Mechanical nonlinear dynamics of a suspended photonic crystal membrane with integrated actuation

Abstract : Nonlinearities in nanomechanical systems can arise from various sources such as spring and damping mechanisms and resistive, inductive, and capacitive circuit elements. Beyond fundamental interests for testing the dynamical response of discrete nonlinear systems with many degrees of freedom, non-linearities in nanomechanical devices, open new routes for nanomechanical sensing, and signal processing.The nonlinear response of a nanomechanical resonator consisting in a suspended photonic crystal membrane acting as a deformable mirror has been investigated. The low-mass and high reflectivity of suspended membranes pierced by a two-dimensional photonic crystal, makes them good candidates as electro-optomechanical resonator. Actuation of the membrane motion in the MHz frequency range is achieved via interdigitated electrodes placed underneath the membrane. The choice of these electrodes is due to the fact they are able to uniformly actuate these membranes. The processing of such platforms relies on 3D-heterogenous integration process.The applied electrostatic force induces mechanical non-linearities, in particular bistability, superharmonic resonances and stochastic resonance.The membrane is actuated by an electric load V(t) = Vdc + Vac cos(w.t), where Vdc is the DC polarization voltage, Vac the amplitude of the applied AC voltage, and w; the excitation frequency. The system acts as a capacitive system and thus the force applied on the membrane varies as a quadratic function of the applied voltage. Application of either DC or AC voltages can have different implications. Increasing the DC voltage increases the polarizing voltage on the material which in turn causes modulation of the eigenfrequency of the membranes. While an increase in the periodic AC voltage causes the membrane to oscillate more, pushing the system towards non-linear regime.In a first series of experiments, the membrane is actuated resonantly, with an excitation frequency w; equal to the fundamental mechanical modes frequency wm. From the frequency response spectra of the system it was possible to identify different mechanical modes of these membranes via optical measurements. For increased actuation voltages, bistability effects are observed with two different behaviors (spring hardening or softening). The mechanical nonlinearities due to stretching at the clamping point dominate the resonator dynamics.The most commonly used method to act upon the membrane is the primary-resonance excitation, in which the frequency of the excitation is tuned closed to the fundamental natural frequency of the nanostructure. Superharmonic resonance can also be implemented. It consists in applying an excitation frequency w; equal to wm/n, with n being integer. Existence of these superharmonic resonances is highly dependent on the non-linearity of the system. For example existence of n-th order non-linearity results in presence wm/n superharmonic resonance. In a second series of experiments, frequency-power sweep for superharmonic resonance has been performed, by modulating the electric load at a frequency wm/n and recording the response of the membrane at the fundamental frequency wm. High-order superharmonic resonances are observed with n=2 up to 8. Under superharmonic excitation, the control of the phase across the resonance has been shown for every observed resonance.In the next set of experiments, we used the nonlinearity existing in the system to perform stochastic resonance. The idea of stochastic resonance is amplification of a weak signal (with low frequency) by means of noise injected (higher frequency) in a nonlinear system. For our system we were able to achieve stochastic resonance with both amplitude and phase noise. A comparative study between these two schemes was also done in details. The idea of observing stochastic resonance in phase is very interesting as it opens doors to realize phase encoded communications.
Document type :
Theses
Complete list of metadatas

Cited literature [118 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01412397
Contributor : Abes Star <>
Submitted on : Thursday, December 8, 2016 - 12:47:06 PM
Last modification on : Tuesday, May 14, 2019 - 12:26:53 PM
Long-term archiving on : Thursday, March 23, 2017 - 7:20:24 AM

File

75273_CHOWDHURY_2016_diffusion...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01412397, version 1

Collections

Citation

Avishek Chowdhury. Mechanical nonlinear dynamics of a suspended photonic crystal membrane with integrated actuation. Optics [physics.optics]. Université Paris-Saclay, 2016. English. ⟨NNT : 2016SACLS284⟩. ⟨tel-01412397⟩

Share

Metrics

Record views

319

Files downloads

421