E. Figure, 6: (a) Électrodes 'integerdigitated' avec guide d'ondes sur la mémé puce (b) la

T. Tajima, T. Nishiguchi, S. Chiba, A. Morita, M. Abe et al., High-performance ultra-small single crystalline silicon microphone of an integrated structure, Microelectronic Engineering, vol.67, issue.68, pp.67-68508519, 2003.
DOI : 10.1016/S0167-9317(03)00108-4

J. Smith and W. Elaton, Micromachined pressure sensors : review and recent developments, Smart Materials and Structures, vol.6, p.530539, 1997.

M. Hanay, . Kelber, . Naik, . Chi, E. Hentz et al., Single-protein nanomechanical mass spectrometry in real time, Nature Nanotechnology, vol.161, issue.9, p.6028, 2012.
DOI : 10.1016/j.jasms.2005.02.017

K. Cook-chennault, N. Thambi, and . Sastry, Powering MEMS portable devices???a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems, Smart Materials and Structures, vol.17, issue.4, p.43001, 2008.
DOI : 10.1088/0964-1726/17/4/043001

D. Mallick, A. Amann, and S. Roy, Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester, Smart Materials and Structures, vol.24, issue.12, p.122001, 2015.
DOI : 10.1088/0964-1726/24/12/122001

A. Manz, N. Michael-widmers, and . Graber, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol.1, issue.1-6, p.244248, 1990.
DOI : 10.1016/0925-4005(90)80209-I

S. S. Narine, Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.16, issue.3, p.1857, 1998.
DOI : 10.1116/1.581118

T. Thundat, E. Wachter, S. L. Sharp, and R. J. Warmack, Detection of mercury vapor using resonating microcantilevers, Applied Physics Letters, vol.66, issue.13, p.661695, 1995.
DOI : 10.1063/1.113896

T. Ono, X. Li, H. Miyashita, and M. Esashi, Mass sensing of adsorbed molecules in sub-picogram sample with ultrathin silicon resonator, Review of Scientific Instruments, vol.74, issue.3, p.12401243, 2003.
DOI : 10.1063/1.1536262

V. Nickolay, P. G. Lavrik, and . Datskos, Femtogram mass detection using photothermally actuated nanomechanical resonators, Applied Physics Letters, vol.82, issue.16, p.26972699, 2003.

N. Cleland and M. Roukes, A nanometre-scale mechanical electrometer, Nature, vol.276, issue.6672, p.160162, 1998.
DOI : 10.1038/32373

K. L. Ekinci, X. M. Huang, and M. L. Roukes, Ultrasensitive nanoelectromechanical mass detection, Applied Physics Letters, vol.84, issue.22, p.44694471, 2004.
DOI : 10.1063/1.1755417

P. Quirin, . Unterreithmeier, M. Eva, . Weig, P. Jörg et al., Universal transduction scheme for nanomechanical systems based on dielectric forces, Nature, p.458, 2009.

T. Bagci, . Simonsen, L. Schmid, . Villanueva, J. Zeuthen et al., Optical detection of radio waves through a nanomechanical transducer, Nature, issue.7490, p.507815, 2014.

. Polzik, Single-layer graphene on silicon nitride micromembrane resonators, Journal of Applied Physics, vol.115, issue.5, p.2014

M. Zorman and . Mehregany, Monocrystalline silicon carbide nanoelectromechanical systems, Applied Physics Letters, vol.78, issue.2, p.162164, 2001.

X. Ming, H. Huang, A. Christian, . Zorman, L. Michael et al., Nanodevice motion at microwave frequencies, p.496497, 2003.

T. Clark, L. P. Nguyen, . Katehi, M. Gabriel, and . Rebeiz, Micromachined devices for wireless communications, Proceedings of the IEEE, p.17561767, 1998.

K. Bruland, J. Garbini, W. Dougherty, and J. Sidles, Optimal control of force microscope cantilevers. I. Controller design, Journal of Applied Physics, vol.80, p.1951, 1958.

K. Bruland, J. Garbini, W. Dougherty, and S. , Optimal control of ultrasoft cantilevers for force microscopy, Journal of Applied Physics, vol.83, issue.8, p.39723977, 1998.
DOI : 10.1063/1.367152

C. and M. L. Roukes, Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Applied Physics Letters, issue.18, p.6926532655, 1996.

R. Legtenberg and H. A. Tilmans, Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication, Sensors and Actuators A: Physical, vol.45, issue.1, p.5766, 1994.
DOI : 10.1016/0924-4247(94)00812-4

M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lon, Nanomechanical resonant structures in single-crystal diamond, Applied Physics Letters, vol.103, issue.13, p.2124, 2013.
DOI : 10.1063/1.4821917

URL : http://arxiv.org/abs/1309.1834

K. C. Balram, M. Davanco, J. D. Song, and K. Srinivasan, Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits, p.120, 2015.
DOI : 10.1038/nphoton.2016.46

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941791

D. S. Greywall, B. Yurke, P. A. Busch, A. N. Pargellis, and R. L. Willett, Evading amplier noise in nonlinear oscillators, Physical Review Letters, issue.19, p.7229922995, 1994.

R. G. Beck, M. A. Eriksson, M. A. Topinka, R. M. Westervelt, K. D. Maranowski et al., GaAs/AlGaAs self-sensing cantilevers for low temperature scanning probe microscopy, Applied Physics Letters, vol.73, issue.8, p.7311491151, 1998.
DOI : 10.1063/1.122112

R. Knobel and A. N. Cleland, Piezoelectric displacement sensing with a single-electron transistor, Applied Physics Letters, vol.81, issue.12, p.22582260, 2002.
DOI : 10.1063/1.1507616

I. Yeo, P. De-assis, E. Gloppe, P. Dupont-ferrier, N. Verlot et al., Strain-mediated coupling in a quantum dot???mechanical oscillator hybrid system, Nature Nanotechnology, vol.99, issue.2, p.10610, 2014.
DOI : 10.1038/nnano.2013.274

URL : https://hal.archives-ouvertes.fr/hal-00949375

D. Justin, . Cohen, M. Seán, O. Meenehan, and . Painter, Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction, Optics Express, vol.21, issue.9, p.1122711236, 2013.

G. Anetsberger, P. Verlot, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier et al., Measuring nanomechanical motion with an imprecision below that at the standard quantum limit, Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, p.14, 2011.

J. Chan, T. P. Mayer-alegre, H. Amir, J. T. Safavi-naeini, A. Hill et al., Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature, vol.107, issue.7367, p.18, 2011.
DOI : 10.1038/nature10461

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, Nanomechanical coupling between microwave and optical photons, Nature Physics, vol.459, issue.11, p.712716, 2013.
DOI : 10.1038/nphys2748

K. C. Balram, M. Davanco, J. D. Song, and K. Srinivasan, Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits, Nature Photonics, vol.10, issue.5, p.120, 2015.
DOI : 10.1038/nphoton.2016.46

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941791

I. Mahboob and H. Yamaguchi, Bit storage and bit ip operations in an electromechanical oscillator, Nature nanotechnology, vol.6, p.275279, 2008.

I. Mahboob, . Mounaix, . Nishiguchi, H. Fujiwara, and . Yamaguchi, A multimode electromechanical parametric resonator array, Scientific Reports, vol.14, p.4448, 2014.
DOI : 10.1038/srep04448

URL : http://doi.org/10.1038/srep04448

P. Quirin, . Unterreithmeier, M. Eva, . Weig, P. Jörg et al., Universal transduction scheme for nanomechanical systems based on dielectric forces, Nature, p.458, 2009.

L. Midolo and A. Fiore, Design and Optical Properties of Electromechanical Double-Membrane Photonic Crystal Cavities, IEEE Journal of Quantum Electronics, vol.50, issue.6, p.404414, 2014.
DOI : 10.1109/JQE.2014.2315873

G. Karen, K. Srinivasan, and . Marcelo, Slot-mode optomechanical crystals : a versatile platform for multimode optomechanics, p.2015

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, T. J. Beveratos et al., Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity, Physical Review Letters, vol.106, issue.20, p.203902, 2011.
DOI : 10.1103/PhysRevLett.106.203902

URL : http://arxiv.org/abs/1011.6400

A. Safavi-naeini and O. Painter, Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab, Optics Express, vol.18, issue.14, pp.14926-14943, 2010.
DOI : 10.1364/OE.18.014926

J. Chan, M. Eicheneld, R. Camacho, and O. Painter, Optical and mechanical design of a zipper photonic crystal optomechanical cavity, p.555560, 2009.

A. Philip and . Heidmann, 2D photonic-crystal optomechanical nanoresonator, Opt. Lett, vol.40, issue.2, p.174177, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263319

C. Stambaugh, H. Xu, U. Kemiktarak, J. Taylor, and J. Lawall, From membrane-in-the-middle to mirror-in-the-middle with a high-reectivity subwavelength grating, Annalen der Physik, vol.527, issue.12, p.8188, 2015.

A. Kraus and R. Blick, Mechanical mixing in nonlinear nanomechanical resonators, Applied Physics Letters, vol.77, issue.19, p.31023104, 2000.

V. Dominik, A. Scheible, R. H. Erbe, G. Blick, and . Corso, Evidence of a nanomechanical resonator being driven into chaotic response via the Ruelle-Takens route, Applied Physics Letters, issue.10, p.8118841886, 2002.

R. Blick, . Erbe, . Pescini, D. Kraus, F. Scheible et al., Nanostructured silicon for studying fundamental aspects of nanomechanics, Journal of Physics: Condensed Matter, vol.14, issue.34, pp.14-905, 2002.
DOI : 10.1088/0953-8984/14/34/202

K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Review of Scientific Instruments, vol.76, issue.6, p.61101, 2005.
DOI : 10.1063/1.1927327

I. Kozinsky, H. Ch-postma, I. Bargatin, and M. L. Roukes, Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators, Applied Physics Letters, vol.88, issue.25, p.14, 2006.
DOI : 10.1063/1.2209211

R. B. Karabalin, S. C. Masmanidis, and M. L. Roukes, Ecient parametric amplication in high and very high frequency piezoelectric nanoelectromechanical systems
DOI : 10.1063/1.3505500

M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Karabalin, M. C. Cross et al., Phase Synchronization of Two Anharmonic Nanomechanical Oscillators, Physical Review Letters, vol.112, issue.1, p.11215, 2014.
DOI : 10.1103/PhysRevLett.112.014101

URL : http://infoscience.epfl.ch/record/198185

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, Collective Dynamics in Optomechanical Arrays, Physical Review Letters, vol.107, issue.4, p.811, 2011.
DOI : 10.1103/PhysRevLett.107.043603

L. Robert, P. Badzey, and . Mohanty, Coherent signal amplication in a nanomechanical oscillator via stochastic resonance, Nature, vol.850, p.16751676, 2006.

S. Ghosh, D. Shankar, and R. , Nonlinear vibrational resonance, Physical Review E, vol.88, issue.4, p.42904, 2013.
DOI : 10.1103/PhysRevE.88.042904

R. S. Zounes and H. R. Rand, Subharmonic resonance in the non-linear Mathieu equation, International Journal of Non-Linear Mechanics, vol.37, issue.1, p.4373, 2002.
DOI : 10.1016/S0020-7462(00)00095-0

S. Shim, M. Imboden, and P. Mohanty, Synchronized Oscillation in Coupled Nanomechanical Oscillators, Science, vol.316, issue.5821, p.316959, 2007.
DOI : 10.1126/science.1137307

L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Reviews of Modern Physics, vol.70, issue.1, p.223287, 1998.
DOI : 10.1103/RevModPhys.70.223

S. Barbay, G. Giacomelli, and F. Marin, Stochastic resonance in vertical cavity surface emitting lasers, Physical Review E, vol.61, issue.1, p.157166, 2000.
DOI : 10.1103/PhysRevE.61.157

F. Mueller, S. Heugel, and L. J. Wang, Optomechanical stochastic resonance in a macroscopic torsion oscillator, Physical Review A, vol.79, issue.3, p.36, 2009.
DOI : 10.1103/PhysRevA.79.031804

D. Rugar and P. , Gr??tter. Mechanical parametric amplication and thermomechanical noise squeezing, Physical Review Letters, vol.67, issue.6, p.699702, 1991.

T. Faust, . Krenn, J. Manus, E. Kotthaus, and . Weig, Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature, Nature Communications, vol.452, p.728, 2012.
DOI : 10.1038/ncomms1723

C. Sotiris, . Masmanidis, B. Rassul, I. Karabalin, G. De-vlaminck et al., Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation, Science, issue.5839, p.3177803, 2007.

M. Tortonese, R. C. Barrett, and C. F. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection, Applied Physics Letters, vol.62, issue.8, p.62834836, 1993.
DOI : 10.1063/1.108593

R. Mihailovich and J. Parpia, Low temperature mechanical properties of boron-doped silicon. Physical review letters, p.30523055, 1992.
DOI : 10.1103/physrevlett.68.3052

Q. Zhu, W. Y. Shih, and W. H. Shih, Enhanced detection resonance frequency shift of a piezoelectric microcantilever sensor by a DC bias electric eld in humidity detection, Sensors and Actuators, B: Chemical, vol.138, issue.1, p.14, 2009.

P. Quirin, S. Unterreithmeier, J. P. Manus, and . Kotthaus, Coherent detection of nonlinear nanomechanical motion using a stroboscopic downconversion technique

H. Yuen and V. Chan, Noise in homodyne and heterodyne detection: errata, Optics Letters, vol.8, issue.6, p.345, 1983.
DOI : 10.1364/OL.8.000345

G. Abbas, V. Chan, and T. Yee, Local-oscillator excess-noise suppression for homodyne and heterodyne detection, Optics Letters, vol.8, issue.8, p.419421, 1983.
DOI : 10.1364/OL.8.000419

Y. Chi, High speed homodyne detector for gaussian-modulated coherent-state quantum key distribution, p.96, 2009.
DOI : 10.1088/1367-2630/13/1/013003

T. Antoni, G. Aurélien, T. Kuhn, P. Briant, A. Cohadon et al., Deformable two-dimensional photonic crystal slab for cavity optomechanics, Optics Letters, vol.36, issue.17, p.3634343436, 2011.
DOI : 10.1364/OL.36.003434

URL : https://hal.archives-ouvertes.fr/hal-00605111

I. Viktor-tsvirkun, U. Robert-philip, C. Pierre, and . Cnrs, Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators Viktor Tsvirkun Viktor Tsvirkun Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators, 2015.

T. Antoni, K. Makles, R. Braive, T. Briant, P. Cohadon et al., Nonlinear mechanics with suspended nanomembranes, EPL (Europhysics Letters), vol.100, issue.6, p.68005, 2012.
DOI : 10.1209/0295-5075/100/68005

. Eichler, . Moser, . Chaste, . Zdrojek, . Wilson-rae et al., Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene, Nature Nanotechnology, vol.6, issue.6, p.33942, 2011.
DOI : 10.1063/1.3243690

URL : http://hdl.handle.net/10261/48847

R. Knobel and A. Cleland, Nanometre-scale displacement sensing using a single electron transistor, Nature, vol.424, issue.6946, p.291293, 2003.
DOI : 10.1038/nature01773

I. Bargatin, I. Kozinsky, and M. L. Roukes, Ecient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators, Applied Physics Letters, vol.90, issue.9, p.5659, 2007.

H. X. Tang, X. M. Huang, M. L. Roukes, M. Bichler, and W. Wegscheider, Twodimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Applied Physics Letters, issue.20, p.8138793881, 2002.
DOI : 10.1063/1.1516237

T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis et al., Heterogeneous Silicon Photonic Integrated Circuits, Journal of Lightwave Technology, vol.34, issue.1, p.11, 2015.
DOI : 10.1109/JLT.2015.2465382

H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara, Nanopatterning of a hydrogen silsesquioxane resist with reduced linewidth uctuations, Microelectronic Engineering, pp.41-42331334, 1998.

M. Wiemer, C. Jia, M. Toepper, and K. Hauck, Wafer Bonding with BCB and SU-8 for MEMS Packaging, 2006 1st Electronic Systemintegration Technology Conference, p.14011405, 2007.
DOI : 10.1109/ESTC.2006.280194

R. Wolenbuttel, Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond. Sensors and Actuators A: Physical, p.680686, 1997.

F. Niklaus, H. Andersson, P. Enoksson, and G. Stemme, Low temperature full wafer adhesive bonding of structured wafers, Sensors and Actuators A: Physical, vol.92, issue.1-3, pp.1-3235, 2001.
DOI : 10.1016/S0924-4247(01)00568-4

A. Bazin, III-V Semiconductor Nanocavitieson Silicon-On-Insulator Waveguide : Laser Emission, Switching and Optical Memory, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01007643

D. L. Olynick, B. Cord, D. F. Schipotinin, P. J. Ogletree, and . Schuck, Electronbeam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in situ electron-beam-induced desorption, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.28, issue.3, p.581, 2010.

R. Pandithage, Brief Introduction to Critical Point Drying, p.25, 2012.

. Roukes, Plenty of room indeed, Scientic American Reports, vol.1, p.411, 2007.

W. Mclellan and . Features, Nanoelectromechanical systems face the future Features : February 2001 Feynman ' s challenge, World Magazine, vol.14, issue.2, 2001.

A. Cleland, Foundation of nanomechanics
DOI : 10.1007/978-3-662-05287-7

M. Amro, K. Elshurafa, H. H. Khirallah, A. Tawk, A. Emira et al., Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators, Journal of Microelectromechanical Systems, vol.20, issue.4, p.943958, 2011.

H. Cho, B. Jeong, M. Yu, A. F. Vakakis, D. Michael-mc-farland et al., Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities, International Journal of Solids and Structures, vol.49, issue.15-16, pp.15-1620592065, 2012.
DOI : 10.1016/j.ijsolstr.2012.04.016

URL : http://doi.org/10.1016/j.ijsolstr.2012.04.016

C. Chen and J. Hone, Graphene nanoelectromechanical systems, Proceedings of the IEEE, vol.101, issue.7, p.17661779, 2013.

F. Guan, P. Kumaravadivel, D. V. Averin, and X. Du, Tuning strain in flexible graphene nanoelectromechanical resonators, Applied Physics Letters, vol.107, issue.19, p.193102, 2015.
DOI : 10.1063/1.4935239

URL : http://arxiv.org/abs/1506.01643

Y. Wayne, E. N. Fung, W. Dattoli, and . Lu, Radio frequency nanowire resonators and in situ frequency tuning, Applied Physics Letters, issue.20, p.941417, 2009.

J. V. Mallow and R. J. Lucas, Multiple resonances in the double-flash effect, Journal of the Optical Society of America A, vol.9, issue.12, p.2105, 1992.
DOI : 10.1364/JOSAA.9.002105

A. Prosperetti, Subharmonics and ultraharmonics in the forced oscillations of weakly nonlinear systems, American Journal of Physics, vol.44, issue.6, p.548, 1976.
DOI : 10.1119/1.10394

H. B. Chan and C. Stambaugh, Activation barrier scaling and crossover for noiseinduced switching in micromechanical parametric oscillators, Physical Review Letters, vol.99, issue.6, p.36, 2007.

D. Midtvedt, Y. Tarakanov, and J. Kinaret, Parametric Resonance in Nanoelectromechanical Single Electron Transistors, Nano Letters, vol.11, issue.4, p.14391442, 2011.
DOI : 10.1021/nl103663m

E. Collin, T. Moutonet, J. S. Heron, O. Bourgeois, Y. M. Bunkov et al., Nonlinear parametric amplication in a triport nanoelectromechanical device, Physical Review B -Condensed Matter and Materials Physics, vol.84, issue.5, p.116, 2011.
DOI : 10.1103/physrevb.84.054108

URL : http://arxiv.org/abs/1511.07280

R. Benzit, $. , A. Sutera, and A. Vulpiani, The mechanism of stochastic resonance, J. Phys. A: Math. Gen, vol.14, p.453457, 1981.

H. Kramers, Brownian motion in a eld of force and the diusion model of chemical reactions, Physica, vol.7, issue.4, p.284304, 1940.

L. J. Lapidus, D. Enzer, and G. Gabrielse, Stochastic Phase Switching of a Parametrically Driven Electron in a Penning Trap, Physical Review Letters, vol.83, issue.5, p.899, 1999.
DOI : 10.1103/PhysRevLett.83.899

A. D. Hibbs, A. L. Singsaas, E. W. Jacobs, A. R. Bulsara, J. J. Bekkedahl et al., Stochastic resonance in a superconducting loop with a Josephson junction, Journal of Applied Physics, vol.77, issue.6, p.7725822590, 1995.
DOI : 10.1063/1.358720

D. Wilkowski, J. Ringot, D. Hennequin, and J. Garreau, Instabilities in a Magneto-optical Trap: Noise-Induced Dynamics in an Atomic System, Physical Review Letters, vol.85, issue.9, p.18391842, 2000.
DOI : 10.1103/PhysRevLett.85.1839

URL : https://hal.archives-ouvertes.fr/hal-00014978

J. S. Aldridge and A. N. Cleland, Noise-enabled precision measurements of a dung nanomechanical resonator, Physical Review Letters, issue.15, p.9458, 2005.

R. Almog, S. Zaitsev, O. Shtempluck, and E. Buks, Signal amplication in a nanomechanical Dung resonator via stochastic resonance, Applied Physics Letters, vol.90, issue.1, p.1215, 2007.

P. Quirin, T. Unterreithmeier, J. P. Faust, and . Kotthaus, Nonlinear switching dynamics in a nanomechanical resonator, Physical Review B -Condensed Matter and Materials Physics, issue.24, p.8114, 2010.

J. Warner, . Venstra, J. Hidde, . Westra, S. Herre et al., Stochastic switching of cantilever motion, Nature communications, vol.4, p.2624, 2013.

H. B. Chan and C. Stambaugh, Fluctuation-enhanced frequency mixing in a nonlinear micromechanical oscillator, Physical Review B, vol.73, issue.22, p.7314, 2006.
DOI : 10.1103/PhysRevB.73.224301

URL : http://arxiv.org/abs/cond-mat/0603037

D. N. Guerra, M. Imboden, and P. Mohanty, Electrostatically actuated silicon-based nanomechanical switch at room temperature, Applied Physics Letters, vol.93, issue.3, 2008.
DOI : 10.1063/1.2964196

URL : http://arxiv.org/abs/0903.2491

Y. Jia and J. R. Li, Steady-state analysis of a bistable system with additive and multiplicative noises, Physical Review E, vol.53, issue.6, p.57865792, 1996.
DOI : 10.1103/PhysRevE.53.5786

H. Hasegawa, Stochastic resonance in bistable systems with nonlinear dissipation and multiplicative noise: A microscopic approach. Physica A: Statistical Mechanics and its Applications, p.25322546, 2013.

C. Stambaugh and H. B. Chan, Noise-activated switching in a driven nonlinear micromechanical oscillator, Physical Review B, vol.73, issue.17, p.7314, 2006.
DOI : 10.1103/PhysRevB.73.172302

. Vi, A. Tsvirkun, F. Surrente, G. Raineri, R. Beaudoin et al., Integrated III-V Photonic Crystal Si waveguide platform with tailored optomechanical coupling, Scientic Reports, vol.5, p.16526, 2015.

K. Deepak, J. Agrawal, A. A. Woodhouse, and . Seshia, Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators, Physical Review Letters, vol.111, issue.8, p.15, 2013.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. Mceuen et al., Synchronization of micromechanical oscillators using light, Physical Review Letters, vol.109, issue.23, p.15, 2012.

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light, Physical Review Letters, vol.115, issue.16, p.19, 2015.
DOI : 10.1103/PhysRevLett.115.163902

C. Jeevarathinam, S. Rajasekar, and M. A. Sanjuán, Theory and numerics of vibrational resonance in Dung oscillators with time-delayed feedback, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.83, issue.6, p.112, 2011.

A. Kenfack, P. Kamal, and . Singh, Stochastic resonance in coupled underdamped bistable systems, Physical Review E, vol.82, issue.4, p.15, 2010.
DOI : 10.1103/PhysRevE.82.046224

F. Moni, J. Zhang, S. Kaya-ozdemir, B. Peng, Y. Liu et al., Optomechanically induced stochastic resonance and chaos transfer between optical elds, Nature Photonics, p.1017, 2016.