larger the value of T'(Xo; i), the worse the agreement of data with
H,.. Seen as a function of the random variable X, it is a random variable itself whose distribution
is given by

M) = [ X T = T g (X (7.5)

From the distribution A, one can compute the probability of finding a value of the test statistic
smaller than a given T'(Xo; 1)

T(Xosh)
PIT<T(Xowl= [ dTHTIH,), (7.6)
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and then

mT<ﬂ&mﬂ=/Mwwamm—ﬂxmmwm» (7.7)

where 0[y] = 1, when y > 0, and [y] = 0, when y < 0.
The criterion we use to distinguish a good from a bad agreement is based on the p-value
defined from the test statistic as

1=p(Xo;p) =P[T <T(Xo;n)],  p(Xospu) =PI = T(Xo; )], (7.8)

as we will see in detail in Section 7.2.1. Therefore, large values of p(Xo; ) tend to indicate that
the hypothesis H,, is in good agreement with the data Xj.
Seen as a function of X, the p-value follows the distribution

/EX6W—MXMMAXHA, (7.9)

implying that the probability of having a p-value which is smaller than or equal to a given « is
(using §(f(y)) = Z 8(y —yi)/|f'(y:)] for a continuously differentiable function of roots y;)

Plp<alH=a, Pp>aH]=1-a, (7.10)

meaning that the distribution of the p-value is uniform, i.e. the distribution of values of p is flat
between 0 and 1.

7.2.1 Confidence intervals from the p-value

Before discussing the content of Eq. (7.10), we first define the notion of confidence level interval.
For the Gaussian example of Figure 7.1 (Left), we have considered a measurement X, and calcu-
lated the curve of the p-value as a function of the numerical hypothesis z:(u) from Eq. (7.8). Then
we show in this figure the intervals over the space of values of z(u) built from the requirement
p-value > 0.32, or p-value > 0.05, which correspond to Confidence Levels of 68 % and 95 %,
respectively.

The meaning and usefulness of this overall procedure becomes clear from Eq. (7.10). We
illustrate the property stated in Eq. (7.10) in the following way, simplifying the notation by
setting x(u) to p: consider generating a set of toy events {Xél), .. ,Xén)} respecting a certain
distribution g determined from a chosen u; (in practice both are unknown). This will imply a
set of p-values {p(Xél);u), .. ,p(Xén);u)} determined from the same g. If p is chosen so that
1 = iz, then for large enough n there will be a fraction « of the set of p-values p(XéZ); 1) which
will be inferior than or equal to «.

Yet, we may state the previous paragraph in a different way. Consider building p-value curves
as a function of p for each given X((,l). Pick a value 0 < a < 1 and consider the set of values of p
for which p(Xéz); 1) < a. We call this set of the parameter space the ezclusion interval C,, (Xéz)),
which depends on the value of o and on the realization Xo(l). Then, what Eq. (7.10) tells us is
that for large enough n a fraction « of the sets C’Q(X((,l)) will contain ;.

Finally then, we arrive to the following frequentist procedure to extract the value of u;:
consider that g correctly describes a certain outcome Xy, and consider the p-value curve as a
function of . Then the complementary set of the interval Ca(X(()l)) has the 1 — « chance of
containing the true value p;, and we quote for, say 1 — a = 68 %, an interval which contains the
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Confidence Level intervals

p value
1.0¢
0.8}
0.6
0.4F
0.2r
-3 -2 -1 0 1 2 3 X(K)

Figure 7.1: (Left) p-value curves built out of a random variable modeling a measurement dis-
tributed normally. We show on top of the x(p) axis the intervals determined for p = 0.32 for the
dashed-blue line, or p = 0.05 for the dashed-orange line. (Right) A « CL interval built from a
p-value with exact coverage has a probability of a of containing the true value. This is illustrated
in the simple case of a quantity which has a true value puy = 0 but is measured with an uncertainty
oc=1.

true value p; with 68 % probability. This is the precise meaning of a 1 — a Confidence Level
(CL) interval in the frequentist sense.

Let us now discuss Figure 7.1 (Right) in detail to better clarify this discussion. Each time
a measurement is performed, it will yield a different value and thus a different p-value curve as
a function of the hypothesis tested py = p. We assume these measurements to be distributed
normally, leading to the shapes seen in the figure. From each measurement Xy, a 68 % CL interval
can be determined by considering the part of the curve above the line p = 0.32, but this interval
may or may not contain the true value p; = 0. We show an example with ten measurements
in the figure: the curves corresponding to the first case (second case), (not) containing the true
value, are indicated with 6 green solid lines (4 blue dotted lines). Asymptotically, if the p-value
has exact coverage, 68 % of these confidence intervals will contain the true value.

Following what we have said above, we say that a set of hypotheses H,, is excluded with 1 —«
CL if they fall in the exclusion interval Cy(X() of a given measurement Xy: for a given o and
an outcome X, the hypothesis 7, is excluded at 1 — a CL if p(Xo; u) < o

If the property announced in Eq. (7.10) is satisfied, one says that the p-value has ezact
coverage. p-values are meaningful tool only if they have good coverage properties, otherwise the
confidence intervals have not the interpretation we have stated in the previous paragraphs. By
“good” we mean ezact coverage, Eq. (7.10), or slight over coverage if exact coverage cannot be
assured:

Pp<alH,] = a : exact, (7.11)
Plp<alH,] < a : conservative (overcoverage), (7.12)
Pp<alH,] > « : liberal/aggressive (undercoverage), (7.13)

which is a property dependent on the value of a.

In the case of over (under) coverage, the CL intervals tend to be broader (smaller). This is
reproduced, for example, by quoting an uncertainty o in the pure statistical case bigger (smaller)
than necessary (and sufficient) for exact coverage.
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Figure 7.2: Illustration of the likelihood ratio discriminant, where the blue and orange functions
have Gaussian shapes (normalized to one). If a measure of x falls to the right of the dotted
purple line, chosen with the help of the Neyman-Pearson lemma, one may exclude the hypothesis
Hy = H,, in favour of the hypothesis Hy = H,,, which may lead to the exclusion of Hy when
it is true in « percent of the cases. Conversely, if a measure of x falls to the left of the dotted
purple line, one may exclude the hypothesis Hy when it is true in [ (related to the power of the

method) percent of the cases.

7.2.2 Likelihood: comparison of hypotheses

We counsider the following product of probability distribution functions (pdf), seen as a function
of the value of the fundamental parameters p (non correlated case)

Cxo () = [ LX), (7.14)

called the Likelihood. This is an interesting object because the ratio of Likelihoods under different
hypotheses can be used to compare hypotheses as follows: if

Lx, (1)) Lxo(p2) < ta (7.15)

for a given t, then we exclude the hypothesis H,,, called null hypothesis, in favour of the
hypothesis #H,,. It can be shown (Neyman-Pearson lemma, see Ref. [194]) that among the
possible exclusion tests which suffer from an error a of excluding H,, if H,, is true (error of
Type-1, false negative), the Likelihood ratio has the smallest possible error for accepting H,, if
M, is true (error of Type-II, false positive). In this sense, we say that the test of the Likelihood
ratio is optimal: given a Type-I error of size «, the Likelihood ratio minimizes the Type-II error,
thus maximizing the so-called power of the comparison, see Figure 7.2.
Obviously, the logarithm

—21og(Lx, (11)/Lx0(p2)) = —21log Lx, (1) + 2og Lx, (p2)

inherits the properties of the Likelihood ratio, and we build a test statistic to compare both
hypotheses out of that

T = —2log Lx,(u1) + 2log Lx,(p2) - (7.16)

Then, low values of T' show a preference for the hypothesis 1, thus being able to discriminate
w1 and .
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Composite hypotheses

Consider, however, a case where the hypothesis depends on parameters we would like to extract
i, and additional parameters J: in this case, we cannot formulate a simple hypothesis H,, because
something must be said about the value of §. One talks about composite hypotheses, for which
the optimality property of the ratio of Likelihoods is not guaranteed any more.

By analogy with the principle of maximizing Likelihood ratios discussed above, which leads
to the most powerful situation, one usually considers

maxgs Lx, (14, 0)

max s L£x, (4, )

= min[~2log L, (p,9)] — min[~2log Lx, (1, 0)]
H

T, = —2log (7.17)

for comparing hypotheses, i.e. we minimize over the parameters §, called in this context nuisance
parameters.

7.2.3 Gaussian case without theoretical uncertainties

We would like now to discuss the simplest case where all the random variables are independent,
or decorrelated, and follow a normal distribution. We assume a Gaussian law motivated by the
Central-Limit theorem, which implies that the specific way in which we model an experiment
does not (asymptotically) matter. Therefore

9(X; ) = ﬁexp [% (Xfx(ut)) ] ; (7.18)

where o is the accuracy of the experimental technique.!
We now build the test statistic from the Likelihood, cf. Eq (7.16)

n (@) 2
T(Xo;M)ZZ<M> | (7.19)

© g
i=1

Beyond the property of optimality of Type-II errors, one can use the Likelihood to build esti-
mators of the fundamental parameters, by the minimization of T, whose minimum follows a y?
distribution of n — ||u|| degrees of freedom (d.o.f.), where n is the number of measurements and
||l is the number of fundamental parameters estimated, i.e. Tpin ~ x*(n — ||u|). In principle,
however, this is only true for linear models where 2:(1) depends linearly on p, but for large enough
n this distribution is asymptotically valid (Wilks’ theorem, see Ref. [195]).

Building the p-value as described previously, we have

F(]Vdof/2v T(Xo; ,LL)/Q)
I'(Naoy/2)

I Though it may sound doubtful that one may be able to model an apparatus far away from the range where it
is specially designed to work at, i.e. far away Xo ~ z(u) and deep in the “tail” region (borrowing the image of a
Gaussian), this is going to be admitted and X > z(u) or Xo < z(p) will thus cast doubt on the interpretation
of x¢ as z(u) — or the very modeling of the apparatus (cf. [196]).

p(Xoip) = = Prob(T'(Xo; t), Naog) , (7.20)
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where Prob is the well-known routine from the CERN library, which calculates the probability
to find a value for a variable distributed as x*(Ngos) at least as large as T'(Xo; i).> For further
illustration, consider the case of a single random variable. We have the following expression

X P_1 L vy T(X 7
p(Xo; 1) _to\/ﬁanp[2(g)] y 0 =T(Xo; ) (7.22)
then?

t

—~ = V2B (1= p(Xo: p) = V2Brfe ™ (p(Xo: 1)), (7.25)

and to/o = k,(p) gives the “number of units of o” of a given p-value:
p(Xo; ) 2032+ tg =1 x 0, p(Xo; u) ~0.05 < tg =2 X o, etc.

which correspond to test statistic values 12, 22, etc. In words, the numbers of o tell how far
away the predicted value z(u) is from the best fit point.

7.3 Theoretical uncertainties

A common problem in the determination of an observable is that theoretical uncertainties are
usually present. This is indeed a problem because, by their own nature, theoretical uncertainties
do not decrease with the amount of data: even if the limit where the sample has an infinite
size is taken, the extraction of x; cannot be done with an absolute certainty, and one quotes a
systematic effect £A instead. From a different perspective, it may happen that the technology
we dispose to predict the value of the observable is limited: examples are given by the need to
extrapolate a calculation, or to truncate a perturbative series in theoretical works.

We are going to discuss possible ways to circumvent the difficulty introduced by theoretical
uncertainties in the next subsections. It should be kept in mind through our discussion that,
no matter what their modeling is, the presence of theoretical uncertainties will imply a worse
capacity of extracting the true values of the fundamental parameters of a model.

Some comments about the terminology are relevant. We consider the test statistic and the p-
value as functions of X, a random variable of variance o2. Moreover, since we are only interested
in the comparison X — z(u), we can (for practical reasons here) quote the theoretical uncertainty
altogether with the experimental value

Xo+o+A. (7.26)

2I(a,y) (I'(a)) is the incomplete (usual, Euler) gamma function

T'(a,y) = / t*~ L exp(—t) dt, I(a) = / t*~ L exp(—t) dt, (7.21)
y 0

and thus ['(1/2) = /7, I'(1) = 1, T'(3/2) = /7/2, etc.
3The function Erf(y) is defined by

Erf(y) = % /y exp(—t2) dt . (7.23)
0

It is also useful to define the complementary of the error function

Erfc(y) = % /Oo exp(—t2) dt . (7.24)
Yy
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One may represent the theoretical uncertainty A as coming from an additional unknown param-
eter 0: if the true value d§; of § was known, we would quote Xy + §; for the central value of the
measurement. It then follows that the meaning of A is not the same as the one for o, which
parameterizes the probability distribution function of a random variable, and we will need a way
to interpret A or §. Starting from this section, we are going to discuss different models for §.

For definiteness, we discuss the case of only one random variable X, and for simplicity we
consider only symmetric cases over this chapter (a longer discussion is found in Ref. [197]). Also
for simplicity reasons, we take x(u) — pu, i.e. the observable is the fundamental parameter itself
(or it is linearly related to the single parameter u of the theory).

7.3.1 Random approach: naive Gaussian

In principle, § comes from a non-statistical source and has no reason to be a random variable.
However, for simplicity one can model it as a random variable of mean 0 and dispersion A. Then,
we say that what we measure are the realizations of the random variable

X=X +6, (7.27)

where

X'~ N (7.28)

models the case where no theoretical uncertainties are present.

We then convolute the distribution of X’ with that of §, resulting in the distribution of the
random variable X. In what we call “naive Gaussian,” we assume that the theoretical uncertainty
is distributed as a Gaussian

6 ~ '/\[(O,A) 5 (729)

and we end up having the commonly used distribution

X~ N, vams57) - (7.30)

Note that we are able to formulate the simple hypothesis H,, : s = 1, since we have gotten
rid of 4 in some sense. The test statistic is then built from the Likelihood Eq. (7.16) as

X —p)?
T(X;p) = ﬁ ) (7.31)
resulting in the p-value
nG X — ul T(X;p)
X;pu)=1—Erf | —————| = Erf — . .32
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Naive Gaussian: X=0, o=1, A=1 (red) [A=0 (blue)]
p-value
1.0

0.8+ T
0.6} / \
0.41 / N

0.2F / N

Figure 7.3: Naive Gaussian: p-value as a function of u.

In Figure 7.3, we illustrate that the inclusion of theoretical uncertainties (solid, red) increases
the size of the CL intervals compared to the case where no theoretical uncertainties are present
(dashed, blue).

7.3.2 External approach: Scan method

The external approach intends to be close in philosophy to what experimentalists often do to
estimate systematic uncertainties. In this case, the theoretical uncertainty ¢ is seen as an external
parameter, just like o, whose value one admits knowing. The apparatus is modeled as

X ~ Npisio) (7.33)

and under the simple hypothesis ”H,(f) : it = i+ 6 we have the following test statistic from the
Likelihood Eq. (7.16)

(7.34)

Note that, given (7.33) and (7.34), the estimator of the observable built from the minimization
of the test statistic converges to p with the size of the sample, thus implying that this is not a
biased estimator.

The test statistic in Eq. (7.34) implies the following p-value

|X —p— 4|
V20
which depends explicitly in the (external) value of 6. We therefore need a way to combine the

different p-values corresponding to the different values of §. To this effect, we maximize the
p-value over the range = [-A, Al:

T(X;p)

5 , (7.35)

p(X;u)lErf{ }Erfc

Scan
Xojp) = Xo; 1,0 7.36
P (X ) = | max | p(Xop,0), (7.36)
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Fixed-1 external: X=0, o=1, A=1
p-value

Figure 7.4: Fnvelope (red) of p-values for § € [-A, A].

thus implying

pScan(X;M> - 1 , if |X — ‘u|§ A, (7.37)

IXuiA» .
— 1-Eef (2T HEE2N) i (X —p) > A,
it (5 it 3 (X — )

The idea behind the maximization is to consider the “envelope” of all admissible values of §:
the various p-value curves shown in Figure 7.4 (dashed, blue) fit into an envelope (solid, red),
which by its turn is used to determine confidence intervals. The range we have chosen above,
namely Q = [—A, A], makes part of the model and for simplicity reasons we are not going to
discuss different possibilities, such as @ = 3[—A, A], which would correspond to an envelope in
Figure 7.4 three times broader.

The external approach, called fixed-1 external or 1-external in what follows, is fundamentally
the same as the Scan method discussed in Ref. [17]. Among the differences, the Scan method
relies on the test statistic T = —2log L£(u,d) which is interpreted assuming that T follows a
x? distribution law, including both the parameters of interest and nuisance parameters. The
1 — « confidence region is then determined by varying the nuisance parameters in given intervals
(typically a 10 range), and accepting only points for which T' < T,, T, being a critical value so
that P(T > T.; N|Hy) > « (typically a = 0.05), where Hj is the hypothesis of the Standard
Model and N is the number of degrees of freedom.

7.3.3 Nuisance approach
In this case, the theoretical uncertainty is considered as a nuisance parameter in the lines of
Section 7.2.2, and the apparatus is modeled as

X ~ Nip+6,0) - (7.38)

In principle, we can choose any test statistic that tests correctly the null hypothesis H, :
e = W, and we start from the following quadratic test statistic

(X —p)?
02 4+ A2’

This ansatz is motivated by the following procedure

T(X;p) = (7.39)
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L Xo—p—0\> 5\
T@mm$£K—jr—>4z , (7.40)
A2
already illustrated in Eq. (7.17), where the minimum above is found at (Xy — ,u)m, and
o

can assume any value. The advantage of the last ansatz is that, when a larger number of nuisance
parameters is present, this procedure always leads to a quadratic form like the one of Eq. (7.39).

Though T'(X; 1) does not depend on 4, its distribution does due to Eq. (7.38) and the p-value
inherits this dependence

PAT < 73] = 5 [nf () e (S22

1—ps(X;p) = Ps[T < T(X;p)], (7.41)

[\]

where the subscript ¢ indicates that we do not treat 6 and g on the same footing. The above
expression states that the p-value depends on the unknown bias parameter §. To build Confidence
Level (CL) intervals, we consider the following procedure

max ps(Xo; 1) (7.42)

Taking the maximum in this case as we have done previously in the external approach will them
imply broader CL intervals, expectedly leading to conservative situations.

The question now is what to take for €2, and in particular suppose we are interested in
quoting confidence intervals at different significances (i.e. “numbers of ¢”): should we take
always the same interval {2 where the true value of ¢ is supposed to be found, or should we adapt
Q correspondingly to the size of the Confidence Level interval of u we would like to quote? To
answer to this question, we compare two procedures to define the p-value

e Fixed range Q = r[-A, A]: p/™®(X; 1) = pira(X;p), where 7 is fixed. We are going to
refer to this method as “fixed—r nuisance approach,” or simply r—nuisance.

e Adaptive range Q = ko (p)[—A,A]: p®P (X;p) = Pik, (p)a(X; ), where k,(p) is the
“number of ¢” of a given p-value. The adaptive procedure then means that: if one is
interested to quote a significance n X o, one maximizes ps(X;u) over the range Q =
n[—A, Al, i.e. for each n one calculates the corresponding p-value and determines from it
the CL interval for the physical parameter u.

The choice for 2 makes part of our way to model theoretical uncertainties: a graphical
comparison between the different choices is given in Figure 7.5. The different graphs illustrate
that the two nuisance approaches depicted above lead to very different p-value curves, and
consequently to possibly very different confidence level intervals.
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1-nuisance: X=0, o=1, A=1 (red) [A=0 (blue)] Fixed-1.5,2,2.5,3 nuisance: X=0, g=1, A=1
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Adapt. nuisance: X=0, o=1, A=1 (red) [A=0 (blue)]
p-value
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Figure 7.5: Illustration of the nuisance approach: (Left) Fized-1 nuisance (solid, red) compared
to the case of no theoretical uncertainty (dashed, blue). (Right) comparison of fized-1.5 (solid,
red), fized-2 (solid, blue), fized-2.5 (dashed, red), and fized-3 (dashed, blue) nuisance, where one
notes that a smooth plateau shows up for increasingly larger intervals Q. (Bottom) Adaptive
nuisance (solid, red) compared to the case of no theoretical uncertainty (dashed, blue).

7.3.4 Rfit
The Rfit procedure follows the nuisance philosophy discussed in the previous section, and con-
siders that the theoretical parameter § strictly relies inside the interval [-A, A]. In practice, one
considers a theoretical Likelihood that is a constant over the fixed range § € [-A, A] and zero
outside, and then combines it with a pure statistical Likelihood. This procedure has been briefly
exemplified in Chapter 1 and is adopted by the CKMfitter Collaboration [198], [16].

As said previously, we can choose any test statistic that models correctly the null hypothesis

(the hypothesis we want to test), and we consider the following test statistic

T(Xoyp) = 0, if [Xo—p[<A (7.43)
Xo—p+A\?
= (%) , ifu—Xo> A,
g

Xo—p—A\?
= <70 s ) s ifX0*M>A,
o

which we have already found in Chapter 1. This expression means that we consider at the same

footing values of p at the flat bottom of T'(Xo; i), of size given by 2A.

In the previous nuisance approaches, one would build a p-value from this test statistic and
would maximize it over a given range for §. Though this is straightforward to do in one-dimension,
in multi-dimensional cases the computation is much more involved in the Rfit framework. There-

fore, it is usual to assume that the distribution of T'(X; ut) is well approximated by a x? distri-
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bution, in which case we can use the expressions given in Section 7.2.3. In the one-dimensional
case, we have:

IX—uiAU .
— 1-Eef (B2} i 5 (X —p) > AL
( N F X —p)

Note that this expression ends up being identical to Eq. (7.37) in the 1-dimensional case.
This, however, is not a property found in higher dimensional cases. The “well” shape function
and the p-value in the Rfit approach are seen in Figure 7.6.

Rfit: X=0, =1, A=1 Rfit: X=0, 0=1, A=1
T(X;1) p-value
1.0p

0 1 2 3 H

Figure 7.6: (Left) The test statistic given in Eq. (7.43) is null over the interval indicated by
the two dashed-blue lines, and follows a quadratic shape outside. This ansatz corresponds to a
true value of the theoretical uncertainty 6 bounded inside the range [—A, A]. (Right) At higher
dimensions, it is preferable to approzimate the test statitistic by a known distribution. It is usual
to consider a x* distribution, whose shape has a flat top, or a plateau, following the assumption
—A < §; < A. Note that other approaches discussed beforehand also show a flat top or plateau.

7.3.5 Impact of the modeling of theoretical uncertainties

We now move to the comparison of the different approaches discussed so far. We consider then
a measurement

Xo=0+0+A, *+A%=1. (7.45)

As said previously, 1-external and Rfit lead to the same p-value curve in the 1-dimensional
case, and in what follows we are going to consider both indistinctly, except when otherwise
stated.

Confidence intervals

The fundamental usefulness of p-values is to quote confidence intervals in the extraction of
fundamental parameters. Therefore, the first comparison to be made concerns the different
properties of the CL intervals of the different approaches we have discussed. In practice, we
would like to find a method which does not quote too large 68 % CL intervals, or otherwise we
would not learn much from data, but on the other hand is rather “conservative” for signalizing
tensions with the Standard Model.

Figure 7.7 shows the p-value curves for different models of theoretical uncertainty, and the
same information under a more quantitative form can be seen in Table 7.1. Note the following
characteristics, independent of the ratio A/o:
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A/lo=0.3 Alo=1

Significance Significance
(Gaussian units) (Gaussian units)
6 -
5 5
4 4
3f 3
2 2
1 1
M M
Alo=10
Significance Significance
(Gaussian units) (Gaussian units)
6 ! 6 - I
5% \ / : 5 \ ; :
4 i / 4 \ \ ji
3F 1 . 3
1t 1
1 I "

Figure 7.7: Comparison of different methods for modeling theoretical uncertainties for the mea-
surement Xo = 00+ A, 0+ A% = 1, for different ratios A/o. Plots are shown in “units of 0.”
The various p-values are: (dotted, red) naive Gaussian (nG); (dashed, black) fized-1 external
§ € [-A,A], or Rfit; (dotted-dashed, blue) fixed-1 nuisance 6 € [—A, A]; (dotted-dotted-dashed,
purple) fixred-3 nuisance § € 3[—A, Al; (solid, green) adaptive-nuisance. Beyond being inde-
pendent of the ratio AJo, by definition, note that at n X o the nG method always provides a CL
whose size is n.
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nG fixed-1 nuisance adapt. nuisance fixed-1 ext./Rfit
lo | 1.0 1.0 1.0 1.2
A
— =03 30|30 3.0 3.5 3.2
o
50 | 5.0 5.0 6.1 5.1
lo | 1.0 1.1 1.1 1.4
A
—=1 30|30 2.7 4.1 2.8
o
50 | 5.0 4.1 7.0 4.2
lo | 1.0 1.1 1.1 1.3
A
—=3 3030 1.8 3.7 1.9
o
50 | 5.0 2.5 6.3 2.5
lo | 1.0 1.0 1.0 1.1
A
o= 10 30 | 3.0 1.3 3.3 1.3
50 | 5.0 1.5 5.5 1.5

Table 7.1: Comparison of the size of one-dimensional confidence intervals at 1,3,50 for various
methods and various values of A/o.

e At 1o (important for quoting the metrology): fixed-3 nuisance provides broader CL, while
the other methods provide similar CL. (By definition, fixed-1 nuisance and adaptive nui-
sance give exactly the same 10 CL.)

e At 30 (evidence of tension): fixed-3 nuisance and adaptive nuisance provide broader CL
than the others methods (and identical 3o CL in these cases, by definition).

e At 50 (threshold for discovery): broader CL are given by adaptive nuisance, followed by
nG or fixed-3 nuisance.

As one increases A/o, note the following:

e Globally, the different methods give very similar answers for small A/o, as expected, and
for intermediate or large A/o the differences between the confidence intervals may scale as
a factor 2 for large or intermediate confidence levels.

e Fixed-1 external (or Rfit) and fixed-1,3 nuisance show flat bottoms, and “saturate” for
large A /o, meaning that the size of the confidence intervals grows slowly with the number
of “units of ¢” compared to the other methods.

e nG and adaptive-nuisance are similar for low and large A/, and in the examples shown
more important differences happen for A/o ~ 1.

Therefore, none of the methods gives systematically the broadest CL interval for all signif-
icances. At large significances, however, adaptive nuisance is always “more conservative” than
the other methods, and for low and large A/o nG gives similar intervals. Whether or not the
methods are aggressive for large ratios and large significances in the precise meaning of Eq. (7.11)
is going to be discussed in Section 7.3.5.
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1 o signif. threshold | nG  1-nuisance adaptive nuisance l-external/Rfit
nG 1 0.9 1.0 0.4
fixed-1 nuisance 1.1 1 1.0 0.5
adaptive nuisance 1.1 1.0 1 0.5
fixed-1 external/Rfit | 1.4 1.4 1.2 1
3 o signif. threshold | nG l-nuisance adaptive nuisance 1-external/Rfit
nG 3 3.4 2.3 3.2
fixed-1 nuisance 2.7 3 2.0 2.8
adaptive nuisance 4.1 4.9 3 4.8
fixed-1 external/Rfit | 2.8 3.2 2.1 3
5 o signif. threshold | nG 1l-nuisance adaptive nuisance 1-external/Rfit
nG 5 6.2 3.6 6.1
fixed-1 nuisance 4.1 5 3.0 4.9
adaptive nuisance 7.0 >8 5 >8
fixed-1 external/Rfit | 4.2 5.1 3.1 5

Table 7.2: Comparison of 1D 1,3,50 significance thresholds for AJo = 1. For instance, the first
line should read: if with nG a p-value=1 o is found, then the corresponding values for the three

other methods are 0.9/1.0/0.4 o.

Significance

When comparing a prediction such as p = 0 with a measurement Xy # 0 one would like to
quantify the tension between both, which surely depends on the quoted values for the statistical
variance, 02, and systematic uncertainty, A.

The comparison of significances can be qualitatively seen from Figure 7.7: if the size of the
uncertainty is fixed, or in other words the size of the CL interval, the different approaches quote
different significances for this same CL interval. One can take the observations made previously
in a reverse way: if confidence intervals for a method are broader, then a possible tension becomes
less significant. A more quantitative comparison can be seen in Table 7.2. In this table, built for
the special case A/o = 1, one clearly sees that if for instance the random approach is employed to
quote a significance of 5 o (last table), the adaptive nuisance approach would be more “cautious,”
quoting 3.6 ¢ instead, while the other methods seen in table would quote even higher significances
compared to nG.

As a practical example, consider the anomalous magnetic moment of the muon

Imuon — 2
Gmuon 2 )

(7.46)

c . SM .
oo n, compared to the Standard Model prediction, a is

whose measurement, a muon?
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significance (Ho : pr = 0)
nG 3.60
l-external/Rfit | 3.8¢

(as®P = —aSM ) x 10M = 288 + 63,4p & 4950

muon muon .
1-nuisance 390

adapt. nuisance | 2.70

where the first uncertainty comes from the experimental results and is treated as a statistical
uncertainty, while the second uncertainty comes from the SM prediction and is treated as a
theoretical uncertainty. Note that for the given uncertainties, the three different approaches
quote very different significances: while nG, 1-external (or Rfit) and 1-nuisance quote an evidence
for New Physics, the adaptive nuisance procedure does not imply a significance beyond the 3 o
threshold. This example clarifies that, when large tensions are claimed and the prediction or/and
the measurements presents large theoretical uncertainties, it is fundamental to pay some special
attention to the way this class of uncertainties is interpreted, since it may change the quantitative
information about the size of the deviation.

Coverage

p-values only have a meaning if the confidence intervals they quote have good coverage properties,
i.e. exact coverage or not excessive overcoverage. This guarantees the robustness of a test
statistic, since uncontrolled levels of undercoverage may be too risky for excluding a hypothesis
when it is true, and large overcoverage limits too much our capacity of extracting the true value
of fundamental quantities.

Based in the discussion made in Section 7.2.1, for given u; and §;, we generate a set of n
values {Xél), .. .,Xé")} from the distribution of X. For each of these values, we calculate the
p-values p(XéZ); ue), @ =1,...,n, for the same p; and d; and consider for a given « the fraction
of p-values which is higher than « itself. For exact coverage, this fraction must be equal to 1 — «
when n goes to infinity, and for over (under) coverage this fraction is higher (lower) than 1 — c.
The values of P[p > a|H,], i.e. the fraction of p-values covering the true value i, are shown in
Tables 7.3 and 7.4 for different methods and different CL intervals:

o = 0.3173,0.0455,0.0027 for  68.27 %, 95.45 %, 99.73 % CL.

Notice that when the true value of ¢ is included in the expected interval, called “fortunate”
cases, all approaches present exact or overcoverage, except for a slight undercoverage of nG when
0 # 0 in the example. Then, when moving to the “unfortunate” cases where the true value of
0 is outside the interval €2, where it was supposed to be found, the approaches systematically
undercover. An exception is the adaptive approach, for which 2 grows proportionally to the
confidence interval we want to build, thus showing good coverage properties as the size of the
confidence interval grows.

7.4 Combining data

In this section we consider the combination of many possibly correlated measures of the same
observable, first in the pure statistical case, and then in the case where theoretical uncertainties
are present.
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68.27% CL  95.45% CL  99.73% CL

Ajo=1,6/A=0

nG 84.1% 99.5% 100.0%
1-nuisance 86.5% 99.3% 100.0%
adaptive nuisance 86.4% 100.0% 100.0%
1-external /Rfit 95.4% 99.7% 100.0%
1-ext./Rfit (excl. p=1) 85.5% 99.1% 100.0%
AJo=3,5/A=0
nG 99.8% 100.0% 100.0%
1-nuisance 100.0% 100.0% 100.0%
adaptive nuisance 99.9% 100.0% 100.0%
1-external /Rfit 100.0% 100.0% 100.0%
l-ext./Rfit (excl. p=1)  98.5% 100.0% 100.0%
Ajo=3,5/A=1
nG 56.3% 100.0% 100.0%
1-nuisance 68.1% 95.5% 99.7%
adaptive nuisance 68.2% 100.0% 100.0%
1-external /Rfit 84.1% 97.7% 99.9%
l-ext./Rfit (excl. p=1)  68.2% 95.4% 99.7%

Table 7.3: Coverage properties of the various methods in “fortunate” cases where the true value
of /A is contained in (or at the border of) the volume Q (for all confidence intervals). Since
the 1-external (or Rfit) approach produces clusters of p-values equal to 1 due to a plateau, the
coverage values excluding this plateau are also considered.
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68.27% CL  95.45% CL  99.73% CL

Ajo=1,6/A=1

nG 65.2% 96.6% 99.9%
1-nuisance 68.2% 95.4% 99.7%
adaptive nuisance 68.3% 99.6% 100.0%
1-external 83.9% 97.8% 99.9%
1-external (excl. p =1) 69.2% 95.7% 99.8%
AJo=1,0/A=3
nG 5.76% 43.2% 89.1%
1-nuisance 6.60% 38.0% 78.4%
adaptive nuisance 6.53% 75.4% 99.8%
1-external 16.0% 50.3% 84.2%
l-external (excl. p = 1) 14.0% 49.1% 83.8%
AJo =3, /A =3
nG 0.00% 0.35% 68.7%
1-nuisance 0.00% 0.00% 0.07%
adaptive nuisance 0.00% 9.60% 99.8%
1-external 0.00% 0.00% 0.13%
l1-external (excl. p = 1) 0.00% 0.00% 0.13%

Table 7.4: Coverage properties of the various methods in “unfortunate” cases where the true
value of §/A is not contained in (or at the border of) the volume Q (for all the confidence
intervals). Since the 1-external approach produces clusters of p-values equal to 1 due to a plateau,
the coverage values excluding this plateau are also considered.
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7.4.1 Pure statistical case

We first introduce the definitions of covariance and correlation matrices in the case where no
theoretical uncertainties are present. In Appendix K, we study the cumbersome case where
the inverse of the covariance matrix, necessary in order to build the usual test statistic, is not
(naively) defined.

Consider now a set of random variables X(l), X(Q), X(S), ey X equally distributed X@ ~
/\/'(%Ui) with same mean p;. We want to study the estimator u of yu; under the case where
these random variables are correlated. Following the comments in Section 7.2.3, we minimize
the quadratic test statistic to estimate u

T(X, ) = (X = pU)T - CF - (X — ), (7.47)
where U is a column of entries “1” n times, X is the column vector
(X(l),X(Q), xXG ’X(n))T’

and C is the inverse of the covariance matrix Cs, which is a (semi-)positive definite matrix
defined as

(Cs)ij = BI(XW — p)(XD — )] = pijoio; (7.48)

where the correlation matrix pi; = E[(X® — 11:)(XY) — )]/ (0i0;) is squared and symmetric.
Following the minimization of T', i and o, are given as follows

UrT.ct-X o UT.Ct-C,-CH-U

o 2 _ _ T
hermar oYY T oo WG
ctr-u =
s i=1

where w; are the weights, and O‘i is the variance. The above average is efficient in the sense that
it is the unbiased estimator of the true value p; which minimizes the variance.

7.4.2 Theoretical uncertainties

We now consider the case where correlated theoretical uncertainties are present. To make things
simpler, we focus specifically in the nuisance approach case. The external approach has a similar
discussion if an ad hoc overall normalization for Eq. (7.34) is assumed, in order to balance the
contributions to the average according to the theoretical uncertainties.

We start with the following test statistic, cf. Eq. (7.40)

Ts(X, 1) = (X — pU — AS)T - W, - (X — pU — AS) + 6T - W, -5, (7.50)

where W is the inverse C; ! (or the generalized inverse O, see Appendix K) of the n x n statis-
tical covariance matrix, Wt is the inverse 6’[ 1 (or the generalized inverse C~'t+ , see Appendix L)
of the m x m theoretical correlation matrix, and the true values of the theoretical uncertainties
51, . ,Sm are normalized, which is indicated by the use of “tilded” symbols. The n x m matrix
A tells the dependence of the i—th measurement on the j—th theoretical uncertainty, where i
runs from 1 to n, and j runs from 1 to m, i.e. the quoted measure is XO Lo, £ A £... A,

The term “correlation matrix” for theoretical uncertainties is in fact an abuse: they are not
random variables, so that “correlation” does not apply as in the statistical sense. Note, however,
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Figure 7.8: Illustration in a three-dimensional example of the (hyper-)space over which we mazx-
imize the p-value in the two different cases discussed in the text: hypercube and hyperball. In
the former, the three normalized theoretical uncertainties 51,273 can assume any value inside the
interval [—1,1], including |51,2’3|: 1 simultaneously, while for the hyperball the phase space is
reduced, and avoids these “fine-tuned” possibilities where all the uncertainties have their extreme
admited value.

that the way we have introduced them in Eq. (7.50) is quite symmetric with respect to the
statistical case.

We then minimize over the set of theoretical uncertainties, resulting in the following test
statistic

T(Xp) = (X — )" T+ (X - ), (7.51)

where

W=Ww,-BT.A'.B, B=W,-A)T, A=W, +B-A. (7.52)

The above test statistic results then in the following estimator

= Z wiX(i) , Ui = Z wiw; (Cs)ij
i » ij
wi =Y Wi x | Y Wi ) (7.53)
J 2]
which is biased with bias given by
Sy =Y wilib;. (7.54)

We now discuss the way of varying the different 5 according to the last expression. The case
without correlations is trivial to understand, and it corresponds to letting §; vary independently
in the space we want them to be defined: (linear) one could understand that they should be

137



Reference Mean Stat Theo
Exclusive [79]  3.28 + 0.15 + 0.26
Inclusive  [79] 4.359 £ 0.180 +£0.013 £ 0.027 £ 0.037 £ 0.161 £ 0.200

Method Average 10 CI 30 CI 50 CI
nG 3.79+0.22+0 3.79+0.22 3.79+£065 3.79%1.1
naive Rfit 3.70+0.12+0 3.70+0.12 3.70+£0.35 3.70£0.58
educ Rfit 370+£0.114+0.26 3.70+0.38 3.70+£0.61 3.70£0.84

1-hypercube 3.79+£012£034 3.79+040 3.79+0.67 3.794+0.91
adapt hyperball 3.79+0.12+£0.18 3.794+0.24 3.79+0.88 3.79+1.49

Table 7.5: Top: determinations of |Vub|-103 from semileptonic decays. Note that we decompose
the different sources of theoretical uncertainty for the inclusive determination of |Vi|, while in
Chapter 1 they were combined linearly accordingly to the Rfit approaches discussed in this context.
Bottom: averages according to the various methods, and corresponding confidence intervals for
various significances. The uncertainties are distinguished at 10 according to Egqs. (7.53) and
(7.54).

varied over a hypercube when maximizing the p-value, which implies in particular that they can
all assume at the same time their extreme values, i.e. the corners of the hypercube in Figure 7.8
are accessible; or (quadratic) over a hyperball, avoiding the “fine-tuned” corners of the last case,
see Figure 7.8. Therefore, depending on the approach we have

A, = Z |w; A (linear) , A, = Z (wiA;)®  (quadratic) (7.55)

recovering the ansatz of [199] in the linear case.

Now, when correlations are present in Eq. (7.54), it should mean that they cannot be varied
independently: in particular, when they are all totally correlated, one would expect to have
only a particular combination of them that can be varied. This is formalized and illustrated in
Appendix L.

7.4.3 Examples

We consider the same physical-oriented example already discussed in Section 1.3.4, namely the
case of incompatible measurements. The two different procedures we call naive Rfit and educated
Rfit were already discussed at that point, where it has been noted that the former implies
no theoretical uncertainty in the average of incompatible measurements (no flat plateau) while
the latter quotes the minimum of the two theoretical uncertainties as the resulting theoretical
uncertainty. Here we compare these two methods with the pure statistical case (naive Gaussian)
and the nuisance approach with fixed hypercube and adaptive hyperball volumes (though the
p-values for the nuisance and external approaches have different interpretations, they lead to the
same expressions for the combined variance and theoretical uncertainty, once the test statistic
in the external approach is defined suitably). The results can be seen numerically in Tables 7.5
and 7.6, or graphically at 10 in Figure 7.9.
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Reference Mean Stat Theo
Exclusive [79] 3899 +049 +0.044+0.21+0.13+0.394+0.17+0.04 £0.19
Inclusive  [79] 4242 +£0.44 +0.74
Method Average 1o CI 30 (CI 50 CI
nG 40.41+055+£0 40.41 +£0.55 40.41+1.66 40.41+2.77
naive Rfit 41.00 £0.33+0 41.00 £0.32 41.00£0.98 41.00 £+ 1.64
educ Rfit 41.00 +£0.33 £0.74 41.00£1.07 41.00+1.72 41.00 + 2.38
1-hypercube 40.41 £0.34 £0.99 4041 +1.15 40.41+1.94 4041+ 2.65
adapt hyperball 40.41 +0.34 +0.44 40.41 £0.60 40.41 +2.26 40.41 £3.84

Table 7.6: Same as Table 7.5 for |Vp|-10%.

The first difference to highlight is that the different methods quote different central values: in
the comparisons we have made in Section 7.3.5 this was not possible because we had a single mea-
surement Xo. Now, concerning the uncertainties, also note that at 1 ¢ the 1-hypercube approach
quotes larger uncertainties, while naive Gaussian and naive Rfit are more aggressive in their
averages. At larger confidence intervals, the adaptive hyperball becomes the more conservative,
while the naive Rfit model is the more aggressive for the reason already mentioned.

7.5 Global fit of flavour observables

So far, we have considered the impact of the modeling of theoretical uncertainties in one-
dimensional cases where there is only one parameter p that we would like to extract. In this
section we are going to consider an example of utmost interest for flavour physics, which is the
extraction of the Wolfenstein parameters A, A, p, 7. For our purposes, it is sufficient to consider
a subset of the observables given in Chapter 1, Table 1.3.

Following the discussion we have had so far, where the nuisance has been considered for
definiteness, cf. Eq (7.50), we consider minimizing the quadratic form

T5(Xo; 1) = XN: (—Xi’o — il 6))2 :

2 T, (7.56)
where the measurements X; ¢ have respective uncertainties 3; (which we suppose non-correlated
over this section for simplicity). Note that the true values of the theoretical uncertainties have
been absorbed into the notation of the SM prediction, namely the set of parameter § in the
expression for the observables x;(u,d). The sum runs over the total number N of observables
we dispose, see Table 7.7, and u is a short-cut for the parameters we would like to extract:
{A, \, p, 7} in the example we consider.

The best-fit point X = {4, 3} can be determined using the full quadratic form above, Eq. (7.56).
In order to derive analytically the intervals of the parameters we want to extract, {A, X, p, 7},
we are going to consider the following linear model

zi(x;) = & + Z ai(xe — k) + Ol(x — )%,
&

(7.57)
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Figure 7.9: Comparison between the different approaches for |Vyp| (left) and |Vep| (right) ot 1o,
where the purple dotted-line indicates the simple average of the two classes on inputs, namely
inclusive and exclusive extractions. The black intervals indicate the size of the statistical uncer-
tainties, while in solid red we indicate the remaining theoretical uncertainty. Instead, the dotted
red lines indicate the linear combination of the individual uncertainties seen in Tables 7.5 and 7.6
for the inclusive extraction of |Vus| (left) and the exclusive extraction of |Vep| (right): in each of
the two cases, the red intervals give 68 % CL intervals. The incompatibility between the inclusive
and exclusive input is clearly seen.

Observable Input
|Vad|nuct 0.97425 4+ 0 + 0.00022
Vs (3.70 £0.12 £ 0.26) x 1073
Ve (41.00 4+ 0.33 4 0.74) x 1073
Amy (0.510 4 0.003) ps~*
Amg (17.757 £ 0.021) ps~*
Bg./Bg, 1.023+0.013 + 0.014
B, 1.320 + 0.017 4+ 0.030
fB./fB 1.205 4 0.004 + 0.007
5. 225.6 & 1.1 £ 5.4 MeV
nB 0.5510 % 0 4 0.0022
T 165.95 + 0.35 + 0.64 GeV

Table 7.7: Set of inputs considered over this section for the extraction of {A, X\, p, 1}, consisting
of observables dominated by theoretical uncertainties. The numerical values correspond to those
used by the CKMfitter Collaboration as of Summer 14 (therefore |Viy|, Bp., f5./fs and fp,
are not ezactly the same as in Chapter 1).
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with

. . dx;
€Ty = -Ti(Xj) N [T aX; (758)
y=
where the index j runs over the full set of parameters, {1, .., ftm,d1,...,0,}. We stress that

over this section our goal is to perform an illustrative comparison between the different the-
oretical models, and that in actual global fits produced by the CKMfitter Collaboration this
simplifying step is not taken (but in any case the differences are not important even for large
confidence intervals). The advantage of considering the linear model is that we can compute an-
alytical expressions for the best values of {4, A\, p, 77} and their related statistical and theoretical
uncertainties.

Then one can rewrite the minimum of Eq. (7.56) under the matrix form

N m+4n N
A5 Qik Ak L o .
; 2Ty T ; 3z Ko — &) & M-X=4+4B-Xo, (7.59)

where we define implicitly M, A and B. Since measurements X; and parameters are linearly
related, the statistical uncertainty for xx can readily be obtained from the variances ox,

0% = izn_:l [(M~1)]" {%r x (0x,)° . (7.60)

The theoretical uncertainty on X is obtained similarly, depending on the type of combination
considered

)% (quadratic) (7.61)
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In the case of the nuisance approach, we can use the above expressions to determine the
confidence intervals. In the other cases, we extend the one-dimensional discussion of Section 7.3,
determining the relevant p-values by assuming that the test statistic in each case follows a known
distribution (in the Rfit case) or by determining its actual distributing and computing the p-
value numerically. We provide in Table 7.8 below the set of results. Note from this table that
Rfit and 1-hypercube give similar results at 1o, being more conservative than the other methods
at this confidence level. As one increases the significance, the adaptive hyperball approach gives
systematically more conservative intervals.

Note from Table 7.8 that we do not separate the resulting uncertainties in the Rfit scheme into
a statistical and a theoretical parts. Indeed, in more general situations the p-value curves have
more complex shapes than seen in Figure 7.10, and in those situations a plateau corresponding
to the size of the theoretical uncertainty may not be present.
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7.6 Conclusions

We have considered the problem of extracting some information from the measurement

Xo+to+A

of an observable x; predicted to have the value x(u) in the framework of a given model, which
has as free parameters a set represented by u. In the measurement above, X is called the central
value, while o is the statistical uncertainty and A is the size of the theoretical uncertainty.

Compared with statistical uncertainties, which by definition are modeled by random variables
following a certain distribution law, theoretical (or systematic) uncertainties form a very different
class of uncertainties. Indeed, their origin can be traced back, for instance, to calculations where
one truncates a perturbative series, and where the remaining corrections d;, in principle unknown,
are estimated and a theoretical uncertainty A is quoted.

In the comparison between data and the predictions made by a model for the extraction of
the underlying parameters p, this class of uncertainties must be taken into account and they
diminish our ability for the extraction of p, just like statistical uncertainties. The interpretation
of theoretical uncertainties is somewhat arbitrary and we have considered throughout this chapter
different modelings. Ideally, we would like to find a method which is not too “conservative” or
too “aggressive” when quoting confidence level intervals, among other properties. The underlying
issue is to extract useful information from data, without claiming a tension with the Standard
Model which may be only an artifact of the modeling of theoretical uncertainties. For each of
the models, we have considered the corresponding p-values in order to build confidence intervals
for the extraction of the values of p (the precise way to build p-values and the interpretation of
confidence intervals are discussed in the main text). The following methods were considered:

e In the naive Gaussian approach, we have considered treating them as a source of statistical
uncertainty, and modeled § by a random variable distributed normally, with variance AZ.
Though widely employed, it corresponds to the awkward situation where the full result of
perturbative calculation, in the example commented above, has a random behaviour.

e In the external approach, we have considered that they should be treated as an external
parameter, i.e. supposing first that its value is known. Then, when confidence intervals of
the parameters of interest y are considered, we vary the external parameter § over a fixed
range, typically [—A, A].

e In the nuisance approach, we consider maximizing the p-value, usually carrying a depen-
dence on the value of §, over a certain interval. We have then considered two different
cases: a fixed interval, and an interval which grows with the size of the confidence interval
for © we want to have (adaptive approach).

e The Rfit approach also treats § as a nuisance parameter and models the interval [—A, A]
with a plateau in the p-value or test statistic.

We have then studied the properties of these different methods, such as: confidence intervals
(including significances and coverage), averaging different measurements of the same quantity,
and a global fit of the CKM matrix for illustration. These questions are not purely mathematical
and have a clear interest for physical problems, as some of the examples discussed in the main
text attest. As we have seen over this chapter, the sizes of the quoted intervals, apart from
depending on the method chosen, are sensitive to the relative size of statistical and theoretical
uncertainties and the significance at which one wants to build the confidence intervals. Moreover,
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Figure 7.10: Shapes of the p-values for the different treatements of theoretical uncertainties dis-
cussed in the text. We consider the extraction of {A,\ p,n} for the set of inputs given in
Table 7.7, and as a simplification we consider linearizing the SM predictions around the best-fit
point for these fundamental parameters.

the combination of different extractions of the same quantity, and the outcome of global fits also
depend on the scheme in use.

At higher significances, the adaptive approach has broader confidence level intervals and has
good coverage properties. The adaptive approach also has the interesting property of decompos-
ing statistical and theoretical uncertainties in global analyses, a property not found in the Rfit.
It is then an encouraging possibility to be further investigated.

A longer analysis and more comments are found in [197]. The comparison between different
models for dealing with theoretical uncertainties, plus the way to treat singular cases when
combining correlated measurements correspond to a prospective study to be considered by future
CKMfitter analyses.
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44!

A

Method Fit result lo 20 30
nG 0.809 £ 0.011 0.809 £ 0.011 0.809 £ 0.023 0.809 £ 0.034
Rfit 0.807 £ 0.026 0.807 £ 0.026 0.807 £ 0.031 0.807 £ 0.035
1-hypercube 0.809 + 0.004 £ 0.025 0.809 £ 0.028 0.809 £ 0.033 0.809 £ 0.037
adaptive hyperball 0.809 + 0.004 £ 0.010 0.809 £ 0.012 0.809 £ 0.029 0.809 £ 0.043
A
Method Fit result lo 20 3o
nG 0.2254 + 0.0007 0.2254 +£0.0007  0.225 £ 0.0013  0.2254 4+ 0.0020
Rfit 0.2254 £ 0.0010 0.2254 £0.0010 0.2254 +0.0010 0.2254 + 0.0010

1-hypercube
adaptive hyperball

0.2254 +£ 0.0000 £ 0.0010
0.2254 £ 0.0000 £ 0.0007

0.2254 £ 0.0010
0.2254 £+ 0.0007

0.2254 £ 0.0010
0.2254 +0.0014

0.2254 £ 0.0010
0.2254 £ 0.0020

p
Method Fit result lo 20 30
nG 0.164 4 0.012 0.164+£0.012  0.16440.025  0.164 + 0.037
Rfit 0.164 + 0.032 0.16440.032  0.16440.039  0.164 + 0.046
1-hypercube 0.164 +0.007+0.026  0.1644+0.029  0.164+0.038  0.164 + 0.045
adaptive hyperball ~ 0.164 4 0.007 + 0.010  0.164+0.014  0.164+0.032  0.164 & 0.051
U]
Method Fit result lo 20 30
nG 0.353 + 0.021 0.353+0.021  0.353+0.042  0.353+0.063
Rfit 0.354F5-050 0.35419-999 0.35410-522 0.35410-08%
1-hypercube 0.353 £ 0.009 = 0.041 0.3534£0.046  0.3534+0.057  0.353 + 0.067
adaptive hyperball  0.35340.009+0.019  0.353+£0.023  0.353+0.054  0.353 4+ 0.083

Table 7.8: Numerical results for different confidence intervals for the models of theoretical uncertainty discussed in the text: naive
Gaussian (nG), Rfit (usually employed by the CKMfitter Collaboration), nuisance approach with theoretical uncertainties varying in a
hypercube (1-hypercube), and adaptive intervals in the nuisance approach with theoretical uncertainties varying in a hyperball (adaptive

hyperball).



Conclusion

We have at hand nowadays a very successful theory to describe a wide variety of phenomena
involving particles and their interactions, which is for this reason called Standard Model. We
have reviewed in Chapter 1 two classes of observables for testing the SM: EWPO, consisting of
very precise measurements, and flavour observables used in the extraction of the elements of the
CKM matrix. In each context, we have considered a global fit based on the CKMfitter statistical
framework for combining observables. The results show an overall successful description of these
observables by the SM.

Though generally very successful, the SM does not explain some features of nature but rather
include them into its framework. A good example is the chiral structure of the weak interactions,
or in other words the violation of parity symmetry (and charge conjugation). We would like to
have a better understanding of this aspect of the SM, and we have therefore considered a class of
extensions of the SM called Left-Right Models [20-23], a framework where the symmetry between
left and right is restored at a high energy scale, similarly to the way in which the electroweak
symmetry is restored at high enough energies.

We have revisited the LR Models realized with doublet representations, which was the first
scalar content to be considered in the old literature on the subject. Later on, more attention
has been given to a model containing triplet scalars, due to the possibility of explaining the
smallness of neutrino masses with a see-saw mechanism. However, the model with triplets has
been very much constrained, justifying the study of other realizations of the LR Models (in our
case a simpler one).

From the point of view of the phenomenology of this class of models, new gauge bosons
Z', W' are introduced. The W' couples to the right-handed fields with strengths described by a
mixing-matrix analogous to the CKM matrix of the SM. This is particularly interesting due to
the possibility of introducing new sources of CP violation. In full generality, other CP—violating
phases could also come from the VEV triggering the spontaneous breaking of the LR gauge group
down to the electromagnetism at low energies; for simplicity reasons though, we have preferred
to work in the case where these phases vanish. A different interesting phenomenological aspect is
that there is a whole new scalar sector, with the new neutral scalar particles introducing flavour
changing neutral currents at the tree level.

We have discussed in Chapter 2 the specific way in which the gauge symmetries of the LR
Models are spontaneously broken. As we have seen at that moment, the energy scale of the EW
Symmetry Breaking is described in full generality by three different Vacuum Expectation Values,

K1,2,1, which combine as \/k$ + k3 + k% to set up the scale of the EWSB. We stress that this
is one of the novelties of the work we show in here, namely the consideration of the VEV kp,
which is constrained to be very much suppressed in the triplet case (due to the value of the p
parameter).

A sizable value of kz, would imply a richer pattern of the EWSB, triggered by scalar fields
of different representations. To probe this aspect, we have performed a global fit including EW
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Precision Observables and the lower direct bound on the mass of the W’. The results of the
fit for the predictions of the different EWPO are very similar if compared to the SM global fit,
and we were not able to solve the tensions found in the SM context (such as A% ). As seen in
Chapter 3, the scale ki at which parity is restored ends up being very high, due to the direct
bound on the mass of the W', limiting in part the sensitivity of the fit to the new gauge coupling
gr and the VEVs k1 2 .. We have however noted a preference for high values of xp..

We need new observables to constrain the LR Model, and more specifically observables sen-
sitive to new physics effects even for large values of kr. Meson-mixing observables are sensitive
to new energy scales much beyond the reach of modern particle colliders, and are then good
candidates for constraining LR Models, including the couplings of the W’ and the new scalar
sector. However, in order to learn something accurate from this class of observables, we need
dedicated calculations of the effects introduced by QCD, which are unavoidable when processes
involving quarks are considered.

While the parameters describing long-distance QCD effects in meson-mixing observables in
LR Models have been addressed by many different collaborations, short-distance QCD effects
have not received the same attention. We have calculated in Chapter 5, after a brief introduction
of the necessary tools in Chapter 4, the effects from short-distance QCD corrections in meson-
mixing in LR Models. These effects were computed by exploiting two different methods: one
exact approach based on a successive set of EFT, and another one giving an estimate of the
latter exact approach which we have called Method of Regions. The novelty of our calculation in
the LR Model context was the integration of effects coming from dynamical charms in the EFT
approach, and the effort to extend the MR calculation up to the NLO.

Having achieved the computation of short-distance QCD corrections necessary for the LR
Model predictions of meson-mixing observables, we integrated in Chapter 6 meson-mixing ob-
servables together with EWPO and direct searches for the W' in a global fit, using the CKMfitter
statistical framework in the context of the LR Models. Compared to EWPO, the new set of pa-
rameters includes the masses of the scalar sector and the mixing-matrix of the right-handed
quarks VT analogous to the CKM matrix of the SM. For the latter, however, we have assumed
the simplified case VT = VL in our analysis, a case called manifest scenario.

We were then able to set lower bounds on the masses of the gauge bosons W’ and Z’ at
~ 3.6 — 4.0 TeV and ~ 7.5 — 8.5 TeV (68 % CL), respectively, more restrictive or at least
competitive when compared to direct search programs. We have as well been able to set bounds
on the masses of the extended scalar sector beyond ~ 25 TeV. On the other hand, we were not
able to extract bounds for kr, k1, k2, gr, but we have extracted some of their correlations.

Some aspects of the global fit can be certainly improved or generalized. We could still refine
the information coming from direct searches, which is usually made under specific assumptions
concerning the couplings of the W’ Z’ gauge bosons (such as g;, = ggr). Moreover, different
structures of the mixing-matrix V' could be probed, requiring new observables, in particular
tree level processes where a charged gauge boson is exchanged in the SM. Their inclusion could
point towards features of the V' mixing-matrix such as new CP—violating phases, and in this
context of (semi-)leptonic processes it would be interesting to include observables which have
recently shown tensions with the SM, e.g. Rk, Rp,Rp~. This would lead us to questionings
related to the leptonic sector of the model, a challenging but quite exciting perspective if one
considers that LR Models provide a Z’ boson as currently hinted at by b — s¢f observables, see
e.g. [200].

Shifting to a different issue, we have compared in Chapter 7 different modelings of theoretical
uncertainties, a class of uncertainties that is specially important in flavour physics. We have
shown that the size of a tension between experiment and prediction, or the outcome of the com-
bination of different extractions of the same quantity, or yet the results in terms of confidence

146



intervals of a global fit, depend on the way we understand theoretical errors. The underlying
interest of investigating different models of theoretical uncertainties is not only for the exercise
of illustrating their differences or similarities: aiming to be up-to-date with the present land-
scape of uncertainties in experimental data and theoretical inputs in flavour physics, much more
accurate than ten years ago, we would like to improve the analysis performed by the CKMfitter
Collaboration. We have therefore looked for alternatives to the Rfit scheme, presently used
in the modeling of theoretical errors, and have found a promising candidate, called adaptive
nuisance approach, which shows interesting properties from the point of view of coverage and
decomposition of statistical and theoretical uncertainties in a global fit.
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Résumé et breve discussion des
résultats

Le Modele Standard (MS) de la physique des particules est bati & partir d’exigences telles que
la covariance et la renormalisabilité et offre un cadre commun pour la description de toutes les
interactions microscopiques connues en termes de symétries de jauge. Cette théorie a été le
fruit du travail de plusieurs générations de physiciens, et est certainement 'une des réalisations
scientifiques les plus remarquables de notre Histoire. Le long chemin suivi avant d’atteindre
la formulation de la théorie de l'interaction électrofaible, unifiant 1’électromagnétisme et les
processus faibles, est un exemple de l'effort qui a été nécessaire. A ce titre, notons que les
interactions faibles ont été introduites d’abord comme une nouvelle interaction fondamentale
dans les années 30 par Fermi [1], formulée a ce moment-la comme une interaction de contact.
Plus tard, il y a exactement 60 ans, la violation de la parité dans les désintégrations faibles a été
suggérée [2], en déclenchant des doutes sur les symétries de conjugaison de charge et de réversion
temporelle [3]. L’observation de la violation de la parité [4-6] 'année suivante a confirmé cette
hypothese et a été d’'une importance capitale pour la compréhension des interactions faibles
(voir [7,8] pour les détails historiques) : suite & la découverte de la violation de la parité, elles
ont été formulées comme des interactions de type V. — A = 4* — 4#~5 [9,10], indiquant que la
raison sous-jacente de la force faible est I’échange de bosons vectoriels.

La courte portée de linteraction faible, liée a I’échange de bosons de jauge lourds, est
élégamment interprétée comme la limite de basse énergie d’une théorie plus fondamentale et
symétrique, l'interaction électrofaible de Glashow-Salam-Weinberg. La symétrie électrofaible est
spontanément brisée par la valeur moyenne dans le vide d’un champ scalaire ¢, qui introduit le
boson de Higgs dans le cadre du MS. En méme temps que ce mécanisme, nommé Brout-Englert-
Higgs (BEH) [11], explique la courte portée des interactions faibles par les masses des bosons
de jauge W= et Z°, les particules responsables des forces faibles, il offre également une origine
pour les masses des quarks et des leptons chargés, en fonction de leur interaction avec ce méme
champ scalaire ¢.

En tenant compte des interactions fortes, cette image globale a été vérifiée de facon précise par
des mesures provenant de différents secteurs, deux exemples importants étant les observables de
précision électrofaible (EWPO en anglais) [12-14] et les observables de saveur [15-17], testant des
aspects tres différents de la théorie, y compris les couplages du boson de jauge Z aux fermions
et la violation de CP telle que décrite par la matrice CKM. Plus récemment, la remarquable
découverte du dernier bloc manquant du MS, le boson de Higgs [18,19], a couronné de succes
cette théorie.

Il est intéressant d’observer que le MS donne des indications quant a la possibilité d’avoir
une théorie plus fondamentale au-dela de son cadre. En effet, la hiérarchie de la matrice CKM,
ainsi que I’éventail des masses des quarks et des leptons, exige une compréhension plus profonde
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de la structure du MS. En outre, les valeurs des couplages gs, g1, gy sont a peu pres similaires
: compte tenu les exemples trés importants d’unification de forces en sciences (la gravité sur
le sol et le mouvement céleste, les forces électriques et magnétiques, I’électromagnétisme et les
interactions faibles), il est tentant de supposer des extensions du MS capables de faire de méme
pour les interactions quantiques connues.

En plus, bien que capable d’expliquer une grande variété de phénomenes de la physique des
particules, le MS laisse inexpliquées certaines propriétés de la nature. Ici, nous allons mettre
l'accent sur les différents comportements des chiralités gauche et droite des fermions connus,
ou en d’autres termes la violation de la symétrie de parité. Une maniére possible et naturelle
d’expliquer cela est d’intégrer le MS dans un modele plus symétrique, qui traite les deux chiralités
de fagon “démocratique.” La recherche de nouvelles symétries (par exemple, la supersymétrie,
etc.), ou des raisons pour lesquelles nous ne les voyons pas (par exemple, la violation de la
saveur leptonique par lors des oscillations des neutrinos, ou la brisure des symétries entre les
différentes générations par les matrices de Yukawa, etc.), peut améliorer fondamentalement notre
compréhension du monde microscopique, le MS en étant un exemple lui-méme.

La classe de modeles qui restaure la symétrie de parité, les modeles a symétrie Droite-Gauche
(LR en anglais) a été d’abord congue dans les années soixante-dix [20-23]. Depuis lors elle est a
I'origine de nombreuses investigations. Cela est certainement di a la flexibilité de cette classe de
modeles vis-a-vis de sa réalisation spécifique, ce qui est exploité pour traiter une grande variété de
problémes phénoménologiques, y compris la petitesse de la masse des neutrinos [24], la possibilité
de violer CP dans le secteur de U'interaction forte [25,26] et la matiére noire [97]. En méme temps,
le modele LR peut résulter des groupes de jauge des Théories Grand Unifiées [27], en tant qu’une
étape intermédiaire de leur brisure spontanée vers le MS. De ce point de vue, enquéter sur la
violation de la symétrie de parité peut étre une fenétre menant a d’autres questions en physique
des particules.

Le premier point concernant la formulation des modeles LR est 'introduction d’une nouvelle
interaction faible qui se couple préférentiellement aux champs de chiralité droite, de maniere
analogue aux courants de chiralité gauche du MS. Ceci se traduit par le groupe de jauge

SU(?))C X SU(Q)L X SU(2)R X U(l)B_L,

ot B — L correspond au nombre baryonique total (B) moins le nombre leptonique total (L). A
des échelles d’énergie au-dela de la brisure de la symétrie EW, la symétrie LR est spontanément
brisée donnant origine au MS et aux phénomenes de violation de parité. Suite a la brisure
spontanée du groupe de jauge LR, le spectre de bosons de jauge inclut des particules lourdes
W'E et 7/ 0, associés & une riche phénoménologie : par exemple, le W’ * se couple aux champs
de chiralité droite avec une intensité dans le secteur des quarks donnée par une matrice de
mélange analogue a la matrice CKM, introduisant ainsi le mélange de différentes générations
et de nouvelles sources de violation de CP au-dela de celle de la matrice CKM. De plus, les
bosons Z'° et W'* se mélangent avec les bosons ZY et W, respectivement, changeant ainsi les
couplages des bosons de jauge connus aux fermions, ce qui peut étre testé par des observables
de précision EW. Notons d’ailleurs que plus récemment la possibilité d’observer les particules
W= et 2'° dans des collisionneurs de haute énergie a déclenché de nouvelles activités dans ce
domaine [28].

La manieére spécifique dont la rupture spontanée du groupe de jauge LR arrive dépend du
contenu scalaire du modele. Il est habituel de considérer les triplets (1,1,3,2) et (1,3,1,2) car
ils donnent lieu & un mécanisme de type see-saw pour les neutrinos légers. Nous voudrons ici
revisiter une réalisation plus simple des modeles LR contenant des doublets au lieu de triplets,
moins contrainte du point de vue de la rupture spontanée de la symétrie LR. En effet, les masses
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des bosons de jauge connus W, Z satisfont & Mw ~ My - g./1/ 9% + g3, contraignant la valeur
moyenne dans le vide de I'une des représentations de type triplet, laissée a priori libre dans le cas
des représentations de type doublet. Ceci explique notre choix pour le titre (“Phénoménologie de
modeles & symétrie Droite-Gauche dans le secteur des quarks”) : nous nous concentrons ici sur
les aspects les plus fondamentaux des modeles LR, & savoir la brisure spontanée des symétries
locales et les propriétés de son secteur scalaire minimal, alors que la question de la petitesse des
masses des neutrinos peut exiger d’autres éléments supplémentaires.

Nous considérons dans le cadre de ce scénario doublet I’étude de la phénoménologie de nou-
veaux bosons de jauge et du nouveau secteur scalaire. Ce dernier inclut de nouveaux scalaires qui
apportent des courants neutres changeant la saveur (FCNC en anglais) au niveau des arbres. Les
FCNC fournissent généralement des contraintes extrémement puissantes sur les modeles au-dela
du MS, car pour ce dernier ils arrivent d’abord a l’ordre d’une boucle, et méritent donc une
attention particuliere. Ils fournissent de nouvelles contributions au mélange des mésons neutres,
intensivement étudiés dans le scénario triplet des modeéles LR [28-37], ce qui implique des limites
inférieures sur la masse du W’ de quelques TeV, et une limite inférieure d’ordre O(10) TeV pour
les masses du secteur scalaire étendu.

Lors du calcul des contributions LR aux processus de mélange de mésons neutres, la con-
naissance des effets de QCD devient nécessaire. Les effets de QCD de longue distance ont été
abordés par plusieurs groupes [38-42] et on s’attend & une meilleure précision dans un avenir
proche. En revanche, I'un de nos buts ici est d’améliorer la précision du calcul des effets de QCD
de courte distance. Pour parvenir a une telle tache, nous avons donc considéré leur calcul au
NLO, et comparé les méthodes utilisées dans la littérature [30,43-49].

En étudiant les contraintes auxquelles les modeles LR sont soumises, nous cherchons a avoir
une image plus claire de leur structure, a savoir ses échelles d’énergie et ses couplages. A cet
effet, nous effectuons une analyse combinée ’EWPO, des recherches directes du bosons de jauge
W' et des observables décrivant le mélange de mésons neutres. Leur combinaison est fournie
par le CKMfitter, un cadre d’analyse statistique puissant, prouvé tres utile dans 'extraction des
parametres de la matrice CKM dans le cadre du MS [16, 50].

Par ailleurs, les effets de QCD mentionnés ci-dessus ainsi que d’autres parameétres théoriques
sont soumis a des incertitudes systématiques qui sont dans de nombreux cas la principale source
d’incertitude. La combinaison de différentes classes d’observables devrait, en principe, tenir
compte la particularité des incertitudes théoriques, qui sont d’une nature différente par rapport
aux incertitudes statistiques, de caracteére aléatoire. En fait, leur interprétation méme est soumise
a une ambiguité, car elles ne sont pas trivialement conformes au cadre statistique habituel. Nous
comparons donc plusieurs modeles d’erreurs théoriques, ce qui est particulierement important
pour la physique des saveurs.

Résultats obtenus

Nous disposons actuellement d’une théorie capable de décrire une grande variété de phénomenes
impliquant les particules fondamentales et leurs interactions. Pour cette raison, nous appelons
cette théorie le Modele Standard (MS). Afin de tester le MS, nous avons examiné dans le
Chapitre 1 deux classes différentes d’observables : des observables de précision électrofaible
(EWPO), comprenant des quantités trés précisément mesurées, et des observables de la saveur
utilisées dans 'extraction des éléments de la matrice CKM. Au sein de chaque classe, nous avons
considéré un fit global mené par le cadre statistique CKMfitter, qui consiste dans une approche
fréquentiste et applique une modélisation appropriée aux incertitudes de nature théorique. Les
résultats montrent une tres bonne description des différentes classes d’observables par le MS.
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Bien qu’ayant beaucoup de succes, le MS n’explique pas certaines caractéristiques de la
nature, mais plutot les inclut dans sa formulation. Un bon exemple est la structure chirale des
interactions faibles, ou en d’autres mots la violation de la symétrie de parité (et de conjugaison de
charge). Afin d’avoir une meilleure compréhension de cet aspect du MS, nous avons considéré une
classe de ses extensions appelée Modeles & Symétrie Droite-Gauche (Left-Right (LR) Models, en
anglais) [20-23], un cadre dans lequel la symétrie entre les chiralités gauche et droite est rétablie
a une échelle d’énergie élevée, de maniere similaire a la fagon dont la symétrie électrofaible est
rétablie a hautes énergies.

Nous avons reconsidéré la possibilité d’avoir des modeles LR réalisés avec des représentations
scalaires de type doublet, ce qui a été le premier contenu scalaire a avoir été considéré dans les
premieres références a ce sujet. Plus tard, une plus grande attention a été accordée a un modele
contenant des scalaires de type triplet, en raison de la possibilité d’expliquer les tres petites
masses des neutrinos (par le biais d’un mécanisme de type see-saw). Cependant, le modele avec
des triplets a été fortement contraint, ce qui justifie I’étude d’autres réalisations des modeles LR
(dans notre cas, une réalisation plus simple).

Du point de vue de la phénoménologie de cette classe de modeles, de nouveaux bosons de
jauge Z' et W' sont introduits. Le W’ couple aux champs droits avec des forces décrites par une
matrice de mélange analogue a la matrice CKM du MS. Ceci est particulierement intéressant vis-
a-vis de la possibilité d’introduire de nouvelles sources de violation de CP. En toute généralité,
d’autres phases complexes responsables pour la violation de CP pourraient aussi provenir des
VEV a lorigine de la brisure spontanée du groupe de jauge des modeles LR : pour des raisons de
simplicité, nous avons préféré travailler dans le cas ou ces phases ne sont pas présentes. Un autre
aspect phénoménologique également intéressant est l'existence d’un nouveau secteur scalaire,
dans lequel de nouvelles particules scalaires neutres introduisent des courants neutres changeant
la saveur (FCNC) a l'ordre des arbres.

Nous avons discuté dans le Chapitre 2 la maniere spécifique par laquelle les symétries de
jauge des modeles LR sont spontanément brisées. Comme nous avons remarqué a ce moment-la,
Péchelle d’énergie de la brisure de la symétrie électrofaible (EWSB) est décrite en toute généralité

par trois VEV, k1 2 1, qui se combinent de la fagon suivante \/x7 + £3 4+ k2 pour établir I’échelle
de TEWSB. Nous soulignons ici I'une des nouveautés du travail que nous montrons, a savoir la
considération de la VEV kp,, qui est contrainte & étre trés petite dans le cas des triplets (en raison
de la valeur du parameétre p). D’ailleurs, une valeur importante de xy, impliquerait un caractere
plus riche de TEWSB, déclenchée par des champs scalaires de nombres quantiques différents.

Nous avons effectué un fit global incluant des observables de précision électrofaible et la
limite inférieure sur la masse du boson W’. Les prédictions qui en résultent sont treés similaires
en comparaison au fit global du MS, et nous ne sommes pas en mesure de résoudre les tensions
trouvées dans le cadre du MS (comme celle de A% ). Comme on I’a vu dans le Chapitre 3,
I’échelle ki a laquelle la parité est restaurée finit par étre tres élevée, en raison des bornes directes
sur la masse du boson W', ce qui limite en partie la sensibilité du fit au nouveau couplage de
jauge gr et les VEV k12 1. Cependant, nous avons remarqué une préférence pour des valeurs
élevées de K,.

Nous avons besoin de nouvelles observables pour contraindre le modeéle LR et plus partic-
ulierement des observables sensibles aux échelles kg, méme pour de grandes valeurs de kr. Des
observables baties a partir de l'oscillation de mésons neutres sont sensibles aux échelles d’énergie
bien au-dela de la portée des collisionneurs de particules modernes, et sont alors de bons candi-
dats pour contraindre les FCNC introduits par le W’ et le nouveau secteur scalaire. Toutefois,
afin d’apprendre quelque chose de précis en exploitant cette classe d’observables, nous avons
besoin de calculer les effets venant de la QCD, inévitables lorsque des processus impliquant des
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quarks sont considérés.

Bien que les parametres décrivant les effets de la QCD a longues distances dans le cadre des
modeles LR ont été traités par de nombreuses collaborations, les effets de la QCD a courtes
distances n’ont pas recu la méme attention. Nous avons calculé dans le Chapitre 5, aprés une
breve introduction aux outils nécessaires dans le Chapitre 4, les effets des corrections QCD a
courtes distances au mélange de mésons neutres dans les modeles LR. Ces effets ont été calculés
en exploitant deux différentes méthodes : une approche plus formel, basée sur la définition
de théories effectives successives (EFT), et une autre approche donnant une estimation de la
derniére, appelée Méthode des Régions (MR). La nouveauté de notre calcul a été I'intégration
des effets provenant des quarks charm dynamiques dans I'approche EFT, et 'effort d’étendre le
calcul fait par MR jusqu’au NLO.

Apres avoir réalisé le calcul des corrections QCD a courtes distances nécessaire pour les
prédictions des oscillations de mésons neutres, nous avons intégré dans le Chapitre 6 les ob-
servables provenant du mélange de mésons neutres avec les EWPO et la recherche directe des
bosons W’ dans un fit global, en utilisant ’outil statistique CKMfitter. Le nouvel ensemble de
parametres comprend les masses du secteur scalaire et la matrice de mélange des quarks droits
V. Pour cette derniére, cependant, nous avons supposé le cas simplifié VI = VL un scénario
appelé cas manifest.

Nous avons été alors en mesure d’établir des limites pour les masses des bosons de jauge
W' et Z' de ~ 3,6 — 4,0 TeV et ~ 7,5 — 8,5 TeV, respectivement, plus restrictives que les
programmes de recherche directe. Nous avons aussi été en mesure de mettre des bornes sur les
masses du nouveau secteur scalaire au-dela de ~ 25 TeV. D’autre part, nous ne sommes pas
en mesure d’extraire des limites pour ky, K1, k2, gr, Mais nous avons extrait une partie de leurs
corrélations.

Certains aspects du fit global peuvent étre certainement améliorés ou généralisés. Nous pour-
rions encore raffiner les informations provenant des recherches directes, qui sont généralement
faites sous des hypotheses spécifiques concernant les couplages des bosons de jauge W' et Z’
(tels que gr = gr). En outre, différentes structures de la matrice de mélange V¥ pourraient
étre sondées, et I'analyse des processus semileptoniques et leptoniques pourrait étre intégrée
dans le fit global. Ceux-ci pourraient pointer vers des caractéristiques de la matrice de mélange
VT tels que de nouvelles phases complexes violant CP. Dans ce méme contexte, on pourrait
aussi inclure des observables qui ont connu récemment des tensions avec le MS, par exemple
Ry, Rp, Rp~. Cela nous conduirait a des questionnements liés au secteur leptonique du modele,
une perspective intéressante si I’'on considere que les modeéles LR prédisent des bosons de jauge
7' tel qu'actuellement indiqué par des observables batis par 'observation de b — sf¢.

Nous avons aussi été intéréssés par d’autres questions, en comparant dans le Chapitre 7
différentes modélisations des incertitudes théoriques, une classe d’incertitudes qui est partic-
ulierement importante en physique de la saveur. Nous avons montré que la taille d’'une tension
entre l'expérience et la prédiction, ou le résultat de la combinaison de différentes extractions de
la méme quantité, ou encore les résultats en termes d’intervalles de confiance d’un fit global,
dépendent de la facon dont nous comprenons les erreurs théoriques. L’intérét sous-jacent a la
considération de différents modeles d’incertitudes théoriques provient non seulement d’un ex-
ercice ayant pour but d’illustrer leurs différences ou similitudes : visant a étre en conformité
avec le paysage actuel des incertitudes dans les données expérimentales et dans les parametres
théoriques en physique de la saveur, plus précises qu’il y a une dizaine d’années, nous voudrons
améliorer I’analyse effectuée par la Collaboration CKMfitter. Nous avons donc cherché des alter-
natives au schéma Rfit, actuellement utilisé dans la modélisation des erreurs théoriques, et nous
avons trouvé un candidat prometteur, connu sous le nom de nuisance adaptative, qui présente
des propriétés intéressantes du point de vue de la couverture de la vraie valeur d’un parametre
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inconnu et de la décomposition des incertitudes statistiques et théoriques dans un fit global.
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Appendix A

EWPO tree level expressions in
the SM

A.1 Partial widths

Partial widths of the Z boson, Z — ff, are calculated in the following way

Gr_
6#\/5

where C'y is the number of colours, thus implying

Ty;=Cr—"=l(g})* + (g%)*]M3, (A.1)

Gr

Iy = 12“/51\@, (A.2)
Ty = %rw[u —4sin?0)? 4 1], (A.3)
Tyg = grw[a —~ gsin2 0)> +1], (A.4)
Tppy = grw[a — gsin2 0)* +1], (A.5)

where ¢ = e, u, 7, U = u,¢, D = d, s,b, and we have neglected the masses of the fermions for
illustration (which is an extremely good approximation except for the bottom-quark). Therefore,
the total width is given by!

Tiotwr = 30,5+ 31—‘@2 + QFUU + 3FDD , (AG)
3 80 320
= Tiotar = 5Tup | 14— 2 sin® 6+ == sin® 6. (A7)

From the previous expressions one has (and for the numerical exercise only, we take Gp ~
1.166 - 107° GeV 2, sin? 0 ~ 0.23, M ~ 91.2 GeV)

'In principle, [tozq; as defined above can be different from I'z. In our SM and LRM analyses we assume that
they are the same, i.e. there is no extra invisible channel apart from the three neutrino flavours.
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I'.; ~ 166 MeV, I'y7 ~ 83 MeV, (A.8)
I'yg =~ 286 MeV, I'pp =368 MeV, (A.9)
Diotar ~ 2.4 GeV, (A.10)
from where one has the following branching ratios
Br(vi) ~ 68%, Br(tl)~34%, (A.11)
Br(UU) ~ 12%,  Br(DD)~15%, (A.12)
Br(hadrons) =~ 69 %. (A.13)

As a thumb rule, Z decays twice more into neutrinos than into charged leptons, and 2/3 of the
time into hadrons.
From the partial-widths, one can define the following ratios
_ I‘hu,d thj

Ry = . R, = -9 A14
‘ Ly " Thad ( )

measured for £ = e, u, 7 and g = b, c.

A.2 Cross sections

Consider a eTe™ collision® with a center-of-mass energy /s in the center-of-mass frame; the

non-polarized differential cross section at tree level is given by (neglecting the masses of the
fermions)

doy s)—ﬁ( i > (A.15)

2
d cos 0* - 87 800829) (s = M2)2+T%M2
{169)% + (95)%11(60)? + (91)?1(1 + cos?0") + 85 59l g% cos " }

where 6" is the emission angle in the center-of-mass frame (angle between the positron (electron)
and the final (anti-)particle). Note that the last term shows an asymmetric dependence on the
emission angle 8%, which is an explicit violation of parity (proportional to the asymmetry Apg(f)
defined below).

Above, a Breit-Wigner approximation was employed, i.e. for a virtual Z* exchanged in a
s—channel® at tree level (k? = s)

j I — kyuky /M7
k? — MZ +iUzMz’

(A.16)

in the unitary gauge. (Experimentally, however, one employs a width which has an energy
dependence on the energy scale, o< (k* — M2 +ik*T'z/Mz)~'.)
The differential cross-section implies the following total cross-section

20f course, hadron collisions are also useful to investigate the lineshape of the Z boson resonance, though they
suffer from initial-quark PDF uncertainties.
30ther channels have a non-resonant character but still contribute to the line-shape of ete™ — Z* — ete™.
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2
sI'y,

or(v/s) = or, A7
where o = 05(Mz). In terms of partial-widths at tree level:
127 Peel's 7
= A.18
Finally, it is useful in order to better control systematic errors to write
s Uyr
= A.19
7V = AR TR T T (4.19)
where opqq corresponds to the sum over hadronic channels of oy, i.e. opeq = Z of.

fe{u,d,s,c,b}

A.3 Asymmetries

Parity violation in neutral weak interactions in the SM is at the origin of a different class of
observables. Though the asymmetries of the Z couplings are not as large as the asymmetries of
the W couplings, they have their own interest due to the precision measurements at the center-
of-mass energy /s ~ 91 GeV (and they offer a privileged way to determine sin? 0, by writing
g‘);_’ 4 in terms of sin? 0, see Table 1.1 in Chapter 3). One of the possible asymmetries to measure
is the Forward-Backward asymmetry, i.e. the angular asymmetry on Z decays
n(0* < 90°) — n(6* > 90°)
A = , A.20

re(f) n(6* < 90°) + n(f* > 90°) (4.20)
where n is the number of events, and f = e, u, 7,b,c. Note that parity conserving effects, such
as QED and QCD, cancel in the ratio. From the theoretical side, Arp(f) is given as follows

Aps(f) = 2 AA Ap—o IIH (A.21)
FB = T AeAf, f= . .
4 (99)2 + (94)?
The asymmetry of Z decays in polarised final-states, measured for 7 leptons by the observation
of their decay products, is

n(tr) — n(rr)

Pl = n(tr) + n(rr)

=-A., (A.22)
and more generally one has a function of the emission angle, P” (cos6*).
Another asymmetry to measure is the Left-Right asymmetry, i.e. the asymmetry of the
cross-section with incident polarized electron beams
oler) —o(er)

Arr = m =A.. (A.23)
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A.4 Atomic Parity Violation (APV)

Apart from these Z-lineshape and asymmetries we have low-energy measures coming from Atomic
Parity Violation (APV), see e.g. [201] (and [202,203] for NP studies), which is defined from the
parity violating effects related to the exchanges of Z bosons between the atomic nucleus and the
atomic electrons. The most important contribution comes from the axial coupling to electrons
and to the vectorial couplings to quarks from the nucleons (for more details, see the “EW model
and constraints on NP” review in [58]):

Qwla) = 2gagv (A.24)
QW(P) = 2Qw(u) +Qw(d), (A.25)
wn) = Qw)+2Qw(d), (A.26)

20

and we have considered 1330555 and 292037, in our fit, whose APV magnitudes are given by

Qw(n) = =2(ZQw(p) + NQw(n)) . (A.27)

A.5 W boson partial widths and cross sections

We also provide useful bounds from the W boson properties. In the limit of massless neutrinos
we have

Gr 5
—— My,
672 W

and for the quarks there is additionally a dependence on the CKM mixing matrix (g1 (¢2) is the
up-type (down-type) flavour)

r,;= (A.28)

Flhtb = 6 \/—| q1qz| MW = 3| q1qz| FVZ' (A29)
The above two equations imply
Fifotal 3F vl + 3 Z | @ q2 QFZW y (A30)

q1,92

where in Z the kinematically allowed flavours are ¢; = u, ¢ and ¢2 = d, s, b. Therefore, one has
q1,92

the following approximate values (Gr ~ 1.166 - 107° GeV ™2, My ~ 80.4 GeV)

I',7 >~ 227 MeV, (A.31)

from T',; ~6keV, to T',; .5 642 MeV, (A.32)

Fifotal ~2 Gev; (A33)
and the following branching ratios

Br(vl) ~1)9, Br(hadrons) ~6/9. (A.34)

Though we are not going to exploit the following expressions in our analysis, it is interesting
to note the parity asymmetry in them. These are: q¢’ — W* — vyl cross-sections
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5—M3,)? +T%, M3,

and q¢/ - W* — q1Q

do

d cos 6* 87 5— MZ)?+ T3 M3,

In the above expressions, the measured cross section is given by

or(Vs) ://dx1 day F(21)F(22)7 (V)

where 5 = sx1x9 and F(m172) are the relevant PDFs.
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do - 1 /g2\? 3|VE 2
9. (\/g) _ = (9_L> ( | 99 | (14 cos0*)?,

_ 3 2\ 2 ng/2vL 2
q145 (\/g):_ (%) ( | qq| | thlhl (1—|—COS(9*)2.

(A.35)

(A.36)

(A.37)



Appendix B

Parameterization of the EWPO

In practice, we want to combine the set of EWPO in order to constrain the SM or the LRM
using CKMfitter. Asking CKMfitter to call Zfitter for each realization of S would be too
time-consuming. Therefore, we prefer to parameterize the observables as a function of S before
using CKMfitter. A simple (Fortran) code makes calls to Zfitter for certain realizations of
S, which gives as output the corresponding values for the set of observables we want to study.
Then, with a second program (written in Mathematica), we parameterize these observables as a
function of S. It is this parameterization that is used by CKMfitter to produce global fits. The
following “chart graph” resumes the task

Fortran code — Zfitter — Observables — Mathematica notebook

— parameterization — CKMfitter — constraints

When using Zfitter, we have left the value of a~*(0) = 137.0360 fixed. The values of
other relevant parameters are: m, = 0.3 GeV, m. = 1.5 GeV, mp = 4.7 GeV, and G, =
1.1664-10° GeV2, which were all kept fixed during the analysis. Both of the references, Zfitter

[14] and Freitas in [63], calculate loop corrections in the on-shell scheme. In this scheme, the
pole

mass of the top is the pole mass, my,, .

When doing the parameterization, we have divided the intervals of S by the following numbers
of points :

variable interval(s) nb. of points | parameter(s) fitted
Aol (M) | 0.02757 £ 0.00050 81 co
Mz 91.1876 £ 0.0042 21 cr
myoe 173.2+£ 2.0 71 ca
Mg 125.7£2.5 o1 c1
as(Mz) 0.1184 £ 0.0050 111 c3
All the same 5° C4,Cs
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On determining c3 from as(Mz), we have set ¢4 to zero (the dependence of c3 on ¢4 is very




191

‘ Obs. ‘ Xo ‘ c1 ‘ Co ‘ c3 ‘ Cy4 ‘ Cs ‘ Cg ‘ cr ‘ max. dev. ‘
| Tz [MeV] | 249424 | 20 | 197 | 58.60 | 40 | 80 [-559] 9267 | <o0.01 |
| onea [pb] | 414884 | 30 | 609 [-579.4] 38 | 7.3 | 85 [-se027| <01 |

Ry * 215.80 | 0.031 | -2.98 | -1.32 | -0.84 | 0.035 | 0.73 -18 < 0.01
R.* 172.23 | -0.029 | 1.0 2.3 1.3 0.38 | -1.2 37 < 0.01
R, * 20750.9 | -8.1 -39 | 7321 | -44 5.5 -358 | 11702 < 0.1

Table B.1: Parametrization from [63], * = 10>, We do not use its parameterization for Ry since it is the result of a combination of
Re, R, R-.

‘ Obs. ‘ Xo ‘ c1 ‘ Co ‘ c3 ‘ Cq ‘ cs ‘ Cg ‘ cr ‘ max. dev. ‘
| Tz [Mev] | 249522 | 24 | 2001 | 6348 | 32 | -1.8 | 544 | 9225 | <0.006 |
| ohaa[pb] | 414789 ] 13 | 528 | 6309 | 134 | 34 | s2 [ 86323 | <05 |
Ry * 215.81 | 0.039 | -3.12 | -0.0285 | -0.74 | 0.070 | 0.81 | -19. | < 0.0006
R, * 172.24 | -0032 | 10 | 23 14 | 038 | -1.2 37. | < 0.0006
R.* |20m395| 77 | 32 | wor2 | 8. | oo | -361. | 11950. | < 0.3
R,* |20m395| -68 | -32. | 7915 | 31 | -017 | -362. | 11880. | < 0.3
R.* | 207865 | -84 | -32. | 7929 | -40. | -0.37 | -363. | 11399. | < 0.3
App®)* | 1031 | 27 | 152 22 | 41 | 009 |-1155] 37252 | <o0.03
App(c) * 73.7 2.1 | 11.9 -1.7 -2.9 | -0.01 | -89.4 | 28775 < 0.02
App()* | 162 | 08 | 48 | 07 | 07 | 009 | -35.9 1. < 0.02
Ay * 9346 | 03 | 04 | 01 | 05 | o5 | 132 | 4206 | <0.03
A ¥ 6679 | -1.6 | 95 | -14 | -15 | 005 | -71.5 | 22602 | <o0.01
A * 1471 | 37 | 216 | 31 | 5.9 | 005 |-1627 | 52469 | <0.03
My [GeV] | 80.361 | -0.058 | 0.522 | -0.073 | -0.034 | 0.0002 | -1.069 | 114.885 | < 0.0002
Ty [MeV] | 20906 | 44 | 411 | 482 | 26 | 09 | 830 | 89538 | <o0.02
Qw(Cs) | 7298 | -0.09 | 0.05 | 021 | 083 | 012 | 517 | 172901 | < 0.006
Qw(Tl) | 11648 | 013 | 0.02 | 033 | 131 | 017 | 7.7 | 257.02 | < 0.008

Table B.2: The numeric values (truncated here for illustration) for the parameters of different observables, * = 10°.



small): the resulting value for ¢s is the same as the value found for a conjoint fit of ¢ and ¢4
from varying as(Mz); the difference on the values of this ¢4 and the one determined from the
variation of all the variables together was generally not big. Xy was determined exactly when
setting Aal),(My) = 0.02757, My = 91.1876, mlor = 173.2, My = 125.7, and a,(My) =
0.1184. Varying all the variables was as well used to determine the maximum deviations of the

parameterization, thus showing that extra quadratic dependences are not necessary.
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Appendix C

© parameter

The problem of the p parameter value for a bi-doublet and two triplets is considered by [54],
so we are going to list some of the results. The important mixing matrices are, where we take
gr = gr = g for simplicity

2 2
K1|“+ |k
| 1| 2| 2| +|"€L|2 — K1k, o1
> Pl | (©n
iy PR o
in the W, Wg basis and
K112+ k|2 K112 |k |2 s2
|1 |*+ K2 i f? B+ ke b P
1 4 4 c; — Sg (C.2)
2\ _lmlPrlal | sh o Pl | st Prcllnl |
4 2 — 2"t 4 (c2 — s2)?
in the X7, Xs basis. Here the weak angles are given by
2 _ 9]23—L +g2 2 _ QQB—L C.3
09 = ﬁ, 89 = ﬁ . ( . )
9p-1 T 9 9p-1 T 9

On searching for parity breaking, |k 1|# |~r|, and supposing |k r| much bigger than |k |, |k1,2],
one has the following light masses, to leading order in 1/|kg|?:

2 P 2+K, 2
M2~ L M+|M|2 : (C.4)
2 2
2 2 2 2 2
g |#1]°+ k2] 2 My, o |kL]
M2~ 2o (22 20 19 ~ — . C.5
e G P (©5)
Thus
p~ 1+ g%kol?/(2My))~" (C.6)

is close to 1 only when |k | is much smaller than |k 2]
Following [54], we calculate explicitly the case where the triplets are replaced by doublets.
We find
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|+ |al* ]k

1 5 7!11[12 C 7
2 1 -+l ma P+ l? (1)
_Kzlfi2 2
in the W sector and
|k1]*+|ma*+[kL]? [ma PR s |kLl?

1 4 4 cz — 53 4

il C.8

2 | [miPHRe)? sp  kLl® |siPHlRe | splenl*+clrrl? (€8
4 cz—s% 4 4 4(c3 — s2)?

in the neutral sector, which implies p = 1 to leading order in 1/|kg|*.
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Appendix D

Stability conditions

The extreme conditions (first order derivatives of the potential in Eq. (2.35), giving the conditions
for the stability of the vacuum state) with respect to {0}, @5, X%, x¥", ©5, x¥'} are

0 = k2 (B+4M\kT) cosa+ k1 [A+ as(kh + K1) + (43 + 8z cos(2a)) k3]
V2 sk kR cos 0L, + aaka [k% cos(a + 82) + K7 cos(a — 82)] (D.1)
0 = k1 (B+4M\k3) cosa+ ky [A+ as(kh + k1) + (43 + 8)2 cos(2a)) k7]
+V2p' kKR cos(a — 01) 4+ azky [K% cos(a + 62) + k7 cos(a — 62)]
(D.2)
C 2 / !
0 = —+ K—2L2p+ \/§H—L (ﬂﬂcos(a —0L) + &ECOSHL)
KRR KRR KR KR KR KR KR
o\ 2
+20o7 (—1) cos(a + d2), (D.3)
KR
O ! !
0 = ~L (—2 + Qp) +2 (ﬂﬂcos(a —0L)+ &ﬂcoseL)
KR \ KR KR KR KR KR
or \ 2
+2anrw (—1) cos(a — d2), (D.4)
KR
0 = k1 (B+16\k1kocosa)sina +v2p | kpkgsin(a —0r)
+agki [k sin(a + 02) + K7 sin(a — 62)] (D.5)
0 = ' kesin(a—0r) — p/yk1sinfy, (D.6)
where p = p3/2 — p1, w = K—L, r="2 and
K1 K1
A = =2+ on(Rg + K1) + 20 (K] + K3), (D.7)
B = —443+2M(K] + K3), (D.8)
C = 23 +2p1(k% +K3)+ ar(k? + K3) + auk] + azks. (D.9)

These six equations provide relations among the VEV values k12, kg, o and 0, and the
underlying parameters of the potential, [L%’Zs, 12,34, B2, P1,3, A1,2,:3,4 and Ja.
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In order to analyze the limit where kpr is much bigger than the other VEVs, we define
e=vV1+r2+ w2 "L Tt is useful to further define

KR
A = =23+ arkY, (D.10)
B' = —4ud (D.11)
C' = —2u3+2pi1r%. (D.12)
The extreme conditions are now given under the following form, to leading order in € < 1:
BI A/ !
0 ~ r—cosa+ <—2 + a4> + V2524 cos 01 + agrcos(a + d2), (D.13)
K%, KT KR
! A/ ‘LL/
0 ~ —cosa+r <—2 + a3> + ﬁ—lwcos(a —0L1) + ag cos(a + 62),
Ko K% KR
(D.14)
C/
0 ~ —, (D.15)
kR
w w
0 ~ w2p+\/§(r—1 cos(a—@L)+—20059L) , (D.16)
KR KR
! !
0 ~ —QSina—l—\/iﬂwsin(a—HL) + ag sin(a + d2), (D.17)
KR KR
!/ I
hrsim(a—@L) = &sin(%, (D.18)
KR KR

where in the fourth equation (Eq. (D.16)) we have used the third one (Eq. (D.15)). When two
very different energy scales are present, such as kg >> k12,1, one may face a certain amount
of tuning as we now explain (an exception would be the situation where two equations reduce
to the same one). In our case, we have six equations (corrected by higher orders in €) and five
parameters {r, w, kg, 0L, a} related to the VEVs ( [204], [116], [205]). We can imagine solving for
the VEVs using five out of the six equations, and plugging the solutions into the sixth. In other
words a pure combination of parameters from the potential, say f(/ﬁg/ug, O1,2,3.4, P1,35 11/ 1),
is zero up to corrections suppressed by €, f = O(e). Whether this resulting combination is
stable under radiative corrections, thus stating or not a certain amount of tuning, remains to be
verified.

The equations given so far hold in the most general situation, and for simplicity we are going
to compute the mass spectrum in the particular case where sin 6y, and consequently sin «;, goes
to zero. For this limit, it is also necessary to have sin do — 0, where 5 is the CP—violating phase
of the Higgs potential: note from Eq. (D.6) or (D.18) that in the special case where sinfy, — 0,

Wikesina — 0, (D.19)
and in this case we ask for sina — 0; then, Eq. (D.5) or (D.17) would imply

ok (vh — v3)sindy — 0, (D.20)
and we ask for sindy — 0.

To deal with the limit sina — 0, a new parameter is introduced by the relative speed
sin 52

S50 = lim — For further discussion, the eigenvalues of the mass matrix are given in
’ sina—0 SIn o

Table D.1, up to order O(e).
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2 /.2
Name Mass” / kx

h° 0
Hg 2p1
1
H?,A(l) 4—2(17* V b2 *87’2A)
T

1
H), A E(H Vb2 — 8r2A)

Table D.1: Neutral scalar spectrum.

Above, we have employed the definitions

b = aessar(l+7?) +2p{cw?® +r*[1 + (1 — ¢)*w?]}, (D.21)

A = azssapr(l+7r?+w?), (D.22)

where ¢ is defined to be ¢ C = u—/lr and p = (@ — p1) (we take cosa = cosfy, = 1).
14+C7 Wo 2

Therefore, we see that when s5 ., = 0 two heavy particles become light, i.e. massless up to order
O(€). In other words, if sindy = 0 from the beginning, while sin «,sinf;, # 0, the spectrum
would have many light physical scalars.

If one considers solving for {”%72,37 ' 2,2}, to leading order in e:

n (i taz)  ass+2(1 - 2¢)pw? (D.23)
K% 2 2(1—r2) ’ '
,u_% N 02 azar? —2(c — (1 — ¢)r?)pw? (D.24)
k% 4 dr(1 —1r?) ’ '

R

2
L (D.25)
Kr

!/ 2 !/
B UV 7@, B2 o \a(e— 1)puw, (D.26)
KR r KRR

) 2 2 2 2(1 — 2 2
wrsge = 2CPW AT (0n 4 21— o) (D.27)
r(l—r2)

where agy = ag—ay. Equation (D.27) should be seen as the definition of s5 4, and Eqgs. (D.26) are
not independent. Therefore we have four equations relating the three remaining VEVs r, w, k.

To conclude, though we are discussing the limit sin d2, sin 0y,, sin « — 0, we have verified that
this case is equivalent to the special case where sin d2 = sin ;, = sina = 0. The interesting point
to note, however, is the interplay between the masses of the scalars and the CP—violating phases:
when setting sindy to zero we also require real VEVs or otherwise there would be extra light
scalars (of masses of the order of the EWSB energy scale), a case not considered here, due to the
danger related to potentially too large Flavour-Changing Neutral Currents (FCNC) amplitudes.
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Appendix E

Spectrum of the scalar particles

When diagonalizing neutral the mass matrix, we find the following two massless combinations

(up to O(e®) corrections) eigenstates, orthonormal up to order O(¢?)

0 1

Gy = m(*@?i + 1Y + wxl),
. . . 1 —+ T2 .
Gy = X —el=t +reb — ——xT)

14724+ w?

(E.1)

(apart from the light SM-like Higgs, built out of @?TQ, XOLT; r)- We could in principle quote any
orthogonal combination out of them, and we need to determine the one which gives the would-be
CGoldstone bosons. From the couplings of these scalar fields to the Gauge boson Z’, we determine
then the linear term of the form Z’0GY%,, and similarly for G%. The neutral Goldstones are finally

given by
0 0 5 5| 2 w?
G, = Gj—eJ1+12+ 14+ —
7 1—€ r2 +w? [sg < T2
0 0 9 w?
Gy = Gy+eV1l+r2+w? |si— <1+—1 2

(E.2)

(E.3)

Similarly, we find the following expressions for the charged Goldstones (massless up to order

O(e%)
1
Gt = —————(—pT + 705 +wxi) + 2
m( ¥1 P2 XL)
+
G~ = xp+elrel —¢3)

In Table E.1, we give the neutral Higgses, up to order O(e').
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Name Mass? | k% Vectorial space (not normalized)
" 0 P+ rey +wxy
Hy 201 W
HY 47«2(11_ = (bf Vb2 —8r2(1 ,TQ)A) ey + oo + px
" m (b+ VB -82 - )A) @+ oY+ ax
AY 4r2(11_ - (b 2 sl TQ)A) — % 4+ 0%+ px ¥
. 47“2(11 r?) (b+ VP84 —qe)" + @3 +axy

Table E.1: Neutral mass spectrum.

Above, we have employed the following definitions

b = azr*(1+72) +20r?{2(1 — 2c)w? + 1 — 12}, (E.5)
A p(1 4 1% +wH{azsr? + 2pw?[r?(1 — ¢)? — 2}, (E.6)

!/
T and C = u—/lr. At this order then, the only relevant parameters are asy,
)
p3/2 — p1 and p)/ps. p,p and g, G are combinations of parameters of the potential and VEV
values. They can be related to each other since the eigenvectors shown above are orthogonal,

leaving a dependence on only one function:

where ¢ =

R0+ (1+6°) X)) + 2uPr(r — a)
b= 2w (k2(r — 202) — r2(r — x)) ‘ (E.7)

For completeness, the light Higgs mass is given by

{*i{[(al +a3)r?(1+772) + agr(2r? — (1 - 1%)s5.0)]

Tt 2epr (202 + (1= 12)0) + pa(—c2 + (1 — P22
+4r2{r? A\ (1 4 12)2? 4 8Xor? + 4Ag7? + 4\ (1 + 12)]
+w?[(ar + az)r? (1 +72) + aor(2r? — (1 — 17?)s5,4)]
+wp1(2¢3(1 +12) — (1= 2)*r%) + ps(—c® + (1 = 0)*r?)]}}

1 2,2
E.
27“4(1—1—7“2—1—102)e R (E8)

up to order O(e?).
To conclude, for the charged Higgses, one has:
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‘ Name ‘ Mass? / k% ‘ Vectorial space (not normalized) ‘
HE | =m0~ VP 8P ) ot — pot + ok
Hy m(fﬁL V2 = 8r2(1 —12)A) axi — Gpr + P
E.1 Tables of couplings
A° Z8 z",
iy | e | = (5o gelashoesk) | SR (L)
i ;ev# CWESW'Y# <§5%/V 4 (40%36* 1)62[7102 4 C%kz]) SRCZCW (% _ %S%) vz
By | —gert | o (g4 gt - Rk Rel]) | S ()
i di, 7%67# CWESW'Y# <%5%/V 7 (262R6+ 1)62[7102 I CQRkQ]) SRC‘;CW (% + %52R> AH
i | o “ (5 50+ sk - k) e (3)
CWSW 2 2 CrRCw \ 2
vhvh 0 CWZW Ayt (% + %62[(1 +72)s% — I<:25‘§]) Ciil;/ (%) ol
s —eyt CWESWW“ <% + sty + E[(1+1rH)s — kzsjlz]) c(:c];/ (%) ~H
,zl'zg% —ey" Cwesw Ay (%S%V _ (QC%?T_”ﬁ[_wQ + c%]#]) sRc;cW _% + %s%) A
Table E.2: Couplings of the fermions to the neutral gauge bosons.
W W'y
ﬂLdJL \/;SW Vz‘gL"Yu 0
ity | 2y, | v,
Table E.3: Couplings of the fermions to the charged gauge bosons. For leptons, VI — Vlfpf ,

and the same for the masses.
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HY

Hy

Upu),

UL up

S
RdL

dy,dJ,

—(2r + wp)mi 69 + (1 +r2 + rwp)Vif'mngﬁ*

(w — r%w — 2pr — 2prw?)m 69 + pk‘2Vif‘mngﬁ*

(1- 7“2)%1\/1 +p? 4 (r + wp)?
—(2r + wp)m’6” + (1 + 7 + rup) VEmIVE,

(1- r2)n1k\/1 + p% + (r + wp)?
(w— r2w — 2pr — 2prw2)mftéij + pk‘2Viﬁmng}2*

(1= 72)m1\/1+p? + (r +wp)?
1+ r? 4+ rwp) VE.mevE —(2r+ wp)mfiéij

(1—r2 mk\/l + p% + (r + wp)?

pk‘2V£2muVL + (w — r?w — 2pr — wpr)mi6Y

(1—1r2) m\/l—i—p + (r 4+ wp)? (1—172) nlk\/1+p2+(r+wp)2
(1472 4+ rwp)V*mm“VR (2r + wp)mi6 kaV*ﬁlm“VR + (w — r*w — 2pr — w?prym4eY
(1-1r2) m\/ler + (r + wp)? (1—1r2) mk\/1+p2+(r+wp)2

Table E.4: Couplings of the fermions to the heavy CPP—even physical scalars. HS’ does not couple
to fermions at this order.

A

A

URUT,

UL Up

dpd),

dy,di,

—(2r + wp)m&69 + (1 4 r2 + rwp)ViEmSVE,
J

i(w — 72w — 2pr — w2pr)mi,é + kaVigmngLa*

(1= 72)k1/1+p2 + (r + wp)?
—(2r + wp)mis7 + (1 + r* + rwp) ViEmG Vi,

(1- r2)/{1k‘\/1 +p? + (r +wp)?
A(w —r*w — 2pr — prT)mZﬁ” + kaViﬁmZVjIZ*

(1—r2 /{1\/1 +p? + (r + wp)?
(1+r2+ rwp)V,fZ,muVL (2r 4+ wp)m,6*
—1

(1—-1r2) Klk)\/1+p2 + (r + wp)?

Zg)lcQX/*IZ‘)‘”mu\/L (w — r?w — 2pr — prw?)mi6%

(1-172) m\/l—&—p + (r + wp)?
(A4 rwp)V*La,muVR (2r + wp)mi6
i

(1=72)k1/1+p* + (r + wp)?

(1-72) mk\/l—f—pQ + (r 4+ wp)?
pk‘2V*La,muVR + (w — 72w — 2pr — prw?)m56Y

(1-72) mk\/l—f—p + (r 4+ wp)?

Table E.5: Couplings of the fermions to the CP—odd physical scalars.
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Hyf

—(2r + wp)mi VE+ (1 +1% + rwp)Vifmg

Und) | —V2 x o
REL (1 —7r2)k1y/1+p2 + (r + wp)?
T R e
LOR

(1 —=72)k1/1+p2 + (r + wp)?

Hy

2 2\,i 1/ L 21/ R, J
(w —r*w — 2pr — prw )muVij + pk*Vimy

(1= r2)r1ky/1+p2 + (r + wp)?
\/ﬁpk/’QVi?mz + (w — r?w — 2pr — w2pr)milViJL»

(1- r2)f<51k:\/1 +p? + (r + wp)?

uhd) | —V2

i i
uydy

Table E.6: Couplings of the fermions to the charged physical scalars.

N N5 ) 92 )
ﬂRdjL ! {mz vk <1 + L62> — QTGQW?mQ]

o /2 ) o2 )
urdy i [VWLmé (1 + L62) — 2re2mLVif’]

GY, I
o —im? wt — L k? mé
—i 1 u 1 R u O 2
YR U [ LT 6] kO
- im’ wt — L k2 m!
dz d’L ot 1 R % O 2
LOR | ok { T 6] k1O

Table E.8: Couplings of the fermions to the neutral Goldstone corresponding to the Z° boson
and the SM-like Higgs particle.
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HO A0

2 K2

ww’ igrMw Fi(r,w, t;) —grMw Fi(r,w, t;)
+ .gr Mw gr Mw
W=G, ZTM—{/VFi(Tawati)(P' — Dy TMévFi(vaafi)(Pl — D)
.9R 9dRr
G w'F 17Fi(7’,w,ti)(]?/ — D ?Fz'(ﬁw,tz')(p/ —P)u
M2, M2,
GEGT, —ig—R 1, Fi(r,w,t;) IR L Fi(r,w, t;)
wEw 2 M, 2 M,
.-9R dr
Gh GR' —i€ 2= Mw Fi(r, w, t; 2= My Fy(r,w, t;
6\/5 wEi( ) 5\/5 wEi( )

Table E.9: Feynman rules relevant for meson mixing in the Left-Right model. ¢; = p and t5 = q.
The last line gives the couplings of the ghost particles (Gh, Gh') to the heavy Higgses.
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Appendix F

Potential and scalar spectrum in
the triplet case

In the triplet case, the most general scalar potential V symmetric under P is!

V = —pi Tr(¢1 ) — p3[Tr(¢0") + Tr(d'¢)] — p3[Tr(ALAL) + Tr(ARAL)]

+ M [Tr(")]? + Ao {[Tr(¢6)] + [Tr(¢1)]*}

+ A3 [Tr(¢6") Tr (67 9)] + A Tr(¢6")[Tr(d¢T) + Tr(6'¢)]

+p{[Te(ALA])? + [Tr(ARAL)P}

+ po[Tr(ALAL) Tr(A] AL ) + Tr(ArAg) Tr(ALAL)]

+ pa[Tr(ALA]) Tr(ARAR)]

+ pa[Tr(ALAL) Tr(ARAR) + Tr(ALAL) Tr(ARAR)]

+ a1 Tr(g6")[Tr(ALA]) + Tr(ARAL)]

+ aa{e?[Tr(p¢") Tr(ArAL) + Tr(¢7d) Tr(ALA])]

+e 02 [Tr (¢ ) Tr(ApAk) + Tr(¢ ) Tr(ALAT )N}

+ag[Tr(pp AL AL) + Te(¢f pARAL)] + 81 [Tr(pARe! AL ) + Tr(¢T ALgAT)]

+ B[ Tr(PARGTAL ) + Tr(ST ALAL)] + Ba[Tr(ARTAL) + Tr(¢T ALGAL)].
Because of Hermitian conjugation and P-symmetry, all the parameters above (”32,37 A1,2,3.4,

2
p1,2,3.4, @123, and (1 23) are real.

IRef. [54] has a different expression for V', with different operators, but one can show that they are the same.
Indeed, V' contains all possible operators, constituting a basis for any potential one could consider.

2For a potential symmetric under C, some of the parameters of the potential acquire a phase relatively to the
P case: thus

13 ltr (o) + tr(dT )], (F.2)

becomes

i3 tr(¢0") + (3)" tr(79) , (F.3)

and similarly for A2 4 and fB1,2,3. The az-term has instead a different structure:
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In the triplet case, the neutral fields expanded around their VEVs are

P +ie) + 1)/ V2,
502 +igy o+ r2) € /Y2,
O+ +kR)/V2,

O +idY + kp) e V2,

(F.6)

homowowo
I
Nl oo

together with o} 2 §F p-and 5 . The extreme conditions with respect to {p\", 3", @5, 6% 597, 5%}
are (ko # K1)

2 2 2 2 H2
B _ o (HH_QL) oar (1+*”~_2L) . (A1+2)\4H1§2 cosa) Kt
K K h:+ KZR

K2 K2 K
+ [62,{—21 cosf, — ﬁ3n—22 cos(f, — 204)] —L,

=

X
5o
[\

KR

2 2
M_22 _ Q2 {cos(a + 02) + cos(a — 52)“_5] + Qs fi1;”v2 <1 + H_QL)
KR 2 cos« KR 4dcosa K=

K1k 1 1 fii
2\ 2 A i p — F.8
{[ 2 003(20) + Ag] = 5= K2 cosa+2 4} K% (F-8)

+ {ﬁl cos(fr — o) — 2[Bacos by, — B3 cos(0r, — QQ)]H1§2} ZLc—c/):Ci’

RZ

2 2 1 2
4onood) 1)
KR KR 2 KR
K K1K2 /K2 (£9)
+ 209 [cos(a + d2) — cos(a 62)—L} ﬁ,
Rl 1—ri/r%
S8agsinasinds kK1ka | K,
G ST W e
. ) 2 ) (F.10)
[ﬁl cos(f, — a) +Bz—2 cos Oy, +Bg—cos(9L —204)] —+,
ki = = KR
1 42 42
0=71 8111(9L —oe)+ﬂ2—2 sm@LJrﬂg—sm(@L—Qoz), (F.11)
K = K}
aze2[tr(¢d!) tr(ARAL) + tr(¢1§) tr(AL AT )] + hec. (F.4)
becomes
e tr(ggh)[tr(ALAT ) + tr(ARAT)] 4 hec. (F.5)

The final budget is that a general potential symmetric under C has 6 extra phases compared to the P-symmetric
one because ;1,2, )\2 4, 51 2,3 are generic complex numbers. Similar comments would hold for the doublet case.

It is not difficult to Verlfy that when one asks for P and C invariance, all the complex phases vanish. Instead,
in the general case where neither P or C is considered, many more phases are present in the potential.
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2 2
2000 (1 — R—;) sin 0y = fi1§2 sin o |:043 (1 + K—;) —4(2)\y — )\3),%2/&%]
K% K K

(F.12)

2 2
K1K2 . KT . Ky . K
+ {2 2 sin(0r — @) (B + fB3) + {—21 sinfp, + —= sin(f, — 204)} 51} oL
K K K2 KR
We now define € = k1 /KR, which is a natural expansion parameter, and the extreme conditions
shown above become much simpler when expanded in €. Considering that the parameters of the
potential are of order O(°), except for u7 , 5, and solving for uf , 5, we have

2 2
My @1 a3 Ky
A 85 h F.13
K% 2 2 k2’ (F.13)
pz  agcos(a+ d7) a3 KK
L2 y =2 (F.14)
K cosa cosa K2
2
B~ py, (F.15)
KR
K, K1K2 H%
(2p1 — p3)— =~ |f1—5— cos(0 — ) + B2—5 cos O, (F.16)
K+ K3 K3
K3 K
+ 83— cos(fr, — 2a)} -,
H+ KR
209 sin dg ~ Kl§2 ag sin (F.17)
K

plus Eq. (F.11), which does not change.

Equations (F.13)-(F.15) are very similar to those found in the doublet case, and constitute
equations for ;Ligyg. Equation (F.16) in the triplet case corresponds to a see-saw mechanism:
"L in one side, B% in the other, see Section 2.8.

R4 KR

We now shift to the physical spectrum of LRM in the triplet case. We have two charged
and two neutral Goldstone bosons (giving masses to the vector gauge bosons), one light Higgs
(the SM Higgs), and many other massive scalars: five neutral, two singly-charged, and two
doubly-charged Higgses, the former being given in Table F.1.
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2
Mass

State
(‘007' + 7”()007. € a1 507' (4)\ Oé%) I<J2/2
_ o2 ,— =L
1 2 20, 07 o)
or or dag o, 2 2 2 2
oy —re) +e———0 azkp/2 4+ O(e%, 1%, er)ky,
az —4p1
a1 4@2
O 4+ e—0 —e——= 9 | 2p1K% + O(2, 12, er) K2
R 2p1801 o3 _4p1<P2 P1RR ( )ER
) PRE

o + i askh/2+ O(E?, 17, er)K Y,

0i 2
) PKR

—V ey 0

017
OR

K

Table F.1: Neutral spectrum in the triplet case. r = ™2 is taken small for simplicity. We take
K1

sina =sinfr =0, cosa = cosf, = 1; one also asks for 81 23 < O(1), a usual requirement when

implementing a see-saw mechanism for neutrinos. Moreover, the p—parameter implies xz ~ 0.
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Appendix G

RGE formulae

We now exploit the fact that the Lagrangian is independent on the renormalization scale. The
d
equation M@Eé?})h ar|=1= 0 (i.e. the net effect of comparing the renormalized Lagrangian at

two different scales is zero up to a certain order) then implies

Z”d 02‘2( Ul(u)) Zin(n) =0, (G.1)

and lt fOllOWS that
J ]k d,u/ Jk J ) ,Y]k 7 7 d,u/ ke ( ’ )

The matrix v is called the anomalous dimension of the |AF|= 1 local operator QF, or QX
defined as

X=LR,i=x=, (G.3)

- _ ivad
Qi = dv*Pxq - g Pxs % :

where 1 denotes a color singlet and 1 a color anti-singlet.

d
We further have, from ud—ﬁé‘;’f)hAm:Q: 0,
w

Z CrCy klerZCTZ U=

kl—+
2 ~
Z Z CxCiZgy + Z Z' | Zve =0, (G.4)
b=1 k=t
that implies, from the Eq. (G.2)
2 p 2 i
Z Oge p—=— — ZZ,;)l,U_Zbc Cr = Z CrCiVkt e (G.5)
a=1 dp dp .

where
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2

- d - | -
Vilye = — Z Z (Vewr Our + Yiv Ok ) Zk,ll,,b + U@Zkl,lb Zpe- (G.6)
b=1 |k =+

Note from Eq. (5.11) that the renormalization matrices include by definition powers in 1/e.
Therefore, when expanding the previous equation defining ~y; . we include € corrections in the
derivative as follows

d d as (1)
— =2 — = . .
p = —2elp)le+ Aol G al) = 2 (G.7)
Following this precision, we have the following expressions for v ¢, [154] [47]
Yoo =2 {Zfl’(l)}mn . (G.8)
at the LO, and
L 2_17(1)
'77(717)1,11 =4 {Z1 1’(2)} + B | 2 5
2 Z~0_1,(1) S S Zo—l,(l)
B 2 |: ! :|ba * |: ! :|mn b 2
b=1 mn,b ’ ba
Z-1) 7~ _
s (Y] e [ Vi,
m’/,n'=+ mm’ nn’ mena
B B =L
+ <|:Z1 1,(1):| , 5nn/ + 5mm’ [Z1 17(1):| ,) 0 ) ) (GQ)
at the NLO, where
, N2
Z = 1- Z—;Z_l’(l) - (Z‘—W) (Zz71@ — 7710« z=L Wy
(G.10)

has been employed. Of course, the divergent terms that one may face in the definition in Eq. (G.6)
vanish by suitable relations satisfied by the renormalization matrices.

Finally, we have
d (C] e CeCl vk
pe= | ) = ) D : (G.11)
#\Cs Cy et \CrCik2

d -
where 4 = Z7'y—2Z, and
dp

YLr =7 = 2(ym — B) - 12 (G.12)

is the matrix necessary to evolve the system {yL ® yR, L ® R}, while in here we are concerned
with the system {Q¥f, QX} with a different normalization.
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An equivalent way to write the last equation is

c3 24 0 0 00 2
d C+C_ 0 Y+ + Y- 0 0 0 C+C_
o c: |=| o 0 2.~ 0 0 c?
C1 Y+l 2741 Y—-n 7" 1
Cy YH+2 2742 Y——p2 Cy
or
LB -1 D (G.13)
dp

The solution of the above differential equations is standard and can be found in [154] [206]:
first we define V' diagonalizing the N x N matrix rOT

I = voIrOTy = diag 0", 1{",.... 0], (G.14)

and then we define matrices G, H, J in the following way

G = vy, (G.15)
o _ s po B Gij ©0) _ p(0)
o = W e BT
16)
J = VHVL (G.17)
Finally, one has
D) = (1N + %J) VU (1, )V
x (1N - —O‘S("Q)J) D (ua). (G.18)
47
dy dn
. as(uz)) (as(uz))
Ulp, = dia ey , G.19
(11, 12) gl(%(m) e (G.19)

where d; = I‘Z(-O)/(QBO).
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Appendix H

Set of evanescent operators

H.1 Operators |AF|=2

We define

and similarly for

VLL
El

VLL
E2

VLL
EB

VLL
E4

VLL
E5

QVRR

QVit = d°~*pps©. dﬂWMPLSﬂ, (H.1)
1 = d*y"Pps® - d’y,PLs’, (H.2)
LR —  g*Pps®.d°PpsP, (H.3)
fLL = d%Pps®-d°Pps®, (H.4)
and QfRR. The evanescent operators are (f(1_,2) = o = -2)
fes

doyPps? - dPyPps® — QVEE, (H.5)
d®~yyyPps® - d°yyyPrs? — (16 — a}{VLLe)QVLL, (H.6)
d®~yyyPps” - dPyyyPrs® — (16 — a‘g/,YLLe)QVLL, (H.7)

d*yyyyyPrs® - dPyyyyyPrs’ — (16 — ay " e)? + bsve) QY
(H.)

d*yyyyyPrs? - dPyyyyyPrs® — (16 — ay " e)® + bve) QVEF,
(H.9)
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ElLR = cZaPRSﬁ -JﬁPLSa - f(2%1)Q%R’

EfF = d"yPps® - d’yPps® — f(12)Q%",

Eff = d%yyyPrs® - d’yyyPrs® — (4+ a5fe)QTF,

ELFR = d%yyyPgrs? - dPyyyPrs® — Ja—2)(4+ aéﬁe) 5

EFF = d%yyPrs™ - d’yyPps’ — (44 alfe)QLF,

EgR = d*yyPrs” - dPyyPrs® — flam) (4 + aslte)QTF,

EFR = dyyyyPrs® - dPyyyyPrs’ — (4 + afle)? + bapre) Q5F,

EYE = doyyyyPrs” - Py Pus® — flos (4 + abfe)? + bapre) QFF,
Egt = d*vyyyyPas® - dyyryyPrs” — ((4+agyte)® + bsere) Q1F,

Eigt = d*vyyyvPas’ - dPyyyyPrs® — faoe ((4+ agy'e) + bspre) Q3™

(H.17)
(H.18)

(H.19)

and similarly for right-right operators, where dyyLs - dyyRs means dy"*4"2Ls - CZ’YmVuz Rs, etc.

We take

SLL SRR __ 12
- )

asz,” =as,
a\g/’yLL _ GX»YRR —4,
affL = affR =224,
BSV =-96,
a%fzél, a%f:él,

borr =96, bsLr =96,

except when otherwise stated.
For E5L7162, compared to [207], our definitions employ the equations

{'Ym')’v} = 2guu'17
’7;/7“ = gM”-]_:D-]_:(4—26)-1.

found in NDR.
It is interesting to note that, for example,

EFR = q%yyyPgs’ - dPyyyPps® — (4 + 4€)d®yPgs” - dPyPps®
= d*yyyPrs” - dPyyyPrs® — (4 + 4€) (B3 + fa2)Q5")
= EI? — (4 +4e) BT = EFF —AELR,

(H.20)

(H.23)

and therefore it is the combination of two EO already defined, illustrating that the set of evanes-

cent operators given above is a sufficient set.
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H.2 Operators |[AF|=1

The relevant operators are

QP =Quy, = AP’ - ¢ P, (H.24)
Q" =Quv, = AP P, (H.25)
QSIR — Opp = d*Pug’ - " Prs®, (H.26)
SER —Qrr = d*Prq*- q_’ﬁPRsﬁ, (H.27)
and the following definitions of evanescent operators are made
ESMR = @y Prg® - ¢y Ps® — (44 46)Q5 R, (H.28)
ESLE d*yyPrq” - (i’ﬁ'y’yPLso‘ — (4 +46)QFTE, (H.29)
BV = dyyyPre® - ¢ v Pus® — (16 — 4e)QYHE, (H.30)
EYPE = &y Prg® - ¢ vy Prs® — (16 — 4e)QY . (H.31)

For Els LR compared to [207] our definitions employ the equations (H.21) and (H.22) found
in NDR.
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Appendix 1

Operators and anomalous
dimensions

I.1 |AS|=1 operators

We have the |AS|= 1 vector operators for the SM case [47,207]
OYEE = (d*v,Pps”)(VPy'PLU®), Oyt = (dv,PLs)(VA*PLU), (L.1)
OyFF = (dy,Prs)(VA*PrU), Oy F 1 = (d%, PrsP) (VP PRU®),  (12)
where U and V' can be any up-type fermions. As discussed in Ref. [207], Fierz identities hold

for these operators up two loops in the NDR-M S scheme. The anomalous dimensions for the
vector-vector operators is simpler for [207]

0,£0
Oy =—"2—"22, (L3)
2
which are the following
(0) NFxl m_NFl 57 _ N 4
=+6—— =— |21+ = F19—+£ =
T+ N ’ Y+ IN N + 3 3f ’
97 10

79 = 6Ck, 7V = Cop (3 Cp+ 5N - ?f) , (1.4)

where the second line corresponds to the anomalous dimensions for masses with
Cp = (N?=1)/2N, and for N =3, 7\ =47 = _8 (0 — g,
We introduce the correction of the anomalous dimensions

Jy = diﬂlfﬁ di:ﬁ (15)
Bo 2B’ 26’
y A— A1 _ ﬁ = ﬁ (L6)
" Bo 260’ 267
and the value of the Wilson coefficients at the high scale Cy (uw ) defined in Ref. [92]
Ci(pw) =1+ s (w) log Hw 'yf) + By | +0(a2), (I.7)
4 MW
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with

11 11
leading to the evolution
dt
Y20 (4 o) = (1 + 2 Ji) ff(“:))) (1 -l Bi]) , (19)
CNLO( . )_ 1+ as(:U’)J as(:“O) dm 1_— as(MO)J (I 10)
m M5 o) = An m Oés(ﬂ) e m | - .
We have

dm =4/Bo  dy=2/Bp  d-=—4/Bo. (1.11)

The same equations can be written for O} % which will be useful for the discussion of the LRM,
with identical results for the anomalous dimensions.

One may also consider the running of the |[AS|= 1 local operators VLR. In the basis
OYLR, OYEER the anomalous dimensions are

6/N —6

£ (0)

= : 1.12

Tven [ 0 —6N+6/N ] (L.12)
137 15 100N

A + Sy N f
Win = Eﬂ sz 18 ff PRI 473 1§V Nf_ 2 f
N 6 o Tane T
Introducing
. 3/2 0
o / , (1.13)
~1/2 —1/2
0 gy (6N 0 O _ ©_ 16, (114
YD LR ( 0 _6N 4 6/N ) 71 ’ Y2 ) ( )
. T
G = Ty (1.15)
A B Gy © _ 0
By = 67902 : (280 + #0), 116
J 7 250 250+7(0) (0) ( )
J = VHV, (1.17)

one can write down the evolution

CHR (s o) = (1+ 4;)J) VD(u; p10)V 1(1“Si;‘°)f) IR (1) (L18)
(as (MO)/O‘S (M))dl 0
D(u; = , I
(15 ko) ( 0 (s (10) /s (1)) ) (I.19)

with d; = 7\ /(26).
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(1.20)

I.2 |AS|=2 operators
For |AS|= 2 operators, we recall the anomalous dimensions associated with the operator Qv
Qv = (5%, Prd®) (574" Prd”),
with
’Y\(B) = 6- 6/N )
AP = —19/6N —22/3 +39/N — 57/(2N?) +2/3f — 2/(3N)f,
d (1) (0)
JV = V—ﬂl — ,YL , dV — FYL ,
Bo 260 250

and we can write down a similar evolution for the |AS|= 2 local operators Q¥ QL

b ER = (5% PLd®) (5 Prd®),

= (ga'YuPLda)(gﬁ'YuPRdﬁ) )

with the anomalous dimensions

o _ | 6/ 12
LR 0 —6N+6/N |’
i’? 15 22 f 200N 6 44f
NOE 2 T 3N 5 TN 3
ir = GEN%FNE—ZJ}[ f@N2+4—?9+ £ +®Nf72f
4 N 6 6 2N? 3 3N
Introducing
X 3/2 0
A :
1 1
N ORI SSON (1)} o S B/ 0 ) _ g 0 _ 15
Tp TLR < 0 —6N+6/N M V2 ;
A ()T s
G = Wl w,
N 51 éz‘j (0) (0)
o= 675 - (2B0+7; " =7 #0),
232 280 _i_%(O . 73(‘0) J
K = WAHW™,
one can write down the evolution
5 as(p) 2\ 2 . Qs N\ =
i) = (14 22 &) WD poyrit (1 - 2 ) Gengyyy),
a7 4dr
(as (MO)/QS (M))dl 0
D(p; po) = ( o |
0 (as(po0)/as ()
with d; = %(0) /(28p). The associated LO anomalous dimensions are
n =2, 2 =-16,
and we have
di =1/po, d2 = —8/po, dv =2/Po.
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Appendix J

Case at NLO with the method of

regions

J.1 Contributions with log 8

Following Ref. [48], if we consider the box with the Goldstone boson associated to W together
with W', the masses stem from the Goldstone boson coupling (evaluated at the scale uw),
whereas the largest contribution to I comes from the range between py and pr. We obtain

avm= 3 ()T ()R TGRS

r=d,i,j=1,2
‘ [(1 + MK) W}
47 i

XRNLO<_d7. + d; —dj7

[VAV_l@SW/G)V} VTGl

ij

X <1 _ L‘LLR)[JT *Br] B O‘S(:“W)2Jm+ O‘S(mU)+as(mV)Jm)

4 47
_as(,uw) Gr—1A(W'G)Y) Or—1 547 .
L {W a V} Hig¥(e
W aMW DT — ke | VLGl + (W eV OV (V1 Col,
T T ij J T ij J

MW,MR> | (1)

with the initial conditions for the evolution of the operators OY_QLR

matching from the two-point function of OX RRE and OKQLR to the local operators Qfg’ at u = k2.

=~ 0 / / 3r+1)/2 2
Gy = ( S ) 7 CaLRHZ(&S«W G))aici\/LRC;/RR, agw G) _ ( (3r ; )/ 7”/1 ) .

(J.2)

and the coefficients for the

T,
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If we consider the box with W and a charged Higgs boson H, the masses stem from the Higgs
couplings (to be evaluated at a high scale p g ), whereas the largest contribution to Iy comes from
the range between puy and Mp. We obtain

GV IRl = 0 (‘“*"W)didj (as<mU>)dm (as<mv>)dm (asw))dﬂ“dm

=t i =12 O‘S(.“h) O‘S(/Lh) O‘S(Nh) O‘S(.“h>

d(Gar=ni L

xRNLO<dl +d; — dj,

[W=ta™v] Gl

ij

X (1 _ MM - B]- as(ﬂH)QJm + as(mu) + as(mV)Jm) :
4 4 4

(W o™ F = Ka{™w | (1) - [tV (0

1] ij

+ [W—lal(HW)f/}
ij

g [V_léo]le,MW,MH> , (J.3)

with the same initial conditions for the evolution of the operators QVLR and the coefficients for
the matching from the two-point function of OY*¥ and OY, IE to the local operators Q1% 5 at
= k2.
L (HW L(HW) _ (WG
CER & S (@), CYREGYEE Al = V), (1.4

A=y
l,j
One can check that the expressions from Ref. [48] are recovered at leading order.

If we consider log 3 as small (“small log 8 approach”), we see that the diagrams are dominated
by the region k* = O(m?, %) in all cases: this is obvious for ¢ and ct boxes, whereas the cc box
receives only suppressed contributions from the region k? = O(mi). We obtain thus expressions
involving the averaging weight for constant terms R Lo

_(W'G W’'G) pNLO _ HW HW) [ 5NLO

77<(1,UV) = gl(z,Uv)[R1 ]y ( V= 5( VIRYEO, (J.5)
where we have identified the two scales for the integration py = pg to a common average value
(this is similar to the treatment of the region between m; and My, in the SM case).

In the case of a large log 8 (“large log 8 approach”), we want to perform the resummation of
the large log 8 with RYF© and consider the rest of the contribution as dominated by the region

log
k* = O(m3, 1i3y). In the case of (W'G) we obtain

_ G 'G
ooy = |Fy (1.6)
S (asw))dr*di“dm (as<mU>)dm (as<mv>)dm (asom))d*
s s () as (pn) as (pn) as(pn)
A A 1oy IR 1
X W [WHaVOV] VIG5 + log(8) x €L IRIEC)
ij

log(B) + F'
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with the contributions from the constant term

2
w'a) _ Tp — 2y Ty (W'G) Tt e
F = —1 + F =—1 F. =0 J.7

tt (-Tt _ 1)2 Og(xt) x — 1 ) ct T — 1 Og(xt)v cc ) ( )

and similarly for (HW)

ﬁ((lh;]%) F[(J]‘LI/W) (J.8)
" l:i%y::l,g (ixss((l:tv:)) ) o ((Z((TZ:)) ) o (O;Z((?Z:)) ) —dm (z‘:((l;z)) ) dj+2d,

1
log(Bw) + F[(]If,w)

X Wai W™V VI + Tog(Bw) x €7 [RNEC)

)

with the contributions from the constant term

—2)1 —1
FUW) g, Tt (x — 2) log () FUW)

_Tt (HW) _
(7, — 1)2 ; log(zt) , F 0. (1.9

ZCt—l ce

J.2 Contributions without log

If we consider the box with the Goldstone associated with W and a charged Higgs boson H,
the masses stem from the Higgs couplings, the Goldstone boson couplings and the propagator,
whereas the largest contribution to I; comes from the range between my and py. We obtain

T,](HG)_ (Oés (mU) ) 3dm( Qs (mv) ) di—di—ds dm( Qs (,U/W) ) dk+2dm( Qs (,U/H) ) dyr +2d.,
a, UV

bijij kk =12 s (fin) s (fin) s (fn) s (fin)
_(HG) as(pn) 2 o1 as(pw) »\ A | [v-1 as(pm) 5\ A
xab’jj, |:<1+TK) W:| 4 |:V <1TJ C() . Vv liTJ 0 y

x RNLO (di —dy — dpr + 2dn,

Wi Vi Ve (1 oty el dslmu) O‘S(mV)st) :
™

7 4
=2 Wiy Vi Vi = (W) Vi Vi + Wi (V) Vi + Wy Vi (TV) e
mwuw) ) (J.10)

(HG)

a,i]

VLR

where a provides the coefficients for the matching from the two-point function of Oy 3™ to

the local operators Qfg at pu = k*:

_(HG
CLR 3 gl CVLROVRL, (3.11)
ij
with the non-vanishing entries
_(HG _(HG _(HG _(HG
05,12) =-2, 05,21) =-2, 05,11) =-6, a§,22) =4. (J.12)
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NLO NLO
R RNLO,

The only relevant case is tt, where can be replaced by
If we consider tree-level H® exchanges, we have

e - (559) T (58) T (58)

x <1 . %‘f)wm + O‘S(mU);O‘S(mV)Jm> (J.13)

where the matching yields the value of the Wilson coefficients for the |AS|= 2 operators at the
high scale. One can check that the expressions from Ref. [48] are recovered at leading order.
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Appendix K

Inverse of the covariance matrix

In practice, we may not know the correlation among the random variables X, and it is common to
suppose a correlation of 100 % when two random variables are suspect to be strongly correlated,
as a way to try to be conservative. In such a case, however, the (naive) inverse of the covariance
matrix may not be well defined: in cases it is not possible, we would like to introduce a generalized
inverse O of the covariance matrix Cy, which is not an inverse in the usual sense, C; !, but
makes the singular case treatable.!

We start by working out the form of Cs. Since every symmetric matrix is orthogonally
diagonalizable, we write

C;=%Y-T-X=%-R-D-RT.%, (K.1)

where ¥ collects the statistical uncertainties o1, 02, 03,...,0, of the individual measurements,
and the correlation matrix I' (a symmetric matrix itself) is orthogonally diagonalized into R, an
orthogonal matrix, and D = diag(dy,...,d,), a diagonal matrix whose elements, without loss of
generality, are ordered

We now ask O to satisfy the following condition characterizing what we call a generalized
. 2
inverse

Cs-CF-Cs =04, (K.3)

I'Note in particular the term C’;L -Cs - C;r that appears in Eq. (7.49): it cannot be simplified to C;r because
the condition C - Cs - CF = Cf is not always satisfied by the generalized inverse.

2We can consider the following conditions to further characterize other notions of generalized inverse: given
A e RVX™ and AT € R™X" | let a subset of the following equalities be satisfied

[1] A-AT . A=A,

2] At ALAT = AT
(3] (A-ANHT =A.A*,
[4] (AT AT = At . 4.

We say that: if [1] is satisfied, then AT is a “generalized inverse” of A; if [1,2] are satisfied, then AT is a
“generalized reflexive inverse” of A; if [1,2, 3, 4] are satisfied, then A" is the “Moore-Penrose pseudoinverse” of A.
In all three cases, a matrix AT can always be defined for any matrix A, but only the Moore-Penrose pseudoinverse
is always unique. Therefore, if an inverse exists, it is equal to the Moore-Penrose pseudoinverse.
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which is fulfilled by the following symmetric choice

Ct=x"'.R.-D*.RT.¥%71, (K.4)

where D7 is the generalized inverse of D

D-Dt-D=D, (K.5)

1/d | A
AT | B

We would like to simplify the form DT may assume in order to simplify as much as possible
the computation of C. For this reason we assume A = 0 and B = \ x 1(n—m)x(n—m), With X a
constant which we will now fix. A condition we ask our generalized inverse to satisfy is:

considered to have the form

Dt = (K.6)

if one of the uncertainties is sent to zero, viz. o, — 0T,
then the weight w, must be the dominant one.

This condition is not easily satisfied: for example, the Moore-Penrose pseudoinverse, which is
somewhat closer to the usual inverse, and has the property of uniqueness, does not satisfy this
condition in the singular case (see Ref. [197]).

Let us see the implications of this condition by considering the case where an uncertainty o,
is much smaller than the others. In this case

N 1 1
UT.Cf U oo,

where UT - CT .U is a common factor, and R- D" - R” is independent of the uncertainties o;.
Then, in order to have the dominance of w,, it is enough to satisfy

(R-DT-R")ia, (K.7)

wj

04 (R-Dt-RT)aq = Z(Raj)Qdij +A Z (Raj)? = A+ Z(Raj)2 (% - A) . (K.8)

j=1 j=m+1
which is always fulfilled for 0 < A < 1/d;. We now make a last choice and pick
A=1/dy, (K.9)

recovering the ansatz of [208]. Note that this choice is efficient (i.e. o, is minimal) over the
range A € (0,1/d;] when 100 % correlations are present among all the measurements, in which
case

> (>2;1/03)%/n?

o, = 5 5 ST (K.10)
{2 1/o0)?/n® + A3, 107 = (32, 1/04)?/n]}
where Z 1/o? > (Z 1/0;)?/n follows from the Cauchy-Schwarz inequality.
We refer to the resulting generalized inverse as “generalized A—inverse”
Dt =diag(1/dy,...,1/dm,1/dy,...,1/dy), X — inverse. (K.11)
—_——

n—m times
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It should be stressed that, in cases where the inverse is defined, the index m above is equal to
zero, and the generalized A—inverse reduces to the (usual) inverse.

Though there is arbitrariness in the choices made above, the generalized A—inverse satisfies
to the basic property we would like the average to satisfy, namely the more precise measurement
dominates the average, i.e. its weight is more relevant. Moreover, for the specific examples
discussed in the next section, it is efficient in the sense that the variance is roughly given by 02
when o, is much smaller than the other uncertainties.

K.1 Examples

K.1.1 Two measurements

In the case of two uncorrelated measurements, there is no problem with the inversion of the
statistical covariance matrix, and we get for all methods

—1 0
2 2 2
_ o g0
051: 1 1 , 052721 22—>0%,
o7 + o
0 — 1 2
03

! % : (K.12)
W= —5—> — . .
of +03 \ of ai/o}

In the case of two fully correlated measurements, we have

2
C, = ( R ) , (K.13)

0109 O'%

with dy = 2, do = 0. The M-inverse for C; yields

) 2 2 2
ot = 207 2 _ 0103(01 + 09 2
- 1 ) O—Mi 2 212 %Jla

[of + 03]

1 o5 1
w=——=| 2= ., ., |- (K.14)
o1+ 03 \ o1 oi/o3

where we indicate the limit when o7 — 0.
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K.1.2 n fully correlated measurements

We have a correlation matrix with unit entries everywhere. This yields dy = n, d;~; = 0. The
M-inverse yields

(i 1/oi)? |

Ccr = . ol=o= L,

’ SOV

1
0 _
no?
1
1/0?
L[ 0203
' ' 1/02 .
T\ et

where we indicated the limit when oy — 0. This is the ansatz found in Ref. [208].

K.1.3 Two fully correlated measurements with an uncorrelated mea-
surement

Let us consider

Cs=| o102 03 0 ) (K.16)
2
0 0 o3
with d1 = 2, d2 = 1, d3 = 0.
The A-inverse for C yields
1 0
20%
1
C+ = 0 5 2 0 )
205 )
0 0 —
o3
U;QL _ 0?0303 [201022023 + 420%203 +QJ%252§ + 0303] Lol (K.17)
20705 + 0f05 + 05073]
. JSJ% 1
_ 2 2 2/, 2
= 20202 1 0202 + 0202 0103 - 01/03
103 103 203 9 9 992 /2
0103 o1/03
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Appendix L

Correlated theoretical
uncertainties

Apart from the difficulty of taking the inverse of a singular matrix, which led us to introduce
the generalized A—inverse in the previous appendix, we need a way to characterize the range of
variation of correlated theoretical uncertainties, particularly in the case where 100 % theoretical
correlations are assumed.

We start by introducing the Cholesky decomposition of a symmetric positive-definite matrix
(which always exists and is unique)

C,=L-L", (L.1)
for a lower triangular matrix L with strictly positive diagonal elements. We are going to see
that the Cholesky decomposition has the good properties to describe correlated theoretical un-
certainties in singular cases.

When O is positive-definite, L ™! is always well defined, and from Eq. (7.50) this decomposi-

tion leads to the decorrelation of theoretical uncertainties L716 in the non-singular case, where
C;l — (L—I)T . L_1:

sr.crt =6 Y L = )T (L)), (L.2)
Therefore, we have the following prescription for the combination of correlated theoretical
uncertainties:

Ay

>

J

2
A= Z <Z wiAiLig) (quadratic) .

J

(linear) , (L.3)

Z wiA; Ly

Note that in the above expression we only need to know L. In the case where the matrix 5',5 is
only semi-definite positive, the Cholesky decomposition still exists if the diagonal elements of L
are allowed to be zero, but it is not unique. To prescribe a triangular matrix L when C; is not
positive—deﬁnite,1 we consider Cy + € X 1,,xm, and then take the limit ¢ — 0.

1Meaning that there are directions v for which ﬁt =0
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[P}

Figure L.1: Ranges of variation for 61 and & for p=0,0.2,0.5,0.9,1, going from light (yellow)
to dark (red). The variation over a hyperball (left) or a hypercube (right) is considered.

In 2 dimensions (see Ref. [197] for other examples), if two theoretical uncertainties 41 o are
totally (anti-) correlated, i.e. 0; = 1 < do = 1 (6; = 1 & dy = —1), we expect them to vary over a
diagonal. Therefore, in intermediate cases a hypercube or a hyperball should continuously deform
into a diagonal, which is seen in Figure L.1. Note that the hypercube shows the unpleasant feature
of not treating symmetrically 61 and do. This is a property found in more general situations,
including different modelings of theoretical correlations. On the other hand, the hyperball case
does not suffer from the same problem in correlated situations.
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Titre: Phénoménologie de Modeles a Symétrie Droite-Gauche dans le secteur des quarks
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Résumé: Bien qu’ayant beaucoup de succes pour décrire la grande variété de phénomenes de la physique des particules, le
Modele Standard (MS) laisse certaines propriétés de la nature sans explication. Ici, nous allons mettre I'accent sur le traitement
différent des chiralités de type gauche et droite dans le cadre du MS. Une fagon naturelle d’expliquer cela est de plonger le
MS dans un modele plus fondamental, capable de traiter les chiralités d’une maniére symétrique. Cette classe de modeles,
connue sous le nom de “modeles & symétrie droite-gauche” (LR models, en anglais), introduit une nouvelle interaction qui
couple préférentiellement aux champs “droitiers”. Puis, & une haute échelle d’énergie, la symétrie reliant droite et gauche est
brisée spontanément donnant naissance au MS et aux phénomeénes de violation de symétrie de parité. La maniere spécifique
par laquelle le mécanisme Brout-Englert-Higgs (BEH) se produit dans les modeles LR peut étre sondée par des observables
électrofaibles de précision, ce qui sert de premier test de ’extension du MS dans le secteur électrofaible.

. . . N . . +
Comme conséquence du mécanisme BEH dans les modeles LR, de nouveaux bosons de jauge sont présents. Ce sont W'

et Z'O, censés étre beaucoup plus lourds que les bosons de jauge W et Z° afin d’expliquer pourquoi ils n’ont jamais été
vus jusqu’a présent. Ces nouvelles particules sont accompagnées d’une riche phénoménologie, comme de nouvelles sources de
violation de CP au-dela de celle du MS. En outre, un nouveau secteur scalaire neutre introduit des courants qui changent la
saveur (FCNC, en anglais) au niveau des arbres, un processus fortement restreint dans le MS, ot il arrive seulement & ordre des
boucles. L’existence de FCNCs fournit des contraintes extrémement puissantes sur les modeles LR, et mérite donc une attention
spéciale, en particulier lors du calcul des corrections venant de la QCD. Nous calculons donc les corrections au Next-to-Leading
Order des effets & de courtes distances venant de la QCD aux contributions du modele LR aux observables |ef |, Amy 4, liées
au mélange de mésons neutres et sensibles donc aux FCNC.

Ensuite, nous considérons I’étude phénoménologique des modeles LR afin de tester leur viabilité et leur structure. Plus
particulierement, nous considérons le cas ot des doublets scalaires sont responsables de la brisure du groupe de jauge des modeles
LR. A cet effet, nous menons une étude combinée des observables de précision électrofaible, des bornes directes sur la masse
des nouveaux bosons de jauge et des observables qui dérivent de 1'oscillation des mésons neutres, dans le cas plus simple ou la
matrice de mixing dans le secteur droit est égal a la matrice CKM. Ces observables sont combinées dans le cadre du paquet
CKMfitter d’analyse statistique. La combinaison de différentes classes d’observables doit prendre en compte la particularité
des incertitudes théoriques, qui ne sont pas de nature statistique comme d’autres sources d’incertitude. A ce propos, nous
considérons aussi la comparaison de différentes modeles d’incertitude théorique, afin de trouver des méthodes bien adaptées a
la situation actuelle de notre connaissance des incertitudes théoriques impliquées dans un fit global en physique de la saveur.

Title: Phenomenology of Left-Right Models in the quark sector
Key words: electroweak symmetry breaking, parity symmetry, left-right models, electroweak precision observables, meson o0s-
cillation, short-distance QCD, flavour physics, modeling of systematic uncertainties
Abstract: Though very successful in explaining a wide variety of particle physics phenomena, the Standard Model (SM) leaves
unexplained some properties of nature. Here we focus on the different behaviours of left- and right-handed chiralities, or in other
words the violation of parity symmetry. A possible and somewhat natural avenue to explain this feature is to embed the SM into
a more symmetric framework, which treats the chiralities on equal footing. This class of models, the Left-Right (LR) Models,
introduces new gauge interactions that couple preferentially to right-handed fields. Then, at an energy scale high enough, LR
symmetry is spontaneously broken through the Brout-Englert-Higgs (BEH) mechanism, thus giving origin to the SM and to
parity violating phenomena. The specific way in which the BEH mechanism operates in LR Models can be probed by EW
Precision Observables, consisting of quantities that have been very accurately measured, serving as a first test of consistency
for extensions of the SM in the EW sector.

We revisit a simple realization of LR Models containing doublet scalars, and consider the phenomenological study of this
doublet scenario in order to test the viability and structure of the LR Models. In particular, there is a rich phenomenology

associated to the new gauge bosons W’i and Z'° introduced by LR Models, such as new sources of CP violation beyond the
one of the SM. Moreover, the extended neutral scalar sector introduces Flavour Changing Neutral Couplings (FCNC) at tree
level, which are strongly suppressed in the SM where they arrive first at one loop. FCNCs typically lead to extremely powerful
constraints since they contribute to meson-mixing processes, and therefore deserve close attention. For this reason, we consider
the calculation of short-distance QCD effects correcting the LR Model contributions to the meson-mixing observables |ef| and
Amyg ¢ up to the Next-to-Leading Order (NLO), a precision required to set solid lower bounds on the LR Model scales.

Finally, we combine in a global fit electroweak precision observables, direct searches for the new gauge bosons and meson
oscillation observables in the simple case where the right-handed analogous of the CKM mixing-matrix is equal to the CKM
matrix itself (a scenario called manifest symmetry). The full set of the observables is combined by using the CKMfitter statistical
framework, based on a frequentist analysis and a particular scheme for modeling theoretical uncertainties. We also discuss
other possible modelings of theoretical uncertainties in a prospective study for future global flavour fits made by the CKMfitter
Collaboration.
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