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Abstract
With the advent of the LHC, particle physics has entered an era where high precision
is required. In this thesis, we tackle two of the key processes at hadron colliders using
innovative tools: inclusive jet production and Higgs production through vector-boson
fusion (VBF).
In the first part of this thesis, we show how to resum leading logarithmic terms of
the jet radius R, and apply this formalism to a detailed study of the inclusive jet
spectrum. We study subleading R-dependent terms at next-to-next-to-leading order
(NNLO), and incorporate them into our calculation. We investigate cancellations in the
scale dependence, leading to new prescriptions for evaluating uncertainties, and examine
the impact of non-perturbative effects.
In the second part of the thesis, we study QCD corrections in VBF-induced Higgs
production. Using the structure function approach, we compute the next-to-next-to-next-
to-leading order (N3LO) corrections to the inclusive cross section. We then calculate
the fully differential NNLO corrections to VBF Higgs production. We show that these
contributions are substantial after VBF cuts, lying outside the NLO scale uncertainty
bands.
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Résumé
L’avènement du LHC marque le début d’une ère de haute précision en physique des
particules. Dans cette thèse de doctorat, nous abordons avec des outils innovants deux
processus clés des collisionneurs de hadrons : la production inclusive de jets, et la
production du boson de Higgs par fusion de bosons vecteurs (VBF).
Dans la première partie de cette thèse, nous montrons comment resommer les premiers
ordres logarithmiques de rayon de jet R, et appliquons ce formalisme à une étude
approfondie du spectre inclusif des jets. Nous étudions les termes dépendant de R au
troisième ordre non-nul (next-to-next-to-leading-order, NNLO), et les intégrons dans
notre calcul. Nous examinons les éliminations dans la dépendance d’échelle, conduisant à
une nouvelle prescription pour l’évaluation des incertitudes, et vérifions l’impact d’effets
non-perturbatifs.
Dans la deuxième partie de cette thèse, nous étudions les corrections de chromodynamique
quantique dans la production de Higgs par VBF. En utilisant l’approche des fonctions de
structure, nous calculons les corrections de quatrième ordre non-nul (N3LO) à la section
efficace inclusive. Nous calculons ensuite les corrections NNLO entièrement différentielles
à la production de Higgs par VBF. Nous montrons que ces contributions sont significatives
après coupures VBF, se trouvant en dehors des bandes d’incertitude d’échelle NLO.
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1 Review of perturbative QCD

In this chapter we will review the basics of Quantum Chromodynamics (QCD) and
collider physics. The purpose of this chapter is not to provide an exhaustive overview of
QCD, for which the reader is refered to [1, 2, 3, 4], but rather to provide a brief reminder
and an introduction to the more advanced chapters of this thesis.

1.1 Introduction

QCD is one of four fundamental forces, forming together with the electromagnetic and
weak interactions what is commonly refered to as the Standard Model (SM) of particle
physics. It describes the interactions of quarks and gluons.

Because the strong coupling constant αs is only moderately small, with αs(MZ) ∼
0.118 [4], it is the strongest force in most short-distance reactions. A precise understanding
of QCD processes is therefore fundamental at hadron colliders, as these will represent in
many cases the dominant production channels and correction factors.

1.2 Yang-Mills Lagrangian

QCD is a non-abelian quantum field theory with an SU(3) symmetry group. The
dynamics of quarks and gluons can be described by the QCD Lagrangian,

LQCD =
∑
q

ψ̄q,a(i /D −mq)abψq,b −
1
4F

A
µνF

A,µν , (1.1)

where

/Dab ≡ (γµDµ)ab = γµ∂µδab + iγµgst
C
abACµ . (1.2)
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Chapter 1. Review of perturbative QCD

Here ψq,a is a quark-field spinor with colour index a = 1, . . . , 3 for a quark of flavour
q and mass mq, γµ are the usual Dirac matrices, and gs =

√
4παs is the coupling

constant. The ACµ are gluon fields in the adjoint representation, with C running from 1 to
N2
c −1 = 8, tCab ≡ λC/2 are the generator matrices of the SU(3) group in the fundamental

representation, and FAµν is the field tensor given by

FAµν = ∂µAAν − ∂νAAµ − gsfABCABµACν , [tA, tB] = ifABCt
C . (1.3)

There are several approaches to solving the QCD Lagrangian. The most comprehensive
one is lattice QCD, where one discretizes space-time, providing a regularization of the
theory through the lattice spacing. By sampling over all configurations by the means
of Monte Carlo methods, one can then obtain numerical solutions to QCD, even in its
non-perturbative limit, which has for the most part been analytically intractable so far.
Unfortunately, due to the extreme computational intensity of lattice methods, the range
of applications is limited, and computations of properties of collisions at the LHC are far
beyond the reach of even tomorrow’s supercomputers.

It is also possible to solve specific limits of QCD using effective field theories, where one
can then obtain an expansion in some parameter of the Lagrangian. Examples of effective
field theories include Heavy Quark Effective Theory (HQET) [5, 6, 7, 8], Soft-Collinear
Effective Theory (SCET) [9, 10, 11, 12, 13, 14, 15], Non-Relativistic QCD (NRQCD) [16],
and Chiral Perturbation Theory (ChiPT) [17, 18].

Yet another approach is to use string-theory inspired methods, making use of the
AdS/CFT correspondance [19, 20, 21] to relate phenomena at strong coupling (such as
quark-gluon plasmas) to weakly coupled gravitational models [22, 23, 24]. While this
approach allows one to investigate systems that are not easily calculable by other means,
it is intrinsically limited insofar as QCD is not a conformally invariant theory.

In this thesis, we will focus on a fourth approach, the one that is most widely used for
colliders, perturbative QCD. It relies on an order-by-order expansion in the αs coupling.
One can then express an observable O as a series in the coupling constant1

O =
∑
n

cnα
n
s . (1.4)

Since QCD is asymptotically free (as we will discuss in section 1.3), this method is
particularly well adapted for collider physics, where one is generally interested in large
momentum transfers (well above the proton mass), such that αs is reasonably small.

1Up to non-perturbative power corrections. These can not be calculated, but insight into their scaling
can be obtained by studying (infrared) renormalon divergences (i.e. poles of the Borel integral). See [25]
for a detailed discussion.
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1.3. Running coupling

1.3 Running coupling

To regulate ultraviolet divergences,2 and in order to keep consistent dimensions in
dimensional regularisation, one needs to introduce an unphysical “renormalisation scale”
µR. The dependence of the coupling constant on the renormalisation scale can be
expressed as a renormalisation group equation (RGE)

µ2
R

dαs(µ2
R)

dµ2
R

= β(αs(µ2
R)) , β(αs) = −α2

s

b0
2π − α

3
s

b1
4π2 − α

4
s

b2
8π3 + . . . , (1.5)

where we have, for nf the number of light quark flavours (mq � µR)

b0 = 1
6(11CA − 2nf ) , b1 = 1

6(17C2
A − 5CAnf − 3CFnf ) ,

b2 = 1
432

[
2857C3

A + nf (54C2
F − 615CFCA − 1415C2

A) + n2
f (66CF + 79CA)

]
. (1.6)

Here we introduced the usual colour factors

CA = Nc = 3 , CF = N2
c − 1
2Nc

= 4
3 , TR = 1

2 . (1.7)

Because of the minus sign on the right of Eq. (1.5) and the fact that bi > 0, the coupling
becomes smaller as one moves to higher scales, in contrast with QED. This is the origin
of asymptotic freedom. It means that at very high momentum scales αs → 0, such that
quarks and gluons almost don’t interact, while at low momentum scales the coupling
grows larger.

Assuming an energy range where the number of flavours is constant, one can obtain the
value of the coupling at a scale Q, αs(Q2), by using Eq. (1.5). At first order, taking into
acount only terms in b0, one finds

αs(Q2) = αs(Q2
0)

1 + b0
2παs(Q2

0) ln(Q2/Q2
0)

= 2π
b0 ln(Q2/Λ2

QCD) , (1.8)

where one can either use the value of the coupling at a reference scale Q0 (typically MZ),
or use a non-perturbative constant of integration ΛQCD(∼ 200 GeV), corresponding to
the scale at which the coupling would diverge.

In figure 1.1, we show a comparison of different measurements of αs, given as a function
of the energy scale Q. One can see that the theoretical predictions derived from QCD
are in perfect agreement with the experimental points, strongly supporting the validity
of asymptotic freedom.

2The most common procedure is dimensional regularization [26, 27] (i.e. extending dimensions to
4− ε) in the modified minimal subtraction (MS) scheme [28].
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QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1.1 – Measurements (points) and theoretical predictions (lines) of αs as a function
of the energy scale Q. The QCD predictions are obtained with a 4-loop approximation,
using 3-loop threshold matching at the heavy and bottom pole masses. Figure taken
from [4].

1.4 Deep inelastic scattering

As a first example, let us examine processes involving one initial-state hadron. We
consider deep inelastic scattering (DIS), i.e., lepton-proton scatering, lp→ l +X, where
the lepton with momentum k emits a virtual photon with momentum q that interacts
with the proton with momentum P , as shown in figure 1.2. Defining the kinematic
variables

Q2 = −q2 , x = Q2

2P · q , y = q · P
P · k

, (1.9)

where x is the longitudinal momentum fraction of the scattered parton, we can express
the differential cross section as

d2σ

dxdQ2 = 4πα
2xQ4

(
1 + (1− y)2

)
F2(x,Q2) +O(ααs) . (1.10)

Here F2(x,Q2) is a proton structure function, which can be expressed in terms of
(non-perturbative) parton distribution functions (PDFs)

F2(x,Q2) = x
∑
n

αns (µR)
(2π)n

[∑
q

∫ 1

x

dz

z
C

(n)
2,q (z,Q2, µ2

R, µ
2
F )fq

(x
z
, µ2

F

)

+
∫ 1

x

dz

z
C

(n)
2,g (z,Q2, µ2

R, µ
2
F )fg

(x
z
, µ2

F

)]
+O

(
Λ2
QCD
Q2

)
, (1.11)
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1.5. The DGLAP equation

where fq(x) (fg(x)) is the density of quarks of type q (gluons) carrying a fraction x of the
proton’s longitudinal momentum,3 and the coefficient functions C(n)

2,i can be calculated
in perturbation theory, such that at zeroth order

C
(0)
2,q = e2

qδ(1− z) , C
(0)
2,g = 0 , F

(0)
2 (x,Q2) = x

∑
q

e2
qfq(x) . (1.12)

Note that for neutral currents, and when considering higher-order corrections to equa-
tion (1.10), there are other proton structure functions FL, F3 to take into account, as
will be discussed in chapter 8.

fj(x)

P

γ∗

k

xP

Figure 1.2 – Diagram of deep inelastic lepton-proton scattering.

1.5 The DGLAP equation

In equation (1.11), we have also introduced a new “factorisation scale” µF . Roughly
speaking, this scale defines the separation between collinear emissions with transverse
momenta below µF , which are included in the PDFs, and emissions with transverse
momenta above µF , which are included in the coefficient functions C2,i.

The initial state evolution of the PDFs as a function of the factorisation scale is described
by the DGLAP equation [31, 32, 33], which, to first non-trivial order, is given by

∂fi(x, µ2
F )

∂µ2
F

=
∑
j

αs(µ2
F )

2π

∫ 1

x

dz

z
Pij(z)fj

(x
z
, µ2

F

)
, (1.13)

3Because PDFs are intrinsically non-perturbative, they are extracted from experimental data. Recently,
there has also been progress in extracting them from lattice QCD [29, 30], however these results are not
yet competitive with determinations from experiments.
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Chapter 1. Review of perturbative QCD

where the Pij functions are the first order splitting functions

Pqq(z) = CF

(1 + z2

1− z

)
+
, (1.14)

Pqg(z) = TR
[
z2 + (1− z)2

]
, (1.15)

Pgq(z) = CF

[1 + (1− z)2

z

]
, (1.16)

Pgg(z) = 2CA
[

z

(1− z)+
+ 1− z

z
+ z(1− z)

]
+ δ(1− z)11CA − 4nfTR

6 . (1.17)

Equation (1.13) represents one of the cornerstones of hadron collider physics, as it provides
a way of obtaining PDFs at any energy scale from a set obtained from experimental data
at fixed scale.

The success of the DGLAP in describing the evolution of the proton’s parton content can
be seen in figure 1.3, which shows the electromagnetic F2 structure function as a function
of the energy scale Q for a range of x values. One can see that there is a remarkable
agreement between the data and the QCD evolution.

Before moving on to a discussion of hadron-hadron collisions, a comment is due on the
dependence of physical results on the arbitrary scales µR and µF . If one had a complete
knowledge of all terms in the perturbative series, then the µR and µF dependence in
physical observables would always exactly cancel. However, because in practice the series
is truncated at some finite order N , a residual dependence on µF and µR of order αN+1

s

remains, associated with the ambiguity in the choice of scales. To avoid plaguing a
calculation with large logarithms of the form ln(µR,F /Q), which will spoil the convergence
of the perturbative series, it is important to choose scales close to the photon virtuality,
the default choice usually being µR = µF = Q. It has furthermore become customary to
vary the scales by a factor two up and down as a mean of estimating the size of missing
higher-order contributions.4

1.6 Hadron collisions and CSS factorisation

Let us now consider the case with two initial-state hadrons. In particular, we will focus
on proton-proton collisions, pp→ X, whose accurate description is part of the foundation
of the physics programme of colliders such as the LHC.

At the LHC, interesting physics (e.g. production of heavy particles) tends to involve
particles or jets at high transverse momentum. This is fortunate, because those processes
are well described in perturbation theory. However, because the initial state involves

4Other methods, based on a bayesian framework, have been proposed to give uncertainty intervals a
more statistically meaningful interpretation [35, 36].
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Figure 1.3 – The electromagnetic F2 proton structure function as a function of the energy
scale Q for different values of x. Figure reproduced from [34].

complicated non-perturbative objects, it is essential to factorise the short-distance hard
process from the long-distance physics included in the PDFs. It has been proven [37, 38]
that for sufficiently inclusive observables in Drell-Yan processes,5 one can write the cross
section as

dσ(P1, P2) =
∑
i,j

∫
dx1dx2fi(x1, µ

2
F )fj(x2, µ

2
F )dσ̂ij

(
x1P1, x2P2, αs(µ2

R), Q
2

µ2
F

,
Q2

µ2
R

)

+ O
[(ΛQCD

Q

)p ]
, (1.18)

where the PDFs fi(x, µ2
F ) are the same as the ones discussed previously in DIS, and dσ̂ij

5In practice, collinear factorisation is generally assumed to be true also for more complicated and
exclusive processes, though it can in some cases be broken at high orders by multiple Glauber exchanges [39,
40, 41].

11



Chapter 1. Review of perturbative QCD

is the short distance cross section for the scattering of partons i and j, as represented in
figure 1.4. The key point of the factorisation theorem is that the PDFs are not modified by
the presence of the other hadron, meaning that the only contributing exchange between
the two hadrons is described by the hard scattering.

fj(x2)

fi(x1)

dσ̂ij(αs)

P1

P2

Figure 1.4 – Schematic diagram for hard scattering in hadron collisions.

At high energies, the partonic cross section dσ̂ij can be accurately described by its
expansion in the αs coupling, such that it can be calculated using Feynman diagrams.
One then expresses the expanded cross section as

dσ̂ij = αns cLO + αn+1
s cNLO + αn+2

s cNNLO +O(αn+3
s ) (1.19)

where ((N)N)LO refers to ((next-to-)next-to-)leading-order, and n is the process-dependent
leading power. The coefficients appearing in equation (1.19) are functions of all the
kinematic variables as well as the factorisation and renormalisation scales µF and µR.

12



2 Fundamentals of Jet Physics

In this chapter we will review the basics of jet physics in the context of hadron colliders.
For a more in depth discussion of jets, the interested reader is referred to [42].

2.1 Jets as proxies for partons

Because of the confining properties of QCD, quark and gluons are never visible on their
own, but shower and hadronise almost immediately to collimated bunches of particles,
also called jets. Jets emerge from a large variety of processes, such as, amongst others,
scattering of partons inside colliding protons, hadronic decays of heavy particles and
radiative gluon emissions.

Because of the divergent structure of the underlying QCD branching in perturbation
theory, there is an intrinsic ambiguity in the definition of these jets. Nevertheless, modern
jet definitions are widely used at hadron colliders as proxies for hard quarks and gluon.
Indeed, while there is no single optimal definition of a jet, they appear as rather intuitive
structures when one looks at the momentum flow in simple enough events.

Owing to the very large number of events produced routinely at modern hadron colliders
such as the LHC, it is however necessary to have a rigorous definition that can be applied
systematically. Ideally, we would like a jet definition to provide a common representation
of the different stages of the event, that is, it should produce similar results whether it is
applied to the partonic calculation, the output of parton-showering or the experimental
measurement.

Jet processes represent a cornerstone of modern particle physics, because QCD lies at
the heart of hadron colliders. We briefly discuss a few important examples where jets are
being used.

One of the simplest and most studied observable at hadron colliders is the inclusive
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Figure 2.1 – Higgs production via gluon fusion and corresponding tt̄ background.

jet spectrum. These measurements provide an impressive agreement between theory
and experiment over several orders of magnitude, and are used to place constraints on
PDFs, while also providing a precise probe of the underlying interactions. We will discuss
theoretical predictions for inclusive jet production at the LHC in more detail in chapter 5.

In part III of this thesis, we will consider Higgs production in the vector-boson fusion
channel. In this process the Higgs boson is accompanied by two high-rapidity jets. To
distinguish these events, one therefore imposes kinematics cuts on the jets, which requires
precise predictions of the jet fragmentation at higher orders.

Another context of relevance to this thesis is in the discrimination of background in
gluon-fusion Higgs production. More specifically, one of the main backgrounds to Higgs
production via gluon fusion decaying to W+W−, is tt̄ production, as shown in Fig. 2.1.
By applying a veto on WW production associated with hard jets, one can significantly
enhance signal events. In order to achieve high precision, it is however important to
understand precisely the perturbative jet processes involved.

2.2 Jet algorithms

To define a jet, one needs to provide the following ingredients:

• a jet algorithm mapping final state particle momenta to jet momenta,

• the parameters required by the algorithm, such as the jet radius R,

• a recombination scheme indicating what momentum to assign to the recombination
of two particles (e.g. the 4-vector sum).

Taken together, these form a “jet definition”. Furthermore, a good jet definition should
have the following additional desirable properties

• be simple to implement in experimental analyses,

• be simple to implement in theoretical calculations,
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2.3. Cone algorithms

• be defined at any order of perturbation theory, and yield finite cross sections,

• yield cross sections that are relatively insensitive to non-perturbative effects.

These were first summarised together in 1990, and are generally known as the “Snowmass
requirements” [43]. While they might seem trivially satisfied by modern jet algorithms,
it was far from straightforward at the time how such an algorithm would look.

2.3 Cone algorithms

Historically, the first jet algorithms were cone algorithms, which take a top-down approach,
centred around the idea of finding stable cones from energy flow.

Modern jet physics has in fact a long legacy; it was already in 1977 that the idea of
constructing jets in e+e− collisions was formalised by Sterman and Weinberg [44]. The
basic idea of Sterman and Weinberg is that an event can be classified as a two-jet event,
when at least a fraction 1− ε of the total energy E is emitted within opposite cones of
half-angle δ (where δ, ε� 1). This allowed them to define and calculate the partial cross
section for those events in a consistent way

σ(E, θ,Ω, ε, δ) =
(
dσ

dΩ

)
0

Ω
[
1− 4α2

s(E)
(
3 ln δ + 4 ln δ ln 2ε+ π2

3 −
5
2
)]
, (2.1)

where (dσ/dΩ)0 is the Born e+e− → qq̄ cross section(
dσ

dΩ

)
0

= α2

4E2 (1 + cos2 θ)
∑

flavours
3Q2, (2.2)

and Ω defines the solid angle of the two fixed cones, located at an angle θ relative to the
beam line.

The jet definition discussed above is however not easily extendable to hadron colliders,
where the total energy and cone direction are non-obvious quantities, nor is it clear how
events with more than two jets should be defined.

2.3.1 Iterative cones

One of the most intuitive ways to define a cone algorithm for hadron colliders, with an
arbitrary number of jets, is by using iterative cones. Here one sets an initial direction by
taking a seed particle i, and sums the momenta of all particles j within a cone of radius
R, i.e.

∆R2
ij = (yi − yj)2 + (φi − φj)2 < R2, (2.3)
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Chapter 2. Fundamentals of Jet Physics

where yi and φi are the rapidity and azimuth of particle i. One then iterates this process
using the direction of resulting sum as a new seed, until the cone obtained is stable.
There are two approaches to handling overlapping cones, i.e. cones that share particles,
which define two classes of cone algorithms.

The first one is the progressive removal approach. In this case the initial seed is taken to
be the particle in the event with the largest momentum. When a stable cone is found,
it is defined as a jet and all particles contained in it are removed from the event. The
algorithm then continues, taking the hardest particle among the ones remaining in the
event. Once no more particles are left, the algorithm terminates.

The split merge approach [45] consists first in finding all stable cones obtained by
iterating from all particles in the event. Then a split-merge procedure is used, merging
two overlapping cones if more than a fraction f ∼ 0.5−0.75 of the softer cone’s transverse
momentum is coming from particles shared with the harder cone. If the overlapping
cones are not merged, the shared particles are assigned to the closest cone.

2.3.2 Infrared and collinear safety

A very important property that goes hand-in-hand with the (finiteness) Snowmass
requirements is infrared and collinear (IRC) safety. In essence, for an algorithm to
be IRC safe, the jets resulting from running that algorithm should be invariant under
collinear splitting of a parton, or the addition of a soft emission. From a point of view of
perturbative QCD, IRC unsafety is a critical problem for several reasons

• we lose the cancellation of real and virtual divergences in higher-order calculations,

• collinear splittings and soft emissions involve non-perturbative effects which can
not be predicted accurately,

• detector cutoffs due to finite resolution and momentum thresholds make it hard to
connect experimental results to hadron level expectations, because it is difficult to
correctly apply those effective cutoffs in theoretical calculations.

It is relatively easy to see that the iterative cones we discussed so far are not IRC safe.

The progressive removal approach examined above is unsafe under collinear splittings,
where the split partons can result in additional jets. This leads to divergent cross sections,
because diagrams with real emissions contribute to the (n+ 1)-jet cross section instead
of the n-jet cross section, leaving infinities in both.

The split-merge approach is infrared unsafe, that is the addition of a soft particle can
lead to different stable cones. This means that, since the presence of a soft gluon can
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2.4. Sequential recombination algorithms

change the number of jets, there will be divergent diagrams contributing to different
cross sections, leaving non-cancelling infinities.

Of course, there exist IRC safe cone algorithms other than the one presented here by
Sterman and Weinberg [44]. Typically, one can solve the IRC problem by avoiding the
use of seeds and iterations, resulting in what are called seedless cone algorithms [45, 46].

2.3.3 Seedless cone algorithms

In a seedless cone algorithm, all stable cones are identified through an exact procedure.
The addition of soft particles can result in new stable cones, however as these don’t
involve hard particles, they should not change the outcome of the split-merge procedure.

One possibility for such an algorithm is to consider all subsets of particles, and establish
whether they correspond to a stable cone [45]. This will find all stable cones, but is very
computationally expensive, growing as O(N2N ) with the number of particles.

A more elegant solution is given by the Seedless and Infrared Safe Cone (SISCone)
algorithm [47]. The idea of the SISCone algorithm is to look only at enclosures defined
by a pair of points, and check their stability. This is sufficient, because only particles
that can fit together in a circle of radius R can form stable cones.

However cone algorithms are not what ended up being used at modern hadron colliders.
Instead, the most widely used jet algorithms nowadays are sequential recombination
algorithms.

2.4 Sequential recombination algorithms

Sequential recombination algorithms take a bottom-up approach, defining jets by an
iterative recombination of particles using a distance measure. These algorithms are
generally simpler to formulate, and have the added advantage of being closer to the
underlying QCD branching picture.

2.4.1 Jade algorithm

The first and simplest sequential recombination algorithm for e+e− colliders was in-
troduced in 1986 by the JADE collaboration [48, 49]. It is defined by the following
rules
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1. For each pair of particles i and j compute the distance1

yij = 2EiEj(1− cos θij)
Q2 , (2.4)

where Q is the total energy.

2. Find the minimum distance ymin = min(i,j) yij .

3. If that minimum is below a threshold, ymin < ycut, recombine particles i and j and
return to step 1.

4. Otherwise, remaining particles are declared as jets, and the algorithm terminates.

It is easy to see that the JADE algorithm satisfies infrared and collinear safety conditions
discussed in section 2.3.2. Soft and collinear particles will result in vanishing or very
small values for yij , and thus will be recombined first. One issue of the JADE algorithm
however, is that soft particles travelling in opposite directions will quickly be recombined
together. This is counter-intuitive, and also leads to complicated non-exponentiated
double logarithms in higher order calculations [50, 51].

2.4.2 Cambridge/Aachen algorithm

An even simpler example of a sequential recombination algorithm, this time given for
the case of hadron colliders, is the Cambridge/Aachen algorithm [52, 53]. For hadron
colliders, there is no notion of total event energy, and one also needs to be careful of
divergent branchings for outgoing particles collinear to the beam axis. These issues can be
resolved by a simple redefinition of the distance metric. Taking as input a dimensionless
parameter R, the algorithm is defined as follows

1. For any pair of particles i, j find the minimum of

∆R2
ij = (yi − yj)2 + (φi − φj)2. (2.5)

2. If min(∆R2
ij) > R2 then i is removed from the particle list and defined as the jet,

otherwise i and j are recombined.

3. Iterate until no more particles are left.

It is worth emphasising that the metric used in sequential recombination algorithms
is also related to the divergent structure of QCD. That is, in the collinear limit, the

1For massless particles, equation (2.4) is simply proportional to the squared invariant mass of the ij
pair.
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distance measure is roughly proportional to the squared inverse of the probability for a
parton to split into two particles i and j.2

P1→2 ∼
2αsC
π

dE

min(Ei, Ej)
dθ

θ
, θ � 1, (2.6)

where C = CA for a gluon and C = CF for a quark. This means that we are effectively
first recombining together particles that are the most likely to originate from the same
splitting.

2.4.3 Generalised kt algorithms

Looking at the soft divergence of Eq. (2.6), one might get the idea of how to modify
the distance measure to follow both the collinear and the soft divergences of QCD. We
will formulate such an algorithm in a very generic way, known as the generalised kt
algorithms [54]. It is defined by the following rule

1. For any pair of particles i, j find the minimum of

dij = min{p2p
t,i, p

2p
t,j}

∆R2
ij

R2 , diB = p2p
t,i, djB = p2p

t,j

where ∆Rij = (yi − yj)2 + (φi − φj)2 as before, pt,i is the transverse momentum of
particle i, and diB is the beam-particle distance.

2. If the minimum distance is diB or djB, then the corresponding particle is removed
from the list and defined as a jet, otherwise i and j are merged.

3. Repeat the procedure until no particles are left.

Here we find again the Cambridge/Aachen algorithm for the case p = 0. However for
p = 1, we now have a jet algorithm which will be sensitive to both collinear and soft
divergences of QCD, known as the kt algorithm [55, 56].

It turns out that it is the non-trivial choice p = −1, called the anti-kt algorithm [54],
which yields the most interesting result in the context of hadron colliders. This disfavours
clustering between pairs of soft particles, preferring instead clusterings that involve at
least one hard particle. The consequence is that jets grow around a hard seed, resulting
in circular hard jets. Because the algorithm is IRC safe, this has the advantages of cone
algorithms, while avoiding the drawbacks of their simpler implementations.

Algorithms from the generalised kt family are by far the most widely used jet algorithms
at modern hadron colliders such as the LHC. In particular, the anti-kt algorithm, because

2Note that equation (2.6) also has a soft divergence, while the distance measure does not.
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of its experimentally useful properties such as circular jets, is the default choice at the
general purpose experiments ATLAS and CMS [57, 58].

2.4.4 Flavour-kt algorithm

A question that is often asked is whether a given jet originated from a quark or a gluon.
There is an intrinsic ambiguity in the concept of jet flavour due to the interference of
different channels.

Suppose we determine the flavour content of a jet as the total number of quarks minus
antiquarks for each quark flavour. Jets with net flavour (minus) one are (anti)quark jets,
and jets with net flavour zero are gluon jets. This procedure will be infrared safe only
at first order in αs. At order α2

s, a soft gluon splitting into a quark and an antiquark
clustered in different jets will pollute the jet flavour.

There is unfortunately no infrared safe definition of this observable in the jet algorithms
discussed so far. To maintain the notion of flavour after clustering, one needs to construct
a distance measure that takes into account the difference in divergence between branchings
for quarks and gluons. An example of such an algorithm is the flavour-kt algorithm [59].
It is a modification of the kt algorithm defined in the following way

1. For 0 < α ≤ 2, compute the distance measure d(F,α)
ij between all particles i and j

d
(F,α)
ij =

∆R2
ij

R2 ×
{

max(pt,i, pt,j)α min(pt,i, pt,j)2−α, softer of i, j is flavoured
min(p2

t,i, p
2
t,j), softer of i, j is flavourless

(2.7)

and the beam distances d(F,α)
iB and d(F,α)

iB̄

d
(F,α)
iB =

{
max(pt,i, ktB(yi))α min(pt,i, ktB(yi))2−α, i is flavoured
min(p2

t,i, k
2
tB(yi)), i is flavourless (2.8)

where we defined

ktB(y) =
∑
i

pt,i(Θ(yi − y) + Θ(y − yi)eyi−y), (2.9)

with d(F,α)
iB̄

involving instead the quantity

ktB̄(y) =
∑
i

pt,i(Θ(y − yi) + Θ(yi − y)ey−yi). (2.10)

2. Identify then the smallest distance. If it is d(F,α)
ij , recombine particles i and j,
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otherwise if it is a beam-particle distance d(F,α)
iB or d(F,α)

iB̄
, declare i to be a jet and

remove it from the particle list.

3. Repeat until no particles are left.

The IRC safety of jet flavour with this algorithm was proved in [59]. The need for
flavour sensitive jet algorithms arises for example in QCD predictions for heavy-quark
jets, discussed in [60].

2.5 Perturbative properties of jets

It is important to remember that the properties of a jet can be strongly affected by gluon
radiation and g → qq̄ splitting. The impact of radiation is twofold: partons radiated
outside of the jet algorithm’s reach will reduce the jet’s energy compared to that of
the initial parton; contrarily, radiation within the jet keeps the energy unchanged, but
generates a mass for the jet, even for a massless initial parton.

Figure 2.2 – Gluon radiation off an initial quark, within (left) and beyond (right) the jet
reach.

2.5.1 Jet mass in the small-R limit

Let us start by evaluating the effect of emissions within the reach of the jet definition.
We consider the change to the mean squared invariant mass of a quark-initiated jet after
one gluon emission, as shown in figure 2.2 (left).

In the collinear and small-R limit we can then write

〈M2〉q '
∫
dθ2

θ2

∫
dz p2

t z(1− z) θ2︸ ︷︷ ︸
jet inv. mass

αs
2πpqq(z) Θ(falg(z)R− θ) '

3
8CF

αs
π
p2
tR

2 , (2.11)

where falg(z) is defined by the reach of the jet algorithm, with falg(z) = 1 for algorithms
of the generalized kt family, and falg(z) = 1 + min(1−z

z , z
1−z ) for SISCone. The results

are always given assuming falg(z) = 1, so that they will differ by a constant term for a
SISCone jet.
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In the case of an initial gluon, one finds

〈M2〉g '
∫
dθ2

θ2

∫
dz p2

t z(1− z) θ2 αs
2π

[1
2pgg(z) + nfpqg(z)

]
Θ(falg(z)R− θ)

'
( 7

20CA + 1
20nfTR

)
αs
π
p2
tR

2 . (2.12)

The dependence of the jet mass on the substructure of the jet, as well as on the jet radius,
makes it an interesting observable for highly boosted heavy particles with hadronic
decays. These tend to be reconstructed into a single jet with rich structure, such that
some insight into a jet’s origin can be gained by studying the jet mass.

2.5.2 Jet pt in the small-R limit

A jet’s transverse momentum will be affected by radiation outside of the jet reach.
Considering an initial quark with one gluon emission, as shown in figure 2.2 (right), we
can calculate the average energy difference between the hardest final state jet and the
initial parton. The leading behaviour at small-R can be calculated easily,

〈∆pt
pt

〉hardest
q

'
∫
dθ2

θ2

∫
dz(max[z, 1− z]− 1) αs2πpqq(z)Θ(θ − falg(z)R)

' αs
π
CF

(
2 ln 2− 3

8

)
lnR , (2.13)

while for an initial gluon, one finds

〈∆pt
pt

〉hardest
g

'
∫
dθ2

θ2

∫
dz(max[z, 1− z]− 1)

× αs
2π

[1
2pgg(z) + nfpqg(z)

]
Θ(θ − falg(z)R)

' αs
π

[
CA

(
2 ln 2− 43

96

)
+ 7

48nfTR
]

lnR . (2.14)

It is interesting to observe that in equations (2.13) and (2.14), the fractional change in
jet energy scales as αs lnR. This means that as one goes to smaller values of the jet
radius, large logarithms of R can potentially spoil the convergence of the perturbative
series in αs. The study of these terms to all orders will be the subject of part II of the
present thesis.

2.6 Non-perturbative effects

So far, we have not discussed an important aspect of QCD, which is non-perturbative
effects. Indeed, we have limited ourselves to perturbative radiation, but it is well known
that non-perturbative effects can play a substantial role.
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There are two main contributions one needs to consider: hadronisation, which describes
the transition from partons to hadrons, and underlying event (UE), which is associated
with multiple interactions between partons in the colliding protons. Though they are in
practice hard to disentangle from each other, it is useful to study these two contributions
separately, as they scale differently with the jet radius R.

2.6.1 Hadronisation

Though it is currently impossible to calculate hadronisation effects from first principles,
one can predict their main features using renormalon techniques [25, 61, 62]. In practice,
this corresponds roughly to replacing the coupling constant αs(µ) in an integral by
a non-perturbative expression, αNPs (µ) = Λδ(µ − Λ), where Λ is close to the Landau
pole. The hadronisation correction to the transverse momentum of a quark jet can be
estimated, in the small-R limit, as

〈∆pt
pt

〉
q,hadr

∼
∫
δθ2

θ

∫
dz(max[z, 1− z]− 1)α

NP
s (θ(1− z)pt)

2π pqq(z)Θ(θ − falg(z)R)

∼ −2CFΛ
πRpt

. (2.15)

A more detailed calculation, as presentend in [63], yields

〈∆pt〉i,hadr = −2Ci
R

2M
π
A(µI) ∼ −

Ci
CF

0.5 GeV
R

, i = q, g , (2.16)

where µI is an infrared matching scale O(2 GeV),M is the Milan factor [64, 65, 66], with
M = 1.49 for the anti-kt algorithm, and A(µI) is the integral over the non-perturbative
part of the coupling, δαs,

A(µI) = 1
π

∫ µI

0
dκtδαs(κt) = µI

π

[
α0(µI)−αs(pt)−

b0
π

(
ln pt
µI

+ 2K
b0

+1
)
α2
s(pt)

]
. (2.17)

Here we defined K = (67
18 −

π2

6 )CA − 5
9nf , and

α0(µI) = 1
µI

∫ µI

0
dκtαs(kt) ∼ 0.5 . (2.18)

2.6.2 Underlying event

The effect on jets due to underlying event can be roughly estimated from corrections
stemming from the dipole of incoming partons [63]. The jet transverse momentum is
then shifted by

〈∆pt〉UE = RJ1(R)ΛUE = ΛUE
2

(
R2 − R4

8 +O(R6)
)
. (2.19)
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Chapter 2. Fundamentals of Jet Physics

Here J1 is the Bessel function of the first kind, and ΛUE, coresponding to the transverse
momentum change per unit rapidity, can be extracted from Monte Carlo simulations. At
the 14 TeV LHC, one finds ΛUE ∼ 10 GeV (figure 2.3 (left)).

2.6.3 Inclusive jets and optimal R

Hence, the shift in transverse momentum from non-perturbative corrections has two
contributions going in opposite directions, with hadronisation scaling as 1/R, and UE
growing with the jet area R2. The sum of the squares of the perturbative and non-
perturbative momentum shifts is shown in figure 2.3 (right), for quark jets at the Tevatron.
The non-perturbative part can be written as

〈∆pt〉i,NP = −2Ci
R

2M
π
A(µI) +RJ1(R)ΛUE

∼ − Ci
CF

0.5 GeV
R

+ ΛUE
2 R2 . (2.20)

These analytical estimates of non-perturbative corrections can be useful in several contexts.
One is to estimate non-perturbative corrections to the inclusive jet pt spectrum. Here we
can now write

dσ

dpt
(pt) =

dσPTq
dpt

(
pt − 〈∆pt〉q,NP

)
+
dσPTg
dpt

(
pt − 〈∆pt〉g,NP

)
, (2.21)

where dσPTi /dpt is the perturbative distribution for partons of flavour i, which is evaluated
at shifted transverse momentum. This will be discussed in more detail in section 5.5,
where we will see limitations of the analytical hadronisation model.

These analytical calculations can also provide useful information to find an R value which
minimises non-perturbative corrections. This can help reduce amiguities in comparisons
of theoretical predictions with data. The R value which minimises the squared sum of
hadronisation and UE pt shifts can be straightforwadly calculated as

RNP,min =
√

2
(2CiMA(µI)

πΛUE

)1/3
. (2.22)

At the 14 TeV LHC, one finds RNP,min ∼ 0.41 for quark jets, and RNP,min ∼ 0.54 for
gluon jets.

2.7 Jet substructure

With the LHC running at unprecedented center-of-mass energies, parton collisions well
above the TeV scale have now become common place. Because of this, even heavy
particles such as top quarks, and W and Z bosons can sometimes be produced with
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2.7. Jet substructure
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Figure 2.3 – Left: Shift of jet pt due to UE (upper curves) and hadronisation (lower
curves) for gg → gg scattering at the LHC, comparing Pythia 6.412 [67] (tune A),
Herwig 6.510 [68] with Jimmy 4.3 [69], and analytical hadronisation estimates from
equation (2.16). Right: Different contributions to the shift in jet pt, from perturbative
radiation, hadronsation and UE, given as a function of R for quark jets at the Tevatron.
Figures taken from [63].

transverse energies well beyond their rest mass, such that their decay products will be
collimated. The hadronic decays of these boosted particles will therefore typically only
be reconstructed into a single jet, rendering inadequate the usual picture of associating
each jet with a hard parton. To identify and study these boosted objects, it then becomes
necessary to look inside a jet, and study its “substructure”, which can contain important
information on the jets’ physical origin. Useful reviews of modern substructure tools can
be found in the proceedings of the BOOST conference [70, 71, 72, 73], though we discuss
some of the key ideas below.

2.7.1 Groomers

Because the relatively large jet radius used when clustering a boosted object will tend
to retain a large amount of unassociated radiation, the resulting jet mass resolution is
generally smeared out. To circumvent this issue, a number of grooming techniques have
been developed to suppress QCD contamination. These rely on picking out radiation
which is most likely to have been emitted by the parent hard parton, while discarding
unassociated wide-angle emissions.

The most common grooming algorithms are: pruning [74], which reclusters jet constituents
recursively, discarding soft wide-angle elements; trimming [75], which discards subjets
below a momentum fraction threshold fcut; filtering [76], which discards all but the nfilt
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Chapter 2. Fundamentals of Jet Physics

hardest subjets; and the recently introduced Soft Drop algorithm [77] with a choice of
the angular exponent β > 0.

2.7.2 Taggers

While they still aim at supressing backgrounds and enhancing signal jets, tagging
algorithms differ from groomers in that they only return jets that pass a given tagging
criteria. Examples of tagging algorithms include the (modified) Mass Drop Tagger [76, 78],
the Johns Hopkins Tagger [79], HEPTopTagger [80, 81, 82], and Soft Drop with β < 0.

In practice, the distinction between taggers and groomers can often be blurry. Many
groomers also act partly as taggers, such as pruning and trimming, enhancing signal
peaks in two- and three-prong structures while discriminating QCD jets.
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Part IIJets in the small-radius limit
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3 Jets with small radii

We have discussed a number of jet algorithms in chapter 2. These algorithms generally
involve a parameter which determines the angular distance between particles clustered
into the same jet. This parameter is referred to as the jet radius R.

A natural choice from a theoretical point of view is to take a jet radius R of order 1
(see e.g. [56, 83]). In practice however, the jet radius is often taken to be somewhat
smaller. This improves the ability to resolve multiple jets in top-antitop production –
which can decay to up to six quarks – or in cascade decays of supersymmetric particles.
It also significantly reduces the contamination due to underlying event and additional pp
collisions (pileup).

The most common choices for R are in the range 0.4–0.5 [57, 58], and in some extreme
environments, such as heavy-ion collisions, even smaller values are used, down to R =
0.2 [84, 85, 86, 87, 88]. Experiments sometimes also study ratios of the inclusive jet
cross-sections obtained with two different R values [89, 90, 84, 91, 92]. Additionally, a
number of modern jet tools, such as filtering [76] and trimming [75], resolve small subjets
within a single moderate-R jet, while others build large-R jets from small-R jets [93].
Many of these techniques have been discussed previously in chapter 2 and are further
described in a number of reviews [94, 95, 96, 97, 98].

A problem with small-R jets, which we generically call “microjets”, is that the corre-
spondence between the jet momentum and the original parton’s momentum is strongly
affected by radiation at angles larger than R. This can degrade momentum measure-
ments with the jets, for example, in resonance reconstruction. Furthermore it also affects
calculations in perturbative QCD, because the difference between the parton and jet
momenta involves an expansion whose dominant terms are αns lnnR2, where αs is the
strong coupling constant: if lnR2 is sufficiently large, then the series may no longer
converge, or do so only very slowly. In such cases in QCD, it is standard to carry out
an all-order resummation. Indeed it was argued in Ref. [99] that this is a necessity in
certain Higgs-boson jet-veto studies. Here it is not our intention to argue that all-order

29



Chapter 3. Jets with small radii

resummation of lnR2 enhanced terms is an absolute necessity: with a typical choice of
R = 0.4, ln 1/R2 ' 2, which is not a genuinely large number. However with increasing
use of yet smaller R values, it does become of interest to introduce techniques to carry out
small-R resummation. Furthermore, even for only moderately small R values, a small-R
resummation can bring insight and understanding about the origins of higher-order
corrections.

Logarithms of R have been partially resummed before, in a soft approximation, for jet
shapes [100]. Double logarithms, (αs lnR2 ln pt,cut)n, and first subleading logarithms have
been resummed for jet multiplicities [101] above some pt threshold, pt,cut. The approach
we will use is also related to the problem of photon isolation in small cones, which has
been discussed in Ref. [102]. Here, using an approach based on angular ordering, we will
show how to resum the leading logarithms of R (LL), terms (αs lnR2)n, for a wide range
of jet observables, including the inclusive jet spectrum, the transverse momentum loss
from a hard jet, jet veto probabilities, with results also for filtered and trimmed jets. In
each case, we also include calculations of the coefficients of the first few orders of the
perturbative expansion, which can give insight into the likely convergence of fixed-order
perturbative calculations.1

For concreteness, we will consider jet algorithms from the generalised kt family, as
described in section 2.4. In order to carry out a leading-logarithmic resummation of
(αs lnR)n terms, we will be considering configurations of particles where the angles are
strongly ordered, e.g. θ12 � θ23 � θ34 � . . ., with θij the angle between particles i and j.
For such configurations, all members of the generalised-kt family give identical jets, so we
need only carry out a single resummation. The results will be valid also for infrared-safe
cone algorithms such as SISCone [47] and also for e+e− variants of these algorithms,
formulated directly in terms of energies and angles rather than pti and ∆ij .

1Second-order small-R calculations have been performed in Refs. [103] for jet-vetos in Higgs production.
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4 Resummation of small-radius
logarithms

In this chapter, we will resum leading logarithms of the jet radius R, and calculate a
number of relevant observables. This chapter is based on [104] and [105].

4.1 All-order leading-logarithmic resummation

The basis of our resummation will be to start with a parton and consider the emissions
from that parton at successively smaller angular scales. When we ask questions about
(micro)jets with a radius R, it is equivalent at LL order to asking about the set of partons
that is produced by the initial parton i after allowing for all possible strongly ordered
emissions down to angular scale R.

It will be convenient to introduce an evolution variable t that corresponds to the integral
over the collinear divergence, weighted with αs at the appropriate renormalisation scale,

t(R, pt) =
∫ 1

R2

dθ2

θ2
αs(ptθ)

2π , (4.1)

where pt here is the transverse momentum of the initial parton. There is some freedom
here on the choice upper limit in angle and on the exact scale of αs, but these do not
matter at the LL accuracy that we are targeting. The expansion of t as a power series in
αs is

t(R, pt) = 1
b0

ln 1
1− αs(pt)

2π b0 ln 1
R2

= 1
b0

∞∑
n=1

1
n

(
αs(pt)b0

2π ln 1
R2

)n
, (4.2)

with b0 = 11CA−4TRnf
6 . In a fixed coupling approximation, t is simply αs

2π ln 1
R2 .

The dependence of t on the angular scale R is shown in figure 4.1 for a range of pt values.
The evolution variable is plotted over a range of t such that Rpt ≥ 1 GeV, and we see
that in most cases, typical values for t are well below t ∼ 0.4, which we will therefore
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Chapter 4. Resummation of small-radius logarithms
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Figure 4.1 – Evolution variable t as a function of angular scale R for pt =
10, 20, 50, 200, 2 000 and 20 000 GeV. Here R is plotted down to Rpt = 1 GeV.
For this, and for all other plots that involve a translation between R and t, we use a
one-loop coupling with 5 flavours such that αs(MZ) = 0.1184.

take as an upper limit for the rest of this chapter. Two reference points that we will use
are R = 0.4 and R = 0.2, which correspond to t ' 0.041 and t ' 0.077 respectively for
pt = 50 GeV.

To understand the structure of emissions as one evolves in angle, we will make use of
angular ordering [3, 1]. This tells us that if an emission i splits to j and k with opening
angle θjk, then any subsequent emission ` from j on an angular scale θjl � θjk is driven
purely by the collinear divergence around j and is independent of the properties of k
(and similarly with j ↔ k).1 This will make it relatively straightforward to write an
evolution equation that will encode the full set of potential emission configurations from
an initial hard parton.

To do so, it will be helpful to introduce a generating functional (cf. textbooks such
as [3, 1]). Suppose that on some angular scale, defined by a t-value of t1, we have a quark
with momentum xpt. We will define a generating functional Q(x, t1, t2) that encodes the
parton, or equivalently, microjet, content that one would observe if one now resolved
that parton on an angular scale defined by t2 > t1. The generating functional Q(x, t1, t2)

1One caveat with angular ordering arises if one looks at azimuthal correlations. E.g., consider three
particles such that θ23 � θ12 � 1, and define φ32 as the azimuthal angle of particle 3 around particle 2;
then the distribution in φ32 is not necessarily uniform. In our study here, we will not be considering
any observables that depend on the azimuthal angles, and so this issue does not need to be taken into
account.
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4.1. All-order leading-logarithmic resummation

satisfies the condition

Q(x, t, t) = q(x) , (4.3)

where the q(x) term indicates a 100% probability of finding just a quark with momentum
xpt. To first order in an expansion in t2 − t1 (or equivalently order αs),

Q(x, t1, t2) = q(x)+(t2−t1)
∫ 1

0
dzpqq(z)[q(zx) g((1−z)x)−q(x)]+O

(
(t2 − t1)2

)
, (4.4)

where the real q → qg splitting function is pqq(z) = CF
(

1+z2

1−z

)
. Eq. (4.4) indicates that

in addition to the state with just a quark, q(x), at order t there can also be states with
both a quark and a gluon carrying respectively momentum zxpt and (1− z)xpt; this is
represented by q(zx) g((1− z)x).2 As well as a generating functional Q from an initial
quark, we have one from an initial gluon, G(x, t1, t2), with the property G(x, t, t) = g(x).

For concreteness, the mean numbers of quark and gluon microjets of momentum zpt, on
an angular scale defined by t, produced from a quark of momentum pt are respectively

dnq(z)(t)
dz

= δQ(1, 0, t)
δq(z)

∣∣∣∣
∀q(x)=1,g(x)=1

,
dng(z)(t)

dz
= δQ(1, 0, t)

δg(z)

∣∣∣∣
∀q(x)=1,g(x)=1

, (4.5)

where δq(z) indicates a functional derivative. For t = 0, Eq. (4.5) consistently gives the
expected result.

4.1.1 Generating functional evolution equation

Let us now formulate an evolution equation for the generating functionals. We first
consider how to relate a quark generating function at initial scale 0 to one at an
infinitesimal initial scale δt:

Q(x, 0, t) = Q(x, δt, t)
(

1− δt
∫
dz pqq(z)

)
+ δt

∫
dz pqq(z)

[
Q(zx, δt, t)G((1 − z)x, δt, t)

]
. (4.6)

The term on the first line involves the probability, in large round brackets, that the
initial quark does not branch between scales 0 and δt, so that the partonic content is
given by that of a quark evolving from δt to t. The term on the second line involves the
probability that there was a q → qg branching in the interval 0 to δt, where the quark
and gluon take fractions z and 1− z of the original quark’s momentum and the partonic
content is now the combined content of the quark and the gluon, both evolving from
δt to t (this is represented by the product of generating functionals). At LL accuracy

2It is important to remember, therefore, that q(x) and g(x) are therefore not parton distributions.
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Chapter 4. Resummation of small-radius logarithms

the generating functionals depend only on the difference of t values, so we may replace
Q(x, δt, t) = Q(x, 0, t− δt). It is then straightforward to rewrite Eq. (4.6) as a differential
equation in t,

dQ(x, t)
dt

=
∫
dz pqq(z) [Q(zx, t)G((1− z)x, t)−Q(x, t)] , (4.7)

where we have introduced the shorthand notation Q(x, t) ≡ Q(x, 0, t). One may proceed
in a similar manner for gluons, giving

dG(x, t)
dt

=
∫
dz pgg(z) [G(zx, t)G((1− z)x, t)−G(x, t)]

+
∫
dz pqg(z) [Q(zx, t)Q((1− z)x, t)−G(x, t)] . (4.8)

where the two further real splitting functions are

pgg(z) = 2CA
(

z

1− z + 1
2z(1− z)

)
, (4.9a)

pqg(z) = nfTR(z2 + (1− z)2) . (4.9b)

Exploiting the z ↔ (1− z) symmetry of Eq. (4.8), we have written pgg(z) such that it
has a divergence only for z → 1. It will also be convenient to have defined the standard
leading-logarithmic splitting functions including the virtual terms, Pqq(z) = pqq(z)+,
Pgq(z) = pqq(1− z), Pgg(z) = pgg(z)+ + pgg(1− z)− 2

3nfTRδ(1− z) and Pqg(z) = 2pqg(z)
(we sum over quarks and anti-quarks), with the usual definition of the plus prescription.

While Eqs. (4.7) and (4.8) have been obtained by introducing an infinitesimal step of
evolution at the beginning of the branching process, it is also possible to write an equation
based on the addition of an infinitesimal step of evolution at the end of the branching.
For a generating functional F (x, t) that represents the evolution from any generic initial
condition (i.e. not necessarily a single quark or a single gluon), the resulting equation
reads

dF (x, t)
dt

=
∫
dy dz

{
δF (x, t)
δq(y) pqq(z) [q(zy)g((1− z)y)− q(y)]

+ δF (x, t)
δg(y) [pgg(z)(g(zy)g((1− z)y)− g(y)) + pqg(z)(q(zy)q((1− z)y)− g(y))]

}
.

(4.10)

The logic of this equation is that for each possible momentum fraction x, one considers
all ways of extracting a quark or a gluon with that momentum fraction, δq(x)F or δg(x)F ,
and then integrates over all allowed splittings. Eqs. (4.7) and (4.8) and Eq. (4.10) are
equivalent, and can be derived from a common starting point. Depending on the context,
one or the other may be more convenient.
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4.1. All-order leading-logarithmic resummation

4.1.2 Fixed-order expansions for the generating functionals

It is straightforward to solve the coupled pair of equations (4.7) and (4.8) order by order
as a power expansion in t. Writing

Q(x, t) =
∑
n

tn

n!Qn(x) , G(x, t) =
∑
n

tn

n!Gn(x) , (4.11)

and making use of the fact that it is sufficient to know just the result for x = 1, we have

Q0(1) = q(1) , (4.12a)

Q1(1) =
∫
dz pqq(z) [q(z) g(1− z)− q(1)] , (4.12b)

Q2(1) =
∫
dzdz′ pqq(z)

[
pgg(z′)

(
q(z) g((1− z)(1− z′)) g(z′(1− z))− g(1− z) q(z)

)
+ pqq(z′)

(
g(1− z) (g(z(1− z′)) q(zz′)− q(z))− g(1− z′) q(z′) + q(1)

)
+ pqg(z′)

(
q(z) q((1− z)(1− z′)) q((1− z)z′)− g(1− z) q(z)

)]
,

(4.12c)

for the quark case, and

G0(1) = g(1) , (4.12d)

G1(1) =
∫
dz

[
pgg(z) (g(z) g(1− z)− g(1)) + pqg(z) (q(z) q(1− z)− g(1))

]
,

(4.12e)

G2(1) =
∫
dzdz′

[
pgg(z) pgg(z′)

(
g(1− z) g(zz′) g(z(1− z′))− 2g(1− z) g(z)

+ g(z) g((1− z)(1− z′)) g(z′(1− z))− g(1− z′) g(z′) + g(1)
)

+ pgg(z) pqg(z′)
(
g(1− z) q(zz′) q(z(1− z′))− 2g(1− z) g(z)

+ g(z) q((1− z)(1− z′)) q((1− z)z′)− q(1− z′) q(z′) + g(1)
)

+ pqg(z) pqq(z′)
(
q(1− z) g(z − zz′) q(zz′)− 2q(1− z) q(z)

+ q(z) g((1− z)(1− z′)) q((1− z)z′)
)

+ pgg(z′) pqg(z)
(
g(1)− g(1− z′) g(z′)

)
+ pqg(z) pqg(z′)

(
g(1)− q(1− z′) q(z′)

)]
, (4.12f)

for the gluon case. These, and corresponding higher-order expansions, will be used to
obtain the first few orders of the series in t for a range of observables below. They
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Chapter 4. Resummation of small-radius logarithms

can be used both analytically and numerically, by Monte Carlo integration over the
z, z′ variables, with each term in the integrand corresponding to a specific partonic
configuration.

4.1.3 All-order reformulation

Eqs. (4.7) and (4.8) can be equivalently stated as integral equations

Q(x, t) = ∆q(t)Q(x, 0)+
∫ t

0
dt′∆q(t− t′)

∫ 1−ε

ε
dz pqq(z)Q(zx, t′)G((1−z)x, t′) (4.13)

and

G(x, t) = ∆g(t)G(x, 0) +
∫ t

0
dt′∆g(t− t′)

∫ 1−ε

ε
dz
[
pgg(z)G(zx, t)G((1− z)x, t′)

+ pqg(z)Q(zx, t)Q((1 − z)x, t′)
]

(4.14)

where we have introduced Sudakov-like form factors:

∆q(t) = exp
(
−t
∫ 1−ε

ε
dz pqq(z)

)
, (4.15)

∆g(t) = exp
(
−t
∫ 1−ε

ε
dz (pgg(z) + pqg(z))

)
. (4.16)

The ε cutoffs serve to regularise the divergences in the splitting functions. In the limit
ε→ 0, the results for Q(x, t) and G(x, t) are independent of ε.

The above expressions are suitable for Monte Carlo implementation as a recursive sequence
of splittings, with the Sudakov-like ∆q/g(t) factors acting as no-splitting probability
distributions. We have used such a Monte Carlo implementation, which generates explicit
partonic configurations, for the all-order results discussed below.3 One can similarly
reformulate Eq. (4.10), for which we again have a Monte Carlo implementation. It gives
identical results.

For numerical purposes we usually take ε = 10−3, which we find is sufficient in order to
obtain percent-level accuracy.

Before continuing to the results, it is perhaps worth commenting on the relation between
what we are calculating here and what is contained in parton-shower Monte Carlo
programs. We have used an angle as our ordering variable; alternative variables used in
some showers, such as relative transverse momentum or virtuality differ just by factors of
z and/or 1− z (and possibly an overall dimensionful constant). Because we only consider
finite values of z (neither arbitrarily small, nor arbitrarily close to 1), the impact of a

3By “partonic configuration”, we don’t mean full 4-vector information, but instead a z momentum
fraction for each parton and a flavour label, quark or gluon.
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4.2. Results

factor of z or 1− z in the choice of ordering variable is relevant only for terms beyond LL
accuracy. Thus all parton showers should contain the small-R leading logarithms that
we are resumming here. One of the main differences between a parton shower and our
calculation (apart from the much wider applicability of a shower) is that we can isolate a
specific physical contribution, making it possible to obtain analytic results (e.g. for the
expansion in powers of αs), physical insight and to straightforwardly combine results
with other calculations.

4.2 Results

In this section we will show illustrative results for a few key observables of current
relevance. The methods that we use can also be applied more generally, as we will see
for example for the inclusive jet spectrum in chapter 5, and for the dijet mass spectrum
in chapter 6.

4.2.1 Inclusive microjet observables

The most basic collider jet observable is the inclusive jet spectrum, measured in the
past years for example at HERA [106, 107], RHIC [84], the Tevatron [108, 109] and
LHC [89, 110, 111]. It has been the subject of many phenomenological studies and
calculations and is of considerable importance notably for constraining parton distribution
functions. See for example recent progress in NNLO jet predictions [112, 113] and
threshold resummation [114] and references therein.

Let us introduce the inclusive microjet fragmentation function: given a parton of flavour
i, f inclj/i (z, t) is the inclusive distribution of microjets of flavour j, at an angular scale
defined by t, carrying a fraction z of the parton’s moment. Momentum conservation
ensures that∑

j

∫
dzzf inclj/i (z, t) = 1 . (4.17)

In terms of the quantities introduced in section 4.1, f inclq/q (z, t) is for example nothing
other than dnq(z)(t)/dz as obtained from the Q(1, t) generating functional.

To derive an evolution equation for the inclusive microjet fragmentation function, we
start from Eq. (4.10), and define f inclj/i (z, t) more explicitly as

f inclj/i (z, t) ≡ δF (1, t)
δj(z)

∣∣∣∣
q(x)=g(x)=1

≡
{
δF (x, t)
δj(z)

}
, (4.18)
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Chapter 4. Resummation of small-radius logarithms

Thus we have

df inclj/i (z, t)
dt

= d

dt

{
δF (x, t)
δj(z)

}
=
{

δ

δj(z)

(
dF (x, t)
dt

)}
. (4.19)

And it is then straightforward to derive that

df inclj/i (z, t)
dt

= δjg

∫
dz′

z′

[
pgq(z′)+f

incl
q/i (z/z′, t)

]

+ δjq

∫
dz′

z′

[
pqq(z′)+f

incl
q/i (z/z′, t) + 2pqg(z′)f inclg/i (z/z′, t)

]

+ δjg

∫
dz′

z′
f inclg/i (z/z′, t)

[
pgg(z′)+ + pgg(1− z′)− δ(1− z′)

2
3nfTR

]
, (4.20)

where pij(x)+ denotes the usual plus prescription

f(x)+ = f(x)− δ(1− x)
∫ 1

0
f(y)dy . (4.21)

Therefore we find that for quark microjets

df inclq/i (z, t)
dt

=
∫
dz′

z′

[
Pqq(z′)f inclq/i (z/z′, t) + Pqg(z′)fg/i(z/z′, t)

]
, (4.22)

while the gluon case yields

df inclg/i (z, t)
dt

=
∫
dz′

z′

[
Pgq(z′)f inclq/i (z/z′, t) + Pgg(z′)fg/i(z/z′, t)

]
. (4.23)

Thus, the inclusive microjet fragmentation function trivially satisfies a DGLAP-style
equation

df inclj/i (z, t)
dt

=
∑
k

∫ 1

z

dz′

z′
Pjk(z′) f inclk/i (z/z′, t) , (4.24)

with an initial condition

f inclj/i (z, 0) = δ(1− z)δji . (4.25)

Note that a similar result is a part also of the small-R resummation of the fragmentation
contribution to isolated photon production considered in Ref. [102].

The solution to Eq. (4.24) can be obtained using minor adaptations of standard DGLAP
evolution codes, e.g. QCDNUM [115], QCD-Pegasus [116], HOPPET [117] or Apfel [118].4

4An evolution to an angular scale defined by t is most straightforwardly mapped to a leading-
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Figure 4.2 – The solid lines show the inclusive microjet spectrum for initial quarks (blue)
and initial gluons (green) using LL resummation of lnR2 enhanced terms. The dashed
lines show the spectrum of the hardest microjet. They differ from the solid lines only for
z < 1

2 . The four panes correspond to t = 0.04, 0.1, 0.2 and 0.3.

Alternatively one can use the Monte Carlo solution for the generating functional outlined
in section 4.1, which is the choice we have made here.

The behaviour of the inclusive microjet fragmentation function when evolving to smaller
angular scales is shown in Fig. 4.2 for t = 0.04, 0.1, 0.2 and 0.3. Here, and for all
subsequent numerical results, we use nf = 5. The solid lines represent the inclusive
microjet fragmentation function, in blue for an initial quark and in green for an initial
gluon. The fragmentation functions are summed over the flavour of the microjets. One
feature of the plots is a peak near z = 1, showing the presence of the original parton with
an almost unchanged momentum. As t increases, that peak disappears, and does so more
quickly for initial gluons than for initial quarks. Away from z = 1, the fragmentation

logarithmic DIS evolution, using a δ(1− x) initial condition at some scale Q0 and evolving to a higher
scale Q1 chosen such that

∫ Q2
1

Q2
0

dQ2

Q2
αs(Q2)

2π = t. We have explicitly done this with HOPPET and verified
that the results coincide with those from our Monte Carlo based solution.

39



Chapter 4. Resummation of small-radius logarithms

0.0 0.1 0.2 0.3 0.4
t

0.0

0.2

0.4

0.6

0.8

1.0

〈 z4
〉 incl q

Quark

O(t)
O(t2 )
O(t3 )
All order

0.7 0.4 0.2 0.1 0.05 0.02
R[pt =50GeV]

0.0 0.1 0.2 0.3 0.4
t

0.0

0.2

0.4

0.6

0.8

1.0

〈 z4
〉 incl g

Gluon

O(t)
O(t2 )
O(t3 )
All order

0.7 0.4 0.2 0.1 0.05 0.02
R[pt =50GeV]

Figure 4.3 – The result for 〈z4〉incl at all orders as a function of t (lower axis), together
with the first 3 orders of its expansion in t, shown for initiating quarks (left) and gluons
(right). The upper axis gives the corresponding R values for a jet with pt of order 50 GeV.
The factor 〈z4〉incl, multiplied by a hard inclusive parton spectrum that goes as p−5

t , gives
the corresponding microjet spectrum.

function for gluons is larger than that for quarks, as is to be expected given the larger
colour factor. Finally at small z, there is a second peak, associated with production of
multiple soft gluon microjets. The peak regions do not include resummation of logarithms
of 1− z for z near 1, nor those of z for small z. The resummation of double logarithms
αs lnR2 ln z (and the first tower of subleading terms) was discussed in Ref. [101].

To examine the impact on a physical observable such as the inclusive jet spectrum
in hadron collisions, it is necessary to convolute the inclusive microjet fragmentation
function with the inclusive partonic spectrum from hard 2→ 2 scattering. Let us suppose
the partonic spectrum for parton type i is given by dσi/dpt. Then the jet spectrum will
be given by

dσjet
dpt

=
∑
i

∫
dp′tdz

dσi
dp′t

f incljet/i(z, t)δ(pt−zp′t) =
∑
i

∫
pt

dz

z

dσi
dp′t

∣∣∣∣
p′t=pt/z

f incljet/i(z, t) , (4.26)

where fjet/i ≡
∑
j fj/i. If we assume that the partonic spectrum is dominated by a single

flavour i and its pt dependence locally is dσi/dpt ∼ p−nt , then one obtains the following
multiplicative relation between the microjet and partonic spectra,

dσjet
dpt

' dσi
dpt

∫ 1

0
dz zn−1 f incljet/i(z, t) . (4.27)

We will use the shorthand 〈zn−1〉incli for the z integral here. The all-order results are trivial
to obtain analytically from the exponentiation of the matrix of moments of LO DGLAP
splitting functions. The order-by-order expansion is likewise trivial. We accordingly refer
the reader to Eqs. (4.128) and (4.129) of Ref. [1].
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4.2. Results

At the LHC, typical n values range from about 4 at low pt to 7 or even higher at high
pt. The resummed (n−1)th moment of the inclusive microjet fragmentation function is
shown for quarks and gluons in Fig. 4.3, for n = 5, together with the first few orders
of the perturbative expansion in t. In this, and most of the other plots that follow, the
lower x-axis shows the value of t, while the upper axis shows the corresponding value of
R for the case of a parton with pt = 50 GeV.

The first observation that one makes from Fig. 4.3 is that small-R effects can be substantial.
For quark-induced jets with R in the range 0.4 to 0.2, they reduce the inclusive-jet
spectrum by 15− 25%. For gluon-induced jets the corresponding reductions are 30− 50%.
These are substantial reductions in the cross-section, and help provide a motivation for
wanting to understand small-R effects. We will discuss small-R effects on the inclusive
jet spectrum in more detail in chapter 5.

One question one can ask is about the convergence of the perturbative series. For
quark-induced jets the O (t) (i.e. NLO) result is accurate to within a couple of percent
for R = 0.4, while at R = 0.2 one sees 5% differences relative to the all-order result. For
gluon-induced jets, the O (t) result is off by about 10% for R = 0.4, becomes inadequate
around R = 0.3 and pathological (negative) near R = 0.1. Including the O

(
t2
)
corrections

(i.e. NNLO) brings agreement with all-orders to within a couple of percent for quark-
initiated jets down to R = 0.1; for gluon-initiated jets O

(
t2
)
is adequate at R = 0.4, but

starts to deviate noticeably from the all-orders results below R = 0.3.

Note that an expansion in t is not directly equivalent to an expansion in αs, because the
variable t already resums the running-coupling contributions. We discuss the differences
between the apparent convergence of the αs and t series in appendix B.1. An expansion
in αs seems to be more convergent, however, in light of the pattern of corrections as a
power series in the natural evolution variable t, one wonders whether this apparently
better convergence in αs is to be trusted.

4.2.2 Hardest microjet observables

As well as the inclusive jet spectrum, it is common to ask questions about the hardest
jet in an event, i.e. the jet with the largest transverse momentum. The hardest jet pt
observable is relevant also whenever a jet veto is applied, since a veto is equivalent to
a requirement that the hardest jet’s pt be below some threshold. Given a parton with
transverse momentum pt, we define fhardest(z) to be the probability that the hardest
resulting microjet carries a momentum zpt.5 Now instead of a momentum sum rule, we
have a probability sum rule,∫ 1

0
dz fhardest(z) = 1 (4.28)

5We should really write fhardest(z, t), but in most cases drop the t argument for compactness.
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Chapter 4. Resummation of small-radius logarithms

In general, quantities involving the hardest microjet are more complicated than the
inclusive quantities considered in section 4.2.1. The reason is that for an ensemble of
microjets arising from multiple nested splittings, one has to consider all of the microjets
together in order to determine which is the hardest. We have been able to carry out
analytical calculations for configurations with up to three partons (order t2), but have
resorted to Monte Carlo methods to evaluate higher orders in t and all-order results.

The all-order distribution of fhardest(z) is shown as dashed lines in Fig. 4.2, for the same
four t values as the inclusive microjet fragmentation function. The inclusive and hardest
microjet spectra are identical for z > 1

2 , since it is impossible to have more than one
microjet with z > 1

2 . For small values of t, the hardest microjet spectrum shows a sharp
transition at z = 1

2 , because below z = 1
2 it can be non-zero only starting at order t2.

There is another transition at z = 1
3 , below which there are contributions only from order

t3 onwards. As t increases, these transition points smoothen out significantly. The main
difference between quark and gluon initiated jets is that the effects are more marked for
the latter, as one would expect from the larger colour factor.

Next we consider various average properties of the hardest microjet. As well as numerical
resummed results, we will also provide the coefficients of the first few orders of the power
series in t, which we write as

O(t) =
∑
n

tn

n! cn[O] , (4.29)

for a general observable O. While we have analytical results for c2, for the sake of
conciseness we will just quote numerical values in this section, separately for each colour
factor. The corresponding full analytical expressions are given in appendix A.1.

Hardest microjet 〈∆z〉

A typical context in which the average fractional energy loss from a jet, 〈∆z〉, is relevant
is in the study of the difference in pt between a Z-boson and the leading jet in Z+jet
events. This kind of quantity is used for jet calibration [57, 58]. It is also relevant for
example in jet–photon balance studies in heavy-ion collisions [119, 120].

The average fractional transverse-momentum difference between the hardest microjet
and the initial parton is given by

〈∆z〉hardest ≡
∫ 1

0
dz fhardest(z)(z − 1) . (4.30)
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Figure 4.4 – Average hardest microjet ∆z, shown as a function of t for quark-induced
(left) and gluon-induced (right) jets. Resummed results are represented as solid lines. The
first three orders in t are represented as dotted, dashed and dash-dotted lines respectively.

For an initial quark we find

〈∆z〉hardestq = CF t

(3
8 − 2 ln 2

)
+ t2

2
(
− 0.467188CACF + 1.62588C2

F − 0.0710364CFnfTR
)

+ t3

6
(
−2.33574(2)C3

F+0.67962(2)C2
ACF+0.11881(2)CAC2

F+0.416131(6)CACFnfTR

− 0.204121(5)C2
FnfTR + 0.0473591(7)CFn2

fT
2
R

)
+O(t4) , (4.31)

while the case of an initiating gluon yields

〈∆z〉hardestg = t

[
− 7

48nfTR + CA

(43
96 − 2 ln 2

)]
+ t2

2
(
0.962984C2

A + 0.778515CAnfTR − 0.50674CFnfTR + 0.0972222n2
fT

2
R

)
+ t3

6
(
− 1.11718(2)C3

A − 1.557542(7)C2
AnfTR + 0.375492(7)CACFnfTR

+ 0.75869(1)C2
FnfTR − 0.635406(3)CAn2

fT
2
R + 0.305404(3)CFn2

fT
2
R

− 0.0648152(4)n3
fT

3
R

)
+ O(t4) . (4.32)

In figure 4.4 we can see the all-order results for the hardest microjet ∆z, along with the
fixed order expansion expressed in equations (4.31) and (4.32) truncated at the first,
second and third powers in t. For quark-induced jets, the fractional energy loss is in the
range 5− 10% for R = 0.4− 0.2, while for gluon-induced jets it is in the range 10− 20%.
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Chapter 4. Resummation of small-radius logarithms

One feature of Fig. 4.4 is that one immediately notices a significantly better convergence
than in Fig. 4.3. This is because the z4 weighting in Fig. 4.3 amplifies the impact of
higher orders. On the other hand jet momenta tend to be measured with much higher
accuracy (∼ 1% [57, 58]) than steeply falling jet spectra, so one targets higher relative
accuracy for 〈∆z〉hardest. Quite high (percent-level) accuracy for the phenomenologically
relevant range of t is obtained even at order t in the case of quark jets. However, for
gluon jets O (t) is probably inadequate at R = 0.3 and below. Going to order t2 is
probably sufficient for gluon jets down to R = 0.15. As noted in the case of the inclusive
jet spectrum an expansion in t does not directly correspond to an expansion in αs, so
further cross-checks on the validity of fixed-order calculations would be needed on a
case-by-case basis.

Jet-veto resummations and 〈ln z〉

Jet veto resummations are one of the contexts in which the potential need for all-order
small-R corrections has been raised [99]. In this context, as we shall derive below, the
relevant quantity is 〈ln z〉hardest.

Let us first recall the core structure of a jet-veto resummation for finite-R jets. As
we shall see, when considering logarithms of the jet veto scale, it will be sufficient for
our purposes to work at leading (double) logarithmic accuracy. This helps eliminate
numerous complications such as those related to parton distribution functions. Assuming
a process with a hard scale Q and two incoming partons with colour factor C (CF for
quarks, CA for gluons), the probability of there being no gluons emitted above a scale pt
is given by

P (no primary-parton veto) =
∞∑
n=0

1
n!

n∏
i=1

[∫ Q dkti
kti

ᾱs(kti) 2 ln Q

kti
(−1 + Θ(pt − kti))

]
,

(4.33)

where ᾱs(kt) ≡ 2αs(kt)C/π. In the factor (−1 + Θ(kti − pt)), the Θ-function corresponds
to the veto on partons above a scale pt, while the term −1 accounts for virtual corrections.
The factor 2 ln Q

kt
corresponds to the kinematically allowed range of rapidities for a gluon

with transverse momentum kt (in a leading logarithmic approximation for the pt veto
resummation). It is straightforward to see that Eq. (4.33) corresponds to an exponential,

P (no primary-parton veto) = exp
[
−
∫ Q

pt

dkt
kt
ᾱs(kt) 2 ln Q

kt

]
. (4.34)

Defining L ≡ lnQ/pt, lnP contains “leading (double) logarithmic” terms αnsLn+1. The
jet veto efficiency in Higgs and Drell-Yan production is currently known to NNLL accuracy
in this language, i.e. αnsLn−1 [121, 122, 123, 124, 125]. The papers by the Becher et al.
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and the Stewart et al. groups include subsets of terms beyond NNLL, while heavy-quark
effects in the ggH interaction have been discussed in Ref. [126].

To include small-R corrections, one needs to modify Eq. (4.33) to account for the fact
that each of the partons i = 1 . . . n will fragment into multiple microjets, and for each
of those partons the veto now applies to the resulting hardest microjet. Thus for each
emission in Eq. (4.33), we integrate over the probability distribution for the momentum
fraction of the hardest resulting microjet,

P (no microjet veto) =
∞∑
n=0

1
n!

n∏
i=1

[∫ Q dkti
kti

ᾱs(kti) 2 ln Q

kti

×
∫ 1

0
dzif

hardest(zi, t(R, kti))

− 1 + Θ(pt − zikti)

 , (4.35)

where we have made the t(R, kti) argument in fhardest(zi, t(R, kti)) explicit, because of
the importance of making the right scale choice for the definition of t (cf. also Eq. (4.1)).
Given Eq. (4.28), it is immaterial to the result whether the integration over z takes place
outside the large round brackets or inside, applied just to the Θ-function. As before, we
now write the result as an exponential,

P (no microjet veto) = exp
[
−
∫ Q dkt

kt
ᾱs(kt) 2 ln Q

kt

×
∫ 1

0
dzfhardest(z, t(R, kt))

(
Θ(kt − pt) + Θ(zkt − pt)−Θ(kt − pt)

)]
. (4.36)

We have separated the Θ functions into multiple pieces: for the first one, the z integration
can be performed trivially and one obtains the primary-parton result, Eq. (4.34). For
the remaining pair of Θ-functions, we first evaluate the kt integral: since kt is being
evaluated over a limited range, we can replace ᾱs(kt) with ᾱs(pt), and similarly in the
lnQ/kt and t(R, kt) factors. The terms that we neglect as a result of this are suppressed
by one logarithm of lnQ/pt. We therefore have the following small-R correction to the
jet veto efficiency

U ≡ P (no microjet veto)
P (no primary-parton veto) = exp

[
−2ᾱs(pt) ln Q

pt

∫ 1

0
dzfhardest(z, t(R, pt)) ln z

]
.

(4.37)

This R-dependent correction generates a series of terms αm+n
s (Q)Lm lnnR2, while we

have neglected terms suppressed by one or more powers of either L = lnQ/pt or lnR2.

Eq. (4.37) shows that the key quantity for the small-R part of the resummation is the
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Figure 4.5 – Average of the hardest microjet ln z, as a function of t, shown separately for
quark-induced (left) and gluon-induced (right) jets. The resummed results are represented
as solid lines. The first three orders in t are represented as dotted, dashed and dash-dotted
lines respectively.

first logarithmic moment of fhardest(z)

〈ln z〉hardest ≡
∫ 1

0
dz fhardest(z) ln z . (4.38)

It is the logarithmic moment of the microjet spectrum from initial gluons that is relevant
here, since the i = 1 . . . n partons in Eq. (4.35) are all gluons (regardless of whether the
jet veto is applied to a qq̄ or gluon-fusion process). The first three orders of its expansion
in t are

〈ln z〉hardestg = t

[
1
72CA

(
131− 12π2 − 132 ln 2

)
+ 1

36nfTR(−23 + 24 ln 2)
]

+ t2

2
(
0.206672C2

A + 0.771751CAnfTR − 0.739641CFnfTR + 0.117861n2
fT

2
R

)
+ t3

6
(
− 0.20228(4)C3

A − 0.53612(2)C2
AnfTR − 0.062679(8)CACFnfTR

+ 0.54199(2)C2
FnfTR − 0.577215(3)CAn2

fT
2
R + 0.431055(4)CFn2

fT
2
R

− 0.0785743(5)n3
fT

3
R

)
+ O(t4) . (4.39)

The order t term of Eq. (4.39), when incorporated into Eq. (4.37), gives an α2
sL lnR2

term whose coefficient agrees with that given in Refs. [122, 124, 125]. Full analytical
results for the O

(
t2
)
term are to be found in Appendix A.1.2, as are analytical and

numerical results for the corresponding logarithmic moment for quark fragmentation
(potentially of interest for vetoes on initial state g → qq̄ splittings).

The all-order result for 〈ln z〉hardestg (and quark counterpart) is shown as a function of t
in Fig. 4.5, together with its expansion in t. The small-R effects in the gluon-induced
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cfit4 cfit5 cfit6 cfit7 cfit8

gluon, nf = 5 133.55 -478.55 -1226.87 22549.99 -77020.08
gluon, nf = 4 100.69 -352.10 -858.44 15819.97 -53597.50
quark, nf = 5 -34.07 105.62 226.10 -4038.61 13056.73
quark, nf = 4 -28.34 85.56 171.70 -3058.89 9706.57

Table 4.1 – Results of a fit to parametrise the all-order result of the integral in Eq. (4.38)
in the form c1t+ c2

t2

2! + c3
t3

3! + cfit4
t4

4! + cfit5
t5

5! + cfit6
t5

6! + cfit7
t4

7! + cfit8
t5

8! , where the c1, c2 and
c3 coefficients are fixed to the values given in Eqs. (A.5) and (4.39). Values are given
for nf = 4 and nf = 5. The fitted curve is accurate to 0.1% in the t ∈ [0, 1] range.
The fit values for the fourth to eigth order coefficients are not to be taken as robust
determinations of those coefficients, but simply as values whose use in the truncated sum
gives good agreement with the all-order result.

case are in the range 15% to a little over 25% for R = 0.2− 0.4, i.e. slightly larger than
for 〈∆z〉hardestg . One notes the remarkably good convergence: for example at t = 0.1, for
〈∆z〉hardestg the difference between the O (t) and all-order results was roughly 25%; in
contrast for 〈ln z〉hardestg the difference is 7%. It is not clear to us if there is a fundamental
reason why this should be the case.

For practical use it is useful to have a parametrisation of the all-order result. Given the
good convergence of the series, this can be obtained in the range t < 0.4 simply by fitting
additional c4 and c5 coefficients to the all-order curve. The results of the fit are given in
table 4.1 and they allow one to reproduce the all-order result to an accuracy of better
than 1%. The actual values of the coefficients themselves are, however, not guaranteed
to be accurate since they may in part be absorbing contributions from yet higher order
terms. A study of the phenomenological impact of the small-R resummation will be
given in chapter 5.

We note that a numerical calculation for the α3
sL ln2R2 term in the case of the jet veto

for gg → H production was given in Ref. [103]. At first sight it appeared to disagree
with our analytical result. After consultation with the authors they identified an issue in
their treatment of R-dependent running coupling-related terms. The detailed comparison
and discussion is to be found in Appendix A.3.1. In Appendix A.3.2 we present a
cross-check of our calculational approach specifically for the second-order contribution to
fhardest(z) for quark-induced jets, as obtained through a comparison to the Event 2 NLO
program [127].

Let us now show how to explicitly include small-R effects in jet-vetoed cross sections.
We start by reviewing the formalism of the NNLL resummed jet-veto cross section, as
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Chapter 4. Resummation of small-radius logarithms

presented in [122],

ΣNNLL(pt,veto) =
(
L(0)(L) + L(1)(L)

)
×
(
1 + Fclust(R) + Fcorrel(R)

)
× eLg1(αsL)+g2(αsL)+αs

π
g3(αsL) . (4.40)

Here we have split the parton luminosities into two terms starting at order α2
s ,

L(0)(L) =
∑
i,j

∫
dx1dx2|MB,ij |2δ(x1x2s−M2)fi

(
x1, e

−LµF
)
fj
(
x2, e

−LµF
)
, (4.41)

and α3
s,

L(1)(L) = αs
2π
∑
i,j

∫
dx1dx2|MB,ij |2δ(x1x2s−M2)

×
[
fi
(
x1, e

−LµF
)
fj
(
x2, e

−LµF
)
H(1)

+ 1
1− 4παsb0L

∑
k

(∫ 1

x1

dz

z
C

(1)
ik (z)fk

(
x1
z
, e−LµF

)
fj
(
x2, e

−LµF
)

+ {(x1, i) ↔ (x2, j)}
)]

, (4.42)

where the resummed logarithm is given by L ≡ lnQ/pt,veto, |MB,ij |2 is the squared Born
matrix element for the partonic ij → H scattering, H(1) is a hard NLO correction, C(1)

ik (z)
is a NLO coefficient function and fi(x, µF ) is the parton distribution function of flavour
i. The resummation at LL, NLL and NNLL accuracy is encoded in the gi(αsL) functions
of Eq. (4.40).

The two quantities in Eq. (4.40) that account for the NNLL dependence of the result on
the jet definition are Fclust and Fcorrel. Fclust(R) accounts for clustering of independent
soft emissions and for commonly used values of R is given by [121, 122]

Fclust(R) = 4α2
s(pt,veto)C2

AL

π2

(
− π2R2

12 + R4

16

)
. (4.43)

Fcorrel(R) [121] comes from the correlated part of the matrix element for the emission of
two soft partons. For our purposes it is useful to further split it into two parts,

Fcorrel(R) = 4α2
s(pt,veto)CAL

π2

(
f1 ln 1

R
+ freg(R)

)
, (4.44)

where the coefficient of the logarithm of R is

f1 = −131 + 12π2 + 132 ln 2
72 CA + 23− 24 ln 2

72 nf , (4.45)
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Figure 4.6 – Impact of small-R resummation on the jet-veto efficiency, comparing
N3LO+NNLL+LLR to N3LO+NNLL results.

while the finite (regular) remainder is

freg(R) ' 0.6106CA − 0.0155nf +O(R2) . (4.46)

This was originally derived including terms up to R6 in Ref. [121] with a numerically-
determined constant term, while an analytic form for the constant term and an expansion
up to order R10 were given in Ref. [124]. The LLR resummation can be incorporated
into the jet-veto cross section by replacing Fcorrel(R) with

Fcorrel
LLR (R) = exp

[
−4αs(pt,veto)CA

π
L 〈ln z〉hardestg

]
− 1

+ 4α2
s(pt,veto)CA

π2 L

(
f1 ln 1

R0
+ freg(R)

)
. (4.47)

This expression includes just the logarithms needed to obtain joint NNLL+LLR resum-
mation, without terms that are subleading in this hierarchy (except for those explicitly
included as part of a NNLL resummation).

The impact of the small-R resummation is shown in Fig. 4.6 for R = 0.4, where one sees
that it increases the central value of the efficiency by about 1% at pt,veto = 20 GeV, with
a slight increase also in the size of the uncertainty band. This is also consistent with
what we will find in chapter 5 for the inclusive jet spectrum.
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Chapter 4. Resummation of small-radius logarithms

Jet flavour

The flavour of jets is a subject that is conceptually interesting and obtaining a better
handle on jet flavour is potentially also of considerable practical use.6 As discussed at
length in Ref. [59] and in section 2.4.4, the definition of jet flavour is a subtle question.
However, in the leading-logarithmic collinear limit in which we work here, those subtleties
disappear, essentially because they are related to soft radiation.

The question that we ask in this subsection is the following: given a quark (gluon) parton,
how likely is it that the resulting hardest microjet will have the flavour of a gluon (quark).
This is relevant, for example, when considering the performance of quark/gluon tagging
algorithms, whether theoretically [128, 129, 130, 131] or experimentally [132, 133], since
one is often assuming that the flavour of the selected (hardest) jet is identical to that of
the underlying hard scattering.

To answer this question, we extend fhardest(z) to have flavour indices: fhardesta/b (z) is the
differential distribution in z of hardest microjets of flavour a given an initiating parton
of flavour b. The overall probability, P(a|b) of producing a hardest microjet of flavour a,
given an initial parton of flavour b, is

P(a|b) =
∫ 1

0
dz fhardesta/b (z) . (4.48)

The two main cases of interest are

P(g|q) = CF t

(
ln 4− 5

8

)
+ t2

2
(
−0.610848CACF +0.0519619C2

F−0.50753CFnfTR
)

+ t3

6
(
− 1.112(6)C3

F + 0.505(8)C2
ACF + 0.92(2)CAC2

F + 0.89157(6)CACFnfTR

− 0.0903(1)C2
FnfTR + 0.338360(6)CFn2

fT
2
R

)
+O(t4) , (4.49)

and

P(q|g) = 2
3nfTRt+ t2

2
(
− 0.201036CAnfTR − 0.438979CFnfTR − 0.444444n2

fT
2
R

)
+ t3

6
(
1.0498(2)C2

AnfTR − 0.10560(6)CACFnfTR − 0.2537(1)C2
FnfTR

+ 0.536081(8)CAn2
fT

2
R + 0.585304(6)CFn2

fT
2
R + 0.2962952(5)n3

fT
3
R

)
+O(t4) .

(4.50)

Analytical expressions for the t2 coefficients are given in Appendix A.1.3. The all-order
results are shown in Fig. 4.7. One sees for example that for R = 0.4, a quark (gluon)
has a 4% (6%) probability of becoming a differently flavoured microjet; for R = 0.2

6Furthermore, jet flavour has seen extensive discussion in the literature, so much so that, for example,
Ref. [59] was able to identify over 350 articles with the terms “quark jet” or “gluon jet” in their title.
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Figure 4.7 – Hardest microjet flavour change probability as a function of t. The left-hand
plot shows the probability for a quark-parton to emerge as a gluon microjet, while the
right-hand plot shows the opposite flavour-changing probability. Resummed results are
shown as solid lines, while the first three orders in t are represented as dotted, dashed
and dash-dotted lines respectively.

the corresponding numbers are 7% (12%). These numbers are subject to substantial
higher-order (and jet- and flavour-definition related) uncertainties, but they give an
order of magnitude for the maximal jet-flavour purity that can be obtained in samples
generated from flavour-pure partonic samples.

There are other questions that may also be interesting to ask about jet flavour. For
example one might investigate it also in the context of inclusive jet measurements, to
identify how the flavour composition in a steeply-falling hard-scattering spectrum is
modified in the resulting microjet spectrum. It would also be conceptually interesting
(though perhaps not very physically relevant) to investigate the limit of asymptotically
large t, where the ratio of quark to gluon microjets might be expected to tend to a fixed
constant, independently of the whether the initial parton is a quark or gluon.

4.2.3 Multi (sub)jet observables

A number of methods developed for boosted electroweak and top-quark tagging naturally
involve small-radius subjets, as discussed in various reviews [94, 95, 96, 97]. These are
used in part because the boost collimates the heavy-object decay products and associated
radiation and in part to mitigate the impact of the very substantial pileup that is present
at the LHC.

Here we will consider general purpose “grooming” approaches, filtering [76] and trim-
ming [75], which, for their general ability to remove pileup, could have applications also
beyond boosted-objected studies. In particular, it is interesting to ask how well filtered
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Chapter 4. Resummation of small-radius logarithms

and trimmed jets maintain the momentum of an original parton. Similar considerations
may apply also to the idea of building large jets from small jets [93].

Filtering

In filtering, one takes a jet clustered with an initial radius R0, reclusters its constituents
on a smaller angular scale, Rfilt < R0, and then discards all but the n hardest subjets.
Whereas t in the previous sections was defined as being αs

2π ln 1
R2 , plus higher orders from

the running coupling, we now imagine taking a large-radius original jet, R0 = O (1) and
processing it with a small filtering radius, with t defined in terms of the filtering radius,
t ' αs

2π ln 1
R2
filt
, again plus higher orders from the running coupling. More generally, i.e.

also for small R0, t ' αs
2π ln R2

0
R2
filt

plus higher orders, and the quantities we work out here
will then relate the filtered jet to the original jet rather than to the original parton.

We define fk-hardest(z) to be the probability that the k-th hardest subjet carries a
momentum fraction z of the initial parton (or large-R jet). We can then express the
energy loss between the filtered jet and the initial parton as

〈∆z〉filt,n =

 n∑
k=1

∫
dz z fk-hardest(z)

− 1. (4.51)

The total energy loss when taking the sum of the n = 2 hardest microjets is, for the case
of an initiating quark

〈∆z〉filt,2q = t2

2
(
− 1.152CACF − 3.15229C2

F − 0.175607CFnfTR
)

+ t3

6
(
24.23(3)C3

F + 0.82448(2)C2
ACF + 6.2567(2)CAC2

F + 0.893365(6)CACFnfTR

+ 0.30444(2)C2
FnfTR + 0.1170718(9)CFn2

fT
2
R

)
+O(t4) , (4.52)

while for an initial gluon, we find

〈∆z〉filt,2g = t2

2
(
− 3.88794C2

A − 0.5029CAnfTR − 0.505401CFTRnf
)

+ t3

6
(
27.258(8)C3

A+8.7362(2)C2
AnfTR−0.59419(2)CACFnfTR+0.72083(2)C2

FnfTR

+ 0.740071(4)CAn2
fT

2
R + 0.264690(3)CFn2

fT
2
R

)
+O(t4) . (4.53)

The full analytical results for the coefficients of t2 are given in Appendix A.1.4. If we
consider the n = 3 hardest subjets, then the first non-vanishing term is the t3 coefficient,
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and we find, for an initial quark

〈∆z〉filt,3q = t3

6
(
− 17.02(3)C3

F − 5.0299(2)C2
ACF − 18.9494(9)CAC2

F

− 0.643983(4)CACFnfTR − 3.1521(1)C2
FnfTR

)
+ t4

24 8795(14) +O
(
t5
)
, (4.54)

and for an initial gluon

〈∆z〉filt,3g = t3

6
(
− 36.657(8)C3

A − 5.3268(2)C2
AnfTR − 3.48461(7)CACFnfTR

− 3.5362(3)C2
FnfTR − 0.1526421(5)CAn2

fT
2
R − 0.1021532(8)CFn2

fT
2
R

)
+ t4

24 79258(213) + O
(
t5
)
, (4.55)

where for the t4 terms we have not extracted the explicit colour separation.

The all-order results for 〈∆z〉filt are given in Fig. 4.8 for nfilt = 2 (upper row) and nfilt = 3
(lower row). On one hand one observes how stable the filtered momentum is relative to
the momentum of a single microjet. Taking t = 0.1, which corresponds to R(filt) ' 0.13,
an n = 2 filtered jet retains 90% of the parton’s momentum (gluon case), while an n = 3
filtered jet retains nearly 95% of the momentum. This is to be compared to just 75% for
a single microjet. This is in part a consequence of the fact that 〈∆z〉filt,n is non-zero only
starting from order tn rather than order t. Interestingly, however, the convergence of the
series in t seems to be far worse. Considering the gluonic n = 3 case, for Rfilt = 0.2 (a
not unusual choice), the zeroth order approximation is closer to the full resummed result
than any of the non-zero fixed-order results. We are not sure why this is the case, but it
suggests that resummation effects should certainly be studied further if one is to carry
out precision physics with filtered jets beyond their originally intended application of
jet-mass determination in boosted-object taggers.

Trimming

In trimming one takes a jet of size R0, reclusters its constituents on a smaller angular
scale Rtrim < R0 and keeps (and merges) just the subjets with psubjett ≥ fcutpjett . As was
the case for filtering, t is now defined in terms of Rtrim rather than R.

The energy difference between the trimmed jet and the initial parton of flavour i can
then be expressed as a function of fcut by the equation

〈∆z(fcut)〉trimi =

∑
j

∫ 1

fcut
dz z f incl

j/i (z, t)

− 1 =
∑
j

∫ fcut

0
dz (−z) f inclj/i (z, t) . (4.56)
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Figure 4.8 – Average fractional jet energy loss ∆z after filtering with nfilt = 2 (upper
row) and nfilt = 3 (lower row), as a function of t, for quark-induced jets (left) and
gluon-induced jets (right). Resummed results are represented as solid lines. The second,
third and fourth orders in t are represented as dashed, dash–dotted and dash–dash–dotted
lines respectively.
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Given that the integral in the rightmost expression ranges only from z = 0 to fcut, it is
straightforward to see the that the result will be of order fcut. For the quark case we
have

〈∆z(fcut)〉trimq = t

2CF
[
3f2

cut + 4 ln(1− fcut)
]

+ t2

2

[
C2
F f

2
cut

(3
4 −

1
2 ln fcut

)
+CACF fcut

(
4 ln fcut + 8

3

)
+CACF f

2
cut

(
2 ln fcut−

7
6

)
− 4

3nfCFTRfcut + nfCFTRf
2
cut

(
− 2 ln fcut −

2
3

)
+O(f3

cut)
]
, (4.57)

where at order t2 we have given just the first couple of terms in a series expansion in fcut
(see Appendix A.1.5 for the full expressions). For the gluon case we find

〈∆z(fcut)〉trimg =
t

6

[
CAf

2
cut(12− 4fcut + 3f2

cut)− 2TRnff2
cut(3− 4fcut + 3f2

cut) + 12CA ln(1− fcut)
]

+ t2

2

[
C2
Afcut

(
4 ln fcut+ 10

3

)
+C2

Af
2
cut

(
2 ln fcut+ 2

3

)
−nfCATRf2

cut

(19
6 +2 ln fcut

)
− 8

3nfCFTRfcut − nfCFTRf
2
cut ln fcut + 2

3f
2
cutn

2
fT

2
R +O(f3

cut)
]
. (4.58)

A key feature of the above equations is the presence at order t2 of fcut ln fcut terms
in the CFCA and C2

A colour channels for quarks and gluons respectively. This should
not be surprising, since trimming has two small parameters, Rtrim and fcut, and to
obtain a robust prediction it is advisable to resum the logarithms that arise from each
of these small parameters. Terms αns fcut lnnR2 lnn−1 fcut are in fact implicitly included
in our current approach, but ideally one would aim to resum also all the terms that
appear without lnR2 enhancements as well, e.g. αns fcut lnn−1 fcut. The logarithms of fcut
involve, for example, running-coupling effects beyond those considered here, non-global
logarithms [134], and potentially also clustering logarithms [135]. We leave their study
to future work. Without them, it seems difficult to use just the lnR2 resummation to
draw conclusions about the convergence and size of trimming effects. We therefore give
our full lnR2-resummed results for trimming only in Appendix A.1.5, together with the
complete analytical expressions for the t2 terms and numerical determinations of the t3
and t4 contributions.

4.3 Conclusion

In this chapter we have introduced a method to resum terms (αs lnR2)n to all orders
and applied it to a wide range of jet observables. One key observation is that small-R
effects can be substantial, for example reducing the inclusive-jet spectrum by 30− 50%
for gluon jets when R is in the range 0.4− 0.2.
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The set of observables we considered should not be seen as exhaustive: for example
we might equally well have considered quantities such as dijet asymmetries, microjet
multiplicities or, with a little further work, jet shapes. The program used to obtain the
results described above can be applied also to a number of these other observables.

One should not forget that the leading logarithms of R that we resummed are also
included in parton-shower Monte Carlo programs that include angular ordering, whether
directly, or through some other implementation of colour coherence. However it is non-
trivial to understand their role separately from the many other physical effects present
in Monte Carlo generators and it is also difficult to merge them with other logarithmic
resummations or fixed-order calculations, especially beyond NLO. With the resummations
in the form that we have given here, one can directly isolate the small-R effects and
merging with other calculations becomes straightforward, as we have illustrated for jet
veto resummations. We also saw that the resummation made it possible to estimate
the range of validity in R of fixed-order perturbative calculations. One potential area
of application, where R is genuinely small, is in substructure studies, where we saw
for filtering that the resummation effects are substantial, and fixed-order convergence
intriguingly poor.

Other future work might consider small-R logarithms in conjunction also with threshold
resummation. Finally it would be of interest to understand how to go beyond LL
accuracy for small-R resummations. We believe that the techniques that apply would
be of relevance also for the resummation of jet substructure observables such as the
modified Mass Drop Tagger’s jet-mass distribution [78], which was recently calculated to
NNLO+NNLL accuracy [136, 137].
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5 Inclusive jet spectrum in the
small-radius limit

In this chapter, we apply the resummation of small-radius logarithms to the case of the
inclusive jet spectrum. This chapter is based on [138].

5.1 Introduction

In chapter 4, we showed how to resum the whole tower of leading-logarithmic (LLR) terms,
i.e. αns lnn 1/R2 for all n, and applied this method to calculate a range of observables.
We will now examine the phenomenological impact of small-R terms for the archetypal
hadron-collider jet observable, namely the inclusive jet spectrum. This observable probes
the highest scales that are accessible at colliders and is used for constraining parton
distribution functions (PDFs), determining the strong coupling and also in studies of
hard probes heavy-ion collisions. Two factors can contribute to enhance small-R effects
in the inclusive jet spectrum: firstly, it falls steeply as a function of pt, which magnifies
the impact of any physical effect that modifies the jet’s energy. Secondly, a wide range
of R values has been explored for this observable, going down as far as R = 0.2 in
measurements in proton–proton collisions by the ALICE collaboration [89]. That wide
range of R has been exploited also in studies of ratios of cross sections at different R
values [89, 90, 84, 91, 92]. For R = 0.2, LLR small-R effects can be responsible for up to
40% modifications of the jet spectrum.

A first part of our study (section 5.2) will be to establish the region of R where the
small-R approximation is valid and to examine the potential impact of effects beyond the
LLR approximation. This will point to the need to include at the least the subleading
R-enhanced terms that arise at next-to-next-to-leading order (NNLO) and motivate us
to devise schemes to match LLR resummation with both NLO and NNLO calculations
(sections 5.3 and 5.4 respectively). At NLO we will see indications of spuriously small
scale dependence and discuss how to resolve the issue. Concerning NNLO, since the full
calculation is work in progress [112], to move forwards we will introduce an approximation
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that we refer to as “NNLOR”. It contains the full R-dependence of the NNLO prediction
but misses an R-independent, though pt-dependent, constant term. By default we will
take it to be zero at some reference radius Rm, but we will also examine the impact of
other choices.

In addition to the perturbative contributions at small-R, one must take into account
non-perturbative effects, which are enhanced roughly as 1/R at small R and grow large
especially at smaller values of pt. Two approaches exist for incorporating them, one
based on analytic calculations [63], the other based on the differences between parton
and hadron-level results in Monte Carlo event generators such as Pythia [67, 139] and
Herwig [140, 68, 141, 142]. Based on our studies in section 5.5, we adopt the Monte
Carlo approach for our comparisons to data. These are the subject of section 5.6, where
we examine data from the ALICE collaboration [89] at R = 0.2 and 0.4, and from the
ATLAS [110] collaboration at R = 0.4 and 0.6.

A broad range of dynamically-generated plots comparing different theory predictions
across a range of rapidities, transverse momenta and R values can be viewed online [143].

5.2 Small-R resummation for the inclusive jet spectrum

Using the formalism of chapter 4, the small-R inclusive “microjet” spectrum can be
easily obtained from the convolution of the leading-order inclusive spectrum of partons of
flavour k and transverse momentum p′t, dσ

(k)

dp′t
, with the inclusive microjet fragmentation

function, f incljet/k(pt/p′t, t), for producing microjets carrying a fraction pt/p′t of the parton’s
momentum,

σLLR(pt, R) ≡
dσLLRjet
dpt

=
∑
k

∫
pt

dp′t
p′t

f incljet/k

(
pt
p′t
, t(R,R0, µR)

)
dσ(k)

dp′t
. (5.1)

To keep the notation compact, we use σLLR(pt, R) to denote either a differential cross
section, or the cross section in a given pt bin, depending on the context. At LLR accuracy,
the small-R effects are entirely contained in the fragmentation function, which depends
on R through the evolution variable t, defined as previously,

t(R,R0, µR) =
∫ R2

0

R2

dθ2

θ2
αs(µR θ/R0)

2π = 1
b0

ln 1
1− αs(µR)

2π b0 ln R2
0

R2

, (5.2)

with b0 = 11CA−4TRnf
6 .1 Here, R0 is the angular scale, of order 1, at which the small-radius

approximation starts to become valid. For R = R0, or equivalently t = 0, the fragmenta-
tion function has the initial condition f incljet/k(z, 0) = δ(1− z). It can be determined for

1The choice of whether to use αs(µR θ/R0) or αs(µR θ) in the integral is arbitrary. We choose the
former because it ensures that αs(µR) factorises from the logarithm of R in the right-hand side.
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Figure 5.1 – Impact of R-dependent terms in the inclusive-jet spectrum, illustrated using
the small-R resummation factor obtained from the ratio of σLLR in Eq. (5.1) to the
leading order inclusive jet spectrum σLO. It is shown as a function of the jet pt for
different jet radius values. For each R value, the plot illustrates the impact of two choices
of R0: R0 = 1 (our default) as solid lines and R0 = 1.5 as dashed lines.

other t values by solving a DGLAP-like evolution equation in t, as discussed previously
in chapter 4. These results are identical for any standard hadron-collider jet algorithm of
the generalised-kt [56, 144, 52, 53, 54] and SISCone [47] families, with differences between
them appearing only at subleading logarithmic order. In this work we will restrict our
attention to the anti-kt algorithm (as implemented in FastJet v3.1.3 [145]). The LLR
resummation is implemented with the aid of HOPPET [117].

The phenomenological relevance of the small-R terms is illustrated in Fig. 5.1, which
shows the ratio of the jet spectrum with small-R resummation effects to the LO jet
spectrum.2 For this and a number of later plots, the pt and rapidity ranges and the
collider energy choice correspond to those of ATLAS measurements [110], to which we will
later compare our results. We show the impact of resummation for a range of R values
from 0.1 to 1.0 and two R0 choices. The smallest R values typically in use experimentally
are in the range 0.2–0.4 and one sees that the fragmentation of partons into jets brings
up to 40% reduction in the cross section for the smaller of these radii. The fact that the
small-R effects are substantial is one of the motivations for our work here.

From the point of view of phenomenological applications, the question that perhaps
matters more is the impact of corrections beyond NLO (or forthcoming NNLO), since
fixed order results are what are most commonly used in comparisons to data. This will

2Although for this purpose we have used the small-R resummed calculations, we could also have
used NLO calculations which would also indicate similarly visible R-dependent effects. The differences
between the small-R resummation and NLO predictions will be discussed later.
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Chapter 5. Inclusive jet spectrum in the small-radius limit

be most easily quantifiable when we discuss matched results in sections 5.3 and 5.4.
Note that there was already some level of discussion of effects beyond fixed order in
section 4.2.1, in terms of an expansion in powers of t. However comparisons to standard
fixed order refer to an expansion in αs, which is what we will be using throughout this
chapter. A brief discussion of the different features of t and αs expansions is given in
Appendix B.1.

5.2.1 Range of validity of the small-R approximation and effects be-
yond LLR

In order to carry out a reliable phenomenological study of small-R effects it is useful to
ask two questions about the validity of our LLR small-R approach. Firstly we wish to
know from what radii the underlying small-angle approximation starts to work. Secondly,
we want to determine the potential size of small-R terms beyond LLR accuracy.

To investigate the first question we take the full next-to-leading-order (NLO) calculation
for the inclusive jet spectrum from the NLOJet++ program [146], and look at the quantity
∆1(pt, R,Rref), where

∆i(pt, R,Rref) ≡
σi(pt, R)− σi(pt, Rref)

σ0(pt)
. (5.3)

Here σi(pt) corresponds to the order α2+i
s contribution to the inclusive jet cross section

in a given bin of pt. This can be compared to a similar ratio, ∆LLR
1 (pt, R,Rref), obtained

from the NLO expansion of Eq. (5.1) instead of the exact NLO result.3 The quantity Rref
here is some small reference radius at which one expects the small-R approximation to
be valid; we choose Rref = 0.1. Fig. 5.2 (left) shows the comparison of ∆1 (filled squares)
and ∆LLR

1 (crosses) as a function of pt for several different R values. One sees very good
agreement between ∆1 and ∆LLR

1 for the smaller R values, while the agreement starts to
break down for R in the vicinity of 1–1.5. This provides grounds for using the small-R
approximation for R values . 0.6 and motivates a choice of R0 in range 1–1.5. We will
take R0 = 1 as our default, and use R0 = 1.5 as a probe of resummation uncertainties.

Next let us examine effects of subleading small-R logarithms, terms that come with a
factor αns lnn−1R relative to the Born cross section. While there has been some work
investigating such classes of terms in Refs. [148, 149], those results do not apply to
hadron-collider jet algorithms. Instead, here we examine the R dependence in the NNLO
part of the inclusive jet cross section to evaluate the size of these terms. Because the R
dependence starts only at order α3

s, we can use the NLO 3-jet component of the NLOJet++
program to determine these terms. More explicitly, we use the fact that

σNNLO(R)− σNNLO(Rref) = σNLO3j (R)− σNLO3j (Rref) . (5.4)
3∆LLR

1 (pt, R,Rref) is independent of R0 because the R0 cancels between the two terms in the numerator.
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Figure 5.2 – Left: Comparison of the R dependence in the exact and small-R approximated
NLO expansion, using Eq. (5.3), shown as a function of jet transverse momentum pt, for√
s = 7 TeV in the rapidity region |y| < 0.5. Right: comparison of ∆1+2(pt, R,Rref) and

∆LLR
1+2 (pt, R,Rref) (cf. Eq. (5.5)). In both plots CT10 NLO PDFs [147] are used, while the

renormalisation and factorisation scales are set equal to the pt of the highest-pt R = 1
jet in the event (this same scale is used for all R choices in the final jet finding).
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Chapter 5. Inclusive jet spectrum in the small-radius limit

To determine this difference in practice, for each event in the NLOJet++ 3-jet run we
apply the following procedure: we cluster the event with radius R and for each resulting
jet add the event weight to the jet’s corresponding pt bin; we then recluster the particles
with radius Rref and for each jet subtract the event weight from the corresponding pt bin.
For this procedure to give a correct answer, it is crucial not to have any 3-jet phasespace
cut in the NLO 3-jet calculation (i.e. there is no explicit requirement of a 3rd jet). 4

Hence, we can then examine

∆1+2(pt, R,Rref) ≡ ∆1(pt, R,Rref) + ∆2(pt, R,Rref) (5.5)

and its corresponding LLR approximation, ∆LLR
1+2 (pt, R,Rref). The reason for including

both NLO and NNLO terms is to facilitate comparison of the size of the results with
that of the pure NLO piece. The results for ∆1+2 (filled squares) and ∆LLR

1+2 (crosses)
are shown in Fig. 5.2 (right). The difference between the crosses in the left-hand and
right-hand plots is indicative of the size of the NNLO LLR contribution. At small R, the
difference between the crosses and solid squares in the right-hand plot gives the size of
the NLLR contribution at NNLO. It is clear that this is a substantial contribution, of
the same order of magnitude as the LLR contribution itself, but with the opposite sign.
Ideally one would therefore carry out a full NLLR calculation. That, however, is beyond
the scope of this thesis.

Instead we will include a subset of the subleading lnR terms by combining the LLR
resummation with the exact R dependence up to NNLO fixed order, i.e. the terms
explicitly included in the solid squares in Fig. 5.2.

5.3 Matching NLO and LLR
For phenomenological predictions, it is necessary to combine the LLR resummation with
results from fixed-order calculations. In this section we will first examine how to combine
LLR and NLO results, and then proceed with a discussion of NNLO corrections.

4Note that we have encountered issues with the convergence of the NLOJet++ calculation, with some
bins showing extremely large excursions in individual runs. To obtain stable results, we perform a
combination of a large number of runs (order 2000−4000) in which each bin’s weight from a given run
is inversely proportional to the square of its statistical error. Given that such weighted combinations
are known to give biased results, we then apply a global correction factor to ∆1+2(pt, R,Rref) across
all bins. That factor is equal to the ratio of

∫ pt,max
pt,min

dpt ∆1+2(pt, R,Rref), as obtained from a bin-wise
unweighted combination (with removal of a few percent of outlying runs in each bin) and a bin-wise
weighted combination (an alternative approach to a similar issue was recently discussed in Ref. [150]).
We believe that the systematics associated with this procedure are at the level of a couple of percent.
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5.3. Matching NLO and LLR

5.3.1 Matching prescriptions

One potential approach for combining LLR and NLO results would be to use an additive
type matching,

σNLO+LLR,add.(R) = σLLR(R) + σ1(R)− σLLR1 (R) , (5.6)

where σ1(R) denotes the pure NLO contribution to the inclusive jet spectrum (without
the LO part, as in section 5.2.1) and σLLR1 (R) refers to the pure NLO contribution within
the LLR resummation. For compactness, the pt argument in the cross sections has been
left implicit.

A simple, physical condition that the matching must satisfy is that in the limit R→ 0,
the ratio of the matched result to the LO result should tend to zero perturbatively, 5

σNLO+LLR

σ0
→ 0 for R→ 0 . (5.7)

Eq. (5.6) does not satisfy this property: while σLLR/σ0 does tend to zero, the quantity
(σ1−σLLR1 )/σ0 instead tends to a constant for small R. We will therefore not use additive
matching.

Another class of matching procedure is multiplicative matching. One simple version of
multiplicative matching is given by

σNLO+LLR,mult.simple = σLLR(R)
σ0

×
(
σ0 + σ1(R)− σLLR1 (R)

)
. (5.8)

Because σLLR1 (R) contains the same logs as those in σ1(R), the right hand bracket tends
to a constant for small R and all the R dependence comes from the σLLR(R) factor.
Since σLLR(R) tends to zero for R→ 0, Eq. (5.8) satisfies the condition in Eq. (5.7). The
matching formula that we actually use is

σNLO+LLR = (σ0 + σ1(R0))×
[
σLLR(R)

σ0
×
(

1 + σ1(R)− σ1(R0)− σLLR1 (R)
σ0

)]
, (5.9)

where R0 is taken to be the same arbitrary radius of order 1 that appears in σLLR(R) as
defined in Eq. (5.1). Compared to Eq. (5.8), we have explicitly separated out a factor
(σ0 + σ1(R0)). As with Eq. (5.8), at small-R the entire R dependence comes from the
σLLR(R) factor, thus ensuring that Eq. (5.7) is satisfied. Eq. (5.9) has the advantage
over Eq. (5.8) that matching will be simpler to extend to NNLO+LLR, which is why we
make it our default choice.

5 Once non-perturbative effects are accounted for, σLLR (R = 0) must coincide with the inclusive
hadron spectrum.
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Chapter 5. Inclusive jet spectrum in the small-radius limit

Eq. (5.9) has a simple physical interpretation: the left-hand factor is the cross section
for producing a jet of radius R0 and is effectively a stand-in for the normalisation of
the (ill-defined) partonic scattering cross section, i.e. we equate partons with jets with
radius R0 ∼ 1. The right hand factor (in square brackets) then accounts for the effect of
fragmentation on the cross section, including both the LLR contribution and an exact
NLO remainder for the difference between the cross sections at radii R0 and R.

Even without a small-R resummation, one can argue that the physical separation that is
embodied in Eq. (5.9) is one that should be applied to normal NLO calculations. This
gives us the following alternative expression for the NLO cross section

σNLO-mult. = (σ0 + σ1(R0))×
(

1 + σ1(R)− σ1(R0)
σ0

)
, (5.10)

i.e. the cross section for producing a small-radius jet should be thought of as the cross
section for the initial partonic scattering, followed by the fragmentation of the parton to
a jet. As in Eq. (5.9), we introduce a radius R0 ∼ 1 to give meaning to the concept of a
“parton” beyond leading order. It is straightforward to see that Eq. (5.10) differs from
standard NLO only in terms of corrections at order α2

s relative to LO.

5.3.2 Unphysical cancellations in scale dependence

Let us now return to the resummed matched prediction, Eq. (5.9). The left and right-
hand factors in that formula are shown separately in Fig. 5.3. The left-hand factor,
corresponding to an overall normalisation for hard partonic scattering, is shown in the
left-hand plot (divided by the LO to ease visualisation), while the small-R fragmentation
(i.e. right-hand) factor, which includes the resummation and matching contributions,
is shown on the right. One sees that the two terms bring K-factors going in opposite
directions. The overall normalisation has a K-factor that is larger than one and grows
with pt. Meanwhile the fragmentation effects generate a K-factor that is substantially
below one for smaller R values, with a relatively weak pt dependence.

The pt dependence of the two factors involves an interplay between two effects: on one
hand, the fraction of gluons decreases at large pt, as does αs; on the other hand the
PDFs fall off more steeply at higher pt, which enhances (positive) threshold logarithms
in the normalisation factor and also increases the effect of small-R logarithms in the
fragmentation factor (i.e. reduces the fragmentation factor). We believe that the gentle
increase of the fragmentation factor is due to the decrease in gluon fraction, partially
counteracted by the increasing steepness of the PDFs. A similar cancellation is probably
responsible for the flatness of the normalisation factor at low and moderate pt’s, with
threshold logarithms induced by the PDFs’ steepness driving the increase at the highest
pt’s.
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Figure 5.3 – Left: size of the matching normalisation factor (left-hand factor of Eq. (5.9),
normalised to LO), shown v. pt for various R values and two R0 choices. Right: size of
the matched small-R fragmentation factor (right-hand factor of Eq. (5.9); similar results
are observed for the right-hand factor of Eq. (5.10)). The results are shown for the scale
choice µR = µF = pt,max, where pt,max is the transverse momentum of the hardest jet in
the event.

We note also that both factors in Eq. (5.9) depend significantly on the choice of R0, with
two values being shown in Fig. 5.3, R0 = 1 (solid) and R0 = 1.5 (dashed). However in
the full results, Eqs. (5.9) and (5.10), the R0 dependence in cancels up to NLO, leaving
a residual R0 dependence that corresponds only to uncontrolled higher-order terms.

The partial cancellation between higher-order effects that takes place between the small-R
effects and the residual matching correction is somewhat reminiscent of the situation for
jet vetoes in Higgs-boson production. There it has been argued that such a cancellation
can be dangerous when it comes to estimating scale uncertainties. As a result, different
schemes have been proposed to obtain a more reliable and conservative estimate, notably
the Stewart-Tackmann [151] and jet-veto-efficiency [121] methods. Here we will take
an approach that is similar in spirit to those suggestions (though somewhat closer to
the jet-veto-efficiency method) and argue that for a reliable estimate of uncertainties,
scale-dependence should be evaluated independently for the left and right-hand factors
in Eqs. (5.9) and (5.10) (and also in Eq. (5.8)), and the resulting relative uncertainties
on those two factors should be added in quadrature. We will always verify that the R0
dependence (for just the central scale choice) is within our scale uncertainty band.
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Figure 5.4 – Inclusive jet cross section for pt > 100 GeV, as a function of R, normalised
to the (R-independent) leading-order result. Left: the standard NLO result, compared to
the “NLO-mult.” result of Eq. (5.10) and the NLO+LLR matched result of Eq. (5.9). The
scale uncertainty here has been obtained within a prescription in which the scale is varied
simultaneously in the left and right-hand factors of Eqs. (5.9) and (5.10) (“correlated scale
choice”). Right: the same plot, but with the scale uncertainties determined separately
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(“uncorrelated scale choice”). The plot also shows the NLO+LLR result for R0 = 1.5 at
our central scale choice.
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5.3.3 NLO+LLR matched results

Fig. 5.4 shows the inclusive jet cross section integrated from 100 GeV to 1992 GeV
(the full range covered by the ATLAS data [110]), as a function of R, normalised to
the leading order result. The left-hand plot shows the standard NLO result (light
blue band), the “NLO-mult.” result of Eq. (5.10) (green band) and the NLO+LLR
matched result of Eq. (5.9) (orange band). To illustrate the issue of cancellation of scale
dependence discussed in section 5.3.2, the scale uncertainty here has been obtained within
a prescription in which the scale is varied in a correlated way in the left and right-hand
factors of Eqs. (5.9) and (5.10). We adopt the standard convention of independent
µR = {1

2 , 1, 2}µ0 and µF = {1
2 , 1, 2}µ0 variations around a central scale µ0, with the

additional condition 1
2 ≤ µR/µF ≤ 2. Our choice for µ0 is discussed below. One sees

that in each of the 3 bands, there is an R value for which the scale uncertainty comes
close to vanishing, roughly R = 0.5 for NLO, R = 0.3 for “NLO-mult.” and R = 0.1−0.2
for NLO+LLR. We believe that this near-vanishing is unphysical, an artefact of a
cancellation in the scale dependence between small-R and overall normalisation factors,
as discussed in the previous paragraph. One clear sign that the scale dependence is
unreasonably small is that the NLO-mult. and NLO+LLR bands differ by substantially
more than their widths.

The right-hand plot of Fig. 5.4 instead shows uncertainty bands when one separately
determines the scale variation uncertainty in the left-hand (normalisation) and the right-
hand (small-R matching) factors and then adds those two uncertainties in quadrature
(“uncorrelated scale choice”; note that the NLO band is unchanged). Now the uncertainties
remain fairly uniform over the whole range of R and if anything increase towards small
R, as one might expect. This uncorrelated scale variation is the prescription that we will
adopt for the rest of this chapter.

Intriguingly, the NLO+LLR result is rather close to the plain NLO prediction. Given
the large difference between the NLO and NLO-mult. results, this is, we believe, largely
a coincidence: if one examines yet smaller R, one finds that the NLO and NLO+LLR
results separate from each other, with the NLO and NLO-mult. results going negative
for sufficiently small R, while the NLO+LLR result maintains a physical behaviour.

Fig. 5.4 (right) also shows the impact of increasing R0 to 1.5. One sees a 5−10% reduction
in the cross section, however this reduction is within the uncertainty band that comes
from the uncorrelated scale variation.

A comment is due concerning our choice of central scale, µ0. At NLO, for each event, we
take µ0 to be the pt of the hardest jet in the event, pt,max. In NLO-like configurations,
with at most 3 final-state partons, this hardest jet pt is independent of the jet radius
and so we have a unique scale choice that applies to all jet radii. An alternative, widely
used prescription is to use a separate scale for each jet, equal to that jet’s pt. We
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Chapter 5. Inclusive jet spectrum in the small-radius limit

disfavour this alternative because it leads to a spurious additional R dependence, induced
by inconsistent scale choices in real and virtual terms. Further details are given in
Appendix B.2.

5.4 Matching to NNLO

5.4.1 Matching prescription

Given that full NNLO results for the inclusive cross section are likely to be available
soon [112], here we propose matching schemes for combining our small-R resummed
results with a full NNLO result. The direct analogue of Eq. (5.9) is

σNNLO+LLR = (σ0 + σ1(R0) + σ2(R0))

×

σLLR(R)
σ0

×

1+∆1+2(R,R0)−σ
LLR
1 (R) + σLLR2 (R)

σ0

−
σLLR1 (R)

(
σ1(R)− σLLR1 (R)

)
σ2

0
− σ1(R0)

σ0

(
∆1(R,R0)− σLLR1 (R)

σ0

) , (5.11)

where the functions ∆1 and ∆1+2 were defined in Eq. (5.3) and (5.5) and we recall that
σLLR and its expansion are functions both of R and R0. As with our NLO+LLR formula,
Eq. (5.9), we have written Eq. (5.11) in terms of two factors: an overall normalisation
for producing R0-jets, together with a matched fixed-order and resummed result for the
correction coming from fragmentation of the R0 jet into small-R jets. One comment here
is that in Eq. (5.9) the matching part (big round brackets inside the square brackets)
gave a finite result for R → 0. The situation is different at NNLO because the LLR
resummation does not capture the α2

s ln 1/R2 (NLLR) term that is present at fixed order
and so the matching term has a residual α2

s ln 1/R2 dependence. This means that for
sufficiently small-R, Eq. (5.11) can become unphysical. We have not seen any evidence
of this occurring in practice, but one should keep in mind that for future work one might
aim to resolve this in-principle problem either by incorporating NLLRresummation or by
choosing a different form of matching, for example one where the O

(
α2
s

)
parts of the

matching correction are exponentiated, ensuring a positive-definite result. Note that
with NLLRresummation one could also use a formula analogous to Eq. (5.8),

σNNLO+NLLR,mult.simple =

=

σ0 + σ1 + σ2 − σNLLR1 − σNLLR2 − σNLLR1
σ0

(
σ1 − σNLLR1

)× σNLLR

σ0
, (5.12)

where each of the terms is evaluated at radius R.
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As well as a matched result, it can be instructive to study a modification of the plain
NNLO result, “NNLO-mult.”, in analogy with Eq. (5.10). This remains a fixed order
result, but it factorises the production of large-R0 jets from the fragmentation to small-R
jets,

σNNLO-mult. = (σ0 + σ1(R0) + σ2(R0))×
(

1 + ∆1+2(R,R0)− σ1(R0)
σ0

∆1(R,R0)
)
.

(5.13)

It differs from σNNLO only by terms beyond NNLO.

As in section 5.3.1, in Eqs. (5.11)–(5.13) we advocate varying scales separately in the
normalisation and fragmentation factors, and also studying the R0 dependence of the
final result.

5.4.2 A stand-in for NNLO: NNLOR

We have seen in section 5.2.1 that NNLO terms of the form α2
s ln 1/R2 that are not

accounted for in our LLR calculation can be large. Insofar as they are known, they
should however be included in phenomenological studies. This specific class of terms
can be taken into account in the context of a stand-in for the full NNLO calculation
which contains the exact NNLO R dependence and that we refer to as NNLOR. It is
constructed as follows:

σNNLOR(R,Rm) ≡ σ0 + σ1(R) + [σ2(R)− σ2(Rm)], (5.14)

which depends on an arbitrary angular scale Rm. Though neither σ2(R) nor σ2(Rm) can
be fully determined currently, their difference can be obtained from the same NLO 3-jet
calculation that was used to examine ∆1+2(pt, R,Rref) in Fig. 5.2 (right).

Since the full NNLO result has the property

σNNLO(R) = σNNLOR(R,Rm) + σ2(Rm) , (5.15)

the use of σNNLOR(R,Rm) instead of σNNLO(R) is equivalent to the assumption that
σ2(Rm) vanishes. In practice we will take Rm = 1, independently of pt.

One point to be aware of is that σNNLOR(R,Rm) and σNNLO(R) have parametrically
different scale dependence. On one hand, the σ2(R) term in σNNLO(R) fully cancels
the (relative) O

(
α2
s

)
scale variation that is left over from σ0 and σ1, leaving just O

(
α3
s

)
dependence. On the other, in σNNLOR(R,Rm) the use of the σ2(R) − σ2(Rm) means
that some residual O

(
α2
s

)
dependence is left over. In particular, for R = Rm the scale

dependence is identical to that at NLO. Accordingly, when estimating higher-order
uncertainties in studies that use NNLOR results, we do not explicitly need to vary Rm,
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Chapter 5. Inclusive jet spectrum in the small-radius limit

since the O
(
α2
s

)
uncertainty that it brings should already be accounted for in the scale

variation.6

Our central scale choice for any given event will be µ0 = pR=1
t,max, the transverse momentum

of the hardest jet in the event as clustered with R = 1. This is analogous to the choice
of pt,max used at NLO, except that at NNLO one needs to explicitly specify R since
pt,max can depend on the jet clustering. The logic for taking pt,max at a fixed jet radius
of 1, independently of the R used in the clustering for the final jet spectrum, is that one
obtains a unique scale for the event as a whole and avoids mixing scale-variation effects
with R dependence. Another potential choice that we did not investigate is to take the
averaged pt of the two hardest jets. As long as the jets are obtained with a clustering
radius ∼ 1 such a choice is to be expected to be good at minimising the impact both of
initial-state and final-state radiation, whereas our pt,max choice has some sensitivity to
initial-state radiation.

5.4.3 Results at NNLOR and NNLOR+LLR

Let us start by examining the NNLOR result, shown versus R as the purple band in
Fig. 5.5 (left), together with the NNLOR-mult. results using Eq. (5.13) and the NLO
band. One sees that the R dependence of the NNLOR result is steeper than in the NLO
result, especially for R & 0.2. This pattern is qualitatively in line with one’s expectations
from Fig. 5.2 (right) and will hold also for the full NNLO calculation, which differs from
NNLOR only by an R-independent (but pt and scale-dependent) additive constant. The
point of intersection between the NLO and NNLOR results, at R = 1, is instead purely a
consequence of our choice of Rm = 1 in Eq. (5.14). Thus at R = 1, both the central value
and scale dependence are by construction identical to those from the NLO calculation.

The left-hand plot of Fig. 5.5 also shows the NNLOR-mult. result. Relative to what we
saw when comparing NLO and NLO-mult., the most striking difference here is the much
better agreement between NNLOR and NNLOR-mult., with the two generally coinciding
to within a few percent. For R & 0.4, this good agreement between different approaches
carries through also to the comparison between NNLOR and NNLOR+LLR. However,
for yet smaller values of R, the NNLOR+LLR result starts to be substantially above
the NNLOR and NNLOR-mult. ones. This is because the NNLOR and NNLOR-mult.
results have unresummed logarithms that, for very small-R, cause the cross section to
go negative, whereas the resummation ensures that the cross section remains positive
(modulo the potential issue with unresummed NLLRterms that remain after matching).

Comparing the NNLOR+LLR result to the NLO+LLR of Fig. 5.4 (right), one finds that
the central value of the NNLOR+LLR prediction starts to lie outside the NLO+LLR

6Despite this statement, one may wish to examine the robustness of conclusions with respect to
different possibles values of σ2(Rm). This is the subject of section 5.4.4.
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Figure 5.5 – Left: comparison of the NLO, NNLOR and NNLOR-mult. results for the
inclusive jet cross section for pt > 100 GeV, as a function of R, normalised to the LO
result. Right, corresponding comparison of NLO, NNLOR and NNLOR+LLR together
with the central curve for NNLOR+LLR when R0 is increased to 1.5. In both plots, for
the NNLOR-mult. and NNLOR+LLR results the scale-dependence has been evaluated
separately in the normalisation and fragmentation contributions and added in quadrature
to obtain the final uncertainty band.
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Figure 5.6 – Same as figure 5.4, but focusing only on the high pt bin. Both plots use an
uncorrelated scale variation in the normalisation and fragmentation factors.

uncertainty band for R . 0.5. This highlights the importance of the NNLO corrections,
and in particular of terms with subleading ln 1/R2 enhancements. Finally, the dependence
on the choice of R0 is slightly reduced at NNLOR+LLR compared to NLO+LLR and it
remains within the scale-variation uncertainty band.

To help complete the picture, we also show results as a function of R in a high-pt bin,
1530 < pt < 1992 GeV in Fig. 5.6. Most of the qualitative observations that we discussed
above remain true also for high pt. The main difference relative to the pt > 100 GeV
results is that scale uncertainty bands generally grow larger. This is perhaps due to
threshold effects and might call for the inclusion of threshold resummation, see e.g.
Ref. [114] and references therein. Figs. 5.7 and 5.8 show the jet spectrum as a function of
pt, normalised to the LO result, for R = 0.2 and two rapidity bins. Again, the conclusions
are similar.

All of the predictions shown here have been obtained with the choice Rm = 1 in Eq. (5.14),
equivalent to the assumption that σ2(Rm = 1) = 0 in Eq. (5.15). For a discussion of how
the predictions change if σ2(Rm = 1) is non-zero, the reader is referred to section 5.4.4.

To conclude this section, our main observation is that LLR and NNLO terms both have a
significant impact on the R dependence of the inclusive jet spectrum, with the inclusion
of both appearing to be necessary in order to obtain reliable predictions for R . 0.4. In
particular, if NNLO and NLO coincide for R = 1, then for R = 0.4 the NNLO results
will be about 20% below the NLO ones. Going down to R = 0.2, one sees that even with
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Figure 5.7 – Left: the NLO inclusive jet spectrum as a function of pt, normalised to LO,
together with the “NLO-mult.” result and the NLO+LLR matched results for R = 0.2.
The cross section is shown for the rapidity bin |y| < 0.5. The bands give the scale
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NNLOR and NNLOR+LLR predictions.
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Figure 5.8 – Same as figure 5.7 but showing the cross section in the rapidity bin
2 < |y| < 2.5.
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Figure 5.9 – The same as figure 5.5, but applying a K-factor of 1.10 to the NNLOR

prediction, as an estimate of the potential impact of the full NNLO calculation.

NNLO corrections resummation of small-R logarithms is important, having a further
10% effect.

5.4.4 Impact of finite two-loop corrections

In our NNLOR-based predictions, we have all elements of the full NNLO correction
except for those associated with 2-loop and squared 1-loop diagrams (and corresponding
counterterms).

Here, we examine how our results depend on the size of those missing contributions. We
introduce a factor K that corresponds to the NNLO/NLO ratio for a jet radius of Rm:

σNNLOR,K (Rm) = K × σNLO(Rm) . (5.16)

For other values of the jet radius, we have

σNNLOR,K (R) = σ0

[
1 + σ1(R)

σ0
+ ∆2(R,Rm) + (K − 1)×

(
1 + σ1(Rm)

σ0

)]
. (5.17)

As before, we will take Rm = 1.0. One could attempt to estimate K from the partial
NNLO calculation of Ref. [112], however given that this calculation is not yet complete,
we prefer instead to leave K as a free parameter and simply examine the impact of
varying it.

74



5.4. Matching to NNLO

In Fig. 5.9, we show the impact of taking K = 1.10, to be compared to Fig. 5.5, which
corresponds to K = 1. As K is increased, one sees that NNLOR,K and NNLOR,K+LLR
start to agree over a wider range of R. This behaviour can be understood by observing
there are two effects that cause NNLOR,K and NNLOR,K+LLR to differ: on one hand
the small-R resummation prevents the cross section from going negative at very small
radii, raising the prediction in that region relative to NNLOR and reducing the overall R
dependence. On the other hand, the normalisation (first) factor in Eq. (5.11), which is
larger than 1, multiplies the full NNLO R dependence that is present in the fragmentation
(second) factor, thus leading to a steeper R dependence than in pure NNLOR,K . With
K = 1, the first effect appears to dominate. However as K is increased, the second effect
is enhanced and then the two effects cancel over a relatively broad range of R values.

To put it another way, in the NNLOR,K result the K factor acts additively, shifting the
cross section by the same amount independently of R. In the NNLOR,K+LLR result,
the K factor acts multiplicatively, multiplying the cross section by a constant factor
independently of R. By construction, the two always agree for R = R0 = 1. With K = 1,
NNLOR,K is below NNLOR,K+LLR at small R, but the additive shift for K > 1 brings
about a larger increase of NNLOR,K than the multiplicative factor for NNLOR,K+LLR,
because σ/σ(R0) is smaller than one.

Another point to note is that while in Fig. 5.5 the NNLOR-mult. and NNLOR results
agreed over the full range of R, that is no longer the case with K = 1.1: this is because
NNLOR-mult. acquires a multiplicative correction, as compared to the additive correction
for NNLOR,K . Therefore one strong conclusion from our study is that independently of
the size of the NNLO K-factor, plain fixed order calculations at NNLO are likely to be
insufficient for R . 0.4.

5.4.5 Comparison to POWHEG

One widely used tool to study the inclusive jet spectrum is POWHEG’s dijet implementa-
tion [152]. Insofar as parton showers should provide LLR accuracy and POWHEG guarantees
NLO accuracy, POWHEG together with a shower should provide NLO+LLR accuracy. It is
therefore interesting to compare our results to those from the POWHEG BOX’s dijet process
(v3132), which are obtained here using a generation cut bornktmin of 50 GeV and a
suppression factor bornsuppfact of 500 GeV.7 We have used it with Pythia 8 (v8.186
with tune 4C [153]) for the parton shower, Pythia 6 (v6.428 the Perugia 2011 tune [154])
and with Herwig 6 (v6.521 with the AUET2-CTEQ6L1 tune [155]). We examine the
results at parton level, with multiple-parton interaction (MPI) effects turned off. Since
the Pythia 6 and Pythia 8 results are very similar we will show only the latter. In the

7We also carried out a run with bornktmin of 25 GeV and bornsuppfact of 300 GeV and found results
that are consistent with those shown here to within the statistical errors, which at low pt are of the order
of 1%.
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Chapter 5. Inclusive jet spectrum in the small-radius limit

case of Pythia 8, we include an uncertainty band from the variation of scales in the
generation of the POWHEG events.

In Fig. 5.10, we show the pt-integrated cross section as a function of R. The dark blue
band (or line) shows the predictions obtained from POWHEG. In the top left-hand plot one
sees a comparison with POWHEG+Herwig 6, which agrees with the NNLOR+LLR result
to within the latter’s uncertainty band, albeit with a slightly steeper R dependence at
large R values. In the top right-hand plot, one sees a comparison with POWHEG+Pythia 8.
There is reasonable agreement for small radii, however the POWHEG+Pythia 8 prediction
has much steeper R dependence and is substantially above the NNLOR+LLR result for
R = 1. Differences between Herwig and Pythia results with POWHEG have been observed
before [156], though those are at hadron level, including underlying-event effects, which
can introduce further sources of difference between generators.

One difference between the NNLOR+LLR results and those from POWHEG with a shower-
generator is an additional resummation of running scales and Sudakov effects for initial-
state radiation (ISR). To illustrate the impact of ISR, the dark-blue dashed curve shows
how the POWHEG+Pythia 8 prediction is modified if one switches off initial-state radiation
(ISR) in the shower. Though not necessarily a legitimate thing to do (and the part of the
ISR included in the POWHEG-generated emission has not been switched off), it is intriguing
that this shows remarkably good agreement with the NNLOR+LLR results over the full
R range. This might motivate a more detailed future study of the interplay between ISR
and the jet spectrum. Note that, as shown in [152], nearly all the R dependence of the
POWHEG+parton-shower result comes from the parton shower component. It is not so
straightforward to examine Herwig with ISR turned off so we have not included this in
our study.

Given the differences between POWHEG+Pythia 8 and our NNLOR+LLR results, it is
also of interest to examine what happens for K 6= 1. We can tune K so as to produce
reasonable agreement between NNLOR,K+LLR and POWHEG+Pythia 8 for R = 1 and
this yields K ' 1.15, which we have used in the bottom-right plot. Then it turns out
that both predictions agree within uncertainty bands not just at R = 1, but over the full
R range. In this context it will be particularly interesting to see what effective value of
K comes out in the full NNLO calculation. Note that the patterns of agreement observed
between different predictions depend also on pt and rapidity. For a more complete picture
we refer the reader to our online tool [143].

5.5 Hadronisation

Before considering comparisons to data, it is important to examine also the impact
of non-perturbative effects. There are two main effects: hadronisation, namely the
effect of the transition from parton-level to hadron-level; and the underlying event (UE),
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Figure 5.10 – Top: comparison
between the NNLOR-based results
and POWHEG+Herwig 6 (left) and
POWHEG+Pythia 8 (right), shown as a
function of R, integrated over pt for
pt > 100 GeV. Bottom right: compari-
son of POWHEG+Pythia 8 with NNLOR-
based results, where the latter have an
additional NNLO K-factor of 1.15.
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Chapter 5. Inclusive jet spectrum in the small-radius limit

generally associated with multiple interactions between partons in the colliding protons.
Hadronisation is enhanced for small radii so we discuss it in some detail.

One way of understanding the effect of hadronisation and the underlying event is to
observe that they bring about a shift in pt. This can to some extent be calculated
analytically and applied to the spectrum [63]. An alternative, more widespread approach
is to use a Monte Carlo parton shower program to evaluate the ratio of hadron to parton
level jet spectra and multiply the perturbative prediction by that ratio. One of the
advantages of the analytical hadronisation approaches is that they can matched with the
perturbative calculation, e.g. as originally proposed in Ref. [61]. In contrast, a drawback
of the Monte Carlo hadronisation estimates is that the definition of parton-level in a MC
simulation is quite different from the definition of parton level that enters a perturbative
calculation: in particular showers always include a transverse momentum cutoff at parton
level, while perturbative calculations integrate transverse momenta down to zero. To
help guide our choice of method, we shall first compare the pt shift as determined in
Ref. [63], and discussed in section 2.6, with what is found in modern Monte Carlo tunes.

We first recall that the average shift should scale as 1/R (see also Refs. [157, 100]) for
hadronisation and as R2 for the underlying event (see also Ref. [158]). For small-R jets,
hadronisation should therefore become a large effect, while the underlying event should
vanish. By relating the hadronisation in jets to event-shape measurements in DIS and
e+e− collisions in a dispersive-type model [61, 62], Ref. [63] argued that the average pt
shift should be roughly

〈∆pt〉 ' −
C

CF

( 1
R

+O (1)
)
× 0.5 GeV , (5.18)

where C is the colour factor of the parton initiating the jet, CF = 4
3 for a quark and

CA = 3 for a gluon. Those expectations were borne out by Monte Carlo simulations at
the time, with a remarkably small O (1) term. Eq. (5.18) translates to a −6 GeV shift
for R = 0.2 gluon-initiated jets. On a steeply falling spectrum, such a shift can modify
the spectrum significantly.

Fig. 5.11 shows the shift in pt in going from parton-level jets to hadron level jets, as a
function of the jet pt. Four modern Monte Carlo generator tunes are shown [155, 140,
68, 159, 139, 154, 161, 67], two in each plot. For each generator tune (corresponding
to a given colour), there are four curves, corresponding to two values of R, 0.2 and 0.4
and both quark and gluon jets. The shifts have been rescaled by a factor RCF /C. This
means that if radius and colour-factor dependence in Eq. (5.18) are exact, then all lines
of a given colour will be superposed. This is not exactly the case, however lines of any
given colour do tend to be quite close, giving reasonable confirmation of the expected
trend of C/R scaling.

A further expectation of Eq. (5.18) is that the lines should cluster around 0.5 GeV and
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Figure 5.11 – The average shift in jet pt induced by hadronisation in a range of Monte
Carlo tunes, for R = 0.4 and R = 0.2 jets, both quark and gluon induced. The shift
is shown as a function of jet pt and is rescaled by a factor RCF /C (C = CF or CA) in
order to test the scaling expected from Eq. (5.18). The left-hand plot shows results
from the AUET2 [155] tune of Herwig 6.521 [140, 68] and the Monash 13 tune [159]
of Pythia 8.186 [139], while the right-hand plot shows results from the Z2 [160] and
Perugia 2011 [154, 161] tunes of Pythia 6.428 [67]. The shifts have been obtained by
clustering each Monte Carlo event at both parton and hadron level, matching the two
hardest jets in the two levels and determining the difference in their pt’s. The simple
analytical estimate of 0.5 GeV± 20% is shown as a yellow band.
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Chapter 5. Inclusive jet spectrum in the small-radius limit

be pt independent. This, however, is not the case. Firstly, there is almost a factor
of two difference between different generators and tunes, with Pythia 6 Perugia 2011
and Pythia 8 Monash 2013 both having somewhat smaller than expected hadronisation
corrections. Secondly there is a strong dependence of the shift on the initial jet pt, with
a variation of roughly a factor of two between pt = 100 GeV and pt = 1 TeV. Such
a pt dependence is not predicted within simple approaches to hadronisation such as
Refs. [157, 61, 62, 63]. It was not observed in Ref. [63] because the Monte Carlo study
there restricted its attention to a limited range of jet pt, 55− 70 GeV. The event shape
studies that provided support for the analytical hadronisation were also limited in the
range of scales they probed, specifically, centre-of-mass energies in the range 40−200 GeV
(and comparable photon virtualities in DIS). Note, however, that scale dependence of
the hadronisation has been observed at least once before, in a Monte Carlo study shown
in Fig. 8 of Ref. [162]: effects found there to be associated with hadron masses generated
precisely the trend seen here in Fig. 5.11. The pt dependence of those effects can be
understood analytically, however we leave their detailed study in a hadron-collider context
to future work.8 Experimental insight into the pt dependence of hadronisation might
be possible by examining jet-shape measurements [164, 165] over a range of pt, however
such a study is also beyond the scope of this work.

In addition to the issues of pt dependence, one further concern regarding the analytical
approach is that it has limited predictive power for the fluctuations of the hadronisation
corrections from jet to jet. Given that the jet spectrum falls steeply, these fluctuations
can have a significant impact on the final normalisation of the jet spectrum. One might
address this with an extension of our analytical approach to include shape functions, e.g.
as discussed in Ref. [166].

In light of the above discussion, for evaluating hadronisation effects here, we will resort
to the standard approach of rescaling spectra by the ratio of hadron to parton levels
derived from Monte Carlo simulations.

Fig. 5.12 shows, as a function of R, the ratio of hadron-level without UE to parton-level
(left) and the ratio of hadron level with UE to hadron level without UE (right), for a
range of Monte Carlo tunes. The results are shown for pt > 100 GeV in the upper row
and pt > 1 TeV in the lower row. A wide range of R values is shown, extending well
below experimentally accessible values. Beyond the tunes shown in Fig. 5.11, here we
also include the UE-EE-4 tune [167] of Herwig++2.71 [141, 142] and tune 4C [153] of
Pythia 8.186 [139]. To investigate the issue of possible mismatch between our analytic
parton-level calculations and parton-level as defined in Monte Carlo simulations, we have
considered a modification of Monte Carlo parton level where the transverse momentum
cutoff was taken to zero (an effective cutoff still remains, because of the use finite parton
masses and ΛQCD in the shower, however this method can arguably still give a rough
estimate of the size of the effect one is dealing with). One finds that taking the cutoff

8Hadron-mass effects have been discussed also in the context of Ref. [163].
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Figure 5.12 – Hadronisation (left) and underlying event (right) multiplicative corrections
to the jet spectrum, as a function of R for pp collisions at 7 TeV. The top row shows
results for pt > 100 GeV and |y| < 0.5, while the bottom row is for pt > 1 TeV. Six
combinations of generator and tune are shown, and the yellow band corresponds to the
envelope of the tunes.
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Chapter 5. Inclusive jet spectrum in the small-radius limit

to zero changes the parton-level spectrum by a few percent effect. As this is somewhat
smaller than the differences that we will shortly observe between tunes, it seems that for
the time being it may not be too unreasonable to neglect it.

While there is a substantial spread in results between the different tunes in Fig. 5.12,
the observed behaviours are mostly as expected, with hadronisation reducing the jet
spectrum, especially at the smallest R values, while the UE increases it, especially at
large R values. The magnitude of these effects is strongly pt dependent, with (roughly)
a factor of ten reduction at not-too-small R values when going from pt > 100 GeV to
pt > 1 TeV. Such a scaling is consistent with a rough 1/(Rpt) behaviour for hadronisation
and R2/pt behaviour for the UE (ignoring the slow changes in quark/gluon fraction and
steepness of the spectrum as pt increases).

One surprising feature concerns the behaviour of the UE corrections at very small radii:
firstly, in a number of the tunes the corrections tend to be smaller than 1, suggesting that
the multi-parton interactions (MPI) are responsible for removing energy from the core of
the jet. For R values in the range 0.4−1, the effect of MPI is instead to add energy to the
jet, as expected. Secondly, this loss of energy from the jet is not particularly suppressed at
high pt. The most striking example is the Z2 tune where there can be corrections of up to
7% at R = 0.03 (and even more at yet smaller R values). The effect is somewhat reduced
in the Z2-LEP tune, which has modified fragmentation parameters. One wonders if the
mechanism for MPI generation might be inducing some form of factorisation breaking.
A simple context in which to study this might be the high-pt inclusive hadron spectrum,
where factorisation would imply that MPI should have no effect. While kt-factorisation
is believed to be broken for the inclusive hadron spectrum [168], we are not aware of
definite statements concerning breaking of collinear factorisation.

5.6 Comparisons to data

Having formulated and studied the perturbative and non-perturbative contributions to
the inclusive jet spectrum, we now consider comparisons with data. The purpose of this
section is to highlight the relative sizes of different physical effects as compared to the
precision of the data.

We will compare our predictions to the two datasets that have the smallest R values:
that from ALICE at centre-of-mass energy

√
s = 2.76 TeV with R = 0.2 and 0.4 [89] and

that from ATLAS at
√
s = 7 TeV with R = 0.4 and 0.6 [110].9

All our results are obtained with CT10 NLO PDFs. This is the case also for our
LO and NNLOR results. For the latter, since NNLOR does not correspond to full

9The CMS collaboration has also published inclusive jet spectrum results [111, 169], however the
smallest R considered there is slightly larger, R = 0.5.
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NNLO, it is justifiable to use NLO PDFs.10 One should also be aware that most
modern PDF sets include inclusive jet-data in their fit. Accordingly they may have a
bias associated with the theory choice that was used in their determination. With an
updated theoretical framework, such as that used here, the PDFs would conceivably
change and a complete study would benefit from refitting the PDFs. That is beyond
the scope of this work and anyway more appropriately done once full NNLO results
become available. For completeness, we have nevertheless briefly examined the impact of
changing PDFs in the context of a pure LLR calculation, examining also CT10nnlo [170],
CT14nlo, CT14nnlo [171], MSTW2008nlo [172], MMHT2014nlo, MMHT2014nnlo [173],
NNPDF30_nlo_as_0118 and and NNPDF30_nnlo_as_0118 [174]. For pt’s below
500 GeV, most of these PDFs give results slightly above those from CT10, but by no
more than 6%, which is modest relative to other uncertainties and differences that we
will see below.

All fixed-order results are obtained with version 4.1.3 of the NLOJet++ program [146].
Our central renormalisation and factorisation scale choice is µ0 = pR=1

t,max, the transverse
momentum of the hardest jet in the event as clustered with R = 1. The envelope
of independent variations of µR and µF by a factor of two (while maintaining 1

2 ≤
µR/µF ≤ 2) provides the perturbative uncertainty estimate. In the case of NLO-mult.
and (N)NLO(R)+LLR results, the scale variation is performed independently for the
normalisation and fragmentation factors and the uncertainty from the two factors is then
added in quadrature. As explained in section 5.3, this is intended to avoid spuriously small
scale uncertainties associated with cancellations between different physical contributions.

Non-perturbative corrections are taken as the average of the parton-to-hadron Monte
Carlo correction factors (including hadronisation and UE) as obtained with the six
different tunes discussed in section 5.5. The envelope of that set of six corrections
provides our estimate of the uncertainty on the non-perturbative corrections, which is
added in quadrature to the perturbative uncertainty.

In the case of the ATLAS data we will explore transverse momenta well above the
electroweak (EW) scale, where EW corrections become substantial. The ATLAS col-
laboration accounted for these using the calculation of tree-level (O (αsαEW)) and loop
(O
(
α2
sαEW

)
) EW effects from Ref. [175]. Here, since we concentrate on QCD effects,

when showing the data we divide it by the EW corrections quoted by ATLAS.11

10In interpreting the plots, one may wish to keep in mind the potential impact of K 6= 1, which is
illustrated explicitly in Section 5.6.3. The plots use a pt-independent NNLO K factor, however the true
K factor would depend on pt.

11Those corrections don’t account for real W and Z emission. The first estimate of real EW emission
effects was given by Baur [176], but at the time only 14 TeV collisions were envisaged. The real
contributions for 7 TeV collisions have been evaluated in Ref. [177]. At high pt’s they grow to become up
to 3−4%, however in this region statistical and systematic uncertainties on the data are substantially
larger and so we believe it is reasonable to neglect them.
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Figure 5.13 – Non-perturbative corrections to the inclusive jet spectrum for the pt range,
rapidity and centre-of-mass energy corresponding to the ALICE data [89] for R = 0.2
(left) and R = 0.4 (right). The results are shown separately for hadronisation, UE and the
product of the two, and in each case include the average and envelope of the corrections
from the six tunes discussed in section 5.5.

5.6.1 Comparison to ALICE data

As a first application of small-R resummation in comparisons to data, we look at the
inclusive jet cross section in proton-proton collisions at

√
s = 2.76 TeV reported by the

ALICE collaboration [89]. The measurements are in the |y| < 0.5 rapidity range, with
jets obtained using the anti-kt algorithm with a boost-invariant pt recombination scheme,
for radii R = 0.2 and 0.4.

The non-perturbative corrections for hadronisation and underlying event are shown
in Fig. 5.13. For R = 0.2, non-perturbative corrections are largely dominated by
hadronisation, with underlying event being a small effect, as expected for sufficiently
small R. The net non-perturbative correction is about −50% at the lowest pt of 20 GeV,
while it decreases to about −10% at 100 GeV. For R = 0.4 there is a partial cancellation
between hadronisation and UE, with a net impact of about −10% percent at low pt and
a 5−10% uncertainty.

The comparison of our full results to the ALICE data is given in Fig. 5.14, as a ratio to
the NNLOR+LLR theory prediction (including non-perturbative corrections). The top
row shows the jet spectrum for R = 0.2, while the lower row corresponds to R = 0.4. The
left-hand plots show NLO-based theory results. They all appear to be consistent with the
data within their large uncertainties. The right-hand plots show NNLOR-based theory
(with plain NLO retained to facilitate cross-comparisons). In general the NNLOR+LLR
results appear to provide the best match for the data, though they are slightly low. In
particular, for R = 0.2 where the differences between NNLOR+LLR and NNLOR are
substantial, almost 30% at low pt, there seems to be a preference for NNLOR+LLR. In
contrast, at R = 0.4 there is little difference between the two predictions though both
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Figure 5.14 – Comparison between a range of theoretical predictions for the inclusive jet
spectrum and data from ALICE at

√
s = 2.76 TeV [89]. The upper row is for R = 0.2

and the lower one for R = 0.4. The left-hand column shows NLO-based comparisons,
while the right-hand one shows NNLOR-based comparisons. Rectangular boxes indicate
the size of systematic uncertainties on the data points, while the errors bars correspond
to the statistical uncertainties. Results are normalised to the central NNLOR+LLR
prediction (including non-perturbative corrections).
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Chapter 5. Inclusive jet spectrum in the small-radius limit

are significantly more compatible with the data than is the plain NLO. In considering
these statements, it is however important to keep several caveats in mind: the systematic
uncertainties on the data and on the non-perturbative corrections (especially for R = 0.2)
are not negligible and a one-σ shift could somewhat affect the conclusions. Furthermore,
the currently unknown finite NNLO contribution (the difference between NNLOR and
full NNLO) may also have a relevant impact.

To further evaluate the compatibility of our results and the data we examine the ratio of
the inclusive jet spectra at the two R values, R(pt;R1, R2) = σ(pt;R1)/σ(pt;R2) with
R1 = 0.2 and R2 = 0.4. This ratio is of interest because it allows us to directly study the
R dependence of the results and also because certain components of the uncertainties
cancel in the ratio, in both the data and the theoretical prediction. In the experimental
results, for example, the luminosity uncertainty cancels, as should part of the jet energy
scale and resolution uncertainties. In the theoretical prediction, PDF uncertainties cancel.
The ALICE collaboration’s results [89] explicitly include a determination of the ratio.

Earlier studies that focused on the R ratios [92] directly used the perturbative expansion
for the cross-section ratio, rather than the ratio of perturbative predictions for the cross
sections. That approach could be extended also to matched ratios, and one example of a
NNLO+LLR matching formula for the ratio would be

RNNLO+LLR,expand = σLLR(R1)
σLLR(R2) ×

1 + ∆1+2(R1, R2)−∆1+2(R1, R2)σ1(R2)
σ0

− σLLR1 (R1) + σLLR2 (R1)− σLLR1 (R2)− σLLR2 (R2)
σ0

+
(
σLLR1 (R1)

σ0
−∆1(R1, R2)

)
σLLR1 (R1)− σLLR1 (R2)

σ0

 . (5.19)

However, we prefer here to simply take the ratios of the relevant theory prediction (NLO,
NNLOR, NNLOR+LLR, etc.) at the two R values, e.g.

RNNLO+LLR = σNNLOR+LLR(R1)
σNNLOR+LLR(R2) . (5.20)

This simple ratio has the same formal accuracy as (5.19) and fits better our primary
goal, which is to predict inclusive jet cross sections and only examine their ratios for
different R values as a supplementary test. In the case of the results matched to LLR
resummation and of the (N)NLO-mult. results, the normalisation factor (with the cross
section at radius R0) cancels in the ratio, leaving only the fragmentation factor. For the
NNLOR-mult. and NNLOR+LLR results in particular, this means that any dependence
on the unknown full NNLO K-factor (or, equivalently, the choice of Rm in Eq. (5.14)) is
eliminated, and the prediction for the ratio is identical to that which would be obtained
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Figure 5.15 – Comparison between a range of theoretical predictions for the inclusive
jet cross-section ratio and data from ALICE at

√
s = 2.76 TeV [89]. The left-hand

column shows NLO-based comparisons, while the right-hand one shows NNLOR-based
comparisons. Rectangular boxes indicate the size of systematic uncertainties on the data
points, while the errors bars correspond to the statistical uncertainties.

with the full NNLO result. Accordingly, we will drop the subscript R label in these cases,
i.e. writing RNNLO+LLR in Eq. (5.20) rather than RNNLOR+LLR .

To estimate the perturbative theoretical uncertainties on the ratio, we take the envelope
of the ratios as determined for our seven renormalisation and factorisation scale choices.
In the case of (N)NLO-mult. and (N)NLO+LLR results, since the normalisation factor
cancels, we only consider the component of the perturbative uncertainties associated with
the fragmentation factor. We have verified that the effect of R0 variation is contained
within the scale-variation envelope. For the non-perturbative uncertainties, we take the
envelope of the ratios of the corrections factors from different Monte Carlo tunes. The
perturbative and non-perturbative uncertainties on the ratio are added in quadrature.

The comparison of the theory predictions with the measurements of the ALICE collab-
oration is presented in Fig. 5.15, at NLO accuracy on the left and at NNLO(R)-based
accuracy on the right. At first sight, it appears that the data have a considerably
flatter pt dependence than any of the theory predictions. The latter all grow noticeably
with increasing pt, a consequence mainly of the pt dependence of the non-perturbative
correction factor, cf. Fig. 5.13. Nevertheless, on closer inspection one sees that if one
ignores the left-most data point then the remaining data points are compatible with the
predicted pt dependence. The overall agreement is then best with the NNLO LLR-based
prediction. However, the sizes of the experimental uncertainties are such that it is difficult
to draw firm conclusions.

We have also examined the impact of using Eq. (5.19) instead of (5.20) and find that the
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Figure 5.16 – Non-perturbative corrections to the inclusive jet spectrum for the pt range,
rapidity and centre-of-mass energy corresponding to the ATLAS data [110] for R = 0.4
(left) and R = 0.6 (right).

difference is small, no more than 5%. We have also examined the pure NNLO expansion
of the ratio of cross sections, as used in Ref. [92] and find that this too is quite similar to
Eq. (5.20), much more so than the direct ratio of NNLO results, σNNLOR(R1)/σNNLOR(R2).
Thus our finding that we obtain reasonable agreement between Eq. (5.20) and the data
is consistent with the observations of Ref. [92], which were based on expanded NNLO
ratios.12

5.6.2 Comparison to ATLAS data

Let us now turn to a comparison with the inclusive jet cross-sections reported by
the ATLAS collaboration [110], obtained from 4.5 fb−1 of proton-proton collisions at√
s = 7 TeV. Jets are identified with the anti-kt algorithm, this time with a usual

E-scheme, taking radii R = 0.4 and 0.6. The measurements are doubly-differential, given
as a function of jet pt and rapidity, and performed for pt > 100 GeV and |y| < 3.

Note that given the difference in centre-of-mass energy, the lower pt for the ATLAS data,
100 GeV, involves the same partonic x range as pt = 40 GeV for the ALICE data.

The hadronisation and underlying event corrections applied are shown in Fig. 5.16. As
in the case of the ALICE data, for R = 0.4 these two classes of correction mostly cancel.
When increasing the jet radius to R = 0.6, the hadronisation corrections shrink, while
the UE corrections increase and now dominate, leaving a net effect of up to 6−7% at the
lowest pt’s.

Figs. 5.17 and 5.18 show comparisons between data and theory for two rapidity bins,

12 Note, that Ref. [92] used an analytical rather than Monte-Carlo based approach to estimating
hadronisation corrections.
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Figure 5.17 – Comparison between a range of theoretical predictions for the inclusive jet
spectrum and data from ATLAS at

√
s = 7 TeV [110] in the rapidity bin |y| < 0.5. The

upper row is for R = 0.4 and the lower one for R = 0.6. The left-hand column shows
NLO-based comparisons, while the right-hand one shows NNLOR-based comparisons.
Rectangular boxes indicate the size of systematic uncertainties on the data points, while
the errors bars correspond to the statistical uncertainties. Results are normalised to the
central NNLOR+LLR prediction (including non-perturbative corrections).
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Figure 5.18 – Analogue of Fig. 5.17, but for the rapidity bin 2 < |y| < 2.5.
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5.6. Comparisons to data

|y| < 0.5 and 2.0 < |y| < 2.5. At central rapidities the situation here contrasts somewhat
with that for the ALICE data and in particular the inclusion of NNLOR corrections
worsens the agreement with data: over most of the pt range, the data points are about
15−20% higher than than either NNLOR or NNLOR+LLR (which are close to each other,
as expected for R & 0.4). Nevertheless, one encouraging feature of the NNLOR-based
predictions is that there is now a consistent picture when comparing R = 0.4 and R = 0.6,
insofar as the ratio of data to NNLOR-theory is essentially independent of R. This is
not the case when comparing data and NLO predictions (cf. Fig. 5.5, which shows the
steeper R dependence of NNLOR-based results as compared to NLO). We return to the
question of R dependence in more detail below.

In the forward rapidity bin, over most of the pt range, the data instead favours the
NNLOR-based predictions over NLO, while at high pt the data falls below all of the
predictions. However the systematic uncertainties on the data are slightly larger than
the difference with any of the theory predictions, making it difficult to draw any solid
conclusions.

A significant positive 2-loop correction (cf. the discussion in sections 5.4.4, 5.4.5 and 5.6.3)
would bring overall better agreement at central rapidities, but would worsen the agreement
at forward rapidities. However, the finite 2-loop effects can be pt and rapidity dependent,
making it difficult to draw any conclusions at this stage. Furthermore, one should keep
in mind that adjustments in PDFs could affect different kinematic regions differently.

We close this section with an explicit comparison of the ratio of the jet spectra for the
two different R values. For the theoretical prediction, we proceed as discussed in the
previous subsection, when we made a comparison with the ALICE data for such a ratio.
We will not include EW effects, since in the ratio they appear to be at a level well below
1%.

Concerning the experimental results, the central value of the ratio can be obtained
directly from the ATLAS data at the two R values. However the ATLAS collabora-
tion has not provided information on the uncertainties in the ratio. It has provided
information [178] to facilitate the determination of correlations between pt and rapidity
bins, specifically 10000 Monte Carlo replicas of their data to aid in estimating statistical
correlations, as well as a breakdown of systematic uncertainties into O (70) sources that
are individually 100% correlated across bins and totally uncorrelated with each other.
The information is presented in a format such that, technically, it can also be used to
estimate the uncertainties in the ratio of cross section for two R values. However, we
have been advised by the ATLAS collaboration that the degree of correlation between
systematic uncertainties at different R values is not well known. Accordingly, we label
the uncertainties obtained in this way as “approx. uncert.” to emphasise that we do
not have full knowledge of the experimental uncertainties in the ratio and that they are
potentially larger than our estimate.
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Figure 5.19 – Comparison between a range of theoretical predictions for the inclusive
jet cross-section ratio and data from ATLAS at

√
s = 7 TeV [110]. The left-hand

column shows NLO-based comparisons, while the right-hand one shows NNLO(R)-based
comparisons. Rectangular boxes indicate our estimated systematic uncertainties on the
data points, while the errors bars correspond to the statistical uncertainties. Note that
these estimates are known to be incomplete, insofar as the information provided by the
ATLAS collaboration on its results is not intended to be used for the determination of
uncertainties on cross section ratios at different radii.

Keeping in mind this caveat, we show in Fig. 5.19 a comparison between various theoretical
predictions for the cross section ratio at R = 0.4 relative to R = 0.6, together with the
experimental data. One sees overall very good agreement with both the NNLOR and
NNLO+LLR-based results, and substantially worse accord with NLO-based predictions
(albeit consistent with pure NLO and NLO-mult. within their larger uncertainties).

5.6.3 Brief comparisons with an NNLO K-factor

For completeness, here we show the comparisons between theoretical predictions and data
change when we introduce a two-loop K-factor for R = Rm, as described in section 5.4.4.
Figures 5.20, 5.21 and 5.22 are to be compared to their counterparts in sections 5.6.1
and 5.6.2 i.e. Figs. 5.14, 5.17 and 5.18. In most cases, the changes that one observes are
largely as expected, with a corresponding trivial rescaling of the observed data–theory
ratio. One exception is in the case of the R = 0.2 comparison to ALICE data, Fig. 5.20
(left), where with K = 1.10 one observes that the NNLOR,K results are now in very close
accord with the NNLOR,K+LLR results. This is to be contrasted with the situation
in Fig. 5.14. The difference is due to the fact that the K factor acts additively on the
NNLOR,K result, but multiplicatively on the NNLOR,K+LLR result, as discussed already
in section 5.4.4.
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Figure 5.20 – Comparison between theoretical predictions with a NNLO Rm = 1 correction
factor K = 1.10 and data from ALICE at

√
s = 2.76 TeV [89] at R = 0.2 and R = 0.4.

Rectangular boxes indicate the size of systematic uncertainties on the data points, while
the errors bars correspond to the statistical uncertainties. Results are normalised to the
central NNLOR,K+LLR prediction (including non-perturbative corrections).

Note that for the ATLAS comparison, while a K-factor of K = 1.10 improves agreement
with the data at central rapidities, it appears to worsen it somewhat at high rapidities,
as can be seen in Fig. 5.22. One should, however, keep in mind that the true K-factor
will depend both on rapidity and pt, and also that modifications associated with changes
in PDFs can affect forward and central rapidities differently.

5.7 Conclusion

In this chapter we have used the limit of small-radius jets to explore a variety of features
of the most basic of jet observables, the inclusive jet spectrum.

A first observation, in section 5.2, was that the small-R approximation starts to reproduce
fixed-order R dependence quite well already for R just below 1, giving us confidence in
the usefulness of that approximation for phenomenologically relevant R values.

In seeking to combine small-R resummation with NLO predictions, in section 5.3, it was
natural to write the cross section as a product of two terms: an overall normalisation for
elementary partonic scattering, together with a factor accounting for fragmentation of
those partons into small-R jets. Such a separation can be performed also at fixed order.
There appear to be spurious cancellations between higher-order contributions for the
two factors and this led us to propose that one should estimate their scale uncertainties
independently and then add them in quadrature. This procedure has similarities with
methods used for jet vetoes in Higgs physics [151, 121].
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Figure 5.21 – Comparison between theoretical predictions with a NNLO Rm = 1 correction
factor K = 1.10 and data from ATLAS at

√
s = 7 TeV [110] in the rapidity bin |y| < 0.5,

for R = 0.4 and R = 0.6. Rectangular boxes indicate the size of systematic uncertainties
on the data points, while the errors bars correspond to the statistical uncertainties. Results
are normalised to the central NNLOR,K+LLR prediction (including non-perturbative
corrections).
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Figure 5.22 – Analogue of Fig. 5.21, but for the rapidity bin 2 < |y| < 2.5.
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5.7. Conclusion

We also saw that there are large R-dependent terms at NNLO that are beyond the control
of our LLR resummation (sections 5.2.1 and 5.4). To account for them in the absence of
the full NNLO calculation, we introduced a stand-in for NNLO that we called NNLOR.
This is defined to be identical to NLO for R = 1 but includes full NNLO R dependence,
which can be obtained from a NLO 3-jet calculation. Once complete NNLO predictions
become available, it will be trivial to replace the NNLOR terms with NNLOones.

For an accurate description of the inclusive jet spectrum one must also account for non-
perturbative effects. In section 5.6 we revisited the analytical hadronisation predictions
of Ref. [63]. We found that the predicted scaling with R and the parton flavour was
consistent with what is observed in Monte Carlo simulations. However such simulations
additionally show a non-trivial pt dependence that is absent from simple analytical
estimates. Accordingly we decided to rely just on Monte Carlo simulations to evaluate
non-perturbative corrections.

We compared our results to data from the ALICE and ATLAS collaborations in section 5.6.
For the smallest available R value of 0.2, both the NNLOR and the LLR corrections
beyond NNLOR play important roles and at the lower end of ALICE’s pt range, the
effect of NNLOR corrections was almost 50%, while further LLR corrections mattered at
the 20% level. For R = 0.4, NNLOR corrections still mattered, typically at the 10−30%
level, depending on the pt. However LLR resummation then brought little additional
change. Overall, for the ALICE data and the forward ATLAS data, NNLOR+LLR
brought somewhat better agreement than NLO, while for central rapidities, the ATLAS
data were substantially above the NNLOR+LLR predictions. It will be important to
revisit the pattern of agreement once the full NNLO corrections are known, taking into
account also aspects such as correlated experimental systematic uncertainties and PDF
uncertainties.

We also examined ratios of cross sections at different R values, for which we needed only
the R-dependent part of the NNLO terms. We found significantly improved agreement
with our NNLOR-based predictions, and this was most visible in the case of the central
ATLAS data.

Overall, the substantial size of subleading R-enhanced terms in the NNLO corrections
also motivates studies of small-R resummation beyond LLR accuracy and of small-R
higher order effects in other jet observables.

A final comment concerns long-term prospects. We have seen here that the availability of
data at multiple R values provides a powerful handle to cross-check theoretical predictions.
As the field moves towards ever higher precision, with improved theoretical predictions
and reduced experimental systematic uncertainties, cross checks at multiple R values
will, we believe, become increasingly important. In this respect, we strongly encourage
measurements at three different radii. Small radii, R ' 0.2−0.3, are particularly sensitive
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Chapter 5. Inclusive jet spectrum in the small-radius limit

to hadronisation effects; large radii, R ' 0.6−0.8 to underlying event effects; the use
of an intermediate radius R ' 0.4 minimises both and provides a good central choice.
Only with the use of three radii do we have a realistic chance of disentangling the three
main sources of theoretical uncertainties, namely perturbative effects, hadronisation, the
underlying event.
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6 Dijet mass spectrum at
small-radii

In this chapter, we will discuss another observable of special interest in jet measurements,
the dijet mass spectrum mjj .

6.1 Introduction

The dijet mass is obtained by combining the two highest pt jets in an event, and calculating
the resulting invariant mass mjj .

The two-jet invariant mass spectrum is particularly relevant in searches for new physics,
as many models involve s-channel resonances. These would result in local excesses in the
dijet mass spectrum, while SM processes have a smooth and rapidly falling spectrum in
mjj . Precise measurements of the dijet mass spectrum therefore provide a unique probe
into possible new physics, whether in the form of a new massive particle decaying to a
two-jet final state, or a new interaction which contributes only at very large center-of-mass
energies.

New physics could be inferred from discrepancies between the QCD predictions and
experimental data. To be able to perform sensitive searches in this spectrum requires
therefore accurate QCD predictions of the 2→ 2 scattering at high pt, which is dominated
by the t-channel gluon exchange.

The mjj spectrum is currently known at NLO in QCD [179], and theoretical predictions
have so far been found to be in good agreement with experimental data [180, 181].

In this chapter, we will investigate the importance of small-R contributions in the dijet
mass spectrum, which are expected to be enhanced compared to the inclusive pt spectrum
studied in chapter 5. We will compare the LLR resummation with results from Monte
Carlo event generators, and give a crude analytical estimate of hadronisation effects.
Finally, we will show the impact of the resummation beyond NLO, though we leave a

97
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detailed study of matched results for future work.

6.2 Small-R resummation for the dijet mass spectrum

Neglecting contributions from the original mass of the jets, which are of the form O(R2)
(c.f. section 2.5), it is straightforward to express the dijet mass spectrum in terms of
microjet fragmentation functions. Using the leading order partonic cross section, one
can write the small-R resummed dijet mass spectrum as1

dσLLRjet
dm2

jj

=
∑
i,j,k,l

∫
dx1dx2f

hardest
jet/k (x1)fhardestjet/l (x2)x1x2

dσLOij→kl
dŝ

, (6.1)

where we assumed that the fragmented microjets are collinear to the initial hard partons,

m2
jj = (pj1 + pj2)2 ' (x1pk + x2pl)2 ' x1x2ŝ . (6.2)

Because of the double fragmentation function in equation (6.1), one naively expects
small-R effects to be enhanced by roughly a factor two compared to the inclusive pt
spectrum given by equation (5.1).

To verify the validity of this approximation, we compare the LLR resummed dijet mass
spectrum with the dijet mass spectrum obtained from a parton shower. This is achieved
by using Pythia 8.186 [139] with the Monash 13 tune [159] to simulate 13 TeV proton-
proton collisions. We consider only jets with pt > 20 GeV, and impose a cut on the
rapidity separation, requiring |∆yjj | < 1.

The resulting spectra are shown in figure 6.1 (left) for R = 0.1, 0.2 and 0.4. The bands
give the envelope of the R0 = 1, 1.5 values, while the spectrum obtained from final-state
radiation with Pythia 8 is plotted as a dashed line. One can observe a reasonably good
agreement between the small-R resummation and a Monte Carlo generator.

It is particularly interesting to compare the results of the left-hand side of figure 6.1 to
the corresponding ratio for the inclusive pt spectrum, given in figure 5.1. One can see
that at small values of the jet radius, R = 0.1 the small-R effects are enhanced in the
dijet mass spectrum, while at R = 0.4, the resummation has a similar impact in both
cases.

1Here we also neglect the small, but formally LLR, contribution coming from configurations where
the two leading microjets originate from the same parton.
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6.3. Analytical hadronisation estimate
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Figure 6.1 – Comparison of LLR resummed dijet mass spectrum with Pythia 8, for
R = 0.1, 0.2 and 0.4. The bands represent the typical R0 ∈ [1, 1.5] variation. The cross
sections are normalized to the underlying hard scatter.

6.3 Analytical hadronisation estimate

Let us now compare the LLR prediction with Pythia 8 at hadron level. This can achieved
by applying a pt shift as described in [63], which on the dijet mass results in

m2
jj,hadron ' x1x2ŝ

(
1− δpt1

x1pt1

)(
1− δpt2

x2pt2

)
, (6.3)

where the value of the shift δpt shift is as described in equation (5.18).

We have seen in section 5.5 that analytical hadronisation models do not always provide an
extremely reliable prediction of hadronisation effects, in particular with regards to their
pt dependence. For a more comprehensive study of hadronisation, one would therefore
ideally compare a range of Monte Carlo programs, and rescale the mjj spectrum by the
ratio of hadron to parton levels.

Nevertheless, the result of applying the analytical hadronisation model of equation (6.3)
to the resummed spectrum is shown in the right-hand plot in figure 6.1. One can
observe again reasonable agreement with the parton shower, at least at large enough
mjj . However, we can see that the analytical hadronisation tends to overestimate the
size of hadronisation corrections compared to predictions from Pythia 8, which is to be
expected in the light of the discussions of section 5.5.

6.4 Impact of resummation beyond leading order

We are, for the most part, interested in the impact of the LLR resummation beyond LO,
through appropriate matching with fixed order calculations at (N)NLO. It is therefore
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compelling to look at the convergence of the perturbative series in an expansion in t
and αs, and have a quantitative estimate of the missing higher order O

(
(αs lnR)n+1)

corrections remaining when truncating the expansion at order n, as is the case in a fixed
order result.

In figure 6.2, we show the expansion of the dijet mass spectrum mjj , for three different
R values, R = 0.1, 0.2, and 0.4. The first figure gives the normalised difference between
the resummation and the LO expansion, giving the size of the effect of the resummation
beyond the LO in a fixed order calculation. The second figure, on the upper row, shows
the impact of the resummation beyond NLO, comparing the expansion up to αs to the
full result.

Interestingly, when comparing this with the expansion to first order in the evolution
variable t (bottom row), and one notices that the αs expansion converges much more
rapidly than the expansion in t, which oscillates in sign. This is discussed in more detail
in appendix B.1 for the case of the inclusive jet spectrum.

Furthermore, one can see that, as might be expected from the double fragmentation
function in equation (6.1), small-R effects are enhanced in this case, by about a factor two
at NLO compared to the case of the inclusive pt spectrum, which is shown in figure B.1.
We see that even for moderate values of R, resummation effects beyond NLO can be
substantial, with effects up to 20% and 40% for R = 0.4 and R = 0.2 respectively.

6.5 Conclusion

In this chapter, we have discussed small-R effects in the dijet mass spectrum.

We saw that the small-R resummation can be included straightforwardly to the LO
partonic cross section. We compared the resummed spectrum to results obtained from
Pythia 8, and found reasonable, albeit not perfect, agreement between the two spectra.

Furthermore, we studied hadronisation effects using analytical models, and found that
despite their limitations, one can observe at least qualitative agreement with the Monte
Carlo prediction.

We saw that small-R effects beyond NLO can be substantial, with higher order corrections
from the resummation of up to 40% for R = 0.2.

The results presented in this chapters provide a basis and motivation for a more in depth
study of small-R contributions to the dijet mass spectrum. It would be straightforward
to match the LLR resummation to (N)NLO(R) predictions, as was shown in chapter 5.
After deriving non-perturbative correction factors from Monte Carlo simulations, one
could then compare matched predictions to ATLAS data [156].
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Figure 6.2 – Convergence of the first and second term in the fixed order expansion of the
dijet mass spectrum. The first row shows the relative difference between the O(1) (LO)
and O(αs) (NLO) terms and the all-order value. The bottom row shows the expansion
in t.
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7 The VBF channel

Since the discovery of the Higgs boson at the LHC [182, 183], the precise determination of
its properties and couplings has become a priority of the ATLAS and CMS collaborations.
To achieve this goal, it is essential to have precise predictions of Higgs production and
decays in the Standard Model.

Because the Higgs boson couples preferentially to heavy particles, the dominant produc-
tion channels are those involving massive vector bosons and the top (as well as bottom)
quark.

The four main production channels are:

• gluon-gluon fusion (ggH) [184], gg → H, where the Higgs is produced through a
heavy quark loop,

• vector-boson fusion (VBF) [185], qq → qq + (V ∗V ∗ →)H,

• associated production with a W or Z boson (VH) [186], also called Higgs-strahlung,
qq̄ → V +H,

• and associated production with top [187] (or bottom [188, 189]) quarks (ttH/bbH),
gg/qq̄ → QQ̄+H.

Gluon-gluon fusion is by far the dominant channel, despite being mediated by a quark
loop even at lowest order, followed by production through weak boson fusion. A summary
of Higgs production cross sections in the main production channels is given in figure 7.1
for a range of center of mass energies.

Due to the importance of having highly accurate predictions, precise calculations of higher
order QCD corrections have been subject to a large theoretical effort. They are now
known at N3LO for the inclusive cross section in the ggH channel [191, 192], at NNLO
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Figure 7.1 – The production cross section for the Higgs boson, as a function of center of
mass energy, for different production channels. Figure taken from [190].

for differential predictions of a Higgs in association with a jet [193] and for associated
V H production [194, 195], and at NNLO for inclusive VBF Higgs production [196].

7.1 Experimental status

Since July 2012, the Higgs particle has been successfully observed in a number of different
decay channels [197, 198, 199, 200]. A summary of the measurements in the channels
with the best mass resolution is given in figure 7.2. The combination of the ATLAS
and CMS measurements, for both the H → γγ and the H → ZZ → 4l channels, gives a
combined mass of mH = 125.09± 0.24 GeV [201].

As we discussed above, Higgs bosons can be produced through several processes. A useful
measure of production and decay rates compared to SM expectations is given by the
signal strength µ. For a specific channel i→ H → f , it is given by

µfi = µi × µf , µi = σi
(σi)SM

, µf = BRf

(BRf )SM
, (7.1)

where σi is the production cross section for the i→ H process, and BRf is the branching
ratio for the H → f channel. The denominator is the standard model expectation.

The signal strengths measured by ATLAS and CMS for the main production channels
are given in figure 7.3 (left). Figure 7.3 (right) shows the projected relative uncertainty
on the signal strengths at the High Luminosity LHC (HL-LHC). One can see that with
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 [GeV]Hm
123 124 125 126 127 128 1290.5−

9

Total Stat. Syst.CMS and ATLAS
 Run 1LHC 						Total      Stat.    Syst.

l+4γγ CMS+ATLAS  0.11) GeV± 0.21 ± 0.24 ( ±125.09 

l 4CMS+ATLAS  0.15) GeV± 0.37 ± 0.40 ( ±125.15 

γγ CMS+ATLAS  0.14) GeV± 0.25 ± 0.29 ( ±125.07 

l4→ZZ→H CMS  0.17) GeV± 0.42 ± 0.45 ( ±125.59 

l4→ZZ→H ATLAS  0.04) GeV± 0.52 ± 0.52 ( ±124.51 

γγ→H CMS  0.15) GeV± 0.31 ± 0.34 ( ±124.70 

γγ→H ATLAS  0.27) GeV± 0.43 ± 0.51 ( ±126.02 

Figure 7.2 – Measured Higgs boson mass for the combination of ATLAS and CMS, for
different channels. Figure taken from [201].

the HL-LHC, one can expect a significant improvement in the VBF and VH associated
production.

The VBF and VH channels have already played a significant role in experimental
searches [202, 203]. As energy and luminosity are increased, and due to their clean
signature, these processes will become even more important.

7.2 VBF Higgs production

In this thesis, we will focus mainly on VBF-induced Higgs production, as shown in
figure 7.4. It is a channel that will play an important role during the run 2 of the LHC
and beyond, e.g. for the determination of Higgs couplings. There are several reasons
why VBF Higgs production has a special character, and why it deserves a careful study:

1. First, it has the largest cross section involving tree-level production (there is no
tree-level contribution for gluon-gluon fusion).

2. It has a distinctive signature, which involves two forward jets. Additional QCD
radiation is preferentially emitted along the tagging jets, such that there is little
jet activity in the central region.

3. This unique signature allows for better tagging of the events, making it possible to
identify decays of the Higgs that have large backgrounds (notably H → τ+τ−).

4. The transverse momentum of the produced Higgs is non-zero even at lowest order,
which facilitates searches of invisible decay modes [206, 207].
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Figure 7.3 – Left: measured signal strengths µ for the combination of ATLAS and
CMS, for different production processes. Right: projected relative uncertainty on the
total signal strengths at the HL-LHC. The hashes indicate current theory uncertainties.
Figures taken from [204] (left) and [205] (right).
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P1

P2

H

V ∗

V ∗

Figure 7.4 – Higgs production through vector-boson fusion.

5. Finally, because of the angular correlation of the forward jets, one has a particular
sensitivity to the charge-parity properties of the Higgs, and to non-standard Higgs
interactions [208].

One should be aware that there is an intrinsic ambiguity in defining exactly what is
meant with a VBF process. Even at LO, there can be quantum interferences with
associated production (VH) where the vector boson decays hadronically (i.e., production
via the s-channel). As one starts to take into account higher order corrections from QCD
radiation, interferences with gluon-gluon fusion become possible, as well as contributions
from heavy-quark loops. Fortunately, these effects turn out to be extremely small
numerically, such that one can safely neglect them, considering only diagrams described
by figure 7.4 [209].

7.3 VBF cuts

Because of its three-body final state, and because it is mediated by a massive boson
exchange in the t-channel, VBF has complicated but distinctive kinematics. This turns
out to be very useful when one aims to discriminate signal events from the QCD
background, and one can use forward jet-tagging and vetoes on central jets to select
VBF-like topologies.

The vector bosons mediating the Higgs production tend to carry only a small amount
of the initial partons’ energy, given that these partons scatter at energies far beyond
the Higgs boson mass. As such, the final state quarks will generally have only moderate
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transverse energies, and relatively small scattering angles, such that the typical pseudo-
rapidity for the tagging jets is in the range |η| ∈ [1, 5] [210], as shown in figure 7.5.

Figure 7.5 – Transverse momentum (left) and pseudo-rapidity (right) of the jets resulting
from qq → Hqq fusion process for mH = 120 GeV. The pt,j distributions shown are for
the highest (dashed) and lowest (solid) pt jet, while the ηj distribution is displayed for
the most forward (dashed) and most central (solid) jet. Figure reproduced from [211].

One can then substantially reduce QCD backgrounds and ggH contamination by imposing
appropriate cuts on the jet rapidity and pt. Typical cuts at the LHC require the jets
to have transverse momentum pt,j > 25 GeV, with rapidity |yj | < 4.5. One should also
impose that the two tagging jets be in opposite hemispheres, such that the product of
their rapidities is negative, yj1yj2 < 0. Furthermore, as can be seen in figure 7.6, VBF has
very characteristic distributions for the dijet invariant mass and the rapidity separation
between the tagging jets. Hence, well-defined cuts on these variables can further enhance
the signal. A good choice at LHC energies is to require a rapidity gap between the two
jets of |∆yj1,j2 | > 4.5, with a minimum dijet invariant mass mj1,j2 > 600 GeV.

Finally, because color exchanges between the upper and lower quark lines are highly
suppressed, additional partons radiated at higher orders will tend to be preferentially
emitted along the tagging jets (and more forward), leading to a reduced hadronic activity
in the central region. This is not the case for QCD backgrounds such as Z + 2 jets
and gluon-fusion Higgs production, so that imposing a central jet veto can improve
significantly the discrimination between signal and backgrounds. This point is illustrated
in figure 7.7, which shows the rapidity distribution of the third jet for both VBF and
gluon-gluon fusion.

We note that yet further cuts can be imposed on the decay products of the Higgs, which
tend to be more central then their corresponding QCD background. Thus, the signal can
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7.3. VBF cuts

be somewhat enhanced by requiring that the rapidity of the decay products falls in a
specific range in rapidity between the tagged jets. One can also apply more specialized
cuts for particular decays of the Higgs boson [210].

Taken together, these cuts lead to a huge reduction of backgrounds, making VBF Higgs
production a very clean channel with properties well-suited for precision measurements
of the Higgs boson.

Figure 7.6 – Dijet invariant mass and jet rapidity separation, adapted from [212]. The
VBF distribution is shown in green, while the Hjj gluon-fusion background is in blue.

Figure 7.7 – Rapidity distribution of the third jet, relative to the average of the tagging
jets, yrel = yj3 − (yj1 + yj2)/2, both for VBF (blue) and gluon-fusion (red). Figure
reproduced from [213].
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7.4 Electroweak corrections

As one calculates higher order QCD corrections to the VBF Higgs production cross
section, it is important to keep in mind that corrections from electroweak loops can be
significant. Electroweak corrections have been calculated fully up to NLO, and found
to be of the order of 5% [214, 215], comparable with the NNLO QCD corrections. It is
therefore important to include these contributions as well in phenomenological studies.

While a detailed examination of electroweak effects in VBF is beyond the scope of the
present thesis, we discuss how to include one-loop electroweak corrections to the QCD
calculation. Let us first decompose the N3LO QCD cross section as

σN
3LO,QCD = σ0 + αsσ

QCD
1 + α2

sσ
QCD
2 + α3

sσ
QCD
3 , (7.2)

and write the NLO electroweak cross section

σNLO,EW = σ0 + ασEW1 . (7.3)

It is not possible to obtain the exact contribution of terms of the form O(αnsα3) using
only these expressions. But we can construct a cross section that is accurate both at
O(α3) and at O(αnsα2).

This can be achieved in two different ways. One can use an additive scheme, with

σQCD+EW, add. = σ0 + αsσ
QCD
1 + α2

sσ
QCD
2 + α3

sσ
QCD
3 + ασEW1 . (7.4)

Another possibility is to use instead a multiplicative scheme

σQCD+EW, mult. = σN
3LO,QCD(1 + δEW) , δEW = α

σEW1
σ0

. (7.5)

Equation (7.5) has the added advantage that some of the dependence on the input
parameters (such as the electroweak constants, PDF sets and scale choices) cancels in the
ratio between the brackets. This can be useful in practice, for example when combining
results obtained with different programs.

Equations (7.4) and (7.5) can of course also be used for differential distributions. In
practice, one can then calculate the EW correction bin-by-bin and apply them to the
QCD calculation.
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8 Inclusive VBF Higgs production

We start our study of higher order effects in VBF Higgs production with a calculation of
the inclusive cross section, integrating over all final-state partons. The total cross-section
has been calculated up to NNLO [196, 209] in the structure function approach [216].
After a review of this approximation, we will independently reproduce the known results,
and extend them to N3LO.

8.1 The structure function approximation

The structure function approach builds on the fact that VBF Higgs production is, to a
very good approximation, a double-DIS process. The factorised approximation is correct
as long as there is no color cross-talk between the upper and lower quark lines, of the
type shown in figure 8.1. This is exactly true at NLO, where the gluon exchange vanishes
because the color factor is zero.

Figure 8.1 – Gluon exchanges between the upper and lower sectors at NLO (left) and
NNLO (center and right).

At NNLO, the diagrams exchanging color between the two sectors are highly suppressed,
for two reasons: the first is that, as we have seen in section 7.3, partons are preferentially
emitted along the tagging jets, so that colored emissions in the central region are
kinematically suppressed; the second is that these diagrams are always non-planar [217],
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meaning that they are further suppressed by a factor O(1/N2
c ). This remains true also

at N3LO.

It is important to realize that the structure function approach to VBF includes only
“pure” VBF-type diagrams. There are however several classes of contributing diagrams,
particularly at higher orders in QCD, that can not be disentangled from VBF, such as:

• The s-channel contribution [215], where a quark and anti-quark annihilate to
produce a vector boson, as shown in figure 8.2 (left).

• Interferences of VBF with gluon-fusion [215].

• Interferences with Higgs production mediated by heavy-quark loops, as shown in
figure 8.2 (center).1

• Single-quark line diagrams [218], of which an example is given in figure 8.2 (right).

These terms are not included in the structure function approximation. Fortunately,
these contributions are highly suppressed.2 Most have been calculated explicitly up to
(N)NLO, and found to have an impact below 1% on the total cross section [215, 218, 209].
Therefore, we will safely neglect them.

Figure 8.2 – Neglected contributions to VBF from the s-channel diagram at LO (left),
from a heavy-quark loop at NNLO (center) and from single-line VBF at NNLO (right).

8.1.1 Factorised cross section

Having established the framework we will use for our calculation, let us now express
the cross section more explicitly. As we have mentioned above, we will view VBF
Higgs production as a double DIS process, where one can think of the lower and upper
sectors as two separate copies of QCD, which communicate only through the electroweak
interaction.

1Here the vector boson can only be a Z/γ.
2The s-channel in particular, while representing a non-negligible contribution to the inclusive cross-

section, is strongly reduced by the VBF cuts. This is because in this case the jets are produced by
an off-shell vector boson, which will, at least at LO, generally not survive the mjj cut. At NLO, the
situation is a bit more complicated, since one of the jets can be from initial state radiation.
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Figure 8.3 – Kinematics of VBF Higgs production at LO.

The LO interaction is shown in figure 8.3. For our purposes, we require the matrix
element for Higgs production from two vector bosons [219, 220, 221, 222], V ∗V ∗ → H,

Mµν = 2
(√

2GF
)1/2

m2
V g

µν , (8.1)

where GF is the Fermi coupling constant and mV the mass of the scattering Z or W
boson. The cross section can then be expressed as3 [209]

dσ = 1
s
G2
Fm

2
V

1
(Q2

1 +m2
V )2 + Γ2

Vm
2
V

1
(Q2

2 +m2
V )2 + Γ2

Vm
2
V

×WV
µν(x1, Q

2
1)MµρM∗νσWV

ρσ(x2, Q
2
2)

× d3P4
(2π)32E4

d3P5
(2π)32E5

ds4ds5
d3p3

(2π)32E3
(2π)4δ4(P1 + P2 − p3 − P4 − P5) . (8.2)

Here s = (P1 +P2)2 is the center-of-mass energy squared (of the protons), and we defined
si = (Pi−3 + qi−3)2 the invariant mass of the proton remnants, as well as the usual DIS
variables Q2

i = −q2
i and xi = Q2

i /(2Pi · qi). The decay width of the vector boson is given
by ΓV , and we used Breit-Wigner propagators. The hadronic tensor WV

µν can be written

WV
µν(xi, Q2

i ) =
(
− gµν + qi,µqi,ν

q2
i

)
F V1 (xi, Q2

i ) + P̂i,µP̂i,ν
Pi · qi

F V2 (xi, Q2
i )

+ iεµνρσ
P ρi q

σ
i

2Pi · qi
F V3 (xi, Q2

i ) , (8.3)

where we defined P̂i,µ = Pi,µ − Pi·qi
q2
i
qi,µ, and the F Vi (x,Q2) functions are the standard

DIS structure functions with i = 1, 2, 3 and V = Z,W−,W+.

Using Eq. (8.3), one can evaluate the squared hadronic tensor appearing in Eq. (8.2) [216,

3Note that P1,2 refers to the proton momentum, and not to the parton momentum, which is written
with a lower-case letter. Similarly, P4,5 refers to the four-momentum of the proton remnants.
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223],

WV
µν(x1, Q

2
1)WV,µν(x2, Q

2
2) = F V1 (x1, Q

2
1)F V1 (x2, Q

2
2)
[
2 + (q1 · q2)2

q2
1q

2
2

]

+ F V1 (x1, Q
2
1)F V2 (x2, Q

2
2)

P2 · q2

[
(P2 · q2)2

q2
2

+ 1
q2

1

(
P2 · q1 −

P2 · q2
q2

2
q1 · q2

)2
]

+ F V2 (x1, Q
2
1)F V1 (x2, Q

2
2)

P1 · q1

[
(P1 · q1)2

q2
1

+ 1
q2

2

(
P1 · q2 −

P1 · q1
q2

1
q1 · q2

)2
]

+ F V2 (x1, Q
2
1)F V2 (x2, Q

2
2)

(P1 · q1)(P2 · q2)

[
P1 · P2 −

(P1 · q1)(P2 · q1)
q2

1

− (P1 · q2)(P2 · q2)
q2

2
+ (P1 · q1)(P2 · q2)(q1 · q2)

q2
1q

2
2

]2

+ F V3 (x1, Q
2
1)F V3 (x2, Q

2
2)

2(P1 · q1)(P2 · q2)

[
(P1 · P2)(q1 · q2)− (P1 · q2)(P2 · q1)

]
. (8.4)

In order to compute the NnLO cross section, we require the structure functions F Vi up
to order O(αns ) in the strong coupling constant.

We aim to express the structure functions as convolutions of the PDFs with the short
distance Wilson coefficient functions Ci.

F Vi =
∑
a

CV,ai ⊗ fa . (8.5)

To this end, it is useful to define the (non)singlet distributions qS (qNS,i) as

qS =
nf∑
j=1

(qj + q̄j), q±NS,j = qj ± q̄j , (8.6)

as well as the non-singlet valence distribution

qvNS =
nf∑
j=1

(qj − q̄j) . (8.7)

We also decompose the quark coefficient functions into non-singlet and pure-singlet parts

Ci,q = C+
i,NS + Ci,PS , i = L, 2 , (8.8)

and define the valence coefficient function

Cv3,NS = C−3,NS + Cs3,NS . (8.9)
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The structure functions for the neutral current case can be expressed as

FZi (x,Q2) = 2x
∫ 1

0
dz

∫ 1

0
dyδ(x− yz)

nf∑
j=1

[
(vZj )2 + (aZj )2

]
×
[
q+
NS,j(y, µf )C+

i,NS(z,Q, µr, µf ) + qS(y, µf )Ci,PS(z,Q, µr, µf )

+ g(y, µf )Ci,g(z,Q, µr, µf )
]
, (8.10)

FZ3 (x,Q2) = 4
∫ 1

0
dz

∫ 1

0
dyδ(x− yz)

nf∑
j=1

vZj a
Z
j

×
[
q−NS,j(y, µf )C−3,NS(z,Q, µr, µf ) + qvNS(y, µf )Cv3,NS(z,Q, µr, µf )

]
, (8.11)

where i = 2, L and FZ1 (x,Q2) = 1
2x(FZ2 (x,Q2)−FZL (x,Q2)). The vector and axial-vector

coupling constants vZi and aZi are given by

vZj = T3,j = ±1
2 , aZj = T3,j − 2ej sin2 θw =

{
1
2 −

4
3 sin2 θw, u-type

−1
2 + 2

3 sin2 θw, d-type (8.12)

The structure functions for the charged current case can be written

FW
±

i (x,Q2) = x

∫ 1

0
dz

∫ 1

0
dyδ(x− yz) 1

nf

nf∑
j=1

[
(vWj )2 + (aWj )2

]
×
[
∓ δq−NS(y, µf )C−i,NS(z,Q, µr, µf ) + qS(y, µf )Ci,q(z,Q, µr, µf )

+ g(y, µf )Ci,g(z,Q, µr, µf )
]
, (8.13)

FW
±

3 (x,Q2) = 2
∫ 1

0
dz

∫ 1

0
dyδ(x− yz) 1

nf

nf∑
j=1

vWj a
W
j

×
[
∓ δq+

NS(y, µf )C+
3,NS(z,Q, µr, µf ) + qvNS(y, µf )Cv3,NS(z,Q, µr, µf )

]
, (8.14)

where we have again i = 2, L and FW1 (x,Q2) = 1
2x(FW2 (x,Q2)−FWL (x,Q2)). The vector

and axial-vector coupling constants for the W case are simply

aWj = vWj = 1√
2

(8.15)

We defined also the asymmetry δq±NS parametrising the isotriplet component of the proton
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δq±NS =
∑
u-type

(qj ± q̄j)−
∑
d-type

(qj ± q̄j) . (8.16)

8.1.2 Scale variation up to N3LO

To obtain the cross section at different values of the renormalisation and factorisation
scales, one can use the renormalisation group equations, as decribed for example in [224,
225]. We need to evaluate the scale dependence at two places: in the Wilson coefficient
functions and in the PDFs.

We start by expressing the coefficient functions as an expansion in αs(µR) instead of
αs(Q). This can be easily obtained by integrating equation (1.5) interatively, which
yields

αs(Q) = αs(µR) + α2
s(µR)
2π π2b0LRQ + αs(µR)3

4π2

(
b1LRQ + π4b20L

2
RQ

)
+ αs(µR)4

8π3

(
b2LRQ + 5

2π
2b0b1L

2
RQ + π6b30L

3
RQ

)
+O(α5

s) . (8.17)

Here we have introduced the shorthand notation

LRQ = ln
(
µ2
R

Q2

)
, LFQ = ln

(
µ2
F

Q2

)
, LFR = ln

(
µ2
F

µ2
R

)
. (8.18)

Thus, the expansion of the coefficient functions at N3LO can be written

C
(0)
i + αs(Q)C(1)

i + α2
s(Q)C(2)

i + α3
s(Q)C(3)

i =

C
(0)
i + αs(µR)C(1)

i + α2
s(µR)

(
C

(2)
i + π

2 b0C
(1)
i LRQ

)
+ α3

s(µR)
[
C

(3)
i + πb0C

(2)
i LRQ + 1

4π2C
(1)
i LRQ

(
b1 + π4b20LRQ

)]
. (8.19)

To evaluate the dependence on the scale µF , we integrate the DGLAP equation (1.13).
Let us start by rewriting it in a matrix form4

d

d lnµ2 f (x, µ) = ( P⊗ f )(x, µ) , (8.21)

4 Here we take the usual Mellin convolution, defined as

(f ⊗ g)(x) =
∫ 1

x

dy

y
f(y)g(x/y) . (8.20)
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where we introduced the PDF vector

f (x, µF ) = (q+
NS,q

−
NS, q

v
NS, qS, g) , q±NS = (. . . , q±NS,i, . . . ) , (8.22)

as well as the corresponding splitting matrix

P (x, αs(Q)) = P(0)(x) + αs(Q) P(1)(x) + α2
s(Q) P(2)(x) +O(α3

s) . (8.23)

Hence we have

f (x,Q) = f (x, µF )−
∫ LFQ

0
dL

d

dL
f (x, µ) , L = ln

(
µ2

Q2

)
. (8.24)

Using equation (8.21), we can write

d

dL
f (x, µ) = αs(µR) f (x, µF ) P(0)

+ α2
s(µR) f (x, µF )

[
P(1) + L( P(0))2 − π

2 b0(LFR + L) P(0)
]

+ α3
s(µR) f (x, µF )

[
P(2) + L( P(0) P(1) + P(1) P(0)) + 1

2L
2( P(0))3

− πb0L
(

P(1) + 3
4L( P(0))2

)
− πb0LFR

(
P(1) + L( P(0))2

)
+ π2

4 b
2
0(L + LFR)2 P(0) − 1

4π2 b1(L + LFR) P(0)
]
, (8.25)

With this, it is straightforward to express the PDF as

f (x,Q) = f (x, µF )− αs(µR)LFQ f (x, µF ) P(0)

− α2
s(µR)LFQ f (x, µF )

[
P(1) − 1

2LFQ (P(0))2 − 1
4πb0(LFQ − 2LRQ) P(0)

]
− α3

s(µR)LFQ f (x, µF )
[

P(2) − 1
2LFQ( P(0) P(1) + P(1) P(0)) + 1

6L
2
FQ( P(0))3

+ π

4 b0(LFQ − 2LRQ)
(
LFQ( P(0))2 − 2 P(1)

)
+ π2

12 b
2
0(L2

FQ − 3LFQLRQ + 3L2
RQ) P(0) − 1

8π2 b1(LFQ − 2LRQ) P(0)
]
. (8.26)

Using equations (8.19) and (8.26), one can now evaluate the convolution in equation (8.5)
at different scales up to N3LO in perturbative QCD, since all the coefficient functions
are known (at least approximately) up to three loops.
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Chapter 8. Inclusive VBF Higgs production

8.1.3 Implementation of coefficient functions

Let us now review the elements required for a concrete implementation of the calculation
of the cross section in the factorised approximation. To compute the VBF cross section
up to N3LO in QCD, we will need exact expressions for the coefficient functions and the
splitting functions up to three loops.

We will use HOPPET v1.1.5, where the splitting functions up to NNLO, as well as the
the coefficient functions up to NLO, have already been implemented. Thus, these terms
don’t require any additional work. However, we need to extend the HOPPET code by
implementing the NNLO and N3LO coefficients.

The coefficient functions needed at NNLO are the following:

• C
+,(2)
L,NS = C

−,(2)
L,NS from equation (8) in [226],

• C
±,(2)
2,NS from equations (9) and (10) in [227],

• C
(2)
i,PS from equations (B.3) and (B.4) in [228],

• C
(2)
i,g from equations (B.5) and (B.6) in [228],

• C
±,(2)
3,NS from equations (15) and (16) in [229].

Since Cv3,NS = C−3,NS up to NNLO, these are all the coefficients required to compute the
structure functions.

To compute the N3LO cross section, we further need:

• C
−,(3)
L,NS , C

(3)
L,PS and C(3)

L,g from equations (8), (9) and (10) in [230]

• C
−,(3)
2,NS , C(3)

2,PS and C(3)
2,g from equations (4.11), (4.12) and (4.13) in [231],

• C
v,(3)
3,NS from equation (4) in [232],

• approximate expressions5 for δC(3)
2,NS, δC

(3)
L,NS and δC(3)

3,NS from equations (3.1), (3.2)
and (3.3) in [233].

At N3LO, there are a few subtleties one needs to take into account, due to the appearance
of a new flavour topology, fl11 [231]. The different flavour factors to consider are

5Here δCi = C+
i − C

−
i denotes the even-odd differences of the charged current coefficient functions.

They are approximate, as only the lowest five moments are currently known.
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summarised in table 8.1. To obtain C−,(3)
3,NS , one thus needs to set the fl02 term to zero in

C
v,(3)
3,NS . Furthermore, for W -boson exchanges, all contributions from fl11 terms vanish.6

In practice, we will use the Fortran implementation [234] by Andreas Vogt for numerical
applications.

flavour factor fl2 fl02 fl11 flg2 flg11

non-singlet 1 0 3〈e〉 – –

singlet 1 1 〈e〉2
〈e2〉 1 〈e〉2

〈e2〉

Table 8.1 – Flavour factors corresponding to different topologies up to third order. Table
reproduced from [231].

8.2 Results

Having implemented all the structure functions in a HOPPET-based Fortran code, one can
now evaluate the VBF Higgs production cross section up to N3LO in QCD.

For phenomenological applications, we will consider 13 TeV proton-proton collisions, in
accordance with the LHC run 2. We take the NNPDF30_nnlo_as_0118 PDF set for all
results.7 We use a diagonal CKM matrix. The vector bosons are taken as Breit-Wigner
distributions, while the Higgs boson is treated in the narrow width approximation.
We have five light flavours and ignore contributions with top-quarks in the final state
or internal lines. We set the Higgs mass to mh = 125 GeV, compatible with the
experimentally measured value [201]. Electroweak parameters are set according to
known experimental values and tree-level electroweak relations. As inputs we use
mW = 80.398 GeV, mZ = 91.1876 GeV and GF = 1.16637× 10−5 GeV−1. For the widths
of the vector bosons we use ΓW = 2.141 GeV and ΓZ = 2.4952 GeV.

We start by looking at the scale dependence of the fixed order predictions. To this end,
we consider scales µ = µR = µF = ξmH with ξ ∈ [1/8, 8]. The resulting cross section
is shown in figure 8.4 at LO, NLO, NNLO and N3LO. We can observe that as one
includes higher order corrections to the, the scale dependence of the cross section reduces.
At N3LO, the scale variation is almost flat, showing a very good convergence of the
perturbative series.

In figure 8.5, we give the cross section as a function of center-of-mass energy. For these
and the following results, the central renormalisation and factorisation scales are taken

6 The fl11 contributions correspond to interferences of diagrams where the vector boson attaches on
different quark lines. As such, they are only possible for Z/γ exchanges.

7At N3LO, one would ideally want a N3LO PDF set, however these are not available yet.

121



Chapter 8. Inclusive VBF Higgs production

 3.8

 3.85

 3.9

 3.95

 4

 4.05

 4.1

 0.125  0.25  0.5  2  4  8 1

NNPDF30_nnlo_as_118
µ=µR=µF=ξ mh

LHC 13 TeV
σ 

[p
b]

ξ

LO
NLO

NNLO
N3LO

Figure 8.4 – Cross section as a function of µ = µR = µF , in units of mh.

to be the virtuality of the scattering vector bosons. This means that the upper and lower
sectors are evaluated at different scales Q1 and Q2, with

µR,i = xµRQi , µF,i = xµFQi , i = 1, 2 (8.27)

where as usual, xµR , xµF ∈ {0.5, 1, 2} with 0.5 < xµR/xµF < 2. We give explicit numerical
results at each order in table 8.2, for proton-proton collisions at 13 TeV and 100 TeV.
We can see that there is a very good convergence already, with the N3LO central value
being very close to the NNLO cross section. However, the scale uncertainties are greatly
reduced by going one order higher in perturbation theory, demonstrating the convergence
of the series.

Table 8.2 also contains the NLO EW corrections, which can be matched to the QCD
corrections by using equation 7.5. These have been obtained with HAWK 2.0 [235]. Due to
the limitation of HAWK to fixed scale choices, these were computed with all scales set to
µ = 1

2mh.

In figure 8.6, we give the rapidity and pt distributions of the Higgs boson, at LO, NLO,
NNLO and N3LO. We observe again a very good convergence of the perturbative series,
with the scale uncertainties becoming tiny at N3LO. It is interesting to note that at
large Higgs rapidities, |yH | > 4, the N3LO corrections can become sizeable, with effects
up to 3–5%.

122



8.3. Conclusion

NNPDF30_nnlo_as_0118
Q/2 < µR , µF < 2 Q

σ 
[p

b]

LO
NLO

NNLO
N3LO

 1

 10

 100

ra
tio

 to
 N

3L
O

√ s [TeV]

 0.98

 1

 1.02

 1.04

 1.06

 7  13  20  30 10  100

Figure 8.5 – Cross section as a function of center-of-mass energy, at LO (yellow), NLO
(blue), NNLO (green) and N3LO (red).

8.3 Conclusion

In this chapter, we have discussed higher order QCD corrections to inclusive VBF
Higgs production. We considered the production process in the structure function
approximation, where there is no colored cross-talk between the two sectors. This
approximation is very accurate, as interference channels and gluon exchanges are strongly
suppressed for kinematical and color reasons.

We computed corrections to the inclusive cross section up to N3LO in QCD. We saw
that the change in central value going from NNLO to N3LO is tiny, but it is associated
with a vast reduction of scale uncertainties. This attests to the excellent convergence of
the perturbative series beyond NNLO, at least with a dynamical scale.
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13 TeV 100 TeV
σLO,QCD 4.043 +0.046

−0.062 pb 76.14 +6.47
−7.31 pb

σNLO,QCD 3.914 +0.025
−0.022 pb 72.89 +1.72

−1.92 pb
σNNLO,QCD 3.876 +0.015

−0.011 pb 71.44 +0.53
−0.40 pb

σN
3LO,QCD 3.873 +0.004

−0.001 pb 71.33 +0.11
−0.02 pb

δEW(µ = 1
2mh) −0.050± 0.001 −0.070± 0.002

Table 8.2 – Fully inclusive cross section at LO, NLO, NNLO and N3LO for VBF Higgs
production, for 13 and 100 TeV proton-proton collisions. The uncertainties are obtained
by a 7-point scale variation, with negligible statistical error. The last row gives the
one-loop EW corrections, as described in equation (7.5), and obtained with HAWK 2.0 [235],
taking µQCD

R = µQCD
F = µQED

F = 1
2mh. For δEW, the quoted uncertainties are statistical.

We also considered NLO EW corrections, which are about the size of the NLO QCD
correction. These can be straightforwardly implemented to the QCD calculation using a
multiplicative matching scheme.

Finally, we showed the transverse momentum and rapidity distributions of the Higgs
boson at N3LO. We observe again a very stable convergence of the QCD corrections at
this order, with the third order corrections having very small theoretical uncertainties
from scale variation.
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9 NNLO QCD corrections in differ-
ential VBFH

In this chapter, we discuss NNLO QCD correction on differential VBF Higgs production.
This chapter is based on [236].

9.1 Introdution

Given the key role of VBF Higgs-boson production at the LHC, it is of paramount
importance to have a precise prediction for its production. So far, we have discussed
how to obtain accurate predictions of QCD corrections on the inclusive cross section,
where the dominating NNLO and N3LO corrections have been shown to be small, with
tiny renormalisation and factorisation scale uncertainties, well below 1%. However,
as we have seen in section 7.3, a crucial aspect in VBF are the cuts applied on the
tagging jets, used to disentangle the signal events from their backgrounds, notably gluon-
gluon fusion H + 2j production. This requires a differential calculation. Furthermore,
experimental measurements are necessarily restricted to a subset of phase space, such
that measurements of inclusive cross sections can only be obtained through complicated
and error-prone extrapolations.

In particular, because of the use of transverse-momentum cuts on the forward tagging
jets, one might imagine that there are important NNLO corrections, associated with
those jet cuts, that would not be seen in a fully inclusive calculation. As such, it is
important to have a precise understanding of higher order corrections on fully differential
and fiducial cross sections. Currently, the fully differential VBFH cross section is known
only to NLO [237]. It appears to have small scale uncertainties. In this chapter, we will
calculate the NNLO QCD corrections to fully differential VBF Higgs production using a
new “projection-to-Born” method.
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Chapter 9. NNLO QCD corrections in differential VBFH

Figure 9.1 – (a) NNLO corrections to the upper sector of the VBF process, from the
“inclusive” part of our calculation. (b) Corresponding “exclusive” part. The double-
real and one-loop single-real counterevents in the exclusive part cancel the projected
double-real and one-loop single-real contributions in the inclusive part. In the “projected”
and “counterevent” contributions, the dashed lines corresponds to the full set of parton
momenta that are integrated over (for the structure functions, this integral is implicit in
the derivation of the coefficient functions), while the solid lines correspond to the partons
that are left over after projection to Born-like kinematics and then passed to the analysis.
The projection does not change the direction of initial partons and so the corresponding
incoming dashed lines are implicit.

9.2 The projection-to-Born method

The reason that the structure function approach does not provide a fully differential cross
section is related to the fact that the DIS coefficient functions used in the calculation
implicitly integrate over hadronic final states. To circumvent this issue, we introduce a
new “projection-to-Born” approach, eliminating this limitation.

As we saw in chapter 8, the cross section in the structure-function approach is expressed
as a sum of terms involving products of structure functions, e.g. F2(x1, Q

2
1)F2(x2, Q

2
2),

where Q2
i = −q2

i > 0 is given in terms of the 4-momentum qi of the (outgoing) exchanged
vector boson i. The xi values are fixed by the relation xi = −Q2

i /(2Pi.qi), where Pi
is the momentum of proton i. To obtain the total cross section, one integrates over
all q1, q2 that can lead to the production of a Higgs boson. If the underlying upper
(lower) scattering is Born-like, quark → quark + V , then it is straightforward to show
that knowledge of the vector-boson momentum q1 (q2) uniquely determines the momenta
of both the incoming and outgoing (on-shell) quarks,

pi = xiPi , pi+3 = xiPi − qi , i = 1, 2 , (9.1)

where we use the same numbering as in figure 8.3. We exploit this feature in order to
assemble a full calculation from two separate ingredients.
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9.2.1 The inclusive contribution

For the first one, the “inclusive” ingredient, we remain within the structure function
approach, and for each set of q1 and q2 use Eq. (9.1) to assign VBF Born-like kinematics
to the upper and lower sectors. This is represented in Fig. 9.1a (showing, for brevity,
just the upper sector): for the two-loop contribution, the Born kinematics that we assign
corresponds to that of the actual diagrams; for the tree-level double-real and one-loop
single-real diagrams, it corresponds to a projection from the true kinematics (2→ H + n

for n = 3, 4) down to the Born kinematics (2 → H + 2). The projected momenta are
used to obtain the “inclusive” contribution to differential cross sections. Note that the
Higgs momentum is unaffected by the projection.

9.2.2 The exclusive contribution

Our second, “exclusive”, ingredient starts from the NLO fully differential calculation
of vector-boson fusion Higgs production with three jets [238, 239], as obtained in a
factorised approximation, i.e. where there is no cross-talk between upper and lower
sectors.1 In this case, we can assign each parton uniquely to one of the upper or lower
sectors, and the two vector-boson momenta can be unambiguously determined. Using
the vector-boson momenta, one can assign projected Born-like VBF kinematics. To this
end, we use lightcone coordinates (p+, p−,p⊥) = (p+, p−, px, py), whose transformation
from a four-vector (E, px, py, pz) in Minkowski space is given by

p± = 1√
2

(E ± pz) . (9.2)

For a gluon emission on the upper quark line, as shown in figure 9.2, we can write

k1 = (k+
1 , 0,0) , ka = (k+

a , k
−
a ,k⊥a ) , kb = (k+

b , k
−
b ,k

⊥
b ) . (9.3)

Using momentum conservation, k1 − ka − kb = p1 − p2, we have therefore

p1 = (k+
1 − k

+
a − k+

b + p+
2 , 0,0) , p2 = (p+

2 , k
−
a + k−b ,k

⊥
a + k⊥b ) . (9.4)

The on-shell condition p2
2 = 2p+

2 p
−
2 − (p⊥2 )2 = 0 then yields

p+
2 = (k⊥a + k⊥b )2

2(k−a + k−b )
. (9.5)

Similar derivations can be straightforwardly performed for the lower sector and for the
case of two emissions appearing at NNLO.2

1The NLO calculation without this approximation is given in Ref. [240].
2For the lower sector, one replaces k1 in equation (9.3) with k1 = (0, k−1 ,0). The case of two partons

kb, kc emitted from the same quark line is obtained trivially by replacing kb → kb + kc in equations (9.4)
and (9.5).
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p1 p4 k1

ka

kb

Figure 9.2 – Born and NLO kinematics for the upper sector.

For each event in a Monte Carlo integration over phase space, with weight w, we add
a counterevent, with weight −w, to which we assign the projected Born kinematics
described by equations (9.4) and (9.5). This is illustrated in Fig. 9.1b. From the original
events, we thus obtain the full momentum structure for tree-level double-real and one-loop
single-real contributions. Meanwhile, after integration over phase space, the counterevents
exactly cancel the projected tree-level double-real and one-loop single-real contributions
from the inclusive part of the calculation. Thus the sum of the inclusive and exclusive
parts gives the complete differential NNLO VBFH result.3

9.3 Implementation

For the implementation of the inclusive part of the calculation, we have taken the phase
space from POWHEG’s Higgs plus two-jet VBF calculation [242], while the matrix element
has been coded with structure functions evaluated using parametrised versions [243, 225]
of the NNLO DIS coefficient functions [227, 228, 229] integrated with HOPPET v1.1.5 [117].
We have tested our implementation against the results of one of the codes used in
Ref. [196, 209] and found agreement, both for the structure functions and the final cross
sections. We have also checked that switching to the exact DIS coefficient functions
has a negligible impact. A further successful comparison of the evaluation of structure
functions was made against APFEL v.2.4.1[118].

For the exclusive part of the calculation, as a starting point we took the NLO (i.e. fixed-
order, but not parton-shower) part of the POWHEG H+3-jet VBF code [239], itself based
on the calculation of Ref. [238], with tree-level matrix elements from MadGraph 4 [244].

9.3.1 Check of tagging

The VBF H + 3j code already uses a factorised approximation for the matrix element,
however for a given phase-space point it sums over matrix-element weights for the
assignments of partons to upper and lower sectors. We therefore re-engineered the code
so that for each set of 4-momenta, weights are decomposed into the contributions for
each of the different possible sets of assignments of partons to the two sectors. For every

3Our approach can be contrasted with the differential NNLO structure-function type calculation for
single-top production [241] in that we do not need any fully differential ingredients at NNLO.
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element of this decomposition it is then possible to unambiguously obtain the vector-
boson momenta and so correctly generate a counterevent. The POWHEG BOX’s [245, 246]
“tagging” facility was particularly useful in this respect, notably for the NLO subtraction
terms.

To check the correctness of the assignment to sectors, we verified that as the rapidity
separation between the two leading jets increases, there was a decreasing relative fraction
of the cross section for which partons assigned to the upper (lower) sector were found
in the rapidity region associated with the lower (upper) leading jet. This is shown in
figure 9.3 (left). To verify the sensitivity of this cross-check, we introduce a large bug
of order O(1) in the virtual contribution, where the up/down assignment is swapped
arbitrarily. The result of this is shown in figure 9.3 (right), and one observes as expected
a significant discrepancy at large rapidity separation. We also tested that the sum of
inclusive and exclusive contributions at NLO agrees with the POWHEG NLO implementation
of the VBF H+2-jet process.

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5

σ w
ro

ng
/σ

to
ta

l

Ycut

3 jets, U or UU
3 jets, D or DD
4 jets, U or UU
4 jets, D or DD

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5

σ w
ro

ng
/σ

to
ta

l

Ycut

3 jets, U or UU
3 jets, D or DD
4 jets, U or UU
4 jets, D or DD

Figure 9.3 – Correspondance of the assigned region (up or down) with the jet rapidity
(positive or negative) as a function of rapidity separation, without (left) and with (right)
a deliberate mistake in the up/down assignment for the virtual piece (which affects 3-jet
results).

9.3.2 Choice of central scale

Some care is needed with the renormalisation and factorisation scale choice. A natural
option would be to use Q1 and Q2 as our central values for the upper and lower sectors,
respectively, as we have done in section 8.2. While this is straightforward in the inclusive
code, in the exclusive code we have the limitation that the underlying POWHEG BOX code
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can presently only easily assign a single scale (or set of scales) to a given event. However,
for each POWHEG phase-space point, we have multiple upper/lower classifications of the
partons, leading to several {Q1, Q2} pairs for each event. Thus the use of Q1 and Q2
would require some further degree of modification of the POWHEG BOX, which we leave
to future work. We instead choose a central scale that depends on the Higgs transverse
momentum pt,H

µ2
0(pt,H) = mH

2

√(
mH

2

)2
+ p2

t,H . (9.6)

This choice of µ0 is usually close to
√
Q1Q2 (at least for moderate pt,j2), as can be seen

in figure 9.4. It represents a good compromise between satisfying the requirement of a
single scale for each event, while dynamically adapting to the structure of the event.
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Figure 9.4 – Comparison of different scale choices as a function of pt,H , with µ0(pt,H)
(red) as defined in equation (9.6).

In order to estimate missing higher-order uncertainties, we will vary the renormalisation
and factorisation scales symmetrically (i.e. keeping µR = µF ) by a factor 2 up and
down around µ0. We verify that an expanded scale variation, allowing µR 6= µF with
1
2 < µR/µF < 2, leads only to very small changes in the NNLO scale uncertainties for the
VBF-cut cross section and the pt,H distribution. The pt,H distribution with all possible
renormalisation and factorisation scales is shown in figure 9.5. One can see that for the
most part, the 7-scale variation is contained within the 3-scale variation, so that the
latter provides a reasonably accurate estimate of scale uncertainties.
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Figure 9.5 – Comparison of the 3 scale and 7 scale bands for the pt,H distribution.

9.4 Phenomenological results

To investigate the phenomenological consequences of the NNLO corrections, we study
13 TeV proton-proton collisions. We consider the same input parameters as in section 8.2.
We use a diagonal CKM matrix, full Breit-Wigners for the W , Z and the narrow-width
approximation for the Higgs boson. We take NNPDF 3.0 parton distribution functions
at NNLO with αs(MZ) = 0.118 (NNPDF30_nnlo_as_0118) [174], also for our LO and
NLO results. We have five light flavours and ignore contributions with top-quarks in
the final state or internal lines. We set the Higgs mass to mH = 125 GeV, compatible
with the experimentally measured value [201]. Electroweak parameters are set according
to known experimental values and tree-level electroweak relations. As inputs we use
MW = 80.398 GeV, MZ = 91.1876 GeV and GF = 1.16637× 10−5 GeV−1. For the widths
of the vector bosons we use ΓW = 2.141 GeV and ΓZ = 2.4952 GeV.

To pass our VBF selection cuts, events should have at least two jets with transverse
momentum pt > 25 GeV; the two hardest (i.e. highest pt) jets should have absolute
rapidity |y| < 4.5, be separated by a rapidity ∆yj1,j2 > 4.5, have a dijet invariant mass
mj1,j2 > 600 GeV and be in opposite hemispheres (yj1yj2 < 0). Jets are defined using the
anti-kt algorithm [54], as implemented in FastJet v3.1.2 [145], with radius parameter
R = 0.4.

Results are shown in table 9.1 for the fully inclusive cross section and with our VBF
cuts. As we have already seen in section 8.2, the NNLO corrections modify the fully
inclusive cross section only at the percent level. However, after VBF cuts, the NNLO
corrections are about 5 times larger, reducing the cross section by 5 − 6% relative to
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no cuts VBF cuts
σLO,QCD 4.032 +0.057

−0.069 pb 0.957 +0.066
−0.059 pb

σNLO,QCD 3.929 +0.024
−0.023 pb 0.876 +0.008

−0.018 pb
σNNLO,QCD 3.888 +0.016

−0.012 pb 0.826 +0.013
−0.014 pb

δEW(µ = 1
2mh) −0.050± 0.001 −0.086± 0.002

Table 9.1 – Cross sections at LO, NLO and NNLO for VBF Higgs production, fully
inclusively and with VBF cuts. The quoted uncertainties correspond to scale dependence,
while statistical errors at NNLO are about 0.1% with VBF cuts and much smaller
without. The last row provides NLO EW corrections, as obtained with HAWK 2.0, using
µQCD
R = µQCD

F = µQED
F = 1

2mh. For δEW, the error bars correspond to statistical
uncertainties.

NLO. The magnitude of the NNLO effects after cuts implies that it will be essential to
take them into account for future precision studies. Note that in both the inclusive and
VBF-cut cases, the NNLO contributions are larger than would be expected from NLO
scale variation. Table 9.1 also gives the NLO EW corrections to the cross section before
and after cuts, which were obtained with HAWK 2.0, setting all scales to µ = 1

2mh.

We can now also study differential cross sections for events that pass the VBF cuts. In
figure 9.6, we show the transverse momentum distributions for the two leading jets, pt,j1
and pt,j2 . The bands and the patterned boxes denote the scale uncertainties, while the
vertical error-bars denote the statistical uncertainty. The effect of the NNLO corrections
on the jets appears to be to reduce their transverse momentum, leading to negative
(positive) corrections in regions of falling (rising) jet spectra. One can see effects of up
to 10− 12%. The transverse momentum distribution for the Higgs boson, pt,H , and its
rapidity distribution, yH , are shown in figure 9.7. Looking at the pt,H distribution, one
might initially be surprised that such an inclusive observable should also have substantial
NNLO corrections, of about 8% for low and moderate pt,H . Our interpretation is that
since NNLO effects redistribute jets from higher to lower pt’s (cf. the plots for pt,j1 and
pt,j2), they reduce the cross section for any observable defined with VBF cuts. As pt,H
grows larger, the forward jets tend naturally to get harder and so automatically pass the
pt thresholds, reducing the impact of NNLO terms. In figure 9.8, we show the distribution
for the rapidity separation between the two leading jets, ∆yj1,j2 , and their invariant mass,
mj1,j2 .

As observed above for the total cross section with VBF cuts, the NNLO differential
corrections are sizeable and often outside the uncertainty band suggested by NLO
scale variation. One reason for this might be that NLO is the first order where the
non-inclusiveness of the jet definition matters, e.g. radiation outside the cone modifies
the cross section. Thus NLO is, in effect, a leading-order calculation for the exclusive
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Figure 9.6 – Differential cross sections for the transverse momentum distributions of the
two leading jets, pt,j1 (left) and pt,j2 (right).
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Figure 9.7 – Differential cross sections for the transverse momentum, pt,H , (left) and
rapidity, yH , (right) distributions of the Higgs boson.

136



9.4. Phenomenological results

NNPDF30_nnlo_as_118

VBF CUTS
LHC 13 TeV

dσ/dΔyj1, j2 [pb]

LO
NLO

NNLO
POWHEG

 0.1

 0.2

 0.3

 0.4

µ0(pt,H)/2 < µR = µF < 2 µ0(pt,H)

Δyj1, j2

 0.8

 0.9

 1

 1.1

 4.5  5  5.5  6  6.5  7  7.5  8  8.5  9

NNPDF30_nnlo_as_118
µ0(pt,H)/2 < µR = µF < 2 µ0(pt,H)

VBF CUTS
LHC 13 TeV

dσ/dmj1,j2 [pb/GeV]

LO
NLO

NNLO
POWHEG

10-3

mj1,j2 [GeV]

 0.8

 0.9

 1

 1.1

 600  1000  1400  1800  2200

Figure 9.8 – Differential cross sections for the distribution of the rapidity separation
between the two leading jets, ∆yj1,j2 (left), and the dijet invariant mass distribution,
mj1,j2 (right).

corrections, with all associated limitations.

One might be interested in looking at how much the corrections are driven by the exclusive
contribution (figure 9.1(b)) as opposed to the inclusive contribution (figure 9.1(a)). In
principle, this separation of the results is of course unphysical. Nevertheless, the Higgs
transverse momentum and rapidity after VBF cuts, taking into account only the inclusive
contribution, is shown in figure 9.9. Here the momenta of the jets correspond to the
projection to Born kinematics, as shown in figure 9.1(a). We see that the convergence of
the distributions is much better than in figure 9.7, with NNLO corrections at the 1%
level. It is therefore clear that most of the higher order effects in the full result come
from the fragmentation of jets, which is entirely contained in the exclusive contribution.

To further understand the size of the NNLO corrections, it is instructive to examine
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Figure 9.9 – Differential cross sections for the transverse momentum, pt,H , (left) and
rapidity, yH , (right) distributions of the Higgs boson, considering only the inclusive part
of the calculation, as shown in figure 9.1(a).
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a NLO plus parton shower (NLOPS) calculation, since the parton shower will include
some approximation of the NNLO corrections. For this purpose we have used the POWHEG
VBF H+2-jet calculation [242], showered with Pythia version 6.428 with the Perugia
2012 tune [154]. The POWHEG part of this NLOPS calculation uses the same PDF, scale
choices and electroweak parameters as our full NNLO calculation. The NLOPS results
are included in figures 9.6, 9.7, and 9.8 at parton level, with multi-parton interactions
(MPI) switched off. They differ from the NLO by an amount that is of a similar order
of magnitude to the NNLO effects. This lends support to our interpretation that final
(and initial)-state radiation from the hard partons is responsible for a substantial part of
the NNLO corrections. However, while the NLOPS calculation reproduces the shape of
the NNLO corrections for some observables (especially pt,H), there are others for which
this is not the case, the most striking being perhaps ∆yj1,j2 . Parton shower effects were
also studied in Ref. [247], using the MC@NLO approach [248]. Various parton showers
differed there by up to about 10%.

9.4.1 Non-perturbative effects

In addition to the NNLO contributions, precise phenomenological studies require the
inclusion of EW contributions and non-perturbative hadronisation and MPI corrections.

The former are of the same order of magnitude as the NNLO corrections [215], as we
saw above. Using a program such as HAWK or VBFNLO [249], one could also calculate EW
corrections on differential distributions. We leave this for future work.

Non-perturbative corrections can be obtained through general purpose Monte Carlo event
generators. The results obtained at different event generation levels using Herwig 6.521 [140,
68], Pythia 6.428 [67] and Pythia 8.185 [139] is given in table 9.2. We find that hadro-
nisation corrections are between −2 and 0%, while MPI brings up to +5%. The small
hadronisation corrections appear to be due to a partial cancellation between shifts in pt
and rapidity.

The impact of hadronisation and underlying event for the leading two jet pt’s, rapidity
separation ∆yj1,j2 , and invariant mass mj1,j2 is shown in figures 9.10 and 9.11. Similarly,
in figure 9.12, we show the impact of non-perturbative effects on the Higgs transverse
momentum and rapidity distributions.

Here we show the ratio of distributions obtained at different levels, after VBF cuts:4

• UE corrections are obtained from the ratio of the hadron level spectrum with MPI
to the hadron spectrum obtained when MPI is turned off (in dotted lines).

• Hadronisation correction factors are obtained from the ratio of hadron level distri-
4This is somewhat analogous to results shown in figures 5.13 and 5.16.
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σ(parton) [pb] σ(hadron, no MPI) [pb] σ(hadron, MPI) [pb]
Herwig 6 0.826± 0.001 0.812± 0.001 0.849± 0.004
Pythia 6 0.835± 0.001 0.830± 0.001 0.853± 0.005
Pythia 8 0.818± 0.001 0.818± 0.001 0.841± 0.007

Table 9.2 – Cross sections after VBF cuts for VBF Higgs production at NLO+PS, for
different levels of the parton shower. The values are given for the central scale, and the
error bands correspond to statistical uncertainties.

butions (without MPI) to (showered) parton level distributions (in dashed lines).

• Finally, the total non-perturbative corrections (in solid lines) are obtained from the
product of the two, that is, the ratio of hadron spectra with MPI to their parton
level counterpart.

The parton shower starts from 8 · 106 NLO events obtained with POWHEG, and we use
the AUET2 tune [155] for Herwig 6, the (default) 4C tune [153] for Pythia 8, and the
Perugia 2011 [154, 161] tune for Pythia 6.

9.5 Conclusion

In this chapter, we have presented a detailed study of higher QCD corrections in
differential VBF Higgs production. These have been performed in the structure approach,
where there is no hadronic cross-talk between the two sectors.

With the calculation presented in this chapter, differential VBF Higgs production has
been brought to the same NNLO level of accuracy that has been available for some time
now for the ggH [250, 251] and VH [194] production channels. This also constitutes the
first fully differential NNLO 2→ 3 hadron-collider calculation, an advance made possible
thanks to the factorisable nature of the process.

The NNLO corrections are non-negligible, 5–10%, i.e. an order of magnitude larger
than the corrections to the inclusive cross section. The size of the NNLO corrections
might even motivate a differential calculation one order higher, to N3LO, to match
the precision achieved recently for the ggH total cross section [191]. With the new
“projection-to-Born” approach introduced here, and the inclusive N3LO calculation of
chapter 8, this could be within reach, requiring only a NNLO VBF H + 3j calculation in
the factorised approximation. It would also be of interest to obtain NNLO plus parton
shower predictions, again matching the accuracy achieved recently in ggH [252, 253].
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Figure 9.10 – Non-perturbative corrections after VBF cuts for the distribution of the
two leading jet pt, for three different Monte Carlo generators. We show separately
hadronisation (dashed) and UE (dotted) factors, as well as their combination (solid).
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Figure 9.11 – Non-perturbative corrections after VBF cuts for the distribution of the
leading two jets rapidity separation ∆yj1,j2 (top) and invariant mass mj1,j2 (bottom) for
three different Monte Carlo generators. We show separately hadronisation (dashed) and
UE (dotted) factors, as well as their combination (solid).
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10 Conclusions and outlook

As the LHC progresses into run 2 and beyond, high precision calculations and experiments
will become even more prevalent in the field of particle physics. Precision is a key element
in a number of contexts, notably: in Higgs physics, where accurate determination of
couplings are now one of the main goals; in PDF extractions, whose uncertainties feed
back into all other theoretical predictions; in the determination of electroweak parameters;
and in searches for BSM signals, which could appear in very subtle ways.

In recent years, a number of important milestones have been achieved in what is commonly
referred to as the “NNLO revolution”. Thus, one can now calculate several key processes
up to NNLO in perturbation theory: production of a W or a Z boson [254, 255];
three-jet production in electron-positron annihilation [256, 257, 258]; Higgs production in
association with a jet [193, 259]; associated V H production [194, 195]; W or Z production
in association with a jet [260, 261, 262]; diboson production [263, 264, 265, 266, 267];
gluonic two-jet production [112]; and top-quark pair production [268, 269]. Because of
the relatively large αs & 0.1 coupling constant, these calculations represent an essential
step towards achieving percent-level accuracy in theoretical predictions.

These advances have been complemented by a number of other breakthroughs: inclusive
Higgs production at N3LO in QCD [191]; the automated matching of NLO calculations
and parton showers [246, 270], using the MC@NLO [248] or POWHEG [245] method;
the automation of NLO EW corrections [271]; the resummation of event shapes to
NNLL accuracy [272]; the matching of NNLO calculations to parton showers for several
important processes [252, 273, 274, 253, 275, 276], using the MiNLO [277], Geneva [278]
or UN2LOPS [274] method; and the first calculation of groomed jets to NNLO+NNLL
accuracy [136, 137]. These results pave the way to a rigorous and systematic understanding
of QCD corrections at hadron colliders.

It is in this context that this thesis examines a number of higher order QCD effects,
on the path to more accurate theoretical predictions for inclusive jets and VBF Higgs
production.
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In part II of this thesis, we discussed the effect of small-radius logarithms, and proceeded
to resum them. We showed that the resummation of αs lnR terms is relevant in a number
of contexts. In chapter 4, we considered applications in jet substructure, calculating
trimmed and filtered jet energies, and in jet veto resummations, notably for jet-veto
efficiencies in Higgs production.

In chapters 5 and 6, we applied our formalism to the study of inclusive jets. Inclusive
jet production provides a useful case study: it plays a significant role for PDF and αs
extractions, as well as for high-pt BSM searches; it provides experimental challenges,
most prominently the determination of the jet energy scale and resolution; it also
provides substantial theoretical challenges, with sensitivity to both perturbative and
non-perturbative effects. As such, it provides a simple enough context in which to study
problems appearing also in more complicated processes. We showed that resumming
logarithms of the jet-radius becomes necessary for R < 0.4, and that a full NNLO
calculation is essential for precise predictions. Finally, we saw that the degree of
consistency between experimental and theoretical comparisons at different values of
the jet radius can provide a powerful check of accuracy. This makes measurements at
multiple R values, particularly including smaller R < 0.4 choices, very interesting probes
to disentangle systematic uncertainties.

In part III, we considered Higgs production in the VBF channel. VBF-induced Higgs
production will play a crucial role for precision studies at the LHC. In particular because
it is the process with the largest cross section for tree-level production of a Higgs boson,
and due to its distinctive kinematical signature, VBF will be important to accurately
determine Higgs couplings.

In chapter 8, we computed QCD corrections to the inclusive cross section up to N3LO in
the structure function approach, bringing it to the same accuracy recently achieved in the
gluon-gluon fusion channel [191]. We observed that there is a very good convergence of the
perturbative series at N3LO, with only small changes in central value, but large reductions
of the theoretical uncertainties associated with missing higher order corrections.

In practice, one can of course not measure inclusive cross sections. Because of the finite
detector acceptance, only fiducial cross sections can be measured, whose computation
requires differential predictions which can be integrated over the fiducial volume. A
differential calculation is particularly important in VBF, where cuts on the tagging
jets are used to discriminate signal events from background. In chapter 9, we therefore
computed the fully differential NNLO corrections to VBF Higgs production. We then
examined the impact of NNLO QCD corrections on cross sections and distributions after
typical VBF cuts. We found that these effects are substantial, with contributions of
5–6% on the cross section, and up to 10–12% on the transverse momentum distributions
of the leading jets. For precise phenomenological predictions at the LHC, one therefore
needs to include these contributions.
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The results presented in this thesis provide state-of-the-art predictions of the inclusive
jet spectrum and of Higgs production in the VBF channel, introducing new tools and
methods in the process. These will be of direct use in several cases: in jet substructure,
where jets tend to be narrow; in measurements and studies of the inclusive jet spectrum,
particularly when considering ratios at different R values; and in the determination of
properties and couplings of the Higgs boson.

Several new promising avenues can be explored in continuation of this work. Considering
the importance of subleading terms in the inclusive jet spectrum, it would be worthwhile
to achieve a NLL resummation of the jet radius logarithms. This would have interesting
applications also in jet substructure, for example in the determination of the jet-mass
distributions of groomed jets. It would require the development of new techniques,
posing interesting theoretical challenges. Furthermore, a natural next step would be the
matching of the NNLO prediction for VBF Higgs production to parton showers. This
could be achieved using the MiNLO approach, bringing the VBF channel to the same
level as gluon-gluon fusion.
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A Detailed expressions for small-
radius observables

A.1 Analytical expressions

For all the second order coefficients given numerically in chapter 4, this appendix provides
the full analytical expressions. It also gives analytical and numerical results for some
quantities that for brevity were left out of chapter 4.

The results frequently involve the polylogarithm Lis(z), defined in the unit circle by

Lis(z) =
∞∑
k=1

zk

ks
s ∈ N, |z| < 1 , (A.1)

and by analytic continuation for |z| > 1. The polylogarithm also follows the recursive
relation

Li1(z) = − ln(1− z) , Lis+1(z) =
∫ z

0

Lis(t)
t

dt . (A.2)

A.1.1 Hardest microjet 〈∆z〉

Let us first consider the energy difference between the the hardest subjet and the initiating
parton, as expressed in Eq. (4.30). For the case of an initiating quark, given by Eq. (4.31),
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the c2 coefficient of 〈∆z〉hardest is

c2[〈∆z〉hardestq ] = C2
F

[
97
144 − π

2 + 5 ln 2
12 − 2 ln2 2 + 4 ln2 3 + 8Li2(2

3)
]

+ 2CFTRnf
[

41
12 + 12 ln 3− 24 ln 2

]

+ CFCA

[
− 967

144 + π2

3 − 4Li2(−1
3)− 4Li2(2

3)− 2 ln2 2

− 4 ln2 3 + 553
12 ln 2 − 99

4 ln 3 + 8 ln 2 ln 3
]
, (A.3)

and when the initiating parton is a gluon, corresponding to Eq. (4.32), we have

c2[〈∆z〉hardestg ] = CATRnf

[
3527
432 −

176
3 ln 2 + 727

24 ln 3
]

+ 7
72n

2
fT

2
R

+ 1
432CFTRnf

[
451− 3420 ln 2 + 1548 ln 3

]

+ C2
A

[
2π2

3 − 2089
288 − 4 ln2 2− 2 ln2 3 + ln 2

(1339
24 + 8 ln 3

)
− 475

16 ln 3

− 4Li2(2
3) + 4Li2(1

4) − 4Li2(3
4)
]
. (A.4)

A.1.2 Logarithmic moment 〈ln z〉

Here we give our full set of results for the logarithmic moment of fhardest as expressed in
Eq. (4.38). Results for an initiating quark were not given in detail in the main text. The
coefficients c1...3 of t, t2/2 and t3/6 are respectively

c1[〈ln z〉hardestq ] = CF
6
(
9− π2 − 9 ln 2

)
, (A.5a)
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c2[〈ln z〉hardestq ] = 1
432CFCA

[
−3887+786 ln(9

4)−24π2
(
−92+54 ln 2−30 ln 3+ln(729

64 )
)
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(

91 + 72 arccoth(5)
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3)− 13392Li2(2
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(
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+ 24 ln 2
(
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)
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2) + 1728Li3(−1

3) + 3456Li3(2
3)− 432ζ(3)

]

+ 1
216CFTRnf
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1457−24π2+36 ln 3

(
135+ln 81

)
−12 ln 2

(
833+ln 4096

)
+288Li2(2

3)
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+ 1
24C

2
F

[
− 42Li2(−1

2)− 126Li2(1
3)− 30Li2(3

4)− 96Li3(−1
2) + 192Li3(1
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− 24Li3(1
9)− ln 3

(
192Li2(2

3) + 96Li2(−1
3)− 102 + 128 ln2 3 + 63 ln 3

)
+ 6 ln 2

(
− 16Li2(1

3) + 16Li2(2
3) + 16Li2(3

4)− 41 + ln 3(31 + 24 ln 3)
)

− 60ζ(3) + 9 + 208 ln3 2− 3(39 + 32 ln 3) ln2 2 + 2π2
(

3 + 8 ln 3
)]

' −0.73199CACF + 1.0414C2
F − 0.114427CFnfTR , (A.5b)

and

c3[〈ln z〉hardestq ] = −0.17394(5)C3
F + 0.66631(2)C2

ACF − 0.81869(4)CAC2
F

+ 0.595241(9)CACFnfTR − 0.534856(8)C2
FnfTR + 0.076288(2)CFn2

fT
2
R . (A.5c)
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In the gluon case, expressed in Eq. (4.39), the analytic form for the second order coefficient
is

c2[〈ln z〉hardestg ] = CATRnf
1

216

[
1697 + 24π2 + 6336 ln 3− 36 ln 2

(
347 + 4 ln 2

)]

+ CFTRnf
1
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2) + 36 ln( 2187
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3)
]

− 1
144C

2
A

[
3624Li2(2

3) + 8 ln 2
(

108Li2(2
3)− 1163 + 6 ln 3(9 ln 3− 22)

)
+12 ln 3

(
48Li2(−1

3)+384+ln 3(151+16 ln 3)
)

+36Li2(3
4)
(

65−4 ln(81
8 )
)

− 72ζ(3) + 1531 + 2208 ln3 2 + 192 ln3(4
3)− 2304 ln2 2

(
1 + ln(3)

)
+ 288 ln 3 ln2(4

3) + 24π2
(

ln(81
64)− 27

)
+ 12 ln 4 ln(4

3)
(

151− 60 ln 2
)]

+ 1
54n

2
fT

2
R

(
23 − 24 ln 2

)
. (A.6)

A.1.3 Jet flavour

The analytical form of the second-order coefficient for the probability for an initiating
quark to change flavour to a gluon microjet, expressed numerically in Eq. (4.49), is

c2[P(g|q)] = − 1
12CFnfTR

[
16 ln 2− 5

]

− 1
48C

2
F

[
− 192Li2(3

4) + 16π2 + 49 + 12 ln 2
(

9− 40 ln 2
)

+ 48 ln 3
(

ln 256− 3
)]

+ 1
144CFCA

[
288Li2(3

4)− 48π2 + 1463 + 5076 ln 3

+ 36 ln 2
(
− 277 + 24 ln 2 − 16 ln 3

)]
. (A.7)

For the probability of a change of flavour from an initiating gluon to a quark microjet
jet, corresponding to Eq. (4.50), we have

c2[P(q|g)] = − 1
27CAnfTR

[
455− 2988 ln 2 + 1476 ln 3

]
− 12

27n
2
fT

2
R

− 1
27CFnfTR

[
288 ln(4

3) − 71
]
. (A.8)
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A.1.4 Filtering

We give next the analytical form of the c2 coefficient for the total energy loss when taking
the sum of the 2 hardest microjets. For an initial quark, corresponding to Eq. (4.52),
this is

c2[〈∆z〉filt,2q ] = 1
18C

2
F

[
72Li2(3

4)− 12π2 + 13 + 9 ln 2
(

3− 32 arccoth(5)
)]

+ 1
12CACF

[
48Li2(2

3)+48Li2(−1
3)−4π2−111−96 ln 2(3+ln 3)+3 ln 3

(
99+16 ln 3

)]

+ 2
9CFTRnf

[
43 − 216 arccoth(5)

]
, (A.9)

while for the gluon case, corresponding to Eq. (4.53), we have

c2[〈∆z〉filt,2g ] = 1
216CATRnf

[
2588 + 6480 ln 2− 6543 ln 3

]

+ 1
108CFTRnf

[
146 + 324 ln 2− 387 ln 3

]

− C2
A

1
48

[
96Li2(1

3)− 96Li2(2
3) + 96Li2(1

4)− 288Li2(3
4)

+ 48π2 + 500− 1425 ln 3 + 48 ln 2
(

27− 8 ln 2 + 10 ln 3
)]

. (A.10)

A.1.5 Trimming

The full second order results for 〈∆z〉trim are

c2[〈∆z〉trimq ] = 1
12C

2
F

[
− 30f2

cut ln fcut + 16 ln(1− fcut)
(

3f2
cut + 3 ln(1− fcut)− 2

)

+48Li2(1−fcut)+16
(
f2
cut+6

)
fcutarctanh(1−2fcut)+6f3

cut+5f2
cut+16fcut−8π2

]

+ 2
3CFTRnffcut

[
(fcut − 1)(fcut + 1)(fcut + 2)− fcut(2fcut + 3) ln fcut

]

+ 1
6CACF

[
(fcut−1)

(
− (2f3

cut + 9f2
cut + 32fcut)−4((fcut−2)fcut + 4) ln(1− fcut)

)

+ 4fcut
(

2f2
cut + 3fcut + 6

)
ln fcut

]
, (A.11)
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Figure A.1 – The third order coefficients c3(〈∆z〉trim), as a function of fcut, for quark
(top) and gluon-induced (bottom) jets. The solid lines are simply intended to guide the
eye and do not provide any information beyond what is specified by the points.

for the quark case, and

c2[〈∆z〉trimg ] = 1
36C

2
A

[
−36(fcut−4)f3

cut ln fcut+24 ln(1−fcut)
(

(3f2
cut−4fcut+12)f2

cut

+6 ln(1−fcut)
)

+144Li2(1−fcut)−75f4
cut +16f3

cut−84f2
cut +264fcut−24π2

]

+ 1
3CFTRnf

[(
4− 6f2

cut

)
ln(1− fcut) + 4

(
4f3

cut − 3f4
cut

)
arctanh(1− 2fcut)

− 3f2
cut ln fcut + 2f4

cut + 2f2
cut − 4fcut

]
+ 2

9T
2
Rn

2
ff

2
cut

(
3f2

cut − 4fcut + 3
)

− 1
18CATRnf

[
12
(

3f4
cut− 4f3

cut + 3f2
cut + 2

)
ln(1− fcut) + 12f2

cut

(
8fcut + 3

)
ln fcut

− 57f4
cut + 8f3

cut + 69f2
cut + 24fcut

]
, (A.12)

for the gluon case. Numerical results for the third and fourth order terms are given in
Figs. A.1 and A.2.

All-order results for the widely used choice of fcut = 0.05 are shown in Fig. A.3 as a
function of t. As with filtering, the energy loss from trimmed jets with a given Rtrim
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O Oall-order(t) ∆1[O] ∆2[O] ∆3[O]
〈z4〉inclq 0.7510 0.0338 -0.0010 0.0005
〈z4〉inclg 0.5221 0.1861 -0.0455 0.0096
〈∆z〉q -0.1004 0.0029 0.0006 0.0001
〈∆z〉g -0.2086 0.0352 -0.0042 0.0009
〈ln z〉q -0.1246 -0.0035 0.0007 0.0002
〈ln z〉g -0.2697 0.0163 -0.0011 0.0007
P(g|q) 0.0672 -0.0106 0.0013 -0.0002
P(q|g) 0.1131 -0.0147 0.0022 -0.0009

〈∆z(0.05)〉trimq -0.0161 -0.0060 0.0001 0.0004
〈∆z(0.05)〉trimg -0.0347 -0.0118 0.0010 0.0010
〈∆z〉filt,2q -0.0245 0.0072 -0.0012
〈∆z〉filt,2g -0.0705 0.0484 -0.0226
〈∆z〉filt,3q -0.0084 0.0083
〈∆z〉filt,3g -0.0301 0.0573

Table A.1 – Results for R = 0.2 at pt = 50 GeV, where ∆n = Oall-order−
∑
k≤n ck[O] tk/k!.

is much reduced relative to that from a single microjet with that same radius Rtrim.
With this specific fcut value, the energy loss is somewhat smaller even than for filtering.
Additionally the convergence of the series appear to be far better. However, as was
discussed in section 4.2.3, one should keep in mind that trimming also leads to logarithms
of fcut, only some of which are included in our resummation. Their potential importance
can be appreciated by considering that the full calculation would involve an integral over
αs down to scale fcutRtrimpt, which is much smaller than the scale Rtrimpt that is included
in our small-R resummation. Indeed for the choice of pt = 50 GeV and fcut = 0.05 that
we use in Fig. A.3, any Rtrim < 0.4 would force us to consider scales below 1 GeV.

A.2 Numerical results for microjet observables

In this appendix, we give further numerical results for a range of observables described
in chapter 4.

We consider values obtained for pt = 50 GeV, with the values corresponding to a radius
R = 0.2 given in Table A.1, while results for R = 0.4 are given in Table A.2.
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O Oall-order(t) ∆1[O] ∆2[O] ∆3[O]
〈z4〉inclq 0.8593 0.0100 0.0001 0.0004
〈z4〉inclg 0.7050 0.0589 -0.0069 0.0015
〈∆z〉q -0.0543 0.0008 0.0002 0.0001
〈∆z〉g -0.1192 0.0107 -0.0005 0.0003
〈ln z〉q -0.0656 -0.0010 0.0002 0.0001
〈ln z〉g -0.1475 0.0049 0.0000 0.0003
P(g|q) 0.0383 -0.0032 0.0002 -0.0001
P(q|g) 0.0635 -0.0046 0.0002 -0.0002

〈∆z(0.05)〉trimq -0.0070 -0.0016 0.0001 0.0002
〈∆z(0.05)〉trimg -0.0155 -0.0033 0.0004 0.0003
〈∆z〉filt,2q -0.0078 0.0013 -0.0000
〈∆z〉filt,2g -0.0249 0.0088 -0.0019
〈∆z〉filt,3q -0.0017 0.0009
〈∆z〉filt,3g -0.0069 0.0063

Table A.2 – Results for R = 0.4 at pt = 50 GeV, where ∆n = Oall-order−
∑
k≤n ck[O] tk/k!.

A.3 Comparisons and fixed-order cross checks

A.3.1 Comparison with the literature

A numerical calculation of the α3
s ln Q

pt
ln2R2 contribution to the jet veto efficiency in

the case of gg → H production was given recently by Alioli and Walsh (AW) [103]. This
section provides the detailed comparison.

First let us rewrite the first two orders of Eq. (4.39) as an expansion in powers of αs,
taking into account Eq. (4.2) for the conversion between the t and αs expansions:

〈ln z〉hardestg = αs(pt)
2π ln 1

R2

[
1
72CA

(
131− 12π2 − 132 ln 2

)
+ 1

36nfTR(−23+24 ln 2)
]

+ α2
s(pt)
4π2 ln2 1

R2

[
−0.36982CFnfTR + 0.117861n2

fT
2
R

+ 0.589237CAnfTR − 0.901568C2
A

]
+O

(
α3
s

)
, (A.13)

where pt is the transverse-momentum above which jets are vetoed. AW have an expansion
for the R-dependent terms in the jet-veto probability, Eqs. (1.1) and (1.3) of Ref.[103]
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(arXiv version 2), whose leading logarithms of R read

exp
[
C(n−1)
n

(
αs(pt)CA

π

)n
ln Q
pt

lnn−1R2
]
. (A.14)

Substituting Eq. (A.13) into Eq. (4.37) gives our result for C(2)
3 ,

C
(2)
3 =

(
0.36982CFnfTR

C2
A

− 0.589237nfTR
CA

− 0.117861
n2
fT

2
R

C2
A

+ 0.901568
)
' 0.46566 .

(A.15)

The results from AW that can be straightforwardly compared are the CFnfTR term and
the full result. For the CFnfTR term, including the explicit colour factors, our result
is 0.36982CFnfTR

C2
A
' 0.1370 (for nf = 5), with which AW’s result of 0.1405± 0.0011 is

marginally compatible. For the full result, our coefficient of C(2)
3 ' 0.46566 is to be

compared with that from AW of C(2)
3 = −0.356 ± 0.011. After consulting with the

authors, they identified the origin of the difference as being due to the fact that they
effectively did not include the running coupling corrections that appear at order α2

s in
the expansion of t. Once this is resolved, their answers come into reasonable agreement
with ours.

A.3.2 Fixed-order cross checks

On one hand the results we have presented are sufficiently straightforward that there
should be no need for cross-checks from full fixed-order calculations. However, given the
initial disagreement with the results of [103], such cross–checks became desirable. In
principle one could take a program such as MCFM and directly take the limit of small pt
and small R in the Higgs plus two jet process at NLO, in order to directly cross–check
the C(2)

3 coefficient in Eq. (A.15). However in practice, we believe that it would be
almost impossible to take the appropriate double limit, simultaneously satisfying the
requirements of being sufficiently asymptotic and having sufficient Monte Carlo statistics.

Instead we have opted to test the basic framework and in particular the results for the
distribution fhardest(z) integrated up to some finite z,

Pz<zmax =
∫ zmax

0
dz fhardest(z) , (A.16)

which is closely related to (one minus) the probability of vetoing a jet. We examined the
e+e− → 3 jet process at next-to-leading order (NLO), using the Event2 program [127].
We initially clustered the events with the e+e− version of the inclusive Cambridge/Aachen
algorithm [52, 53], “ee-genkt” with p = 0 and R0 = 1.5 as defined in FastJet [145]. Then,
for each jet with an energy above zmaxQ/2, where Q is the centre-of-mass energy, we
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Figure A.4 – Left: difference between Event2 NLO results and the expected α2
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lines should be flat asymptotically if Event2 and our calculations agree. Right: comparison
of the expected and Event2 results for the [(αs/2π) ln 1/R2]n coefficients for Pz<zmax , as
a function of zmax, for n = 1 (LO) and n = 2 (NLO).

progressively unclustered the jet until we reached a configuration where each of the subjets
had an energy of less than zmaxQ/2. We identified the Cambridge/Aachen distance for
that declustering,

d(C/A) = 1− cos θ
1− cosR0

' θ2

2(1− cosR0) , (A.17)

where θ is the angle between the two subjets or particles that got declustered, and the
rightmost (approximate) expression holds for small θ. We then added an entry for that
event to the corresponding bin of ln 1/d(C/A). This gives us a numerical result for

dPz<zmax

d ln 1/d(C/A)
= d

d ln 1/d(C/A)
∫ zmax

0
dzfhardest(z) , (A.18)

because for values of d(C/A) smaller than that of the bin, the hardest z satisfies z > zmax,
while for values of d(C/A) larger than that of the bin the hardest z satisfies z < zmax.

Up to order α2
s, we expect the result to be

dPz<zmax

d ln 1/d(C/A)
= αs

2π
[
c1[Pz<zmax ] +O

(
d(C/A)

)]
+
(
αs
2π

)2 [(
b0c1[Pz<zmax ] + c2[Pz<zmax ]

)
ln 1
d(C/A)

+O (1)
]

+O
(
α3
s

)
, (A.19)
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where the c1 and c2 coefficients are precisely those worked out in this paper at LL order
in the small-R limit (had we evaluated subleading terms, care would have been needed
concerning the difference between d(C/A) and R2, however since this just reduces to a
constant factor for small angles, it is irrelevant at LL order). Figure A.4 (left) shows
the difference between the actual NLO term in Event2 (without the LO contribution)
and the expected O

(
α2
s

)
term of Eq. (A.19), as evaluated from the first and second

order expansions of our small-R resummation. It is shown as a function of ln 1/d(C/A),
for zmax = 0.6, both for the total result and separately for each of the colour-factor
contributions. In all cases asymptotically it is flat, indicating that we have subtracted the
correct O

(
α2
s ln 1

d(C/A)

)
contribution. The right-hand plot shows the expected results for

the coefficients of the O (αs) and O
(
α2
s

)
LL terms, versus those observed in Event2, as a

function of zmax. Again the agreement is very good. We could also have directly studied
〈ln z〉hardest, however the test as shown in Fig. A.4 is in some respects more complete
because it probes the fhardest(z) distribution differentially. Two final remarks are in
order. Firstly, these tests do not unequivocally demonstrate that it is the 〈ln z〉hardest
moment that is the relevant quantity for a jet-veto probability — for this one still relies
on the calculation in Eqs. (4.33)–(4.37). Secondly, Event2 provides a test of our results
only for quark jets. Nevertheless, the property of angular ordering that we rely on for
our calculations is common to quark and to gluon jets.
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B Small-radius jets and the inclu-
sive jet pt spectrum

B.1 Differences in αs and t expansions

In chapter 4, we compared the LLR resummed results to an expansion in powers of t,
with t as defined in Eq. (4.1). However t is a non-trivial function of αs and expansions
in αs and t can have different convergence properties.

This is illustrated in Fig. B.1, where we show the expansion for the inclusive jet pt
spectrum. The left-hand plot shows the difference between the resummation and its
expansion to NLO in powers of αs, normalised to the full resummed result. The right-
hand plot shows the difference between the resummation and its expansion to NLO in
powers of t, with the same normalisation. Three different R values are shown. One sees
that the t expansion converges more slowly than the αs expansion.

At first sight, this observation is somewhat surprising, insofar as t would appear to
be the natural variable for considering small R effects. Part of the explanation is as
follows: the t expansion has alternating sign coefficients, at least for the first couple of
orders. This means that the NLO O (t) correction (relative to LO) is larger than the
overall effect of resummation. The O (αs) correction has the same coefficient as the O (t)
correction (modulo an overall normalisation factor of 1

2π lnR2
0/R

2). However, t involves
the average of the coupling over a range of scales between pt and Rpt, which is larger
than αs(pt). Consequently, the NLO O (αs) term is not as large as the NLO O (t) term,
and it overshoots the resummation by less. Though not illustrated in Fig. B.1, a similar
phenomenon occurs also when comparing to expansions at NNLO.

One should keep in mind that for observables other than the inclusive jet spectrum, it
may no longer be true that a t expansion converges more slowly than an αs expansion.
Rather, when discussing fixed-order convergence properties compared to full small-R
resummation, one should simply be aware that the convergence properties of the t and
αs expansions will be sometimes be noticeably different.
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Figure B.1 – Comparison of the convergence of the αs expansion of the small-R resum-
mation (left) relative to that of the t expansion (right), for the inclusive jet spectrum.

Note also that the above discussion holds specifically for the expansion of the LLR result.
As we have seen in section 5.2.1, NLLR effects are large and at NNLO are of opposite
sign to the LLR contribution. This further complicates the discussion of the convergence
properties of the inclusive jet spectrum.

B.2 Scale choice beyond leading order in inclusive jets

When making fixed-order predictions for the inclusive jet cross section, there are two
widely used prescriptions for the choice of a central renormalisation and factorisation
scale. One prescription is to use a single scale for the whole event, set by the pt of
the hardest jet in the event, µ0 = pt,max. This was adopted, for example, in Ref. [110].
Another prescription is to take instead a different scale for each jet, specifically that jet’s
pt, µ0 = pt,jet. This was adopted for example in Ref. [89].1

At LO, the two prescriptions give identical results, since there are only two jets in the
event and they have the same pt. However, starting from NLO the prescriptions can differ
substantially. Interestingly, a study of the small-radius limit can provide considerable
insight into which choice is more appropriate.

Figure B.2 (left) shows the ratio of the NLO result as obtained with µ0 = pt,jet to that
with µ0 = pt,max, as a function of the jet pt, for three different jet radii. The main
observation is that the µ0 = pt,jet prescription increases the cross section, especially at
small radii: it brings an increase of almost 20% for R = 0.1 at low pt, versus . 4%
for R = 1.0 (in both cases for a central scale choice). As we saw in section 5.4, for

1Note that yet other scale choices have been used in the literature, notably in predictions for dijet
masses [279, 156].
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Figure B.2 – Left: ratio of NLO predictions for the inclusive spectrum when using the
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normalisation are both evaluated at LO.
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reasonably small R, the NNLO corrections suppress the cross section. Therefore the
choice µ0 = pt,jet takes us in the wrong direction.

In order to understand this better, it is useful to make a number of observations:

1. For the virtual part of the NLO calculation, the two scale prescriptions give identical
results, so the deviation of the ratio from 1 in Fig. B.2 (left) can come only from
the real part.

2. The real part itself involves two different pieces: that from binning either of the
two leading jets, and that from binning the 3rd jet. The right-hand plot of Fig. B.2
shows that the leading-order 3rd-jet contribution is at the level of 1−2% of the
leading-order dijet result and so it is reasonable to neglect it in our discussion.2

3. When a real emission is within an angle R of its nearest other parton, there are
only two jets in the event and the two scale-choice prescriptions are identical.

4. Differences between the prescriptions arise when the softest parton falls outside
one of the two leading jets. Then one of those jets has a reduced pt and the choice
µ0 = pt,jet gives a smaller scale than µ0 = pt,max. This occurs with a probability
that is enhanced by ln 1/R.

5. At pt ∼ 100 GeV, where the effects are largest, renormalisation scale (µR) variations
play a much larger role than factorisation scale (µF ) variations. Therefore a smaller
scale translates to a larger value of αs and thus a larger cross section for the real
contribution (which is always positive). Consequently, the prescription µ0 = pt,jet
leads to a cross section that is larger than the prescription µ0 = pt,max and the
difference is enhanced by a factor ln 1/R for small R.

This qualitatively explains the behaviour seen in Fig. B.2 (left). The µ0 = pt,jet scale
choice introduces a correction that goes in the wrong direction because it leads to a
smaller scale (and larger αs) for the real part, but without a corresponding modification
of the virtual part. Thus it breaks the symmetry between real and virtual corrections.

The above reasoning leads us to prefer the µ0 = pR=1
t,max prescription. To make it a unique

event-wide choice, independent of R, we define always define µ0 = pt,max using jets with
a radius equal to one, regardless of the R value used in the measurement.

We note that µ0 = pt,max has a potential linear sensitivity to initial-state radiation, i.e.
initial state radiation of transverse momentum pt,i shifts µ0 by an amount pt,i. A yet
more stable choice might be µ0 = 1

2(pt,1 + pt,2), the average transverse momentum of the

2The 3rd jet is produced with a probability O (αs), however because its pt is lower than that of the
two leading jets, its contribution to the (steeply falling) jet spectrum is substantially suppressed.
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two hardest jets (again defined with a radius of one). For this choice, the shift of µ0
would be limited O

(
p2
t,i/(pt,1 + pt,2)

)
. We leave its study to future work.

Yet another option is the use of MINLO type procedures [277]. For dijet systems, this
should be rather similar to µ0 = 1

2(pt,1 + pt,2).

169





Bibliography

[1] R. Keith Ellis, W. James Stirling, and B.R. Webber. QCD and collider physics.
Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol., 8:1–435, 1996.

[2] G. Dissertori, I. G. Knowles, and M. Schmelling. High energy experiments and
theory. 2003.

[3] Yuri L. Dokshitzer, Valery A. Khoze, Alfred H. Mueller, and S. I. Troian. Basics
of perturbative QCD. 1991.

[4] K. A. Olive et al. Review of Particle Physics. Chin. Phys., C38:090001, 2014.

[5] Nathan Isgur and Mark B. Wise. Weak Decays of Heavy Mesons in the Static
Quark Approximation. Phys. Lett., B232:113–117, 1989.

[6] Estia Eichten and Brian Russell Hill. An Effective Field Theory for the Calculation
of Matrix Elements Involving Heavy Quarks. Phys. Lett., B234:511, 1990.

[7] Benjamin Grinstein. The Static Quark Effective Theory. Nucl. Phys., B339:253–268,
1990.

[8] Howard Georgi. An Effective Field Theory for Heavy Quarks at Low-energies.
Phys. Lett., B240:447–450, 1990.

[9] Christian W. Bauer, Sean Fleming, and Michael E. Luke. Summing Sudakov
logarithms in B —> X(s gamma) in effective field theory. Phys. Rev., D63:014006,
2000, hep-ph/0005275.

[10] Christian W. Bauer, Sean Fleming, Dan Pirjol, and Iain W. Stewart. An Effective
field theory for collinear and soft gluons: Heavy to light decays. Phys. Rev.,
D63:114020, 2001, hep-ph/0011336.

[11] Christian W. Bauer and Iain W. Stewart. Invariant operators in collinear effective
theory. Phys. Lett., B516:134–142, 2001, hep-ph/0107001.

[12] Christian W. Bauer, Dan Pirjol, and Iain W. Stewart. Soft collinear factorization
in effective field theory. Phys. Rev., D65:054022, 2002, hep-ph/0109045.

171



Bibliography

[13] M. Beneke, A. P. Chapovsky, M. Diehl, and T. Feldmann. Soft collinear effective
theory and heavy to light currents beyond leading power. Nucl. Phys., B643:431–476,
2002, hep-ph/0206152.

[14] M. Beneke and T. Feldmann. Multipole expanded soft collinear effective theory with
nonAbelian gauge symmetry. Phys. Lett., B553:267–276, 2003, hep-ph/0211358.

[15] Richard J. Hill and Matthias Neubert. Spectator interactions in soft collinear
effective theory. Nucl. Phys., B657:229–256, 2003, hep-ph/0211018.

[16] Geoffrey T. Bodwin, Eric Braaten, and G. Peter Lepage. Rigorous QCD analysis of
inclusive annihilation and production of heavy quarkonium. Phys. Rev., D51:1125–
1171, 1995, hep-ph/9407339. [Erratum: Phys. Rev.D55,5853(1997)].

[17] J. Gasser and H. Leutwyler. Chiral Perturbation Theory to One Loop. Annals
Phys., 158:142, 1984.

[18] J. Gasser and H. Leutwyler. Chiral Perturbation Theory: Expansions in the Mass
of the Strange Quark. Nucl. Phys., B250:465, 1985.

[19] Juan Martin Maldacena. The Large N limit of superconformal field theories and
supergravity. Int. J. Theor. Phys., 38:1113–1133, 1999, hep-th/9711200. [Adv.
Theor. Math. Phys.2,231(1998)].

[20] S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory
correlators from noncritical string theory. Phys. Lett., B428:105–114, 1998, hep-
th/9802109.

[21] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys.,
2:253–291, 1998, hep-th/9802150.

[22] Joshua Erlich, Emanuel Katz, Dam T. Son, and Mikhail A. Stephanov. QCD and a
holographic model of hadrons. Phys. Rev. Lett., 95:261602, 2005, hep-ph/0501128.

[23] Leandro Da Rold and Alex Pomarol. Chiral symmetry breaking from five dimen-
sional spaces. Nucl. Phys., B721:79–97, 2005, hep-ph/0501218.

[24] Romuald A. Janik and Robert B. Peschanski. Asymptotic perfect fluid dynamics
as a consequence of Ads/CFT. Phys. Rev., D73:045013, 2006, hep-th/0512162.

[25] M. Beneke. Renormalons. Phys. Rept., 317:1–142, 1999, hep-ph/9807443.

[26] Gerard ’t Hooft. Dimensional regularization and the renormalization group. Nucl.
Phys., B61:455–468, 1973.

[27] Steven Weinberg. New approach to the renormalization group. Phys. Rev., D8:3497–
3509, 1973.

172



Bibliography

[28] William A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta. Deep Inelastic
Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories.
Phys. Rev., D18:3998, 1978.

[29] Huey-Wen Lin, Jiunn-Wei Chen, Saul D. Cohen, and Xiangdong Ji. Flavor Structure
of the Nucleon Sea from Lattice QCD. Phys. Rev., D91:054510, 2015, 1402.1462.

[30] Constantia Alexandrou, Krzysztof Cichy, Vincent Drach, Elena Garcia-Ramos, Kyr-
iakos Hadjiyiannakou, Karl Jansen, Fernanda Steffens, and Christian Wiese. Lattice
calculation of parton distributions. Phys. Rev., D92:014502, 2015, 1504.07455.

[31] Guido Altarelli and G. Parisi. Asymptotic Freedom in Parton Language. Nucl.
Phys., B126:298, 1977.

[32] Yuri L. Dokshitzer. Calculation of the Structure Functions for Deep Inelastic
Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromody-
namics. Sov. Phys. JETP, 46:641–653, 1977. [Zh. Eksp. Teor. Fiz.73,1216(1977)].

[33] V. N. Gribov and L. N. Lipatov. Deep inelastic e p scattering in perturbation
theory. Sov. J. Nucl. Phys., 15:438–450, 1972. [Yad. Fiz.15,781(1972)].

[34] S. Chekanov et al. A ZEUS next-to-leading-order QCD analysis of data on deep
inelastic scattering. Phys. Rev., D67:012007, 2003, hep-ex/0208023.

[35] Matteo Cacciari and Nicolas Houdeau. Meaningful characterisation of perturbative
theoretical uncertainties. JHEP, 09:039, 2011, 1105.5152.

[36] Emanuele Bagnaschi, Matteo Cacciari, Alberto Guffanti, and Laura Jenniches. An
extensive survey of the estimation of uncertainties from missing higher orders in
perturbative calculations. JHEP, 02:133, 2015, 1409.5036.

[37] John C. Collins, Davison E. Soper, and George F. Sterman. Factorization for Short
Distance Hadron - Hadron Scattering. Nucl. Phys., B261:104, 1985.

[38] John C. Collins, Davison E. Soper, and George F. Sterman. Factorization of
Hard Processes in QCD. Adv. Ser. Direct. High Energy Phys., 5:1–91, 1989,
hep-ph/0409313.

[39] Stefano Catani, Daniel de Florian, and German Rodrigo. Space-like (versus time-
like) collinear limits in QCD: Is factorization violated? JHEP, 07:026, 2012,
1112.4405.

[40] Jonathan R. Gaunt. Glauber Gluons and Multiple Parton Interactions. JHEP,
07:110, 2014, 1405.2080.

[41] Mao Zeng. Drell-Yan process with jet vetoes: breaking of generalized factorization.
JHEP, 10:189, 2015, 1507.01652.

173



Bibliography

[42] Gavin P. Salam. Towards Jetography. Eur.Phys.J., C67:637–686, 2010, 0906.1833.

[43] John E. Huth, Naor Wainer, Karlheinz Meier, Nicholas Hadley, F. Aversa, et al.
Toward a standardization of jet definitions. 1990.

[44] George F. Sterman and Steven Weinberg. Jets from Quantum Chromodynamics.
Phys.Rev.Lett., 39:1436, 1977.

[45] Gerald C. Blazey, Jay R. Dittmann, Stephen D. Ellis, V. Daniel Elvira, K. Frame,
et al. Run II jet physics. pages 47–77, 2000, hep-ex/0005012.

[46] Nikolaos Kidonakis, Gianluca Oderda, and George F. Sterman. Threshold resum-
mation for dijet cross-sections. Nucl.Phys., B525:299–332, 1998, hep-ph/9801268.

[47] Gavin P. Salam and Gregory Soyez. A Practical Seedless Infrared-Safe Cone jet
algorithm. JHEP, 0705:086, 2007, 0704.0292.

[48] W. Bartel et al. Experimental Studies on Multi-Jet Production in e+ e- Annihilation
at PETRA Energies. Z.Phys., C33:23, 1986.

[49] S. Bethke et al. Experimental Investigation of the Energy Dependence of the Strong
Coupling Strength. Phys.Lett., B213:235, 1988.

[50] N. Brown and W. James Stirling. Jet cross-sections at leading double logarithm in
e+ e- annihilation. Phys.Lett., B252:657–662, 1990.

[51] Garth Leder. Jet fractions in e+ e- annihilation. Nucl.Phys., B497:334–344, 1997,
hep-ph/9610552.

[52] Yuri L. Dokshitzer, G.D. Leder, S. Moretti, and B.R. Webber. Better jet clustering
algorithms. JHEP, 9708:001, 1997, hep-ph/9707323.

[53] M. Wobisch and T. Wengler. Hadronization corrections to jet cross-sections in
deep inelastic scattering. 1998, hep-ph/9907280.

[54] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The Anti-k(t) jet clustering
algorithm. JHEP, 0804:063, 2008, 0802.1189.

[55] S. Catani, Yuri L. Dokshitzer, M. Olsson, G. Turnock, and B.R. Webber. New
clustering algorithm for multi - jet cross-sections in e+ e- annihilation. Phys.Lett.,
B269:432–438, 1991.

[56] S. Catani, Yuri L. Dokshitzer, M.H. Seymour, and B.R. Webber. Longitudi-
nally invariant Kt clustering algorithms for hadron hadron collisions. Nucl.Phys.,
B406:187–224, 1993.

[57] Georges Aad et al. Jet energy measurement and its systematic uncertainty in
proton-proton collisions at

√
s = 7 TeV with the ATLAS detector. 2014, 1406.0076.

174



Bibliography

[58] Serguei Chatrchyan et al. Determination of Jet Energy Calibration and Transverse
Momentum Resolution in CMS. JINST, 6:P11002, 2011, 1107.4277.

[59] Andrea Banfi, Gavin P. Salam, and Giulia Zanderighi. Infrared safe definition of
jet flavor. Eur.Phys.J., C47:113–124, 2006, hep-ph/0601139.

[60] Andrea Banfi, Gavin P. Salam, and Giulia Zanderighi. Accurate QCD predictions
for heavy-quark jets at the Tevatron and LHC. JHEP, 0707:026, 2007, 0704.2999.

[61] Yuri L. Dokshitzer and B. R. Webber. Calculation of power corrections to hadronic
event shapes. Phys. Lett., B352:451–455, 1995, hep-ph/9504219.

[62] Yuri L. Dokshitzer, G. Marchesini, and B. R. Webber. Dispersive approach to
power behaved contributions in QCD hard processes. Nucl. Phys., B469:93–142,
1996, hep-ph/9512336.

[63] Mrinal Dasgupta, Lorenzo Magnea, and Gavin P. Salam. Non-perturbative QCD
effects in jets at hadron colliders. JHEP, 0802:055, 2008, 0712.3014.

[64] Yuri L. Dokshitzer, A. Lucenti, G. Marchesini, and G. P. Salam. Universality of 1
/ Q corrections to jet shape observables rescued. Nucl. Phys., B511:396–418, 1998,
hep-ph/9707532. [Erratum: Nucl. Phys.B593,729(2001)].

[65] Yuri L. Dokshitzer, A. Lucenti, G. Marchesini, and G. P. Salam. On the universality
of the Milan factor for 1 / Q power corrections to jet shapes. JHEP, 05:003, 1998,
hep-ph/9802381.

[66] Mrinal Dasgupta and Bryan R. Webber. Two loop enhancement factor for 1 /
Q corrections to event shapes in deep inelastic scattering. JHEP, 10:001, 1998,
hep-ph/9809247.

[67] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics
and Manual. JHEP, 05:026, 2006, hep-ph/0603175.

[68] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson,
M. H. Seymour, and B. R. Webber. HERWIG 6.5 release note. 2002, hep-
ph/0210213.

[69] J. M. Butterworth, Jeffrey R. Forshaw, and M. H. Seymour. Multiparton interac-
tions in photoproduction at HERA. Z. Phys., C72:637–646, 1996, hep-ph/9601371.

[70] A. Abdesselam et al. Boosted objects: A Probe of beyond the Standard Model
physics. Eur. Phys. J., C71:1661, 2011, 1012.5412.

[71] A. Altheimer et al. Jet Substructure at the Tevatron and LHC: New results, new
tools, new benchmarks. J. Phys., G39:063001, 2012, 1201.0008.

175



Bibliography

[72] A. Altheimer et al. Boosted objects and jet substructure at the LHC. Report
of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012. Eur. Phys. J.,
C74(3):2792, 2014, 1311.2708.

[73] D. Adams et al. Towards an Understanding of the Correlations in Jet Substructure.
Eur. Phys. J., C75(9):409, 2015, 1504.00679.

[74] Stephen D. Ellis, Christopher K. Vermilion, and Jonathan R. Walsh. Recombination
Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches.
Phys. Rev., D81:094023, 2010, 0912.0033.

[75] David Krohn, Jesse Thaler, and Lian-Tao Wang. Jet Trimming. JHEP, 1002:084,
2010, 0912.1342.

[76] Jonathan M. Butterworth, Adam R. Davison, Mathieu Rubin, and Gavin P. Salam.
Jet substructure as a new Higgs search channel at the LHC. Phys.Rev.Lett.,
100:242001, 2008, 0802.2470.

[77] Andrew J. Larkoski, Simone Marzani, Gregory Soyez, and Jesse Thaler. Soft Drop.
JHEP, 05:146, 2014, 1402.2657.

[78] Mrinal Dasgupta, Alessandro Fregoso, Simone Marzani, and Gavin P. Salam.
Towards an understanding of jet substructure. JHEP, 1309:029, 2013, 1307.0007.

[79] David E. Kaplan, Keith Rehermann, Matthew D. Schwartz, and Brock Tweedie.
Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks.
Phys. Rev. Lett., 101:142001, 2008, 0806.0848.

[80] Tilman Plehn, Gavin P. Salam, and Michael Spannowsky. Fat Jets for a Light
Higgs. Phys. Rev. Lett., 104:111801, 2010, 0910.5472.

[81] Tilman Plehn, Michael Spannowsky, Michihisa Takeuchi, and Dirk Zerwas. Stop
Reconstruction with Tagged Tops. JHEP, 10:078, 2010, 1006.2833.

[82] Gregor Kasieczka, Tilman Plehn, Torben Schell, Thomas Strebler, and Gavin P.
Salam. Resonance Searches with an Updated Top Tagger. JHEP, 06:203, 2015,
1503.05921.

[83] Gregory Soyez. Optimal jet radius in kinematic dijet reconstruction. JHEP, 07:075,
2010, 1006.3634.

[84] Mateusz Ploskon. Inclusive cross section and correlations of fully reconstructed jets
in s(NN)**(1/2) = 200-GEV Au+Au and p+p collisions. Nucl.Phys., A830:255C–
258C, 2009, 0908.1799.

[85] Yue-Shi Lai. Direct jet reconstruction in p + p and Cu + Cu at PHENIX. 2009,
0911.3399.

176



Bibliography

[86] B. Abelev et al. Measurement of charged jet suppression in Pb-Pb collisions at
√
sNN = 2.76 TeV. JHEP, 1403:013, 2014, 1311.0633.

[87] G. Aad et al. Measurement of inclusive jet charged-particle fragmentation functions
in Pb+Pb collisions at √sNN = 2.76 TeV with the ATLAS detector. Phys.Lett.,
B739:320–342, 2014, 1406.2979.

[88] Serguei Chatrchyan et al. Measurement of jet fragmentation in PbPb and pp
collisions at √sNN = 2.76 TeV. Phys.Rev., C90(2):024908, 2014, 1406.0932.

[89] B. Abelev et al. Measurement of the inclusive differential jet cross section in pp
collisions at

√
s = 2.76 TeV. Phys.Lett., B722:262–272, 2013, 1301.3475.

[90] Serguei Chatrchyan et al. Measurement of the ratio of inclusive jet cross sections
using the anti-kT algorithm with radius parameters R=0.5 and 0.7 in pp collisions
at
√
s = 7 TeV. Phys.Rev., D90(7):072006, 2014, 1406.0324.

[91] Sebastian Eckweiler. Measurement of the inclusive jet cross-section in proton-proton
collisions at

√
s = 7 TeV with the ATLAS detector.

[92] Gregory Soyez. A Simple description of jet cross-section ratios. Phys.Lett., B698:59–
62, 2011, 1101.2665.

[93] Benjamin Nachman, Pascal Nef, Ariel Schwartzman, and Maximilian Swiatlowski.
Jets from Jets: Re-clustering as a tool for large radius jet reconstruction and
grooming at the LHC. 2014, 1407.2922.

[94] A. Abdesselam, E. Bergeaas Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth,
et al. Boosted objects: A Probe of beyond the Standard Model physics. Eur.Phys.J.,
C71:1661, 2011, 1012.5412.

[95] A. Altheimer, S. Arora, L. Asquith, G. Brooijmans, J. Butterworth, et al. Jet
Substructure at the Tevatron and LHC: New results, new tools, new benchmarks.
J.Phys., G39:063001, 2012, 1201.0008.

[96] A. Altheimer, A. Arce, L. Asquith, J. Backus Mayes, E. Bergeaas Kuutmann, et al.
Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at
IFIC Valencia, 23rd-27th of July 2012. Eur.Phys.J., C74(3):2792, 2014, 1311.2708.

[97] Tilman Plehn and Michael Spannowsky. Top Tagging. J.Phys., G39:083001, 2012,
1112.4441.

[98] D. Adams et al. Towards an Understanding of the Correlations in Jet Substructure.
Eur. Phys. J., C75(9):409, 2015, 1504.00679.

[99] Frank J. Tackmann, Jonathan R. Walsh, and Saba Zuberi. Resummation Properties
of Jet Vetoes at the LHC. Phys.Rev., D86:053011, 2012, 1206.4312.

177



Bibliography

[100] M.H. Seymour. Jet shapes in hadron collisions: Higher orders, resummation and
hadronization. Nucl.Phys., B513:269–300, 1998, hep-ph/9707338.

[101] Erik Gerwick, Steffen Schumann, Ben Gripaios, and Bryan Webber. QCD Jet Rates
with the Inclusive Generalized kt Algorithms. JHEP, 1304:089, 2013, 1212.5235.

[102] S. Catani, M. Fontannaz, J. Ph. Guillet, and E. Pilon. Isolating Prompt Photons
with Narrow Cones. JHEP, 1309:007, 2013, 1306.6498.

[103] Simone Alioli and Jonathan R. Walsh. Jet Veto Clustering Logarithms Beyond
Leading Order. JHEP, 1403:119, 2014, 1311.5234.

[104] Mrinal Dasgupta, Frédéric Dreyer, Gavin P. Salam, and Gregory Soyez. Small-radius
jets to all orders in QCD. 2014, 1411.5182.

[105] Andrea Banfi, Fabrizio Caola, Frédéric A. Dreyer, Pier F. Monni, Gavin P. Salam,
Giulia Zanderighi, and Falko Dulat. Jet-vetoed Higgs cross section in gluon fusion
at N3LO+NNLL with small-R resummation. JHEP, 04:049, 2016, 1511.02886.

[106] A. Aktas et al. Measurement of inclusive jet production in deep-inelastic scattering
at high Q**2 and determination of the strong coupling. Phys.Lett., B653:134–144,
2007, 0706.3722.

[107] H. Abramowicz et al. Inclusive-jet cross sections in NC DIS at HERA and a
comparison of the kT, anti-kT and SIScone jet algorithms. Phys.Lett., B691:127–
137, 2010, 1003.2923.

[108] T. Aaltonen et al. Measurement of the Inclusive Jet Cross Section at the Fer-
milab Tevatron p anti-p Collider Using a Cone-Based Jet Algorithm. Phys.Rev.,
D78:052006, 2008, 0807.2204.

[109] Victor Mukhamedovich Abazov et al. Measurement of the inclusive jet cross section
in pp̄ collisions at

√
s = 1.96 TeV. Phys.Rev., D85:052006, 2012, 1110.3771.

[110] Georges Aad et al. Measurement of the inclusive jet cross-section in proton-proton
collisions at

√
s = 7 TeV using 4.5 fb−1 of data with the ATLAS detector. 2014,

1410.8857.

[111] Serguei Chatrchyan et al. Measurements of differential jet cross sections in proton-
proton collisions at

√
s = 7 TeV with the CMS detector. Phys.Rev., D87(11):112002,

2013, 1212.6660.

[112] James Currie, Aude Gehrmann-De Ridder, E.W.N. Glover, and Joao Pires. NNLO
QCD corrections to jet production at hadron colliders from gluon scattering. JHEP,
1401:110, 2014, 1310.3993.

178



Bibliography

[113] Radja Boughezal, Fabrizio Caola, Kirill Melnikov, Frank Petriello, and Markus
Schulze. Higgs boson production in association with a jet at next-to-next-to-leading
order in perturbative QCD. JHEP, 1306:072, 2013, 1302.6216.

[114] Daniel de Florian, Patriz Hinderer, Asmita Mukherjee, Felix Ringer, and Werner
Vogelsang. Approximate next-to-next-to-leading order corrections to hadronic jet
production. Phys.Rev.Lett., 112:082001, 2014, 1310.7192.

[115] M. Botje. QCDNUM: Fast QCD Evolution and Convolution. Com-
put.Phys.Commun., 182:490–532, 2011, 1005.1481.

[116] A. Vogt. Efficient evolution of unpolarized and polarized parton distributions with
QCD-PEGASUS. Comput.Phys.Commun., 170:65–92, 2005, hep-ph/0408244.

[117] Gavin P. Salam and Juan Rojo. A Higher Order Perturbative Parton Evolution
Toolkit (HOPPET). Comput.Phys.Commun., 180:120–156, 2009, 0804.3755.

[118] Valerio Bertone, Stefano Carrazza, and Juan Rojo. APFEL: A PDF Evolution
Library with QED corrections. Comput.Phys.Commun., 185:1647–1668, 2014,
1310.1394.

[119] Georges Aad et al. Measurement of the correlation of jets with high pT isolated
prompt photons in lead-lead collisions at sqrtsNN = 2.76 TeV with the ATLAS
detector at the LHC. 2012.

[120] Serguei Chatrchyan et al. Studies of jet quenching using isolated-photon+jet
correlations in PbPb and pp collisions at √sNN = 2.76 TeV. Phys.Lett., B718:773–
794, 2013, 1205.0206.

[121] Andrea Banfi, Gavin P. Salam, and Giulia Zanderighi. NLL+NNLO predictions
for jet-veto efficiencies in Higgs-boson and Drell-Yan production. JHEP, 1206:159,
2012, 1203.5773.

[122] Andrea Banfi, Pier Francesco Monni, Gavin P. Salam, and Giulia Zanderighi.
Higgs and Z-boson production with a jet veto. Phys.Rev.Lett., 109:202001, 2012,
1206.4998.

[123] Thomas Becher and Matthias Neubert. Factorization and NNLL Resummation for
Higgs Production with a Jet Veto. JHEP, 1207:108, 2012, 1205.3806.

[124] Thomas Becher, Matthias Neubert, and Lorena Rothen. Factorization and
N3LLp+NNLO predictions for the Higgs cross section with a jet veto. JHEP,
1310:125, 2013, 1307.0025.

[125] Iain W. Stewart, Frank J. Tackmann, Jonathan R. Walsh, and Saba Zuberi. Jet pT
Resummation in Higgs Production at NNLL′ +NNLO. Phys.Rev., D89:054001,
2014, 1307.1808.

179



Bibliography

[126] Andrea Banfi, Pier Francesco Monni, and Giulia Zanderighi. Quark masses in
Higgs production with a jet veto. JHEP, 1401:097, 2014, 1308.4634.

[127] S. Catani and M.H. Seymour. A General algorithm for calculating jet cross-sections
in NLO QCD. Nucl.Phys., B485:291–419, 1997, hep-ph/9605323.

[128] Jason Gallicchio and Matthew D. Schwartz. Quark and Gluon Tagging at the LHC.
Phys.Rev.Lett., 107:172001, 2011, 1106.3076.

[129] Jason Gallicchio and Matthew D. Schwartz. Quark and Gluon Jet Substructure.
JHEP, 1304:090, 2013, 1211.7038.

[130] Andrew J. Larkoski, Gavin P. Salam, and Jesse Thaler. Energy Correlation
Functions for Jet Substructure. JHEP, 1306:108, 2013, 1305.0007.

[131] Andrew J. Larkoski, Jesse Thaler, and Wouter J. Waalewijn. Gaining (Mutual)
Information about Quark/Gluon Discrimination. JHEP, 1411:129, 2014, 1408.3122.

[132] Georges Aad et al. Light-quark and gluon jet discrimination in pp collisions at√
s = 7 TeV with the ATLAS detector. Eur.Phys.J., C74(8):3023, 2014, 1405.6583.

[133] CMS Collaboration. Performance of quark/gluon discrimination in 8 TeV pp data.
2013.

[134] M. Dasgupta and G.P. Salam. Resummation of nonglobal QCD observables.
Phys.Lett., B512:323–330, 2001, hep-ph/0104277.

[135] Yazid Delenda, Robert Appleby, Mrinal Dasgupta, and Andrea Banfi. On QCD
resummation with k(t) clustering. JHEP, 0612:044, 2006, hep-ph/0610242.

[136] Christopher Frye, Andrew J. Larkoski, Matthew D. Schwartz, and Kai Yan. Preci-
sion physics with pile-up insensitive observables. 2016, 1603.06375.

[137] Christopher Frye, Andrew J. Larkoski, Matthew D. Schwartz, and Kai Yan. Factor-
ization for groomed jet substructure beyond the next-to-leading logarithm. 2016,
1603.09338.

[138] Mrinal Dasgupta, Frédéric A. Dreyer, Gavin P. Salam, and Gregory Soyez. Inclusive
jet spectrum for small-radius jets. 2016, 1602.01110.

[139] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. A Brief Introduction
to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008, 0710.3820.

[140] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson,
M. H. Seymour, and B. R. Webber. HERWIG 6: An Event generator for hadron
emission reactions with interfering gluons (including supersymmetric processes).
JHEP, 01:010, 2001, hep-ph/0011363.

180



Bibliography

[141] M. Bahr et al. Herwig++ Physics and Manual. Eur. Phys. J., C58:639–707, 2008,
0803.0883.

[142] J. Bellm et al. Herwig++ 2.7 Release Note. 2013, 1310.6877.

[143] Mrinal Dasgupta, Frédéric A. Dreyer, Gavin P. Salam, and Gregory Soyez. MicroJets
web application. http://microjets.hepforge.org.

[144] Stephen D. Ellis and Davison E. Soper. Successive combination jet algorithm for
hadron collisions. Phys. Rev., D48:3160–3166, 1993, hep-ph/9305266.

[145] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual.
Eur.Phys.J., C72:1896, 2012, 1111.6097.

[146] Zoltan Nagy. Next-to-leading order calculation of three jet observables in hadron
hadron collision. Phys. Rev., D68:094002, 2003, hep-ph/0307268.

[147] Hung-Liang Lai, Marco Guzzi, Joey Huston, Zhao Li, Pavel M. Nadolsky, Jon
Pumplin, and C. P. Yuan. New parton distributions for collider physics. Phys.
Rev., D82:074024, 2010, 1007.2241.

[148] Thomas Becher, Matthias Neubert, Lorena Rothen, and Ding Yu Shao. An Effective
Field Theory for Jet Processes. 2015, 1508.06645.

[149] Yang-Ting Chien, Andrew Hornig, and Christopher Lee. Soft-collinear mode for
jet cross sections in soft collinear effective theory. Phys. Rev., D93(1):014033, 2016,
1509.04287.

[150] Aude Gehrmann-De Ridder, Thomas Gehrmann, E. W. Nigel Glover, Alexander
Huss, and Thomas A. Morgan. NNLO QCD corrections for Z boson plus jet
production. In Proceedings, 12th International Symposium on Radiative Corrections
(Radcor 2015) and LoopFest XIV (Radiative Corrections for the LHC and Future
Colliders), 2016, 1601.04569.

[151] Iain W. Stewart and Frank J. Tackmann. Theory Uncertainties for Higgs and
Other Searches Using Jet Bins. Phys. Rev., D85:034011, 2012, 1107.2117.

[152] Simone Alioli, Keith Hamilton, Paolo Nason, Carlo Oleari, and Emanuele Re. Jet
pair production in POWHEG. JHEP, 04:081, 2011, 1012.3380.

[153] Richard Corke and Torbjorn Sjostrand. Interleaved Parton Showers and Tuning
Prospects. JHEP, 03:032, 2011, 1011.1759.

[154] Peter Zeiler Skands. Tuning Monte Carlo Generators: The Perugia Tunes. Phys.
Rev., D82:074018, 2010, 1005.3457.

[155] Georges Aad et al. New ATLAS event generator tunes to 2010 data. 2011.

181

http://microjets.hepforge.org


Bibliography

[156] Georges Aad et al. Measurement of inclusive jet and dijet production in pp collisions
at
√
s = 7 TeV using the ATLAS detector. Phys. Rev., D86:014022, 2012, 1112.6297.

[157] Gregory P. Korchemsky and George F. Sterman. Nonperturbative corrections in
resummed cross-sections. Nucl.Phys., B437:415–432, 1995, hep-ph/9411211.

[158] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The Catchment Area of
Jets. JHEP, 04:005, 2008, 0802.1188.

[159] Peter Skands, Stefano Carrazza, and Juan Rojo. Tuning PYTHIA 8.1: the Monash
2013 Tune. Eur. Phys. J., C74(8):3024, 2014, 1404.5630.

[160] Rick Field. Early LHC Underlying Event Data - Findings and Surprises. In Hadron
collider physics. Proceedings, 22nd Conference, HCP 2010, Toronto, Canada,
August 23-27, 2010, 2010, 1010.3558.

[161] B. Cooper, J. Katzy, M. L. Mangano, A. Messina, L. Mijovic, and P. Skands.
Importance of a consistent choice of alpha(s) in the matching of AlpGen and
Pythia. Eur. Phys. J., C72:2078, 2012, 1109.5295.

[162] G. P. Salam and D. Wicke. Hadron masses and power corrections to event shapes.
JHEP, 05:061, 2001, hep-ph/0102343.

[163] Vicent Mateu, Iain W. Stewart, and Jesse Thaler. Power Corrections to Event
Shapes with Mass-Dependent Operators. Phys. Rev., D87(1):014025, 2013,
1209.3781.

[164] G. Aad et al. Study of Jet Shapes in Inclusive Jet Production in pp Collisions at√
s = 7 TeV using the ATLAS Detector. Phys. Rev., D83:052003, 2011, 1101.0070.

[165] Serguei Chatrchyan et al. Shape, Transverse Size, and Charged Hadron Multiplicity
of Jets in pp Collisions at 7 TeV. JHEP, 06:160, 2012, 1204.3170.

[166] Gregory P. Korchemsky and George F. Sterman. Power corrections to event shapes
and factorization. Nucl. Phys., B555:335–351, 1999, hep-ph/9902341.

[167] Stefan Gieseke, Christian Rohr, and Andrzej Siodmok. Colour reconnections in
Herwig++. Eur. Phys. J., C72:2225, 2012, 1206.0041.

[168] John Collins and Jian-Wei Qiu. kT factorization is violated in production of high-
transverse-momentum particles in hadron-hadron collisions. Phys. Rev., D75:114014,
2007, 0705.2141.

[169] Vardan Khachatryan et al. Measurement of the inclusive jet cross section in pp
collisions at sqrt(s) = 2.76 TeV. 2015, 1512.06212.

[170] Jun Gao, Marco Guzzi, Joey Huston, Hung-Liang Lai, Zhao Li, Pavel Nadolsky,
Jon Pumplin, Daniel Stump, and C. P. Yuan. CT10 next-to-next-to-leading order
global analysis of QCD. Phys. Rev., D89(3):033009, 2014, 1302.6246.

182



Bibliography

[171] Sayipjamal Dulat, Tie-Jiun Hou, Jun Gao, Marco Guzzi, Joey Huston, Pavel
Nadolsky, Jon Pumplin, Carl Schmidt, Daniel Stump, and C. P. Yuan. New parton
distribution functions from a global analysis of quantum chromodynamics. Phys.
Rev., D93(3):033006, 2016, 1506.07443.

[172] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt. Parton distributions for
the LHC. Eur. Phys. J., C63:189–285, 2009, 0901.0002.

[173] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne. Parton
distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J., C75(5):204, 2015,
1412.3989.

[174] Richard D. Ball et al. Parton distributions for the LHC Run II. JHEP, 04:040,
2015, 1410.8849.

[175] Stefan Dittmaier, Alexander Huss, and Christian Speckner. Weak radiative correc-
tions to dijet production at hadron colliders. JHEP, 11:095, 2012, 1210.0438.

[176] U. Baur. Weak Boson Emission in Hadron Collider Processes. Phys. Rev.,
D75:013005, 2007, hep-ph/0611241.

[177] Nicolas Meric. Etude théorique et expérimentale des corrections électrofaibles au
processus de production inclusive de jets. Développement de méthodes de détection
de topologies extrêmes. PhD thesis, Paris U., VI-VII, 2013.

[178] Georges Aad et al. HepData entry corresponding to Ref.[110]. http://hepdata.
cedar.ac.uk/view/ins1325553.

[179] Zoltan Kunszt and Davison E. Soper. Calculation of jet cross-sections in hadron
collisions at order alpha-s**3. Phys. Rev., D46:192–221, 1992.

[180] Georges Aad et al. Search for New Physics in Dijet Mass and Angular Distributions
in pp Collisions at

√
s = 7 TeV Measured with the ATLAS Detector. New J. Phys.,

13:053044, 2011, 1103.3864.

[181] Serguei Chatrchyan et al. Search for narrow resonances using the dijet mass
spectrum in pp collisions at

√
s = 8 TeV. Phys. Rev., D87(11):114015, 2013,

1302.4794.

[182] Georges Aad et al. Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett., B716:1–29,
2012, 1207.7214.

[183] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC. Phys. Lett., B716:30–61, 2012, 1207.7235.

183

http://hepdata.cedar.ac.uk/view/ins1325553
http://hepdata.cedar.ac.uk/view/ins1325553


Bibliography

[184] H. M. Georgi, S. L. Glashow, M. E. Machacek, and Dimitri V. Nanopoulos. Higgs
Bosons from Two Gluon Annihilation in Proton Proton Collisions. Phys. Rev. Lett.,
40:692, 1978.

[185] D. R. T. Jones and S. T. Petcov. Heavy Higgs Bosons at LEP. Phys. Lett., B84:440,
1979.

[186] S. L. Glashow, Dimitri V. Nanopoulos, and A. Yildiz. Associated Production of
Higgs Bosons and Z Particles. Phys. Rev., D18:1724–1727, 1978.

[187] Z. Kunszt. Associated Production of Heavy Higgs Boson with Top Quarks. Nucl.
Phys., B247:339, 1984.

[188] R. Michael Barnett, Howard E. Haber, and Davison E. Soper. Ultraheavy Particle
Production from Heavy Partons at Hadron Colliders. Nucl. Phys., B306:697, 1988.

[189] Duane A. Dicus and Scott Willenbrock. Higgs Boson Production from Heavy Quark
Fusion. Phys. Rev., D39:751, 1989.

[190] LHC Higgs Cross Section Working Group. Preliminary result for YR4. https:
//twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG.

[191] Charalampos Anastasiou, Claude Duhr, Falko Dulat, Franz Herzog, and Bernhard
Mistlberger. Higgs Boson Gluon-Fusion Production in QCD at Three Loops. Phys.
Rev. Lett., 114:212001, 2015, 1503.06056.

[192] Charalampos Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Thomas
Gehrmann, Franz Herzog, Achilleas Lazopoulos, and Bernhard Mistlberger. High
precision determination of the gluon fusion Higgs boson cross-section at the LHC.
2016, 1602.00695.

[193] Radja Boughezal, Fabrizio Caola, Kirill Melnikov, Frank Petriello, and Markus
Schulze. Higgs boson production in association with a jet at next-to-next-to-leading
order. Phys. Rev. Lett., 115(8):082003, 2015, 1504.07922.

[194] Giancarlo Ferrera, Massimiliano Grazzini, and Francesco Tramontano. Associated
WH production at hadron colliders: a fully exclusive QCD calculation at NNLO.
Phys. Rev. Lett., 107:152003, 2011, 1107.1164.

[195] Giancarlo Ferrera, Massimiliano Grazzini, and Francesco Tramontano. Associated
ZH production at hadron colliders: the fully differential NNLO QCD calculation.
Phys. Lett., B740:51–55, 2015, 1407.4747.

[196] Paolo Bolzoni, Fabio Maltoni, Sven-Olaf Moch, and Marco Zaro. Higgs production
via vector-boson fusion at NNLO in QCD. Phys. Rev. Lett., 105:011801, 2010,
1003.4451.

184

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG


Bibliography

[197] Serguei Chatrchyan et al. Evidence for the 125 GeV Higgs boson decaying to a
pair of τ leptons. JHEP, 05:104, 2014, 1401.5041.

[198] Serguei Chatrchyan et al. Evidence for the direct decay of the 125 GeV Higgs
boson to fermions. Nature Phys., 10:557–560, 2014, 1401.6527.

[199] Georges Aad et al. Evidence for the Higgs-boson Yukawa coupling to tau leptons
with the ATLAS detector. JHEP, 04:117, 2015, 1501.04943.

[200] Georges Aad et al. Measurements of the Higgs boson production and decay rates
and coupling strengths using pp collision data at

√
s = 7 and 8 TeV in the ATLAS

experiment. Eur. Phys. J., C76(1):6, 2016, 1507.04548.

[201] Georges Aad et al. Combined Measurement of the Higgs Boson Mass in pp Collisions
at
√
s = 7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett.,

114:191803, 2015, 1503.07589.

[202] Serguei Chatrchyan et al. Search for the standard model Higgs boson produced in
association with a W or a Z boson and decaying to bottom quarks. Phys. Rev.,
D89(1):012003, 2014, 1310.3687.

[203] Vardan Khachatryan et al. Search for the standard model Higgs boson produced
through vector boson fusion and decaying to bb. Phys. Rev., D92(3):032008, 2015,
1506.01010.

[204] ATLAS and CMS. Measurements of the Higgs boson production and decay rates
and constraints on its couplings from a combined ATLAS and CMS analysis of the
LHC pp collision data at

√
s = 7 and 8 TeV. 2015.

[205] Georges Aad et al. Projections for measurements of Higgs boson cross sections,
branching ratios and coupling parameters with the ATLAS detector at a HL-LHC .
2013.

[206] The ATLAS collaboration. Search for an Invisibly Decaying Higgs Boson Produced
via Vector Boson Fusion in pp Collisions at

√
s = 8 TeV using the ATLAS Detector

at the LHC. 2015.

[207] CMS Collaboration. Search for invisible decays of Higgs bosons in the vector boson
fusion production mode. 2015.

[208] Tilman Plehn, David L. Rainwater, and Dieter Zeppenfeld. Determining the
structure of Higgs couplings at the LHC. Phys. Rev. Lett., 88:051801, 2002,
hep-ph/0105325.

[209] Paolo Bolzoni, Fabio Maltoni, Sven-Olaf Moch, and Marco Zaro. Vector boson
fusion at NNLO in QCD: SM Higgs and beyond. Phys. Rev., D85:035002, 2012,
1109.3717.

185



Bibliography

[210] Abdelhak Djouadi. The Anatomy of electro-weak symmetry breaking. I: The Higgs
boson in the standard model. Phys. Rept., 457:1–216, 2008, hep-ph/0503172.

[211] Dieter Zeppenfeld. Collider physics. In Neutrinos in physics and astrophysics from
10**(-33) to 10**28 CM. Proceedings, Conference, TASI’98, Boulder, USA, June
1-26, 1998, pages 303–350, 1999, hep-ph/9902307.

[212] G. Klamke and D. Zeppenfeld. Higgs plus two jet production via gluon fusion as a
signal at the CERN LHC. JHEP, 04:052, 2007, hep-ph/0703202.

[213] Vittorio Del Duca, Alberto Frizzo, and Fabio Maltoni. Higgs boson production in
association with three jets. JHEP, 05:064, 2004, hep-ph/0404013.

[214] M. Ciccolini, Ansgar Denner, and S. Dittmaier. Strong and electroweak corrections
to the production of Higgs + 2jets via weak interactions at the LHC. Phys. Rev.
Lett., 99:161803, 2007, 0707.0381.

[215] Mariano Ciccolini, Ansgar Denner, and Stefan Dittmaier. Electroweak and QCD
corrections to Higgs production via vector-boson fusion at the LHC. Phys. Rev.,
D77:013002, 2008, 0710.4749.

[216] Tao Han, G. Valencia, and S. Willenbrock. Structure function approach to vector
boson scattering in p p collisions. Phys. Rev. Lett., 69:3274–3277, 1992, hep-
ph/9206246.

[217] Gerard ’t Hooft. A Planar Diagram Theory for Strong Interactions. Nucl. Phys.,
B72:461, 1974.

[218] Robert V. Harlander, Jens Vollinga, and Marcus Max Weber. Gluon-Induced Weak
Boson Fusion. Phys. Rev., D77:053010, 2008, 0801.3355.

[219] Duane A. Dicus and Scott S. D. Willenbrock. Higgs Bosons From Vector Boson
Fusion in e+e−, ep and pp Collisions. Phys. Rev., D32:1642, 1985.

[220] Guido Altarelli, B. Mele, and F. Pitolli. Heavy Higgs Production at Future Colliders.
Nucl. Phys., B287:205–224, 1987.

[221] W Kilian, M Kramer, and P. M. Zerwas. Higgsstrahlung and W W fusion in e+ e-
collisions. Phys. Lett., B373:135–140, 1996, hep-ph/9512355.

[222] R. N. Cahn and Sally Dawson. Production of Very Massive Higgs Bosons. Phys.
Lett., B136:196, 1984. [Erratum: Phys. Lett.B138,464(1984)].

[223] Michael Spira. QCD effects in Higgs physics. Fortsch. Phys., 46:203–284, 1998,
hep-ph/9705337.

[224] W. Furmanski and R. Petronzio. Lepton - Hadron Processes Beyond Leading Order
in Quantum Chromodynamics. Z. Phys., C11:293, 1982.

186



Bibliography

[225] W. L. van Neerven and A. Vogt. NNLO evolution of deep inelastic structure
functions: The Singlet case. Nucl. Phys., B588:345–373, 2000, hep-ph/0006154.

[226] J. Sanchez Guillen, J. Miramontes, M. Miramontes, G. Parente, and O. A. Sampayo.
Next-to-leading order analysis of the deep inelastic R = sigma-L / sigma-total.
Nucl. Phys., B353:337–345, 1991.

[227] W. L. van Neerven and E. B. Zijlstra. Order alpha-s**2 contributions to the deep
inelastic Wilson coefficient. Phys. Lett., B272:127–133, 1991.

[228] E. B. Zijlstra and W. L. van Neerven. Order alpha-s**2 QCD corrections to the
deep inelastic proton structure functions F2 and F(L). Nucl. Phys., B383:525–574,
1992.

[229] E. B. Zijlstra and W. L. van Neerven. Order alpha-s**2 correction to the structure
function F3 (x, Q**2) in deep inelastic neutrino - hadron scattering. Phys. Lett.,
B297:377–384, 1992.

[230] S. Moch, J. A. M. Vermaseren, and A. Vogt. The Longitudinal structure function
at the third order. Phys. Lett., B606:123–129, 2005, hep-ph/0411112.

[231] J. A. M. Vermaseren, A. Vogt, and S. Moch. The Third-order QCD corrections
to deep-inelastic scattering by photon exchange. Nucl. Phys., B724:3–182, 2005,
hep-ph/0504242.

[232] Andreas Vogt, Sven Moch, and Jos Vermaseren. Third-order QCD results on
form factors and coefficient functions. Nucl. Phys. Proc. Suppl., 160:44–50, 2006,
hep-ph/0608307. [,44(2006)].

[233] S. Moch, M. Rogal, and A. Vogt. Differences between charged-current coefficient
functions. Nucl. Phys., B790:317–335, 2008, 0708.3731.

[234] A. Vogt. Fortran code. https://www.liverpool.ac.uk/~avogt/coeff.html.

[235] Ansgar Denner, Stefan Dittmaier, Stefan Kallweit, and Alexander Mück. HAWK
2.0: A Monte Carlo program for Higgs production in vector-boson fusion and
Higgs strahlung at hadron colliders. Comput. Phys. Commun., 195:161–171, 2015,
1412.5390.

[236] Matteo Cacciari, Frédéric A. Dreyer, Alexander Karlberg, Gavin P. Salam, and
Giulia Zanderighi. Fully Differential Vector-Boson-Fusion Higgs Production at
Next-to-Next-to-Leading Order. Phys. Rev. Lett., 115(8):082002, 2015, 1506.02660.

[237] T. Figy, C. Oleari, and D. Zeppenfeld. Next-to-leading order jet distributions for
Higgs boson production via weak boson fusion. Phys. Rev., D68:073005, 2003,
hep-ph/0306109.

187

https://www.liverpool.ac.uk/~avogt/coeff.html


Bibliography

[238] Terrance Figy, Vera Hankele, and Dieter Zeppenfeld. Next-to-leading order QCD
corrections to Higgs plus three jet production in vector-boson fusion. JHEP, 02:076,
2008, 0710.5621.

[239] Barbara Jäger, F. Schissler, and D. Zeppenfeld. Parton-shower effects on Higgs
boson production via vector-boson fusion in association with three jets. JHEP,
07:125, 2014, 1405.6950.

[240] Francisco Campanario, Terrance M. Figy, Simon Plätzer, and Malin Sjödahl.
Electroweak Higgs Boson Plus Three Jet Production at Next-to-Leading-Order
QCD. Phys. Rev. Lett., 111(21):211802, 2013, 1308.2932.

[241] Mathias Brucherseifer, Fabrizio Caola, and Kirill Melnikov. On the NNLO QCD
corrections to single-top production at the LHC. Phys. Lett., B736:58–63, 2014,
1404.7116.

[242] Paolo Nason and Carlo Oleari. NLO Higgs boson production via vector-boson
fusion matched with shower in POWHEG. JHEP, 02:037, 2010, 0911.5299.

[243] W. L. van Neerven and A. Vogt. NNLO evolution of deep inelastic structure
functions: The Nonsinglet case. Nucl. Phys., B568:263–286, 2000, hep-ph/9907472.

[244] Johan Alwall, Pavel Demin, Simon de Visscher, Rikkert Frederix, Michel Herquet,
Fabio Maltoni, Tilman Plehn, David L. Rainwater, and Tim Stelzer. MadGraph/-
MadEvent v4: The New Web Generation. JHEP, 09:028, 2007, 0706.2334.

[245] Paolo Nason. A New method for combining NLO QCD with shower Monte Carlo
algorithms. JHEP, 11:040, 2004, hep-ph/0409146.

[246] Simone Alioli, Paolo Nason, Carlo Oleari, and Emanuele Re. A general framework
for implementing NLO calculations in shower Monte Carlo programs: the POWHEG
BOX. JHEP, 06:043, 2010, 1002.2581.

[247] Stefano Frixione, Paolo Torrielli, and Marco Zaro. Higgs production through vector-
boson fusion at the NLO matched with parton showers. Phys. Lett., B726:273–282,
2013, 1304.7927.

[248] Stefano Frixione and Bryan R. Webber. Matching NLO QCD computations and
parton shower simulations. JHEP, 06:029, 2002, hep-ph/0204244.

[249] K. Arnold et al. VBFNLO: A Parton Level Monte Carlo for Processes with
Electroweak Bosons – Manual for Version 2.5.0. 2011, 1107.4038.

[250] Stefano Catani and Massimiliano Grazzini. An NNLO subtraction formalism in
hadron collisions and its application to Higgs boson production at the LHC. Phys.
Rev. Lett., 98:222002, 2007, hep-ph/0703012.

188



Bibliography

[251] Charalampos Anastasiou, Kirill Melnikov, and Frank Petriello. Higgs boson produc-
tion at hadron colliders: Differential cross sections through next-to-next-to-leading
order. Phys. Rev. Lett., 93:262002, 2004, hep-ph/0409088.

[252] Keith Hamilton, Paolo Nason, Emanuele Re, and Giulia Zanderighi. NNLOPS
simulation of Higgs boson production. JHEP, 10:222, 2013, 1309.0017.

[253] Stefan Höche, Ye Li, and Stefan Prestel. Higgs-boson production through gluon
fusion at NNLO QCD with parton showers. Phys. Rev., D90(5):054011, 2014,
1407.3773.

[254] Kirill Melnikov and Frank Petriello. Electroweak gauge boson production at hadron
colliders through O(alpha(s)**2). Phys. Rev., D74:114017, 2006, hep-ph/0609070.

[255] Stefano Catani, Leandro Cieri, Giancarlo Ferrera, Daniel de Florian, and Massimil-
iano Grazzini. Vector boson production at hadron colliders: a fully exclusive QCD
calculation at NNLO. Phys. Rev. Lett., 103:082001, 2009, 0903.2120.

[256] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, and G. Heinrich. NNLO
corrections to event shapes in e+ e- annihilation. JHEP, 12:094, 2007, 0711.4711.

[257] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, and G. Heinrich. Jet
rates in electron-positron annihilation at O(alpha(s)**3) in QCD. Phys. Rev. Lett.,
100:172001, 2008, 0802.0813.

[258] Vittorio Del Duca, Claude Duhr, Adam Kardos, Gábor Somogyi, and Zoltán
Trócsányi. Three-jet production in electron-positron collisions using the CoLoR-
FulNNLO method. 2016, 1603.08927.

[259] Radja Boughezal, Christfried Focke, Walter Giele, Xiaohui Liu, and Frank Petriello.
Higgs boson production in association with a jet at NNLO using jettiness subtraction.
Phys. Lett., B748:5–8, 2015, 1505.03893.

[260] Radja Boughezal, Christfried Focke, Xiaohui Liu, and Frank Petriello. W -boson
production in association with a jet at next-to-next-to-leading order in perturbative
QCD. Phys. Rev. Lett., 115(6):062002, 2015, 1504.02131.

[261] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, and T. A.
Morgan. Precise QCD predictions for the production of a Z boson in association
with a hadronic jet. 2015, 1507.02850.

[262] Radja Boughezal, John M. Campbell, R. Keith Ellis, Christfried Focke, Walter T.
Giele, Xiaohui Liu, and Frank Petriello. Z-boson production in association with a
jet at next-to-next-to-leading order in perturbative QCD. 2015, 1512.01291.

[263] Stefano Catani, Leandro Cieri, Daniel de Florian, Giancarlo Ferrera, and Massimil-
iano Grazzini. Diphoton production at hadron colliders: a fully-differential QCD
calculation at NNLO. Phys. Rev. Lett., 108:072001, 2012, 1110.2375.

189



Bibliography

[264] Massimiliano Grazzini, Stefan Kallweit, Dirk Rathlev, and Alessandro Torre. Zγ
production at hadron colliders in NNLO QCD. Phys. Lett., B731:204–207, 2014,
1309.7000.

[265] F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Man-
teuffel, S. Pozzorini, D. Rathlev, L. Tancredi, and E. Weihs. ZZ production at
hadron colliders in NNLO QCD. Phys. Lett., B735:311–313, 2014, 1405.2219.

[266] T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Poz-
zorini, D. Rathlev, and L. Tancredi. W+W− Production at Hadron Colliders in
Next to Next to Leading Order QCD. Phys. Rev. Lett., 113(21):212001, 2014,
1408.5243.

[267] Massimiliano Grazzini, Stefan Kallweit, and Dirk Rathlev. Wγ and Zγ production
at the LHC in NNLO QCD. JHEP, 07:085, 2015, 1504.01330.

[268] Michal Czakon, Paul Fiedler, and Alexander Mitov. Resolving the Tevatron Top
Quark Forward-Backward Asymmetry Puzzle: Fully Differential Next-to-Next-to-
Leading-Order Calculation. Phys. Rev. Lett., 115(5):052001, 2015, 1411.3007.

[269] Michal Czakon, David Heymes, and Alexander Mitov. High-precision differential
predictions for top-quark pairs at the LHC. Phys. Rev. Lett., 116(8):082003, 2016,
1511.00549.

[270] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level
and next-to-leading order differential cross sections, and their matching to parton
shower simulations. JHEP, 07:079, 2014, 1405.0301.

[271] Stefan Kallweit, Jonas M. Lindert, Philipp Maierhöfer, Stefano Pozzorini, and
Marek Schönherr. NLO electroweak automation and precise predictions for
W+multijet production at the LHC. JHEP, 04:012, 2015, 1412.5157.

[272] Andrea Banfi, Heather McAslan, Pier Francesco Monni, and Giulia Zanderighi. A
general method for the resummation of event-shape distributions in e+e− annihila-
tion. JHEP, 05:102, 2015, 1412.2126.

[273] Alexander Karlberg, Emanuele Re, and Giulia Zanderighi. NNLOPS accurate
Drell-Yan production. JHEP, 09:134, 2014, 1407.2940.

[274] Stefan Höche, Ye Li, and Stefan Prestel. Drell-Yan lepton pair production at NNLO
QCD with parton showers. Phys. Rev., D91(7):074015, 2015, 1405.3607.

[275] Simone Alioli, Christian W. Bauer, Calvin Berggren, Frank J. Tackmann, and
Jonathan R. Walsh. Drell-Yan production at NNLL’+NNLO matched to parton
showers. Phys. Rev., D92(9):094020, 2015, 1508.01475.

190



Bibliography

[276] William Astill, Wojciech Bizon, Emanuele Re, and Giulia Zanderighi. NNLOPS
accurate associated HW production. 2016, 1603.01620.

[277] Keith Hamilton, Paolo Nason, and Giulia Zanderighi. MINLO: Multi-Scale Im-
proved NLO. JHEP, 10:155, 2012, 1206.3572.

[278] Simone Alioli, Christian W. Bauer, Calvin J. Berggren, Andrew Hornig, Frank J.
Tackmann, Christopher K. Vermilion, Jonathan R. Walsh, and Saba Zuberi. Com-
bining Higher-Order Resummation with Multiple NLO Calculations and Parton
Showers in GENEVA. JHEP, 09:120, 2013, 1211.7049.

[279] Stephen D. Ellis, Zoltan Kunszt, and Davison E. Soper. Two jet production in
hadron collisions at order alpha-s**3 in QCD. Phys. Rev. Lett., 69:1496–1499,
1992.

191


