A. Dahlqvist, Integration formula for Brownian motion on classical compact Lie groups

S. Albeverio, R. Høegh-krohn, and H. Holden, Random fields with values in Lie groups and Higgs fields. Lecture notes in Physics, pp.1-13, 1986.

S. Albeverio, R. Høegh-krohn, and H. Holden, Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces. Stochastic processes?mathematics and physics, 1986.
DOI : 10.1007/bfb0080207

S. Albeverio, R. Høegh-krohn, and H. Holden, Stochastic multiplicative measures, generalized Markov semigroups, and group-valued stochastic processes and fields, Journal of Functional Analysis, vol.78, issue.1
DOI : 10.1016/0022-1236(88)90137-1

B. Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not, vol.17, pp.953-982, 2003.

B. Collins and P. Sniady, Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group, Communications in Mathematical Physics, vol.264, issue.3, pp.773-795, 2004.
DOI : 10.1007/s00220-006-1554-3

J. C. Baez, Generalized measures in gauge theory, Letters in Mathematical Physics, pp.213-223, 1994.
DOI : 10.1007/BF00761713

URL : http://arxiv.org/abs/hep-th/9310201

P. Biane, Free Brownian motion, free stochastic calculus and random matrices. Free probability theory, 12 of Field Inst. Commun, pp.1-19, 1995.
DOI : 10.1090/fic/012/01

D. Voiculescu, Limit laws for Random matrices and free products, Inventiones mathematicae, vol.67, issue.3, pp.201-220, 1991.
DOI : 10.1007/BF01245072

B. K. Driver, YM2:Continuum expectations, lattice convergence, and lassos, Communications in Mathematical Physics, vol.10, issue.4, pp.575-616, 1989.
DOI : 10.1007/BF01218586

B. K. Driver, Two-dimensional Euclidean quantized Yang-Mills fields, Probability models in mathematical physics, pp.21-36, 1991.

N. Orantin, G. Borot, and B. Eynard, Abstract loop equations, topological recursion, and applications, 2013.

G. Cébron, A. Dahlqvist, and F. Gabriel, The general Lévy Master Field

G. Cébron, A. Dahlqvist, F. Gabriel, and C. Male, Traffic-partition correspondence

L. Gross, A Poincar?? lemma for connection forms, Journal of Functional Analysis, vol.63, issue.1, pp.1-46, 1985.
DOI : 10.1016/0022-1236(85)90096-5

L. Gross, The Maxwell equations for Yang-Mills theory, CMS Conf. Proc, pp.193-203, 1988.

A. Guionnet, E. Maurel-segala, A. Lat, . J. Am, . Probab et al., Combinatorial aspects of matrix models [19] T. Halverson and A. Ram. Partition algebras, European Journal of Combinatorics, vol.26, pp.2249657869-921, 2005.

T. Lévy, The master field on the plane. arxiv.org/abs, 1112.

T. Lévy, Yang-Mills Measure on compact surfaces. Number 790, 2003.

T. Lévy, Schur???Weyl duality and the heat kernel measure on the unitary group, Advances in Mathematics, vol.218, issue.2, pp.537-575, 2008.
DOI : 10.1016/j.aim.2008.01.006

T. Lévy, Two-dimensional Markovian holonomy fields, 2010.

C. Male, The distributions of traffics and their free product. arxiv.org/abs/1111, 2011.

J. A. Mingo and M. Popa, Freeness and the transposes of unitarily invariant random matrices, Journal of Functional Analysis, vol.271, issue.4, pp.883-921, 2016.
DOI : 10.1016/j.jfa.2016.05.006

N. Berestycki, Emergence of Giant Cycles and Slowdown Transition in Random Transpositions and $k$-Cycles, Electronic Journal of Probability, vol.16, issue.0, pp.152-173, 2011.
DOI : 10.1214/EJP.v16-850

N. Berestycki and R. Durrett, A phase transition in the random transposition random walk, Probability Theory and Related Fields, vol.9, issue.2, pp.203-233, 2006.
DOI : 10.1007/s00440-005-0479-7

URL : https://hal.archives-ouvertes.fr/hal-00001309

A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability. Number 335. Lecture Note Series, 2006.

A. N. Sengupta, The Yang-Mills measure for S2, Journal of Functional Analysis, vol.108, issue.2, pp.231-273, 1992.
DOI : 10.1016/0022-1236(92)90025-E

A. N. Sengupta, Gauge theory on compact surfaces, Memoirs of the American Mathematical Society, vol.126, issue.600, p.85, 1997.
DOI : 10.1090/memo/0600

T. Lévy, Wilson loops in the light of spin networks, Journal of Geometry and Physics, vol.52, issue.4, pp.382-397, 2004.
DOI : 10.1016/j.geomphys.2004.04.003

A. Vogt, The isoperimetric inequality for curves with self-intersections, Bulletin canadien de math??matiques, vol.24, issue.2, pp.161-167, 1981.
DOI : 10.4153/CMB-1981-026-8

E. Witten, On quantum gauge theories in two dimensions, Communications in Mathematical Physics, vol.109, issue.2, pp.153-209, 1991.
DOI : 10.1007/BF02100009

E. Witten, Two dimensional gauge theories revisited, Journal of Geometry and Physics, vol.9, issue.4, pp.303-368, 1992.
DOI : 10.1016/0393-0440(92)90034-X

URL : http://arxiv.org/abs/hep-th/9204083

F. Xu, A Random Matrix Model From Two Dimensional Yang-Mills Theory, Communications in Mathematical Physics, vol.190, issue.2, pp.287-307, 1997.
DOI : 10.1007/s002200050242

C. N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Physical Review, vol.96, issue.1, pp.191-195, 1954.
DOI : 10.1103/PhysRev.96.191

S. Albeverio, R. Høegh-krohn, and H. Holden, Random fields with values in Lie groups and Higgs fields. Lecture notes in Physics, pp.1-13, 1986.

S. Albeverio, R. Høegh-krohn, and H. Holden, Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces. Stochastic processes?mathematics and physics, 1986.
DOI : 10.1007/bfb0080207

S. Albeverio, R. Høegh-krohn, and H. Holden, Stochastic multiplicative measures, generalized Markov semigroups, and group-valued stochastic processes and fields, Journal of Functional Analysis, vol.78, issue.1, pp.154-184, 1988.
DOI : 10.1016/0022-1236(88)90137-1

S. Albeverio, R. Høegh-krohn, and H. Holden, Stochastic multiplicative measures, generalized Markov semigroups, and group-valued stochastic processes and fields, Journal of Functional Analysis, vol.78, issue.1, pp.154-184, 1988.
DOI : 10.1016/0022-1236(88)90137-1

M. Anshelevich and A. N. Sengupta, Quantum free Yang???Mills on the plane, Journal of Geometry and Physics, vol.62, issue.2, pp.330-343, 2012.
DOI : 10.1016/j.geomphys.2011.10.005

B. Aronov, R. Seidel, and D. Souvaine, On compatible triangulations of simple polygons, Computational Geometry, vol.3, issue.1, pp.27-35, 1993.
DOI : 10.1016/0925-7721(93)90028-5

E. Artin, Theorie der Z??pfe, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.4, issue.1, pp.47-72, 1925.
DOI : 10.1007/BF02950718

E. Artin, Theory of Braids, The Annals of Mathematics, vol.48, issue.1, pp.101-126, 1947.
DOI : 10.2307/1969218

J. C. Baez, Generalized measures in gauge theory, Letters in Mathematical Physics, pp.213-223, 1994.
DOI : 10.1007/BF00761713

G. Cébron, A. Dahlqvist, and F. Gabriel, The generalized master fields

B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant Annales de l'I.H.P., section C, pp.1-26, 1990.

B. K. Driver, YM2:Continuum expectations, lattice convergence, and lassos, Communications in Mathematical Physics, vol.10, issue.4, pp.575-616, 1989.
DOI : 10.1007/BF01218586

B. K. Driver, Two-dimensional Euclidean quantized Yang-Mills fields, Probability models in mathematical physics, pp.21-36, 1991.

L. Gross, A Poincar?? lemma for connection forms, Journal of Functional Analysis, vol.63, issue.1, pp.1-46, 1985.
DOI : 10.1016/0022-1236(85)90096-5

L. Gross, The Maxwell equations for Yang-Mills theory, CMS Conf. Proc, pp.193-203, 1988.

O. Kallenberg, Probabilistic symmetries and invariance principles. Probability and its Applications, 2005.

Y. Kawada and K. Itô, On the probability distribution on a compact group, Proc. Phys.- Math. Soc. Japan, pp.977-998, 1940.

T. Lévy, The master field on the plane. arxiv.org/abs, 1112.

T. Lévy, Construction et ??tude ?? l'??chelle microscopique de la mesure de Yang???Mills sur les surfaces compactes, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.330, issue.11, pp.1019-1024, 2000.
DOI : 10.1016/S0764-4442(00)00298-6

T. Lévy, Yang-Mills Measure on compact surfaces. Number 790, 2003.

T. Lévy, Two-dimensional Markovian holonomy fields, 2010.

B. Mohar and C. Thomassen, Graphs on surfaces, 2001.

A. N. Sengupta, The Yang-Mills measure for S2, Journal of Functional Analysis, vol.108, issue.2, pp.231-273, 1992.
DOI : 10.1016/0022-1236(92)90025-E

A. N. Sengupta, Gauge theory on compact surfaces, Memoirs of the American Mathematical Society, vol.126, issue.600, p.85, 1997.
DOI : 10.1090/memo/0600

A. Dahlqvist, Integration formula for Brownian motion on classical compact Lie groups

F. Benaych-georges, Classical and free infinitely divisible distributions and random matrices . The Annals of Probability, pp.1134-1170, 2005.
DOI : 10.1214/009117904000000982

URL : http://arxiv.org/abs/math/0406082

M. Capitaine and M. Casalis, Geometric interpretation of the cumulants for random matrices previously defined as convolutions on the symmetric group, Lecture Notes in Mathematics, pp.93-119, 1934.
DOI : 10.1007/978-3-540-77913-1_4

URL : https://hal.archives-ouvertes.fr/hal-00634969

G. Cébron, Matricial model for the free multiplicative convolution

G. Cébron, Free convolution operators and free Hall transform, Journal of Functional Analysis, vol.265, issue.11, pp.2645-2708, 2013.
DOI : 10.1016/j.jfa.2013.07.022

G. Cébron, A. Dahlqvist, F. Gabriel, and C. Male, Traffic-partition correspondence

F. Gabriel, Combinatorial theory of permutation-invariant random matrices I: Partitions, geometry and renormalization, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128574

F. Gabriel, Combinatorial theory of permutation-invariant random matrices II: Freeness and Lévy processes, 2015.

F. Gabriel, Combinatorial theory of permutation-invariant random matrices III: Random walks on S N , ramified coverings and the S ? Yang-Mills measure, 2015.

T. Halverson and A. Ram, Partition algebras, European Journal of Combinatorics, vol.26, issue.6, pp.869-921, 2005.
DOI : 10.1016/j.ejc.2004.06.005

URL : http://doi.org/10.1016/j.ejc.2004.06.005

G. Kreweras, Sur les partitions non croisees d'un cycle, Discrete Mathematics, vol.1, issue.4, pp.333-350, 1972.
DOI : 10.1016/0012-365X(72)90041-6

URL : http://doi.org/10.1016/0012-365x(72)90041-6

T. Lévy, The master field on the plane. arxiv.org/abs, 1112.

T. Lévy, Schur???Weyl duality and the heat kernel measure on the unitary group, Advances in Mathematics, vol.218, issue.2, pp.537-575, 2008.
DOI : 10.1016/j.aim.2008.01.006

C. Male, The distributions of traffics and their free product. arxiv.org/abs/1111, 2011.

C. Male and S. Péché, Uniform regular weighted graphs with large degree: Wigner's law, asymptotic freeness and graphons limit, 2014.

A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability. Number 335. Lecture Note Series, 2006.

A. N. Sengupta, Traces in Two-Dimensional QCD: The Large-N Limit. Traces in geometry, number theory and quantum fields, pp.193-212, 2008.

F. Xu, A Random Matrix Model From Two Dimensional Yang-Mills Theory, Communications in Mathematical Physics, vol.190, issue.2, pp.287-307, 1997.
DOI : 10.1007/s002200050242

A. Dahlqvist, Integration formula for Brownian motion on classical compact Lie groups

B. Collins, P. Sniady, and R. Speicher, Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group, Communications in Mathematical Physics, vol.264, issue.3, pp.773-795, 2004.
DOI : 10.1007/s00220-006-1554-3

O. E. Barndorff-nielsen and S. Thorbjørnsen, A CONNECTION BETWEEN FREE AND CLASSICAL INFINITE DIVISIBILITY, Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol.07, issue.04, pp.573-590, 2004.
DOI : 10.1142/S0219025704001773

F. Benaych-georges, Classical and free infinitely divisible distributions and random matrices . The Annals of Probability, pp.1134-1170, 2005.
DOI : 10.1214/009117904000000982

H. Bercovici and D. Voiculescu, L??vy-Hin??in type theorems for multiplicative and additive free convolution, Pacific Journal of Mathematics, vol.153, issue.2, pp.217-248, 1992.
DOI : 10.2140/pjm.1992.153.217

P. Biane, Free Brownian motion, free stochastic calculus and random matrices. Free probability theory, 12 of Field Inst. Commun, pp.1-19, 1995.
DOI : 10.1090/fic/012/01

G. Cébron, Free convolution operators and free Hall transform, Journal of Functional Analysis, vol.265, issue.11, pp.2645-2708, 2013.
DOI : 10.1016/j.jfa.2013.07.022

B. Collins, J. Mingo, P. Sniady, and R. Speicher, Second order freeness and fluctuations of random matrices: III. Higher order freeness and free cumulants, Documenta Math, vol.12, pp.1-70, 2007.

G. Cébron, A. Dahlqvist, and C. Male, On the limiting distribution of traffics of unitarily invariant random matrices

G. Cébron, A. Dahlqvist, F. Gabriel, and C. Male, Traffic-partition correspondence

F. Gabriel, Combinatorial theory of permutation-invariant random matrices I: Partitions, geometry and renormalization, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128574

F. Gabriel, Combinatorial theory of permutation-invariant random matrices II: Freeness and Lévy processes, 2015.

F. Gabriel, Combinatorial theory of permutation-invariant random matrices III: Random walks on S N , ramified coverings and the S ? Yang-Mills measure, 2015.

F. Gabriel, Planar Markovian holonomy fields. A first step to the characterization of Markovian holonomy fields, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01100388

R. Goodman and N. R. Wallach, Representations and Invariants of the Classical Groups. Number 68, Encyclopedia Math. Appl, 1998.

T. Halverson and A. Ram, Partition algebras, European Journal of Combinatorics, vol.26, issue.6, pp.869-921, 2005.
DOI : 10.1016/j.ejc.2004.06.005

URL : http://doi.org/10.1016/j.ejc.2004.06.005

F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy. Number 77, Mathematical Surveys and Monographs, 2000.
DOI : 10.1090/surv/077

V. F. Jones, The Potts model and the symmetric group, Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, pp.259-267, 1993.

T. Lévy, The master field on the plane. arxiv.org/abs, 1112.

T. Lévy, Schur???Weyl duality and the heat kernel measure on the unitary group, Advances in Mathematics, vol.218, issue.2, pp.537-575, 2008.
DOI : 10.1016/j.aim.2008.01.006

M. Liao, Lévy processes in Lie groups. Number 162, 2004.

C. Male, The distributions of traffics and their free product. arxiv.org/abs/1111, 2011.

P. Martin, The Potts model and the symmetric group, Series on Advances in Statistical Mechanics, 1991.

J. A. Mingo and M. Popa, Freeness and the transposes of unitarily invariant random matrices, Journal of Functional Analysis, vol.271, issue.4, pp.883-921, 2016.
DOI : 10.1016/j.jfa.2016.05.006

A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability. Number 335. Lecture Note Series, 2006.

K. Sato, Léévy processes and infinitely divisible distributions. Number 68. Cambridge studies in advanced mathematics, 1999.

K. Tanabe, Abstract, Nagoya Mathematical Journal, vol.1, pp.113-126, 1997.
DOI : 10.2307/1968842

T. Tao, Topics in Random matrix theory. Number 132, Graduate Studies in Mathematics, 2012.

D. Voiculescu, Limit laws for Random matrices and free products, Inventiones mathematicae, vol.67, issue.3, pp.201-220, 1991.
DOI : 10.1007/BF01245072

A. D. Adda and P. Provero, Two-dimensional gauge theories of the symmetric group Sn and branched n-coverings of Riemann surfaces in the large-n limit, Nuclear Physics B - Proceedings Supplements, vol.108, pp.79-83, 2002.
DOI : 10.1016/S0920-5632(02)01308-7

A. D. Adda and P. Provero, Two-dimensional gauge theories of the symmetric group S n in the large-n limit, Commun.Math.Phys, vol.245, pp.1-25, 2004.

S. Albeverio, R. Høegh-krohn, and H. Holden, Random fields with values in Lie groups and Higgs fields, Lecture notes in Physics, vol.262, pp.1-13, 1986.
DOI : 10.1007/3540171665_49

S. Albeverio, R. Høegh-krohn, and H. Holden, Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces. Stochastic processes?mathematics and physics, 1986.
DOI : 10.1007/bfb0080207

S. Albeverio, R. Høegh-krohn, and H. Holden, Stochastic multiplicative measures, generalized Markov semigroups, and group-valued stochastic processes and fields, Journal of Functional Analysis, vol.78, issue.1, pp.154-184, 1988.
DOI : 10.1016/0022-1236(88)90137-1

URL : http://doi.org/10.1016/0022-1236(88)90137-1

M. Anshelevich and A. N. Sengupta, Quantum free Yang???Mills on the plane, Journal of Geometry and Physics, vol.62, issue.2, pp.330-343, 2012.
DOI : 10.1016/j.geomphys.2011.10.005

URL : http://arxiv.org/abs/1106.2107

B. K. Driver, YM2:Continuum expectations, lattice convergence, and lassos, Communications in Mathematical Physics, vol.10, issue.4, pp.575-616, 1989.
DOI : 10.1007/BF01218586

B. K. Driver, Two-dimensional Euclidean quantized Yang-Mills fields, Probability models in mathematical physics, pp.21-36, 1991.

G. Cébron, A. Dahlqvist, and F. Gabriel, The general Lévy Master Field

F. Gabriel, Combinatorial theory of permutation-invariant random matrices I: Partitions, geometry and renormalization, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128574

F. Gabriel, Combinatorial theory of permutation-invariant random matrices II: Freeness and Lévy processes, 2015.

F. Gabriel, Planar Markovian holonomy fields. A first step to the characterization of Markovian holonomy fields, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01100388

L. Gross, A Poincar?? lemma for connection forms, Journal of Functional Analysis, vol.63, issue.1, pp.1-46, 1985.
DOI : 10.1016/0022-1236(85)90096-5

URL : http://doi.org/10.1016/0022-1236(85)90096-5

L. Gross, The Maxwell equations for Yang-Mills theory, CMS Conf. Proc, pp.193-203, 1988.

T. Lévy, The master field on the plane. arxiv.org/abs, 1112.

T. Lévy, Yang-Mills Measure on compact surfaces. Number 790, 2003.

T. Lévy, Schur???Weyl duality and the heat kernel measure on the unitary group, Advances in Mathematics, vol.218, issue.2, pp.537-575, 2008.
DOI : 10.1016/j.aim.2008.01.006

T. Lévy, Two-dimensional Markovian holonomy fields, 2010.

N. Berestycki, Emergence of Giant Cycles and Slowdown Transition in Random Transpositions and $k$-Cycles, Electronic Journal of Probability, vol.16, issue.0, pp.152-173, 2011.
DOI : 10.1214/EJP.v16-850

N. Berestycki and R. Durrett, A phase transition in the random transposition random walk, Probability Theory and Related Fields, vol.9, issue.2, pp.203-233, 2006.
DOI : 10.1007/s00440-005-0479-7

URL : https://hal.archives-ouvertes.fr/hal-00001309

N. Berestycki and G. Kozma, Cycle structure of the interchange process and representation theory, Bulletin de la Société mathématique de France, vol.143, issue.2, pp.265-280, 2015.
DOI : 10.24033/bsmf.2686

O. Schramm, Compositions of random transpositions, Israel Journal of Mathematics, vol.13, issue.1, pp.221-243, 2005.
DOI : 10.1007/BF02785366

URL : http://arxiv.org/abs/math/0404356

A. N. Sengupta, The Yang-Mills measure for S2, Journal of Functional Analysis, vol.108, issue.2, pp.231-273, 1992.
DOI : 10.1016/0022-1236(92)90025-E

A. N. Sengupta, Gauge theory on compact surfaces, Memoirs of the American Mathematical Society, vol.126, issue.600, p.85, 1997.
DOI : 10.1090/memo/0600

C. N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Physical Review, vol.96, issue.1, pp.191-195, 1954.
DOI : 10.1103/PhysRev.96.191

D. Zvonkine, Enumeration of ramified coverings of the sphere and 2-dimensional gravity, 2005.

M. Gabriel-'o-`-u, . Le-théor-`-emeth´théorthéor-`-théor-`-eme, and . De-cayley-hamilton, ANNEXE: det(A ? A) = 0 D

. ?. Abstract, The goal of this note is to explain a proof of Cayley-Hamilton's theorem based on the new generalized polynomial algebra and on diagram calculations. By defining a universal characteristic generalized polynomial, we explain a proof Cayley-Hamilton's theorem similar to the " PM (M ) = det(M ? M ) = det(0) = 0 ?? argument. A generalization of Cayley-Hamilton's theorem is given for a family of matrices

T. Mandelstam-'s-identities and .. , 448 5. Proof of Cayley-Hamilton's theorem, p.449

G. Cébron, Free convolution operators and free Hall transform, Journal of Functional Analysis, vol.265, issue.11, pp.2645-2708, 2013.
DOI : 10.1016/j.jfa.2013.07.022

F. Gabriel, Combinatorial theory of permutation-invariant random matrices I: Partitions, geometry and renormalization, p.arxiv, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128574

F. Gabriel, Combinatorial theory of permutation-invariant random matrices II: Freeness and Lévy processes, 2015.

T. Lévy, Schur???Weyl duality and the heat kernel measure on the unitary group, Advances in Mathematics, vol.218, issue.2, pp.537-575, 2008.
DOI : 10.1016/j.aim.2008.01.006

D. E. Berenstein and L. F. Urrutia, The equivalence between the Mandelstam and the Cayley???Hamilton identities, Journal of Mathematical Physics, vol.35, issue.4, p.35, 1994.
DOI : 10.1063/1.530578